WO2017110926A1 - Antifouling coating material - Google Patents

Antifouling coating material Download PDF

Info

Publication number
WO2017110926A1
WO2017110926A1 PCT/JP2016/088213 JP2016088213W WO2017110926A1 WO 2017110926 A1 WO2017110926 A1 WO 2017110926A1 JP 2016088213 W JP2016088213 W JP 2016088213W WO 2017110926 A1 WO2017110926 A1 WO 2017110926A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
coating material
antifouling coating
acid
material according
Prior art date
Application number
PCT/JP2016/088213
Other languages
French (fr)
Japanese (ja)
Inventor
智亮 中西
瑞菜 豊田
志郎 江畑
俊 齋藤
亮平 小口
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016088145A external-priority patent/JP2019031582A/en
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2017110926A1 publication Critical patent/WO2017110926A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/12Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an ether radical
    • C08F216/14Monomers containing only one unsaturated aliphatic radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F218/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid
    • C08F218/02Esters of monocarboxylic acids
    • C08F218/04Vinyl esters
    • C08F218/10Vinyl esters of monocarboxylic acids containing three or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints

Definitions

  • the present invention relates to an antifouling coating material.
  • the present invention is excellent in anticorrosion durability and has a property that protein is difficult to adsorb, and is suitable for ships (particularly ship bottom), marine structures, water tanks, outer walls, roofs, building rooftops, cell culture vessels, and microchannels.
  • An object of the present invention is to provide a coating material useful in fields such as the surface.
  • the affinity group is at least one selected from the group consisting of a group represented by the following formula (1), a group represented by the following formula (2), and a group represented by the following formula (3).
  • n is an integer of 1 to 10
  • m is 2 to 100 when the group represented by the formula (1) is contained in the side chain in the fluoropolymer
  • R 1 to R 3 each independently represents an alkyl group having 1 to 5 carbon atoms
  • a is an integer of 1 to 5
  • b is an integer of 1 to 5.
  • R 4 and R 5 are each independently an alkyl group having 1 to 5 carbon atoms
  • X ⁇ is a group represented by the following formula (3-1) or a group represented by the following formula (3-2):
  • c is an integer of 1 to 20, and d is an integer of 1 to 5.
  • the fluoropolymer has 0.1 to 40 mol% of a unit having a biocompatible group and 20 to 80 mol of a unit based on a fluoroolefin when the entire polymer is 100 mol%.
  • a high level of anti-corrosion durability and non-adsorbability such as protein are sufficiently satisfied at a high level at the same time, in particular, ship (especially ship bottom), marine structure, water tank, outer wall, roof, building. Coating materials useful in fields such as rooftops, cell culture vessels, microchannel surfaces, and the like.
  • the “unit” means a part derived from a monomer that exists in the polymer and constitutes the polymer.
  • the unit derived from the monomer resulting from addition polymerization of a monomer having a carbon-carbon unsaturated double bond is a divalent unit generated by cleavage of the unsaturated double bond.
  • what unitally converted the structure of a unit after polymer formation is also called a unit.
  • a unit derived from an individual monomer is referred to as a name obtained by adding “unit” to the monomer name.
  • Bioaffinity group means a group having the property of inhibiting protein from adsorbing to a polymer and preventing cells from adhering to the polymer and becoming immobile.
  • a group represented by the formula (1) is referred to as a group (1).
  • groups and monomers represented by other formulas will be described in the same manner.
  • the antifouling coating material includes a polymer having a unit having a biocompatible group and a unit based on a fluoroolefin.
  • the polymer according to the present invention (hereinafter also referred to as a specific polymer) is one type selected from the group consisting of a unit having a biocompatible group, a unit based on fluoroolefin, and vinyl ether, vinyl ester, and allyl ether. Has units based on the above.
  • the specific polymer has a unit having a biocompatible group.
  • the bioaffinity group is at least one group selected from the group consisting of the group (1), the group (2), and the group (3). Adsorption of protein is suppressed because a polymer has these bioaffinity groups.
  • the group (1) is preferable because it has a high protein adsorption inhibitory effect.
  • the group (1) may be contained in the main chain of the polymer and may be contained in the side chain, but is preferably contained in the side chain.
  • n is 1 to 10, preferably 1 to 4, and particularly preferably 2 to 3.
  • the divalent group (oxyalkylene chain) represented by the formula (1) is preferably an oxymethylene chain, an oxyethylene chain, an oxypropylene chain, an oxytrimethylene chain, an oxybutylene chain, or an oxytetramethylene chain.
  • a chain or an oxypropylene chain is more preferable, and an oxyethylene chain is particularly preferable.
  • M in the group (1) is 2 to 100, preferably 2 to 50, and particularly preferably 3 to 30 when the group represented by the formula (1) is contained in the side chain in the fluoropolymer.
  • m is preferably from 5 to 300, particularly preferably from 10 to 200, from the viewpoint of excellent water resistance when the group (1) is contained in the main chain of the fluoropolymer (A).
  • m means an average value in the monomer used.
  • (C n H 2n O) of the group (1) may be one kind or two or more kinds. In the case of two or more types, the arrangement may be random, block, or alternating.
  • the group (1) possessed by the polymer may be one type or two or more types.
  • R 1 to R 3 are each independently an alkyl group having 1 to 5 carbon atoms, and an alkyl group having 1 to 4 carbon atoms is preferable from the viewpoint of easy availability of raw materials, and a methyl group is Particularly preferred.
  • a is an integer of 1 to 5, preferably 2 to 5, and particularly preferably 2 from the viewpoint of availability of raw materials.
  • b is an integer of 1 to 5, preferably 1 to 4 and particularly preferably 2 from the viewpoint that protein is difficult to adsorb.
  • the group (2) possessed by the polymer may be one type or two or more types.
  • R 4 and R 5 are each independently an alkyl group having 1 to 5 carbon atoms, and an alkyl group having 1 to 4 carbon atoms is preferable, and a methyl group is preferable. Particularly preferred.
  • c is an integer of 1 to 20, preferably 1 to 15, more preferably 1 to 10, and particularly preferably 2, from the viewpoint that the polymer is excellent in flexibility.
  • d is an integer of 1 to 5, preferably 1 to 4 and particularly preferably 1 from the viewpoint that protein is difficult to adsorb.
  • the group (3) possessed by the polymer may be one type or two or more types.
  • the polymer has a group (3), the polymer has a group (3) in which X ⁇ is a group (3-1) or X ⁇ has a group ( It is preferably any of those having the group (3) which is 3-2).
  • the specific polymer has units based on fluoroolefin (m10).
  • a fluoroolefin is an olefin in which one or more fluorine atoms are bonded to carbon atoms constituting a carbon-carbon double bond.
  • the fluoroolefin include tetrafluoroethylene, chlorotrifluoroethylene, trifluoroethylene, vinylidene fluoride, vinyl fluoride, and hexafluoropropylene. Of these, one or more fluoroolefins selected from the group consisting of tetrafluoroethylene, chlorotrifluoroethylene, trifluoroethylene, and vinylidene fluoride are preferred because the durability of the polymer tends to increase. And / or chlorotrifluoroethylene is more preferred. Only one type of fluoroolefin may be used, or two or more types may be used. Only one type is preferred because the reactivity is easy to control.
  • the unit having the group (1) is preferably a unit based on the monomer represented by the following formula (m1).
  • CH 2 C (R 11 ) -Q 1- (C n H 2n O) m -R 12 (m1)
  • R 11 represents a hydrogen atom, a chlorine atom or a methyl group, preferably a hydrogen atom or a methyl group, and particularly preferably a hydrogen atom.
  • Q 1 is a single bond, an etheric oxygen atom or a divalent organic group having 1 to 20 carbon atoms, preferably a divalent organic group having 1 to 20 carbon atoms.
  • the divalent organic group for Q 1 is preferably — (CH 2 ) e —OR 14 — (O) f — or —COO (CH 2 ) g — (O) h —.
  • e, f, and h are each independently 0 or 1, and g is an integer of 0-4. However, when g is 0 (zero), h is 0 (zero). e is preferably 0 (zero). f is preferably 1. g is preferably 0 (zero) or 2. When g is not 0, h is preferably 1.
  • R 14 is preferably a single bond or a divalent hydrocarbon group having 1 to 19 carbon atoms. However, when R 14 is a single bond, h is 0 (zero).
  • cHex means a cyclohexylene group.
  • cyclohexylene group a 1,4-cyclohexylene group is preferable.
  • —Q 1 — (C n H 2n O) m — the oxyalkylene chain is considered as one lump and m is considered to be maximum.
  • monomer (m1) vinyl ethers having a group (1), vinyl esters having a group (1), or allyl ethers having a group (1) are preferable, and vinyl ethers having a group (1) are More preferred.
  • R 12 is a hydrogen atom or — (CH 2 ) i —R 13 , and preferably a hydrogen atom.
  • R 12 is a hydrogen atom
  • the terminal of the oxyalkylene chain is preferably a hydroxyl group, which is a crosslinkable group described later in the specific polymer.
  • R 13 is a hydrogen atom, a fluorine atom, a trifluoromethyl group or a cyano group
  • i is an integer of 1 to 25.
  • Specific examples of the monomer (m1) include the following compounds. CH 2 ⁇ CH—COO— (C 2 H 4 O) m —H, CH 2 ⁇ CH—O—CH 2 — (cHex) —CH 2 —O (CH 2 CH 2 O) m —H
  • the unit having the group (2) is preferably a unit based on a monomer represented by the following formula (m2).
  • CH 2 C (R 21 ) -Q 2- (CH 2 ) a- (PO 4 - )-(CH 2 ) b- (N + R 1 R 2 R 3 ) (m2)
  • R 21 represents a hydrogen atom, a chlorine atom or a methyl group, preferably a hydrogen atom or a methyl group, and particularly preferably a hydrogen atom.
  • Q 2 is a single bond, an etheric oxygen atom or a divalent organic group having 1 to 20 carbon atoms, preferably a divalent organic group having 1 to 20 carbon atoms.
  • the divalent organic group in Q 2 is the same as the divalent organic group in Q 1 .
  • the monomer (m2) vinyl ethers having group (2), vinyl esters having group (2), allyl ethers having group (2), or (meth) acrylic acid having group (2) Esters are preferred, vinyl ethers having group (2), vinyl esters having group (2), or allyl ethers having group (2) are more preferred, and vinyl ethers having group (2) are more preferred.
  • Specific examples of the monomer (m2) include 2-methacryloyloxyethyl phosphorylcholine, 2-acryloyloxyethyl phosphorylcholine and the like.
  • the unit having the group (3) is preferably a unit based on a monomer represented by the following formula (m3).
  • CH 2 C (R 31) -Q 3 - (CH 2) c - (N + R 4 R 5) - (CH 2) d -X - (m3)
  • R 31 is a hydrogen atom, a chlorine atom or a methyl group, preferably a hydrogen atom or a methyl group, particularly preferably a hydrogen atom.
  • Q 3 is a single bond, an etheric oxygen atom or a divalent organic group having 1 to 20 carbon atoms, preferably a divalent organic group having 1 to 20 carbon atoms.
  • the divalent organic group in Q 3 is the same as the divalent organic group in Q 1 .
