WO2017111295A1 - Superabsorbent polymer and preparation method therefor - Google Patents

Superabsorbent polymer and preparation method therefor Download PDF

Info

Publication number
WO2017111295A1
WO2017111295A1 PCT/KR2016/012678 KR2016012678W WO2017111295A1 WO 2017111295 A1 WO2017111295 A1 WO 2017111295A1 KR 2016012678 W KR2016012678 W KR 2016012678W WO 2017111295 A1 WO2017111295 A1 WO 2017111295A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
water
weight
super absorbent
base resin
Prior art date
Application number
PCT/KR2016/012678
Other languages
French (fr)
Korean (ko)
Inventor
이금형
김기철
박성수
양예솔
성보현
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160144603A external-priority patent/KR102119813B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US15/743,841 priority Critical patent/US10995183B2/en
Publication of WO2017111295A1 publication Critical patent/WO2017111295A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/04Acids, Metal salts or ammonium salts thereof
    • C08F20/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/52Amides or imides
    • C08F20/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F20/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/10Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing nitrogen, the blowing agent being a compound containing a nitrogen-to-nitrogen bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica

Definitions

  • the present invention relates to a super absorbent polymer and a method for producing the same. More particularly, the present invention relates to a super absorbent polymer having an improved absorption rate and high gallon density, and a method for preparing the same.
  • a super absorbent polymer is a synthetic polymer material that can absorb about 500 to 1000 times its own weight. It is a super absorbent material (SAM), absorbent gel mater (ALM), etc. Also called. Super absorbent resins have been put into practical use as sanitary devices, and are now widely used in various materials such as hygiene products such as paper diapers for children, horticultural soil repair agents, civil engineering index materials, seedling sheets, and freshness retainers in food distribution. It is used.
  • a method for producing such a super absorbent polymer a method by reverse phase suspension polymerization or a solution polymerization is known.
  • the production of superabsorbent polymers through reverse phase suspension polymerization is disclosed, for example, in Japanese Patent Laid-Open Nos. 56-161408, 57-158209, and 57-198714.
  • the production of superabsorbent polymers through polymerization of aqueous solution is a thermal polymerization method in which a hydrogel polymer is broken and immersed in a half-die with multiple axes, and is polymerized by irradiating ultraviolet light to a high concentration of aqueous solution on a belt.
  • the photopolymerization method etc. which perform simultaneously and drying are known.
  • the rate of absorption which is one of the important physical properties of superabsorbent polymers, is related to the surface dryness of products that touch the skin, such as diapers. Generally this One absorption rate can be improved by increasing the surface area of the superabsorbent polymer.
  • Patent Document 1 Japanese Patent Laid-Open No. 56-161408
  • Patent Document 2 Japanese Patent Laid-Open No. 57-158209
  • Patent Document 3 Japanese Patent Laid-Open No. 57-198714
  • the present invention is to provide a super absorbent polymer having improved absorption rate and high apparent density.
  • the present invention is to provide a method for producing the super absorbent polymer.
  • the base resin powder containing the crosslinked polymer of the water-soluble ethylene-type unsaturated monomer which has the acidic group neutralized at least one part,
  • the base resin powder has the several hole of diameter 1fi or more formed,
  • the said crosslinked polymer contains layered silicate particles dispersed in the crosslinked structure, and has a squeezed density of at least 0.5 g / mt. Ball.
  • the present specification also includes a base resin powder containing a cross-linked polymer of a water-soluble ethylenically unsaturated monomer having at least a portion of neutralized acidic groups, and a plurality of pores of diameter 1 / m or more are formed in the base resin powder,
  • a superabsorbent polymer having a density of 0.55 g / m £ or more and a time for removing vortex generated when stirring 0.9 wt% NaCl solution 50 at 600 rpm at a speed of 54 seconds or less is provided.
  • a water-containing gel polymer is obtained by crosslinking and polymerizing a monomer composition comprising a layered silicate-based particle, a foaming agent, an internal crosslinking agent, and a water-soluble ethylene-based unsaturated monomer having at least part of a neutralized acidic group, and stirred at a speed of 1000 rpm or more.
  • a manufacturing method is provided.
  • the water-containing gel polymer is further crosslinked with a monomer composition comprising a layered silicate-based particle, a blowing agent, an internal crosslinking agent, and a water-soluble ethylenically unsaturated monomer having at least a portion of an acidic group, and stirred at a speed of 1000 rpm or more.
  • the coarsely crushing step is pulverized so as to be 2 kPa to 10 kPa, wherein the coarsely crushing step is provided at a temperature of 50 ° C. or more, and a method for producing a super absorbent polymer which proceeds at a frequency of 15 Hz or more.
  • the hydrogel polymer is further crosslinked with a monomer composition comprising a layered silicate-based particle, a blowing agent, an internal crosslinking agent, and a water-soluble ethylenically unsaturated monomer having at least part of a neutralized acidic group, and stirred at a speed of 1000 rpm or more.
  • a monomer composition comprising a layered silicate-based particle, a blowing agent, an internal crosslinking agent, and a water-soluble ethylenically unsaturated monomer having at least part of a neutralized acidic group, and stirred at a speed of 1000 rpm or more.
  • the base resin powder including cross-linked polymers of ethylenically unsaturated monomers, and the base resin powder having an at least partially neutralized acid has a plurality of pores over a diameter of 1 formation
  • the crosslinked polymer is crosslinked .
  • a superabsorbent polymer containing layered silicate particles dispersed in the structure and having an apparent density of 0.55 g / val or more can be provided.
  • the inventors of the present invention use the above-described superabsorbent polymer, and by using specific layered silicate-based particles, a plurality of micropores can be stably formed in the crosslinked polymer, and the contact area with water increases rapidly.
  • the absorption rate of the absorbent resin can be further improved, and the experiment was confirmed that the superabsorbent polymer having a high apparent density can be prepared through experiments and completed the invention.
  • the super absorbent polymer may include a base resin powder including a cross-linked polymer of a water-soluble ethylenically unsaturated monomer having at least a portion of the acid group.
  • the "crosslinked polymer of water-soluble ethylenically unsaturated monomer” is a hydrogel polymer immediately formed by thermal polymerization or photopolymerization to a composition containing a water-soluble ethylenically unsaturated monomer, as well as a general method for producing a super absorbent polymer.
  • a polymer obtained by drying the hydrogel polymer a polymer obtained by grinding the hydrogel polymer or dried polymer, surface crosslinking It includes both the polymer before the reaction or the polymer after the surface crosslinking reaction, and if the water-soluble ethylenically unsaturated monomer is a polymerized polymerizer, all polymers are included regardless of the form, water content, particle size, surface crosslinking or the like. Can be.
  • the super absorbent polymer of the above embodiment basically includes a polymer obtained by crosslinking polymerization of the water-soluble ethylenically unsaturated monomer as a base resin powder, as in the previous super absorbent polymer.
  • the water-soluble ethylene-based unsaturated monomer acrylic acid, methacrylic acid, maleic anhydride, fumaric acid, crotonic acid, itaconic acid, 2-acryloylethane sulfonic acid, 2-methacrylo Anionic monomers of monoethanesulfonic acid, 2- (meth) acryloylpropanesulfonic acid, or 2- (meth) acrylamide-2-methyl propane sulfonic acid and salts thereof; (Meth) acrylamide, N-substituted (meth) acrylates, 2-hydroxyethyl (meth) acrylates, 2-hydroxypropyl (meth) acrylates, hydroxypolyethylene glycol (meth) acrylates or polyethylene Nonionic hydrophilic-containing monomers of glycol (meth) acrylates; And amino group-containing unsaturated monomers of ( ⁇ , ⁇ ) -dimethylaminoethyl (meth)
  • alkali metal salts such as acrylic acid or salts thereof, for example acrylic acid and / or sodium salts thereof, to which at least a portion of acrylic acid has been amplified, may be used, and such monomers may be used for superabsorbent polymers having superior physical properties. Manufacturing becomes possible.
  • acrylic acid can be neutralized with a basic compound such as caustic soda (NaOH).
  • the crosslinked polymer included in the base resin powder may include a crosslinked structure in which polymer chains of the water-soluble ethylenically unsaturated monomer are crosslinked through a crosslinkable functional group of an internal crosslinking agent.
  • an internal crosslinking agent for introducing the basic crosslinking structure into the crosslinked polymer and the base resin powder any internal crosslinking agent having a crosslinkable functional group, which has conventionally been used in the manufacture of superabsorbent polymers, can be used without any particular limitation.
  • the internal crosslinking agent In order to further improve the polyfunctional acrylate compound having a plurality of ethylene oxide groups can be used as the internal crosslinking agent. More specific examples of such internal crosslinking agents include polyethylene glycol diacrylate (PEGDA), glycerin diacrylate, glycerin triacrylate, unmodified or ethoxylated trimethyl triacrylate (TMPTA), nucleic acid diol diacrylate, And triethylene glycol diacrylate.
  • the base resin powder may have a plurality of pores of 1 or more in diameter, or 1 to 10 kPa, or 1 kPa to 1000 mi.
  • the pores are implemented by a blowing agent added together in the monomer composition, as shown in the method of preparing a superabsorbent polymer, which will be described later.
  • a plurality of pores having a minimum diameter of 1 or more are formed on the base powder. You can see that it is formed.
  • the pores may be present in a plurality of forms, evenly dispersed in the base resin powder.
  • the plurality of pores of diameter 1 m or more contained in the base resin powder may include micropores having a diameter of 10 to 100 urn.
  • the micropores having a diameter of 10 to 100 ⁇ may be formed by adding a blowing agent and inorganic particles together when forming a polymer, as described below. As such micropores are stably formed, the microporosity is increased. The absorption rate of the water absorbent resin can be further improved.
  • the crosslinked polymer contained in the base resin powder may include layered silicate particles dispersed in the crosslinked structure.
  • layered silicate-based particles particles including a metal oxide layer including a metal oxide and unit crystals formed on at least one surface of the metal oxide layer and including a silica layer including silica may be used.
  • the unit crystal refers to a periodic unit of crystalline particles having three-dimensional periodicity, and particles may be formed through repetition of the unit crystal.
  • the unit crystal of the layered silicatetic bib may be formed on at least one surface of the metal oxide layer including the metal oxide and the metal oxide layer, and may include a silica layer including silica. That is, the silica layer is formed on one side or both sides of the metal oxide layer in the unit crystal of the layered silicate particles. Can be.
  • the metal oxide layer and the silica layer may be bonded through a siloxane bond.
  • the siloxane bond means a covalent bond between a silicon atom (Si) and an oxygen atom (0), and more specifically, an oxygen atom included in the metal oxide layer, such as a unit crystal structure shown in FIG. 1.
  • a bond between the metal oxide and the silica layer may be formed through a covalent bond between and silicon atoms included in the silica layer.
  • the metal oxide may exist in a state in which a metal atom and an oxygen atom are bonded to each other, and examples of the metal atom are not particularly limited, and lithium, sodium, potassium, and the like are group 1 or group 2 elements of the periodic table. Beryllium, magnes, and sword.
  • the layered silicate-based particles can stably maintain fine pores in the crosslinked polymer and increase the contact area with water to further improve the absorption rate of the super absorbent polymer.
  • the layered silicate particles may have a light structure having a maximum diameter of 1 ran to 100 ran and a height of O.Olnm to 20 nm, or O.lnm to 20 nm.
  • the lamp structure means a three-dimensional figure in which the upper and lower surfaces are parallel to each other.
  • the specific shape of the light emitting structure is not limited, for example, according to the type of cross section in which the layered silicate particles are cut in a direction parallel to the ground, that is, a cylinder, an ellipse, etc. Etc. can be mentioned.
  • the light emitting structure of the layered silicate particles may be formed by repetition of the unit crystal, and the maximum diameter of the straight section in the columnar structure is a cross section of the layered silicate particles cut in a direction parallel to the ground. It means the largest value among the diameters it can have.
  • the layered silicate particles have a light structure having a maximum diameter of 1 nm to 100 nm and a height of 0.1 nm to 20 nm of the straight section, so that the layered silicate particles in the crosslinked polymer of the embodiment are fine.
  • One particle size not only enables functionality in the crosslinked polymer, but is also formed by the blowing agent in the monomer composition when the crosslinked polymer is formed. It can stabilize the micropores that are.
  • Examples of the layered silicate-based particles are not particularly limited, and examples thereof include hackite (Laponite RD, Laponite XLG, Laponite D, Laponite DF Laponite RS, Laponite XLS, Laponite DS, Laponite S and Laponite JS, etc.). And a more preferred example is Laponite RD.
  • the layered silicate-based particles described above may be included in an amount of 0.01 parts by weight to 30 parts by weight, or 0.01 parts by weight to 5 parts by weight, or 0. 2 parts by weight to 0.1 parts by weight based on 100 parts by weight of the base resin powder. .
  • the degree of formation of fine pores in the crosslinked polymer is optimized, so that the highly absorbent resin of one embodiment may have an improved absorption rate.
  • the super absorbent polymer of the embodiment has an apparent density (Bulk Density, B / D) of 0.55. Or 0.55 g / mi to 1.0 g / mi, or 0.55 g / mi to 0/70 g / al.
  • B / D apparent density
  • the volume of the superabsorbent polymer is relatively high; Increasingly, more storage space is needed, which can reduce storage efficiency.
  • the superabsorbent polymer particles may be stagnant without being smoothly introduced, thereby reducing the efficiency of the process.
  • the super absorbent polymer of the embodiment may have a time for removing the vortex generated when stirring 0.9 wt% NaCl solution 50 at 600 rpm, 60 seconds or less, or 40 seconds to 60 seconds.
  • the superabsorbent polymer may have a water holding capacity of 40 g / g or more, or 40 g / g to 60 g / g of physiological saline measured according to the EDANA WSP 241.2 method.
  • Centrifuge water capacity (CRC) for physiological saline can be measured according to the method of EDANA method WSP 241.2. More specifically, the water retention capacity may be calculated by Equation 1 below after absorbing the superabsorbent polymer in physiological saline over 30 minutes.
  • W 0 (g) is the initial weight (g) of the superabsorbent polymer
  • W g) is the weight of the device measured after dehydration at 250G for 3 minutes using a centrifuge without using the superabsorbent polymer
  • W 2 ( g) is the weight of the device, including the superabsorbent polymer, after submerging the superabsorbent polymer in physiological saline of 0.9 wt.% at room temperature for 30 minutes and then dehydrating it at 250 G for 3 minutes using a centrifuge.
  • the super absorbent polymer of the above-described embodiment may have a particle shape such as spherical or amorphous having a particle diameter of about 850 ⁇ .
  • At least a part comprises a base resin powder containing a cross-linked polymer of a water-soluble ethylenically unsaturated monomer having a neutralized acid group, a plurality of pores of diameter 1 or more is formed in the malleable base resin powder And a superabsorbent polymer having an apparent density of at least 55 g / m £ and removing a vortex generated when stirring 0.9 wt% of NaCl solution 50 at 600 rpm at a speed of 600 rpm can be provided.
  • the monomer composition comprising a layered silicate-based particles, foaming agent, internal crosslinking agent and a water-soluble ethylenically unsaturated monomer having at least a part of the neutralized acid group, stirred at a rate of 1000 rpra or more Crosslinking polymerization to form a hydrogel polymer; And the function of drying, pulverizing, and classifying a gel of the polymer, including the steps of forming a base resin powder, wherein the monomer composition, the concentration of the water-soluble ethylenic unsaturated monomer contained in the water 40 wt% to 60 wt%, and A method for producing a water absorbent resin can be provided.
  • cross-linking polymerization of the monomer composition comprising a water-soluble ethylenically unsaturated monomer having a layered silicate-based particles, a blowing agent, an internal magnetic crosslinking agent and at least a part of the neutralized acid group, and stirred at a speed of 1000 rpm or more to form a hydrogel polymer ; And drying, pulverizing and classifying the hydrogel polymer to form a base resin powder, and drying, pulverizing and classifying the hydrogel polymer to form a base resin powder.
  • the The coarsely pulverizing step may be provided with a method for producing a super absorbent polymer, which proceeds at a frequency of 15 Hz or higher at a temperature of 50 ° C. or higher.
  • cross-polymerizing a monomer—composition comprising a water-soluble ethylenically unsaturated monomer having a layered silicate-based particles, a blowing agent, an internal crosslinking agent and at least a part of a neutralized acidic group, and stirred at a speed of at least 1000 rpm to form a hydrogel polymer.
  • a monomer—composition comprising a water-soluble ethylenically unsaturated monomer having a layered silicate-based particles, a blowing agent, an internal crosslinking agent and at least a part of a neutralized acidic group, and stirred at a speed of at least 1000 rpm to form a hydrogel polymer.
  • drying, pulverizing and classifying the hydrogel polymer to form a base resin powder drying, pulverizing and classifying the hydrogel polymer to form a base resin powder.
  • a coarse grinding step of pulverizing to a particle diameter of 2 to 10 ⁇ , and before or after the coarse crushing step, adding water to a content of less than 20 parts by weight with respect to 100 parts by weight of the hydrogel polymer It can be provided a method for producing a super absorbent polymer further comprising.
  • the layered silicate particles are used together with a conventional blowing agent and an internal crosslinking agent to proceed with the crosslinking polymerization of the water-soluble ethylenically unsaturated monomer, followed by drying according to a general method for preparing a super absorbent polymer.
  • the superabsorbent polymer can be prepared by pulverizing, classifying and surface crosslinking.
  • fine bubbles generated by the blowing agent can be stably maintained by the layered silicate particles.
  • the absorption rate of the superabsorbent polymer to be prepared can be improved more, and the base resin powder having the crosslinked structure already formed by the use of an internal crosslinking agent can be prepared, thereby realizing various physical properties such as excellent water retention.
  • the superabsorbent polymer production method of another embodiment includes a monomer composition comprising a layered silicate-based particle, a blowing agent, an internal crosslinking agent, and a water-soluble ethylenically unsaturated monomer having at least a part of which is neutralized acid group, at least 1000 rpm, or 1000
  • a high shear force can be applied to the monomer composition, so that the base resin powder has a size of several mm to several tens of microseconds. It can suppress the formation of macropores as much as possible, and the diameter is 10 It is possible to distribute a large number of microporous to 100 to 100 IM.
  • the monomer composition is stirred at a speed of 1000 rpm or more, and then 1) the concentration of the water-soluble ethylenically unsaturated monomer contained in the monomer composition is adjusted to 40% by weight to 60% by weight, or 2) the coarse grinding step is 50 ° At a temperature above C, at a frequency of 15 Hz or higher, or 3) by adding water in an amount of less than 20 parts by weight, relative to 100 parts by weight of the hydrogel polymer before or after the coarse grinding step, By reducing the nonuniformity of the particle shape, it is possible to increase the apparent density of the high absorbent resin.
  • the method of preparing the super absorbent polymer includes a layered silicate-based particle, a blowing agent, an internal crosslinking agent, and a water-soluble ethylenically unsaturated monomer having at least a portion of neutralized acidic groups, and a monomer composition stirred at a speed of 1000 rpm or more.
  • Cross-linking polymerization to form a hydrogel polymer
  • Examples of the method for preparing the monomer composition are not particularly limited, and for example, the layered silicate-based particles, the blowing agent, the internal crosslinking agent, and at least a portion of the water-soluble ethylenically unsaturated monomer having an acidic group neutralized at the same time or sequentially.
  • Examples thereof include a method of mixing with a solvent or the like. More specifically, a first mixture of a water-soluble ethylenically unsaturated monomer and an internal crosslinking agent is prepared, a second mixture of layered silicate particles and a blowing agent is prepared, and then the first mixture and the second mixture are prepared. For example, a method of mixing the same may be mentioned.
  • the monomer composition may be stirred at a speed of 1000 rpm or more, or 1000 rpm to 20000 rpm, or 3000 rpm to 10000 rpm.
  • high shear force can be applied to the monomer composition, it is possible to suppress the formation of macropores of several mm to several tens of millimeters in the size of the base resin powder to the maximum, fine diameter of 10 to loo Multiple pores can be distributed.
  • an example of a method of stirring the monomer composition is not particularly limited, and for example, a method of passing the monomer composition through a high shear force stirring device (dynami c mechani cal system, DMS) may be mentioned.
  • the high shear agitation device (dynami c mechani cal system, DMS) is a pump and Including a stirrer, the motor speed of the pump is 0 to 6000 rpm, the speed of the stirring may be 0 to 20000 rpm.
  • particles including a metal oxide layer containing a metal oxide and a unit crystal formed on at least one surface of the metal oxide layer and including a silica layer containing silica may be used.
  • the unit crystal refers to a periodic unit of crystalline particles having three-dimensional periodicity, and particles may be formed through repetition of the unit crystal.
  • the unit crystal of the layered silicate-based particles may be formed on at least one surface of the metal oxide layer including the metal oxide and the metal oxide layer, and may include a silica layer including silica. That is, the silica layer may be formed on one side or both sides of the metal oxide layer in the unit crystal of the layered silicate particles.
  • the metal oxide layer and the silica layer may be bonded through a siloxane bond (s i loxane).
  • the siloxane (si loxane) bond means a covalent bond between a silicon atom (Si) and an oxygen atom (0), and more specifically, the oxygen included in the metal oxide layer, as shown in the unit crystal structure shown in FIG.
  • a bond between the metal oxide and the silica layer may be formed through a covalent bond between atoms and silicon atoms included in the silica layer. .
  • the metal oxide may be present in a state in which a metal atom and an oxygen atom are bonded to each other, and examples of the metal atom are not particularly limited, and lithium, sodium, potassium, Beryllium, magnesium, calcium and the like.
  • the layered silicate-based particles have a maximum diameter of 1 ran to 100 nm in a straight section, and a height of 0. Olnm to 20 ran, or O. It may have a light structure of 1 nm to 20 nm.
  • the lamp structure means a three-dimensional figure in which the upper and lower surfaces are parallel to each other.
  • the specific shape of the light emitting structure is not limited, for example, according to the type of cross section in which the layered silicate particles are cut in a direction parallel to the ground, that is, a primitive lamp, an ellipse group, etc. Etc. may be mentioned.
  • the light structure of the layered silicate particles is It can be formed through the repetition of the unit crystal, the maximum diameter of the straight cross-section in the lamp structure means the largest value among the diameter that the cross section cut the layered silicate particles in a direction parallel to the ground.
  • the layered silicate-based particles have a maximum diameter of 1 nm to 100 nm in a straight section, and a height of 0.
  • the layered silicate particles in the crosslinked polymer of the embodiment can not only realize functionality in the crosslinked polymer through a fine indenter size, but also when forming the crosslinked polymer. It is possible to stabilize the micropores formed by the blowing agent in the monomer composition.
  • Examples of the layered silicate-based particles are not particularly limited, for example, nuclear lite (Laponi te RD, Laponi te XLG, Laponi te D, Laponi te DF Laponi te RS, Laponi te XLS, Laponite DS, Laponi te S and Laponi te JS and the like), and Laponi te RD is more preferable.
  • nuclear lite Laponi te RD, Laponi te XLG, Laponi te D, Laponi te DF Laponi te RS, Laponi te XLS, Laponite DS, Laponi te S and Laponi te JS and the like
  • Laponi te RD is more preferable.
  • blowing agent examples are not particularly limited, and various blowing agents well known in the art may be used without limitation.
