WO2017200298A1 - Remote afterloading brachytherapy apparatus using liquid radioactive isotope - Google Patents

Remote afterloading brachytherapy apparatus using liquid radioactive isotope Download PDF

Info

Publication number
WO2017200298A1
WO2017200298A1 PCT/KR2017/005125 KR2017005125W WO2017200298A1 WO 2017200298 A1 WO2017200298 A1 WO 2017200298A1 KR 2017005125 W KR2017005125 W KR 2017005125W WO 2017200298 A1 WO2017200298 A1 WO 2017200298A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
applicator
liquid
treatment
liquid radioisotope
Prior art date
Application number
PCT/KR2017/005125
Other languages
French (fr)
Korean (ko)
Inventor
박종민
김정인
우홍균
Original Assignee
서울대학교병원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교병원 filed Critical 서울대학교병원
Publication of WO2017200298A1 publication Critical patent/WO2017200298A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1001X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy using radiation sources introduced into or applied onto the body; brachytherapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • A61B5/0064Body surface scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1001X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy using radiation sources introduced into or applied onto the body; brachytherapy
    • A61N5/1007Arrangements or means for the introduction of sources into the body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1001X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy using radiation sources introduced into or applied onto the body; brachytherapy
    • A61N5/1007Arrangements or means for the introduction of sources into the body
    • A61N2005/1008Apparatus for temporary insertion of sources, e.g. afterloaders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1001X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy using radiation sources introduced into or applied onto the body; brachytherapy
    • A61N2005/1019Sources therefor
    • A61N2005/1021Radioactive fluid