  • the monomer (m3) vinyl ethers having a group (3), vinyl esters having a group (3), allyl ethers having a group (3), or (meth) acrylic acid having a group (3) Esters are preferred, vinyl ethers having group (3), vinyl esters having group (3), or allyl ethers having group (3) are more preferred, and vinyl ethers having group (3) are more preferred.
  • the monomer (m3) include the following compounds. N-methacryloyloxyethyl-N, N-dimethylammonium- ⁇ -N-methylcarboxybetaine, N-acryloyloxyethyl-N, N-dimethylammonium- ⁇ -N-methylcarboxybetaine, N-methacryloyloxyethyl-N, N-dimethylammonium- ⁇ -N-propylsulfoxybetaine, N-methacryloylaminopropyl-N, N-dimethylammonium- ⁇ -N-propylsulfoxybetaine, and the like.
  • the specific polymer is selected from the group consisting of a unit based on the monomer (m1), a unit based on the monomer (m2), and a unit based on the monomer (m3) as the unit having a biocompatible group. It is preferable to have at least one unit.
  • the specific polymer preferably has a unit based on the monomer (m1) because of its high protein adsorption inhibiting effect.
  • the specific polymer further has a unit based on one or more selected from the group consisting of vinyl ether, vinyl ester, and allyl ether. However, they do not have a biocompatible group. These are excellent in alternating copolymerization with fluoroolefin, and are expected to improve the durability, weather resistance, scratch resistance and impact resistance of the coating layer to be formed.
  • the unit is a unit based on one or more monomers (m20) selected from the group consisting of vinyl ethers, vinyl esters, and allyl ethers.
  • the monomer (m21) which has a crosslinkable group, or the monomer (m22) which does not have a crosslinkable group is mentioned. Examples of the crosslinkable group include a hydroxyl group, a carboxyl group, an amino group, and an epoxy group, and a hydroxyl group is more preferable.
  • Examples of the monomer having a hydroxyl group as a crosslinkable group include 2-hydroxyethyl vinyl ether, 3-hydroxypropyl vinyl ether, 2-hydroxypropyl vinyl ether, 2-hydroxy-2-methylpropyl vinyl ether, 4-hydroxybutyl vinyl ether, 4-hydroxy -2-Hydroxyalkyl vinyl ethers such as 2-methylbutyl vinyl ether, 5-hydroxypentyl vinyl ether, 6-hydroxyhexyl vinyl ether, cyclohexanedimethanol monovinyl ether; 2-hydroxyethyl allyl ether, 3-hydroxypropyl allyl ether, 4-hydroxybutyl allyl Hydroxyalkyl allyl ethers such as ether and glycerol monoallyl ether; 2-hydroxypropanoic acid vinyl ester , Hydroxyalkyl carboxylic acid vinyl esters such as 4-hydroxy-pentanoic acid vinyl ester and the like.
  • Examples of a method for introducing a unit based on a monomer having a hydroxyl group into the polymer include a method of forming a unit containing a hydroxyl group after the polymerization when the polymer is synthesized.
  • Examples of the method for forming a unit having a hydroxyl group after polymerization include a method in which a hydrolyzable vinyl ester or the like is copolymerized and then hydrolyzed to form a hydroxyl group.
  • Examples of monomers having a carboxyl group as a crosslinkable group include vinyloxyvaleric acid, 3-vinyloxypropionic acid, 3- (2-vinyloxybutoxycarbonyl) propionic acid, and 3- (2-vinyloxyethoxycarbonyl) propionic acid.
  • Saturated carboxylic acid vinyl ethers such as allyloxyvaleric acid, 3-allyloxypropionic acid, 3- (2-allyloxybutoxycarbonyl) propionic acid, and 3- (2-allyloxyethoxycarbonyl) propionic acid.
  • Allyl ethers; saturated polycarboxylic acid monovinyl esters such as monovinyl adipate, monovinyl succinate, vinyl phthalate, and vinyl pyromellitic acid.
  • a method for introducing a unit based on a monomer having a carboxyl group there is a method in which a carboxyl group is formed by reacting a dibasic acid anhydride after polymerizing a polymer having a hydroxyl group.
  • Examples of the monomer having an epoxy group as a crosslinkable group include epoxy group-containing alkyl vinyl ethers such as glycidyl vinyl ether; epoxy group-containing alkyl allyl ethers such as glycidyl allyl ether.
  • the polymer in the present invention has a unit based on a monomer having a crosslinkable group, it can be crosslinked when a coating material containing the polymer is used as a coating film, and a highly durable coating film is obtained. It is done.
  • Examples of the monomer (m22) having no crosslinkable group include vinyl ethers such as ethyl vinyl ether, propyl vinyl ether, butyl vinyl ether, 2-ethylhexyl vinyl ether, and cyclohexyl vinyl ether; vinyl esters such as vinyl butanoate and vinyl octoate; Examples include allyl ethers such as allyl ether; acryloyl compounds such as butyl acrylate; and acrylic esters such as methacryloyl compounds such as ethyl methacrylate.
  • the specific polymer has a unit based on a monomer having no crosslinkable group, when the coating material containing the polymer is used as a coating film, flexibility or the like can be imparted to the coating film.
  • the specific polymer further optionally has a unit having the above-mentioned bioaffinity group, a unit based on a fluoroolefin, and a unit based on another monomer (m30) other than a unit based on the monomer (m20). It may be.
  • a monomer (m30) the monomer (m31) which has a crosslinkable group, or the monomer (m32) which does not have a crosslinkable group is mentioned.
  • the crosslinkable group include a hydroxyl group, a carboxyl group, an amino group, and an epoxy group, and a hydroxyl group is more preferable.
  • Examples of the monomer having a hydroxyl group as a crosslinkable group include hydroxyalkyl carboxylic acid allyl esters such as 2-hydroxypropanoic acid allyl ester and 4-hydroxypentanoic acid allyl ester; 2-hydroxyethyl (meth) acrylate and the like (meta ) Hydroxyalkyl esters of acrylic acid and the like.
  • Examples of monomers having a carboxyl group as a crosslinkable group include 3-butenoic acid, 4-pentenoic acid, 2-hexenoic acid, 3-hexenoic acid, 5-hexenoic acid, 2-heptenoic acid, 3-heptenoic acid, 6 -Heptenoic acid, 3-octenoic acid, 7-octenoic acid, 2-nonenoic acid, 3-nonenoic acid, 8-nonenoic acid, 9-decenoic acid, 10-undecenoic acid, acrylic acid, methacrylic acid, vinylacetic acid, crotonic acid Unsaturated carboxylic acids such as cinnamic acid; unsaturated dicarboxylic acids such as itaconic acid, maleic acid, fumaric acid, maleic anhydride, itaconic anhydride, or intramolecular acid anhydrides thereof; itaconic acid monomethyl ester, monomethyl maleate Examples thereof include unsaturated dicarboxylic acid monoal
  • Examples of the monomer having an amino group as a crosslinkable group include aminomethylstyrene, vinylamine, acrylamide, vinylacetamide, and vinylformamide.
  • Examples of the monomer having an epoxy group as a crosslinkable group include epoxy group-containing alkyl acrylates or methacrylates such as glycidyl acrylate and glycidyl methacrylate.
  • Examples of the monomer (m32) having no crosslinkable group include olefins such as ethylene and propylene; aromatic vinyl compounds such as styrene and vinyltoluene.
  • the composition of the specific polymer is preferably 0.1 to 40 mol%, more preferably 0.5 to 30 mol% of a unit having a biocompatible group when the entire polymer is 100 mol%. More preferably, it is contained in an amount of 1.0 to 10 mol%. Further, when the entire polymer is taken as 100 mol%, it is preferable to contain 20 to 80 mol%, more preferably 30 to 70 mol%, based on fluoroolefin. Further, when the whole polymer is taken as 100 mol%, the unit based on the monomer (m20) is preferably contained in an amount of 10 to 75 mol%, more preferably 30 to 70 mol%.
  • the unit based on the monomer (m21) and the unit based on the monomer (m22) The ratio is preferably 10:90 to 90:10 in molar ratio.
  • the specific polymer may be used alone or in combination of two or more.
  • the specific polymer is obtained by polymerization by a known method. That is, a polymer can be produced by polymerization using a monomer having a biocompatible group, a fluoroolefin, and a monomer (m20). Examples of the polymerization method include solution polymerization and emulsion polymerization.
  • the antifouling coating material of the present invention may contain other components in addition to the specific polymer.
  • examples of other components include a solvent, a surfactant, a pigment, and a curing agent.
  • curing agent plays the role which hardens the coating layer which apply
  • the curing agent a compound having two or more functional groups having reactivity with the crosslinkable group is appropriately selected according to the kind of the crosslinkable group possessed by the specific polymer.
  • an isocyanate curing agent, a blocked isocyanate curing agent, an amino resin, or the like is preferable.
  • the curing agent is preferably an isocyanate curing agent, a blocked isocyanate curing agent, or an amino resin.
  • examples of the curing agent include amine-based curing agents and epoxy-based curing agents.
  • examples of the curing agent include a carboxyl group-containing curing agent, an epoxy curing agent, and an acid anhydride curing agent.
  • examples of the curing agent include a carboxyl group-containing curing agent, an acid anhydride curing agent, and an amine curing agent.
  • Examples of the isocyanate curing agent include non-yellowing polyisocyanate and non-yellowing polyisocyanate modified.
  • Examples of the non-yellowing polyisocyanate include alicyclic polyisocyanates such as isophorone diisocyanate (IPDI) and dicyclohexylmethane diisocyanate (HMDI); and aliphatic polyisocyanates such as hexamethylene diisocyanate (HDI).
  • non-yellowing polyisocyanate-modified product examples include the following modified products.
  • X in —X—C ( ⁇ O) —NH— is an organic group derived from a compound having a hydroxyl group or a compound having an amino group.
  • the number of functional groups possessed by the compound having a hydroxyl group or the compound having an amino group is preferably 2 to 3.
  • the blocked isocyanate curing agent is a curing agent in which an isocyanate group is blocked.
  • the isocyanate group can be blocked with epsilon caprolactam (E-CAP), methyl ethyl ketone oxime (MEK-OX), methyl isobutyl ketone oxime (MIBK-OX), pyraridine, triazine (TA) and the like.
  • E-CAP epsilon caprolactam
  • MEK-OX methyl ethyl ketone oxime
  • MIBK-OX methyl isobutyl ketone oxime
  • TA triazine
  • the amino resin include melamine resin, guanamine resin, sulfoamide resin, urea resin, aniline resin, and the like.
  • a melamine resin is preferable because it has a high curing rate.
  • the melamine resin examples include alkyl etherified melamine resins that are alkyl etherified. Among these, a melamine resin substituted with a methoxy group and / or a butoxy group can be used more preferably.
  • the coating material of the present invention preferably contains a pigment for the purpose of rust prevention, coloring, reinforcement and the like of the cured coating film layer.
  • the pigment is preferably at least one pigment selected from the group consisting of rust preventive pigments, colored pigments and extender pigments.
  • the rust preventive pigment is a pigment for preventing corrosion and alteration of the metal substrate. Lead-free rust-proof pigments with low environmental impact are preferred. Examples of lead-free rust preventive pigments include cyanamide zinc, zinc oxide, zinc phosphate, calcium magnesium phosphate, zinc molybdate, barium borate, and calcium cyanamide zinc.
