WO2017111462A1 - 다중 위성항법 신호 합성 장치 및 이를 포함하는 신호 처리 장치 - Google Patents

다중 위성항법 신호 합성 장치 및 이를 포함하는 신호 처리 장치 Download PDF

Info

Publication number
WO2017111462A1
WO2017111462A1 PCT/KR2016/015016 KR2016015016W WO2017111462A1 WO 2017111462 A1 WO2017111462 A1 WO 2017111462A1 KR 2016015016 W KR2016015016 W KR 2016015016W WO 2017111462 A1 WO2017111462 A1 WO 2017111462A1
Authority
WO
WIPO (PCT)
Prior art keywords
satellite navigation
signal
navigation signal
signals
time delay
Prior art date
Application number
PCT/KR2016/015016
Other languages
English (en)
French (fr)
Inventor
임성혁
허문범
손은성
김군택
Original Assignee
한국항공우주연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국항공우주연구원 filed Critical 한국항공우주연구원
Priority to US16/065,822 priority Critical patent/US20190011568A1/en
Publication of WO2017111462A1 publication Critical patent/WO2017111462A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/25Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS
    • G01S19/256Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS relating to timing, e.g. time of week, code phase, timing offset
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/28Satellite selection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/30Acquisition or tracking or demodulation of signals transmitted by the system code related
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/35Constructional details or hardware or software details of the signal processing chain
    • G01S19/36Constructional details or hardware or software details of the signal processing chain relating to the receiver frond end
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations

Definitions

  • the present invention relates to a multiple satellite navigation signal synthesizing apparatus and a signal processing apparatus including the same.
  • the GPS signal received from the ground has a low power of about -160dBW, which is susceptible to radio wave diffraction and disconnection caused by obstacles. Therefore, researches for reducing the positional error due to diffraction and disconnection of GPS signals are actively conducted.
  • a method of collecting and then combining each GPS signal received from a plurality of receiving antennas using a plurality of digital sampling devices is used.
  • a digital sampling device that digitizes GPS signals received from a plurality of receiving antennas is required to correspond to each receiving antenna, and the time synchronization between the digital sapling devices must be perfected.
  • Using a plurality of digital sampling devices requires additional time synchronization and compensation processes, and increases the number of digital samples by the number of receiving antennas, thereby increasing throughput.
  • the present invention provides a multi-satellite signal synthesizing apparatus capable of processing satellite navigation signals of multiple antennas received from a plurality of satellites without a separate time synchronization device or digitization device, and a signal processing device including the same. It is.
  • a plurality of receiving antennas for receiving a satellite navigation signal from a satellite;
  • a time delay unit configured to set one satellite navigation signal among the satellite navigation signals received by the reception antenna as a reference satellite navigation signal, and time delay other satellite navigation signals except for the reference satellite navigation signal;
  • a signal synthesizing unit for synthesizing the reference satellite navigation signal and another time delayed satellite navigation signal and transmitting the same to the satellite navigation receiver.
  • the time delay unit may time delay the other satellite navigation signal according to Equation 1 below.
  • S '(t) is a time delayed satellite navigation signal
  • s (t) is a satellite navigation signal received at a receiving antenna
  • k is a satellite navigation signal number
  • d is a delay constant
  • the delay constant may be determined according to the length of the chip code.
  • one satellite navigation signal among a plurality of receiving antennas for receiving satellite navigation signals from satellites and satellite navigation signals received at the receiving antennas is set as a reference satellite navigation signal, and the reference satellite navigation signal is used.
  • a synthesizing apparatus including a time delay unit for time-delaying other satellite navigation signals excluding signals and a signal synthesizing unit for synthesizing the reference satellite navigation signal and other time-delayed satellite navigation signals and transmitting the synthesized signal to a satellite navigation receiver; And a correlator for correlating and processing synthesized signals for each satellite.
  • a multi-satellite navigation signal processing apparatus including a satellite navigation receiver including an operation unit for calculating navigation information using a correlated signal.
  • the present invention is a multi-satellite signal synthesizing apparatus and a signal processing device including the same can process the satellite navigation signal of the multiple antennas received from a plurality of satellites without additional time synchronization equipment or digitization equipment.
  • FIG. 1 is a conceptual diagram of an apparatus for synthesizing multiple satellite navigation signals according to an embodiment of the present invention
  • FIG. 2 is a conceptual diagram of an apparatus for processing multiple satellite navigation signals according to an embodiment of the present invention
  • FIG. 3 is a block diagram of an apparatus for synthesizing multiple satellite navigation signals according to an embodiment of the present invention
  • FIG. 4 is a block diagram illustrating an apparatus for processing multiple satellite navigation signals according to an embodiment of the present invention.
  • ordinal numbers such as second and first
  • first and second components may be used to describe various components, but the components are not limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • second component may be referred to as the first component, and similarly, the first component may also be referred to as the second component.
  • FIG. 1 is a conceptual diagram of a multiple satellite navigation signal synthesizing apparatus according to an embodiment of the present invention
  • FIG. 2 is a conceptual diagram of a multiple satellite navigation signal processing apparatus according to an embodiment of the present invention
  • FIG. 3 is an embodiment of the present invention.
  • 4 is a block diagram illustrating an apparatus for synthesizing a multiple satellite navigation signal according to an embodiment.
  • FIG. 4 is a block diagram of an apparatus for processing multiple satellite navigation signals according to an embodiment of the present invention.
  • a multi-satellite navigation signal processing apparatus includes a reception antenna (111 to 114), an amplifier (121 to 124), a time delay unit (131 to 133), a signal synthesis unit (The satellite navigation receiver 200 including the synthesizer 100 and the down converter 210, the analog-to-digital converter (A / D converter) 220, the correlator 230, and the operation unit 240 including the 140. It can be configured to include.
  • the receiving antennas 111 to 114 of the synthesizing apparatus 100 may include a plurality of antennas for receiving satellite navigation signals from satellites.
  • Receiving antennas 111 to 114 are provided with four GPS antennas at predetermined intervals, so that all have an azimuth angle of 0 ° to + 360 ° and an elevation angle of -90 ° to + 90 °.
  • the area can be secured as the visible area.
  • the amplifiers 121 to 124 may include a first amplifier 121, a second amplifier 122, a third amplifier 123, and a fourth amplifier 124.
  • the amplifiers 121 to 124 may amplify a signal received from the receiving antennas 111 to 114 and transmit the amplified signal to the time delay units 131 to 133.
  • the amplifiers 121 to 124 may be configured as, for example, low noise amplifiers (LNAs), and may perform amplification for respective satellite navigation signals received by the reception antennas 111 to 114.
  • LNAs low noise amplifiers
  • the time delay units 131 to 133 may include a first time delay unit 131, a second time delay unit 132, and a third time delay unit 133.
  • the time delay unit 131 to 133 sets one satellite navigation signal among the satellite navigation signals received by the reception antennas 111 to 114 as a reference satellite navigation signal, and delays other satellite navigation signals except for the reference satellite navigation signal. Can be.