  • blowing agent for example, azodi carbonamide, azodicarboxyamide, benzenesulfonylhydrazide, dinitrosopenta methylenetetramine, toluenesulfonylhydrazide, azobisisobutyronitrile, azo dicarboxylic acid
  • at least one selected from the group consisting of barium and sodium bicarbonate examples of the blowing agent.
  • the step of cross-polymerizing the water-soluble ethylenically unsaturated monomer having at least a part of the neutralized acidic group to form a hydrogel polymer may be carried out in the presence of layered silicate particles, blowing agent and internal crosslinking agent. That is, it may be to polymerize the monomer composition including the layered silicate-based particles, the blowing agent, the internal crosslinking agent, and the water-soluble ethylenically unsaturated monomer having at least one neutralized acidic group.
  • the fine pore even inside the hydrogel polymer is added by adding the layered silicate particles and the blowing agent to the monomer composition for forming the hydrogel polymer. Can be formed.
  • the layered silicate particles, foaming agent, internal crosslinking agent and at least The content of the layered silicate particles may be 1 part by weight to 50 parts by weight based on 100 parts by weight of the blowing agent in the monomer composition including a water-soluble ethylenically unsaturated monomer having a neutralized acidic group.
  • the pore stabilization effect by the layered silicate particles may be reduced to reduce the absorbency of the super absorbent polymer.
  • the concentration of the water-soluble ethylenically unsaturated monomer contained in the monomer composition may be 40% by weight to 60% by weight, or 40% by weight to 50% by weight.
  • the concentration of the monomer is excessively low, the yield of the superabsorbent polymer may be low and problems may occur.
  • the concentration is excessively high, some of the monomer may precipitate or the grinding efficiency of the polymerized hydrogel polymer may be low. Problems may occur in the process and the physical properties of the super absorbent polymer may be reduced.
  • the monomer composition may further include a polymerization initiator generally used in the preparation of a super absorbent polymer.
  • the polymerization initiator may use a thermal polymerization initiator or a photopolymerization initiator according to UV irradiation depending on the polymerization method.
  • a thermal polymerization initiator or a photopolymerization initiator according to UV irradiation depending on the polymerization method.
  • an additional thermal polymerization initiator may be included. It may be.
  • the photopolymerization initiator may be used without any limitation as long as it is a compound capable of forming radicals by light such as ultraviolet rays.
  • photopolymerization initiators examples include benzoin ether, dialkyl acetophenone, hydroxyl alkylketone, phenyl glyoxylate, and benzyl dimethyl ketal. Ketal), acyl phosphine and alpha-aminoketone
  • acylphosphine commercially available lucirin TP0, that is, 2,4, 6-trimethyl-benzoyl-trimethyl phosphine ' oxide (2,4,6—trimethyl-benzoyl-trimethyl phosphine oxide) can be used.
  • lucirin TP0 that is, 2,4, 6-trimethyl-benzoyl-trimethyl phosphine ' oxide (2,4,6—trimethyl-benzoyl-trimethyl phosphine oxide
  • a wider variety of photoinitiators is well specified in Reinhold Schwalm lm "UV Coatings: Basics, Recent Developments and New Application (Elsevier 2007)" pll5, and is not limited to the examples
  • the photopolymerization initiator may be included in a concentration of about 0.01% by weight to about 1.0% by weight based on the monomer composition. When the concentration of the photopolymerization initiator is too low, the polymerization rate may be slow. When the concentration of the photopolymerization initiator is too high, the molecular weight of the superabsorbent polymer may be low and the physical properties may be uneven.
  • the thermal polymerization initiator may be used at least one selected from the group consisting of persulfate initiator, azo initiator, hydrogen peroxide and ascorbic acid.
  • persulfate-based initiators include sodium persulfate (Na2S 2 0s), potassium persulfate (K2S208), ammonium persul fate (NH 4 ) 2 S 2 0 8
  • azo initiators include 2, 2-azobis- (2-amidinopropane) dihydrochloride (2, 2- azob is (2-am idi nopr opane) dihydrochlor ide), 2 , 2-Azobis one (N, N_dimethylene) isobutyramidine.
  • Dihydrochloride (2,2-azobis- (N, N-dimethylene) isobutyramidine dihydrochlor ide), 2— (carbamoyl azo) isobutyronitrile (2— (carbamoylazo) isobutylonitril), 2, 2-azobis [2 -(2-imidazolin-2-yl) propane] dihydrochloride (2, 2-azob is [2- (2-imi dazo 1 i n-2- yDpropane] dihydrochlor ide), 4,4—azobis (4—Cyanovaleric acid) (4, 4_ azobis- (4-cyanovaleric acid)), etc.
  • thermal polymerization initiators see Odian, Principle of Polymer izat ion (Wi ley, 1981). , p203 is well specified, and is not limited to the example described above.
  • the thermal polymerization initiator may be included in a concentration of about 0.001% to about 0.5% by weight based on the monomer composition. When the concentration of such thermal polymerization initiator is too low, additional thermal polymerization hardly occurs, resulting in thermal polymerization. The effect of the addition of the reagent may be insignificant, and if the concentration of the thermal polymerization initiator is too high, the molecular weight of the superabsorbent polymer may be small and the physical properties may be uneven.
  • the type of the internal crosslinking agent included in the monomer composition is already described above, and the internal crosslinking agent may crosslink the polymerized polymer.
  • the monomer composition may further include additives such as an emulsifier, a thickener, a plasticizer, a storage stabilizer, an antioxidant, and the like, as necessary.
  • additives such as an emulsifier, a thickener, a plasticizer, a storage stabilizer, an antioxidant, and the like.
  • Specific examples of the additives are not particularly limited, and various kinds of known additives may be used without limitation.
  • examples of the emulsifiers include fatty acid esters including sugars, and more specifically, sucrose esters.
  • Raw materials such as the above-mentioned water-soluble ethylene-based unsaturated monomers, silicate-based particles, photopolymerization initiators, thermal polymerization initiators, internal crosslinking agents, and additives may be prepared in the form of a monomer composition solution dissolved in a solvent.
  • the solvent that can be used at this time can be used without limitation in the composition as long as it can dissolve the above-mentioned components, for example, water, ethanol, ethylene glycol, diethylene glycol, triethylene glycol, 1, 4- Butanediol, propylene glycol, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, methyl ethyl ketone, acetone, methyl amyl ketone, cyclonucleanone, cyclopentanone, diethylene glycol monomethyl ether , Diethylene glycol etheryl ether, toluene, xylene, butyrolactone, carbye, may be used in combination of one or more selected from methyl cellosolve acetate and ⁇ , ⁇ -dimethylacetamide.
  • the solvent may be included in the remaining amount except for the components described above with respect to the total content of the monomer composition.
  • a method of forming a hydrogel by thermal polymerization or photopolymerization of such a monomer composition is also a commonly used polymerization method, in particular There is no limit.
  • the polymerization method is largely divided into thermal polymerization and photopolymerization according to the polymerization energy source, and when the thermal polymerization is usually carried out, it can be carried out in a reactor having a stirring axis such as kneader, and when the polymerization proceeds, Although it can proceed in a semi-unggi equipped with a conveyor belt possible, the above-described polymerization method is an example, the present invention is not limited to the above-described polymerization method.
  • a water-containing gel polymer obtained by thermal polymerization by supplying hot air or by heating a reactor according to the shape of the stirring shaft provided in the reactor is a reactor, such as a kneader having a stirring shaft.
  • the hydrogel polymer discharged to the outlet may be in the form of several centimeters to several millimeters.
  • the size of the resulting hydrogel polymer may vary depending on the concentration of the monomer composition to be injected, and the injection speed, etc., a hydrogel polymer having a weight average particle diameter of about 2 mm to 50 mm can be obtained.
  • the form of the hydrogel polymer generally obtained may be a hydrogel polymer on the sheet having a width of the belt.
  • the thickness of the polymer sheet depends on the concentration and the injection speed of the monomer composition to be injected, but it is preferable to supply the monomer composition so that a polymer on a sheet having a thickness of usually about 0.5 cm to about 5 cm can be obtained. Do.
  • the production efficiency is not preferable because it is low, and when the polymer thickness on the sheet exceeds 5 cm, due to the excessively thick thickness, the polymerization reaction is carried over the entire thickness. It may not happen evenly.
  • the water content of the hydrogel polymer obtained by the above method may be 40% by weight to 80% by weight.
  • water content as used throughout the present specification means the amount of water occupied with respect to the total weight of the hydrogel polymer, minus the weight of the polymer in the dry state. Specifically, it is defined as a value calculated by measuring the weight loss due to moisture evaporation in the polymer during the drying process of drying the temperature of the polymer through infrared heating. At this time, dry conditions are maintained at 180 ° C after raising the temperature to about 180 ° C at room temperature In this way, the total drying time is set to 20 minutes, including 5 minutes of temperature rise, and the moisture content is measured.
  • a base resin powder through a process such as drying, grinding and classification, the base resin powder and a super absorbent water obtained therefrom through such a process such as grinding and classification Paper is suitably made and provided to have a particle diameter of about 150 to 850. More specifically, the base resin powder and. At least about 95% by weight or more of the superabsorbent polymer obtained therefrom has a particle diameter of about 150 rni to 850, about
  • the fine powder having a particle diameter of less than 150 may be less than about 3 weight 3 ⁇ 4>.
  • the final manufactured super absorbent polymer may exhibit the above-described physical properties and better liquid permeability.
  • the step of coarsely pulverizing before drying may be further increased to increase the efficiency of the drying step.
  • the coarsely pulverizing step is at least 50 ° C, or 50 ° C to 150 ° C, or 60 ° C to 100 ° C, at least 15 Hz, or 15 Hz to 40 Hz, or 15 Hz to 30 It can proceed at a frequency of Hz.
  • the temperature of the grinding step may be a grinding device, a grinding blade, or a silver of an external heat source, and the frequency may be a vibration frequency of the grinding device or the grinding blade.
  • the superabsorbent polymer production method is less than 20 parts by weight, or 0 parts by weight to 19 parts by weight, or 10 parts by weight to 19 parts by weight based on 100 parts by weight of the hydrogel polymer before or after the coarse grinding step. It may further comprise the step of adding water in the amount of parts.
  • water means ionized water, and when the content of water is 20 parts by weight or more based on 100 parts by weight of the crosslinked polymer, the physical properties of the superabsorbent polymer may be lowered, such as water retention. In addition, the apparent density of the superabsorbent polymer may be reduced, thereby reducing storage efficiency.
  • the pulverizer used is not limited in configuration, specifically, a vertical pulverizer, a turbo cutter, a turbo grinder, a rotary cutter mill, a cutting machine Any one selected from the group of crushing machines consisting of a cutter mill, a disc mill, a shred crusher, a crusher, a chopper and a disc cutter It may include, but is not limited to the above examples.
  • the coarsely pulverizing step may be pulverized so that the particle size of the hydrogel polymer is about 2 ⁇ to about 10 ⁇ . Grinding to a particle diameter of less than 2 GPa is technically not easy due to the high water content of the ' hydrogel polymer ' , and may also cause aggregation of the pulverized particles with each other. On the other hand, when the particle diameter is more than 10 mm, the effect of increasing the efficiency of the subsequent drying step may be insignificant.
  • the drying temperature of the drying step may be about 150 ° C to about 250 ° C. If the drying temperature is less than about 150 ° C, the drying time may be too long and the physical properties of the final superabsorbent polymer may be lowered. If the drying temperature exceeds about 250 ° C, only the polymer surface may be excessively dried. Fine powder may be generated in a subsequent grinding step, and there is a fear that the physical properties of the superabsorbent polymer to be finally formed are reduced. Therefore, the preferred the drying can proceed at a temperature of about 150 ° C to about 200 ° C.
  • drying time in consideration of the process efficiency, etc., it may proceed for about 20 minutes to about 90 minutes, but is not limited thereto.
  • drying step is also commonly used as a drying step of the hydrogel polymer, can be selected and used without limitation of the configuration. Specifically, the drying step may be performed by hot air supply, infrared irradiation, microwave irradiation, or ultraviolet irradiation.
  • the water content of the polymer after such a drying step may be about 0.1% by weight to about 10% by weight.
  • the polymer powder obtained after the grinding step has a particle diameter of about 150 mi to about 850 // m can be
  • the grinder used to grind to such a particle size is specifically a pin mill, a hammer mill, a screw mill, a roll mill, a disc mill ) Or a jog mill may be used, but is not limited to the example described above.
  • a separate process of classifying the polymer powder obtained after grinding according to the particle size may be performed.
  • the polymer having a particle size of about 150 / im to about 850 / zm may be classified, and only a polymer powder having such a particle size may be further commercialized through a surface crosslinking reaction step or the like as necessary. Since the particle size distribution of the base resin powder obtained through such a process has already been described above, a detailed description thereof will be omitted.
  • the production method of the other embodiment comprises a layered silicate-based particles, a blowing agent, an internal crosslinking agent and at least a portion of the water-soluble ethylenically unsaturated monomer having a neutralized acid group, crosslinked polymerization of the monomer composition stirred at a speed of 1000 rpm or more To form a hydrogel polymer; And drying, pulverizing and classifying the hydrogel polymer to form a base resin powder, wherein the concentration of the water-soluble ethylenically unsaturated monomer included in the monomer composition is 40 weight 3 ⁇ 4 »to 60 weight 3 ⁇ 4>, Drying, pulverizing, and classifying the hydrogel polymer to form a base resin powder may include a coarse milling step of grinding the particle size of the hydrogel polymer so as to have a particle diameter of 2 kPa to 10 kPa. At a temperature above ° C, a process for producing a super absorbent polymer may be provided that proceeds with a
  • the production method of the other embodiment comprises a layered silicate-based particles, foamed crab, internal cross-linking agent and at least a portion of the water-soluble ethylenically unsaturated monomer having a neutralized acid group, crosslinked polymerization of the monomer composition stirred at a speed of 1000 rpm or more To form a hydrogel polymer; And drying, pulverizing and classifying the hydrogel polymer to form a base resin powder, wherein the concentration of the water-soluble ethylenically unsaturated monomer included in the monomer composition is 40 wt% to 60 wt%, and the hydrogel
  • the particle diameter of the polymer is from 2 ⁇ to 10 ⁇ And coarsely pulverizing the pulverizing step, and before or after the coarse pulverizing step, further comprising adding water in an amount of less than 20 parts by weight, based on 100 parts by weight of the hydrogel polymer. Manufacturing methods may be provided.
  • the production method of the other embodiment comprises a layered silicate-based particles, a blowing agent, an internal crosslinking agent and at least a portion of the water-soluble ethylenically unsaturated monomer having a neutralized acid group, crosslinked polymerization of the monomer composition stirred at a speed of 1000 rpm or more To form a hydrogel polymer; And drying, pulverizing and classifying the hydrogel polymer to form a base resin powder, and drying, pulverizing and classifying the hydrogel polymer to form a base resin powder, the hydrogel polymer Coarse grinding step of grinding so that the particle diameter of 2 to 10 ⁇ , wherein the coarse grinding step proceeds at a frequency of 15 Hz or more, at a temperature of 50 ° C or more, before or after the coarse grinding step, With respect to 100 parts by weight of the hydrogel polymer, a method for preparing a super absorbent polymer may be provided further comprising adding water in an amount of less than 20 parts by weight.
  • the production method of the other embodiment comprises a layered silicate-based particles, foamed crab, internal crosslinking agent and water-soluble ethylene-based unsaturated monomer having at least a portion of the acid group is increased, crosslinking the monomer composition stirred at a speed of 1000 rpm or more Polymerizing to form a hydrogel polymer; And drying, pulverizing and classifying the hydrogel polymer to form a base resin powder, wherein the concentration of the water-soluble ethylenically unsaturated monomer included in the monomer composition is 40 wt% to 60 wt%.
  • Drying, pulverizing and classifying the gel polymer to form a base resin powder includes a coarse pulverizing step of pulverizing the particle diameter of the hydrogel polymer so as to have a particle diameter of 2 kPa to 10 kPa, wherein the co-pulverizing step is 50 ° C. 20 parts by weight, with respect to 100 parts by weight of the hydrogel polymer before or after the coarse grinding step, at a frequency of subphase.
  • a method of preparing a super absorbent polymer may be provided further comprising adding water in a bay amount.
  • the superabsorbent polymer obtained according to the above-described manufacturing method may exhibit very excellent properties with improved physical properties such as water-retaining capacity and absorption rate, and diaper It can exhibit excellent various physical properties that can be suitably used for sanitary products.
  • the super absorbent polymer obtained by the method of preparing the superabsorbent polymer according to another embodiment has an apparent density (Bulk Densi ty, B / D) of 0. or higher, or 0.55 g / m £ to 1.0 Or 0.55 to 0.70.
  • Bulk Densi ty, B / D apparent density
  • 0.55 g / m £ to 1.0 Or 0.55 to 0.70 0.55 g / m £
  • the volume of the superabsorbent polymer is relatively increased, and more storage space is required, thereby reducing storage efficiency.
  • the superabsorbent polymer particles may be stagnant without being smoothly injected, thereby reducing the efficiency of the process.
  • a high absorbent resin having an improved absorption rate and high gallon density, and a manufacturing method thereof.
  • Figure 1 schematically shows the structure of the unit crystal of the layered silicate particles used in the example.
  • Laponite RD 1.6g was added to 155g of ionized water as a silicate type particle
  • a caustic soda solution was prepared by mixing 192 g of ionized water with 661 g of 32% caustic soda (NaOH).
  • the monomer composition was introduced into a supply unit of a polymerization belt composed of a continuously moving conveyor belt, irradiated with ultraviolet light for 1 minute (irradiation amount: 2 mW / ctf) with a UV irradiation device having a 10 mW illuminance, and waited for 2 minutes, 5 cm * After cutting into 5 cm size, 100 g (18.6 phr) of ionized water was added and absorbed to obtain a hydrous gel polymer.
  • a super absorbent polymer was prepared in the same manner as in Example 1, except that ion water was not added when preparing the hydrogel polymer. Compare ⁇ ] 1
  • Super absorbent polymer was prepared in the same manner as in Example 1, except that 195 g (36.7 phr) of ionized water was added to prepare the hydrogel polymer.
  • Comparative Example 2 A superabsorbent polymer was prepared in the same manner as in Example 1, except that 145 g (27.0 phr) of ionized water was added to prepare the hydrogel polymer.
  • a caustic soda solution was prepared by mixing 117 g of ionized water with 624 g of 32% caustic soda (NaOH).
  • the monomer composition was introduced into a supply section of a polymerization vessel consisting of a continuously moving conveyor belt, irradiated with ultraviolet light for 1 minute (irradiation amount: 2 mW / cirf) with a UV irradiation device having a 10 mW illuminance, and waited for 2 minutes, 5 cm * After cutting into 5 cm size, 40 g of ionized water was added and absorbed to obtain a hydrous gel polymer. The hydrogel polymer was transferred to a cutter and then ground at 80 ° C. and 25hz.
  • a caustic soda solution was prepared by mixing 163.4 g of ionized water with 598.5 g of 32% caustic soda (NaOH).
  • the monomer composition was prepared by stirring at 6000 rpm and a stirrer 6900 rpm. At this time, the monomer concentration contained in the monomer composition was 44.0% by weight.
  • Photoinitiator solution was prepared by adding 0.41 g of bis (2,4,6-trimethylbenzoyl) -phenyl phosphine oxide [IGARCU E 819] to 195.4 g of acrylic acid and mixing for 5 minutes.
  • a caustic soda solution was prepared by mixing 212.9 g of ionized water with 571.2 g of 32% caustic soda (NaOH).
  • the monomer composition was introduced into a supply unit of a polymerizer consisting of a continuously moving conveyor belt, and irradiated with ultraviolet rays for 1 minute (irradiation amount: 2 mW / crf) with a UV irradiation apparatus having a 10 mW illuminance, and then waited for 2 minutes, 5 cm * After cutting into 5 cm size, 40 g of ionized water was added and absorbed to obtain a hydrous gel polymer.
  • the hydrogel polymer was transferred to a cutter and then ground in a 80 ⁇ 25hz condition. Subsequently, the pulverized hydrogel polymer was dried in a hot air dryer at 180 ° C. for 40 minutes, and the dried hydrogel polymer was pulverized with a hammer mill grinder. For example, a sieve is used to classify a polymer having a particle size (average particle size) of 150 to 850, and then to classify a polymer having a particle size (average particle size) of 300 m to 600 mm to obtain a superabsorbent polymer. Prepared. 13 F
  • a high absorbency resin was prepared in the same manner as in Example 3, except that the monomer concentration contained in the monomer composition was adjusted to 39 wt% when the monomer composition was prepared.
  • Laponite RD 1.6g was added to 155g of ionized water as a silicate type particle
  • a caustic soda solution was prepared by mixing 192 g of ionized water with 661 g of 32% caustic soda (NaOH).
  • the monomer composition was introduced into a feeder of a polymerization reactor consisting of a continuously moving conveyor belt, irradiated with ultraviolet light for 1 minute (irradiation amount: 2 mW / ⁇ 2 ) with a UV irradiation device having a 10 mW illuminance, and then waited for 2 minutes, 5 cm * After cutting into 5 cm size 100 g of ionized water was absorbed to obtain a hydrous gel polymer.
  • Laponite RD 1.6g was added to 155g of ionized water as a silicate type particle
  • the monomer composition was introduced into a supply unit of a polymerizer consisting of a continuously moving conveyor belt, irradiated with ultraviolet rays for 1 minute (irradiation amount: 2 mW / cuf) with a UV irradiation apparatus having lOmW illuminance, and then waited for 2 minutes, 5 cm * After cutting into 5cm size, 100g of ionized water was added and absorbed to obtain a hydrous gel polymer.
  • the hydrogel polymer was transferred to a cutter and then ground at 90 ° C. and 15.8 hz. Subsequently, the pulverized hydrogel polymer was dried in a hot air dryer at 180 ° C. for 40 minutes, and the dried hydrogel polymer was pulverized with a hammer mill grinder. Subsequently, a polymer having a particle size (average particle diameter size) of 150 to 850 mm 3 was classified using a sieve, and a polymer having a particle size (average particle size size ) of 300 to 600 mm 3 was again classified to prepare a super absorbent polymer. . Comparison
  • a super absorbent polymer was prepared in the same manner as in Example 6, except that the hydrogel polymer was ground at 90 ° C. and 10 hz.
  • the solution was immersed in a physiological saline solution of 0.9 wt% aqueous sodium chloride solution at room temperature. did. After 30 minutes, the bag was centrifuged and drained at 250 G for 3 minutes, and then the mass W 2 (g) of the bag was measured. Moreover, the mass Wg) at that time was measured after performing the same operation without using resin.
  • W 0 (g) is the initial weight (g) of the super absorbent polymer
  • W g is the weight of the device measured after dehydration at 250 G for 3 minutes using a centrifuge without using a super absorbent polymer
  • W 2 (g) is a device measured by submerging the superabsorbent resin in 0.9 wt% physiological saline at room temperature for 30 minutes and then dehydrating it at 250G for 3 minutes using a centrifuge. It is weight.
  • Experimental Example 2 Water Soluble Component (Extractabl e content, EC)
  • the moisture content was obtained by calculating the weight loss due to moisture evaporation in the process of drying through infrared heating. At this time, the drying condition was set to 20. minutes, including 5 minutes in the temperature rise step in a way that the temperature is maintained at 180 after the temperature is raised to about 180 at room temperature.
  • the superabsorbent polymers obtained in Examples 1 and 2 each had a hanging density of 0.56 g / mi and 0.55 g /, and a comparative example having an apparent density of 0.51 g / l and 0.53 g /, respectively. Compared with the superabsorbent polymers 1 and 2, it was confirmed that the apparent density increased. [Table 2]
  • the superabsorbent polymers obtained in Examples 3 to 5 each had a high apparent density of 0.59 g /, 0.58 g /, and 0.56 g / m £, and each had a apparent density of 0.54 g /. Compared to the super absorbent polymer of 3, the apparent density was confirmed to increase.
  • the superabsorbent resins obtained in Example 6 7 had a high apparent density of 0.60 g / m £ and 0.56 g / ⁇ , respectively, and had a gallon density of 0.54 g / ⁇ . It was confirmed that the apparent density increased compared to the super absorbent polymer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