  • the color pigment is a pigment for coloring the coating film. Examples of the color pigment include titanium oxide, carbon black, and iron oxide.
  • the extender pigment is a pigment for improving the hardness of the coating film and increasing the thickness of the coating film. Examples of extender pigments include talc, barium sulfate, mica, and calcium carbonate.
  • the coating material of the present invention may contain a curing catalyst for the purpose of accelerating the curing reaction and imparting good chemical performance and physical performance to the cured coating film layer that is a cured product.
  • a curing catalyst for the purpose of accelerating the curing reaction and imparting good chemical performance and physical performance to the cured coating film layer that is a cured product.
  • the curing catalyst include the following (1) to (3).
  • Curing catalyst (1) a curing catalyst used for a crosslinking reaction between a fluorine-containing polymer containing a hydroxyl group and an isocyanate curing agent or a blocked isocyanate curing agent;
  • Curing catalyst (2) a curing catalyst used for a crosslinking reaction between a fluoropolymer containing at least one of an alkoxysilyl group and a hydroxyl group and a metal alkoxide;
  • Curing catalyst (3) a curing catalyst used for a crosslinking reaction between a fluoropolymer containing a hydroxyl group and an amino resin.
  • tin catalysts such as tin octylate, tributyltin dilaurate, and dibutyltin dilaurate are preferable.
  • acidic phosphoric acid esters such as phosphoric acid monoester and phosphoric acid diester
  • acidic boric acid esters such as boric acid monoester and boric acid diester
  • addition reaction of acidic phosphoric acid ester and amine Products, amine adducts such as addition reaction products of carboxylic acid compounds and amines
  • metal esters such as tin octylate and dibutyltin dilaurate
  • metals such as tris (acetylacetonate) aluminum and tetrakis (acetylacetonate) zirconium Chelates
  • metal alkoxides such as aluminum isopropoxide and titanium butoxide.
  • acidic phosphates are preferable from the viewpoint of curability and the smoothness of the formed cured coating layer, and carbon is preferable from the viewpoints of curability, smoothness of the formed cured coating layer, water resistance, and the like.
  • a monoalkyl phosphate having 1 to 8 carbon atoms, a dialkyl phosphate having 1 to 8 carbon atoms, or a mixture thereof is more preferable.
  • a blocked acid catalyst is preferred.
  • the blocked acid catalyst include various amine salts such as carboxylic acid, sulfonic acid, and phosphoric acid.
  • a curing catalyst may be used individually by 1 type, and may use 2 or more types together.
  • the antifouling coating material of the present invention is used for ships (particularly ship bottoms), marine structures, water tanks, outer walls, roofs, rooftops of buildings, cell culture vessels, microchannel surfaces, and the like.
  • the thickness of the coating layer is preferably 1 nm to 1 mm, particularly preferably 5 nm to 800 ⁇ m. If the thickness is equal to or greater than the lower limit, protein is difficult to adsorb. If the thickness is not more than the above upper limit value, the coating layer tends to adhere to the surface.
  • the method for forming the coating layer on the surface is not particularly limited, and a method of applying an antifouling coating material by a wet coating method or a method of applying and drying the coating solution of the present invention by a known wet coating method is adopted. it can.
  • the antifouling coating material of the present invention can be used particularly as a paint applied to the surface of a ship, offshore structure or underwater structure in order to prevent marine organisms from adhering.
  • the antifouling coating material of the present invention has an effect that it is difficult for biopolymers such as proteins and cells to adsorb or adhere to each other. (Algae) has an effect of being difficult to adhere.
  • the attachment of marine organisms is considered to occur when the marine organism considers the attachment object as a solid and determines that it is a suitable habitat environment.
  • a coating film (hereinafter also referred to as a specific coating film) formed from the antifouling coating material of the present invention
  • the polyoxyalkylene chain is oriented on the coating film surface, and the hydrophilic polyoxyalkylene chain, water, It is considered that at least a part of the surface of the coating film is hydrated or swollen due to the interaction. Therefore, it is considered that marine organisms regard the specific coating film as water instead of solid and do not adhere to the specific coating film. That is, the specific coating film expresses a marine organism adhesion prevention mechanism.
  • the antifouling coating material of the present invention can form a coating film excellent in salt water resistance and weather resistance. That is, the specific coating film has excellent marine organism adhesion prevention properties over a long period of time, and also has excellent salt water resistance and weather resistance that can withstand environmental changes (such as atmospheric exposure and temperature changes).
  • the specific coating film is preferably applied to a ship, an offshore structure or an underwater structure.
  • Objects of ships, offshore structures or underwater structures are objects used in the ocean (including nearby areas), for example, bridges, fishing nets, wave-dissipating blocks, breakwaters, submarine cables, tanks, pipelines, submarine Excavation facilities, marine floats, seawater intake and discharge ports at seaside power plants, seawater piping (cooling water piping) at seaside power plants, ship hulls (especially ship bottoms and drafting parts), ship screws, ship dredging, etc. Can be mentioned.
  • the material of the object may be any of metal, resin, rubber, stone, glass, and concrete.
  • the shape and state of the object are not particularly limited.
  • a specific coating film is applied to the inner surface of the piping.
  • the thickness of the specific coating film is preferably 10 to 100 ⁇ m. If thickness is more than a lower limit, the salt-water resistance of a specific coating film will be more excellent, and if it is below an upper limit, the weather resistance of a specific coating film will be more excellent.
  • the antifouling coating material of the present invention has an effect that biopolymers such as proteins and cells are difficult to adsorb or adhere, that is, an effect that molds or algae breeding nutrients are difficult to adhere.
  • the antifouling coating material of the present invention can be used as an antifungal / algae paint.
  • the specific coating film itself forms an unsuitable environment for the growth of mold or algae, and has a fungicide / algae control mechanism that does not depend on the fungicidal action of the fungicide (preservative) or the algae. Therefore, the specific coating film has a low environmental load and can exhibit excellent antifungal and antialgal properties over a long period of time.
  • the specific coating film has high water resistance (low water vapor permeability) and air shielding (low oxygen permeability) that prevent water from accumulating, and forms an environment that is not suitable for the growth of mold or algae. Yes.
  • the specific coating film not only exhibits excellent antifungal and algal resistance over a long period of time, even in an environment where mold and algae are likely to be generated and propagated, such as in a wet or wet environment.
  • it has excellent water resistance and weather resistance that can withstand environmental changes (air exposure, temperature changes, etc.).
  • the antifouling coating material of the present invention includes other additives (for example, an antifungal agent, an algal inhibitor, a crosslinking agent, a film-forming aid, a thickener, an antifoaming agent, a light stabilizer, a design agent, a surface Adjusting agent, aqueous medium, etc.).
  • additives for example, an antifungal agent, an algal inhibitor, a crosslinking agent, a film-forming aid, a thickener, an antifoaming agent, a light stabilizer, a design agent, a surface Adjusting agent, aqueous medium, etc.
  • the antifouling coating material of the present invention may contain a fungicide or an algae from the viewpoint of further enhancing the effect.
  • the fungicide or algae preventive include known fungicides or algae preventives, and from the viewpoint of compatibility with the specific fluoropolymer, an agent containing a compound containing a halogen atom as an active ingredient is preferable.
  • an agent containing a compound containing a halogen atom as an active ingredient is preferable.
  • a specific fluorine-containing polymer containing a chlorine atom for example, a specific fluorine-containing polymer in which the fluoroolefin is CF 2 ⁇ CFCl
  • An agent as an active ingredient is preferred.
  • the amount of the fungicide or the algae is preferably 0.01 to 5% by mass with respect to the specific fluoropolymer.
  • the antifouling coating material of the present invention is particularly useful for articles used in wet or wet environments.
  • the wet environment means an environment where the humidity is typically 40% or more
  • the wetted environment means an environment that is always in contact with water or is in contact with water occasionally.
  • Articles used in wet or wet environments include, for example, bathtubs, ceiling panels, wall panels, floor pans, doors, faucets, drainage units, ventilation fans, mirrors, sinks, toilets, low tanks, hand-washers, etc.
  • Indoor structures around water, underground structures such as water pipes and sewage pipes, outdoor structures such as water storage tanks and buildings.
  • the material of the article may be any of metal, resin, rubber, stone, glass, and concrete.
  • the thickness of the specific coating film is preferably 10 to 100 ⁇ m. If thickness is more than a lower limit, the water resistance of a coating film is more excellent, and if it is below an upper limit, the weather resistance of a coating film is more excellent.
  • the specific coating film should just be formed in the outermost surface of the articles
  • Examples of the method for applying the antifouling paint to the object include a method using a coating apparatus such as a brush, a roller, dipping, spraying, a roll coater, a die coater, an applicator, and a spin coater.
  • a coating apparatus such as a brush, a roller, dipping, spraying, a roll coater, a die coater, an applicator, and a spin coater.
  • the article on which the specific coating film is placed is an article in a shading environment such as the outer wall of the north and west buildings with poor sunlight, the inner surface of the water storage tank, the water pipe, and the sewage pipe.
  • Articles having a specific coating film on the surface by the above-mentioned mold-proof / algae-proof mechanism are excellent in mold-proof / algae-proof properties over a long period of time and have a low environmental load.
  • the antifouling coating material of the present invention is suitably used for cell culture vessels, microchannel surfaces and the like.
  • the specific coating film is difficult to adsorb proteins, and when applied to a cell culture container (that is, when the culture medium contact surface of the cell culture container includes the specific coating film), the cells are difficult to adhere to the specific coating film. Even if cells adhere, the cells can be removed by simple washing.
  • the specific coating film is excellent in durability, excellent durability (film persistence) can be expected even in repeated cleaning. Therefore, the antifouling coating material of the present invention is suitable for a cell culture container that is used repeatedly. That is, the present invention provides a cell culture container coated with a specific polymer.
  • a specific coating film does not contain a pigment, transparency will be favorable and it will not become a hindrance to cell observation.
  • CTFE chlorotrifluoroethylene (Asahi Glass Co., Ltd.).
  • CHVE cyclohexyl vinyl ether (manufactured by BASF).
  • EVE Ethyl vinyl ether (manufactured by BASF).
  • CM-15EOVE CH 2 ⁇ CHOCH 2 —cHex—CH 2 O (CH 2 CH 2 O) n1 H, n1: 15, average molecular weight 830 (hydrophilic macromonomer) (manufactured by Nippon Emulsifier Co., Ltd.).
  • SLS sodium lauryl sulfate (anionic surfactant (anionic emulsifier), manufactured by Nikko Chemicals).
  • MPC 2-methacryloyloxyethyl phosphorylcholine (manufactured by Tokyo Chemical Industry Co., Ltd.).
  • CTFE / CHVE / EVE / CM-15EOOVE (mol%) was 50/28/20/2.
  • the water vapor transmission rate per 1 ⁇ m film thickness and the oxygen transmission rate per 1 ⁇ m film thickness of the separately prepared resin A sheet were 1.0 g / m 2 ⁇ day and 0.01 mol / m 2 ⁇ s ⁇ Pa, respectively. It was.
  • the obtained resin B ′ was dissolved in methyl ethyl ketone (MEK) to obtain a varnish having a solid content of 60% by mass.