  • the time delay units 131 to 133 set the satellite navigation signals received by the first reception antenna 111 among the satellite navigation signals received by the four reception antennas 111 to 114 as reference satellite navigation signals.
  • the time delay units 131 to 133 set the satellite navigation signals received by the first reception antenna 111 among the satellite navigation signals received by the four reception antennas 111 to 114 as reference satellite navigation signals.
  • the time delay unit may delay other satellite navigation signals according to Equation 1 below.
  • Equation 1 s' (t) is a time delay satellite navigation signal, s (t) is a satellite navigation signal received at the receiving antenna, k may be a satellite navigation signal number, d may mean a delay constant.
  • the time delay units 131 to 133 transmit the reference satellite navigation signal to the signal synthesis unit 140 without time delay, and perform the time delay according to Equation 1 with respect to the remaining satellite navigation signals. . That is, the first time delay 131 performs a time delay by d with respect to the second satellite navigation signal received by the second receiving antenna 112, and the second time delay 132 performs the third receiving antenna. A time delay of 2d is performed on the third satellite navigation signal received at 113, and the third time delay unit 133 is 3d on the fourth satellite navigation signal received by the fourth receiving antenna 114. Performs a time delay.
  • Code Offset means delay, and GPS signal becomes DSSS signal. Therefore, as shown in the figure above, if the original signal and the signal delayed by more than 2 chips are added together and the correlation is performed in the correlator, the correlation results are derived from the start point of the original signal and the start point of the delayed signal, respectively, as shown in the figure below. There is little mutual effect and noise level rises slightly.
  • the delay constant d may be determined according to the length of the chip code.
  • the satellite navigation signal is a DSSS (Direct Sequence Spread Spectrum) signal. Each bit is modulated into a plurality of bits in the form of a chip, and then transmitted to a receiving antenna in a state where it is spread over a frequency used. That is, the satellite navigation signals have a correlation with time, and mutual interference does not occur between signals delayed more than the length of the chip code.
  • Code Offset means time delay, and when the satellite navigation signal is delayed by more than one chip as a DSSS signal, correlation does not occur. Therefore, as shown in FIG. 5A, when the original signal and the signal delayed by two chips or more are combined and performed by the correlator, the correlation results are derived from the start point of the original signal and the time delayed signal as shown in FIG. 5B, respectively. There is little effect between the signals and the noise level rises slightly.
  • the delay constant d may be determined according to the length of the chip code, for example, a multiple of the chip code. For example, if the length of the chip code is 1us, and the delay constant d is twice the length of the chip code by delaying twice the length of the chip code to eliminate mutual interference, the first time delay unit 131 is the second time. A time delay of 2 us is performed with respect to the second satellite navigation signal received by the reception antenna 112, and the second time delay unit 132 performs the third satellite navigation signal received by the third reception antenna 113. A time delay of 4 us is performed, and the third time delay unit 133 performs a time delay of 6 us with respect to the fourth satellite navigation signal received by the fourth receiving antenna 114.
  • the signal synthesizing unit 140 may synthesize the reference satellite navigation signal and other time-delayed satellite navigation signals and transmit them to the satellite navigation receiver 200.
  • the signal synthesizing unit 140 has a broadband frequency characteristic capable of covering all the bandwidths of the satellite navigation signal.
  • the signal synthesizing unit 140 may be configured as an RF signal synthesizer that receives a plurality of satellite navigation signals as an input and synthesizes and outputs one of them.
  • the down converter 210 of the satellite navigation receiver 200 may convert the synthesized signal received from the signal combiner 140 into a baseband signal.
  • the downconverter 210 may convert the synthesized signal into a baseband signal by multiplying the synthesized signal by a carrier frequency, for example.
  • the analog-to-digital converter 220 may sample the synthesized signal, which is an RF signal, and convert it into a digital signal.
  • the correlator 230 may correlate and process the synthesized signal for each satellite.
  • the correlator 230 may calculate a correlation result by adding a constant signal delayed for each reception antenna according to a method of correlating an unsynthesized signal to the delay value of the satellite navigation signal received at the first reception antenna according to a fixed delay time. have. That is, in one embodiment of the present invention, the correlator 230 correlates the signal received at the second receiving antenna with 2us, the signal received at the third receiving antenna with 4us, and the signal received at the fourth receiving antenna with a 6us delay. Correlation results for the delayed satellite navigation signal for each antenna can be obtained.
  • the calculator 240 may calculate navigation information using the correlated signal.
  • the calculation unit 240 removes the delay amount (constant) due to the time delay from the measured delay amount including the delay by the delay time and the time delay between the correlated satellite and the reception antenna, for example, the position, speed, and time information. It is possible to calculate navigation information such as and to calculate a control signal for constructing a satellite tracking loop.
  • ' ⁇ part' used in the present embodiment refers to software or a hardware component such as a field-programmable gate array (FPGA) or an ASIC, and ' ⁇ part' performs certain roles.
  • ' ⁇ ' is not meant to be limited to software or hardware.
  • ' ⁇ Portion' may be configured to be in an addressable storage medium or may be configured to play one or more processors.
  • ' ⁇ ' means components such as software components, object-oriented software components, class components, and task components, and processes, functions, properties, procedures, and the like. Subroutines, segments of program code, drivers, firmware, microcode, circuits, data, databases, data structures, tables, arrays, and variables.
  • the functionality provided within the components and the 'parts' may be combined into a smaller number of components and the 'parts' or further separated into additional components and the 'parts'.
  • the components and ' ⁇ ' may be implemented to play one or more CPUs in the device or secure multimedia card.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Automation & Control Theory (AREA)