The present invention relates to a superabsorbent polymer having an improved absorption rate and a high apparent density, and a preparation method therefor.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
고흡수성 수지 및 이의 제조 방법  Super Absorbent Resin and Method for Making the Same
【기술분야】  Technical Field
관련 출원 (들)과의 상호 인용 Cross Citation with Related Application (s)
본 출원은 2015년 12월 23일자 한국 특허 출원 제 10-2015-0184614호 및 2016년 11월 1일자 한국 특허 출원 제 10-2016— 0144603호에 기초한 우선 권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용 은 본 명세서의 일부로서 포함된다.  This application claims the benefit of priority based on Korean Patent Application No. 10-2015-0184614 dated December 23, 2015 and Korean Patent Application No. 10-2016-0144603 dated November 1, 2016, and the Korean patent application All content disclosed in these documents is included as part of this specification.
본 발명은 고흡수성 수지 및 이의 제조 방법에 관한 것이다. 보다상 세하게는, 향상된 흡수 속도 및 높은 걸보기밀도를 갖는 고흡수성 수지, 및 이의 제조 방법에 관한 것이다.  The present invention relates to a super absorbent polymer and a method for producing the same. More particularly, the present invention relates to a super absorbent polymer having an improved absorption rate and high gallon density, and a method for preparing the same.
【발명의 배경이 되는 기술】  [Technique to become background of invention]
고흡수성 수지 (super absorbent polymer , SAP)란 자체 무게의 약 5백 내지 1천배 정도의 수분을 흡수할 수 있는 합성 고분자 물질로서, SAM( Super Absorbency Mater ial ) , AGM( Absorbent Gel Mater i al ) 등으로도 불리우고 았다. 고흡수성 수지는 생리 용구로 실용화되기 시작해서, 현재는 어린이용 종이 기저귀 등의 위생 용품, 원예용 토양 보수제, 토목용 지수재, 육묘용 시트, 식품 유통 분야에서의 신선도 유지제 등 다양한 재료로 널리 사용되고 있다.  A super absorbent polymer (SAP) is a synthetic polymer material that can absorb about 500 to 1000 times its own weight. It is a super absorbent material (SAM), absorbent gel mater (ALM), etc. Also called. Super absorbent resins have been put into practical use as sanitary devices, and are now widely used in various materials such as hygiene products such as paper diapers for children, horticultural soil repair agents, civil engineering index materials, seedling sheets, and freshness retainers in food distribution. It is used.
이러한 고흡수성 수지를 제조하는 방법으로는 역상 현탁 중합에 의한 방법 또는 수용액 중합에 의한 방법 등이 알려져 있다. 그 중 역상 현탁 중 합을 통한 고흡수성 수지의 제조에 대해서는 예를 들면 일본 특개소 56- 161408, 특개소 57-158209 , 및 특개소 57-198714 등에 개시되어 있다. 그리 고, 수용액 중합을 통한 고흡수성 수지의 제조는 여러 개의 축이 구비된 반 죽기 내에서 함수겔상 중합체를 파단 및 넁각하면서 중합하는 열 중합 방법 과, 벨트 상에서 고농도의 수용액에 자외선 등을 조사하여 중합과 건조를 동시에 행하는 광 중합 방법 등이 알려져 있다.  As a method for producing such a super absorbent polymer, a method by reverse phase suspension polymerization or a solution polymerization is known. Among them, the production of superabsorbent polymers through reverse phase suspension polymerization is disclosed, for example, in Japanese Patent Laid-Open Nos. 56-161408, 57-158209, and 57-198714. In addition, the production of superabsorbent polymers through polymerization of aqueous solution is a thermal polymerization method in which a hydrogel polymer is broken and immersed in a half-die with multiple axes, and is polymerized by irradiating ultraviolet light to a high concentration of aqueous solution on a belt. The photopolymerization method etc. which perform simultaneously and drying are known.
한편, 고흡수성 수지의 중요한 물성 증 하나인 흡수 속도는 기저귀와 같이 피부에 닿는 제품의 표면 dryness와 연관되어 있다. 일반적으로 이러 한 흡수 속도는 고흡수성 수지의 표면적을 넓히는 방법으로 향상시킬 수 있 다. On the other hand, the rate of absorption, which is one of the important physical properties of superabsorbent polymers, is related to the surface dryness of products that touch the skin, such as diapers. Generally this One absorption rate can be improved by increasing the surface area of the superabsorbent polymer.
일 예로, 발포제를 사용하여 고흡수성 수지의 입자 표면에 다공성 구 조를 형성시키는 방법이 적용되고 있다. 하지만, 일반적인 발포제로는 층분 한 양의 다공성 구조를 형성시킬 수 없어 흡수 속도의 증가폭이 크지 않은 단점이 있다.  For example, a method of forming a porous structure on the particle surface of the super absorbent polymer by using a blowing agent has been applied. However, there is a disadvantage in that the general foaming agent cannot form a porous structure of each layer, so that the increase in absorption rate is not large.
다른 예로, 고흡수성 수지의 제조 과정에서 수득되는 미분을 재조립 하여 불규칙한 형태의 다공성 입자를 형성시킴으로써 표면적을 넓히는 방법 이 있다. 그러나, 이러한 방법을 통해 고흡수성 수지의 흡수 속도는 향상될 수 있더라도, 수지의 보수능 (CRC)과 가압 흡수능 (AUP)이 상대적으로 저하되 는 한계가 있다. 이처럼 고흡수성 수지의 흡수 속도, 보수능, 가압 흡수능 등의 물성은 트레이드 -오프 ( t rade— of f )의 관계에 있어, 이들 물성을 동시에 향상시킬 수 있는 제조 방법이 절실히 요구되고 있는 실정이다.  As another example, there is a method of increasing the surface area by reassembling the fine powder obtained in the manufacturing process of the super absorbent polymer to form porous particles of irregular shape. However, although the absorption rate of the superabsorbent polymer can be improved through this method, there is a limit that the water retention capacity (CRC) and the pressure absorption capacity (AUP) of the resin are relatively lowered. As such, physical properties such as absorption rate, water holding capacity, and pressure absorbing capacity of the super absorbent polymer are trade-off (t rade of f). Therefore, there is an urgent need for a manufacturing method capable of improving these properties simultaneously.
【선행기술문헌】  Prior Art Documents
【특허문헌】  [Patent literature]
(특허문헌 1 ) 1 . 일본특허공개공보 소 56-161408  (Patent Document 1) 1. Japanese Patent Laid-Open No. 56-161408
(특허문헌 2) 2 . 일본특허공개공보 소 57-158209 (Patent Document 2) 2. Japanese Patent Laid-Open No. 57-158209
(특허문헌 3) 3. 일본특허공개공보 소 57-198714 (Patent Document 3) 3. Japanese Patent Laid-Open No. 57-198714
【발명의 내용】  [Content of invention]
【해결하고자 하는 과제】  Problem to be solved
본 발명은 향상된 흡수 속도 및 높은 겉보기밀도를 갖는 고흡수성 수 지를 제공하기 위한 것이다.  The present invention is to provide a super absorbent polymer having improved absorption rate and high apparent density.
또한, 본 발명은 상기 고흡수성 수지를 제조하는 방법을 제공하기 위 한 것이다.  In addition, the present invention is to provide a method for producing the super absorbent polymer.
【과제의 해결 수단】  [Measures of problem]
본 명세서에서는, 적어도 일부가 중화된 산성기를 갖는 수용성 에틸 렌계 불포화 단량체의 가교 중합체를 포함한 베이스 수지 분말을 포함하고, 상기 베이스 수지 분말 내에는 직경 1 f i 이상의 복수의 기공이 형성되어 있고, 상기 가교 중합체는 그 가교 구조 내에 분산되어 있는 층상 실리케이 트계 입자를 포함하고, 걸보기밀도가 0. 55 g/mt 이상인 고흡수성 수지가 제 공된다. In this specification, the base resin powder containing the crosslinked polymer of the water-soluble ethylene-type unsaturated monomer which has the acidic group neutralized at least one part, The base resin powder has the several hole of diameter 1fi or more formed, The said crosslinked polymer The super absorbent polymer contains layered silicate particles dispersed in the crosslinked structure, and has a squeezed density of at least 0.5 g / mt. Ball.
본 명세서에서는 또한, 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체의 가교 중합체를 포함한 베이스 수지 분말을 포함 하고, 상기 베이스 수지 분말 내에는 직경 1 / m 이상의 복수의 기공이 형성 되어 있고, 겉보기밀도가 0.55 g/m£ 이상이고, 0.9 중량 %의 NaCl 용액 50 을 600 rpm속도로 교반시 발생하는 볼텍스를 제거하는 시간이 54초 이하 인 고흡수성 수지가 제공된다.  The present specification also includes a base resin powder containing a cross-linked polymer of a water-soluble ethylenically unsaturated monomer having at least a portion of neutralized acidic groups, and a plurality of pores of diameter 1 / m or more are formed in the base resin powder, A superabsorbent polymer having a density of 0.55 g / m £ or more and a time for removing vortex generated when stirring 0.9 wt% NaCl solution 50 at 600 rpm at a speed of 54 seconds or less is provided.
본 명세서에서는 또한, 층상 실리케이트계 입자, 발포제, 내부 가교 제 및 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 블포화 단량체 를 포함하고, 1000 rpm 이상의 속도로 교반시킨 단량체 조성물을 가교 중합 하여 함수겔 중합체를 형성하는 단계; 및 상기 함수겔 중합체를 건조, 분쇄 및 분급하여 베이스 수지 분말을 형성하는 단계를 포함하고, 상기 단량체 조성물에 포함된 수용성 에틸렌계 불포화 단량체의 농도가 40 중량 % 내지 60 중량%인, 고흡수성 수지의 제조 방법이 제공된다.  In the present specification, a water-containing gel polymer is obtained by crosslinking and polymerizing a monomer composition comprising a layered silicate-based particle, a foaming agent, an internal crosslinking agent, and a water-soluble ethylene-based unsaturated monomer having at least part of a neutralized acidic group, and stirred at a speed of 1000 rpm or more. Forming a; And drying, pulverizing and classifying the hydrogel polymer to form a base resin powder, wherein the concentration of the water-soluble ethylenically unsaturated monomer included in the monomer composition is 40% by weight to 60% by weight of the superabsorbent polymer. A manufacturing method is provided.
본 명세서에서는 또한, 층상 실리케이트계 입자, 발포제, 내부 가교 제 및 적어도 일부가 증화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체 를 포함하고, 1000 rpm 이상의 속도로 교반시킨 단량체 조성물을 가교 중합 하여 함수겔 중합체를 형성하는 단계; 및 상기 함수겔 중합체를 건조, 분쇄 및 분급하여 베이스 수자 분말을 형성하는 단계를 포함하고, 상기 함수겔 중합체를 건조, 분쇄 및 분급하여 베이스 수지 분말을 형성하는 단계는, 상 기 함수겔 중합체의 입경이 2隱 내지 10隱로 되도록 분쇄하는 조분쇄 단계 를 포함하며, 상기 조분쇄 단계는 50 °C 이상의 온도에서, 15 Hz 이상의 진 동수로 진행하는 고흡수성 수지의 제조 방법이 제공된다. In the present specification, the water-containing gel polymer is further crosslinked with a monomer composition comprising a layered silicate-based particle, a blowing agent, an internal crosslinking agent, and a water-soluble ethylenically unsaturated monomer having at least a portion of an acidic group, and stirred at a speed of 1000 rpm or more. Forming; And drying, pulverizing, and classifying the hydrogel polymer to form a base water powder, and drying, pulverizing, and classifying the hydrogel polymer to form a base resin powder includes: particle diameter of the hydrogel polymer The coarsely crushing step is pulverized so as to be 2 kPa to 10 kPa, wherein the coarsely crushing step is provided at a temperature of 50 ° C. or more, and a method for producing a super absorbent polymer which proceeds at a frequency of 15 Hz or more.
본 명세서에서는 또한, 층상 실리케이트계 입자, 발포제, 내부 가교 제 및 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체 를 포함하고, 1000 rpm 이상의 속도로 교반시킨 단량체 조성물을 가교 중합 하여 함수겔 중합체를 형성하는 단계; 및 상기 함수겔 중합체를 건조, 분쇄 및 분급하여 베이스 수지 분말을 형성하는 단계를 포함하고, 상기-함수겔 중합체를 건조, 분쇄 및 분급하여 베이스 수지 분말을 형성하는 단계는, 상 기 함수겔 중합체의 입경이 2隱 내지 10腿로 되도록 분쇄하는 조분쇄 단계 를 포함하며, 상기 조분쇄 단계 이전 또는 이후에, 상기 함수겔 중합체 100 중량부에 대하여, 20 중량부 미만의 함량으로 물을 첨가하는 단계를 더 포 함하는 고흡수성 수지의 제조 방법이 제공된다. In the present specification, the hydrogel polymer is further crosslinked with a monomer composition comprising a layered silicate-based particle, a blowing agent, an internal crosslinking agent, and a water-soluble ethylenically unsaturated monomer having at least part of a neutralized acidic group, and stirred at a speed of 1000 rpm or more. Forming; And drying, pulverizing and classifying the hydrogel polymer to form a base resin powder, and drying, pulverizing and classifying the hydrogel polymer to form a base resin powder. Coarse grinding step of grinding so that the particle size becomes 2 隱 to 10 腿 It includes, and before or after the coarse grinding step, with respect to 100 parts by weight of the hydrogel polymer, there is provided a method for producing a super absorbent polymer further comprising the step of adding water in an amount of less than 20 parts by weight.
이하 발명의 구체적인 구현예에 따른 고흡수성 수지, 및 이의 제조 방법에 대하여 보다상세하게 설명하기로 한다. 본 명세서 전체에서 특별한 언급이 없는 한 "포함" 또는 "함유 "라 함 은 어떤 구성요소 (또는 구성 성분)를 별다른 제한없이 포함함을 지칭하며, 다른 구성요소 (또는 구성 성분)의 부가를 제외하는 것으로 해석될 수 없다. 본 명세서에서, (메트)아크릴 [ (meth) acryl ]는 아크릴 (acryl ) 및 메타 크릴 (methacryl ) 양쪽 모두를 포함하는 의미이다. 발명의 일 구현예에 따르'면, 적어도 일부가 중화된 산성기를 갖는 수 용성 에틸렌계 불포화 단량체의 가교 중합체를 포함한 베이스 수지 분말을 포함하고, 상기 베이스 수지 분말 내에는 직경 1 이상의 복수의 기공이 형성되어 있고, 상기 가교 중합체는 그 가교.구조 내에 분산되어 있는 층상 실리케이트계 입자를 포함하고, 겉보기밀도가 0.55 g/val 이상인 고흡수성 수지가 제공될 수 있다. Hereinafter, a super absorbent polymer according to a specific embodiment of the present invention, and a preparation method thereof will be described in detail. Unless specifically stated throughout this specification, "comprising" or "containing" refers to including any component (or component) without particular limitation, and excluding the addition of other components (or components). Cannot be interpreted as. In the present specification, (meth) acryl [(meth) acryl] is meant to include both acryl and methacryl. Follow with one embodiment of the invention, if, in the number of soluble including a base resin powder, including cross-linked polymers of ethylenically unsaturated monomers, and the base resin powder having an at least partially neutralized acid has a plurality of pores over a diameter of 1 formation The crosslinked polymer is crosslinked . A superabsorbent polymer containing layered silicate particles dispersed in the structure and having an apparent density of 0.55 g / val or more can be provided.
본 발명자들은 상술한 고흡수성 수지를 이용하면, 특정 층상 실리케 이트계 입자를 사용함에 따라, 가교 증합체 내에 다수의 미세기공이 안정적 으로 형성될 수 있어, 물에 대한 접촉면적이 급격히 증가되어 고흡수성 수 지의 흡수속도가 보다 향상될 수 있으며, 겉보기밀도가 높은 고흡수성 수지 를 제조할 수 있다는 점을 실험을 통하여 확인하고 발명을 완성하였다.  The inventors of the present invention use the above-described superabsorbent polymer, and by using specific layered silicate-based particles, a plurality of micropores can be stably formed in the crosslinked polymer, and the contact area with water increases rapidly. The absorption rate of the absorbent resin can be further improved, and the experiment was confirmed that the superabsorbent polymer having a high apparent density can be prepared through experiments and completed the invention.
구체적으로, 상기 고흡수성 수지는 적어도 일부가 증화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체의 가교 중합체를 포함한 베이스 수지 분말을 포함할 수 있다. 상기 "수용성 에틸렌계 불포화 단량체의 가교 중합 체"란, 수용성 에틸렌계 불포화 단량체가 함유된 조성물에 열중합 또는 광 증합을 진행하여 형성된 직후의 함수겔상 중합체 뿐 아니라, 일반적인 고흡 수성 수지의 제조 방법에 따라 상기 함수겔상 중합체를 건조시킨 중합체, 상기 함수겔상 중합체 또는 건조된 중합체를 분쇄시킨 중합체, 표면 가교 반웅을 수행하기 전의 중합체, 또는 표면 가교 반웅을 수행한 후의 중합체 등을 모두 포함하는 것으로, 수용성 에틸렌계 불포화 단량체가 중합된 증합 체이기만 하면 그 형태, 함수율, 입경, 표면 가교 여부 등에 관계없이 모두 포함될 수 있다. Specifically, the super absorbent polymer may include a base resin powder including a cross-linked polymer of a water-soluble ethylenically unsaturated monomer having at least a portion of the acid group. The "crosslinked polymer of water-soluble ethylenically unsaturated monomer" is a hydrogel polymer immediately formed by thermal polymerization or photopolymerization to a composition containing a water-soluble ethylenically unsaturated monomer, as well as a general method for producing a super absorbent polymer. A polymer obtained by drying the hydrogel polymer, a polymer obtained by grinding the hydrogel polymer or dried polymer, surface crosslinking It includes both the polymer before the reaction or the polymer after the surface crosslinking reaction, and if the water-soluble ethylenically unsaturated monomer is a polymerized polymerizer, all polymers are included regardless of the form, water content, particle size, surface crosslinking or the like. Can be.
상기 일 구현예의 고흡수성 수지는 기본적으로 이전의 고흡수성 수지 와 마찬가지로 상기 수용성 에틸렌계 불포화 단량체가 가교 중합된 중합체 를 베이스 수지 분말로서 포함한다.  The super absorbent polymer of the above embodiment basically includes a polymer obtained by crosslinking polymerization of the water-soluble ethylenically unsaturated monomer as a base resin powder, as in the previous super absorbent polymer.
이러한 일 구현예의 고흡수성 수지에서, 상기 수용성 에틸렌계 불포 화 단량체로는, 아크릴산, 메타크릴산, 무수말레인산, 푸말산, 크로톤산 , 이타콘산, 2-아크릴로일에탄 술폰산, 2-메타크릴로일에탄술폰산, 2- (메트) 아크릴로일프로판술폰산, 또는 2- (메트)아크릴아미드 -2-메틸 프로판 술폰산 의 음이온성 단량체와 이의 염; (메트)아크릴아미드, N-치환 (메트)아크릴레 이트, 2-히드록시에틸 (메트)아크릴레이트, 2—히드록시프로필 (메트)아크릴레 이트, 메록시폴리에틸렌글리콜 (메트)아크릴레이트 또는 폴리에틸렌 글리콜 (메트)아크릴레이트의 비이온계 친수성 함유 단량체; 및 (Ν , Ν)-디메틸아미 노에틸 (메트)아크릴레이트 또는 (Ν ,Ν)-디메틸아미노프로필 (메트)아크릴아미 드의 아미노기 함유 불포화 단량체와 그의 4급화물;로 이루어진 군에서 선 택된 1종 이상을 사용할 수 있다. 이증에서도, 아크릴산 또는 이의 염, 예 를 들어, 아크릴산의 적어도 일부가 증화된 아크릴산 및 /또는 이의 나트륨 염 등의 알칼리 금속염을 사용할 수 있는데, 이러한 단량체를 사용하여 보 다 우수한 물성을 갖는 고흡수성 수지의 제조가 가능해 진다. 상기 아크릴 산의 알칼리 금속염을 단량체로 사용하는 경우, 아크릴산을 가성소다 (NaOH) 와 같은 염기성 화합물로 중화시켜 사용할 수 있다.  In the super absorbent polymer of one embodiment, the water-soluble ethylene-based unsaturated monomer, acrylic acid, methacrylic acid, maleic anhydride, fumaric acid, crotonic acid, itaconic acid, 2-acryloylethane sulfonic acid, 2-methacrylo Anionic monomers of monoethanesulfonic acid, 2- (meth) acryloylpropanesulfonic acid, or 2- (meth) acrylamide-2-methyl propane sulfonic acid and salts thereof; (Meth) acrylamide, N-substituted (meth) acrylates, 2-hydroxyethyl (meth) acrylates, 2-hydroxypropyl (meth) acrylates, hydroxypolyethylene glycol (meth) acrylates or polyethylene Nonionic hydrophilic-containing monomers of glycol (meth) acrylates; And amino group-containing unsaturated monomers of (Ν, Ν) -dimethylaminoethyl (meth) acrylate or (Ν, Ν) -dimethylaminopropyl (meth) acrylamide and quaternized products thereof; 1 selected from the group consisting of More than one species can be used. In addition, alkali metal salts such as acrylic acid or salts thereof, for example acrylic acid and / or sodium salts thereof, to which at least a portion of acrylic acid has been amplified, may be used, and such monomers may be used for superabsorbent polymers having superior physical properties. Manufacturing becomes possible. When the alkali metal salt of acrylic acid is used as a monomer, acrylic acid can be neutralized with a basic compound such as caustic soda (NaOH).
또한, 상기 베이스 수지 분말에 포함된 가교 증합체는 상기 수용성 에틸렌계 불포화 단량체의 고분자 쇄들이 내부 가교제의 가교성 작용기를 매개로 가교 결합되어 있는 가교 구조를 포함할 수 있다. 상기 가교 중합체 및 베이스 수지 분말에 기본적인 가교 구조를 도입하기 위한 내부 가교제로 는, 기존부터 고흡수성 수지의.제조에 사용되던 가교성 작용기를 갖는 내부 가교제를 별다른 제한 없이 모두 사용할 수 있다. 다만, 상기 가교 중합체 및 베이스 수지 분말에 적절한 가교 구조를 도입하여 고흡수성 수지의 물성 을 보다 향상시키기 위해, 복수의 에틸렌 옥사이드기를 갖는 다관능 아크릴 레이트계 화합물이 내부 가교제로 사용될 수 있다. 이러한 내부 가교제의 보다 구체적인 예로는, 폴리에틸렌글리콜 디아크릴레이트 (PEGDA) , 글리세린 디아크릴레이트, 글리세린 트리아크릴레이트, 비개질 또는 에톡실화된 트리 메틸을 트리아크릴레이트 (TMPTA) , 핵산디올디아크릴레이트, 및 트리에틸렌 글리콜 디아크릴레이트로 이루어진 군에서 선택된 1종 이상을 들 수 있다. 한편, 상기 베이스 수지 분말 내에는 직경 1 이상, 또는 1 내 지 10 讓, 또는 1 卿 내지 1000 mi의 복수의 기공이 형성될 수 있다. 상기 기공은 후술하는 고흡수성 수지 제조방법에 나타난 바와 같이, 단량체 조성 물내에 함께 첨가된 발포제에 의해 구현되는 것으로써, 하기 도 2에 나타난 바와 같이, 최소 직경이 1 이상인 복수의 기공이 베이스 분말상에 형성 되어 있음을 확인할 수 있다. 상기 기공은 복수의 개수로, 상기 베이스 수 지 분말 내부에 골고루 분산된 형태로 존재할 수 있다. In addition, the crosslinked polymer included in the base resin powder may include a crosslinked structure in which polymer chains of the water-soluble ethylenically unsaturated monomer are crosslinked through a crosslinkable functional group of an internal crosslinking agent. As the internal crosslinking agent for introducing the basic crosslinking structure into the crosslinked polymer and the base resin powder, any internal crosslinking agent having a crosslinkable functional group, which has conventionally been used in the manufacture of superabsorbent polymers, can be used without any particular limitation. However, by introducing an appropriate crosslinked structure into the crosslinked polymer and the base resin powder, physical properties of the superabsorbent polymer In order to further improve the polyfunctional acrylate compound having a plurality of ethylene oxide groups can be used as the internal crosslinking agent. More specific examples of such internal crosslinking agents include polyethylene glycol diacrylate (PEGDA), glycerin diacrylate, glycerin triacrylate, unmodified or ethoxylated trimethyl triacrylate (TMPTA), nucleic acid diol diacrylate, And triethylene glycol diacrylate. On the other hand, the base resin powder may have a plurality of pores of 1 or more in diameter, or 1 to 10 kPa, or 1 kPa to 1000 mi. The pores are implemented by a blowing agent added together in the monomer composition, as shown in the method of preparing a superabsorbent polymer, which will be described later. As shown in FIG. 2, a plurality of pores having a minimum diameter of 1 or more are formed on the base powder. You can see that it is formed. The pores may be present in a plurality of forms, evenly dispersed in the base resin powder.
특히, 상기 베이스 수지 분말 내에 포함된 직경 1 m 이상의 복수의 기공 가운데는 직경이 10 내지 100 urn 인 미세기공이 포함될 수 있다. 상기 직경이 10 내지 100 μη 인 미세기공은 후술하는 바와 같이 중합체 형성시 발포제와 무기 입자를 함께 첨가함에 따라 형성될 수 있으며, 이와 같은 미세기공이 안정적으로 형성됨에 따라 물에 대한 접촉면적을 늘려 고 흡수성 수지의 흡수속도가 보다 향상될 수 있다.  In particular, among the plurality of pores of diameter 1 m or more contained in the base resin powder may include micropores having a diameter of 10 to 100 urn. The micropores having a diameter of 10 to 100 μη may be formed by adding a blowing agent and inorganic particles together when forming a polymer, as described below. As such micropores are stably formed, the microporosity is increased. The absorption rate of the water absorbent resin can be further improved.
또한, 상기 베이스 수지 분말에 포함된 가교 증합체는 그 가교 구조 내에 분산되어 있는 층상 실리케이트계 입자를 포함할 수 있다. 상기 층상 실리케이트계 입자로는 금속 산화물을 포함한 금속 산화물층 및 상기 금속 산화물층의 적어도 일면에 형성되고, 실리카를 포함한 실리카층을 포함한 단위 결정을 포함한 입자를 사용할 수 있다.  In addition, the crosslinked polymer contained in the base resin powder may include layered silicate particles dispersed in the crosslinked structure. As the layered silicate-based particles, particles including a metal oxide layer including a metal oxide and unit crystals formed on at least one surface of the metal oxide layer and including a silica layer including silica may be used.
상기 단위 결정이란 3차원의 주기성을 갖는 결정성 입자의 주기 단위 를 의미하며, 상기 단위 결정의 반복을 통해 입자가 형성될 수 있다.  The unit crystal refers to a periodic unit of crystalline particles having three-dimensional periodicity, and particles may be formed through repetition of the unit crystal.
상기 층상 실리케아트계 빕자의 단위 결정은 금속 산화물을 포함한 금속 산화물층 및 상기 금속 산화물층의 적어도 일면에 형성되고, 실리카를 포함한 실리카층을 포함할 수 있다. 즉, 상기 층상 실리케이트계 입자의 단 위 결정 내에서 상기 금속 산화물층의 일면 또는 양면에 실리카층어 형성될 수 있다. The unit crystal of the layered silicatetic bib may be formed on at least one surface of the metal oxide layer including the metal oxide and the metal oxide layer, and may include a silica layer including silica. That is, the silica layer is formed on one side or both sides of the metal oxide layer in the unit crystal of the layered silicate particles. Can be.
구체적으로, 상기 금속 산화물층과 실리카층은 실록세인 (siloxane)결 합을 통해 결합될 수 있다. 상기 실록세인 (siloxane)결합은 실리콘 원자 (Si) 와 산소 원자 (0)간의 공유 결합을 의미하며, 보다 구체적으로는 하기 도 1에 나타난 단위 결정 구조와 같이 , 상기 금속 산화물 층에 포함된 산소 원자와 상기 실리카층에 포함된 실리콘 원자간의 공유결합을 통해 상기 금속 산화 물과 실리카층의 결합이 형성될 수 있다.  Specifically, the metal oxide layer and the silica layer may be bonded through a siloxane bond. The siloxane bond means a covalent bond between a silicon atom (Si) and an oxygen atom (0), and more specifically, an oxygen atom included in the metal oxide layer, such as a unit crystal structure shown in FIG. 1. A bond between the metal oxide and the silica layer may be formed through a covalent bond between and silicon atoms included in the silica layer.