  • MEK methyl ethyl ketone
  • To 300 parts by mass of this varnish 16.1 parts by mass of a 20% by mass acetone solution of succinic anhydride and 0.072 parts by mass of triethylamine as a catalyst were added and reacted at 70 ° C. for 6 hours for esterification.
  • the characteristic absorption of succinic anhydride (1850 cm ⁇ 1 , 1780 cm ⁇ 1 ) observed before the reaction disappeared after the reaction, and carboxylic acid (1710 cm ⁇ 1 ) and Absorption of the ester (1735 cm ⁇ 1 ) was observed.
  • the acid value of the fluoropolymer after esterification was 10.5 mgKOH / g, and the hydroxyl value was 39.3 mgKOH / g. According to the values of the acid value and the hydroxyl value, about 2.1 mol% of 10.1 mol% of the structural unit of HBVE is esterified. Next, 3.26 parts by mass of triethylamine is added to the reaction solution after esterification, and the mixture is stirred at room temperature (23 ° C.) for 20 minutes to neutralize a part of the carboxyl groups, and then 180 parts of ion-exchanged water is added. Gradually added.
  • Production Example 3 Production Method of Resin C Charged with a 2.5 L stainless steel pressure-resistant reactor with a stirrer was charged 503 g of xylene, 142 g of ethanol, 327 g of CHVE, 85 g of HBVE, and 12 g of potassium carbonate, and cooled and deaerated. The dissolved air was removed by repeated pressurization with nitrogen gas. 387 g of CTFE was introduced into the pressure resistant reactor and the temperature was raised. When the temperature in the pressure resistant reactor reached 65 ° C., a pressure of 1.0 kg / cm 2 G was shown. Thereafter, 9 ml of a 50% xylene solution of PBPV was added to initiate the reaction.
  • the obtained resin C ′ was dissolved in MEK to obtain a varnish having a solid content of 60% by mass.
  • a varnish having a solid content of 60% by mass.
  • 3.26 parts by mass of triethylamine is added to the reaction solution after esterification, and the mixture is stirred at 23 ° C. for 20 minutes to neutralize a part of the carboxyl groups, and then 180 parts of ion-exchanged water is gradually added. It was.
  • acetone and methyl ethyl ketone were distilled off under reduced pressure. Further, about 90 parts by mass of ion-exchanged water was added to obtain an aqueous dispersion containing resin C and having a solid content concentration of 40% by mass.
  • Protein adsorption amount measurement (1) Preparation of color developing solution and protein solution
  • the color developing solution is peroxidase color developing solution (3,3 ', 5,5'-tetramethylbenzidine (TMBZ), manufactured by KPL) and TMB Peroxidase Substrate (KPL). What was mixed with 50 mL was used.
  • TMBZ peroxidase color developing solution
  • KPL TMB Peroxidase Substrate
  • Coloring solution dispensing 2 mL of the coloring solution was dispensed onto the washed 24-well microplate (2 mL was used for each well), and a coloring reaction was performed for 7 minutes.
  • the color reaction was stopped by adding 1 mL of 2N sulfuric acid (1 mL per well was used).
  • the glass substrate was subjected to the same method except that the color developing solution was 6.5 mL and the sulfuric acid was 3.25 mL.
  • dispense 100 ⁇ L of the coloring solution to a 96-well microplate (use 100 ⁇ L per well), perform the color reaction for 7 minutes, and add 50 ⁇ L of 2N sulfuric acid (use 50 ⁇ L per well). ) The color reaction was stopped.
  • Example 1 Water was added to the dispersion liquid of the resin A obtained in Production Example 1 so that its concentration was 0.05% by mass to prepare a coating liquid.
  • the coating solution was dispensed in a volume of 2.2 mL onto a 24-well microplate and allowed to stand at 50 ° C. for 3 days to evaporate the solvent, thereby forming a coating layer having a thickness of about 100 nm on the well surface.
  • Example 2 The well surface of the 24-well microplate in Example 1 was used without coating the resin A dispersion.
  • Example 3 A coating solution was prepared in the same manner as in Example 1 except that the resin B dispersion was used instead of the resin A dispersion. Further, using the coating solution, a coating layer having a thickness of about 100 nm was formed on the well surface of a 24-well microplate in the same manner as in Example 1.
  • Example 4 A coating solution was prepared in the same manner as in Example 1 except that the resin C dispersion was used instead of the resin A dispersion. Further, using the coating solution, a coating layer having a thickness of about 100 nm was formed on the well surface of a 24-well microplate in the same manner as in Example 1.
  • Example 5 Water was added to the dispersion liquid of the resin A obtained in Production Example 1 so that the concentration became 5% by mass to prepare a coating liquid.
  • a micro dip coater manufactured by SDI 4 cm of a 5 cm square glass plate is dipped in the coating solution, coated at a pulling rate of 1 mm / s, then dried at 50 ° C. for one day, and about 100 nm thick on a glass substrate. A coating layer was formed. Using a glass cutter, the coated part was cut into a 3 cm square and used as a test sample.
  • Example 6 The surface of the glass substrate in Example 1 was used without coating the resin A dispersion.
  • Example 7 A coating solution was prepared in the same manner as in Example 5 except that the resin B dispersion was used instead of the resin A dispersion. Further, a coating layer having a thickness of about 100 nm was formed on the glass substrate in the same manner as in Example 5 using the coating solution.
  • Example 8 A coating solution was prepared in the same manner as in Example 5 except that the dispersion of resin C was used instead of the dispersion of resin A. Further, a coating layer having a thickness of about 100 nm was formed on the glass substrate in the same manner as in Example 5 using the coating solution.
  • Example 9 A coating solution was prepared in the same manner as in Example 1 except that the dispersion of resin D was used instead of the dispersion of resin A. Further, using the coating solution, a coating layer having a thickness of about 100 nm was formed on the well surface of a 24-well microplate in the same manner as in Example 1.
  • the protein adsorption amounts of Examples 1 to 9 above were measured, and the results are shown in Table 1.
  • the protein adsorption amount is the protein adsorption rate Q.
  • Q is preferably less than 0.1 (1.0E-01).
  • Dispersibility Using the dispersion of resin A obtained in Production Example 1, 100 parts by mass of resin A (in terms of solid content), 60 parts by mass of titanium oxide pigment CR-90 (manufactured by Ishihara Sangyo Co., Ltd.), Dispersion H-14N dispersion 2.9 parts by mass of an agent (made by Nippon Emulsifier Co., Ltd.), 0.2 parts by mass of FS Antifoam 013B antifoaming agent (made by Dow Corning), 38 parts by mass of ion-exchanged water, and 100 parts by mass of glass beads are mixed. Then, using a Glenmifle disperser, the glass beads were filtered to prepare a pigment dispersion. The pigment dispersion of the pigment dispersion was very good.
  • the anticorrosion was evaluated according to JIS 5600-7-9.
  • the aluminum plate with a coating is cut with a cutter so that it reaches the substrate, and this is left in a salt spray environment for 4000 hours, and then washed with ion-exchanged water and dried.
  • the state of the crosscut wound was evaluated according to the following criteria. “ ⁇ (good)”: The swollen width of the cross-cut portion is less than 1.0 mm. “ ⁇ (slightly good)”: The swollen width of the cross-cut portion is 1.0 mm or more and less than 3.0 mm. “ ⁇ (defect)”: The swollen width of the cross-cut portion is 3.0 mm or more.
  • a test piece having a thickness of about 50 ⁇ m was prepared on the aluminum substrate using the dispersion liquid of the resin A obtained in Production Example 1, and this test was performed.
  • the swollen width of the cross-cut portion was less than 1.0 mm, and the evaluation was “good”.
  • Example 1 As shown in Table 1, in Example 1, Example 5 and Example 9 using the coating material containing the resin A which is the scope of the present invention, the coating layer is not formed in Examples 2 and 6 regardless of the base material. Compared to the protein, it was difficult to adsorb. Further, in Examples 3 to 4 and Examples 7 to 8 using the coating material containing the resin B and the resin C having a polymer as a comparative example, protein was easily adsorbed.
  • the water vapor transmission rate per 1 ⁇ m film thickness and the oxygen transmission rate per 1 ⁇ m film thickness of the resin A sheet cross-linked with the water-dispersed isocyanate curing agent were 0.05 g / m 2 ⁇ day and 0.01 mol, respectively. / M 2 ⁇ s ⁇ Pa.
  • the amount ratio of the resin A and the water-dispersed isocyanate curing agent used to produce the sheet was the same as the amount ratio used in the paint (2).
  • a test plate was prepared by the following procedure.
  • An epoxy resin-based paint (manufactured by Chugoku Paint Co., Ltd., product name “SEAJET 013 Main Agent” and product name “SEAJET 013 Curing Agent” mixed in a mass ratio of 4: 1) is dried on both surfaces of the aluminum base.
  • a brush was applied so that the film thickness was about 60 ⁇ m, and the film was cured at room temperature for 1 week.
  • paint (1) is applied on one side of an aluminum base material with an applicator so that the film thickness of the dried coating film is about 30 ⁇ m, and dried at room temperature for 2 weeks, so that resin A is formed on the surface.
  • a test plate (1) having a coating film was prepared.
  • Test plates were similarly prepared for the paints (2) and (3), and a test plate (2) and a test plate (3) were prepared.
  • Each of the test plates (1) to (3) is installed on the north side of a badly exposed building exposed to a wet condition, and the adhesion state of mold and algae after 4 months is visually observed.
  • the installation site is Ichihara City, Chiba Prefecture.
  • the results of the mold / algae adhesion test of each test plate are shown in Table 2.
  • ⁇ Barnacle Larvae Adhesion Test Nauplius larvae and adherent stage larvae (Cypris) were used.
  • Adult adult barnacles (from Himeji City, Hyogo Prefecture) were maintained and raised by feeding Artemia in a circulating water tank (water temperature 23 ⁇ 1 ° C.).
  • Nauplius larvae sprouted from adults were collected, transferred into a glass beaker filled with filtered seawater, and reared with the floating diatom Cheatoceros calcitrans to obtain artificially attached larvae (Cyprus larvae). The obtained cypris larvae were preserved by cold-dark treatment.
  • Larvae were introduced at about 100 individuals / test container. However, since the larvae adhere to the pipette when the larvae are put into the test container, they cannot be injected as counted, so about 20 individuals (about 120 individuals in total) are added, and the test seawater is excluded after the test is completed. Was measured. The test period was evaluated at 14 days. Each test substrate was 30 ⁇ 30 mm.
  • Example 21 The same glass test piece as in Example 5 was prepared and used. No adhesion was observed during the test period (attachment rate 0%). The appearance of searching the sample surface throughout the test period was not observed, and the appearance of searching the sample cross section to avoid the surface was observed.
  • Example 22 The same glass test piece as in Example 6 was prepared and used. Exploratory behavior was observed for the samples after the start of the test, and 5 (4.4%) young barnacles and 4 (3.5%) metamorphic individuals were observed 3 days after the start of the test. Thereafter, the number of attachments increased, and after 7 days, 74 juvenile barnacles (64.9%) were observed. Further, the adhesion test was extended, and an adhesion rate of 82 individuals (71.9%) was obtained after 14 days.