Abstract

다중 위성항법 신호 합성 장치 및 이를 포함하는 신호 처리 장치가 개시된다. 상기 다중 위성항법 신호 합성 장치는 위성으로부터 위성항법신호를 수신하는 복수개의 수신 안테나; 상기 수신 안테나에서 수신한 위성항법신호 중 하나의 위성항법신호를 기준위성항법신호로 설정하고, 상기 기준 위성항법신호를 제외한 타 위성항법신호를 시간 지연시키는 시간지연부; 및 상기 기준 위성항법신호 및 시간지연된 타 위성항법신호를 합성하여 위성항법수신기에 전달하는 신호 합성부를 포함한다.

Description

다중 위성항법 신호 합성 장치 및 이를 포함하는 신호 처리 장치
본 발명은 다중 위성항법 신호 합성 장치 및 이를 포함하는 신호 처리 장치에 관한 것이다.
지상에서 수신하는 GPS 신호는 약 -160dBW의 낮은 전력을 갖기 때문에 장애물에 의한 전파 회절 및 단절에 영향을 받기 쉽다. 따라서 GPS 신호의 회절 및 단절에 의한 위치오차를 줄이기 위한 연구가 활발히 진행되고 있다.
GPS 신호의 회절 및 단절의 영향을 줄이기 위해서는 복수의 수신안테나로부터 수신된 각각의 GPS 신호를 복수의 디지털 샘플링장치를 이용하여 수집한 후 융합하는 방법이 사용되고 있다.
이러한 방법이 사용되기 위해서는 복수의 수신안테나로부터 수신된 GPS 신호를 디지털화하는 디지털 샘플링 장치가 각각의 수신안테나에 대응되도록 필요하며 디지털 생플링 장치간의 시각동기가 완벽하게 이루어져야한다.
복수의 디지털 샘플링 장치를 사용하는 것은 추가적인 시각동기 및 보상과정을 필요하고 수신안테나의 개수만큼 디지털 샘플의 개수가 늘어나 처리량의 많아지는 문제가 있다.
본 발명이 이루고자 하는 기술적 과제는 별도의 시각 동기화 장비나 디지털화 장비 탑재 없이 복수개의 위성으로부터 수신하는 다중 안테나의 위성항법 신호를 처리할 수 있는 다중 위성항법 신호 합성 장치 및 이를 포함하는 신호 처리 장치를 제공하는데 있다.
본 발명의 일 실시예에 따르면, 위성으로부터 위성항법신호를 수신하는 복수개의 수신 안테나; 상기 수신 안테나에서 수신한 위성항법신호 중 하나의 위성항법신호를 기준위성항법신호로 설정하고, 상기 기준 위성항법신호를 제외한 타 위성항법신호를 시간 지연시키는 시간지연부; 및 상기 기준 위성항법신호 및 시간지연 된 타 위성항법신호를 합성하여 위성항법수신기에 전달하는 신호 합성부를 포함하는 다중 위성항법 신호 합성 장치를 제공한다.
상기 시간지연부는 하기 수학식 1에 따라 상기 타 위성항법신호를 시간지연시킬 수 있다.
[수학식 1]
Figure PCTKR2016015016-appb-I000001
(상기 수학식 1에서 s'(t)는 시간지연된 위성항법신호이고, s(t)는 수신안테나에서 수신한 위성항법신호이고, k는 위성항법신호 번호, d는 지연상수)
상기 지연상수는 칩(chip)코드의 길이에 따라 결정될 수 있다.
본 발명의 다른 실시예에 따르면, 위성으로부터 위성항법신호를 수신하는 복수개의 수신 안테나와 상기 수신 안테나에서 수신한 위성항법신호 중 하나의 위성항법신호를 기준위성항법신호로 설정하고, 상기 기준 위성항법신호를 제외한 타 위성항법신호를 시간 지연시키는 시간지연부 및 상기 기준 위성항법 신호 및 시간지연 된 타 위성항법신호를 합성하여 위성항법수신기에 전달하는 신호 합성부를 포함하는 합성장치; 및 합성된 신호를 상기 위성별로 상관시켜 처리하는 상관기; 상관 처리된 신호를 이용하여 항법정보를 연산하는 연산부를 포함하는 위성항법수신기를 포함하는 다중 위성항법 신호 처리 장치를 제공한다.
본 발명인 다중 위성항법 신호 합성 장치 및 이를 포함하는 신호 처리 장치는 별도의 시각 동기화 장비나 디지털화 장비 탑재 없이 복수개의 위성으로부터 수신하는 다중 안테나의 위성항법 신호를 처리할 수 있다.
도1은 본 발명의 일실시예에 따른 다중 위성항법 신호 합성 장치의 개념도이고,
도2는 본 발명의 일실시예에 따른 다중 위성항법 신호 처리 장치의 개념도이고,
도3은 본 발명의 일실시예에 따른 다중 위성항법 신호 합성 장치의 구성블록도이고,
도4는 본 발명의 일실시예예 따른 다중 위성항법 신호 처리 장치의 구성블록도이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제2, 제1 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제2 구성요소는 제1 구성요소로 명명될 수 있고, 유사하게 제1 구성요소도 제2 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하, 첨부된 도면을 참조하여 실시예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 대응하는 구성 요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