상기 금속 산화물층에서, 상기 금속 산화물은 금속원자와산소원자가 결합한 상태로 존재할 수 있으며, 상기 금속 원자의 예는 크게 한정되는 것 은 아니며, 주기율표상 1족 또는 2족 원소인 리튬, 나트륨, 칼륨, 베릴륨, 마그네슴, 칼슴 등을 들 수 있다.  In the metal oxide layer, the metal oxide may exist in a state in which a metal atom and an oxygen atom are bonded to each other, and examples of the metal atom are not particularly limited, and lithium, sodium, potassium, and the like are group 1 or group 2 elements of the periodic table. Beryllium, magnes, and sword.
이에 따라, 상기 층상 실리케이트계 입자는 상기 가교 중합체 내에서 미세 기공을 안정적으로 유지시켜, 물에 대한 접촉면적을 늘려 고흡수성 수 지의 흡수속도를 보다 향상시킬 수 있다.  Accordingly, the layered silicate-based particles can stably maintain fine pores in the crosslinked polymer and increase the contact area with water to further improve the absorption rate of the super absorbent polymer.
상기 층상 실리케이트계 입자는 직단면의 최대 직경이 1 ran 내지 100 ran이고, 높이가 O.Olnm 내지 20 nm, 또는 O.lnm 내지 20 nm인 기등 구조를 가질 수 있다. 상기 기등 구조란, 위와 아래에 있는 면이 서로 평행한 입체 도형을 의미한다. 상기 기등구조의 구체적인 형태가 한정되는 것은 아니나, 예를 들어 지면에 평행한 방향으로 상기 층상 실리케이트계 입자를 자른 단 면의 종류에 따라, 즉 직단면이 나타내는 도형 종류에 따라 원기둥, 타원기 등, 다각기등 등을 들 수 있다.  The layered silicate particles may have a light structure having a maximum diameter of 1 ran to 100 ran and a height of O.Olnm to 20 nm, or O.lnm to 20 nm. The lamp structure means a three-dimensional figure in which the upper and lower surfaces are parallel to each other. Although the specific shape of the light emitting structure is not limited, for example, according to the type of cross section in which the layered silicate particles are cut in a direction parallel to the ground, that is, a cylinder, an ellipse, etc. Etc. can be mentioned.
상술한 바와 같이, 상기 층상 실리케이트계 입자의 기등 구조는 상기 단위 결정의 반복을 통해 형성될 수 있으며, 상기 기둥 구조에서 직단면의 최대 직경은 지면에 평행한 방향으로 상기 층상 실리케이트계 입자를 자른 단면이 가질 수 있는 직경 가운데 가장 큰 값을 의미한다.  As described above, the light emitting structure of the layered silicate particles may be formed by repetition of the unit crystal, and the maximum diameter of the straight section in the columnar structure is a cross section of the layered silicate particles cut in a direction parallel to the ground. It means the largest value among the diameters it can have.
이처럼 상기 층상 실리케이트계 입자가 직단면의 최대 직경이 1 nm 내지 100 nm이고, 높이가 O.Olnm 내지 20 nm인 기등 구조를 가짐에 따라, 상기 일 구현예의 가교 중합체 내에서 상기 층상 실리케이트계 입자는 미세 한 입자크기를 통해 상기 가교 중합체 내에서 기능성을 구현할 수 있을 뿐 만 아니라, 가교 중합체 형성시 단량체 조성물 내에서 발포제에 의해 형성 되는 미세 기공을 안정화 시킬 수 있다. As such, the layered silicate particles have a light structure having a maximum diameter of 1 nm to 100 nm and a height of 0.1 nm to 20 nm of the straight section, so that the layered silicate particles in the crosslinked polymer of the embodiment are fine. One particle size not only enables functionality in the crosslinked polymer, but is also formed by the blowing agent in the monomer composition when the crosslinked polymer is formed. It can stabilize the micropores that are.
상기 층상 실리케이트계 입자의 예가 크게 한정되는 것은 아니나, 예 를 들어, 핵토라이트 (Laponite RD, Laponite XLG, Laponite D, Laponite DF Laponite RS, Laponite XLS, Laponite DS, Laponite S 및 Laponite JS 등) 를 들 수 있고, 보다 바람직한 예로는 Laponite RD를 들 수 있다.  Examples of the layered silicate-based particles are not particularly limited, and examples thereof include hackite (Laponite RD, Laponite XLG, Laponite D, Laponite DF Laponite RS, Laponite XLS, Laponite DS, Laponite S and Laponite JS, etc.). And a more preferred example is Laponite RD.
또한, 상술한 층상 실리케이트계 입자는 상기 베이스 수지 분말의 100 중량부에 대해 0.01중량부 내지 30 중량부, 또는 0.01중량부 내지 5 중 량부, 또는 0.이중량부 내지 0.1 중량부로 포함되어 있을 수 있다. 이로서, 상기 가교 중합체에 미세 기공의 형성 정도가 최적화되어, 일 구현예의 고 흡수성 수지가보다 향상된 흡수속도를 가질 수 있다.  In addition, the layered silicate-based particles described above may be included in an amount of 0.01 parts by weight to 30 parts by weight, or 0.01 parts by weight to 5 parts by weight, or 0. 2 parts by weight to 0.1 parts by weight based on 100 parts by weight of the base resin powder. . As a result, the degree of formation of fine pores in the crosslinked polymer is optimized, so that the highly absorbent resin of one embodiment may have an improved absorption rate.
구체적으로, 상기 일 구현예의 고흡수성 수지는 겉보기밀도 (Bulk Density, B/D)가 0.55
Figure imgf000010_0001
이상, 또는 0.55 g/mi 내지 1.0 g/mi , 또는 0.55 g/mi 내지 0/70 g/al 일 수 있다. 상기 고흡수성 수지의 걸보기밀도가 0.55 g/mt 미만으로 지나치게 감소하게 되면, 상대적으로 상기 고흡수성 수 지의 부피; 증가하여 , 더 많은 저장공간이 필요하게 되어 저장 효율성이 감소할 수 있다. 또한, 상기 고흡수성 수지를 기저귀 등의 제조공정에 적용 시 고흡수성 수지 입자가 원활히 투입되지 못한채 정체되어 공정의 효율이 감소할 수 있다.
Specifically, the super absorbent polymer of the embodiment has an apparent density (Bulk Density, B / D) of 0.55.
Figure imgf000010_0001
Or 0.55 g / mi to 1.0 g / mi, or 0.55 g / mi to 0/70 g / al. When the dimple density of the super absorbent polymer is excessively reduced to less than 0.55 g / mt, the volume of the superabsorbent polymer is relatively high; Increasingly, more storage space is needed, which can reduce storage efficiency. In addition, when the superabsorbent polymer is applied to a manufacturing process such as a diaper, the superabsorbent polymer particles may be stagnant without being smoothly introduced, thereby reducing the efficiency of the process.
또한, 상기 일 구현예의 고흡수성 수지는 0.9 증량 %의 NaCl 용액 50 을 600 rpm속도로 교반시 발생하는 볼텍스를 제거하는 시간이 60초 이하, 또는 40초 내지 60초일 수 있다.  In addition, the super absorbent polymer of the embodiment may have a time for removing the vortex generated when stirring 0.9 wt% NaCl solution 50 at 600 rpm, 60 seconds or less, or 40 seconds to 60 seconds.
또한, 상기 고흡수성 수지는 EDANA 법 WSP 241.2에 따라 측정한 생리 식염수에 대한 보수능이 40 g/g 이상, 또는 40 g/g 내지 60 g/g일 수 있다. 생리 식염수에 대한 원심분리 보수능 (CRC)은 EDANA 법 WSP 241.2의 방법에 따라 측정될 수 있다. 보다 구체적으로, 상기 보수능은 고흡수성 수지를 30 분에 걸쳐 생리 식염수에 흡수시킨 후, 다음과 같은 계산식 1에 의해 산출 될 수 있다.  In addition, the superabsorbent polymer may have a water holding capacity of 40 g / g or more, or 40 g / g to 60 g / g of physiological saline measured according to the EDANA WSP 241.2 method. Centrifuge water capacity (CRC) for physiological saline can be measured according to the method of EDANA method WSP 241.2. More specifically, the water retention capacity may be calculated by Equation 1 below after absorbing the superabsorbent polymer in physiological saline over 30 minutes.
[계산식 1]  [Calculation 1]
CRC(g/g) = {[W2(g) - Wi(g)]/W0(g)} - 1 CRC (g / g) = {[W 2 (g)-Wi (g)] / W 0 (g)}-1
상기 계산식 1에서, W0(g)는 고흡수성 수지의 초기 무게 (g)이고, W g)는 고흡수성 수지 를 사용하지 않고, 원심분리기를 사용하여 250G로 3분간 탈수한 후에 측정 한 장치 무게이고, W2(g)는 상온에서 0.9 중량 »의 생리 식염수에 고흡수성 수지를 30분 동안 침수하여 흡수시킨 다음, 원심분리기를 사용하여 250G로 3분간 탈수한후에 , 고흡수성 수지를 포함하여 측정한 장치 무게이다. In the above formula 1, W 0 (g) is the initial weight (g) of the superabsorbent polymer, W g) is the weight of the device measured after dehydration at 250G for 3 minutes using a centrifuge without using the superabsorbent polymer, W 2 ( g) is the weight of the device, including the superabsorbent polymer, after submerging the superabsorbent polymer in physiological saline of 0.9 wt.% at room temperature for 30 minutes and then dehydrating it at 250 G for 3 minutes using a centrifuge.
그리고, 상술한 일 구현예의 고흡수성 수지는 약 내지 850 ΛΠ의 입경을 갖는 구형 또는 무정형 등의 입자 형태를 가질 수 있다.  In addition, the super absorbent polymer of the above-described embodiment may have a particle shape such as spherical or amorphous having a particle diameter of about 850 ΛΠ.
한편, 발명의 다른 구현예에 따르면, 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체의 가교 중합체를 포함한 베이스 수지 분말을 포함하고, 상가 베이스 수지 분말 내에는 직경 1 이상의 복수의 기공이 형성되어 있고, 겉보기밀도가 0. 55 g/m£ 이상이고 0.9 중량 %의 NaCl 용액 50 을 600 rpm속도로 교반시 발생하는 볼텍스를 제거하는 사간 이 54초 이하인 고흡수성 수지가 제공될 수 있다.  On the other hand, according to another embodiment of the invention, at least a part comprises a base resin powder containing a cross-linked polymer of a water-soluble ethylenically unsaturated monomer having a neutralized acid group, a plurality of pores of diameter 1 or more is formed in the malleable base resin powder And a superabsorbent polymer having an apparent density of at least 55 g / m £ and removing a vortex generated when stirring 0.9 wt% of NaCl solution 50 at 600 rpm at a speed of 600 rpm can be provided.
상기 다른 구현예에 포함된 내용은 상기 일 구현예에서 상술한 내용 을 모두 포함할 수 있다. 한편, 발명의 또 다른 구현예에 따르면, 층상 실리케이트계 입자, 발 포제, 내부 가교제 및 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌 계 불포화 단량체를 포함하고, 1000 rpra 이상의 속도로 교반시킨 단량체 조 성물을 가교 중합하여 함수겔 중합체를 형성하는 단계; 및 상기 함수겔 중 합체를 건조, 분쇄 및 분급하여 베이스 수지 분말을 형성하는 단계를 포함 하고, 상기 단량체 조성'물에 포함된 수용성 에틸렌계 불포화 단량체의 농도 가 40중량 % 내지 60 중량 %인, 고흡수성 수지의 제조 방법이 제공될 수 있다. 또한, 층상 실리케이트계 입자, 발포제, 내부 자교제 및 적어도 일부 가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체를 포함하고, 1000 rpm 이상의 속도로 교반시킨 단량체 조성물을 가교 중합하여 함수겔 중합체 를 형성하는 단계; 및 상기 함수겔 중합체를 건조, 분쇄 및 분급하여 베이 스 수지 분말을 형성하는 단계를 포함하고, 상기 함수겔 중합체를 건조, 분 쇄 및 분급하여 베이스 수지 분말을 형성하는 단계는, 상기 함수겔 중합체 의 입경이 2mm 내지 10誦로 되도록 분쇄하는 조분쇄 단계를 포함하며, 상기 조분쇄 단계는 50°C 이상의 온도에서, 15 Hz 이상의 진동수로 진행하는 고 흡수성 수지의 제조 방법이 제공될 수 있다. Content included in the other embodiment may include all the above-described information in the embodiment. On the other hand, according to another embodiment of the invention, the monomer composition comprising a layered silicate-based particles, foaming agent, internal crosslinking agent and a water-soluble ethylenically unsaturated monomer having at least a part of the neutralized acid group, stirred at a rate of 1000 rpra or more Crosslinking polymerization to form a hydrogel polymer; And the function of drying, pulverizing, and classifying a gel of the polymer, including the steps of forming a base resin powder, wherein the monomer composition, the concentration of the water-soluble ethylenic unsaturated monomer contained in the water 40 wt% to 60 wt%, and A method for producing a water absorbent resin can be provided. In addition, cross-linking polymerization of the monomer composition comprising a water-soluble ethylenically unsaturated monomer having a layered silicate-based particles, a blowing agent, an internal magnetic crosslinking agent and at least a part of the neutralized acid group, and stirred at a speed of 1000 rpm or more to form a hydrogel polymer ; And drying, pulverizing and classifying the hydrogel polymer to form a base resin powder, and drying, pulverizing and classifying the hydrogel polymer to form a base resin powder. Coarse grinding step of grinding to a particle diameter of 2mm to 10 誦, the The coarsely pulverizing step may be provided with a method for producing a super absorbent polymer, which proceeds at a frequency of 15 Hz or higher at a temperature of 50 ° C. or higher.
또한, 층상 실리케이트계 입자, 발포제, 내부 가교제 및 적어도 일부 가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체를 포함하고, 1000 rpm 이상의 속도로 교반시킨 단량체—조성물을 가교 중합하여 함수겔 중합체 를 형성하는 단계; 및 상기 함수겔 중합체를 건조, 분쇄 및 분급하여 베이 스 수지 분말을 형성하는 단계를 포함하고, 상기 함수겔 중합체를 건조, 분 쇄 및 분급하여 베이스 수지 분말을 형성하는 단계는, 상기 함수겔 중합체 의 입경이 2醒 내지 10 隱로 되도록 분쇄하는 조분쇄 단계를 포함하며, 상 기 조분쇄 단계 이전 또는 이후에, 상기 함수겔 중합체 100 증량부에 대하 여 , 20 중량부 미만의 함량으로 물올 첨가하는 단계를 더 포함하는 고흡수 성 수지의 제조 방법이 제공될 수 있다.  In addition, cross-polymerizing a monomer—composition comprising a water-soluble ethylenically unsaturated monomer having a layered silicate-based particles, a blowing agent, an internal crosslinking agent and at least a part of a neutralized acidic group, and stirred at a speed of at least 1000 rpm to form a hydrogel polymer. ; And drying, pulverizing and classifying the hydrogel polymer to form a base resin powder, and drying, pulverizing and classifying the hydrogel polymer to form a base resin powder. A coarse grinding step of pulverizing to a particle diameter of 2 to 10 隱, and before or after the coarse crushing step, adding water to a content of less than 20 parts by weight with respect to 100 parts by weight of the hydrogel polymer It can be provided a method for producing a super absorbent polymer further comprising.
이러한 다른 구현예의 제조 방법에서는, 상기 층상 실리케이트계 입 자를 통상적인 발포제 및 내부 가교제와 함께 사용하여, 수용성 에틸렌계 불포화 단량체의 가교 중합을 진행하고, 이어서 고흡수성 수지의 일반적인 제조 방법에 따라, 건조, 분쇄, 분급 및 표면 가교 등을 진행하여 고흡수성 수지를 제조할 수 있다. 이와 같이, 상기 수용성 에틸렌계 불포화 단량체의 가교 중합단계에서, 층상 실리케이트계 입자와 발포제를 함께 사용함에 따 라, 발포제에 의해 발생하는 미세 기포가 층상 실리케이트계 입자에 의해 안정적으로 유지될 수 있어, 최종 제조되는 고흡수성 수지의 흡수속도가 보 다 향상될 수 있으며, 내부 가교제의 사용에 의해 이미 형성된 가교 구조가 도입된 베이스 수지 분말이 제조될 수 있어, 우수한 보수능 등의 제반 물성 을 구현할 수 있다.  In this method of producing another embodiment, the layered silicate particles are used together with a conventional blowing agent and an internal crosslinking agent to proceed with the crosslinking polymerization of the water-soluble ethylenically unsaturated monomer, followed by drying according to a general method for preparing a super absorbent polymer. The superabsorbent polymer can be prepared by pulverizing, classifying and surface crosslinking. As such, in the crosslinking polymerization step of the water-soluble ethylenically unsaturated monomer, as the layered silicate particles and the blowing agent are used together, fine bubbles generated by the blowing agent can be stably maintained by the layered silicate particles. The absorption rate of the superabsorbent polymer to be prepared can be improved more, and the base resin powder having the crosslinked structure already formed by the use of an internal crosslinking agent can be prepared, thereby realizing various physical properties such as excellent water retention.
특히, 상기 다른 구현예의 고흡수성 수지 제조방법에서는 층상 실리 케이트계 입자, 발포제, 내부 가교제 및 적어도 일부가 중화된 산성기를 갖 는 수용성 에틸렌계 불포화 단량체를 포함하는 단량체 조성물을, 1000 rpm 이상, 또는 1000 rpm 내지 20000 rpm, 또는 1000 rpm 내지 10000 rpm , 또는 5000 rpm 내지 7000 rpm의 속도로 교반시킴에 따라, 상기 단량체 조성물에 높은 전단력이 가해질 수 있어, 상기 베이스 수지 분말 내에 수 mm 내지 수 십 画 크기의 거대기공의 형성을 최대한 억제할 수 있으며, 직경이 10 내지 100 IM 인 미세기공올 다수 분포시킬 수 있다. In particular, the superabsorbent polymer production method of another embodiment includes a monomer composition comprising a layered silicate-based particle, a blowing agent, an internal crosslinking agent, and a water-soluble ethylenically unsaturated monomer having at least a part of which is neutralized acid group, at least 1000 rpm, or 1000 By stirring at a speed of rpm to 20000 rpm, or 1000 rpm to 10000 rpm, or 5000 rpm to 7000 rpm, a high shear force can be applied to the monomer composition, so that the base resin powder has a size of several mm to several tens of microseconds. It can suppress the formation of macropores as much as possible, and the diameter is 10 It is possible to distribute a large number of microporous to 100 to 100 IM.
뿐만 아니라, 단량체 조성물을 1000 rpm 이상의 속도로 교반한 다음, 1) 상기 단량체 조성물에 포함된 수용성 에틸렌계 불포화 단량체의 농도를 40 중량 % 내지 60 중량 %로 조절하거나, 2) 조분쇄 단계를 50 °C 이상의 온 도에서, 15 Hz 이상의 진동수로 진행하거나, 3) 조분쇄 단계 이전 또는 이 후에, 상기 함수겔 중합체 100 중량부에 대하여, 20 중량부 미만의 함량으 로 물을 첨가함으로써, 고흡수성 수지 입자 형상의 불균일도를 감소시켜 고 흡수성 수지의 겉보기밀도를 높일 수 있다. In addition, the monomer composition is stirred at a speed of 1000 rpm or more, and then 1) the concentration of the water-soluble ethylenically unsaturated monomer contained in the monomer composition is adjusted to 40% by weight to 60% by weight, or 2) the coarse grinding step is 50 ° At a temperature above C, at a frequency of 15 Hz or higher, or 3) by adding water in an amount of less than 20 parts by weight, relative to 100 parts by weight of the hydrogel polymer before or after the coarse grinding step, By reducing the nonuniformity of the particle shape, it is possible to increase the apparent density of the high absorbent resin.
구체적으로, 상기 고흡수성 수지의 제조방법은 층상 실리케이트계 입 자, 발포제, 내부 가교제 및 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체를 포함하고, 1000 rpm 이상의 속도로 교반시킨 단 량체 조성물을 가교 중합하여 함수겔 중합체를 형성하는 단계를 포함할 수 있다. 、  Specifically, the method of preparing the super absorbent polymer includes a layered silicate-based particle, a blowing agent, an internal crosslinking agent, and a water-soluble ethylenically unsaturated monomer having at least a portion of neutralized acidic groups, and a monomer composition stirred at a speed of 1000 rpm or more. Cross-linking polymerization to form a hydrogel polymer. 、
상기 단량체 조성물을 제조하는 방법의 예는 크게 한정되는 것이 아 니며, 예를 들어, 상기 층상 실리케이트계 입자, 발포제, 내부 가교제 및 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체를 동 시 또는 순차적으로 용매 등에 흔합하는 방법을 들 수 있다. 보다 구체적으 로, 수용성 에틸렌계 불포화 단량체와 내부 가교제를 흔합한 제 1흔합물, 층 상 실리케이트계 입자와 발포제를 흔합한 제 2흔합물을 제조한 다음, 상기 제 1흔합물과 제 2흔합물을 흔합하는 방법 등을 예로 들 수 있다.  Examples of the method for preparing the monomer composition are not particularly limited, and for example, the layered silicate-based particles, the blowing agent, the internal crosslinking agent, and at least a portion of the water-soluble ethylenically unsaturated monomer having an acidic group neutralized at the same time or sequentially. Examples thereof include a method of mixing with a solvent or the like. More specifically, a first mixture of a water-soluble ethylenically unsaturated monomer and an internal crosslinking agent is prepared, a second mixture of layered silicate particles and a blowing agent is prepared, and then the first mixture and the second mixture are prepared. For example, a method of mixing the same may be mentioned.
상기 단량체 조성물은 1000 rpm 이상, 또는 1000 rpm 내지 20000 rpm 또는 3000 rpm 내지 10000 rpm 의 속도로 교반시킬 수 있다. 이와 같이 고 속 교반을 통해, 상기 단량체 조성물에 높은 전단력이 가해질 수 있어, 상 기 베이스 수지 분말 내에 수 mm 내지 수십 mm 크기의 거대기공의 형성을 최대한 억제할 수 있으며, 직경이 10 내지 loo 인 미세기공을 다수 분포시킬 수 있다.  The monomer composition may be stirred at a speed of 1000 rpm or more, or 1000 rpm to 20000 rpm, or 3000 rpm to 10000 rpm. Thus, through high-speed stirring, high shear force can be applied to the monomer composition, it is possible to suppress the formation of macropores of several mm to several tens of millimeters in the size of the base resin powder to the maximum, fine diameter of 10 to loo Multiple pores can be distributed.
보다 구체적으로, 상기 단량체 조성물을 교반시키는 방법의 예가 크 게 한정되는 것은 아니나, 예를 들어 고전단력 교반장치 (dynami c mechani cal system , DMS)에 상기 단량체 조성물을 통과시키는 방법을 들 수 있다. 상기 고전단력 교반장치 (dynami c mechani cal system , DMS)는 펌프 및 교반기를 포함하며, 상기 펌프의 모터 속도는 0 내지 6000 rpm이며, 상기 교반의 속도는 0 내지 20000 rpm일 수 있다. More specifically, an example of a method of stirring the monomer composition is not particularly limited, and for example, a method of passing the monomer composition through a high shear force stirring device (dynami c mechani cal system, DMS) may be mentioned. The high shear agitation device (dynami c mechani cal system, DMS) is a pump and Including a stirrer, the motor speed of the pump is 0 to 6000 rpm, the speed of the stirring may be 0 to 20000 rpm.
상기 층상 실리케이트계 입자로는 금속 산화물을 포함한 금속 산화물 층 및 상기 금속 산화물층의 적어도 일면에 형성되고, 실리카를 포함한 실 리카층을 포함한 단위 결정을 포함한 입자를 사용할 수 있다.  As the layered silicate particles, particles including a metal oxide layer containing a metal oxide and a unit crystal formed on at least one surface of the metal oxide layer and including a silica layer containing silica may be used.
상기 단위 결정이란 3차원의 주기성을 갖는 결정성 입자의 주기 단위 를 의미하며, 상기 단위 결정의 반복을 통해 입자가 형성될 수 있다.  The unit crystal refers to a periodic unit of crystalline particles having three-dimensional periodicity, and particles may be formed through repetition of the unit crystal.
상기 층상 실리케이트계 입자의 단위 결정은 금속 산화물을 포함한 금속 산화물층 및 상기 금속 산화물층의 적어도 일면에 형성되고, 실리카를 포함한 실리카층을 포함할 수 있다. 즉, 상기 층상 실리케이트계 입자의 단 위 결정 내에서 상기 금속 산화물층의 일면 또는 양면에 실리카층이 형성될 수 .있다.  The unit crystal of the layered silicate-based particles may be formed on at least one surface of the metal oxide layer including the metal oxide and the metal oxide layer, and may include a silica layer including silica. That is, the silica layer may be formed on one side or both sides of the metal oxide layer in the unit crystal of the layered silicate particles.
구체적으로, 상기 금속 산화물층과 실리카층은 실록세인 (s i loxane)결 합을 통해 결합될 수 있다. 상기 실록세인 (si loxane)결합은 실리콘 원자 (Si ) 와 산소 원자 (0)간의 공유 결합을 의미하며, 보다 구체적으로는 하기 도 1에 나타난 단위 결정 구조와 같이, 상기 금속 산화물 층에 포함된 산소 원자와 상기 실리카층에 포함된 실리콘 원자간의 공유결합을 통해 상기 금속 산화 물과 실리카층의 결합이 형성될 수 있다. .  Specifically, the metal oxide layer and the silica layer may be bonded through a siloxane bond (s i loxane). The siloxane (si loxane) bond means a covalent bond between a silicon atom (Si) and an oxygen atom (0), and more specifically, the oxygen included in the metal oxide layer, as shown in the unit crystal structure shown in FIG. A bond between the metal oxide and the silica layer may be formed through a covalent bond between atoms and silicon atoms included in the silica layer. .
상기 금속산화물층에서 , 상기 금속 산화물은 금속원자와산소원자가 결합한 상태로 존재할 수 있으며, 상기 금속 원자의 예는 크게 한정되는 것 은 아니며, 주기율표상 1족 또는 2족 원소인 리튬, 나트륨, 칼륨, 베릴륨, 마그네슴, 칼슘 등을 들 수 있다.  In the metal oxide layer, the metal oxide may be present in a state in which a metal atom and an oxygen atom are bonded to each other, and examples of the metal atom are not particularly limited, and lithium, sodium, potassium, Beryllium, magnesium, calcium and the like.
상기 층상 실리케이트계 입자는 직단면의 최대 직경이 1 ran 내지 100 nm이고, 높이가 O . Olnm 내지 20 ran , 또는 O . lnm 내지 20 nm인 기등 구조를 가질 수 있다. 상기 기등 구조란, 위와 아래에 있는 면이 서로 평행한 입체 도형을 의미한다. 상기 기등구조의 구체적인 형태가 한정되는 것은 아니나, 예를 들어 지면에 평행한 방향으로 상기 층상실리케이트계 입자를 자른 단 면의 종류에 따라, 즉 직단면이 나타내는 도형 종류에 따라 원기등, 타원기 등, 다각기등 등을 들 수 있다.  The layered silicate-based particles have a maximum diameter of 1 ran to 100 nm in a straight section, and a height of 0. Olnm to 20 ran, or O. It may have a light structure of 1 nm to 20 nm. The lamp structure means a three-dimensional figure in which the upper and lower surfaces are parallel to each other. Although the specific shape of the light emitting structure is not limited, for example, according to the type of cross section in which the layered silicate particles are cut in a direction parallel to the ground, that is, a primitive lamp, an ellipse group, etc. Etc. may be mentioned.
상술한 바와 같이, 상기 층상 실리케이트계 입자의 기등 구조는 상기 단위 결정의 반복을 통해 형성될 수 있으며, 상기 기등 구조에서 직단면의 최대 직경은 지면에 평행한 방향으로 상기 층상 실리케이트계 입자를 자른 단면이 가질 수 있는 직경 가운데 가장 큰 값을 의미한다. As described above, the light structure of the layered silicate particles is It can be formed through the repetition of the unit crystal, the maximum diameter of the straight cross-section in the lamp structure means the largest value among the diameter that the cross section cut the layered silicate particles in a direction parallel to the ground.
이처럼 상기 층상 실리케이트계 입자가 직단면의 최대 직경이 1 nm 내지 100 nm이고, 높이가 O . Olnm 내지 20 腿인 기등 구조를 가짐에 따라, 상기 일 구현예의 가교 중합체 내에서 상기 층상 실리케이트계 입자는 미세 한 압자 크기를 통해 상기 가교 중합체 내에서 기능성을 구현할 수 있을 뿐 만 아니라, 가교 중합체 형성시 단량체 조성물 내에서 발포제에 의해 형성 되는 미세 기공을 안정화 시킬 수 있다.  As such, the layered silicate-based particles have a maximum diameter of 1 nm to 100 nm in a straight section, and a height of 0. As having a light structure of Olnm to 20 GPa, the layered silicate particles in the crosslinked polymer of the embodiment can not only realize functionality in the crosslinked polymer through a fine indenter size, but also when forming the crosslinked polymer. It is possible to stabilize the micropores formed by the blowing agent in the monomer composition.