  • Example 23 The same glass test piece as in Example 8 was prepared and used. One day (0.9%) of young barnacles were observed 3 days after the start of the test, and the number of attachments did not increase thereafter, and after 7 days, the number of attachments remained in the same way. After 14 days, the adhesion to the sample increased by 1 individual, and the adhesion rate was 1.8%.
  • the antifouling coating material of the present invention is useful in a wide range of fields such as ships (especially ship bottoms), marine structures, water tanks, outer walls, roofs, building rooftops, cell culture vessels and microchannel surfaces.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Paints Or Removers (AREA)

Abstract

Provided is a coating material having excellent corrosion resistance and durability to which proteins do not tend to adsorb. An antifouling coating material including a fluorine-containing polymer having units having a biocompatible group, units based on a fluoroolefin, and units based on one or more selected from the group consisting of vinyl ethers, vinyl esters, and allyl ethers; in which the biocompatible group is at least one selected from the group consisting of groups represented by formula (1), groups represented by formula (2), and groups represented by formula (3).

Description

防汚コーティング材Antifouling coating material
 本発明は、防汚コーティング材に関する。 The present invention relates to an antifouling coating material.
 海洋構造物、船底、または家庭の水回り等には防食のために各種の塗装が施されている。この塗装ではタンパクの吸着や生物の付着等が発生しないような工夫がされている(特許文献1~3を参照。)。 The ocean structures, ship bottoms, and household waters are painted in various ways to prevent corrosion. This painting is devised to prevent protein adsorption or biological adhesion (see Patent Documents 1 to 3).
日本特開2007-169628号公報Japanese Unexamined Patent Publication No. 2007-169628 日本特開2002-069378号公報Japanese Patent Laid-Open No. 2002-069378 国際公開第2013/073580号International Publication No. 2013/073580
 しかし、これまでのコーティング材は、高度の防食耐久性と、タンパク等の非吸着性とを同時に高いレベルで十分に満足するものはなく、コーティング材が望まれていた。
 本発明は、防食耐久性に優れ、かつタンパクが吸着しにくい特性を有し、船舶(特に船底)、海洋構造物、水槽、外壁、屋根、建築物の屋上、または細胞培養容器やマイクロ流路表面などの分野において有用なコーティング材の提供を目的とする。
However, none of the conventional coating materials sufficiently satisfy high corrosion resistance and non-adsorbability such as protein at a high level at the same time, and a coating material has been desired.
The present invention is excellent in anticorrosion durability and has a property that protein is difficult to adsorb, and is suitable for ships (particularly ship bottom), marine structures, water tanks, outer walls, roofs, building rooftops, cell culture vessels, and microchannels. An object of the present invention is to provide a coating material useful in fields such as the surface.
 本発明は、以下の[1]~[9]の各発明を提供する。
 [1]生体親和性基を有する単位、フルオロオレフィンに基づく単位、並びに、ビニルエーテル、ビニルエステル、及びアリルエーテルからなる群から選ばれる1種以上に基づく単位を有する含フッ素重合体を含み、前記生体親和性基が、下式(1)で表される基、下式(2)で表される基および下式(3)で表される基からなる群から選ばれる少なくとも1種である、防汚コーティング材。
Figure JPOXMLDOC01-appb-C000003
(ただし、前記式中、nは1~10の整数であり、mは前記式(1)で表される基が含フッ素重合体において側鎖に含まれる場合は2~100であり、主鎖に含まれる場合は5~300であり、R~Rはそれぞれ独立に炭素数1~5のアルキル基であり、aは1~5の整数であり、bは1~5の整数であり、RおよびRはそれぞれ独立に炭素数1~5のアルキル基であり、Xは下式(3-1)で表される基または下式(3-2)で表される基であり、cは1~20の整数であり、dは1~5の整数である。)
Figure JPOXMLDOC01-appb-C000004
The present invention provides the following inventions [1] to [9].
[1] A fluoropolymer having a unit having a biocompatible group, a unit based on a fluoroolefin, and a unit based on one or more selected from the group consisting of vinyl ether, vinyl ester, and allyl ether, The affinity group is at least one selected from the group consisting of a group represented by the following formula (1), a group represented by the following formula (2), and a group represented by the following formula (3). Dirty coating material.
Figure JPOXMLDOC01-appb-C000003
(In the above formula, n is an integer of 1 to 10, and m is 2 to 100 when the group represented by the formula (1) is contained in the side chain in the fluoropolymer, And R 1 to R 3 each independently represents an alkyl group having 1 to 5 carbon atoms, a is an integer of 1 to 5, and b is an integer of 1 to 5. , R 4 and R 5 are each independently an alkyl group having 1 to 5 carbon atoms, and X is a group represented by the following formula (3-1) or a group represented by the following formula (3-2): And c is an integer of 1 to 20, and d is an integer of 1 to 5.)
Figure JPOXMLDOC01-appb-C000004
[2]前記フルオロオレフィンがテトラフルオロエチレン、クロロトリフルオロエチレン、トリフルオロエチレン、及び、フッ化ビニリデンからなる群より選ばれる1種以上である[1]に記載の防汚コーティング材。
[3]前記生体親和性基を有する単位が、下式(m1)で表わされる単量体に基づく単位である[1]または[2]に記載の防汚コーティング材。
 CH=C(R11)-Q-(C2nO)-R12  (m1)
(ただし前記式中、R11は水素原子、塩素原子またはメチル基であり;Qは単結合、エーテル性酸素原子または炭素数1~20の2価有機基であり;R12は水素原子または-(CH-R13(ただし、R13は水素原子、フッ素原子、トリフルオロメチル基またはシアノ基であり、iは1~25の整数である。)であり、nは1~10の整数であり、mは1~100である。)
[4]前記含フッ素重合体が、架橋性基を有する単量体に基づく単位を有する[1]~[3]のいずれか1項に記載の防汚コーティング材。
[5]前記架橋性基が水酸基である[4]に記載の防汚コーティング材。
[6]前記含フッ素重合体が、重合体全体を100モル%としたときに、生体親和性基を有する単位を0.1~40モル%有し、フルオロオレフィンに基づく単位を20~80モル%有し、かつビニルエーテル、ビニルエステル、およびアリルエーテルからなる群から選ばれる1種以上に基づく単位を10~75モル%有する[1]~[5]のいずれか1項に記載の防汚コーティング材。
[7]海洋生物付着防止塗料である[1]~[6]のいずれか1項に記載の防汚コーティング材
[8]防カビ・防藻塗料である[1]~[6]のいずれか1項に記載の防汚コーティング材。
[9]防カビ剤または防藻剤を含む[8]に記載の防汚コーティング材。
[2] The antifouling coating material according to [1], wherein the fluoroolefin is one or more selected from the group consisting of tetrafluoroethylene, chlorotrifluoroethylene, trifluoroethylene, and vinylidene fluoride.
[3] The antifouling coating material according to [1] or [2], wherein the unit having a biocompatible group is a unit based on a monomer represented by the following formula (m1).
CH 2 = C (R 11 ) -Q 1- (C n H 2n O) m -R 12 (m1)
(Wherein R 11 is a hydrogen atom, a chlorine atom or a methyl group; Q 1 is a single bond, an etheric oxygen atom or a divalent organic group having 1 to 20 carbon atoms; R 12 is a hydrogen atom or — (CH 2 ) i —R 13 (wherein R 13 is a hydrogen atom, a fluorine atom, a trifluoromethyl group or a cyano group, i is an integer of 1 to 25), and n is 1 to 10 And m is 1 to 100.)
[4] The antifouling coating material according to any one of [1] to [3], wherein the fluoropolymer has units based on a monomer having a crosslinkable group.
[5] The antifouling coating material according to [4], wherein the crosslinkable group is a hydroxyl group.
[6] The fluoropolymer has 0.1 to 40 mol% of a unit having a biocompatible group and 20 to 80 mol of a unit based on a fluoroolefin when the entire polymer is 100 mol%. The antifouling coating according to any one of [1] to [5], wherein the antifouling coating has 10 to 75 mol% of units based on one or more selected from the group consisting of vinyl ether, vinyl ester, and allyl ether Wood.
[7] The antifouling coating material according to any one of [1] to [6], which is a marine organism adhesion prevention paint [8] Any of [1] to [6], which is an antifungal / algae paint The antifouling coating material according to item 1.
[9] The antifouling coating material according to [8], which contains an antifungal agent or an antialgal agent.
 本発明によれば、高度の防食耐久性と、タンパク等の非吸着性とを同時に高いレベルで十分に満足する、特に、船舶(特に船底)、海洋構造物、水槽、外壁、屋根、建築物の屋上、または細胞培養容器やマイクロ流路表面などの分野において有用なコーティング材が得られる。 According to the present invention, a high level of anti-corrosion durability and non-adsorbability such as protein are sufficiently satisfied at a high level at the same time, in particular, ship (especially ship bottom), marine structure, water tank, outer wall, roof, building. Coating materials useful in fields such as rooftops, cell culture vessels, microchannel surfaces, and the like.
 本明細書において、以下の用語の定義及び表現法は、それぞれ次のとおりである。
 「単位」とは、重合体中に存在して重合体を構成する、単量体に由来する部分を意味する。炭素-炭素不飽和二重結合を有する単量体の付加重合により生じる、該単量体に由来する単位は、該不飽和二重結合が開裂して生じた2価の単位である。また、ある単位の構造を重合体形成後に化学的に変換したものも単位という。なお、以下、場合により、個々の単量体に由来する単位をその単量体名に「単位」を付した名称で呼ぶ。
In the present specification, the following terms are defined and expressed as follows.
The “unit” means a part derived from a monomer that exists in the polymer and constitutes the polymer. The unit derived from the monomer resulting from addition polymerization of a monomer having a carbon-carbon unsaturated double bond is a divalent unit generated by cleavage of the unsaturated double bond. Moreover, what unitally converted the structure of a unit after polymer formation is also called a unit. Hereinafter, in some cases, a unit derived from an individual monomer is referred to as a name obtained by adding “unit” to the monomer name.
 「生体親和性基」とは、タンパク質が重合体に吸着および細胞が重合体に接着して動かなくなることを抑制する性質を有する基を意味する。
 式(1)で表される基を基(1)と記す。また、他の式で表される基や単量体もこれに準じて同様に記す。
 防汚コーティング材は、生体親和性基を有する単位、及び、フルオロオレフィンに基づく単位を有する重合体を含む。
“Bioaffinity group” means a group having the property of inhibiting protein from adsorbing to a polymer and preventing cells from adhering to the polymer and becoming immobile.
A group represented by the formula (1) is referred to as a group (1). In addition, groups and monomers represented by other formulas will be described in the same manner.
The antifouling coating material includes a polymer having a unit having a biocompatible group and a unit based on a fluoroolefin.