도1은 본 발명의 일실시예에 따른 다중 위성항법 신호 합성 장치의 개념도이고, 도2는 본 발명의 일실시예에 따른 다중 위성항법 신호 처리 장치의 개념도이고, 도3은 본 발명의 일실시예에 따른 다중 위성항법 신호 합성 장치의 구성블록도이고, 도4는 본 발명의 일실시예예 따른 다중 위성항법 신호 처리 장치의 구성블록도이다.
도1 내지 도4를 참고하면 본 발명의 일실시예예 따른 다중 위성항법 신호 처리 장치는 수신안테나(111~114), 증폭기(121~124), 시간지연부(131~133), 신호 합성부(140)를 포함하는 합성장치(100)와 다운컨버터(210), 아날로그-디지털 컨버터(A/D컨버터)(220), 상관기(230), 연산부(240)를 포함하는 위성항법 수신기(200)를 포함하여 구성될 수 있다.
먼저, 합성장치(100)의 수신 안테나(111~114)는 위성으로부터 위성항법신호를 수신하는 복수개의 안테나로 구성될 수 있다. 수신 안테나(111~114)는 4개의 GPS 안테나가 소정의 간격으로 설치되어서, 0°~ +360°의 방위각(Azimuth Angle)과 -90°∼ +90°의 고도각(Elevation Angle)을 갖는 모든 영역을 가시영역으로 확보할 수 있다.
증폭기(121~124)는 제1증폭기(121), 제2증폭기(122), 제3증폭기(123) 및 제4증폭기(124)를 포함하여 구성될 수 있다. 증폭기(121~124)는 수신 안테나(111~114)에서 수신되는 신호를 증폭시켜 시간지연부(131~133)로 전달할 수 있다. 증폭기(121~124)는 예를 들면 저잡음 증폭기(LNA, Low Noise Amplifier)로 구성될 수 있으며, 수신 안테나(111~114)에서 수신되는 각각의 위성항법신호에 대한 증폭을 수행할 수 있다.
시간지연부(131~133)는 제1시간지연기(131), 제2시간지연기(132) 및 제3시간지연기(133)를 포함하여 구성될 수 있다. 시간지연(131~133)부는 수신 안테나(111~114)에서 수신한 위성항법신호 중 하나의 위성항법신호를 기준 위성항법신호로 설정하고, 기준 위성항법신호를 제외한 타 위성항법신호를 시간 지연시킬 수 있다.
본 발명의 실시예에서 시간 지연부(131~133)는 4개의 수신 안테나(111~114)에서 수신한 위성항법신호중 제1수신 안테나(111)에서 수신한 위성항법신호를 기준 위성항법신호로 설정한 것을 예로 들어 설명하기로 한다.
시간지연부는 하기 수학식 1에 따라 타 위성항법신호를 시간지연시킬 수 있다.
[수학식 1]
Figure PCTKR2016015016-appb-I000002
수학식 1에서 s'(t)는 시간지연된 위성항법신호이고, s(t)는 수신안테나에서 수신한 위성항법신호이고, k는 위성항법신호 번호, d는 지연상수를 의미할 수 있다.
시간지연부(131~133)는 기준 위성항법신호의 경우 시간 지연을 하지 않은 상태로 신호합성부(140)에 전달하고, 나머지 위성항법신호에 대하여서는 수학식 1에 따라 시간지연을 수행하게 된다. 즉, 제1시간지연기(131)는 제2수신 안테나(112)에서 수신한 제2위성항법신호에 대하여 d만큼의 시간 지연을 수행하고, 제2시간지연기(132)는 제3수신 안테나(113)에서 수신한 제3위성항법신호에 대하여 2d만큼의 시간 지연을 수행하고, 제3시간지연기(133)는 제4수신 안테나(114)에서 수신한 제4위성항법신호에 대하여 3d만큼의 시간 지연을 수행한다.
상기 그림에서 Code Offset은 지연을 의미하며 GPS 신호는 DSSS신호로 한칩이상 지연되면 상관이 없어지게 됩니다. 그러므로 상기 그림의 상단그림과 같이 원신호와 2칩이상 지연된 신호를 합친 후 상관기에서 상관을 수행하면 하단그림과 같이 원신호의 시작점과 지연된신호의 시작점에서 상관결과가 각각 도출되고 원신호와 지연된신호 상호간의 영향은 거의 없고 잡음수준이 소폭 상승함.
수학식 1에서 지연상수 d는 칩(chip)코드의 길이에 따라 결정될 수 있다. 위성항법신호는 DSSS(Direct Sequence Spread Spectrum)신호로 각 비트는 칩이라는 형태의 여러 비트들로 변조된 후 사용주파수 전역으로 확산된 상태로 수신 안테나로 전송된다. 즉, 위성항법신호는 시간에 대하여 상관특성이 있으며 칩 코드의 길이 이상 지연된 신호간에는 상호 간섭이 일어나지 않는다.