Definitions

  • the present invention relates to a remote post-mounted radiation proximity therapy apparatus using liquid radioisotopes, and more particularly, to a remote post-mounted radiation proximity therapy apparatus for treating skin cancers occurring on irregular skin surfaces.
  • Brachytherapy is the treatment of prostate cancer, head and neck cancer, breast cancer, bladder cancer, uterine cancer, lung cancer, or the like by treating radioactive material within or near the target tumor to form a very high dose rate in tissues near the radiation source. It is used for the treatment of easily accessible lesions such as rectal cancer.
  • Such radio brachytherapy is divided into temporary brachytherapy, in which the tumor site radioactive material is placed for a period of time, and then recovered again, and transplant brachytherapy, in which a half-life radioactive seed having a short half-life is permanently planted in the tumor site.
  • the radiation source itself should be small, so use a high radioactive source.
  • X-ray, CT, or MRI images are used to accurately position the radiation source and the seed at the desired location.
  • needle-shaped sources were manually inserted, but now they use remote post-mounting methods designed to pre-install conduits and perform exposure remotely with computer control.
  • remote afterloading is to remotely load the therapeutic radiation by remote operation.
  • the treatment device In the setting stage of the treatment, the treatment device is placed at the treatment site, and then a related worker, such as a medical staff, leaves the dose and starts the treatment remotely.
  • the radiation source In the order programmed in the planning system, the radiation source automatically stays at the designated location for the specified time and irradiates. At the end of treatment, the radiation source automatically returns to the safe position, which can be expected to reduce the radiation exposure of the medical staff performing the treatment while at the same time expecting accurate treatment.
  • Such remote post-mounted brachytherapy can reduce the radiation exposure of the practitioner who is performing the treatment, while at the same time expecting more accurate treatments, but there are limitations in the radiation therapy of skin cancers in a wide range of areas.
  • external photon beam therapy due to the high permeability of high-energy photon beams, the types of skin cancers to which treatment is applicable are very limited, and the radiation exposure of significant internal normal organs even when the treatment is applicable. This is accompanied by.
  • external electron beam therapy a short range of distance electrons can be used to deliver most of the radiation dose at a shallow depth. It rarely delivers and has the advantage of being able to carry out treatment.
  • skin cancers that occur in areas such as the scalp, hands, or feet have irregular curved surfaces, which do not transmit electron beams to the same depth of the skin, and do not accurately transmit the prescribed radiation dose, which may cause overexposure of normal tissues.
  • skin cancer can be treated using a patient surface treatment applicator such as Koch flap applicator, Leipzig applicator, or Valencia applicator. Because of its sensitivity to patient set-up, lesion size, and surface curvature, there are only a few sites that can be used for treatment.Iridium, a radiation source used at this time, is a radioisotope that generates highly permeable gamma rays. Unnecessary exposure is inevitable, and high dose rate brachytherapy using conventional photon or radioisotopes is difficult to treat in a wide range of skin cancer areas.
  • the present invention has been made to solve the above problems, for skin cancers that are extensively developed on the irregular skin surface, to minimize the radiation exposure of normal tissue, and can deliver sufficient prescribed dose to the affected area homogeneously after remote Invented radiation proximity therapy device.
  • An applicator 100 made of a 3D scanner and a 3D printer to match the surface curvature of the affected part;
  • An injection unit 200 connected with the applicator 100 to inject a therapeutic liquid radioisotope
  • a remote post-mounted radiation proximity therapy device comprising a control unit 300 for controlling the injection of the therapeutic liquid radioisotope.
  • An applicator 100 made of a 3D scanner and a 3D printer to match the surface curvature of the affected part;
  • An injection unit 200 connected with the applicator 100 to inject a therapeutic liquid radioisotope
  • a remote post-mounted radiation proximity therapy apparatus 10 including a control unit 300 for controlling the injection of the therapeutic liquid radioisotope.
  • the injection portion 200 is connected to the receiving portion 210 and the receiving portion 210 for receiving the therapeutic liquid radioisotope disposed and injected into the applicator 100 and the therapeutic liquid radioactive It may include a flow tube 220 to provide a passage for the movement of the isotope.
  • the applicator 100 may maintain a constant distance between the affected area and the therapeutic liquid radioisotope.
  • the applicator 100 may maintain a constant thickness of the therapeutic liquid radioisotope.
  • the material of the accommodating part 210 may be polypropylene, polystyrene, polyethylene tetrephthalate (PET), low-density polyethylene (LDPE) or high-density polyethylene (HDPE). Can be.
  • the therapeutic liquid radioisotope may be a beta source or a low energy gamma source.
  • the beta source may be phosphorus-32, strontium-89, yttrium-90, iodine-131 or samarium-153.
  • the remote post-mounted radiation proximity therapy device using the liquid radioisotope of the present invention can position the therapeutic liquid radioisotope at regular intervals with the affected area through a patient-specific applicator using 3D scanning and / or 3D printing technology.
  • Liquid radioisotopes of thickness can be placed to deliver homogeneous prescription doses, and the use of liquid radioisotopes enables flexible application to the irregular patient's skin surface and allows the use of liquid beta sources or low energy gamma sources. By minimizing the radiation exposure of the tissues, it is expected to be able to treat patients with skin cancer, which is difficult to treat with conventional surgical or radiation therapy techniques.
  • the remote post-mounted radiation proximity therapy device of the present invention can be used alone for radiation therapy, but can be combined with existing radiation therapy techniques to provide better radiation dose distribution to the patient, using radioisotopes for the patient. Radiation exposure of medical staff and workers performing treatment may be prevented by remote post-installation.
  • FIG. 1 is a block diagram showing a detailed configuration of a remote post-mounted radiation proximity therapy apparatus 10 using a liquid radioisotope according to an embodiment of the present invention.
  • FIG. 2 shows the injection process of the liquid radioisotope for treatment when the remote post-mounted radiation proximity therapy device 10 using the liquid radioisotope in accordance with an embodiment of the present invention to the scalp skin cancer.
  • FIG 3 is a cross-sectional view of the case where the remote post-mounted radiation proximity therapy apparatus 10 using the liquid radioisotope according to an embodiment of the present invention is applied to the scalp skin cancer, and shows a state filled with the therapeutic liquid radioisotope. will be.
  • FIG. 1 is a block diagram showing a detailed configuration of a remote post-mounted radiation proximity therapy apparatus using a liquid radioisotope according to an embodiment of the present invention.
  • the therapeutic liquid radioisotope is used to increase the therapeutic effect by delivering a uniform prescription radiation dose to the irregular skin of the patient, and at the same time, the radiation of the patient using a remote post-mounted radioisotope. Radiation exposure can be prevented by medical staff and workers performing brachytherapy.
  • remote afterloading is to remotely load the therapeutic radiation to the remote operation, more specifically, after placing the applicator 100 to be described later in the treatment setting step in the treatment site, flow tube 220 ) Is connected to the radiation source exit of the applicator 100 and the control unit 300, and when the operator leaves and starts treatment remotely, the radiation source automatically stays in the designated position for a specified time in the order programmed in the dose planning system. It means the way. At the end of treatment, the radiation source automatically returns to the safe position, which can be expected to reduce the radiation exposure of the medical staff performing the treatment while at the same time expecting accurate treatment.
  • radiotherapy is a method of placing a liquid radioisotope in a tumor that is the target of brachytherapy, and irradiating and treating a tissue near a radiation source, and pre-installing a brachytherapy device in the affected part, Irradiation utilizes remote post-installation designed to be performed remotely through computer control.
  • the remote post-mounted radiation proximity therapy apparatus using liquid radioisotope delivers a uniform dose to the irregular patient's skin surface by using a liquid radioisotope, and performs treatment.
  • the remote post-mounted radiation proximity treatment device 10 using the liquid radioisotope according to an embodiment of the present invention is an applicator It may be configured to include the 100, the injection unit 200 and the control unit 300.
  • the applicator 100 is configured to irradiate therapeutic radiation to a skin lesion of a patient, which will be described later, as described below. As shown in FIG. 2, the applicator 100 is in contact with the lesion to treat the lesion. It should be manufactured to match the surface bending characteristics of. To this end, it is preferable to scan the skin surface curvature of different lesions using a 3D scanner, and then use the collected information to be customized to a patient using a 3D printer, but is not limited thereto.
  • the material of the applicator 100 it is possible to increase the radiation treatment effect by minimizing the shielding of the beta source, it is preferable to adopt from a material that can be produced through a 3D printer, for example, rubber, fiber or plastic Etc. may be used, but the present invention is not limited thereto.
  • the applicator 100 reflecting the curvature of the skin surface of the patient to maintain a constant distance in the vertical direction with the affected bar, it is possible to maintain a constant interval between the affected area and the therapeutic liquid radioisotope.
  • the thickness of the inside of the applicator 100 containing the therapeutic liquid radioisotope can also be kept constant, so that the same prescription radiation dose can be delivered to a uniform depth of the patient's skin.
  • the injection unit 200 is configured to inject a liquid radioisotope for treatment into a remote post-mounted radiation proximity therapy apparatus using a liquid radioisotope according to an embodiment of the present invention to perform radiation treatment of a patient.
  • the injection unit 200 may include a receiving unit 210 and a flow tube 220.
  • Receiving portion 210 is formed in the empty space inside the applicator 100, the configuration for receiving the therapeutic liquid radioisotope, the receiving portion 210 is elastic to seal the liquid radioisotope It is good and can be made of a thin polymer material that is not torn, and more specifically, in order to minimize the shielding of the liquid radioisotope for the treatment of beta sources to increase the radiotherapy effect, polypropylene, polystyrene, polyethylene tetraphthalate ( Polymer materials such as polyethylene tetrephthalate (PET), low-density polyethylene (LDPE) or high-density polyethylene (HDPE) may be used.
  • PET polyethylene tetrephthalate
  • LDPE low-density polyethylene
  • HDPE high-density polyethylene
  • the treatment unit 210 may be injected directly into the applicator to perform treatment without mounting the inside of the applicator 100. At this time, the applicator is sealed to prevent contact of the liquid radioisotope with the patient.
  • Flow tube 220 is connected to the receiving portion 210 is configured to provide a passage for the movement of the therapeutic liquid radioisotope, to irradiate the radiation generated on the skin lesions through the flow tube 220
  • the liquid radioisotope may be injected into the receptacle 210, and after treatment, it may be removed from the receptacle 210.
  • the receiving portion 210 and the flow tube 220 may be fastened in the form of a spout or cheer pack (not shown) for sealing the therapeutic liquid radioisotope, and sealing Or may be separated, but is not limited thereto.
  • the therapeutic liquid radioisotope according to the present invention is preferably a beta source or a low energy gamma source, more preferably, the beta source is phosphorus (P) -32, strontium (Sr) -89, yttrium (Y) -90, iodine (I) -131 or samarium (Sm) -153, but is not limited thereto.
  • the beta source is phosphorus (P) -32, strontium (Sr) -89, yttrium (Y) -90, iodine (I) -131 or samarium (Sm) -153, but is not limited thereto.
  • these ranges can deliver sufficient doses of radiation to shallow skin lesions, and use non-permeable radiation, so that normal organs located in the core or Unnecessary radiation exposure of the tissue can be prevented, and the amount of radiation exposed to normal organs or tissues can be reduced to increase the prescribed radiation dose, thereby improving the efficiency of treating skin lesions or skin cancer.
  • radiation treatment can be applied to irregular curved lesions of a patient, and can deliver a prescribed dose at a uniform depth irrespective of the curvature of the human body, and the applicator 100 and the Various shapes may be reproduced through the accommodation unit 210.
  • the control unit 300 is a configuration for implementing a remote post-mounted radiation proximity therapy apparatus using the liquid radioisotope of the present invention, by using a remote post-mounting on the applicator 100 and the receiving unit 210, a medical staff and a worker Injecting a therapeutic liquid radioisotope into the brachytherapy device while preventing a radiation exposure of the patient, staying in the affected area, irradiating the radiation, and performing a treatment, and then delivering a sufficient prescribed radiation dose to receive the therapeutic liquid radioisotope. It can be removed from the unit 210.
  • the liquid radioisotope for treatment remotely to the applicator 100 and the receiving portion 210 It is possible to control the injection or removal through the flow tube 220.
  • the liquid radioisotope is injected into the receiving portion 210 through the flow tube 220, the scalp skin cancer of the patient
  • the radioactive isotopes may be distributed such that the prescribed radiation dose is delivered to a uniform depth of the area, in which case the radioisotopes are not directly in contact with the patient's skin since the radioisotopes are located inside the receptacle 210.
  • the control unit 300 may include, but not limited to, a liquid radioisotope storage unit, a motor unit, or a computer treatment planning unit (not shown) to implement remote post-mounting.
  • FIGS. 2 and 3 illustrate a case where a remote post-mounted radiation proximity therapy apparatus using liquid radioisotope according to an embodiment of the present invention is applied to scalp skin cancer, and as shown in FIGS. 2 and 3, the present invention
  • the applicator 100 is manufactured by using a 3D scanner and / or a 3D printer to match the surface curvature characteristics of the lesion requiring treatment using a remote post-mounted radiation proximity therapy apparatus according to the present invention, and the applicator 100 is manufactured.
  • a therapeutic liquid radioisotope is injected into the receiving part 210 located inside the applicator 100 by using the flow tube 220, and a predetermined time period so that a prescribed radiation dose is delivered to the affected part of the patient.
  • liquid radioisotopes While radioactive isotopes are distributed, and after irradiating radiation, liquid radioisotopes are discharged from the injection unit 200 through the flow tube 220. In this case, since the liquid radioisotope is sealed and positioned inside the receiving portion 210 and the flow tube 220, the liquid radioisotope is not directly in contact with the skin of the patient and is treated remotely. Because of this, it is possible to prevent radiation exposure of related personnel such as medical staff and workers in the normal use procedure.
  • the remote post-mounted radiation proximity therapy apparatus may be used alone for radiation therapy, but may be combined with existing radiation therapy techniques to provide a better radiation dose distribution to the patient, and to treat skin tissue as a treatment target.
  • the present invention may be applied to skin cancer, cancer located on the skin surface, or a radiation treatable lesion located on the skin surface, but is not limited thereto.
  • scalp skin cancer radiation treatment shown in the drawings of the present invention is only an example, and is not limited thereto, and may be applied to the skin surface of all parts of the human body.
  • receiving portion 220 flow tube
  • the remote post-mounted radiation proximity therapy device using the liquid radioisotope of the present invention can position the therapeutic liquid radioisotope at regular intervals with the affected area through a patient-specific applicator using 3D scanning and / or 3D printing technology.
  • Liquid radioisotopes of thickness can be placed to deliver homogeneous prescription doses, and the use of liquid radioisotopes enables flexible application to the irregular patient's skin surface and allows the use of liquid beta sources or low energy gamma sources. By minimizing the radiation exposure of the tissues, it is expected to be able to treat patients with skin cancer, which is difficult to treat with conventional surgical or radiation therapy techniques.
  • the remote post-mounted radiation proximity therapy device of the present invention can be used alone for radiation therapy, but can be combined with existing radiation therapy techniques to provide better radiation dose distribution to the patient, using radioisotopes for the patient. Radiation exposure of medical staff and workers performing treatment may be prevented by remote post-installation.