[重合体]
 本発明に係る重合体(以下、特定重合体ともいう。)は、生体親和性基を有する単位、フルオロオレフィンに基づく単位、並びに、ビニルエーテル、ビニルエステル、及びアリルエーテルからなる群から選ばれる1種以上に基づく単位を有する。
 特定重合体は、生体親和性基を有する単位を有する。生体親和性基は、前記基(1)、前記基(2)、および、前記基(3)からなる群から選ばれる少なくとも1種の基である。重合体がこれらの生体親和性基を有することで、タンパクの吸着が抑制される。生体親和性基としては基(1)がタンパクの吸着抑制効果が高いことから好ましい。
 基(1)は、重合体の主鎖に含まれていてもよく、側鎖に含まれていてもよいが、側鎖に含まれていることが好ましい。基(1)において、nは、1~10であり、1~4が好ましく、2~3が特に好ましい。式(1)で表わされる2価の基(オキシアルキレン鎖)としては、オキシメチレン鎖、オキシエチレン鎖、オキシプロピレン鎖、オキシトリメチレン鎖、オキシブチレン鎖、またはオキシテトラメチレン鎖が好ましく、オキシエチレン鎖、またはオキシプロピレン鎖がより好ましく、オキシエチレン鎖が特に好ましい。
[Polymer]
The polymer according to the present invention (hereinafter also referred to as a specific polymer) is one type selected from the group consisting of a unit having a biocompatible group, a unit based on fluoroolefin, and vinyl ether, vinyl ester, and allyl ether. Has units based on the above.
The specific polymer has a unit having a biocompatible group. The bioaffinity group is at least one group selected from the group consisting of the group (1), the group (2), and the group (3). Adsorption of protein is suppressed because a polymer has these bioaffinity groups. As the bioaffinity group, the group (1) is preferable because it has a high protein adsorption inhibitory effect.
The group (1) may be contained in the main chain of the polymer and may be contained in the side chain, but is preferably contained in the side chain. In the group (1), n is 1 to 10, preferably 1 to 4, and particularly preferably 2 to 3. The divalent group (oxyalkylene chain) represented by the formula (1) is preferably an oxymethylene chain, an oxyethylene chain, an oxypropylene chain, an oxytrimethylene chain, an oxybutylene chain, or an oxytetramethylene chain. A chain or an oxypropylene chain is more preferable, and an oxyethylene chain is particularly preferable.
 基(1)におけるmは、式(1)で表される基が含フッ素重合体において側鎖に含まれる場合は2~100であり、2~50が好ましく、3~30が特に好ましい。mがこの範囲であるとタンパクの吸着抑制効果が高い。mは、基(1)が含フッ素重合体(A)の主鎖に含まれる場合、耐水性に優れる点から、5~300が好ましく、10~200が特に好ましい。ここで、mは用いる単量体における平均値を意味する。mが2以上の場合、基(1)の(C2nO)は1種のみでも、2種以上であってもよい。また、2種以上の場合、その並び方はランダム、ブロック、交互のいずれであってもよい。重合体が有する基(1)は、1種でもよく、2種以上でもよい。 M in the group (1) is 2 to 100, preferably 2 to 50, and particularly preferably 3 to 30 when the group represented by the formula (1) is contained in the side chain in the fluoropolymer. When m is within this range, the protein adsorption suppressing effect is high. m is preferably from 5 to 300, particularly preferably from 10 to 200, from the viewpoint of excellent water resistance when the group (1) is contained in the main chain of the fluoropolymer (A). Here, m means an average value in the monomer used. When m is 2 or more, (C n H 2n O) of the group (1) may be one kind or two or more kinds. In the case of two or more types, the arrangement may be random, block, or alternating. The group (1) possessed by the polymer may be one type or two or more types.
 基(2)において、R~Rは、それぞれ独立に炭素数1~5のアルキル基であり、原料の入手容易性の点から、炭素数1~4のアルキル基が好ましく、メチル基が特に好ましい。aは、1~5の整数であり、原料の入手容易性の点から、2~5が好ましく、2が特に好ましい。bは1~5の整数であり、タンパク質が吸着しにくい点から、1~4が好ましく、2が特に好ましい。重合体が有する基(2)は、1種でもよく、2種以上でもよい。 In the group (2), R 1 to R 3 are each independently an alkyl group having 1 to 5 carbon atoms, and an alkyl group having 1 to 4 carbon atoms is preferable from the viewpoint of easy availability of raw materials, and a methyl group is Particularly preferred. a is an integer of 1 to 5, preferably 2 to 5, and particularly preferably 2 from the viewpoint of availability of raw materials. b is an integer of 1 to 5, preferably 1 to 4 and particularly preferably 2 from the viewpoint that protein is difficult to adsorb. The group (2) possessed by the polymer may be one type or two or more types.
 基(3)において、RおよびRは、それぞれ独立に、炭素数1~5のアルキル基であり、タンパク質が吸着しにくい点から、炭素数1~4のアルキル基が好ましく、メチル基が特に好ましい。cは、1~20の整数であり、重合体が柔軟性に優れる点から、1~15が好ましく、1~10がより好ましく、2が特に好ましい。dは、1~5の整数であり、タンパク質が吸着しにくい点から、1~4が好ましく、1が特に好ましい。重合体が有する基(3)は、1種でもよく、2種以上でもよい。また、重合体が基(3)を有する場合、タンパク質が吸着しにくい点から、重合体は、Xが基(3-1)である基(3)を有するか、またはXが基(3-2)である基(3)を有するかのいずれかであることが好ましい。 In the group (3), R 4 and R 5 are each independently an alkyl group having 1 to 5 carbon atoms, and an alkyl group having 1 to 4 carbon atoms is preferable, and a methyl group is preferable. Particularly preferred. c is an integer of 1 to 20, preferably 1 to 15, more preferably 1 to 10, and particularly preferably 2, from the viewpoint that the polymer is excellent in flexibility. d is an integer of 1 to 5, preferably 1 to 4 and particularly preferably 1 from the viewpoint that protein is difficult to adsorb. The group (3) possessed by the polymer may be one type or two or more types. In addition, when the polymer has a group (3), the polymer has a group (3) in which X is a group (3-1) or X has a group ( It is preferably any of those having the group (3) which is 3-2).
 特定重合体は、フルオロオレフィン(m10)に基づく単位を有する。フルオロオレフィンは炭素-炭素二重結合を構成する炭素原子に1個以上のフッ素原子が結合したオレフィンである。フルオロオレフィンとしては、テトラフルオロエチレン、クロロトリフルオロエチレン、トリフルオロエチレン、フッ化ビニリデン、フッ化ビニル、ヘキサフルオロプロピレンが挙げられる。このうち重合体の耐久性が高くなりやすいことから、テトラフルオロエチレン、クロロトリフルオロエチレン、トリフルオロエチレン、及び、フッ化ビニリデンからなる群から選ばれる1種以上のフルオロオレフィンが好ましく、テトラフルオロエチレン及び/またはクロロトリフルオロエチレンがより好ましい。フルオロオレフィンは1種のみでもよく、2種以上でもよい。反応性が制御しやすいことから1種のみが好ましい。 The specific polymer has units based on fluoroolefin (m10). A fluoroolefin is an olefin in which one or more fluorine atoms are bonded to carbon atoms constituting a carbon-carbon double bond. Examples of the fluoroolefin include tetrafluoroethylene, chlorotrifluoroethylene, trifluoroethylene, vinylidene fluoride, vinyl fluoride, and hexafluoropropylene. Of these, one or more fluoroolefins selected from the group consisting of tetrafluoroethylene, chlorotrifluoroethylene, trifluoroethylene, and vinylidene fluoride are preferred because the durability of the polymer tends to increase. And / or chlorotrifluoroethylene is more preferred. Only one type of fluoroolefin may be used, or two or more types may be used. Only one type is preferred because the reactivity is easy to control.
 基(1)を有する単位は、下式(m1)で表わされる単量体に基づく単位であることが好ましい。
 CH=C(R11)-Q-(C2nO)-R12  (m1)
 式(m1)中、R11は水素原子、塩素原子またはメチル基であり、水素原子またはメチル基が好ましく、水素原子が特に好ましい。
 Qは単結合、エーテル性酸素原子または炭素数1~20の2価有機基であり、炭素数1~20の2価有機基が好ましい。Qにおける2価有機基としては-(CH-OR14-(O)-、または、-COO(CH-(O)-が好ましい。e、f、およびhは、それぞれ独立に0または1であり、gは0~4の整数である。ただし、gが0(ゼロ)の場合は、hは0(ゼロ)である。eは0(ゼロ)が好ましい。fは1が好ましい。gは0(ゼロ)または2が好ましい。gが0でない場合は、hは1が好ましい。R14は単結合または炭素数1~19の2価炭化水素基が好ましい。ただしR14が単結合の場合は、hは0(ゼロ)である。
 すなわちQとしては、-O-、-CH-O-CH-(cHex)-CH-O-、-O-CH-(cHex)-CH-O-、または、-COO-が好ましい。ただし、cHexはシクロヘキシレン基を意味する。シクロヘキシレン基としては、1,4-シクロヘキシレン基が好ましい。
 また-Q-(C2nO)-において、オキシアルキレン鎖は1つの塊として考え、かつ、mが最大になるように考えるものとする。
 単量体(m1)としては、基(1)を有するビニルエーテル類、基(1)を有するビニルエステル類、または基(1)を有するアリルエーテル類が好ましく、基(1)を有するビニルエーテル類がより好ましい。
The unit having the group (1) is preferably a unit based on the monomer represented by the following formula (m1).
CH 2 = C (R 11 ) -Q 1- (C n H 2n O) m -R 12 (m1)
In formula (m1), R 11 represents a hydrogen atom, a chlorine atom or a methyl group, preferably a hydrogen atom or a methyl group, and particularly preferably a hydrogen atom.
Q 1 is a single bond, an etheric oxygen atom or a divalent organic group having 1 to 20 carbon atoms, preferably a divalent organic group having 1 to 20 carbon atoms. The divalent organic group for Q 1 is preferably — (CH 2 ) e —OR 14 — (O) f — or —COO (CH 2 ) g — (O) h —. e, f, and h are each independently 0 or 1, and g is an integer of 0-4. However, when g is 0 (zero), h is 0 (zero). e is preferably 0 (zero). f is preferably 1. g is preferably 0 (zero) or 2. When g is not 0, h is preferably 1. R 14 is preferably a single bond or a divalent hydrocarbon group having 1 to 19 carbon atoms. However, when R 14 is a single bond, h is 0 (zero).
That is, as Q 1 , —O—, —CH 2 —O—CH 2 — (cHex) —CH 2 —O—, —O—CH 2 — (cHex) —CH 2 —O—, or —COO— Is preferred. However, cHex means a cyclohexylene group. As the cyclohexylene group, a 1,4-cyclohexylene group is preferable.
Further, in —Q 1 — (C n H 2n O) m —, the oxyalkylene chain is considered as one lump and m is considered to be maximum.
As the monomer (m1), vinyl ethers having a group (1), vinyl esters having a group (1), or allyl ethers having a group (1) are preferable, and vinyl ethers having a group (1) are More preferred.
 R12は水素原子または-(CH-R13であり、水素原子が好ましい。R12が水素原子である場合に、当該オキシアルキレン鎖の末端は水酸基となり、特定重合体において後述する架橋性基となるため好ましい。R13は水素原子、フッ素原子、トリフルオロメチル基またはシアノ基であり、iは1~25の整数である。
 単量体(m1)の具体例としては、以下の化合物が挙げられる。
 CH=CH-COO-(CO)-H、
 CH=CH-O-CH-(cHex)-CH-O(CHCHO)-H
R 12 is a hydrogen atom or — (CH 2 ) i —R 13 , and preferably a hydrogen atom. When R 12 is a hydrogen atom, the terminal of the oxyalkylene chain is preferably a hydroxyl group, which is a crosslinkable group described later in the specific polymer. R 13 is a hydrogen atom, a fluorine atom, a trifluoromethyl group or a cyano group, i is an integer of 1 to 25.