도5를 참고하면, Code Offset은 시간 지연을 의미하며 위성항법신호는 DSSS신호로 한칩이상 지연되면 상관이 발생하지 않게 된다. 따라서 도5a에서와 같이 원신호와 2칩이상 지연된 신호를 합친 후 상관기에서 상관을 수행하면, 도5b와 같이 원신호의 시작점과 시간 지연된 신호의 시작점에서 상관결과가 각각 도출되고 원신호와 시간 지연된 신호 상호간의 영향은 거의 없고 잡음수준이 소폭 상승하게 된다.
따라서, 지연상수 d는 칩코드의 길이에 따라 결정될 수 있으며, 예를 들면 칩코드의 배수로 결정될 수 있다. 예를들면, 칩코드의 길이가 1us이고, 상호간섭을 배제하기 위해 칩코드 길이의 2배로 지연을 시켜서 지연상수 d가 칩코드의 길이의 2배라면 제1시간지연기(131)는 제2수신 안테나(112)에서 수신한 제2위성항법신호에 대하여 2us만큼의 시간 지연을 수행하고, 제2시간지연기(132)는 제3수신 안테나(113)에서 수신한 제3위성항법신호에 대하여 4us만큼의 시간 지연을 수행하고, 제3시간지연기(133)는 제4수신 안테나(114)에서 수신한 제4위성항법신호에 대하여 6us만큼의 시간 지연을 수행한다.
신호 합성부(140)는 기준 위성항법신호 및 시간지연된 타 위성항법신호를 합성하여 위성항법수신기(200)에 전달할 수 있다. 신호 합성부(140)는 위성항법신호의 대역폭을 모두 포괄할 수 있는 광대역 주파수 특성을 가지고 있으며, 복수개의 위성항법신호를 입력으로 받은 후 하나로 합성하여 출력하는 RF신호 합성기로 구성될 수 있다.
다음으로, 위성항법 수신기(200)의 다운컨버터(210)는 신호 합성부(140)로부터 전달받은 합성 신호를 기저대역 신호로 변환할 수 있다. 다운컨버터(210)는 예를 들면, 합성 신호에 캐리어 주파수를 곱하여 합성 신호를 기저대역 신호로 변환할 수 있다.
아날로그-디지털 컨버터(220)는 RF신호인 합성 신호를 샘플링하여 디지털 신호로 변환할 수 있다.
상관기(230)는 합성된 신호를 위성별로 상관시켜 처리할 수 있다. 상관기(230)는 비합성 신호를 상관하는 방법에 따라 수신안테나별로 지연된 상수 신호를 제1수신안테나에서 수신된 위성항법신호의 지연값에 고정된 지연 시간에 따라 더하여 상관시켜 상관 결과를 산출할 수 있다. 즉 본 발명의 일실시예에서 상관기(230)는 제2수신안테나에서 수신한 신호는 2us, 제3수신안테나에서 수신한 신호는 4us, 제4수신안테나에서 수신한 신호는 6us 지연을 더하여 상관하면 안테나별로 지연된 위성항법신호에 대한 상관결과를 얻을 수 있다.
연산부(240)는 상관 처리된 신호를 이용하여 항법정보를 연산할 수 있다. 연산부(240)는 예를 들면 상관 처리된 위성과 수신안테나간의 지연시간과 시간지연기에 의해 지연이 포함된 측정된 지연량에서 시간지연기에 의한 지연량(상수)를 제거한 후 위치, 속도, 시간 정보 등의 항법정보를 연산하고 위성 추적 루프를 구성할 수 있는 제어 신호를 산출할 수 있다.
본 실시예에서 사용되는 '~부'라는 용어는 소프트웨어 또는 FPGA(field-programmable gate array) 또는 ASIC과 같은 하드웨어 구성요소를 의미하며, '~부'는 어떤 역할들을 수행한다. 그렇지만 '~부'는 소프트웨어 또는 하드웨어에 한정되는 의미는 아니다. '~부'는 어드레싱할 수 있는 저장 매체에 있도록 구성될 수도 있고 하나 또는 그 이상의 프로세서들을 재생시키도록 구성될 수도 있다. 따라서, 일 예로서 '~부'는 소프트웨어 구성요소들, 객체지향 소프트웨어 구성요소들, 클래스 구성요소들 및 태스크 구성요소들과 같은 구성요소들과, 프로세스들, 함수들, 속성들, 프로시저들, 서브루틴들, 프로그램 코드의 세그먼트들, 드라이버들, 펌웨어, 마이크로코드, 회로, 데이터, 데이터베이스, 데이터 구조들, 테이블들, 어레이들, 및 변수들을 포함한다. 구성요소들과 '~부'들 안에서 제공되는 기능은 더 작은 수의 구성요소들 및 '~부'들로 결합되거나 추가적인 구성요소들과 '~부'들로 더 분리될 수 있다. 뿐만 아니라, 구성요소들 및 '~부'들은 디바이스 또는 보안 멀티미디어카드 내의 하나 또는 그 이상의 CPU들을 재생시키도록 구현될 수도 있다.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (6)