Abstract

The present invention relates to a remote afterloading brachytherapy apparatus using liquid radioactive isotopes and, more particularly, to a remote afterloading brachytherapy apparatus for treating skin cancer that develops on an irregular skin surface. The remote afterloading brachytherapy apparatus using liquid radioactive isotopes of the present invention is capable of placing a therapeutic liquid radioactive isotope at regular intervals from a lesion using 3D scanning and/or 3D printing techniques through a patient-specific applicator, and placing a liquid radioactive isotope at a constant thickness to deliver a uniform prescription dose. The use of liquid radioactive isotopes allows flexible application to an irregular skin surface of a patient, and a liquid beta ray source or a low-energy gamma ray source may be used so that radiation exposure of normal tissues is minimized; it is thus expected that patients with skin cancer, who are difficult to treat with conventional surgical or radiation therapy techniques, may be treated without complications. In addition, radiation exposure of medical staff and operators who perform the treatment for patients using radioactive isotopes may be prevented through the remote afterloading.

Description

액상 방사성 동위원소를 이용한 원격 후장착 방사선 근접 치료 장치Remote Post-mounted Radiation Brachytherapy Device Using Liquid Radioisotopes
본 발명은 액상 방사성 동위원소를 이용한 원격 후장착 방사선 근접 치료 장치에 관한 것으로서, 보다 구체적으로 불규칙한 피부 표면에 발병한 피부암 치료를 위한 원격 후장착 방사선 근접 치료 장치에 대한 것이다.The present invention relates to a remote post-mounted radiation proximity therapy apparatus using liquid radioisotopes, and more particularly, to a remote post-mounted radiation proximity therapy apparatus for treating skin cancers occurring on irregular skin surfaces.
방사선 근접 치료(Brachytherapy)는 표적이 되는 종양 내부 또는 근처에 방사성물질을 근접시켜 방사선원 가까이에 있는 조직에 매우 높은 선량률을 형성하여 치료하는 방법으로 전립선암, 두경부암, 유방암, 방광암, 자궁암, 폐암 또는 직장암 등의 외부에서 접근이 용이한 환부의 치료에 사용된다. 이러한 방사선 근접 치료는 종양 부위 방사성 물질을 일정시간 동안 위치시킨 후, 다시 회수하는 일시 근접 치료법과 반감기가 짧은 쌀알 크기의 방사성 씨드(seed)를 종양 부위에 영구히 심어두는 이식 근접 치료법으로 나누어진다. 두 경우 모두 방사선원 자체는 작아야 하므로 비방사능이 높은 선원을 사용한다. 방사선원 및 씨드를 목적하는 위치에 정확히 위치시키기 위해, X-선, CT, 또는 MRI 영상을 이용한다. 일시 근접 치료 기술로서 과거에는 바늘형태의 선원들을 수동으로 삽입했으나, 지금은 도관을 미리 설치하고 노출은 컴퓨터 제어로 원격으로 수행하도록 설계된 원격 후장착 방법을 사용한다.Brachytherapy is the treatment of prostate cancer, head and neck cancer, breast cancer, bladder cancer, uterine cancer, lung cancer, or the like by treating radioactive material within or near the target tumor to form a very high dose rate in tissues near the radiation source. It is used for the treatment of easily accessible lesions such as rectal cancer. Such radio brachytherapy is divided into temporary brachytherapy, in which the tumor site radioactive material is placed for a period of time, and then recovered again, and transplant brachytherapy, in which a half-life radioactive seed having a short half-life is permanently planted in the tumor site. In both cases, the radiation source itself should be small, so use a high radioactive source. X-ray, CT, or MRI images are used to accurately position the radiation source and the seed at the desired location. In the past as a temporary brachytherapy technique, needle-shaped sources were manually inserted, but now they use remote post-mounting methods designed to pre-install conduits and perform exposure remotely with computer control.
한편, 원격 후장착(Remote afterloading)은 치료 방사선을 원격 조작으로 뒤에 장전하는 것으로, 치료 세팅 단계에서 치료 장치를 치료 부위에 위치시킨 다음, 의료진 등의 관련 종사자는 퇴실하여 원격으로 치료를 개시하면 선량 계획 시스템에서 프로그램 된 순서에 따라 방사선원이 자동적으로 지정된 위치에 지정된 시간만큼 머무르면서 조사하는 방식을 의미한다. 치료가 종료되면 방사선원은 자동으로 안전위치로 되돌아가며, 정확한 치료를 기대할 수 있는 동시에 치료를 수행하는 의료진의 방사선 피폭을 감소시킬 수 있다.On the other hand, remote afterloading is to remotely load the therapeutic radiation by remote operation.In the setting stage of the treatment, the treatment device is placed at the treatment site, and then a related worker, such as a medical staff, leaves the dose and starts the treatment remotely. In the order programmed in the planning system, the radiation source automatically stays at the designated location for the specified time and irradiates. At the end of treatment, the radiation source automatically returns to the safe position, which can be expected to reduce the radiation exposure of the medical staff performing the treatment while at the same time expecting accurate treatment.
이러한 원격 후장착 방사선 근접 치료는 보다 정확한 치료를 기대할 수 있는 동시에 치료를 시행하는 시술자의 방사선 피폭을 감소시킬 수 있으나, 광범위한 영역에 발병한 피부암 방사선 치료에 있어서는 한계가 있다. 외부 광자선을 이용한 치료(external photon beam therapy)의 경우, 고에너지 광자선의 높은 투과성으로 인하여, 치료가 적용 가능한 피부암의 종류가 매우 제한적이고, 치료의 적용이 가능한 경우에도 상당한 내부 정상 장기의 방사선 피폭이 수반된다. 외부 전자선을 이용한 치료(external electron beam therapy)의 경우에는 비정(range) 거리가 짧은 전자선을 사용하여, 얕은 깊이에서 대부분의 방사선량을 전달할 수 있기 때문에 편평한 피부암의 경우, 깊은 곳에 위치한 정상 조직에는 방사선을 거의 전달하지 않으며 치료를 수행할 수 있는 장점이 있다. 그러나 두피, 손 또는 발 등과 같은 부위에 발병한 피부암은 불규칙한 곡면을 이루고 있어 전자선을 피부의 동일한 깊이에 전달하지 못하고, 처방 방사선량을 정확하게 전달하지 못하여 정상 조직이 과 피폭될 위험성이 있다. 또한, 고선량률 근접 치료(High dose rate brachytherapy)의 경우에는 Freiburg flap applicator, Leipzig applicator 또는 Valencia applicator 등의 환자 표면 치료용 어플리케이터를 사용하여 피부암을 치료할 수 있으나, 고선량률 근접 치료 기법으로 피부암을 치료할 경우, 환자셋업, 병변의 크기 및 표면굴곡에 민감하기 때문에 치료에 적용할 수 있는 부위는 제한적이며, 이 때 사용되는 방사선원인 이리듐은 투과성이 강한 감마선을 발생시키는 방사성 동위원소이므로, 피부 아래 정상 조직의 불필요한 피폭은 피할 수 없어, 광범위한 피부암 영역에 있어서 기존의 광자선 또는 방사성 동위원소를 이용하는 고선량률 근접 치료로도 치료가 어렵다.Such remote post-mounted brachytherapy can reduce the radiation exposure of the practitioner who is performing the treatment, while at the same time expecting more accurate treatments, but there are limitations in the radiation therapy of skin cancers in a wide range of areas. In the case of external photon beam therapy, due to the high permeability of high-energy photon beams, the types of skin cancers to which treatment is applicable are very limited, and the radiation exposure of significant internal normal organs even when the treatment is applicable. This is accompanied by. In the case of external electron beam therapy, a short range of distance electrons can be used to deliver most of the radiation dose at a shallow depth. It rarely delivers and has the advantage of being able to carry out treatment. However, skin cancers that occur in areas such as the scalp, hands, or feet have irregular curved surfaces, which do not transmit electron beams to the same depth of the skin, and do not accurately transmit the prescribed radiation dose, which may cause overexposure of normal tissues. In the case of high dose rate brachytherapy, skin cancer can be treated using a patient surface treatment applicator such as Freiburg flap applicator, Leipzig applicator, or Valencia applicator. Because of its sensitivity to patient set-up, lesion size, and surface curvature, there are only a few sites that can be used for treatment.Iridium, a radiation source used at this time, is a radioisotope that generates highly permeable gamma rays. Unnecessary exposure is inevitable, and high dose rate brachytherapy using conventional photon or radioisotopes is difficult to treat in a wide range of skin cancer areas.
따라서 부작용을 억제하며, 치료에 효과적인 방사선 근접 치료 장치에 대한 개발이 요구되고 있고, 다양한 방사선 근접 치료 기구의 개발(등록 실용신안 20-0222949)이 진행되고 있으나, 별다른 성과가 나타나지 않고 있는 실정이다.Therefore, development of a radiation brachytherapy apparatus that suppresses side effects and is effective in treatment is required, and development of various radio brachytherapy apparatuses (registered utility model 20-0222949) has been progressed, but the situation has not been shown.
본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로서, 불규칙한 피부 표면에 광범위하게 발병한 피부암에 대해, 정상 조직의 방사선 피폭을 최소화하며, 충분한 처방선량을 균질하게 환부에 전달할 수 있는, 원격 후장착 방사선 근접 치료 장치를 발명하였다.The present invention has been made to solve the above problems, for skin cancers that are extensively developed on the irregular skin surface, to minimize the radiation exposure of normal tissue, and can deliver sufficient prescribed dose to the affected area homogeneously after remote Invented radiation proximity therapy device.
이에, 본 발명의 목적은 Thus, the object of the present invention
환부의 표면 굴곡 특성과 일치하도록 3D 스캐너 및 3D 프린터로 제작된 어플리케이터(100);An applicator 100 made of a 3D scanner and a 3D printer to match the surface curvature of the affected part;
상기 어플리케이터(100)와 연결되어 치료용 액상 방사성 동위원소가 주입되는 주입부(200); 및An injection unit 200 connected with the applicator 100 to inject a therapeutic liquid radioisotope; And
상기 주입부(200) 일단에 연결되어 치료용 액상 방사성 동위원소의 주입을 제어하는 제어부(300)를 포함하는 원격 후장착 방사선 근접 치료 장치를 제공하는 것이다.Connected to one end of the injection unit 200 is to provide a remote post-mounted radiation proximity therapy device comprising a control unit 300 for controlling the injection of the therapeutic liquid radioisotope.