상기 층상 실리케이트계 입자의 예가 크게 한정되는 것은 아니나, 예 를 들어, 핵토라이트 (Laponi te RD , Laponi te XLG, Laponi te D, Laponi te DF Laponi te RS, Laponi te XLS, Laponite DS , Laponi te S 및 Laponi te JS 등) 를 들 수 있고, 보다 바람직한 예로는 Laponi te RD를 들 수 있다.  Examples of the layered silicate-based particles are not particularly limited, for example, nuclear lite (Laponi te RD, Laponi te XLG, Laponi te D, Laponi te DF Laponi te RS, Laponi te XLS, Laponite DS, Laponi te S and Laponi te JS and the like), and Laponi te RD is more preferable.
상기 발포제의 예는 크게 한정되는 것은 아니며, 기존에 널리 알려진 다양한 발포제를 제한없이 사용할 수 있다. 구체적으로 예를 들면, 아조디 카본아미드, 아조디카르복실아미드, 벤젠술포닐히드라지드, 디니트로소펜타 메틸렌테트라민, 를루엔술포닐히드라지드, 아조비스이소부티로니트릴, 아조 디카르복실산바륨 및 중탄산나트륨으로 이루어진 군에서 선택된 1종 이상을 들 수 있다.  Examples of the blowing agent are not particularly limited, and various blowing agents well known in the art may be used without limitation. Specifically, for example, azodi carbonamide, azodicarboxyamide, benzenesulfonylhydrazide, dinitrosopenta methylenetetramine, toluenesulfonylhydrazide, azobisisobutyronitrile, azo dicarboxylic acid And at least one selected from the group consisting of barium and sodium bicarbonate.
상술한 바와 같이, 상기 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체를 가교 중합하여 함수겔 중합체를 형성하는 단계는 층상 실리케이트계 입자, 발포제 및 내부 가교제의 존재 하에 진행될 수 있 다. 즉, 상기 층상 실리케이트계 입자, 발포제, 내부 가교제 및 적어도 일 부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체를 포함한 단량 체 조성물을 중합하는 것일 수 있다.  As described above, the step of cross-polymerizing the water-soluble ethylenically unsaturated monomer having at least a part of the neutralized acidic group to form a hydrogel polymer may be carried out in the presence of layered silicate particles, blowing agent and internal crosslinking agent. That is, it may be to polymerize the monomer composition including the layered silicate-based particles, the blowing agent, the internal crosslinking agent, and the water-soluble ethylenically unsaturated monomer having at least one neutralized acidic group.
이와 같이, 함수겔 중합체를 형성한 다음 층상 실리케이트계 입자, 발포제 등을 첨가하는 대신에, 함수겔 중합체 형성을 위한 단량체 조성물에 층상 실리케이트계 입자와 발포제를 첨가하여 함수겔 중합체 내부에 까지도 미세한 기공이 형성될 수 있다.  As such, instead of forming the hydrogel polymer and then adding the layered silicate particles, the blowing agent, and the like, the fine pore even inside the hydrogel polymer is added by adding the layered silicate particles and the blowing agent to the monomer composition for forming the hydrogel polymer. Can be formed.
이때, 상기 층상 실리케이트계 입자, 발포제, 내부 가교제 및 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체를 포함한 단 량체 조성물내에서 상기 발포제 100 중량부에 대하여 층상 실리케이트계 입 자의 함량이 1 중량부 내지 50 증량부일 수 있다. At this time, the layered silicate particles, foaming agent, internal crosslinking agent and at least The content of the layered silicate particles may be 1 part by weight to 50 parts by weight based on 100 parts by weight of the blowing agent in the monomer composition including a water-soluble ethylenically unsaturated monomer having a neutralized acidic group.
상기 발포제 100 중량부에 대하여 층상 실리케이트계 입자의 함량이 1 중량부 미만으로 지나치게 감소하게 되면, 상기 층상 실리케이트계 입자 에 의한 기공 안정화 효과가 감소하여 고흡수성 수지의 흡수능이 감소할 수 있다.  When the content of the layered silicate particles is excessively reduced to less than 1 part by weight with respect to 100 parts by weight of the blowing agent, the pore stabilization effect by the layered silicate particles may be reduced to reduce the absorbency of the super absorbent polymer.
상기 내부 가교제, 그리고 상기 수용성 에틸렌계 불포화 단량체의 종 류 및 구조 등에 관해서는, 이미 상술한 바와 같으므로, 이에 관한 추가적 얀 설명은 생략하기로 한다.  As for the internal crosslinking agent, and the type and structure of the water-soluble ethylenically unsaturated monomer, and the like, as described above, additional yarn description thereof will be omitted.
한편, 상기 함수겔 증합체를 형성하는 단계에서, 상기 단량체 조성물 에 포함된 수용성 에틸렌계 불포화 단량체의 농도가 40 중량 % 내지 60 중 량%, 또는 40 중량 % 내지 50 중량%일 수 있다. 상기 단량체의 농도가 지나 치게 낮아지면 고흡수성 수지의 수율아낮고 경제성에 문제가 생길 수 있고, 반대로 농도가 지나치게 높아지면 단량체의 일부가 석출되거나 중합된 함수 겔 중합체의 분쇄 시 분쇄 효율이 낮게 나타나는 등 공정상 문제가 생길 수 있으며 고흡수성 수지의 물성이 저하될 수 있다.  On the other hand, in the step of forming the hydrogel polymer, the concentration of the water-soluble ethylenically unsaturated monomer contained in the monomer composition may be 40% by weight to 60% by weight, or 40% by weight to 50% by weight. When the concentration of the monomer is excessively low, the yield of the superabsorbent polymer may be low and problems may occur. On the contrary, when the concentration is excessively high, some of the monomer may precipitate or the grinding efficiency of the polymerized hydrogel polymer may be low. Problems may occur in the process and the physical properties of the super absorbent polymer may be reduced.
또한, 상기 단량체 조성물은 고흡수성 수지의 제조에 일반적으로 사 용되던 중합 개시제를 더 포함할 수 있다.  In addition, the monomer composition may further include a polymerization initiator generally used in the preparation of a super absorbent polymer.
구체적으로, 상기 중합 개시제는 중합 방법에 따라 열중합 개시제 또 는 UV 조사에 따른 광중합 개시제를 사용할 수 있다. 다만, 광중합 방법에 의하더라도, 자외선 조사 등의 조사에 의해 일정량의 열이 발생하고, 또한 발열 반웅인 ^합 반응의 진행에 따라 어느 정도의 열이 발생하므로, 추가 적으로 열중합 개시제를 포함할 수도 있다.  Specifically, the polymerization initiator may use a thermal polymerization initiator or a photopolymerization initiator according to UV irradiation depending on the polymerization method. However, even with the photopolymerization method, since a certain amount of heat is generated by irradiation of ultraviolet rays or the like, and a certain amount of heat is generated in accordance with the progress of the ^ reaction reaction, which is an exothermic reaction, an additional thermal polymerization initiator may be included. It may be.
상기 광중합 개시제는 자외선과 같은 광에 의해 라디칼을 형성할 수 있는 화합물이면 그 구성의 한정이 없이 사용될 수 있다.  The photopolymerization initiator may be used without any limitation as long as it is a compound capable of forming radicals by light such as ultraviolet rays.
상기 광중합 개시제로는 예를 들어, 벤조인 에테르 (benzoin ether ) , 디알킬아세토페논 (dialkyl acetophenone) , 하이드톡실 알킬케톤 (hydroxyl alkylketone) , 페닐글리옥실레이트 (phenyl glyoxylate) , 벤질디메틸케탈 (Benzyl Dimethyl Ketal ) , 아실포스핀 (acyl phosphine) 및 알파 -아미노케톤 ( α-aminoketone)으로 이루어진 군에서 선택되는 하나 이상을 사용할 수 있 다. 한편, 아실포스핀의 구체예로, 상용하는 lucirin TP0, 즉, 2,4, 6-트리 메틸 -벤조일-트리메틸 포스핀'옥사이드 (2,4,6— trimethyl-benzoyl-trimethyl phosphine oxide)를 사용할 수 있다. 보다 다양한 광개시제에 대해서는 Reinhold Schwa lm 저서인 "UV Coatings: Basics, Recent Developments and New Application(Elsevier 2007년)" pll5에 잘 명시되어 있으며, 상술한 예 에 한정되지 않는다. Examples of the photopolymerization initiators include benzoin ether, dialkyl acetophenone, hydroxyl alkylketone, phenyl glyoxylate, and benzyl dimethyl ketal. Ketal), acyl phosphine and alpha-aminoketone One or more selected from the group consisting of (α-aminoketone) can be used. Meanwhile, as an example of acylphosphine, commercially available lucirin TP0, that is, 2,4, 6-trimethyl-benzoyl-trimethyl phosphine ' oxide (2,4,6—trimethyl-benzoyl-trimethyl phosphine oxide) can be used. Can be. A wider variety of photoinitiators is well specified in Reinhold Schwalm lm "UV Coatings: Basics, Recent Developments and New Application (Elsevier 2007)" pll5, and is not limited to the examples described above.
상기 광중합 개시제는 상기 단량체 조성물에 대하여 약 0.01 중량 % 내지 약 1.0 중량 의 농도로 포함될 수 있다. 이러한 광중합 개시제의 농도 가 지나치게 낮을 경우 중합 속도가 느려질 수 있고, 광중합 개시제의 농도 가 지나치게 높으면 고흡수성 수지의 분자량이 작고 물성이 불균일해질 수 있다.  The photopolymerization initiator may be included in a concentration of about 0.01% by weight to about 1.0% by weight based on the monomer composition. When the concentration of the photopolymerization initiator is too low, the polymerization rate may be slow. When the concentration of the photopolymerization initiator is too high, the molecular weight of the superabsorbent polymer may be low and the physical properties may be uneven.
또한, 상기 열중합 개시제로는 과황산염계 개시제, 아조계 개시게, 과산화수소 및 아스코르빈산으로 이루어진 개시제 군에서 선택되는 하나 이 상을 사용할 수 있다. 구체적으로, 과황산염계 개시제의 예로는 과황산나트 륨 (Sodium persulfate; Na2S20s) , 과황산칼륨 (Potassium persulfate; K2S208), 과황산암모늄 (Ammonium persul fate; (NH4)2S208) 등이 있으며, 아조 (Azo)계 개시제의 예로는 2, 2-아조비스 -(2-아미디노프로판)이염산염 (2, 2- azob i s ( 2-am i d i nopr opane ) dihydrochlor ide) , 2, 2-아조비스一 (N, N_디메틸 렌)이소부티라마이딘 . 디하이드로클로라이드 (2,2-azobis-(N, N- dimethylene)isobutyramidine dihydrochlor ide), 2—(카바모일아조)이소부티 로니트릴 (2— (carbamoylazo)isobutylonitril), 2, 2-아조비스 [2-(2-이미다졸 린 -2-일)프로판] 디하이드로클로라이드 ( 2 , 2-azob is[2-(2-imi dazo 1 i n-2- yDpropane] dihydrochlor ide) , 4,4—아조비스ᅳ (4—시아노발레릭 산) (4, 4_ azobis-(4-cyanovaleric acid)) 등이 있다. 보다 다양한 열중합 개시제에 대해서는 Odian 저서인 'Principle of Polymer izat ion(Wi ley, 1981)' , p203 에 잘 명시되어 있으며, 상술한 예에 한정되지 않는다. In addition, the thermal polymerization initiator may be used at least one selected from the group consisting of persulfate initiator, azo initiator, hydrogen peroxide and ascorbic acid. Specifically, examples of persulfate-based initiators include sodium persulfate (Na2S 2 0s), potassium persulfate (K2S208), ammonium persul fate (NH 4 ) 2 S 2 0 8 Examples of azo initiators include 2, 2-azobis- (2-amidinopropane) dihydrochloride (2, 2- azob is (2-am idi nopr opane) dihydrochlor ide), 2 , 2-Azobis one (N, N_dimethylene) isobutyramidine. Dihydrochloride (2,2-azobis- (N, N-dimethylene) isobutyramidine dihydrochlor ide), 2— (carbamoyl azo) isobutyronitrile (2— (carbamoylazo) isobutylonitril), 2, 2-azobis [2 -(2-imidazolin-2-yl) propane] dihydrochloride (2, 2-azob is [2- (2-imi dazo 1 i n-2- yDpropane] dihydrochlor ide), 4,4—azobis (4—Cyanovaleric acid) (4, 4_ azobis- (4-cyanovaleric acid)), etc. For more various thermal polymerization initiators, see Odian, Principle of Polymer izat ion (Wi ley, 1981). , p203 is well specified, and is not limited to the example described above.
상기 열중합 개시제는 상기 단량체 조성물에 대하여 약 0.001 중량 % 내지 약 0.5 중량 %의 농도로 포함될 수 있다. 이러한 열 중합 개시제의 농 도가 지나치게 낮을 경우 추가적인 열중합이 거의 일어나지 않아 열중합 개 시제의 추가에 따른 효과가 미미할 수 있고, 열중합 개시제의 농도가 지나 치게 높으면 고흡수성 수지의 분자량이 작고 물성이 불균일해질 수 있다. 그리고, 상기 단량체 조성물에 함께 포함되는 내부 가교제의 종류에 대해서는 이미 상술한 바와 같으며, 이러한 내부 가교제는 중합된 고분자를 가교시킬 수 있다. 특히, 이러한 내부 가교제가 상술한 단량체, 예를 들어, 미중화 상태의 아크릴산의 100 중량부 대비 약 0.03 중량부 이상, 흑은 약 0.03 중량부 내지 0.6 중량부로 사용됨에 따라, 이미 상술한 일 구현예의 물성을 보다 적절히 층족하는 고흡수성 수지가 제조될 수 있다. The thermal polymerization initiator may be included in a concentration of about 0.001% to about 0.5% by weight based on the monomer composition. When the concentration of such thermal polymerization initiator is too low, additional thermal polymerization hardly occurs, resulting in thermal polymerization. The effect of the addition of the reagent may be insignificant, and if the concentration of the thermal polymerization initiator is too high, the molecular weight of the superabsorbent polymer may be small and the physical properties may be uneven. In addition, the type of the internal crosslinking agent included in the monomer composition is already described above, and the internal crosslinking agent may crosslink the polymerized polymer. In particular, since such an internal crosslinking agent is used in an amount of about 0.03 parts by weight or more, and about 0.03 parts by weight to 0.6 parts by weight with respect to 100 parts by weight of the aforementioned monomer, for example, unneutralized acrylic acid, the above-described embodiment of the embodiment Superabsorbent resins that more adequately stratify physical properties can be produced.
또, 상기 단량체 조성물은 필요에 따라 유화제, 증점제 (thi ckener ) , 가소제, 보존안정제, 산화방지제 등의 첨가제를 더 포함할 수 있다. 상기 첨가제의 구체적인 예는 크게 한정되지 않으며, 공지된 다양한 종류의 첨가 제를 제한없이 사용할 수 있다. 다만 상기 유화제의 예로는 당을 포함한 지 방산 에스터를 들 수 있고, 보다 구체적으로 수크로오스 에스터를 들 수 있 다.  In addition, the monomer composition may further include additives such as an emulsifier, a thickener, a plasticizer, a storage stabilizer, an antioxidant, and the like, as necessary. Specific examples of the additives are not particularly limited, and various kinds of known additives may be used without limitation. However, examples of the emulsifiers include fatty acid esters including sugars, and more specifically, sucrose esters.
상술한 수용성 에,틸렌계 불포화 단량체, 실리케이트계 입자, 광중합 개시제, 열중합 개시제, 내부 가교제 및.첨가제와 같은 원료 물질은 용매에 용해된 단량체 조성물 용액의 형태로 준비될 수 있다.  Raw materials such as the above-mentioned water-soluble ethylene-based unsaturated monomers, silicate-based particles, photopolymerization initiators, thermal polymerization initiators, internal crosslinking agents, and additives may be prepared in the form of a monomer composition solution dissolved in a solvent.
이 때 사용할 수 있는 상기 용매는 상술한 성분들을 용해할 수 있으 면 그 구성의 한정이 없이 사용될 수 있으며, 예를 들어 물, 에탄올, 에틸 렌글리콜, 디에틸렌글리콜, 트리에틸렌글리콜, 1 , 4-부탄디올, 프로필렌글리 콜, 에틸렌글리콜모노부틸에테르, 프로필렌글리콜모노메틸에테르, 프로필렌 글리콜모노메틸에테르아세테이트, 메틸에틸케톤, 아세톤, 메틸아밀케톤, 시 클로핵사논, 시클로펜타논, 디에틸렌글리콜모노메틸에테르, 디에틸렌글리콜 에될에테르, 를루엔, 크실렌, 부틸로락톤, 카르비를, 메틸셀로솔브아세테이 트 및 Ν , Ν-디메틸아세트아미드 등에서 선택된 1종 이상을 조합하여 사용할 수 있다.  The solvent that can be used at this time can be used without limitation in the composition as long as it can dissolve the above-mentioned components, for example, water, ethanol, ethylene glycol, diethylene glycol, triethylene glycol, 1, 4- Butanediol, propylene glycol, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, methyl ethyl ketone, acetone, methyl amyl ketone, cyclonucleanone, cyclopentanone, diethylene glycol monomethyl ether , Diethylene glycol etheryl ether, toluene, xylene, butyrolactone, carbye, may be used in combination of one or more selected from methyl cellosolve acetate and Ν, Ν-dimethylacetamide.
상기 용매는 단량체 조성물의 총 함량에 대하여 상술한 성분을 제외 한 잔량으로 포함될 수.있다.  The solvent may be included in the remaining amount except for the components described above with respect to the total content of the monomer composition.
한편, 이와 같은 단량체 조성물을 열중합 또는 광중합하여 함수겔 중 합체를 형성하는 방법 또한 통상 사용되는 중합 방법이면, 특별히 구성의 한정이 없다. On the other hand, a method of forming a hydrogel by thermal polymerization or photopolymerization of such a monomer composition is also a commonly used polymerization method, in particular There is no limit.
구체적으로, 중합 방법은 중합 에너지원에 따라 크게 열중합 및 광중 합으로 나뉘며, 통상 열중합을 진행하는 경우, 니더 (kneader )와 같은 교반 축을 가진 반응기에서 진행될 수 있으며, 광중합을 진행하는 경우, 이동 가 능한 컨베이어 벨트를 구비한 반웅기에서 진행될 수 있으나, 상술한 중합 방법은 일 예이며, 본 발명은 상술한 중합 방법에 한정되지는 않는다.  Specifically, the polymerization method is largely divided into thermal polymerization and photopolymerization according to the polymerization energy source, and when the thermal polymerization is usually carried out, it can be carried out in a reactor having a stirring axis such as kneader, and when the polymerization proceeds, Although it can proceed in a semi-unggi equipped with a conveyor belt possible, the above-described polymerization method is an example, the present invention is not limited to the above-described polymerization method.
일 예로, 상술한 바와 같이 교반축을 구비한 니더 (kneader)와 같은 반웅기에, 열풍을 공급하거나 반응기를 가열하여 열중합을 하여 얻어진 함 수겔 중합체는 반웅기에 구비된 교반축의 형태에 따라, 반응기 배출구로 배 출되는 함수겔 중합체는 수 센티미터 내지 수ᅳ밀리미터 형태일 수 있다. 구 체적으로, 얻어지는 함수겔 중합체의 크기는 주입되는 단량체 조성물의 농 도 및 주입속도 등에 따라 다양하게 나타날 수 있는데, 통상 중량 평균 입 경이 약 2 mm 내지 50 mm 인 함수겔 중합체가 얻어질 수 있다.  For example, as described above, a water-containing gel polymer obtained by thermal polymerization by supplying hot air or by heating a reactor according to the shape of the stirring shaft provided in the reactor is a reactor, such as a kneader having a stirring shaft. The hydrogel polymer discharged to the outlet may be in the form of several centimeters to several millimeters. Specifically, the size of the resulting hydrogel polymer may vary depending on the concentration of the monomer composition to be injected, and the injection speed, etc., a hydrogel polymer having a weight average particle diameter of about 2 mm to 50 mm can be obtained.
또한, 상술한 바와 같이 이동 가능한 컨베이어 벨트를 구비한 반웅기 에서 광중합올 진행하는 경우, 통상 얻어지는 함수겔 중합체의 형태는 벨트 의 너비를 가진 시트 상의 함수겔 중합체일 수 있다. 이 때, 중합체 시트의 두께는 주입되는 단량체 조성물의 농도 및 주입속도에 따라 달라지나, 통상 약 0.5 cm 내지 약 5 cm의 두께를 가진 시트 상의 중합체가 얻어질 수 있도 록 단량체 조성물을 공급하는 것이 바람직하다. 시트 상의 중합체의 두께가 지나치게 얇을 정도로 단량체 조성물을 공급하는 경우, 생산 효율이 낮아 바람직하지 않으며, 시트 상의 중합체 두께가 5cm를 초과하는 경우에는 지 나치게 두꺼운 두께로 인해, 중합 반응이 전 두께에 걸쳐 .고르게 일어나지 않을 수가 있다.  In addition, when the photopolymerization proceeds in a semi-unggi equipped with a movable conveyor belt as described above, the form of the hydrogel polymer generally obtained may be a hydrogel polymer on the sheet having a width of the belt. At this time, the thickness of the polymer sheet depends on the concentration and the injection speed of the monomer composition to be injected, but it is preferable to supply the monomer composition so that a polymer on a sheet having a thickness of usually about 0.5 cm to about 5 cm can be obtained. Do. When supplying the monomer composition to such an extent that the thickness of the polymer on the sheet is too thin, the production efficiency is not preferable because it is low, and when the polymer thickness on the sheet exceeds 5 cm, due to the excessively thick thickness, the polymerization reaction is carried over the entire thickness. It may not happen evenly.
이때 이와 같은 방법으로 얻어진 함수겔 중합체의 통상 함수율은 40 중량 % 내지 80 중량 %일 수 있다. 한편, 본 명세서 전체에서 "함수율 "은 전 체 함수겔 중합체 중량에 대해 차지하는 수분의 함량으로 함수겔 중합체의 중량에서 건조 상태의 중합체의 중량을 뺀 값을 의미한다. 구체적으로는, 적외선 가열을 통해 증합체의 온도를 을려 건조하는 과정에서 중합체 중의 수분증발에 따른 무게감소분을 측정하여 계산된 값으로 정의한다. 이때, 건 조 조건은 상온에서 약 180°C까지 온도를 상승시킨 뒤 180 °C에서 유지하는 방식으로 총 건조시간은 온도상승단계 5분을 포함하여 20분으로 설정하여, 함수율을 측정한다. In this case, the water content of the hydrogel polymer obtained by the above method may be 40% by weight to 80% by weight. On the other hand, "water content" as used throughout the present specification means the amount of water occupied with respect to the total weight of the hydrogel polymer, minus the weight of the polymer in the dry state. Specifically, it is defined as a value calculated by measuring the weight loss due to moisture evaporation in the polymer during the drying process of drying the temperature of the polymer through infrared heating. At this time, dry conditions are maintained at 180 ° C after raising the temperature to about 180 ° C at room temperature In this way, the total drying time is set to 20 minutes, including 5 minutes of temperature rise, and the moisture content is measured.
그리고, 상기 단량체를 가교 중합시킨 후에는, 건조, 분쇄 및 분급 등의 공정을 거쳐 베이스 수지 분말을 얻을 수 있는데, 이러한 분쇄 및 분 급 등의 공정을 통해, 베이스 수지 분말 및 이로부터 얻어지는 고흡수성 수 지는 약 150 내지 850 의 입경을 갖도록 제조 및 제공됨이 적절하다. 보 다 구체적으로, 상기 베이스 수지 분말 및. 이로부터 얻어지는 고흡수성 수 지의 적어도 약 95 중량 % 이상이 약 150 rni 내지 850 의 입경을 가지며, 약 And, after cross-polymerizing the monomer, it is possible to obtain a base resin powder through a process such as drying, grinding and classification, the base resin powder and a super absorbent water obtained therefrom through such a process such as grinding and classification Paper is suitably made and provided to have a particle diameter of about 150 to 850. More specifically, the base resin powder and. At least about 95% by weight or more of the superabsorbent polymer obtained therefrom has a particle diameter of about 150 rni to 850, about
150 미만의 입경을 갖는 미분이 약 3 중량 ¾> 미만으로 될 수 있다. The fine powder having a particle diameter of less than 150 may be less than about 3 weight ¾>.
이와 같이 상기 베이스 수지 분말 및 고흡수성 수지의 입경 분포가 바람직한 범위로 조절됨에 따라, 최종 제조된 고흡수성 수지가 이미 상술한 물성 및 보다 우수한 통액성을 나타낼 수 있다.  Thus, as the particle size distribution of the base resin powder and the super absorbent polymer is adjusted to a preferred range, the final manufactured super absorbent polymer may exhibit the above-described physical properties and better liquid permeability.
한편, 상기 건조, 분쇄 및 분급의 진행 방법에 대해 보다 구체적으로 설명하면 다음과 같다.  On the other hand, it will be described in more detail with respect to the progress of the drying, grinding and classification as follows.
먼저, 함수겔상 중합체를 건조함에 있어서는, 필요에 따라서 상기 건 조 단계의 효율을 높이기 위해 건조 전에 조분쇄하는 단계를 더 거칠 수 있 다.  First, in drying the hydrogel polymer, if necessary, the step of coarsely pulverizing before drying may be further increased to increase the efficiency of the drying step.
구체적으로 상기 조분쇄하는 단계는 50°C 이상, 또는 50°C 내지 150 °C , 또는 60°C 내지 100°C의 온도에서, 15 Hz 이상, 또는 15 Hz 내지 40 Hz , 또는 15 Hz 내지 30 Hz의 진동수로 진행될 수 있다. 상기 분쇄단계의 온도는 분쇄장치, 분쇄날, 또는 외부 열원의 은도일 수 있으며, 상기 진동 수는 분쇄장치 또는 분쇄날의 진동수일 수 있다. Specifically, the coarsely pulverizing step is at least 50 ° C, or 50 ° C to 150 ° C, or 60 ° C to 100 ° C, at least 15 Hz, or 15 Hz to 40 Hz, or 15 Hz to 30 It can proceed at a frequency of Hz. The temperature of the grinding step may be a grinding device, a grinding blade, or a silver of an external heat source, and the frequency may be a vibration frequency of the grinding device or the grinding blade.
또한, 상기 고흡수성 수지 제조방법은 상기 조분쇄하는 단계 이전 또 는 이후에, 상기 함수겔 중합체 100 중량부에 대하여 20 중량부 미만, 또는 0 중량부 내지 19중량부, 또는 10 중량부 내지 19 중량부의 함량으로 물을 첨가하는 단계를 더 포함할 수 있다. 상기 물을 첨가하는 단계에서, 물은 이온수 (Water )를 의미하며, 상기 물의 함량이 가교 중합체 100 중량부에 대 하여 20 중량부 이상이면, 보수능이 감소하는 등 고흡수성 수지의 물성이 저하될 수 있으며, 제조되는 고흡수성 수지의 겉보기밀도가 감소하여 저장 효율성이 감소할 수 있다. 이때, 사용되는 분쇄기는 구성의 한정은 없으나, 구체적으로, 수직형 절단기 (Vertical pulverizer), 터보 커터 (Turbo cutter), 터보 글라인더 (Turbo grinder), 회전 절단식 분쇄기 (Rotary cutter mill), 절단식 분쇄기 (Cutter mill), 원판 분쇄기 (Disc mill), 조각 파쇄기 (Shred crusher), 파 쇄기 (Crusher), 초퍼 (chopper) 및 원판식 절단기 (Disc cutter)로 이루어진 분쇄 기기 군에서 선택되는 어느 하나를 포함할 수 있으나, 상술한 예에 한 정되지는 않는다. In addition, the superabsorbent polymer production method is less than 20 parts by weight, or 0 parts by weight to 19 parts by weight, or 10 parts by weight to 19 parts by weight based on 100 parts by weight of the hydrogel polymer before or after the coarse grinding step. It may further comprise the step of adding water in the amount of parts. In the step of adding water, water means ionized water, and when the content of water is 20 parts by weight or more based on 100 parts by weight of the crosslinked polymer, the physical properties of the superabsorbent polymer may be lowered, such as water retention. In addition, the apparent density of the superabsorbent polymer may be reduced, thereby reducing storage efficiency. At this time, the pulverizer used is not limited in configuration, specifically, a vertical pulverizer, a turbo cutter, a turbo grinder, a rotary cutter mill, a cutting machine Any one selected from the group of crushing machines consisting of a cutter mill, a disc mill, a shred crusher, a crusher, a chopper and a disc cutter It may include, but is not limited to the above examples.