  1. 위성으로부터 위성항법신호를 수신하는 복수개의 수신 안테나;
    상기 수신 안테나에서 수신한 위성항법신호 중 하나의 위성항법신호를 기준위성항법신호로 설정하고, 상기 기준 위성항법신호를 제외한 타 위성항법신호를 시간 지연시키는 시간지연부; 및
    상기 기준 위성항법신호 및 시간지연 된 타 위성항법신호를 합성하여 위성항법수신기에 전달하는 신호 합성부를 포함하는 다중 위성항법 신호 합성 장치.
  2. 제1항에 있어서,
    상기 시간지연부는 하기 수학식 1에 따라 상기 타 위성항법신호를 시간지연시키는 다중 위성항법 신호 합성 장치.
    [수학식 1]
    Figure PCTKR2016015016-appb-I000003
    (상기 수학식 1에서 s'(t)는 시간지연된 위성항법신호이고, s(t)는 수신안테나에서 수신한 위성항법신호이고, k는 위성항법신호 번호, d는 지연상수)
  3. 제2항에 있어서,
    상기 지연상수는 칩(chip)코드의 길이에 따라 결정되는 다중 위성항법 신호 합성 장치.
  4. 위성으로부터 위성항법신호를 수신하는 복수개의 수신 안테나와 상기 수신 안테나에서 수신한 위성항법신호 중 하나의 위성항법신호를 기준위성항법신호로 설정하고, 상기 기준 위성항법신호를 제외한 타 위성항법신호를 시간 지연시키는 시간지연부 및 상기 기준 위성항법 신호 및 시간지연 된 타 위성항법신호를 합성하여 위성항법수신기에 전달하는 신호 합성부를 포함하는 합성장치; 및
    합성된 신호를 상기 위성별로 상관시켜 처리하는 상관기; 상관 처리된 신호를 이용하여 항법정보를 연산하는 연산부를 포함하는 위성항법수신기
    를 포함하는 다중 위성항법 신호 처리 장치.
  5. 제4항에 있어서,
    상기 시간지연부는 하기 수학식 2에 따라 상기 타 위성항법신호를 시간지연시키는 다중 위성항법 신호 처리 장치.
    [수학식 2]
    Figure PCTKR2016015016-appb-I000004
    (상기 수학식 2에서 s'(t)는 시간지연된 위성항법신호이고, s(t)는 수신안테나에서 수신한 위성항법신호이고, k는 위성항법신호 번호, d는 지연상수)
  6. 제5항에 있어서,
    상기 지연상수는 칩(chip)코드의 길이에 따라 결정되는 다중 위성항법 신호 처리 장치.
PCT/KR2016/015016 2015-12-24 2016-12-21 다중 위성항법 신호 합성 장치 및 이를 포함하는 신호 처리 장치 WO2017111462A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/065,822 US20190011568A1 (en) 2015-12-24 2016-12-21 Device for combining multiple satellite navigation signals, and signal processing device comprising same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150186202A KR101698469B1 (ko) 2015-12-24 2015-12-24 다중 위성항법 신호 합성 장치 및 이를 포함하는 신호 처리 장치
KR10-2015-0186202 2015-12-24