그러나 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the technical problem to be achieved by the present invention is not limited to the above-mentioned problem, another task that is not mentioned will be clearly understood by those skilled in the art from the following description.
상기와 같은 본 발명의 목적을 달성하기 위하여, In order to achieve the object of the present invention as described above,
환부의 표면 굴곡 특성과 일치하도록 3D 스캐너 및 3D 프린터로 제작된 어플리케이터(100);An applicator 100 made of a 3D scanner and a 3D printer to match the surface curvature of the affected part;
상기 어플리케이터(100)와 연결되어 치료용 액상 방사성 동위원소가 주입되는 주입부(200); 및An injection unit 200 connected with the applicator 100 to inject a therapeutic liquid radioisotope; And
상기 주입부 일단에 연결되어 치료용 액상 방사성 동위원소의 주입을 제어하는 제어부(300)를 포함하는 원격 후장착 방사선 근접 치료 장치(10)를 제공한다.It is connected to one end of the injection unit provides a remote post-mounted radiation proximity therapy apparatus 10 including a control unit 300 for controlling the injection of the therapeutic liquid radioisotope.
바람직하게는, 상기 주입부(200)는 상기 어플리케이터(100) 내에 배치되어 주입되는 치료용 액상 방사성 동위원소를 수용하는 수용부(210) 및 상기 수용부(210)와 연결되어 상기 치료용 액상 방사성 동위원소의 이동을 위한 통로를 제공하는 유동관(220)을 포함할 수 있다.Preferably, the injection portion 200 is connected to the receiving portion 210 and the receiving portion 210 for receiving the therapeutic liquid radioisotope disposed and injected into the applicator 100 and the therapeutic liquid radioactive It may include a flow tube 220 to provide a passage for the movement of the isotope.
바람직하게는, 상기 어플리케이터(100)는 환부와 치료용 액상 방사성 동위원소와의 간격을 일정하게 유지시킬 수 있다.Preferably, the applicator 100 may maintain a constant distance between the affected area and the therapeutic liquid radioisotope.
바람직하게는, 상기 어플리케이터(100)는 치료용 액상 방사성 동위원소의 두께를 일정하게 유지시킬 수 있다.Preferably, the applicator 100 may maintain a constant thickness of the therapeutic liquid radioisotope.
더욱 바람직하게는, 상기 수용부(210)의 재질은 폴리프로필렌, 폴리스티렌, 폴리에틸렌 테트라프탈레이트(PET; polyethylene tetrephthalate), 저밀도 폴리에틸렌(LDPE; Low-density polyethylene) 또는 고밀도 폴리에틸렌(HDPE; High-density polyethylene)일 수 있다.More preferably, the material of the accommodating part 210 may be polypropylene, polystyrene, polyethylene tetrephthalate (PET), low-density polyethylene (LDPE) or high-density polyethylene (HDPE). Can be.
바람직하게는, 상기 치료용 액상 방사성 동위원소는 베타선원 또는 저에너지 감마선원일 수 있다.Preferably, the therapeutic liquid radioisotope may be a beta source or a low energy gamma source.
더욱 바람직하게는, 상기 베타선원은 인-32, 스트론튬-89, 이트륨-90, 요오드-131 또는 사마륨-153일 수 있다.More preferably, the beta source may be phosphorus-32, strontium-89, yttrium-90, iodine-131 or samarium-153.
본 발명의 액상 방사성 동위원소를 이용한 원격 후장착 방사선 근접 치료 장치는 3D 스캐닝 및/또는 3D 프린팅 기술을 이용한 환자 맞춤형 어플리케이터를 통해 환부와 일정한 간격으로 치료용 액상 방사성 동위원소를 위치시킬 수 있고, 일정한 두께의 액상 방사성 동위원소를 위치시켜, 균질한 처방선량을 전달할 수 있으며, 액상 방사성 동위원소를 사용함으로써 불규칙한 환자의 피부 표면에 유연한 적용이 가능하고, 액상 베타선원 또는 저에너지 감마선원을 사용할 수 있어, 정상 조직의 방사선 피폭을 최소화하여, 기존 외과적 수술 혹은 방사선 치료 기법으로 치료가 어려운 피부암 환자에게 합병증 없이 치료할 수 있을 것으로 기대된다. 또한, 본 발명의 원격 후장착 방사선 근접 치료 장치는 단독으로 방사선 치료에 사용될 수 있으나, 기존의 방사선 치료 기법과 조합하여 환자에게 보다 나은 방사선량분포를 제공할 수 있으며, 방사성 동위원소를 사용하여 환자의 치료를 수행하는 의료진 및 작업자의 방사선 피폭을 원격 후장착을 통해 예방할 수 있을 것이다.The remote post-mounted radiation proximity therapy device using the liquid radioisotope of the present invention can position the therapeutic liquid radioisotope at regular intervals with the affected area through a patient-specific applicator using 3D scanning and / or 3D printing technology. Liquid radioisotopes of thickness can be placed to deliver homogeneous prescription doses, and the use of liquid radioisotopes enables flexible application to the irregular patient's skin surface and allows the use of liquid beta sources or low energy gamma sources. By minimizing the radiation exposure of the tissues, it is expected to be able to treat patients with skin cancer, which is difficult to treat with conventional surgical or radiation therapy techniques. In addition, the remote post-mounted radiation proximity therapy device of the present invention can be used alone for radiation therapy, but can be combined with existing radiation therapy techniques to provide better radiation dose distribution to the patient, using radioisotopes for the patient. Radiation exposure of medical staff and workers performing treatment may be prevented by remote post-installation.
도 1은 본 발명의 일실시예에 따른 액상 방사성 동위원소를 이용한 원격 후장착 방사선 근접 치료 장치(10)의 세부 구성을 도시한 블럭도이다.1 is a block diagram showing a detailed configuration of a remote post-mounted radiation proximity therapy apparatus 10 using a liquid radioisotope according to an embodiment of the present invention.
도 2는 본 발명의 일실시예에 따른 액상 방사성 동위원소를 이용한 원격 후장착 방사선 근접 치료 장치(10)를 두피 피부암에 적용할 때 치료용 액상 방사성 동위원소의 주입 과정을 나타낸 것이다.Figure 2 shows the injection process of the liquid radioisotope for treatment when the remote post-mounted radiation proximity therapy device 10 using the liquid radioisotope in accordance with an embodiment of the present invention to the scalp skin cancer.
도 3은 본 발명의 일실시예에 따른 액상 방사성 동위원소를 이용한 원격 후장착 방사선 근접 치료 장치(10)를 두피 피부암에 적용한 경우의 단면을 나타낸 것이며, 치료용 액상 방사성 동위원소를 채운 상태를 나타낸 것이다.3 is a cross-sectional view of the case where the remote post-mounted radiation proximity therapy apparatus 10 using the liquid radioisotope according to an embodiment of the present invention is applied to the scalp skin cancer, and shows a state filled with the therapeutic liquid radioisotope. will be.
이하, 첨부된 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 바람직한 실시예를 상세히 설명한다. 본 발명의 실시예를 설명하기 위한 도면에 개시된 형상, 크기, 비율, 각도, 개수 등은 예시적인 것이므로 본 발명이 도시된 사항에 한정되는 것은 아니다. 다만, 본 발명의 바람직한 실시예를 상세하게 설명함에 있어, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다. 또한, 유사한 기능 및 작용을 하는 부분에 대해서는 도면 전체에 걸쳐 동일한 부호를 사용한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. Shapes, sizes, ratios, angles, numbers, and the like disclosed in the drawings for describing the embodiments of the present invention are exemplary, and the present invention is not limited to the illustrated items. However, in describing the preferred embodiment of the present invention in detail, if it is determined that the detailed description of the related known function or configuration may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted. In addition, the same reference numerals are used throughout the drawings for parts having similar functions and functions.
덧붙여, 명세서 전체에서, 어떤 부분이 다른 부분과 ‘연결’ 되어 있다고 할 때, 이는 ‘직접적으로 연결’ 되어 있는 경우뿐만 아니라, 그 중간에 다른 소자를 사이에 두고 ‘간접적으로 연결’ 되어 있는 경우도 포함한다. 또한, 어떤 구성요소를 ‘포함’ 한다는 것은, 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있다는 것을 의미한다.In addition, in the specification, when a part is 'connected' to another part, it is not only 'directly connected' but also 'indirectly connected' with another element in between. Include. In addition, the term "comprising" a certain component means that the component may further include other components, except for the case where there is no contrary description.
도 1은 본 발명의 일실시예에 따른 액상 방사성 동위원소를 이용한 원격 후장착 방사선 근접 치료 장치의 세부 구성을 도시한 블록도이다.1 is a block diagram showing a detailed configuration of a remote post-mounted radiation proximity therapy apparatus using a liquid radioisotope according to an embodiment of the present invention.
이와 같은 구성을 채택함으로써, 치료용 액상 방사성 동위원소를 이용하여, 환자의 불규칙한 피부에 균일한 처방 방사선량을 전달함으로써 치료 효과를 증대시킴과 동시에, 원격 후장착 방사성 동위원소를 사용하여 환자의 방사선 근접 치료를 수행하는 의료진 및 작업자의 방사선 피폭을 예방할 수 있다.By adopting such a configuration, the therapeutic liquid radioisotope is used to increase the therapeutic effect by delivering a uniform prescription radiation dose to the irregular skin of the patient, and at the same time, the radiation of the patient using a remote post-mounted radioisotope. Radiation exposure can be prevented by medical staff and workers performing brachytherapy.
본 발명에서, “원격 후장착(remote afterloading)”은 치료 방사선을 원격 조작으로 뒤에 장전하는 것으로, 보다 구체적으로, 치료 세팅 단계에서 후술할 어플리케이터(100)를 치료 부위에 위치시킨 다음, 유동관(220)을 어플리케이터(100)와 제어부(300)의 방사선원 출구에 연결한 후, 시술자는 퇴실하여 원격으로 치료를 개시하면 선량 계획 시스템에서 프로그램 된 순서에 따라 방사선원이 자동적으로 지정된 위치에 지정된 시간만큼 머무르면서 조사하는 방식을 의미한다. 치료가 종료되면 방사선원은 자동으로 안전위치로 되돌아가며, 정확한 치료를 기대할 수 있는 동시에 치료를 수행하는 의료진의 방사선 피폭을 감소시킬 수 있다.In the present invention, "remote afterloading" is to remotely load the therapeutic radiation to the remote operation, more specifically, after placing the applicator 100 to be described later in the treatment setting step in the treatment site, flow tube 220 ) Is connected to the radiation source exit of the applicator 100 and the control unit 300, and when the operator leaves and starts treatment remotely, the radiation source automatically stays in the designated position for a specified time in the order programmed in the dose planning system. It means the way. At the end of treatment, the radiation source automatically returns to the safe position, which can be expected to reduce the radiation exposure of the medical staff performing the treatment while at the same time expecting accurate treatment.