Specific examples of the monomer (m1) include the following compounds.
CH 2 ═CH—COO— (C 2 H 4 O) m —H,
CH 2 ═CH—O—CH 2 — (cHex) —CH 2 —O (CH 2 CH 2 O) m —H
 基(2)を有する単位は、下式(m2)で表わされる単量体に基づく単位であることが好ましい。
CH=C(R21)-Q-(CH)-(PO )-(CH)-(N) (m2)
The unit having the group (2) is preferably a unit based on a monomer represented by the following formula (m2).
CH 2 = C (R 21 ) -Q 2- (CH 2 ) a- (PO 4 - )-(CH 2 ) b- (N + R 1 R 2 R 3 ) (m2)
 式(m2)中、R21は水素原子、塩素原子またはメチル基であり、水素原子またはメチル基が好ましく、水素原子が特に好ましい。
 Qは単結合、エーテル性酸素原子または炭素数1~20の2価有機基であり、炭素数1~20の2価有機基が好ましい。Qにおける2価有機基としては、Qにおける2価有機基と同じである。単量体(m2)としては、基(2)を有するビニルエーテル類、基(2)を有するビニルエステル類、基(2)を有するアリルエーテル類、または基(2)を有する(メタ)アクリル酸エステル類が好ましく、基(2)を有するビニルエーテル類、基(2)を有するビニルエステル類、または基(2)を有するアリルエーテル類がより好ましく、基(2)を有するビニルエーテル類がさらに好ましい。
 単量体(m2)の具体例としては、2-メタクリロイルオキシエチルホスホリルコリン、2-アクリロイルオキシエチルホスホリルコリン等が挙げられる。
In the formula (m2), R 21 represents a hydrogen atom, a chlorine atom or a methyl group, preferably a hydrogen atom or a methyl group, and particularly preferably a hydrogen atom.
Q 2 is a single bond, an etheric oxygen atom or a divalent organic group having 1 to 20 carbon atoms, preferably a divalent organic group having 1 to 20 carbon atoms. The divalent organic group in Q 2 is the same as the divalent organic group in Q 1 . As the monomer (m2), vinyl ethers having group (2), vinyl esters having group (2), allyl ethers having group (2), or (meth) acrylic acid having group (2) Esters are preferred, vinyl ethers having group (2), vinyl esters having group (2), or allyl ethers having group (2) are more preferred, and vinyl ethers having group (2) are more preferred.
Specific examples of the monomer (m2) include 2-methacryloyloxyethyl phosphorylcholine, 2-acryloyloxyethyl phosphorylcholine and the like.
 基(3)を有する単位は、下式(m3)で表わされる単量体に基づく単位であることが好ましい。
  CH=C(R31)-Q-(CH)-(N)-(CH)-X (m3)
 式(m3)中、R31は水素原子、塩素原子またはメチル基であり、水素原子またはメチル基が好ましく、水素原子が特に好ましい。
 Qは単結合、エーテル性酸素原子または炭素数1~20の2価有機基であり、炭素数1~20の2価有機基が好ましい。Qにおける2価有機基としては、Qにおける2価有機基と同じである。単量体(m3)としては、基(3)を有するビニルエーテル類、基(3)を有するビニルエステル類、基(3)を有するアリルエーテル類、または基(3)を有する(メタ)アクリル酸エステル類が好ましく、基(3)を有するビニルエーテル類、基(3)を有するビニルエステル類、または基(3)を有するアリルエーテル類がより好ましく、基(3)を有するビニルエーテル類がさらに好ましい。
The unit having the group (3) is preferably a unit based on a monomer represented by the following formula (m3).
CH 2 = C (R 31) -Q 3 - (CH 2) c - (N + R 4 R 5) - (CH 2) d -X - (m3)
In the formula (m3), R 31 is a hydrogen atom, a chlorine atom or a methyl group, preferably a hydrogen atom or a methyl group, particularly preferably a hydrogen atom.
Q 3 is a single bond, an etheric oxygen atom or a divalent organic group having 1 to 20 carbon atoms, preferably a divalent organic group having 1 to 20 carbon atoms. The divalent organic group in Q 3 is the same as the divalent organic group in Q 1 . As the monomer (m3), vinyl ethers having a group (3), vinyl esters having a group (3), allyl ethers having a group (3), or (meth) acrylic acid having a group (3) Esters are preferred, vinyl ethers having group (3), vinyl esters having group (3), or allyl ethers having group (3) are more preferred, and vinyl ethers having group (3) are more preferred.
 単量体(m3)の具体例としては、以下の化合物が挙げられる。
N-メタクリロイルオキシエチル-N,N-ジメチルアンモニウム-α-N-メチルカルボキシベタイン、N-アクリロイルオキシエチル-N,N-ジメチルアンモニウム-α-N-メチルカルボキシベタイン、N-メタクリロイルオキシエチル-N,N-ジメチルアンモニウム-α-N-プロピルスルホキシベタイン、N-メタクリロイルアミノプロピル-N,N-ジメチルアンモニウム-α-N-プロピルスルホキシベタイン等。
Specific examples of the monomer (m3) include the following compounds.
N-methacryloyloxyethyl-N, N-dimethylammonium-α-N-methylcarboxybetaine, N-acryloyloxyethyl-N, N-dimethylammonium-α-N-methylcarboxybetaine, N-methacryloyloxyethyl-N, N-dimethylammonium-α-N-propylsulfoxybetaine, N-methacryloylaminopropyl-N, N-dimethylammonium-α-N-propylsulfoxybetaine, and the like.
 特定重合体は、生体親和性基を有する単位として、単量体(m1)に基づく単位、単量体(m2)に基づく単位、および、単量体(m3)に基づく単位からなる群から選ばれる1種以上の単位を有することが好ましい。特に特定重合体は、単量体(m1)に基づく単位を有することが、タンパクの吸着抑制効果が高いことから好ましい。 The specific polymer is selected from the group consisting of a unit based on the monomer (m1), a unit based on the monomer (m2), and a unit based on the monomer (m3) as the unit having a biocompatible group. It is preferable to have at least one unit. In particular, the specific polymer preferably has a unit based on the monomer (m1) because of its high protein adsorption inhibiting effect.
 特定重合体は、さらに、ビニルエーテル、ビニルエステル、及びアリルエーテルからなる群から選ばれる1種以上に基づく単位を有している。ただし、これらは生体親和性基を有さない。これらはフルオロオレフィンとの交互共重合性に優れ、形成される塗膜層の耐久性、耐候性、耐擦傷性および耐衝撃性の向上が期待される。該単位はビニルエーテル、ビニルエステル、及びアリルエーテルからなる群から選ばれる1種以上の単量体(m20)に基づく単位である。単量体(m20)としては、架橋性基を有する単量体(m21)、または架橋性基を有しない単量体(m22)が挙げられる。架橋性基としては、水酸基、カルボキシル基、アミノ基、またはエポキシ基等が挙げられ、水酸基がより好ましい。 The specific polymer further has a unit based on one or more selected from the group consisting of vinyl ether, vinyl ester, and allyl ether. However, they do not have a biocompatible group. These are excellent in alternating copolymerization with fluoroolefin, and are expected to improve the durability, weather resistance, scratch resistance and impact resistance of the coating layer to be formed. The unit is a unit based on one or more monomers (m20) selected from the group consisting of vinyl ethers, vinyl esters, and allyl ethers. As a monomer (m20), the monomer (m21) which has a crosslinkable group, or the monomer (m22) which does not have a crosslinkable group is mentioned. Examples of the crosslinkable group include a hydroxyl group, a carboxyl group, an amino group, and an epoxy group, and a hydroxyl group is more preferable.
 架橋性基として水酸基を有する単量体としては、2-ヒドロキシエチルビニルエーテル、3-ヒドロキシプロピルビニルエーテル、2-ヒドロキシプロピルビニルエーテル、2-ヒドロキシ-2-メチルプロピルビニルエーテル、4-ヒドロキシブチルビニルエーテル、4-ヒドロキシ-2-メチルブチルビニルエーテル、5-ヒドロキシペンチルビニルエーテル、6-ヒドロキシヘキシルビニルエーテル、シクロヘキサンジメタノールモノビニルエーテル等のヒドロキシアルキルビニルエーテル類;2-ヒドロキシエチルアリルエーテル、3-ヒドロキシプロピルアリルエーテル、4-ヒドロキシブチルアリルエーテル、グリセロールモノアリルエーテル等のヒドロキシアルキルアリルエーテル類;2-ヒドロキシプロパン酸ビニルエステル、4-ヒドロキシペンタン酸ビニルエステル等のヒドロキシアルキルカルボン酸ビニルエステル類等が挙げられる。
 また重合体中への水酸基を有する単量体に基づく単位の導入方法には、重合体を合成する際、重合後に水酸基を含有する単位を形成させる方法等がある。重合後に水酸基を有する単位を形成させる方法としては、加水分解可能なビニルエステル類等を共重合させた後、加水分解させて水酸基を形成する方法等が例示される。
Examples of the monomer having a hydroxyl group as a crosslinkable group include 2-hydroxyethyl vinyl ether, 3-hydroxypropyl vinyl ether, 2-hydroxypropyl vinyl ether, 2-hydroxy-2-methylpropyl vinyl ether, 4-hydroxybutyl vinyl ether, 4-hydroxy -2-Hydroxyalkyl vinyl ethers such as 2-methylbutyl vinyl ether, 5-hydroxypentyl vinyl ether, 6-hydroxyhexyl vinyl ether, cyclohexanedimethanol monovinyl ether; 2-hydroxyethyl allyl ether, 3-hydroxypropyl allyl ether, 4-hydroxybutyl allyl Hydroxyalkyl allyl ethers such as ether and glycerol monoallyl ether; 2-hydroxypropanoic acid vinyl ester , Hydroxyalkyl carboxylic acid vinyl esters such as 4-hydroxy-pentanoic acid vinyl ester and the like.
Examples of a method for introducing a unit based on a monomer having a hydroxyl group into the polymer include a method of forming a unit containing a hydroxyl group after the polymerization when the polymer is synthesized. Examples of the method for forming a unit having a hydroxyl group after polymerization include a method in which a hydrolyzable vinyl ester or the like is copolymerized and then hydrolyzed to form a hydroxyl group.