이때 조분쇄 단계는 함수겔 중합체의 입경이 약 2隱 내지 약 10隱로 되도록 분쇄할 수 있다. 입경이 2 隱 미만으로 분쇄하는 것은 함수겔 중합 체'의 높은 함수율로 인해 기술적으로 용이하지 않으며, 또한 분쇄된 입자 간에 서로 응집되는 현상이 나타날 수도 있다. 한편, 입경이 10 mm 초과로 분쇄하는 경우, 추후 이루어지는 건조 단계의 효율 증대 효과가 미미할 수 있다. At this time, the coarsely pulverizing step may be pulverized so that the particle size of the hydrogel polymer is about 2 隱 to about 10 隱. Grinding to a particle diameter of less than 2 GPa is technically not easy due to the high water content of the ' hydrogel polymer ' , and may also cause aggregation of the pulverized particles with each other. On the other hand, when the particle diameter is more than 10 mm, the effect of increasing the efficiency of the subsequent drying step may be insignificant.
상기와 같이 조분쇄되거나, 혹은 조분쇄 단계를 거치지 않은 중합 직 후의 함수겔 중합체에 대해 건조를 수행한다. 이때 상기 건조 단계의 건조 온도는 약 150 °C 내지 약 250°C일 수 있다. 건조 온도가 약 150°C 미만인 경우, 건조 시간이 지나치게 길어지고 최종 형성되는 고흡수성 수지의 물성 이 저하될 우려가 있고, 건조 온도가 약 250°C를 초과하는 경우, 지나치게 중합체 표면만 건조되어, 추후 이루어지는 분쇄 공정에서 미분이 발생할 수 도 있고, 최종 형성되는 고흡수성 수지의 물성이 저하될 우려가 있다. 따라 서 바람직하게 상기 건조는 약 150°C 내지 약 200°C 의 온도에서 진행될 수 있다. As described above, drying is performed on the hydrogel polymer immediately after polymerization, which is coarsely pulverized or not subjected to the coarsely pulverized step. At this time, the drying temperature of the drying step may be about 150 ° C to about 250 ° C. If the drying temperature is less than about 150 ° C, the drying time may be too long and the physical properties of the final superabsorbent polymer may be lowered. If the drying temperature exceeds about 250 ° C, only the polymer surface may be excessively dried. Fine powder may be generated in a subsequent grinding step, and there is a fear that the physical properties of the superabsorbent polymer to be finally formed are reduced. Therefore, the preferred the drying can proceed at a temperature of about 150 ° C to about 200 ° C.
한편, 건조 시간의 경우에는 공정 효율 등을 고려하여, 약 20분 내지 약 90분 동안 진행될 수 있으나, 이에 한정되지는 않는다.  On the other hand, in the case of drying time, in consideration of the process efficiency, etc., it may proceed for about 20 minutes to about 90 minutes, but is not limited thereto.
상기 건조 단계의 건조 방법 역시 함수겔 중합체의 건조 공정으로 통 상 사용되는 것이면, 그 구성의 한정이 없이 선택되어 사용될 수 있다. 구 체적으로, 열풍 공급, 적외선 조사, 극초단파 조사, 또는 자외선 조사 등의 방법으로 건조 단계를 진행할 수 있다. 이와 같은 건조 단계 진행 후의 중 합체의 함수율은 약 0.1 중량 % 내지 약 10 중량 %일 수 있다.  If the drying method of the drying step is also commonly used as a drying step of the hydrogel polymer, can be selected and used without limitation of the configuration. Specifically, the drying step may be performed by hot air supply, infrared irradiation, microwave irradiation, or ultraviolet irradiation. The water content of the polymer after such a drying step may be about 0.1% by weight to about 10% by weight.
분쇄 단계 후 얻어지는 중합체 분말은 입경이 약 150mi 내지 약 850 //m 일 수 있다. 이와 같은 입경으로 분쇄하기 위해 사용되는 분쇄기는 구체 적으로, 핀 밀 (pin mill), 해머 밀 (ha誦 er mill), 스크류 밀 (screw mill), 롤 밀 (roll mill), 디스크 밀 (disc mill) 또는 조그 밀 (jog mill) 등을 사 용할 수 있으나, 상술한 예에 한정되는 것은 아니다. The polymer powder obtained after the grinding step has a particle diameter of about 150 mi to about 850 // m can be The grinder used to grind to such a particle size is specifically a pin mill, a hammer mill, a screw mill, a roll mill, a disc mill ) Or a jog mill may be used, but is not limited to the example described above.
그리고, 이와 같은 분쇄 단계 이후 최종 제품화되는 고흡수성 수지 분말의 물성을 관리하기 위해, 분쇄 후 얻어지는 중합체 분말을 입경에 따 라 분급하는 별도의 과정을 거칠 수 있다. 바람직하게는 입경이 약 150/im 내지 약 850/zm인 중합체를 분급하여, 이와 같은 입경을 가진 중합체 분말에 대해서만 필요에 따라 표면 가교 반응 단계 등을 추가로 거쳐 제품화할 수 있다. 이러한 과정을 통해 얻어진 베이스 수지 분말의 입경 분포에 관해서 는 이미 상술한 바도 있으므로, 이에 관한 더 이상의 구체적인 설명은 생략 하기로 한다.  In addition, in order to manage the physical properties of the super absorbent polymer powder to be finalized after such a grinding step, a separate process of classifying the polymer powder obtained after grinding according to the particle size may be performed. Preferably, the polymer having a particle size of about 150 / im to about 850 / zm may be classified, and only a polymer powder having such a particle size may be further commercialized through a surface crosslinking reaction step or the like as necessary. Since the particle size distribution of the base resin powder obtained through such a process has already been described above, a detailed description thereof will be omitted.
한편, 상기 다른 구현예의 제조방법은 층상 실리케이트계 입자, 발포 제, 내부 가교제 및 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체를 포함하고, 1000 rpm 이상의 속도로 교반시킨 단량체 조성 물을 가교 중합하여 함수겔 중합체를 형성하는 단계; 및 상기 함수겔 중합 체를 건조, 분쇄 및 분급하여 베이스 수지 분말을 형성하는 단계를 포함하 고, 상기 단량체 조성물에 포함된 수용성 에틸렌계 불포화 단량체의 농도가 40중량 ¾» 내지 60 중량 ¾>이며, 상기 함수겔 중합체를 건조, 분쇄 및 분급하여 베이스 수지 분말을 형성하는 단계는, 상기 함수겔 중합체의 입경이 2隱 내 지 10誦로 되도록 분쇄하는 조분쇄 단계를 포함하며, 상기 조분쇄 단계는 50 °C 이상의 온도에서, 15 Hz 이상의 진동수로 진행하는 고흡수성 수지의 제조 방법이 제공될 수 있다. On the other hand, the production method of the other embodiment comprises a layered silicate-based particles, a blowing agent, an internal crosslinking agent and at least a portion of the water-soluble ethylenically unsaturated monomer having a neutralized acid group, crosslinked polymerization of the monomer composition stirred at a speed of 1000 rpm or more To form a hydrogel polymer; And drying, pulverizing and classifying the hydrogel polymer to form a base resin powder, wherein the concentration of the water-soluble ethylenically unsaturated monomer included in the monomer composition is 40 weight ¾ »to 60 weight ¾>, Drying, pulverizing, and classifying the hydrogel polymer to form a base resin powder may include a coarse milling step of grinding the particle size of the hydrogel polymer so as to have a particle diameter of 2 kPa to 10 kPa. At a temperature above ° C, a process for producing a super absorbent polymer may be provided that proceeds with a frequency of 15 Hz or higher.
또한, 상기 다른 구현예의 제조방법은 층상 실리케이트계 입자, 발포 게, 내부 가교제 및 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체를 포함하고, 1000 rpm 이상의 속도로 교반시킨 단량체 조성 물을 가교 중합하여 함수겔 중합체를 형성하는 단계; 및 상기 함수겔 중합 체를 건조, 분쇄 및 분급하여 베이스 수지 분말을 형성하는 단계를 포함하 고, 상기 단량체 조성물에 포함된 수용성 에틸렌계 불포화 단량체의 농도가 40중량 % 내지 60 중량 이며, 상기 함수겔 중합체의 입경이 2隱 내지 10讓로 되도록 분쇄하는 조분쇄 단계를 포함하며, 상기 조분쇄 단계 이전 또는 이 후에, 상기 함수겔 중합체 100 중량부에 대하여, 20 중량부 미만의 함량으 로 물을 첨가하는 단계를 더 포함하는 고흡수성 수지의 제조 방법이 제공될 수 있다. In addition, the production method of the other embodiment comprises a layered silicate-based particles, foamed crab, internal cross-linking agent and at least a portion of the water-soluble ethylenically unsaturated monomer having a neutralized acid group, crosslinked polymerization of the monomer composition stirred at a speed of 1000 rpm or more To form a hydrogel polymer; And drying, pulverizing and classifying the hydrogel polymer to form a base resin powder, wherein the concentration of the water-soluble ethylenically unsaturated monomer included in the monomer composition is 40 wt% to 60 wt%, and the hydrogel The particle diameter of the polymer is from 2 隱 to 10 讓 And coarsely pulverizing the pulverizing step, and before or after the coarse pulverizing step, further comprising adding water in an amount of less than 20 parts by weight, based on 100 parts by weight of the hydrogel polymer. Manufacturing methods may be provided.
한편, 상기 다른 구현예의 제조방법은 층상 실리케이트계 입자, 발포 제, 내부 가교제 및 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체를 포함하고, 1000 rpm 이상의 속도로 교반시킨 단량체 조성 물을 가교 중합하여 함수겔 중합체를 형성하는 단계; 및 상기 함수겔 중합 체를 건조, 분쇄 및 분급하여 베이스 수지 분말을 형성하는 단계를 포함하 고, 상기 함수겔 중합체를 건조, 분쇄 및 분급하여 베이스 수지 분말을 형 성하는 단계는, 상기 함수겔 중합체의 입경이 2匪 내지 10隱로 되도록 분쇄 하는 조분쇄 단계를 포함하며, 상기 조분쇄 단계는 50°C 이상의 은도에서, 15 Hz 이상의 진동수로 진행하고, 상기 조분쇄 단계 이전 또는 이후에, 상 기 함수겔 중합체 100 증량부에 대하여, 20 중량부 미만의 함량으로 물을 첨가하는 단계를 더 포함하는 고흡수성 수지의 제조 방법이 제공될 수 있다. 한편, 상기 다른 구현예의 제조방법은 층상 실리케이트계 입자, 발포 게, 내부 가교제 및 적어도 일부가 증화된 산성기를 갖는 수용성 에틸렌계 블포화 단량체를 포함하고, 1000 rpm 이상의 속도로 교반시킨 단량체 조성 물을 가교 중합하여 함수겔 중합체를 형성하는 단계; 및 상기 함수겔 중합 체를 건조, 분쇄 및 분급하여 베이스 수지 분말을 형성하는 단계를 포함하 고, 상기 단량체 조성물쎄 포함된 수용성 에틸렌계 불포화 단량체의 농도가 40 중량 % 내지 60 중량 %이며, 상기 함수겔 중합체를 건조, 분쇄 및 분급하 여 베이스 수지 분말을 형성하는 단계는, 상기 함수겔 중합체의 입경이 2隱 내지 10隱로 되도록 분쇄하는 조분쇄 단계를 포함하며, 상기 조분쇄 단계는 50 °C 아상의 온도에서, 15 Hz 이상의 진동수로 진행하고, 상기 조분쇄 단계 이전 또는 이후에 상기 함수겔 중합체 100 중량부에 대하여, 20 중량부 미. 만의 함량으로 물을 첨가하는 단계를 더 포함하는 고흡수성 수지의 제조 방 법이 제공될 수 있다. On the other hand, the production method of the other embodiment comprises a layered silicate-based particles, a blowing agent, an internal crosslinking agent and at least a portion of the water-soluble ethylenically unsaturated monomer having a neutralized acid group, crosslinked polymerization of the monomer composition stirred at a speed of 1000 rpm or more To form a hydrogel polymer; And drying, pulverizing and classifying the hydrogel polymer to form a base resin powder, and drying, pulverizing and classifying the hydrogel polymer to form a base resin powder, the hydrogel polymer Coarse grinding step of grinding so that the particle diameter of 2 to 10 隱, wherein the coarse grinding step proceeds at a frequency of 15 Hz or more, at a temperature of 50 ° C or more, before or after the coarse grinding step, With respect to 100 parts by weight of the hydrogel polymer, a method for preparing a super absorbent polymer may be provided further comprising adding water in an amount of less than 20 parts by weight. On the other hand, the production method of the other embodiment comprises a layered silicate-based particles, foamed crab, internal crosslinking agent and water-soluble ethylene-based unsaturated monomer having at least a portion of the acid group is increased, crosslinking the monomer composition stirred at a speed of 1000 rpm or more Polymerizing to form a hydrogel polymer; And drying, pulverizing and classifying the hydrogel polymer to form a base resin powder, wherein the concentration of the water-soluble ethylenically unsaturated monomer included in the monomer composition is 40 wt% to 60 wt%. Drying, pulverizing and classifying the gel polymer to form a base resin powder includes a coarse pulverizing step of pulverizing the particle diameter of the hydrogel polymer so as to have a particle diameter of 2 kPa to 10 kPa, wherein the co-pulverizing step is 50 ° C. 20 parts by weight, with respect to 100 parts by weight of the hydrogel polymer before or after the coarse grinding step, at a frequency of subphase. A method of preparing a super absorbent polymer may be provided further comprising adding water in a bay amount.
상술한 제조방법에 따라 수득된 고흡수성 수지는 보수능과 흡수속도 등의 제반 물성이 함께 향상된 매우 우수한 특성을 나타낼 수 있고, 기저귀 등 위생 용품에 적절하게 사용 가능한 우수한 제반물성을 나타낼 수 있다. 구체적으로, 상기 다른 구현예의 고흡수성 수지의 제조방법에 의해 얻어지는 고흡수성 수지는 겉보기밀도 (Bulk Densi ty, B/D)가 0. 이 상, 또는 0.55 g/m£ 내지 1.0
Figure imgf000024_0001
, 또는 0.55 내지 0.70 수 있다. 상기 고흡수성 수지의 겉보기밀도가 0.55 g/m^ 미만으로 지나치게 감 소하게 되면, 상대적으로 상기 고흡수성 수지의 부피가 증가하여, 더 많은 저장공간이 필요하게 되어 저장 효율성이 감소할 수 있다. 또한, 상기 고흡 수성 수지를 기저귀 등의 제조공정에 적용시 고흡수성 수지 입자가 원활히 투입되지 못한채 정체되어 공정의 효율이 감소할 수 있다.
The superabsorbent polymer obtained according to the above-described manufacturing method may exhibit very excellent properties with improved physical properties such as water-retaining capacity and absorption rate, and diaper It can exhibit excellent various physical properties that can be suitably used for sanitary products. Specifically, the super absorbent polymer obtained by the method of preparing the superabsorbent polymer according to another embodiment has an apparent density (Bulk Densi ty, B / D) of 0. or higher, or 0.55 g / m £ to 1.0
Figure imgf000024_0001
Or 0.55 to 0.70. When the apparent density of the superabsorbent polymer is excessively reduced to less than 0.55 g / m ^, the volume of the superabsorbent polymer is relatively increased, and more storage space is required, thereby reducing storage efficiency. In addition, when the superabsorbent polymer is applied to a manufacturing process such as a diaper, the superabsorbent polymer particles may be stagnant without being smoothly injected, thereby reducing the efficiency of the process.
【발명의 효과】  【Effects of the Invention】
본 발명에 따르면, 향상된 흡수 속도 및 높은 걸보기밀도를 갖는 고 흡수성 수지, 및 이의 제조 방법이 제공될 수 있다.  According to the present invention, there can be provided a high absorbent resin having an improved absorption rate and high gallon density, and a manufacturing method thereof.
【도면의 간단한 설명】  [Brief Description of Drawings]
도 1은 실시예에서 사용된 층상 실리케이트계 입자의 단위 결정의 구 조를 개략적으로 나타낸 것이다.  Figure 1 schematically shows the structure of the unit crystal of the layered silicate particles used in the example.
【발명을 실시하기 위한 구체적인 내용】  [Specific contents to carry out invention]
발명을 하기의 실시예에서 보다 상세하게 설명한다. 단, 하기의 실시 예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하 여 한정되는 것은 아니다.  The invention is explained in more detail in the following examples. However, the following examples are merely to illustrate the present invention, the content of the present invention is not limited by the following examples.
<실시예 1 내지 2, 비교예 1 내지 2: 후첨물량이 상이한 고흡수성 수 지의 제조 > <Examples 1 and 2, Comparative Examples 1 and 2: Preparation of superabsorbent polymers having different post-treatment amounts>
실시여 U  Reality U
아크릴산 226g에 광중합 개시제로 비스 (2 , 4,6-트리메틸벤조일) -페닐 포스핀 옥사이드 [ IGARCURE 819] 0. 18g을 넣고 5분간 흔합한 다음, 가교제로 폴리에틸렌글리콜 디아크릴레이트 (Mi ramer M280) 4. 1 g을 넣고 10분간 흔합 하여 단량체 용액을 제조하였다.  Bis (2,4,6-trimethylbenzoyl) -phenyl phosphine oxide [IGARCURE 819] was added to 226 g of acrylic acid and mixed for 5 minutes. Then, polyethylene glycol diacrylate (Mi ramer M280) 4 was used as a crosslinking agent. 1 g was added and mixed for 10 minutes to prepare a monomer solution.
이온수 155g에 실리케이트계 입자로 라포나이트 RD 1.6 g을 투입하고, 30분간 흔합하였다. 이후, 열중합 개시제인 소디움 퍼설페이트 1.7g을 넣고, 이온수에 완전히 용해될 때까지 녹인 다음, 발포제로 중탄산나트륨 8.8 g을 넣고 10분간흔합하여 흔합수용액을 제조하였다. Laponite RD 1.6g was added to 155g of ionized water as a silicate type particle | grain, and it mixed for 30 minutes. Then, 1.7 g of sodium persulfate, a thermal polymerization initiator, was added thereto, dissolved in ionic water until completely dissolved, and then 8.8 g of sodium bicarbonate was used as a blowing agent. The mixture was mixed for 10 minutes to prepare a mixed aqueous solution.
32% 가성소다 (NaOH) 661 g에 이온수 192g을 흔합하여 가성 소다 용액 을 준비하였다.  A caustic soda solution was prepared by mixing 192 g of ionized water with 661 g of 32% caustic soda (NaOH).
20 °C 넁각수가 흐르는 2L 이중 자켓유리 반웅기에 아크릴산 483g을 넣고, 상기 단량체 용액 54. 7g을 넣어 5분간 흔합하였다. 이후, 상기 가성 소다 용액을 10분간 투입하여 중화시켰다. 중화열에 의해 약 65 °C까지 온도 가 상승하였고, 46 °C로 넁각될 때까지 기다린 후, 상기 흔합 수용액 40 . 8g 을 넣고 1분간 흔합한다음, 고전단력 교반장치 (dynami c mechani ca l system , DMS)를 이용하여 펌프모터 6000 rpm , 교반기 6900 rpm의 속도로 교반하여 단 량체 조성물을 제조하였다.  483 g of acrylic acid was added to a 2L double-jacketed glass reaction vessel flowing at 20 ° C., and 54.7 g of the monomer solution was added thereto and mixed for 5 minutes. Thereafter, the caustic soda solution was added for 10 minutes and neutralized. The temperature was raised to about 65 ° C by the heat of neutralization, and waited until the angle was reduced to 46 ° C, the mixed aqueous solution 40. After adding 8g and mixing for 1 minute, a monomer composition was prepared by stirring at a speed of pump motor 6000 rpm and agitator 6900 rpm using a high shear force stirring device (dynami c mechani ca l system, DMS).
상기 단량체 조성물올 연속 이동하는 컨베이어 벨트로 이루어진 중합 기의 공급부로 투입하고, 10mW 조도를 갖는 UV 조사 장치로 자외선을 1분 동안 조사 (조사량: 2 mW/ctf)하고, 2분간 기다린 후, 5cm* 5cm크기로 절단한 후 이온수 100g( 18.6 phr )을 넣어 흡수시켜 함수겔 중합체를 얻었다.  The monomer composition was introduced into a supply unit of a polymerization belt composed of a continuously moving conveyor belt, irradiated with ultraviolet light for 1 minute (irradiation amount: 2 mW / ctf) with a UV irradiation device having a 10 mW illuminance, and waited for 2 minutes, 5 cm * After cutting into 5 cm size, 100 g (18.6 phr) of ionized water was added and absorbed to obtain a hydrous gel polymer.
상기 함수겔 중합체를 절단기로 이송한 후, 25 °C , 15.8hz조건에서 분 쇄하였다. 이어, 상기 분쇄된 함수겔 중합체를 180 °C의 열풍 건조기에서 40 분 동안 건조시키고, 건조된 함수겔 중합체를 해머밀 분쇄기로 분쇄하였다. 이어, 시브 ( se ive)를 사용하여 입도 (평균 입경 크기)가 150 βΆ 내지 850 인 중합체를 분급하고, 다시 입도 (평균 입경 크기)가 300 im 내지 600 卿인 중합체를 분급하여 고흡수성 수지를 제조하였다. 실시여 12  After transferring the hydrogel polymer to a cutter, it was ground at 25 ° C, 15.8hz conditions. Subsequently, the pulverized hydrogel polymer was dried in a hot air dryer at 180 ° C. for 40 minutes, and the dried hydrogel polymer was pulverized with a hammer mill grinder. Subsequently, a polymer having a particle size (average particle diameter size) of 150 βΆ to 850 was classified using a sieve, and a polymer having a particle size (average particle size size) of 300 im to 600 mm 3 was further classified to prepare a super absorbent polymer. It was. Conduct female 12
상기 함수겔 중합체 제조시 이온수를 첨가하지 않은 것을 제외하고, 상기 실시예 1과 동일하게 고흡수성 수지를 제조하였다. 비교 ^] 1  A super absorbent polymer was prepared in the same manner as in Example 1, except that ion water was not added when preparing the hydrogel polymer. Compare ^] 1
상기 함수겔 중합체 제조시 이온수를 195g(36.7 phr )으로 첨가한 것 올 제외하고, 상기 실시예 1과 동일하게 고흡수성 수지를 제조하였다. 비교예 2 상기 함수겔 중합체 제조시 이온수를 145g(27.0 phr )으로 첨가한 것 을 제외하고, 상기 실시예 1과동일하게 고흡수성 수지를 제조하였다. Super absorbent polymer was prepared in the same manner as in Example 1, except that 195 g (36.7 phr) of ionized water was added to prepare the hydrogel polymer. Comparative Example 2 A superabsorbent polymer was prepared in the same manner as in Example 1, except that 145 g (27.0 phr) of ionized water was added to prepare the hydrogel polymer.
<실시예 3 내지 5, 비교예 3: 단량체 농도가상이한고흡수성 수지의 제조 >  <Examples 3 to 5, Comparative Example 3: Preparation of a super absorbent polymer having a different monomer concentration>
실시예 3  Example 3
아크릴산 213.5g에 광중합 개시제로 비스 (2 , 4, 6-트리메틸벤조일) -페 닐 포스핀 옥사이드 [ IGARCURE 819] 0.45g을 넣고 5분간 흔합하여 광개시제 용액을 제조하였다.  0.45 g of bis (2,4,6-trimethylbenzoyl) -phenyl phosphine oxide [IGARCURE 819] was added to 213.5 g of acrylic acid and mixed for 5 minutes to prepare a photoinitiator solution.
아크릴산 150.3g에 수크로오스 에스테르 (Ryoto s-1670) 0.38g을 넣은 후, 가교제로 폴리에틸렌글리콜디아크릴레이트 (Mw=508) [Mi ramer M280] 10.8 g을 넣고 10분간흔합하여 가교제 용액을 제조하였다.  After adding 0.38 g of sucrose ester (Ryoto s-1670) to 150.3 g of acrylic acid, 10.8 g of polyethylene glycol diacrylate (Mw = 508) [Mi ramer M280] was added as a crosslinking agent and mixed for 10 minutes to prepare a crosslinking agent solution.
이온수 154.7g에 실리케이트계 입자로 라포나이트 RD 1.9 g을 투입하 고, 30분간 흔합하였다. 이후, 발포제로 중탄산나트륨 3.5 g을 넣고 10분간 흔합하여 흔합 수용액을 제조하였다.  In 154.7 g of ionized water, 1.9 g of laponite RD was added as a silicate particle, followed by mixing for 30 minutes. Then, 3.5 g of sodium bicarbonate was added as a blowing agent and mixed for 10 minutes to prepare a mixed aqueous solution.
이온수 132.6g에 열중합 개시제인 소디움 퍼설페이트 14.7g을 넣고, 이온수에 완전히 용해될 때까지 녹여 열중합 개시제 용액을 제조하였다.  14.7 g of sodium persulfate, a thermal polymerization initiator, was added to 132.6 g of ionized water, and dissolved until completely dissolved in ionized water, thereby preparing a thermal polymerization initiator solution.
32% 가성소다 (NaOH) 624 g에 이온수 117g을 흔합하여 가성 소다 용액 을 준비하였다.  A caustic soda solution was prepared by mixing 117 g of ionized water with 624 g of 32% caustic soda (NaOH).
20 °C 넁각수가 흐르는 2L 이중 자켓유리 반웅기에 아크릴산 428g을 넣고, 상기 광개시제 용액 17. , 가교제 용액 15.8g을 넣어 5분간 흔합하 였다. 이후, 상기 가성 소다 용액을 10분간 투입하여 중화시켰다. 중화열에 의해 약 65°C까지 온도가 상승하였고, 46°C로 넁각될 때까지 기다린 후, 상 기 열개시제 용액 9.2g 및 발포제 용액 38. 1g을 넣고 1분간 흔합한다음, 고 전단력 교반장치 (dynami c mechanical system, DMS)를 이용하여 펌프모터 6000 rpm, 교반기 6900 rpm의 속도로 교반하여 단량체 조성물을 제조하였다. 이때, 상기 단량체 조성물에 함유된 단량체 농도가 45.9중량 %였다. 20 ° C nyaenggak number into a 2L acrylate 428g double jacket glass half unggi flowing, the photo-initiator solution was 17, was five minutes into a common hapha crosslinking agent solution 15.8g. Thereafter, the caustic soda solution was added for 10 minutes and neutralized. The temperature rose to about 65 ° C by the heat of neutralization, and waited until the angle was detected at 46 ° C, and then mixed for 1 minute with 9.2 g of the thermal initiator solution and 38. 1 g of the blowing agent solution. A monomer composition was prepared by stirring at a speed of 6000 rpm and a stirrer 6900 rpm using a dynami c mechanical system (DMS). At this time, the monomer concentration contained in the monomer composition was 45.9% by weight.
상기 단량체 조성물을 연속 이동하는 컨베이어 벨트로 이루어진 중합 기의 공급부로 투입하고, 10mW 조도를 갖는 UV 조사 장치로 자외선을 1분 동안 조사 (조사량: 2 mW/cirf)하고, 2분간 기다린 후, 5cm* 5cm크기로 절단한 후 이온수 40g을 넣어 흡수시켜 함수겔 중합체를 얻었다. 상기 함수겔 중합체를 절단기로 이송한후, 80 °C , 25hz조건에서 분쇄 하였다. 이어, 상기 분쇄된 함수겔 중합체를 180°C의 열풍 건조기에서 40분 동안 건조시키고, 건조된 함수겔 중합체를 해머말분쇄기로 분쇄하였다. 이 어, 시브 (seive)를 사용하여 입도 (평균 입경 크기)가 150 내지 850 인 증합체를 분급하고, 다시 입도 (평균 입경 크기)가 300 내지 600 인 중 합체를 분급하여 고흡수성 수지를 제조하였다. 실시^ 14 The monomer composition was introduced into a supply section of a polymerization vessel consisting of a continuously moving conveyor belt, irradiated with ultraviolet light for 1 minute (irradiation amount: 2 mW / cirf) with a UV irradiation device having a 10 mW illuminance, and waited for 2 minutes, 5 cm * After cutting into 5 cm size, 40 g of ionized water was added and absorbed to obtain a hydrous gel polymer. The hydrogel polymer was transferred to a cutter and then ground at 80 ° C. and 25hz. Next, the dry pulverized hydrogel polymer in a hot-air drier at 180 ° C for 40 minutes, and was ground to the dried hydrogel polymer in the end of the hammer mill. By using a sieve, the superpolymer having a particle size (average particle size) of 150 to 850 was classified, and the polymer having a particle size (average particle size) of 300 to 600 was classified to prepare a super absorbent polymer. . Implementation ^ 14
아크릴산 204.8g에 광중합 개시제로 비스 (2 , 4 , 6—트리메틸벤조일) -페 닐 포스핀 옥사이드 [ IGARCURE 819] 0.43g을 넣고 5분간 흔합하여 광개시제 용액을 제조하였다.  0.43 g of bis (2,4,6-trimethylbenzoyl) -phenyl phosphine oxide [IGARCURE 819] was added to 204.8 g of acrylic acid and mixed for 5 minutes to prepare a photoinitiator solution.
아크릴산 144.2g에 수크로오스 에스테르 (Ryoto s-1670) 0.36g을 넣은 후, 가교제로 폴리에틸렌글리콜디아크릴레이트 (Mw=508) [Mi ramer M280] 10.4 g을 넣고 10분간흔합하여 가교제 용액을 제조하였다.  0.36 g of sucrose ester (Ryoto s-1670) was added to 144.2 g of acrylic acid, and 10.4 g of polyethylene glycol diacrylate (Mw = 508) [Mi ramer M280] was added as a crosslinking agent, followed by mixing for 10 minutes to prepare a crosslinking agent solution.
이온수 148.4g에 실리케이트계 입자로 라포나이트 RD 1.9 g을 투입하 고, 30분간 흔합하였다. 이후, 발포제로 중탄산나트륨 3.3 g을 넣고 10분간 흔합하여 흔합 수용액을 제조하였다.  1.9 g of laponite RD was added to 148.4 g of ionized water as a silicate particle, followed by mixing for 30 minutes. Then, 3.3 g of sodium bicarbonate was added as a blowing agent and mixed for 10 minutes to prepare a mixed aqueous solution.