본 발명에서 “방사선 근접 치료”는 근접 치료의 표적이 되는 종양에 액상 방사성 동위원소를 위치시켜, 방사선원 가까이에 있는 조직에 방사선을 조사하여 치료하는 방법으로, 근접 치료 장치를 환부에 미리 설치하고, 방사선 조사는 컴퓨터 제어를 통해 원격으로 수행하도록 설계된 원격 후장착을 이용한다.In the present invention, "radiation brachytherapy" is a method of placing a liquid radioisotope in a tumor that is the target of brachytherapy, and irradiating and treating a tissue near a radiation source, and pre-installing a brachytherapy device in the affected part, Irradiation utilizes remote post-installation designed to be performed remotely through computer control.
이하에서는, 본 발명에 따른 액상 방사성 동위원소를 이용한 원격 후장착 방사선 근접 치료 장치를 구성하는 각각의 구성요소에 대하여 상세히 설명하기로 한다.Hereinafter, each component constituting the remote post-mounted radiation proximity therapy apparatus using the liquid radioisotope according to the present invention will be described in detail.
먼저, 본 발명의 일실시예에 따른 액상 방사성 동위원소를 이용한 원격 후장착 방사선 근접 치료 장치는 액상 방사성 동위원소를 사용함으로써 불규칙한 환자의 피부 표면에 균질한 처방선량을 전달함과 동시에, 치료를 수행하는 의료진 및 작업자의 방사선 피폭을 방지할 수 있는 치료 장치로서, 도 1에 도시된 바와 같이, 본 발명의 일실시예에 따른 액상 방사성 동위원소를 이용한 원격 후장착 방사선 근접 치료 장치(10)는 어플리케이터(100), 주입부(200) 및 제어부(300)를 포함하여 구성될 수 있다.First, the remote post-mounted radiation proximity therapy apparatus using liquid radioisotope according to one embodiment of the present invention delivers a uniform dose to the irregular patient's skin surface by using a liquid radioisotope, and performs treatment. As a treatment device that can prevent radiation exposure of the medical staff and the worker, as shown in Figure 1, the remote post-mounted radiation proximity treatment device 10 using the liquid radioisotope according to an embodiment of the present invention is an applicator It may be configured to include the 100, the injection unit 200 and the control unit 300.
어플리케이터(100)는, 후술할 하기의 구성들이 배치되어, 환자의 피부 병변에 치료 방사선을 조사하기 위한 구성으로서, 도 2에 도시된 바와 같이, 환부와 맞닿아 환자의 병변을 치료하기 위해, 환부의 표면 굴곡 특성과 일치하도록 제작되어야만 한다. 이를 위해 3D 스캐너를 이용하여 환자 개인마다 다른 환부의 피부 표면 굴곡을 스캔한 후, 수집한 정보를 사용하여 3D 프린터를 이용하여 환자맞춤형으로 제작되는 것이 바람직하나, 이에 제한되는 것은 아니다. 이 때, 상기 어플리케이터(100)의 소재에 있어, 베타선원의 차폐를 최소화하여 방사선 치료 효과를 높일 수 있으며, 3D 프린터를 통해 제작될 수 있는 재료에서 채택하는 것이 바람직하며, 예컨대 고무, 섬유 또는 플라스틱 등을 사용할 수 있으나, 이에 제한되는 것은 아니다.The applicator 100 is configured to irradiate therapeutic radiation to a skin lesion of a patient, which will be described later, as described below. As shown in FIG. 2, the applicator 100 is in contact with the lesion to treat the lesion. It should be manufactured to match the surface bending characteristics of. To this end, it is preferable to scan the skin surface curvature of different lesions using a 3D scanner, and then use the collected information to be customized to a patient using a 3D printer, but is not limited thereto. At this time, in the material of the applicator 100, it is possible to increase the radiation treatment effect by minimizing the shielding of the beta source, it is preferable to adopt from a material that can be produced through a 3D printer, for example, rubber, fiber or plastic Etc. may be used, but the present invention is not limited thereto.
또한, 상기 어플리케이터(100)는, 환자의 피부 표면의 굴곡을 반영하여 환부와 수직한 방향으로 일정한 거리를 유지하고 있는 틀인바, 환부와 치료용 액상 방사성 동위원소와의 간격을 일정하게 유지시킬 수 있을 뿐만 아니라, 치료용 액상 방사성 동위원소를 수용하는 어플리케이터(100) 내부의 두께도 일정하게 유지할 수 있어, 환자 피부의 균일한 깊이까지 동일한 처방 방사선량을 전달하는 것이 가능하다.In addition, the applicator 100, reflecting the curvature of the skin surface of the patient to maintain a constant distance in the vertical direction with the affected bar, it is possible to maintain a constant interval between the affected area and the therapeutic liquid radioisotope. In addition, the thickness of the inside of the applicator 100 containing the therapeutic liquid radioisotope can also be kept constant, so that the same prescription radiation dose can be delivered to a uniform depth of the patient's skin.
주입부(200)는, 본 발명의 일실시예에 따른 액상 방사성 동위원소를 이용한 원격 후장착 방사선 근접 치료 장치에 치료용 액상 방사성 동위원소를 주입하여 환자의 방사선 치료를 수행하기 위한 구성으로서, 도 1에 도시된 바와 같이, 상기 주입부(200)는, 수용부(210) 및 유동관(220)을 포함할 수 있다.The injection unit 200 is configured to inject a liquid radioisotope for treatment into a remote post-mounted radiation proximity therapy apparatus using a liquid radioisotope according to an embodiment of the present invention to perform radiation treatment of a patient. As shown in FIG. 1, the injection unit 200 may include a receiving unit 210 and a flow tube 220.
수용부(210)는 상기 어플리케이터(100) 내부의 빈 공간에 형성되어, 치료용 액상 방사성 동위원소를 수용하기 위한 구성으로서, 상기 수용부(210)는 액상 방사성 동위원소를 밀봉할 수 있는 신축성이 좋으며, 찢어지지 않는 얇은 재질의 고분자 화합물로 이루어질 수 있으며, 보다 구체적으로는 베타선원의 치료용 액상 방사성 동위원소의 차폐를 최소화하여 방사선 근접 치료 효과를 높이기 위해, 폴리프로필렌, 폴리스티렌, 폴리에틸렌 테트라프탈레이트(PET; polyethylene tetrephthalate), 저밀도 폴리에틸렌(LDPE; Low-density polyethylene) 또는 고밀도 폴리에틸렌(HDPE; High-density polyethylene)등과 같은 고분자 소재를 사용할 수 있다. 이러한 소재를 채택함으로써, 상기 어플리케이터(100)의 내부에 일정한 두께로 형성되어 있는 빈 공간에 배치되어, 치료용 액상 방사성 동위원소를 주입하였을 때, 환자맞춤형으로 제작된 어플리케이터(100)의 내부의 빈 공간과 일치하는 액상 방사성 동위원소의 분포가 가능하여, 환자 피부 병변의 균일한 방사선 조사를 확보할 수 있다. 또한, 상기 수용부(210)를 상기 어플리케이터(100)의 내부에 장착하지 않고, 치료용 액상 방사성 동위원소를 직접 어플리케이터 내부에 주입하여 치료를 수행할 수 있다. 이 때, 어플리케이터는 밀봉되어 액상 방사성 동위원소와 환자의 접촉을 방지한다.Receiving portion 210 is formed in the empty space inside the applicator 100, the configuration for receiving the therapeutic liquid radioisotope, the receiving portion 210 is elastic to seal the liquid radioisotope It is good and can be made of a thin polymer material that is not torn, and more specifically, in order to minimize the shielding of the liquid radioisotope for the treatment of beta sources to increase the radiotherapy effect, polypropylene, polystyrene, polyethylene tetraphthalate ( Polymer materials such as polyethylene tetrephthalate (PET), low-density polyethylene (LDPE) or high-density polyethylene (HDPE) may be used. By adopting such a material, it is disposed in an empty space formed to a certain thickness inside the applicator 100, and when the therapeutic liquid radioisotope is injected, the bin inside the applicator 100 made to be patient-specific The distribution of liquid radioisotopes coinciding with the space is possible, thereby ensuring uniform irradiation of patient skin lesions. In addition, the treatment unit 210 may be injected directly into the applicator to perform treatment without mounting the inside of the applicator 100. At this time, the applicator is sealed to prevent contact of the liquid radioisotope with the patient.
유동관(220)은 상기 수용부(210)와 연결되어 상기 치료용 액상 방사성 동위원소의 이동을 위한 통로를 제공하기 위한 구성으로서, 상기 유동관(220)을 통해 피부에 발생한 병변에 방사선을 조사하기 위해 상기 액상 방사성 동위원소가 수용부(210) 내로 주입되고, 치료가 끝난 후, 수용부(210)로부터 제거될 수 있다. 이 때, 상기 수용부(210) 및 상기 유동관(220)은 치료용 액상 방사성 동위원소의 밀봉을 위한 스파우트(spout) 또는 치어 팩(cheer pack) 형태(도시하지 않음)로 체결될 수 있고, 밀봉 또는 분리될 수 있으나, 이에 제한되는 것은 아니다. Flow tube 220 is connected to the receiving portion 210 is configured to provide a passage for the movement of the therapeutic liquid radioisotope, to irradiate the radiation generated on the skin lesions through the flow tube 220 The liquid radioisotope may be injected into the receptacle 210, and after treatment, it may be removed from the receptacle 210. At this time, the receiving portion 210 and the flow tube 220 may be fastened in the form of a spout or cheer pack (not shown) for sealing the therapeutic liquid radioisotope, and sealing Or may be separated, but is not limited thereto.
한편, 본 발명에 따른 치료용 액상 방사성 동위원소는 베타선원 또는 저에너지 감마선원인 것이 바람직하며, 더욱 바람직하게는, 상기 베타선원은 인(P)-32, 스트론튬(Sr)-89, 이트륨(Y)-90, 요오드(I)-131 또는 사마륨(Sm)-153 일 수 있으나, 이에 제한되는 것은 아니다. 이러한 비정(range)이 짧은 상기 베타선원 또는 저에너지 감마선원을 치료에 사용함으로써, 얕은 깊이의 피부 병변에 충분한 처방 방사선량을 전달할 수 있으며, 투과성이 높지 않은 방사선을 사용하기 때문에, 심부에 위치한 정상 장기 또는 조직의 불필요한 방사선 피폭을 방지할 수 있고, 정상 장기 또는 조직에 피폭되는 방사선량을 줄여, 처방 방사선량을 증가시킴으로써, 피부 병변 또는 피부암 치료의 효율을 높일 수 있다. 또한, 액상의 방사성 동위원소를 사용함으로써, 환자의 불규칙한 굴곡의 병변에도 방사선 치료의 적용이 가능하며, 인체의 굴곡과 무관하게 균일한 깊이에 처방선량을 전달할 수 있고, 상기 어플리케이터(100) 및 상기 수용부(210)를 통해 다양한 형태를 재현할 수 있다.On the other hand, the therapeutic liquid radioisotope according to the present invention is preferably a beta source or a low energy gamma source, more preferably, the beta source is phosphorus (P) -32, strontium (Sr) -89, yttrium (Y) -90, iodine (I) -131 or samarium (Sm) -153, but is not limited thereto. By using such beta-sources or low-energy gamma sources for treatment, these ranges can deliver sufficient doses of radiation to shallow skin lesions, and use non-permeable radiation, so that normal organs located in the core or Unnecessary radiation exposure of the tissue can be prevented, and the amount of radiation exposed to normal organs or tissues can be reduced to increase the prescribed radiation dose, thereby improving the efficiency of treating skin lesions or skin cancer. In addition, by using a liquid radioisotope, radiation treatment can be applied to irregular curved lesions of a patient, and can deliver a prescribed dose at a uniform depth irrespective of the curvature of the human body, and the applicator 100 and the Various shapes may be reproduced through the accommodation unit 210.