Publications (1)

Publication Number Publication Date
WO2017111462A1 true WO2017111462A1 (ko) 2017-06-29

Family

ID=57989576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/015016 WO2017111462A1 (ko) 2015-12-24 2016-12-21 다중 위성항법 신호 합성 장치 및 이를 포함하는 신호 처리 장치

Country Status (3)

Country Link
US (1) US20190011568A1 (ko)
KR (1) KR101698469B1 (ko)
WO (1) WO2017111462A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020087529A (ko) * 2001-05-14 2002-11-23 주식회사 네비콤 사용자의 위치 측정 장치
KR20090095895A (ko) * 2008-03-06 2009-09-10 한양네비콤주식회사 Gps/갈릴레오 수신기의 위성신호 추적 장치
KR20110067908A (ko) * 2009-12-15 2011-06-22 한국전자통신연구원 위성 항법 신호 생성 장치
KR101576463B1 (ko) * 2014-11-27 2015-12-10 국방과학연구소 항법신호 추적장치 및 그것의 제어방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020087529A (ko) * 2001-05-14 2002-11-23 주식회사 네비콤 사용자의 위치 측정 장치
KR20090095895A (ko) * 2008-03-06 2009-09-10 한양네비콤주식회사 Gps/갈릴레오 수신기의 위성신호 추적 장치
KR20110067908A (ko) * 2009-12-15 2011-06-22 한국전자통신연구원 위성 항법 신호 생성 장치
KR101576463B1 (ko) * 2014-11-27 2015-12-10 국방과학연구소 항법신호 추적장치 및 그것의 제어방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SON, MIN HYUK ET AL.: "Configuration of Network Based GNSS Correction System for Land Transportation Navigation", THE KOREAN SOCIETY FOR AVIATION AND AERONAUTICS, vol. 21, no. 4, December 2013 (2013-12-01), pages 17 - 26, XP055393442 *

Also Published As

Publication number Publication date
US20190011568A1 (en) 2019-01-10
KR101698469B1 (ko) 2017-01-20

Similar Documents

Publication Publication Date Title
CN108964724B (zh) 用于机载卫星通信的多波束相控阵
US6141371A (en) Jamming suppression of spread spectrum antenna/receiver systems
US4516126A (en) Adaptive array having an auxiliary channel notched pattern in the steered beam direction
JP4280414B2 (ja) 無線信号を受信する方法と装置
TW466848B (en) A CDMA receiver for receiving a CDMA signal over a multi-path channel and a method for tracking a CDMA signal
EP3493426B1 (en) A receiver-system
CN110325873B (zh) 雷达装置
JP2003522465A (ja) 偏波ダイバーシティを使用する線形信号分離
EP1098390A2 (en) Satellite communication array transceiver
US7599401B2 (en) Transmission device and transmission method
CN107831488B (zh) 基于dvb-s信号多信道全信息融合的空中移动目标检测方法
CA2893723C (en) System and method for determining location of an interfering signal source
WO2017111462A1 (ko) 다중 위성항법 신호 합성 장치 및 이를 포함하는 신호 처리 장치
CN114839652A (zh) 阵列误差下的稳健欺骗式干扰抑制方法
Hartmann et al. A low-cost rssi-based localization system for wildlife tracking
RU2631422C1 (ru) Корреляционно-фазовый пеленгатор
WO2017080359A1 (zh) 一种干扰消除方法、装置及基站
US20060279462A1 (en) Method and corresponding device for joint signal detection and direction of arrival estimation
KR20120070966A (ko) 다중 안테나를 이용한 무선 채널 측정 장치
US7609753B1 (en) Link 16 radio receiver using antenna diversity
KR101197854B1 (ko) 디지털 하이브리드 증폭기 교정 및 보상 방법
KR101271257B1 (ko) 위성항법 신호 추적 장치, 위치 정보 획득 장치, 그리고 위성항법 신호 추적 방법
CN210243826U (zh) 一种雷达多通道信号预处理装置及其脉冲压缩单元
CN111464280B (zh) 一种多路信号处理系统、方法及装置
US9872136B2 (en) Method and apparatus for transmitter geo-location in mobile platforms

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16879329

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16879329

Country of ref document: EP

Kind code of ref document: A1