이은수 127.2g에 열중합 개시제인 소디움 퍼설페이트 14. 1g을 넣고, 이온수에 완전히 용해될 때까지 녹여 열중합 개시제 용액을 제조하였다.  17.2 g of sodium persulfate, a thermal polymerization initiator, was added to 127.2 g of silver water, and dissolved until dissolved completely in ionized water, thereby preparing a thermal polymerization initiator solution.
32% 가성소다 (NaOH) 598.5 g에 이온수 163.4g을 흔합하여 가성 소다 용액을 준비하였다.  A caustic soda solution was prepared by mixing 163.4 g of ionized water with 598.5 g of 32% caustic soda (NaOH).
20 °C 냉각수가 흐르는 2L 이중 자켓유리 반웅기에 아크릴산 410.7g을 넣고, 상기 광개시제 용액 16.8g , 가교제 용액 15.2g을 넣어 5분간 흔합하 였다. 이후, 상기 가성 소다 용액을 10분간 투입하여 중화시켰다. 중화열에 의해 약 65°C까지 온도가 상승하였고, 46 °C로 넁각될 때까지 기다린 후, 상 기 열개시제 용액 8.8g 및 발포제 용액 36.6g을 넣고 1분간 흔합한다음, 고 전단력 교반장치 (dynami c mechani cal system , DMS)를 이용하여 펌프모터20 ° C cooling water is put into a 2L 410.7g acrylic acid to the double jacket glass half unggi flowing, the photoinitiator solution 16.8g, was five minutes into a common hapha crosslinking agent solution 15.2g. Thereafter, the caustic soda solution was added for 10 minutes and neutralized. The temperature rose to about 65 ° C by the heat of neutralization, and waited until the angle was detected at 46 ° C, and then mixed with 8.8 g of the thermal initiator solution and 36.6 g of the blowing agent solution for 1 minute and then mixed with a high shear force agitator (dynami c Pump motor using mechani cal system (DMS)
6000 rpm , 교반기 6900 rpm의 속도로 교반하여 단량체 조성물을 제조하였다. 이때, 상기 단량체 조성물에 함유된 단량체 농도가 44.0증량 % 였다. The monomer composition was prepared by stirring at 6000 rpm and a stirrer 6900 rpm. At this time, the monomer concentration contained in the monomer composition was 44.0% by weight.
상기 단량체 조성물을 연속 이동하는 컨베이어 벨트로 이루어진 중합 기의 공급부로 투입하고, 10mW 조도를 갖는 UV 조사 장치로 자와선을 1분 동안 조사 (조사량: 2 mW/cirf)하고, 2분간 기다린 후, 5cm* 5cm크기로 절단한 후 이온수 40g을 넣어 흡수시켜 함수겔 중합체를 얻었다. Polymerization consisting of a conveyor belt continuously moving the monomer composition Into the feeder of the machine, irradiate the Jawa line for 1 minute with a 10mW irradiance UV irradiation device (irradiation amount: 2mW / cirf), wait for 2 minutes, cut into 5cm * 5cm size, absorb 40g of ionized water To obtain a hydrous gel polymer.
상기 함수겔 증합체를 절단기로 이송한 후, 80°C , 25hz조건에서 분쇄 하였다. 이어, 상기 분쇄된 함수겔 중합체를 180°C의 열풍 건조기에서 40분 동안 건조시키고, 건조된 함수겔 중합체를 해머밀 분쇄기로 분쇄하였다. 이 어, 시브 (seive)를 사용하여 입도 (평균 입경 크기)가 150 / m 내지 850 인 증합체를 분급하고, 다시 입도 (평균 입경 크기)가 300 μπι 내지 600 인 증 합체를 분급하여 고흡수성 수지를 제조하였다. 실시예 5 After transferring the hydrogel polymer to a cutter, it was ground at 80 ° C, 25hz conditions. Subsequently, the pulverized hydrogel polymer was dried in a hot air dryer at 180 ° C. for 40 minutes, and the dried hydrogel polymer was pulverized with a hammer mill grinder. For this, a sieve is used to classify a polymer having a particle size (average particle size) of 150 / m to 850, and then to classify a polymer having a particle size (average particle size) of 300 μπι to 600 to superabsorbent polymer. Was prepared. Example 5
아크릴산 195.4g에 광중합 개시제로 비스 (2,4,6-트리메틸벤조일 ) -페 닐 포스핀 옥사이드 [ IGARCU E 819] 0.41g을 넣고 5분간 혼합하여 광개시제 용액을 제조하였다.  Photoinitiator solution was prepared by adding 0.41 g of bis (2,4,6-trimethylbenzoyl) -phenyl phosphine oxide [IGARCU E 819] to 195.4 g of acrylic acid and mixing for 5 minutes.
아크릴산 137.6g에 수크로오스 에스테르 (Ryoto s-1670) 0.36g을 넣은 후, 가교제로 폴리에틸렌글리콜디아크릴레이트 (Mw=508) [Mi ramer M280] 9.9 g을 넣고 10분간 흔합하여 가교제 용액을 제조하였다.  0.36 g of sucrose ester (Ryoto s-1670) was added to 137.6 g of acrylic acid, and 9.9 g of polyethylene glycol diacrylate (Mw = 508) [Mi ramer M280] was added as a crosslinking agent, followed by mixing for 10 minutes to prepare a crosslinking agent solution.
이온수 175.4g에 실리케이트계 입자로 라포나이트 RD 2.2 g을 투입하 고, 30분간 흔합하였다. 이후, 발포제로 중탄산나트륨 3.9 g을 넣고 10분간 흔합하여 흔합 수용액을 제조하였다.  2.2 g of laponite RD was added as a silicate particle to 175.4 g of ionized water, followed by mixing for 30 minutes. Then, 3.9 g of sodium bicarbonate was added as a blowing agent and mixed for 10 minutes to prepare a mixed aqueous solution.
이온수 121.4g에 열중합 개시제인 소디움 퍼설페이트 13.5g을 넣고, 이온수에 완전히 용해될 때까지 녹여 열증합 개시제 용액을 제조하였다.  13.5 g of sodium persulfate, a thermal polymerization initiator, was added to 121.4 g of ionized water and dissolved until completely dissolved in ionized water to prepare a thermal polymerization initiator solution.
32% 가성소다 (NaOH) 571.2 g에 이온수 212.9g을 흔합하여 가성 소다 용액을 준비하였다.  A caustic soda solution was prepared by mixing 212.9 g of ionized water with 571.2 g of 32% caustic soda (NaOH).
20 °C 넁각수가 흐르는 2L 이중 자켓유리 반웅기에 아크릴산 392g을 넣고, 상기 광개시제 용액 16. lg, 가교제 용액 14.5g을 넣어 5분간 흔합하 였다. 이후, 상기 가성 소다 용액을 10분간 투입하여 중화시켰다. 중화열에 의해 약 65°C까지 온도가 상승하였고, 46 °C로 냉각될 때까지 기다린 후, 상 기 열개시제 용액 8.4g 및 발포제 용액 34.9g을 넣고 1분간 흔합한다음, 고 전단력 교반장치 (dynami c mechanical system, DMS)를 이용하여 펌프모터 6000 rpm , 교반기 6900 rpm의 속도로 교반하여 단량체 조성물을 제조하였다. 이때, 상기 단량체 조성물에 함유된 단량체 농도가 42중량 % 였다. 392 g of acrylic acid was added to a 2L double-jacketed glass reaction vessel flowing at 20 ° C., and 16. lg of the photoinitiator solution and 14.5 g of the crosslinker solution were mixed for 5 minutes. Thereafter, the caustic soda solution was added for 10 minutes and neutralized. The temperature rose to about 65 ° C by the heat of neutralization, and after waiting until it cooled to 46 ° C, 8.4 g of the thermal initiator solution and 34.9 g of the blowing agent solution were mixed and mixed for 1 minute, followed by a high shear stirrer (dynami c Pump motor using mechanical system (DMS) The monomer composition was prepared by stirring at 6000 rpm and a stirrer 6900 rpm. At this time, the monomer concentration contained in the monomer composition was 42% by weight.
상기 단량체 조성물을 연속 이동하는 컨베이어 벨트로 이루어진 중합 기의 공급부로 투입하고, 10mW 조도를 갖는 UV 조사 장치로 자외선을 1분 동안 조사 (조사량: 2 mW/crf)하고, 2분간 기다린 후, 5cm* 5cm크기로 절단한 후 이온수 40g을 넣어 흡수시켜 함수겔 중합체를 얻었다.  The monomer composition was introduced into a supply unit of a polymerizer consisting of a continuously moving conveyor belt, and irradiated with ultraviolet rays for 1 minute (irradiation amount: 2 mW / crf) with a UV irradiation apparatus having a 10 mW illuminance, and then waited for 2 minutes, 5 cm * After cutting into 5 cm size, 40 g of ionized water was added and absorbed to obtain a hydrous gel polymer.
상기 함수겔 중합체를 절단기로 이송한 후, 80^ 25hz조건에서 분쇄 하였다. 이어, 상기 분쇄된 함수겔 중합체를 180°C의 열풍 건조기에서 40분 동안 건조시키고, 건조된 함수겔 중합체를 해머밀 분쇄기로 분쇄하였다. 이 어, 시브 (seive)를 사용하여 입도 (평균 입경 크기)가 150 卿 내지 850 인 중합체를 분급하고, 다시 입도 (평균 입경 크기)가 300 m 내지 600 卿인 중 합체를 분급하여 고흡수성 수지를 제조하였다. 비교여 13 The hydrogel polymer was transferred to a cutter and then ground in a 80 ^ 25hz condition. Subsequently, the pulverized hydrogel polymer was dried in a hot air dryer at 180 ° C. for 40 minutes, and the dried hydrogel polymer was pulverized with a hammer mill grinder. For example, a sieve is used to classify a polymer having a particle size (average particle size) of 150 to 850, and then to classify a polymer having a particle size (average particle size) of 300 m to 600 mm to obtain a superabsorbent polymer. Prepared. 13 F
상기 단량체 조성물 제조시 상기 단량체 조성물에 함유된 단량체 농 도가 39중량%가 되도록 조절한 것을 제외하고, 상기 실시예 3과 동일하게 고 흡수성 수지를 제조하였다.  A high absorbency resin was prepared in the same manner as in Example 3, except that the monomer concentration contained in the monomer composition was adjusted to 39 wt% when the monomer composition was prepared.
<실시예 6 내지 7, 비교예 4: 분쇄속도가상이한고흡수성 수지의 제 조> <Examples 6 to 7, Comparative Example 4: Preparation of superabsorbent polymer having different grinding speeds>
실시여 16  Reality 16
아크릴산 220.2g에 광중합 개시제로 비스 (2,4,6-트리메틸벤조일) -페 닐 포스핀 옥사이드 [ IGARCURE 819] 0. 18g및 수크로오스 에스테르 (Ryoto s- 1670) 0.44g을 넣고 5분간 흔합한 다음, 가교제로 폴리에틸렌글리콜 디아크 릴레이트 (Mi ramer M280) 4.0 g을 넣고 10분간 흔합하여 단량체 용액을 제조 하였다.  220.2 g of acrylic acid was added with bis (2,4,6-trimethylbenzoyl) -phenyl phosphine oxide [IGRARCURE 819] 0.1 g and 0.44 g of sucrose ester (Ryoto s-1670) as a photopolymerization initiator, followed by mixing for 5 minutes. A monomer solution was prepared by adding 4.0 g of polyethylene glycol diacrylate (Mi ramer M280) as a crosslinking agent and mixing for 10 minutes.
이온수 155g에 실리케이트계 입자로 라포나이트 RD 1.6 g을 투입하고, 30분간 흔합하였다. 이후, 열중합 개시제인 소디움 퍼설페이트 4.4g을 넣고, 이온수에 완전히 용해될 때까지 녹인 다음, 발포제로 중탄산나트륨 8.8 g을 넣고 10분간흔합하여 흔합 수용액을 제조하였다. 32%가성소다 (NaOH) 661 g에 이온수 192g을 흔합하여 가성 소다 용액 을 준비하였다. Laponite RD 1.6g was added to 155g of ionized water as a silicate type particle | grain, and it mixed for 30 minutes. Thereafter, 4.4 g of sodium persulfate as a thermal polymerization initiator was added thereto, and dissolved until completely dissolved in ionized water. Then, 8.8 g of sodium bicarbonate was added as a blowing agent and mixed for 10 minutes to prepare a mixed aqueous solution. A caustic soda solution was prepared by mixing 192 g of ionized water with 661 g of 32% caustic soda (NaOH).
20 °C 넁각수가 흐르는 2L 이중 자켓유리 반옹기에 아크릴산 483g을 넣고, 상기 단량체 용액 54.8g을 넣어 5분간 흔합하였다. 이후, 상기 가성 소다 용액을 10분간 투입하여 중화시켰다. 중화열에 의해 약 65 °C까지 온도 가 상승하였고, 46 °C로 넁각될 때까지 기다린 후, 상기 흔합 수용액, 41.4g 을 넣고 1분간 흔합한다음, 고전단력 교반장치 (dynami c mechani cal system , DMS)를 이용하여 펌프모터 6000 rpm , 교반기 6900 rpm의 속도로 교반하여 단 량체 조성물을 제조하였다. 483 g of acrylic acid was added to a 2L double-jacketed glass repellent flowing at 20 ° C., and 54.8 g of the monomer solution was added thereto and mixed for 5 minutes. Thereafter, the caustic soda solution was added for 10 minutes and neutralized. The temperature was raised by junghwayeol to about 65 ° C, wait until nyaenggak to 46 ° C, the heunhap aqueous solution, 41.4g combined into a common 1 min and then, the high shear force stirrer (dynami c mechani cal system, DMS A monomer composition was prepared by stirring at a speed of 6000 rpm and a stirrer 6900 rpm using a pump motor.
상기 단량체 조성물을 연속 이동하는 컨베이어 벨트로 이루어진 중합 기의 공급부로 투입하고, 10mW 조도를 갖는 UV 조사 장치로 자외선을 1분 동안 조사 (조사량: 2 mW/αη2)하고, 2분간 기다린 후, 5cm* 5cm크기로 절단한 후 이온수 100g을 넣어 흡수시켜 함수겔 중합체를 얻었다. The monomer composition was introduced into a feeder of a polymerization reactor consisting of a continuously moving conveyor belt, irradiated with ultraviolet light for 1 minute (irradiation amount: 2 mW / α 2 ) with a UV irradiation device having a 10 mW illuminance, and then waited for 2 minutes, 5 cm * After cutting into 5 cm size 100 g of ionized water was absorbed to obtain a hydrous gel polymer.
상기 함수겔 중합체를 절단기로 이송한 후, 90 °C , 25hz조건에서 분쇄 하였다. 이어, 상기 분쇄된 함수겔 중합체를 180 °C의 열풍 건조기에서 40분 동안 건조시키고, 건조된 함수겔 중합체를 해머밀 분쇄기로 분쇄하였다. 이 어, 시브 ( seive)를 사용하여 입도 (평균 입경 크기)가 150 μαι 내지 850 /通인 중합체를 분급하고, 다시 입도 (평균 입경 크기)가 300 urn 내지 600 인 중 합체를 분급하여 고흡수성 수지를 제조하였다. 실시^ 17 After transferring the hydrogel polymer to a cutter, it was ground at 90 ° C, 25hz conditions. Subsequently, the pulverized hydrogel polymer was dried in a hot air dryer at 180 ° C. for 40 minutes, and the dried hydrogel polymer was pulverized with a hammer mill grinder. This sieve is used to classify polymers having a particle size (average particle size) of 150 μαι to 850 / 通, and to classify polymers having a particle size (average particle size) of 300 urn to 600 to superabsorbent polymers. Was prepared. Implementation ^ 17
아크릴산 225.5g에 광중합 개시제로 비스 (2 , 4 , 6-트리메틸벤조일) -페 닐 포스핀 옥사이드 [ IGARCURE 819] 0. 18g을 넣고 5분간 흔합한 다음, 가교 제로 폴리에틸렌글리콜 디아크릴레이트 (Mi ramer M280) 4. 1 g을 넣고 10분간 흔합하여 단량체 용액을 제조하였다.  225.5 g of acrylic acid was added with bis (2,4,6-trimethylbenzoyl) -phenyl phosphine oxide [IGARCURE 819] as a photopolymerization initiator and mixed for 18 minutes, followed by mixing with polyethylene glycol diacrylate (Mi ramer M280). 4. Add 1 g and mix for 10 minutes to prepare a monomer solution.
이온수 155g에 실리케이트계 입자로 라포나이트 RD 1.6 g을 투입하고, 30분간 흔합하였다. 이후, 열중합 개시제인 소디움 퍼설페이트 1 .7g을 넣고, 이온수에 완전히 용해될 때까지 녹인 다음, 발포제로 중탄산나트륨 8.8 g을 넣고 10분간흔합하여 흔합 수용액을 제조하였다.  Laponite RD 1.6g was added to 155g of ionized water as a silicate type particle | grain, and it mixed for 30 minutes. Thereafter, 1.7 g of sodium persulfate as a thermal polymerization initiator was added thereto, and dissolved until completely dissolved in ionized water. Then, 8.8 g of sodium bicarbonate was added as a blowing agent and mixed for 10 minutes to prepare a mixed aqueous solution.
32% 가성소다 (NaOH) 661 g에 이온수 192g을 흔합하여 가성 소다 용액 을 준비하였다. Caustic soda solution by mixing 192 g of ionized water with 661 g of 32% caustic soda (NaOH) Was prepared.
20 °C 냉각수가 흐르는 2L 이중 자켓유리 반웅기에 아크릴산 483g을 넣고, 상기 단량체 용액 54.7g을 넣아 5분간 흔합하였다. 이후, 상기 가성 소다 용액을 10분간 투입하여 중화시켰다. 중화열에 의해 약 65°C까지 온도 가 상승하였고, 46 °C로 냉각될 때까지 기다린 후, 상기 흔합 수용액 40.8g 을 넣고 1분간 흔합한다음, 고전단력 교반장치 (dynami c mechani cal system , DMS)를 이용하여 펌프모터 6000 rpm , 교반기 6900 rpm의 속도로 교반하여 단 량체 조성물을 제조하였다. 483 g of acrylic acid was added to a 2L double-jacket glass reaction vessel flowing with 20 ° C. cooling water, and 54.7 g of the monomer solution was added thereto and mixed for 5 minutes. Thereafter, the caustic soda solution was added for 10 minutes and neutralized. The temperature was raised by junghwayeol to about 65 ° C, and then wait for it to cool to 46 ° C, into the aqueous solution of 40.8g heunhap combined common 1 min and then, the high shear force stirrer (dynami c mechani cal system, DMS) By using a pump motor 6000 rpm, the stirrer was stirred at a speed of 6900 rpm to prepare a monomer composition.
상기 단량체 조성물을 연속 이동하는 컨베이어 벨트로 이루어진 중합 기의 공급부로 투입하고, lOmW 조도를 갖는 UV 조사 장치로 자외선을 1분 동안 조사 (조사량: 2 mW/cuf)하고, 2분간 기다린 후, 5cm* 5cm크기로 절단한 후 이온수 100g을 넣어 흡수시켜 함수겔 증합체를 얻었다.  The monomer composition was introduced into a supply unit of a polymerizer consisting of a continuously moving conveyor belt, irradiated with ultraviolet rays for 1 minute (irradiation amount: 2 mW / cuf) with a UV irradiation apparatus having lOmW illuminance, and then waited for 2 minutes, 5 cm * After cutting into 5cm size, 100g of ionized water was added and absorbed to obtain a hydrous gel polymer.
상기 함수겔 중합체를 절단기로 이송한후, 90°C , 15.8hz조건에서 분 쇄하였다. 이어, 상기 분쇄된 함수겔 중합체를 180°C의 열풍 건조기에서 40 분 동안 건조시키고, 건조된 함수겔 중합체를 해머밀 분쇄기로 분쇄하였다. 이어, 시브 ( seive)를 사용하여 입도 (평균 입경 크기)가 150 내지 850 卿 인 중합체를 분급하고, 다시 입도 (평균 입경 크기;)가 300 내지 600 卿인 중합체를 분급하여 고흡수성 수지를 제조하였다. 비교여 The hydrogel polymer was transferred to a cutter and then ground at 90 ° C. and 15.8 hz. Subsequently, the pulverized hydrogel polymer was dried in a hot air dryer at 180 ° C. for 40 minutes, and the dried hydrogel polymer was pulverized with a hammer mill grinder. Subsequently, a polymer having a particle size (average particle diameter size) of 150 to 850 mm 3 was classified using a sieve, and a polymer having a particle size (average particle size size ) of 300 to 600 mm 3 was again classified to prepare a super absorbent polymer. . Comparison
상기 함수겔 중합체를 절단기로 이송한후, 90°C , 10 hz 조건에서 분 쇄한 것을 제외하고, 상기 실시예 6과 동일하게 고흡수성 수지를 제조하였다. After transferring the hydrogel polymer to a cutter, a super absorbent polymer was prepared in the same manner as in Example 6, except that the hydrogel polymer was ground at 90 ° C. and 10 hz.
<실험예 : 실시예 및 비교예에서 얻어진 고흡수성 수지의 물성 측정 > 상기 실시예 및 비교예에서 제조한 고흡수성 수지에 대하여, 하기의 방법으로 물성을 측정하였으며, 그 결과를 표 1 내지 표 3에 나타내었다. 실험예 1. 생리 식염수에 대한 원심분리 보수능 (CRC , Cent r i fuge Retent ion Capaci ty) <Experimental Example: Measurement of Physical Properties of Super Absorbent Polymers Obtained in Examples and Comparative Examples> Physical properties of the superabsorbent polymers prepared in Examples and Comparative Examples were measured by the following methods, and the results are shown in Tables 1 to 3 below. Shown in Experimental Example 1. Centrifugal water retention capacity for physiological saline (CRC, Centr i fuge Retent ion Capaci ty)
유럽부직포산업협회 (European Di sposabl es and Nonwovens Associ at i on , EDANA) 규격 EDANA WSP 241.2에 따라 실시예 및 비교예의 고 흡수성 수지에 대하여, 무하중하 흡수배율에 의한 원심분리 보수능 (CRC)을 측정하였다. European Di sposabl es and Nonwovens According to the standard EDANA WSP 241.2, the centrifugal water retention capacity (CRC) was measured for the high absorbent resins of the examples and the comparative examples with no-load absorption ratio.
즉, 상기 실시예 및 비교예의 수지 W0(g , 약 0.2g)을 부직포제의 봉 투에 균일하게 넣고 밀봉 (seal )한 후에, 상온에 0.9 중량 %의 염화 나트륨 수용액으로 되는 생리 식염수에 침수했다. 30분 후에 봉투를 원심 분리기 를 이용하고 250G로 3분간 물기를 뺀 후에 봉투의 질량 W2(g)을 측정했다. 또 수지를 이용하지 않고 동일한 조작을 한 후에 그때의 질량 W g)을 측정 했다. That is, after the resin W 0 (g, about 0.2 g) of the examples and comparative examples were evenly placed in a non-woven bag and sealed, the solution was immersed in a physiological saline solution of 0.9 wt% aqueous sodium chloride solution at room temperature. did. After 30 minutes, the bag was centrifuged and drained at 250 G for 3 minutes, and then the mass W 2 (g) of the bag was measured. Moreover, the mass Wg) at that time was measured after performing the same operation without using resin.
이렇게 얻어진 각 질량을 이용하여 다음의 계산식 1에 따라 CRC (g/g) 를 산출하여 보수능을 확인하였다.  Using each mass thus obtained, CRC (g / g) was calculated according to the following equation 1 to confirm the water holding capacity.
[계산식 1]  [Calculation 1]
CRC(g/g) = { [W2(g) - W1(g) ] /W0(g) } - 1 CRC (g / g) = {[W 2 (g)-W 1 (g)] / W 0 (g)}-1
상기 계산식 1에서,  In the above formula 1,
W0(g)는 고흡수성 수지의 초기 무게 (g)이고, W 0 (g) is the initial weight (g) of the super absorbent polymer,
W g)는 고흡수성 수지를 사용하지 않고, 원심분리기를 사용하여 250G로 3분간 탈수한 후에 측정한 장치 무게이고,  W g) is the weight of the device measured after dehydration at 250 G for 3 minutes using a centrifuge without using a super absorbent polymer,
W2(g)는 상온에서 0.9 중량 % 생리 식염수에 고흡수성 수지를 30분 동 안 침수하여 흡수시킨 다음, 원심분리기를 사용하여 250G로 3분간 탈수한 후에, 고흡수성 수지를 포함하여 측정한 장치 무게이다. 실험예 2. 수가용 성분 (Extractabl e content , EC) W 2 (g) is a device measured by submerging the superabsorbent resin in 0.9 wt% physiological saline at room temperature for 30 minutes and then dehydrating it at 250G for 3 minutes using a centrifuge. It is weight. Experimental Example 2. Water Soluble Component (Extractabl e content, EC)
EDANA법 WSP 270.3에 따라, 상기 실시예 및 비교예의 고흡수성 수지 에 대하여 수가용 성분의 함량을 측정하였다. 실험예 3. 흡수속도 (소용돌이 실험, Vortex-test )  According to the EDANA method WSP 270.3, the content of the water-soluble component was measured for the super absorbent polymers of the Examples and Comparative Examples. Experimental Example 3. Absorption Rate (Swirl Test, Vortex-test)
100 mi 비커에, 0.9 중량 %의 NaCl 용액 50 ι 를 넣은 후, 교반기를 이용하여 600 rpm로 교반하면서, 상기 실시예 및 비교예에 따른 고흡수성 수지 2.00 g를 각각 첨가하였다. 그리고, 교반에 의해 생기는 액체의 소용 돌이 (vortex)가 없어져, 매끄러운 표면이 생길 때까지의 시간을 측정하였다. 실험예 4. 걸보기밀도 (bulk density, B/D) 50 ι of 0.9 wt% NaCl solution was added to a 100 mi beaker, followed by stirring at 600 rpm using a stirrer, and 2.00 g of the superabsorbent polymers according to the examples and the comparative example were added, respectively. And the time until the vortex of the liquid which arose by stirring disappeared and a smooth surface was measured was measured. Experimental Example 4. Bulk density (B / D)
표준 유동도 측정장치 오리피스를 통해 상기 실시예 및 비교예의 고 흡수성 수지 100g을 홀려 체적 100ml 용기에 받고, 상기 고흡수성 수지가 수평이 되도록 깎아내어, 상기 고흡수성 수지의 체적을 100ml로 조절한 후, 용기를 제외한 고흡수성 수지만의 무게를 측정하였다. 그리고, 상기 고흡수 성 수지만의 무게를 고흡수성 수지의 체적인 100ml로 나누어 단위 체적당 고흡수성 수지의 무게에 해당하는 겉보기 밀도를 구하였다. 실험예 5. 함수율 (%)  100 g of the superabsorbent polymers of the Examples and Comparative Examples were taken through a standard fluidity measuring device orifice and received in a 100 ml volume container, and the superabsorbent resin was scraped off horizontally to adjust the volume of the superabsorbent resin to 100 ml. The weight of the super absorbent polymer except the container was measured. The apparent density corresponding to the weight of the superabsorbent polymer per unit volume was obtained by dividing the weight of the superabsorbent polymer only by 100 ml of the superabsorbent polymer. Experimental Example 5. Moisture Content (%)
상기 실시예 및 비교예에서 얻어진 함수겔상 중합체에 대하여, 적외 선 가열을 통해 건조하는 과정에서 수분증발에 .따른 무게감소분을 측정하여 계산된 값으로 상기 함수율을 구하였다. 이때, 건조 조건은 상온에서 약 180까지 온도를 상승시킨 뒤 180에서 유지하는 방식으로 총 건조시간은 온 도상승단계 5분을 포함하여 20.분으로 설정하였다.  For the hydrogel polymers obtained in Examples and Comparative Examples, the moisture content was obtained by calculating the weight loss due to moisture evaporation in the process of drying through infrared heating. At this time, the drying condition was set to 20. minutes, including 5 minutes in the temperature rise step in a way that the temperature is maintained at 180 after the temperature is raised to about 180 at room temperature.
【표 1】 Table 1
실시예 1 내지 2, 비교예 1 내지 2에서 제조한 고흡수성 수지 실험예 결과  Example 1 to 2, Comparative Examples 1 to 2 Superabsorbent polymer test results
Figure imgf000033_0001
Figure imgf000033_0001
상기 표 1에 나타난 바와 같이, 실시예 1, 2 에서 얻어진 고흡수성 수지는 각각 0.56 g/mi, 0.55 g/ 의 걸보기밀도를 가져, 0.51 g/ l, 0.53 g/ 의 겉보기밀도를 갖는 비교예 1 및 2의 고흡수성 수지에 비해 겉보기밀 도가증가함을 확인할 수 있었다. 【표 2] As shown in Table 1, the superabsorbent polymers obtained in Examples 1 and 2 each had a hanging density of 0.56 g / mi and 0.55 g /, and a comparative example having an apparent density of 0.51 g / l and 0.53 g /, respectively. Compared with the superabsorbent polymers 1 and 2, it was confirmed that the apparent density increased. [Table 2]
실시예 3 내지 5, 비교예 3 에서 제조한 고흡수성 수지 실험예 결과  Examples 3 to 5, the superabsorbent polymer experimental example results prepared in Comparative Example 3
Figure imgf000034_0001
Figure imgf000034_0001
상기 표 2에 나타난 바와 같이, 실시예 3 내지 5에서 얻어진 고흡수 성 수지는 각각 0.59 g/ , 0.58 g/ , 0.56 g/m£의 높은 겉보기밀도를 가져 0.54 g/ 의 겉보기밀도를 갖는 비교예 3의 고흡수성 수지에 비해 겉보기밀 도가 증가함을 확인할 수 있었다.  As shown in Table 2, the superabsorbent polymers obtained in Examples 3 to 5 each had a high apparent density of 0.59 g /, 0.58 g /, and 0.56 g / m £, and each had a apparent density of 0.54 g /. Compared to the super absorbent polymer of 3, the apparent density was confirmed to increase.
한편, 단량체 조성물 농도를 45.9 중량 %초과로 지나치게 높일 경우, 중화공정에서 반응물에 침전이 발생하여 고흡수성 수지의 중합자체를 진행 할 수 없었다.  On the other hand, when the concentration of the monomer composition is excessively increased to more than 45.9% by weight, precipitation occurs in the reaction product in the neutralization process, and thus the polymerization of the super absorbent polymer cannot proceed.
【표 3】 Table 3
실시예 6 내지 7, 비교예 4 에서 제조한 고흡수성 수자 실험예 결과  Examples 6-7, superabsorbent water quantitative experimental example results prepared in Comparative Example 4
Figure imgf000034_0002
Figure imgf000034_0002
상기 표 3에 나타난 바와 같이, 실시예 6 7에서 얻어진 고흡수성 수 지는 각각 0.60 g/m£ , 0.56 g/ ^의 높은 겉보기밀도를 가져, 0.54 g/ ^의 걸 보기밀도를 갖는 비교예 4의 고흡수성 수지에 비해 겉보기밀도가 증가함을 확인할 수 있었다.  As shown in Table 3, the superabsorbent resins obtained in Example 6 7 had a high apparent density of 0.60 g / m £ and 0.56 g / ^, respectively, and had a gallon density of 0.54 g / ^. It was confirmed that the apparent density increased compared to the super absorbent polymer.