제어부(300)는 본 발명의 액상 방사성 동위원소를 이용한 원격 후장착 방사선 근접 치료 장치를 구현하는 구성으로서, 상기 어플리케이터(100) 및 상기 수용부(210)에 원격 후장착을 이용하여, 의료진 및 작업자의 방사선 피폭을 방지하면서 상기 근접 치료 장치에 치료용 액상 방사성 동위원소를 주입하고, 환부에 머무르며 방사선을 조사하여 치료를 수행한 후, 충분한 처방 방사선량을 전달한 후에 치료용 액상 방사성 동위원소를 상기 수용부(210)로부터 제거할 수 있다. 상기 제어부(300)를 이용하여 상기 어플리케이터(100) 및 상기 수용부(210)를 환자의 병변에 장착한 후, 상기 어플리케이터(100) 및 상기 수용부(210)에 원격으로 치료용 액상 방사성 동위원소를 상기 유동관(220)을 통해 주입 또는 제거하는 제어가 가능하다. 보다 구체적으로, 환자 두피로부터 수직한 방향으로 일정한 거리를 유지하는 환자 맞춤형 어플리케이터(100)를 장착하고, 유동관(220)을 통해 액상 방사성 동위원소가 수용부(210)에 주입되며, 환자의 두피 피부암 영역의 균일한 깊이에 처방 방사선량이 전달되도록 방사성 동위원소를 분포시킬 수 있으며, 이 때, 방사성 동위원소는 수용부(210) 내부에 위치하기 때문에 방사성 동위원소는 환자의 피부에 직접적으로 접촉되지 않는다. 또한, 상기 제어부(300)는 원격 후장착을 구현하기 위해, 액상 방사성 동위원소 저장부, 모터부 또는 컴퓨터 치료 계획부(도시하지 않음) 등을 포함하여 구성될 수 있으나, 이에 제한되는 것은 아니다.The control unit 300 is a configuration for implementing a remote post-mounted radiation proximity therapy apparatus using the liquid radioisotope of the present invention, by using a remote post-mounting on the applicator 100 and the receiving unit 210, a medical staff and a worker Injecting a therapeutic liquid radioisotope into the brachytherapy device while preventing a radiation exposure of the patient, staying in the affected area, irradiating the radiation, and performing a treatment, and then delivering a sufficient prescribed radiation dose to receive the therapeutic liquid radioisotope. It can be removed from the unit 210. After mounting the applicator 100 and the receiving portion 210 to the patient's lesion by using the control unit 300, the liquid radioisotope for treatment remotely to the applicator 100 and the receiving portion 210 It is possible to control the injection or removal through the flow tube 220. More specifically, equipped with a patient-specific applicator 100 to maintain a constant distance in the vertical direction from the patient's scalp, the liquid radioisotope is injected into the receiving portion 210 through the flow tube 220, the scalp skin cancer of the patient The radioactive isotopes may be distributed such that the prescribed radiation dose is delivered to a uniform depth of the area, in which case the radioisotopes are not directly in contact with the patient's skin since the radioisotopes are located inside the receptacle 210. . In addition, the control unit 300 may include, but not limited to, a liquid radioisotope storage unit, a motor unit, or a computer treatment planning unit (not shown) to implement remote post-mounting.
도 2 및 도 3은 본 발명의 일실시예에 따른 액상 방사성 동위원소를 이용한 원격 후장착 방사선 근접 치료 장치를 두피 피부암에 적용한 경우를 나타낸 것이며, 도 2 및 도 3에 도시된 바와 같이, 본 발명에 따른 원격 후장착 방사선 근접 치료 장치를 이용하여 치료를 필요로 하는 환부의 표면 굴곡 특성과 일치하도록 상기 어플리케이터(100)를 3D 스캐너 및/또는 3D 프린터를 이용하여 제작하고, 상기 어플리케이터(100)를 환부에 부착시킨 후, 상기 어플리케이터(100) 내부에 위치한 상기 수용부(210)에 치료용 액상 방사성 동위원소를 상기 유동관(220)을 이용하여 주입하고, 환자의 환부에 처방 방사선량이 전달되도록 일정 시간 동안 방사성 동위원소를 분포시켜, 방사선을 조사한 뒤, 상기 유동관(220)을 통해 액상 방사성 동위원소가 상기 주입부(200)로부터 제거될 수 있으며, 이 때, 액상 방사성 동위원소는 상기 수용부(210) 및 상기 유동관(220)의 내부에 밀봉되어 위치하기 때문에 액상 방사성 동위원소는 환자의 피부에 직접적으로 접촉되지 않으며, 원격으로 치료를 개시하기 때문에, 정상적인 사용 절차에서 의료진 및 작업자 등 관련 종사자의 방사선 피폭을 막을 수 있다.2 and 3 illustrate a case where a remote post-mounted radiation proximity therapy apparatus using liquid radioisotope according to an embodiment of the present invention is applied to scalp skin cancer, and as shown in FIGS. 2 and 3, the present invention The applicator 100 is manufactured by using a 3D scanner and / or a 3D printer to match the surface curvature characteristics of the lesion requiring treatment using a remote post-mounted radiation proximity therapy apparatus according to the present invention, and the applicator 100 is manufactured. After attaching to the affected part, a therapeutic liquid radioisotope is injected into the receiving part 210 located inside the applicator 100 by using the flow tube 220, and a predetermined time period so that a prescribed radiation dose is delivered to the affected part of the patient. While radioactive isotopes are distributed, and after irradiating radiation, liquid radioisotopes are discharged from the injection unit 200 through the flow tube 220. In this case, since the liquid radioisotope is sealed and positioned inside the receiving portion 210 and the flow tube 220, the liquid radioisotope is not directly in contact with the skin of the patient and is treated remotely. Because of this, it is possible to prevent radiation exposure of related personnel such as medical staff and workers in the normal use procedure.
또한, 본 발명에 따른 원격 후장착 방사선 근접 치료 장치는 단독으로 방사선 치료에 사용될 수 있으나, 기존의 방사선 치료 기법과 조합하여 환자에게 보다 나은 방사선량분포를 제공할 수 있으며, 피부 조직을 치료 대상으로 하고, 피부암, 피부 표면에 위치한 암 또는 피부 표면에 위치한 방사선 치료가 가능한 병변에 적용 가능하나, 이에 제한되는 것은 아니다. 또한, 본 발명의 도면에서 도시한 두피 피부암 방사선 치료는 예시일 뿐, 이에 한정되지 않고, 인체 모든 부위의 피부 표면에 적용 가능하다. 또한, 외과적 수술이 불가능한 광범위한 영역의 치료가 가능하며, 치료 범위 또는 치료 부위에 있어 제약을 받지 않고, 방사선 치료의 불확실성(uncertainty)을 줄이고, 임상에서의 적용이 용이하도록 치료 절차를 간소화할 수 있다.In addition, the remote post-mounted radiation proximity therapy apparatus according to the present invention may be used alone for radiation therapy, but may be combined with existing radiation therapy techniques to provide a better radiation dose distribution to the patient, and to treat skin tissue as a treatment target. In addition, the present invention may be applied to skin cancer, cancer located on the skin surface, or a radiation treatable lesion located on the skin surface, but is not limited thereto. In addition, scalp skin cancer radiation treatment shown in the drawings of the present invention is only an example, and is not limited thereto, and may be applied to the skin surface of all parts of the human body. In addition, it is possible to treat a wide range of areas that are not surgically operable, and are not limited in scope or area of treatment, reduce the uncertainty of radiation therapy and simplify the treatment procedure to facilitate clinical application. have.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술 분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.The above description of the present invention is intended for illustration, and it will be understood by those skilled in the art that the present invention may be easily modified in other specific forms without changing the technical spirit or essential features of the present invention. will be. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive.
부호의 설명Explanation of the sign
10 : 원격 후장착 방사선 근접 치료 장치10: remote post-mounted radiation proximity therapy device
100 : 어플리케이터 200 : 주입부100: applicator 200: injection unit
210 : 수용부 220 : 유동관210: receiving portion 220: flow tube
300 : 제어부300: control unit
본 발명의 액상 방사성 동위원소를 이용한 원격 후장착 방사선 근접 치료 장치는 3D 스캐닝 및/또는 3D 프린팅 기술을 이용한 환자 맞춤형 어플리케이터를 통해 환부와 일정한 간격으로 치료용 액상 방사성 동위원소를 위치시킬 수 있고, 일정한 두께의 액상 방사성 동위원소를 위치시켜, 균질한 처방선량을 전달할 수 있으며, 액상 방사성 동위원소를 사용함으로써 불규칙한 환자의 피부 표면에 유연한 적용이 가능하고, 액상 베타선원 또는 저에너지 감마선원을 사용할 수 있어, 정상 조직의 방사선 피폭을 최소화하여, 기존 외과적 수술 혹은 방사선 치료 기법으로 치료가 어려운 피부암 환자에게 합병증 없이 치료할 수 있을 것으로 기대된다. 또한, 본 발명의 원격 후장착 방사선 근접 치료 장치는 단독으로 방사선 치료에 사용될 수 있으나, 기존의 방사선 치료 기법과 조합하여 환자에게 보다 나은 방사선량분포를 제공할 수 있으며, 방사성 동위원소를 사용하여 환자의 치료를 수행하는 의료진 및 작업자의 방사선 피폭을 원격 후장착을 통해 예방할 수 있을 것으로 기대된다.The remote post-mounted radiation proximity therapy device using the liquid radioisotope of the present invention can position the therapeutic liquid radioisotope at regular intervals with the affected area through a patient-specific applicator using 3D scanning and / or 3D printing technology. Liquid radioisotopes of thickness can be placed to deliver homogeneous prescription doses, and the use of liquid radioisotopes enables flexible application to the irregular patient's skin surface and allows the use of liquid beta sources or low energy gamma sources. By minimizing the radiation exposure of the tissues, it is expected to be able to treat patients with skin cancer, which is difficult to treat with conventional surgical or radiation therapy techniques. In addition, the remote post-mounted radiation proximity therapy device of the present invention can be used alone for radiation therapy, but can be combined with existing radiation therapy techniques to provide better radiation dose distribution to the patient, using radioisotopes for the patient. Radiation exposure of medical staff and workers performing treatment may be prevented by remote post-installation.

Claims (7)

  1. 원격 후장착 방사선 근접 치료 장치에 있어서,A remote post-mounted radiation proximity therapy device,
    환부의 표면 굴곡 특성과 일치하도록 3D 스캐너 및 3D 프린터로 제작된 어플리케이터(100);An applicator 100 made of a 3D scanner and a 3D printer to match the surface curvature of the affected part;
    상기 어플리케이터(100)와 연결되어 치료용 액상 방사성 동위원소가 주입되는 주입부(200); 및An injection unit 200 connected with the applicator 100 to inject a therapeutic liquid radioisotope; And
    상기 주입부(200) 일단에 연결되어 치료용 액상 방사성 동위원소의 주입을 제어하는 제어부(300)를 포함하는 것을 특징으로 하는, 원격 후장착 방사선 근접 치료 장치.The injection unit 200 is connected to one end, characterized in that it comprises a control unit 300 for controlling the injection of the therapeutic liquid radioisotope, remote post-mounted radiation proximity therapy device.
  2. 제 1 항에 있어서, 상기 주입부(200)는 The method of claim 1, wherein the injection unit 200
    상기 어플리케이터(100) 내에 배치되어 주입되는 치료용 액상 방사성 동위원소를 수용하는 수용부(210); 및Receiving unit 210 for receiving a therapeutic liquid radioisotope disposed in the applicator 100 is injected; And
    상기 수용부(210)와 연결되어 상기 치료용 액상 방사성 동위원소의 이동을 위한 통로를 제공하는 유동관(220)을 포함하는 것을 특징으로 하는, 원격 후장착 방사선 근접 치료 장치.And a flow tube (220) connected to the receiving portion (210) to provide a passage for the movement of the therapeutic liquid radioisotope.
  3. 제 1 항에 있어서, 상기 어플리케이터(100)는 환부와 치료용 액상 방사성 동위원소와의 간격을 일정하게 유지시키는 것을 특징으로 하는, 원격 후장착 방사선 근접 치료 장치.The device of claim 1, wherein the applicator (100) maintains a constant distance between the affected part and the therapeutic liquid radioisotope.
  4. 제 1 항에 있어서, 상기 어플리케이터(100)는 치료용 액상 방사성 동위원소의 두께를 일정하게 유지시키는 것을 특징으로 하는, 원격 후장착 방사선 근접 치료 장치.The device of claim 1, wherein the applicator (100) maintains a constant thickness of the therapeutic liquid radioisotope.
  5. 제 2 항에 있어서, 상기 수용부(210)의 재질은 폴리프로필렌, 폴리스티렌, 폴리에틸렌 테트라프탈레이트(PET; polyethylene tetrephthalate), 저밀도 폴리에틸렌(LDPE; Low-density polyethylene) 또는 고밀도 폴리에틸렌(HDPE; High-density polyethylene)인 것을 특징으로 하는, 원격 후장착 방사선 근접 치료 장치.The material of the receiving part 210 is polypropylene, polystyrene, polyethylene tetrephthalate (PET), low-density polyethylene (LDPE) or high-density polyethylene (HDPE). A remote post-mounted radiation brachytherapy apparatus, characterized in that).
  6. 제 1 항에 있어서, 상기 치료용 액상 방사성 동위원소는 베타선원 또는 저에너지 감마선원인 것을 특징으로 하는, 원격 후장착 방사선 근접 치료 장치.The device of claim 1, wherein the therapeutic liquid radioisotope is a beta source or a low energy gamma source.
  7. 제 6 항에 있어서, 상기 베타선원은 인-32, 스트론튬-89, 이트륨-90, 요오드-131 또는 사마륨-153인 것을 특징으로 하는, 원격 후장착 방사선 근접 치료 장치.7. The device of claim 6, wherein the beta source is phosphorus-32, strontium-89, yttrium-90, iodine-131 or samarium-153.
PCT/KR2017/005125 2016-05-18 2017-05-17 Remote afterloading brachytherapy apparatus using liquid radioactive isotope WO2017200298A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0061107 2016-05-18
KR1020160061107A KR101783881B1 (en) 2016-05-18 2016-05-18 Remote afterloading brachytherapy machine using liquid radioisotope