Claims

【청구범위】 [Claim]
【청구항 1】  [Claim 1]
적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체 의 가교 중합체를 포함한 베이스 수지 분말을 포함하고,  A base resin powder comprising a crosslinked polymer of a water-soluble ethylenically unsaturated monomer having at least a portion of neutralized acid groups,
상기 베이스 수지 분말 내에는 직경 1 이상의 복수의 기공이 형성 되어 있고,  In the base resin powder, a plurality of pores having a diameter of 1 or more are formed,
상기 가교 중합체는 그 가교 구조 내에 분산되어 있는 층상 실리케이 트계 입자를 포함하고,  The crosslinked polymer comprises layered silicate particles dispersed in its crosslinked structure,
겉보기밀도가 0 . 55 g/mt 이상인 고흡수성 수지 .  Apparent density is 0. Superabsorbent polymers of 55 g / mt or more.
【청구항 2] [Claim 2]
게 1항에 있어서,  According to claim 1,
상기 베이스 수지 분말 내에 형성된 직경 1 이상의 복수의 기공은 직경이 10 내지 loo m 인 미세기공을 포함하는, 고흡수성 수지.  The plurality of pores of at least one diameter formed in the base resin powder includes micropores having a diameter of 10 to loom, superabsorbent resin.
【청구항 3】 [Claim 3]
제 1항에 있어서,  The method of claim 1,
0.9 중량 %의 NaCl 용액 50 ^을 600 rpm속도로 교반시 발생하는 볼텍 스를 제거하는 시간이 60초 이하인 고흡수성 수지 .  Superabsorbent polymer with a removal time of vortex of 60% by 0.9 rpm of 50% NaCl solution at 600 rpm.
【청구항 4】 [Claim 4]
제 1항에 있어서,  The method of claim 1,
상기 층상 실리케이트계 입자는 금속 산화물을 포함한 금속 산화물층 및 상기 금속 산화물층의 적어도 일면에 형성되고, 실리카를 포함한 실리카 층을 포함한 단위 결정을 포함하는 고흡수성 수지 .  The layered silicate-based particles are super absorbent polymers formed on at least one surface of the metal oxide layer and the metal oxide layer containing a metal oxide, comprising a unit crystal including a silica layer containing silica.
【청구항 5] [Claim 5]
제 1항에 있어서,  The method of claim 1,
상기 층상 실리케이트계 입자는 단면의 최대 직경이 1 ran 내지 100 ran이고, 높이가 O . Olran 내지 20 nm인 기등 구조를 갖는, 고흡수성 수지 . The layered silicate particles have a maximum diameter of 1 ran to 100 ran and a height of 0. Super absorbent polymer having a structure of Olran to 20 nm.
【청구항 6] [Claim 6]
제 1 항에 있어서,  The method of claim 1,
상기 층상 실리케이트계 입자는 상기 베이스 수지 분말 100 중량부에 대해 0.01 증량부 내자 30 중량부로 포함되는 고흡수성 수지 .  The layered silicate-based particles are superabsorbent resins contained in 0.01 parts by weight of 30 parts by weight based on 100 parts by weight of the base resin powder.
【청구항 7】 [Claim 7]
제 1 항에 있어서,  The method of claim 1,
상기 수용성 에틸렌계 불포화 단량체는 아크릴산, 메타크릴산, 무수 말레인산, 푸말산, 크로톤산, 이타콘산, 2-아크릴로일에탄 술폰산, 2-메타 크릴로일에탄술폰산, 2— (메트)아크릴로일프로판술폰산, 또는 2- (메트)아크 릴아미드 -2—메틸 프로판술폰산의 음이온성 단량체와 이의 염;  The water-soluble ethylenically unsaturated monomers are acrylic acid, methacrylic acid, maleic anhydride, fumaric acid, crotonic acid, itaconic acid, 2-acryloylethane sulfonic acid, 2-methacryloylethanesulfonic acid, 2— (meth) acryloyl Anionic monomers of propanesulfonic acid or 2- (meth) acrylamide-2—methyl propanesulfonic acid and salts thereof;
(메트)아크릴아미드, N-치환 (메트)아크릴레이트, 2-히드록시에틸 (메 트)아크릴레이트, 2—히드록시프로필 (메트)아크릴레이트, 메톡시폴리에틸렌 글리콜 (메트)아크릴레이트 또는 폴리에틸렌 글리콜 (메트)아크릴레이트의 비 이온계 친수성 함유 단량체 ; 및  (Meth) acrylamide, N-substituted (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2—hydroxypropyl (meth) acrylate, methoxypolyethylene glycol (meth) acrylate or polyethylene glycol Nonionic hydrophilic-containing monomers of (meth) acrylates; And
(Ν , Ν)-디메틸아미노에틸 (메트)아크릴레이트 또는 (Ν , Ν)-디메틸아미노 프로필 (메트)아크릴아미드의 아미노기 함유 불포화 단량체와 그의 4급화물; 로 이루어진 군에서 선택된 1종 이상을 포함하는 고흡수성 수지.  Amino group-containing unsaturated monomers of (Ν, Ν) -dimethylaminoethyl (meth) acrylate or (Ν, Ν) -dimethylamino propyl (meth) acrylamide and their quaternized compounds; Superabsorbent polymer comprising one or more selected from the group consisting of.
【청구항 8】 [Claim 8]
제 1 항에 있어서,  The method of claim 1,
상기 가교 중합체는 상기 수용성 에틸렌계 불포화 단량체의 고분자 쇄들이 내부 가교제의 가교성 작용기를 매개로 가교 결합되어 있는 가교 구 조를 포함하는 고흡수성 수지 .  The crosslinked polymer is a super absorbent polymer comprising a crosslinked structure in which the polymer chains of the water-soluble ethylenically unsaturated monomer are crosslinked through a crosslinkable functional group of an internal crosslinking agent.
【청구항 9】 [Claim 9]
제 1 항에 있어서,  The method of claim 1,
상기 가교 중합체는 상기 수용성 에틸렌계 불포화 단량체가 복수의 에틸렌 옥사이드기를 갖는 다관능 아크릴레이트계 화합물을 포함한 내부 가 교제의 존재 하에 중합된 가교 증합체를 포함하는 고흡수성 수지 . The crosslinked polymer may have an internal value including a polyfunctional acrylate compound in which the water-soluble ethylenically unsaturated monomer has a plurality of ethylene oxide groups. A super absorbent polymer comprising a crosslinked polymerizer polymerized in the presence of a companion.
【청구항 10】 [Claim 10]
제 8항 또는 게 9항 중 어느 한 항에 있어서,  The method according to claim 8 or 9,
상기 내부 가교제는 폴리에틸렌글리콜 디아크릴레이트 (PEGDA) , 글리 세린 디아크릴레이트, 글리세린 트리아크릴레이트, 비개질 또는 에특실화된 트리메틸올 트리아크릴레이트 (TMPTA) , 핵산디올디아크릴레이트, 및 트리에 틸렌글리콜 디아크릴레이트로 아루어진 군에서 선택된 1종 이상을 포함하는 고흡수성 수지 .  The internal crosslinking agent is polyethylene glycol diacrylate (PEGDA), glycerin diacrylate, glycerin triacrylate, unmodified or ethylated trimethylol triacrylate (TMPTA), nucleic acid diol diacrylate, and triethylene glycol A super absorbent polymer comprising at least one member selected from the group consisting of diacrylates.
【청구항 11】 [Claim 11]
적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체 의 가교 중합체를 포함한 베이스 수지 분말을 포함하고,  At least a part comprising a base resin powder comprising a crosslinked polymer of a water-soluble ethylenically unsaturated monomer having a neutralized acid group,
상기 베이스 수지 분말 내에는 직경 1 이상의 복수의 기공이 형성되어 있고, A plurality of pores of diameter 1 or more are formed in the base resin powder,
겉보기밀도가 0. 55 g/mi 이상이고, 0 .9 중량 %의 NaCl 용액 50 mi을 600 rpm속도로 교반시 발생하는 볼텍스를 제거하는 시간이 54초 이하인 고 흡수성 수지 .  Highly absorbent resin with an apparent density of at least 55 g / mi and a time for removing vortex generated when stirring 50 mi of 0.9 wt% NaCl solution at 600 rpm at 54 seconds or less.
【청구항 12】 [Claim 12]
층상 실리케이트계 입자, 발포제, 내부 가교제 및 적어도 일부가 중 화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체를 포함하고, 1000 rpm 이상의 속도로 교반시킨 단량체 조성물을 가교 중합하여 함수겔 중합체를 형성하는 단계; 및  Forming a hydrogel polymer by crosslinking and polymerizing a monomer composition comprising a layered silicate-based particle, a blowing agent, an internal crosslinking agent, and a water-soluble ethylenically unsaturated monomer having at least a part of which is neutralized acidic group, and stirred at a speed of at least 1000 rpm; And
상기 함수겔 증합체를 건조, 분쇄 및 분급하여 베이스 수지 분말을 형성하는 단계를 포함하고,  Drying, pulverizing, and classifying the hydrogel polymer to form a base resin powder,
상기 단량체 조성물에 포함된 수용성 에틸렌계 불포확 단량체의 농도 가 40 중량 %내지 60 중량 %인, 고흡수성 수지의 제조 방법 .  The concentration of the water-soluble ethylene-based unsaturated monomer contained in the monomer composition is 40% to 60% by weight, a method for producing a super absorbent polymer.
【청구항 13】 충상 실리케이트계 입자, 발포제, 내부 가교제 및 적어도 일부가 중 화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체를 포함하고, 1000 rpm 이상의 속도로 교반시킨 단량체 조성물을 가교 중합하여 함수겔 중합체를 형성하는 단계; 및 [Claim 13] Forming a hydrogel polymer by crosslinking and polymerizing a monomer composition comprising a packed silicate-based particle, a blowing agent, an internal crosslinking agent, and a water-soluble ethylenically unsaturated monomer having at least a part of which is neutralized acidic group, and stirred at a speed of at least 1000 rpm; And
상기 함수겔 중합체를 건조, 분쇄 및 분급하여 베이스 수지 분말을 형성하는 단계를 포함하고,  Drying, pulverizing and classifying the hydrogel polymer to form a base resin powder,
상기 함수겔 중합체를 건조, 분쇄 및 분급하여 베이스 수지 분말을 형성하는 단계는, 상기 함수겔 중합체의 입경이 2匪 내지 10醒로 되도록 분 쇄하는 조분쇄 단계를 포함하며,  Drying, pulverizing and classifying the hydrogel polymer to form a base resin powder may include a coarse grinding step of grinding the hydrogel polymer so that the particle diameter of the hydrogel polymer is 2 kPa to 10 kPa.
상기 초분쇄 단계는 50°C 이상의 온도에서, 15 Hz 이상의 진동수로 진행하는, 고흡수성 수지의 제조 방법. The ultra-pulverizing step proceeds with a frequency of 15 Hz or more, at a temperature of 50 ° C or more, the method of producing a super absorbent polymer.
【청구항 14] [Claim 14]
층상 실리케이트계 입자, 발포제, 내부 가교제 및 적어도 일부가 중 화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체를 포함하고, 1000 rpm 이상의 속도로 교반시킨 단량체 조성물을 가교 중합하여 함수겔 중합체를 형성하는 단계; 및  Forming a hydrogel polymer by crosslinking and polymerizing a monomer composition comprising a layered silicate-based particle, a blowing agent, an internal crosslinking agent, and a water-soluble ethylenically unsaturated monomer having at least a part of which is neutralized acidic group, and stirred at a speed of at least 1000 rpm; And
상기 함수겔 중합체를 건조, 분쇄 및 분급하여 베이스 수지 분말을 형성하는 단계를 포함하고,  Drying, pulverizing and classifying the hydrogel polymer to form a base resin powder,
상기 함수겔 중합체를 건조, 분쇄 및 분급하여 베이스 수지 분말을 형성하는 단계는, 상기 함수겔 중합체의 입경이 2隱 내지 10誦로 되도록 분 쇄하는 조분쇄 단계를 포함하며,  Drying, pulverizing, and classifying the hydrogel polymer to form a base resin powder includes a coarse grinding step of pulverizing the particle size of the hydrogel polymer so as to have a particle diameter of 2 GPa to 10 GPa,
상기 조분쇄 단계 이전 또는 이후에,  Before or after the coarse grinding step,
상기 함수겔 중합체 100 중량부에 대하여, 20 중량부 미만의 함량으 로 물을 첨가하는 단계를 더 포함하는, 고흡수성 수지의 제조 방법.  100 parts by weight of the hydrogel polymer, further comprising the step of adding water in an amount of less than 20 parts by weight, a method for producing a super absorbent polymer.
[청구항 15】 [Claim 15]
제 12항 내지 제 14항 중 어느 한항에 있어서,  The method according to any one of claims 12 to 14,
상기 발포제 100 중량부에 대하여 층상 실리케이트계 입자 1중량부 내지 50 중량부가사용되는, 고흡수성 수지의 제조 방법. 【청구항 16】 1 part by weight to 50 parts by weight of layered silicate particles are used with respect to 100 parts by weight of the blowing agent, a method for producing a super absorbent polymer. [Claim 16]
제 12항 내지 제 14항 중 어느 한항에 있어서,  The method according to any one of claims 12 to 14,
상기 발포제는 아조디카본아미드, 아조디카르복실아미드, 벤젠술포닐 히드라지드, 디니트로소펜타메틸렌테트라민, 를루엔술포닐히드라지드, 아조 비스이소부티로니트릴, 아조디카르복실산바륨 및 중탄산나트륨으로 이루어 진 군에서 선택된 1종 이상을 포함하는, 고흡수성 수지의 제조 방법.  The blowing agent is azodicarbonamide, azodicarboxyamide, benzenesulfonyl hydrazide, dinitrosopentamethylenetetramine, toluenesulfonylhydrazide, azobisisobutyronitrile, azodicarboxylic acid barium and bicarbonate A method for producing a super absorbent polymer, comprising one or more selected from the group consisting of sodium.
PCT/KR2016/012678 2015-12-23 2016-11-04 Superabsorbent polymer and preparation method therefor WO2017111295A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/743,841 US10995183B2 (en) 2015-12-23 2016-11-04 Superabsorbent polymer and preparation method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20150184614 2015-12-23
KR10-2015-0184614 2015-12-23
KR1020160144603A KR102119813B1 (en) 2015-12-23 2016-11-01 Super absorbent polymer, and preparation method of the same
KR10-2016-0144603 2016-11-01

Publications (1)

Publication Number Publication Date
WO2017111295A1 true WO2017111295A1 (en) 2017-06-29

Family

ID=59090739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/012678 WO2017111295A1 (en) 2015-12-23 2016-11-04 Superabsorbent polymer and preparation method therefor

Country Status (1)

Country Link
WO (1) WO2017111295A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112135645A (en) * 2018-06-27 2020-12-25 金伯利-克拉克环球有限公司 Nanoporous superabsorbent particles
RU2777893C2 (en) * 2018-06-27 2022-08-11 Кимберли-Кларк Ворлдвайд, Инк. Nano-porous super-absorbing particles
EP4342934A4 (en) * 2021-07-16 2024-08-07 Lg Chemical Ltd Preparation method of super absorbent polymer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010072728A (en) * 1998-08-18 2001-07-31 클림멕 헬무트 Superabsorbent polymers having anti-caking characteristics
KR20050036974A (en) * 2002-08-23 2005-04-20 바스프 악티엔게젤샤프트 Superabsorbent polymers and method of manufacturing the same
KR20110086057A (en) * 2008-10-20 2011-07-27 에보닉 스톡하우젠, 엘엘씨 Superabsorbent polymer containing clay, particulate, and method of making same
KR20140107347A (en) * 2011-12-27 2014-09-04 가부시키가이샤 리브도 코포레이션 Absorbent article
KR20150067218A (en) * 2012-10-03 2015-06-17 가부시키가이샤 닛폰 쇼쿠바이 Absorbent and manufacturing method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010072728A (en) * 1998-08-18 2001-07-31 클림멕 헬무트 Superabsorbent polymers having anti-caking characteristics
KR20050036974A (en) * 2002-08-23 2005-04-20 바스프 악티엔게젤샤프트 Superabsorbent polymers and method of manufacturing the same
KR20110086057A (en) * 2008-10-20 2011-07-27 에보닉 스톡하우젠, 엘엘씨 Superabsorbent polymer containing clay, particulate, and method of making same
KR20140107347A (en) * 2011-12-27 2014-09-04 가부시키가이샤 리브도 코포레이션 Absorbent article
KR20150067218A (en) * 2012-10-03 2015-06-17 가부시키가이샤 닛폰 쇼쿠바이 Absorbent and manufacturing method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112135645A (en) * 2018-06-27 2020-12-25 金伯利-克拉克环球有限公司 Nanoporous superabsorbent particles
CN112135645B (en) * 2018-06-27 2022-04-12 金伯利-克拉克环球有限公司 Nanoporous superabsorbent particles
RU2777893C2 (en) * 2018-06-27 2022-08-11 Кимберли-Кларк Ворлдвайд, Инк. Nano-porous super-absorbing particles
EP4342934A4 (en) * 2021-07-16 2024-08-07 Lg Chemical Ltd Preparation method of super absorbent polymer

Similar Documents

Publication Publication Date Title
KR101921278B1 (en) Super absorbent polymer, and preparation method of the same
KR102119813B1 (en) Super absorbent polymer, and preparation method of the same
WO2017164459A1 (en) Method for preparing superabsorbent polymer
WO2011025013A1 (en) Process for production of water-absorbable resin
KR102069312B1 (en) Preparation method of super absorbent polymer, and super absorbent polymer
KR102102459B1 (en) Method of preparation for super absorbent polymer
KR101949458B1 (en) Preparation method of super absorbent polymer, and super absorbent polymer
KR20180087049A (en) Preparation method of super absorbent polymer
WO2017159903A1 (en) Method for preparing superabsorbent resin
WO2018117548A1 (en) Method for producing porous superabsorbent polymer and porous superabsorbent polymer
WO2016204390A1 (en) Method for manufacturing super absorbent resin
WO2018124550A1 (en) Method for preparing porous super absorbent polymer
WO2017131291A1 (en) Method for preparing superabsorbent polymer
WO2016111473A1 (en) Method for preparing super absorbent resin, and super absorbent resin prepared thereby
CN108350190B (en) Superabsorbent polymers
WO2018004162A1 (en) Method for preparing superabsorbent resin, and superabsorbent resin
WO2019117541A1 (en) Superabsorbent polymer and preparation method therefor
KR20200069717A (en) Preparation method of super absorbent polymer
WO2017111295A1 (en) Superabsorbent polymer and preparation method therefor
JP2020505477A (en) Super water absorbent resin and method for producing the same
KR102576445B1 (en) Preparation method of super absorbent polymer
WO2017111210A1 (en) Superabsorbent polymer and preparation method therefor
KR20190064978A (en) Super absorbent polymer and preparation method thereof
WO2018135928A1 (en) Super absorbent polymer and preparation method therefor
WO2016085152A1 (en) Method for preparing super-absorbent resin and super-absorbent resin prepared thereby

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16879162

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16879162

Country of ref document: EP

Kind code of ref document: A1