Publications (1)

Publication Number Publication Date
WO2017200298A1 true WO2017200298A1 (en) 2017-11-23

Family

ID=60190128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/005125 WO2017200298A1 (en) 2016-05-18 2017-05-17 Remote afterloading brachytherapy apparatus using liquid radioactive isotope

Country Status (2)

Country Link
KR (1) KR101783881B1 (en)
WO (1) WO2017200298A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109499014A (en) * 2018-12-29 2019-03-22 王世广 The production method of dress operation auxiliary device after a kind of gynecological tumor
US11745028B2 (en) 2019-07-18 2023-09-05 Adaptiiv Medical Technologies, Inc. Systems and methods for design and fabrication of surface brachytherapy applicators

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200222949Y1 (en) * 2000-10-18 2001-05-15 한국원자력연구소 Device for radiation brachytherapy of orbital cancer
KR20070049597A (en) * 2003-11-07 2007-05-11 사이틱 코포레이션 Brachytherapy apparatus and method for treating a target tissue through an external surface of the tissue
US20110207987A1 (en) * 2009-11-02 2011-08-25 Salutaris Medical Devices, Inc. Methods And Devices For Delivering Appropriate Minimally-Invasive Extraocular Radiation
KR20140135022A (en) * 2013-05-15 2014-11-25 사회복지법인 삼성생명공익재단 Apparatus and method for generating printing data of applicator customized to patient, and system for manufacturing applicator customized to patient

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10384078B2 (en) 2013-10-15 2019-08-20 Ip Liberty Vision Corporation Polymeric radiation-sources

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200222949Y1 (en) * 2000-10-18 2001-05-15 한국원자력연구소 Device for radiation brachytherapy of orbital cancer
KR20070049597A (en) * 2003-11-07 2007-05-11 사이틱 코포레이션 Brachytherapy apparatus and method for treating a target tissue through an external surface of the tissue
US20110207987A1 (en) * 2009-11-02 2011-08-25 Salutaris Medical Devices, Inc. Methods And Devices For Delivering Appropriate Minimally-Invasive Extraocular Radiation
KR20140135022A (en) * 2013-05-15 2014-11-25 사회복지법인 삼성생명공익재단 Apparatus and method for generating printing data of applicator customized to patient, and system for manufacturing applicator customized to patient

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109499014A (en) * 2018-12-29 2019-03-22 王世广 The production method of dress operation auxiliary device after a kind of gynecological tumor
CN109499014B (en) * 2018-12-29 2021-03-23 王世广 Method for manufacturing gynecological tumor after-loading operation auxiliary device
US11745028B2 (en) 2019-07-18 2023-09-05 Adaptiiv Medical Technologies, Inc. Systems and methods for design and fabrication of surface brachytherapy applicators

Also Published As

Publication number Publication date
KR101783881B1 (en) 2017-10-10

Similar Documents

Publication Publication Date Title
Tillner et al. Pre-clinical research in small animals using radiotherapy technology–a bidirectional translational approach
AU2004220539B8 (en) Apparatus and process for dose-guided radiotherapy
Gutin et al. A coaxial catheter system for afterloading radioactive sources for the interstitial irradiation of brain tumors
US7988611B2 (en) After-loader for positioning implants for needle delivery in brachytherapy and other radiation therapy
WO2017200298A1 (en) Remote afterloading brachytherapy apparatus using liquid radioactive isotope
JPH09509339A (en) Equipment for medical radiation therapy
KR101739915B1 (en) Brachytheratpy pahntom for patient specific quality assurance
Easson et al. The radiotherapy of malignant disease
Gazda et al. Principles of radiation therapy
EP3579782B1 (en) Intra-operative radiation therapy capsule with cylindrical shell radiation containment shutter system
Laughlin Development of the technology of radiation therapy.
Bidmead Afterloading equipment for brachytherapy
Pierquin et al. Intracavitary irradiation of carcinomas of the uterus and cervix: The Créteil method
Cheng Intensity modulated radiation therapy
Robinson Radiotherapy: technical aspects
Ling et al. Improved dose distribution with customized I-125 source loading in temporary interstitial implants
Rustgi et al. An afterloading 192Ir surface mold
Wazer et al. High-dose boost irradiation techniques for carcinoma of the nasopharynx
Karthik et al. Radiotherapy for Head and Neck cancers-a review
Carrara et al. Brachytherapy
Möller et al. Radiotherapy techniques in current use in Sweden
Boyer et al. A luer lock afterloading device for iridium-192 brachytherapy
Rustgi et al. Advantages of using high activity 125I seeds in temporary interstitial breast implants
Walstam Therapeutic Radiation Physics A Review Of Developments In Sweden
Marx et al. Clinical use of a simulation-multileaf collimator

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17799655

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17799655

Country of ref document: EP

Kind code of ref document: A1