 架橋性基としてカルボキシル基を有する単量体としては、ビニルオキシ吉草酸、3-ビニルオキシプロピオン酸、3-(2-ビニルオキシブトキシカルボニル)プロピオン酸、3-(2-ビニルオキシエトキシカルボニル)プロピオン酸、等の飽和カルボン酸ビニルエーテル類;アリルオキシ吉草酸、3-アリルオキシプロピオン酸、3-(2-アリロキシブトキシカルボニル)プロピオン酸、3-(2-アリロキシエトキシカルボニル)プロピオン酸等の飽和カルボン酸アリルエーテル類;アジピン酸モノビニル、こはく酸モノビニル、フタル酸ビニル、ピロメリット酸ビニル等の飽和多価カルボン酸モノビニルエステル類等が挙げられる。 Examples of monomers having a carboxyl group as a crosslinkable group include vinyloxyvaleric acid, 3-vinyloxypropionic acid, 3- (2-vinyloxybutoxycarbonyl) propionic acid, and 3- (2-vinyloxyethoxycarbonyl) propionic acid. Saturated carboxylic acid vinyl ethers such as allyloxyvaleric acid, 3-allyloxypropionic acid, 3- (2-allyloxybutoxycarbonyl) propionic acid, and 3- (2-allyloxyethoxycarbonyl) propionic acid. Allyl ethers; saturated polycarboxylic acid monovinyl esters such as monovinyl adipate, monovinyl succinate, vinyl phthalate, and vinyl pyromellitic acid.
 また、カルボキシル基を有する単量体に基づく単位の導入方法には、水酸基を有する重合体を重合した後に二塩基酸無水物を反応させてカルボキシル基を形成する方法がある。 Further, as a method for introducing a unit based on a monomer having a carboxyl group, there is a method in which a carboxyl group is formed by reacting a dibasic acid anhydride after polymerizing a polymer having a hydroxyl group.
 架橋性基としてアミノ基を有する単量体としては、CH=CH-O-(CH-NH(x=1~10)で示されるアミノアルキルビニルエーテル類;CH=CH-O-CO(CH-NH(x=1~10)で示されるアミノアルキルカルボン酸ビニルエステル等が挙げられる。
 架橋性基としてエポキシ基を有する単量体としては、グリシジルビニルエーテル等のエポキシ基含有アルキルビニルエーテル類;グリシジルアリルエーテル等のエポキシ基含有アルキルアリルエーテル類等が挙げられる。
 本発明における重合体が架橋性基を有する単量体に基づく単位を有することにより、重合体を含むコーティング材を塗膜とした際に架橋させることが可能となり、高耐久性の塗膜が得られる。
Monomers having an amino group as a crosslinkable group include aminoalkyl vinyl ethers represented by CH 2 ═CH—O— (CH 2 ) x —NH 2 (x = 1 to 10); CH 2 ═CH—O Examples thereof include aminoalkylcarboxylic acid vinyl esters represented by —CO (CH 2 ) x —NH 2 (x = 1 to 10).
Examples of the monomer having an epoxy group as a crosslinkable group include epoxy group-containing alkyl vinyl ethers such as glycidyl vinyl ether; epoxy group-containing alkyl allyl ethers such as glycidyl allyl ether.
When the polymer in the present invention has a unit based on a monomer having a crosslinkable group, it can be crosslinked when a coating material containing the polymer is used as a coating film, and a highly durable coating film is obtained. It is done.
 架橋性基を有しない単量体(m22)としては、エチルビニルエーテル、プロピルビニルエーテル、ブチルビニルエーテル、2-エチルヘキシルビニルエーテル、シクロヘキシルビニルエーテル等のビニルエーテル類;ブタン酸ビニル、オクタン酸ビニル等のビニルエステル類;エチルアリルエーテル等のアリルエーテル類等;アクリル酸ブチル等のアクリロイル化合物;メタクリル酸エチル等のメタクリロイル化合物等のアクリル酸エステル類が例示される。
 特定重合体が架橋性基を有しない単量体に基づく単位を有することにより、重合体を含むコーティング材を塗膜とした際に、塗膜に柔軟性等を付与することが可能である。
Examples of the monomer (m22) having no crosslinkable group include vinyl ethers such as ethyl vinyl ether, propyl vinyl ether, butyl vinyl ether, 2-ethylhexyl vinyl ether, and cyclohexyl vinyl ether; vinyl esters such as vinyl butanoate and vinyl octoate; Examples include allyl ethers such as allyl ether; acryloyl compounds such as butyl acrylate; and acrylic esters such as methacryloyl compounds such as ethyl methacrylate.
When the specific polymer has a unit based on a monomer having no crosslinkable group, when the coating material containing the polymer is used as a coating film, flexibility or the like can be imparted to the coating film.
 特定重合体は、さらに任意に上記生体親和性基を有する単位、フルオロオレフィンに基づく単位、及び、単量体(m20)に基づく単位以外の他の単量体(m30)に基づく単位を有していてもよい。単量体(m30)としては、架橋性基を有する単量体(m31)、または架橋性基を有しない単量体(m32)が挙げられる。架橋性基としては、水酸基、カルボキシル基、アミノ基、またはエポキシ基等が挙げられ、水酸基がより好ましい。
 架橋性基として水酸基を有する単量体としては、2-ヒドロキシプロパン酸アリルエステル、4-ヒドロキシペンタン酸アリルエステル等のヒドロキシアルキルカルボン酸アリルエステル類;2-ヒドロキシエチル(メタ)アクリレート等の(メタ)アクリル酸ヒドロキシアルキルエステル類等が挙げられる。
 架橋性基としてカルボキシル基を有する単量体としては、3-ブテン酸、4-ペンテン酸、2-ヘキセン酸、3-ヘキセン酸、5-ヘキセン酸、2-ヘプテン酸、3-ヘプテン酸、6-ヘプテン酸、3-オクテン酸、7-オクテン酸、2-ノネン酸、3-ノネン酸、8-ノネン酸、9-デセン酸、10-ウンデセン酸、アクリル酸、メタクリル酸、ビニル酢酸、クロトン酸、桂皮酸等の不飽和カルボン酸類;イタコン酸、マレイン酸、フマル酸、マレイン酸無水物、イタコン酸無水物等の不飽和ジカルボン酸類又はその分子内酸無水物;イタコン酸モノメチルエステル、マレイン酸モノメチルエステル、フマル酸モノメチルエステル等の不飽和ジカルボン酸モノアルキルエステル類等が挙げられる。
 架橋性基としてアミノ基を有する単量体としては、アミノメチルスチレン、ビニルアミン、アクリルアミド、ビニルアセトアミド、ビニルホルムアミド等が挙げられる。
 架橋性基としてエポキシ基を有する単量体としては、グリシジルアクリレート、グリシジルメタクリレート等のエポキシ基含有アルキルアクリレート又はメタクリレート類等が挙げられる。
 架橋性基を有しない単量体(m32)としては、エチレン、プロピレン等のオレフィン類;スチレン、ビニルトルエン等の芳香族ビニル化合物等が例示される。
The specific polymer further optionally has a unit having the above-mentioned bioaffinity group, a unit based on a fluoroolefin, and a unit based on another monomer (m30) other than a unit based on the monomer (m20). It may be. As a monomer (m30), the monomer (m31) which has a crosslinkable group, or the monomer (m32) which does not have a crosslinkable group is mentioned. Examples of the crosslinkable group include a hydroxyl group, a carboxyl group, an amino group, and an epoxy group, and a hydroxyl group is more preferable.
Examples of the monomer having a hydroxyl group as a crosslinkable group include hydroxyalkyl carboxylic acid allyl esters such as 2-hydroxypropanoic acid allyl ester and 4-hydroxypentanoic acid allyl ester; 2-hydroxyethyl (meth) acrylate and the like (meta ) Hydroxyalkyl esters of acrylic acid and the like.
Examples of monomers having a carboxyl group as a crosslinkable group include 3-butenoic acid, 4-pentenoic acid, 2-hexenoic acid, 3-hexenoic acid, 5-hexenoic acid, 2-heptenoic acid, 3-heptenoic acid, 6 -Heptenoic acid, 3-octenoic acid, 7-octenoic acid, 2-nonenoic acid, 3-nonenoic acid, 8-nonenoic acid, 9-decenoic acid, 10-undecenoic acid, acrylic acid, methacrylic acid, vinylacetic acid, crotonic acid Unsaturated carboxylic acids such as cinnamic acid; unsaturated dicarboxylic acids such as itaconic acid, maleic acid, fumaric acid, maleic anhydride, itaconic anhydride, or intramolecular acid anhydrides thereof; itaconic acid monomethyl ester, monomethyl maleate Examples thereof include unsaturated dicarboxylic acid monoalkyl esters such as ester and fumaric acid monomethyl ester.
Examples of the monomer having an amino group as a crosslinkable group include aminomethylstyrene, vinylamine, acrylamide, vinylacetamide, and vinylformamide.
Examples of the monomer having an epoxy group as a crosslinkable group include epoxy group-containing alkyl acrylates or methacrylates such as glycidyl acrylate and glycidyl methacrylate.
Examples of the monomer (m32) having no crosslinkable group include olefins such as ethylene and propylene; aromatic vinyl compounds such as styrene and vinyltoluene.
 特定重合体の組成としては、重合体全体を100モル%としたときに、生体親和性基を有する単位を0.1~40モル%含むことが好ましく、0.5~30モル%含むことがより好ましく1.0~10モル%含むことがさらに好ましい。また、重合体全体を100モル%としたときに、フルオロオレフィンに基づく単位を20~80モル%含むことが好ましく、30~70モル%含むことがより好ましい。また重合体全体を100モル%としたときに、単量体(m20)に基づく単位を10~75モル%含むことが好ましく、30~70モル%含むことがより好ましい。
 架橋性基を有する単量体(m21)および架橋性基を有しない単量体(m22)を併用する場合、単量体(m21)に基づく単位と単量体(m22)に基づく単位との割合は、モル比で10:90~90:10が好ましい。特定重合体は1種のみでも、2種以上を混合して用いてもよい。
 特定重合体は、公知の方法で重合して得られる。すなわち生体親和性基を有する単量体、フルオロオレフィン、および単量体(m20)を用いて重合を行って、重合体を製造できる。重合方法は、溶液重合、乳化重合等が挙げられる。
The composition of the specific polymer is preferably 0.1 to 40 mol%, more preferably 0.5 to 30 mol% of a unit having a biocompatible group when the entire polymer is 100 mol%. More preferably, it is contained in an amount of 1.0 to 10 mol%. Further, when the entire polymer is taken as 100 mol%, it is preferable to contain 20 to 80 mol%, more preferably 30 to 70 mol%, based on fluoroolefin. Further, when the whole polymer is taken as 100 mol%, the unit based on the monomer (m20) is preferably contained in an amount of 10 to 75 mol%, more preferably 30 to 70 mol%.
When the monomer (m21) having a crosslinkable group and the monomer (m22) having no crosslinkable group are used in combination, the unit based on the monomer (m21) and the unit based on the monomer (m22) The ratio is preferably 10:90 to 90:10 in molar ratio. The specific polymer may be used alone or in combination of two or more.
The specific polymer is obtained by polymerization by a known method. That is, a polymer can be produced by polymerization using a monomer having a biocompatible group, a fluoroolefin, and a monomer (m20). Examples of the polymerization method include solution polymerization and emulsion polymerization.
 本発明の防汚コーティング材は、上記特定重合体の他に他の成分を含んでいてもよい。他の成分としては、溶剤、界面活性剤、顔料、硬化剤等が挙げられる。
 硬化剤は、特定重合体の架橋性基と反応して架橋構造を形成することで、塗料組成物を塗布した塗布層を硬化させる役割を果たす。硬化剤は、特定重合体が有する架橋性基の種類に応じて、該架橋性基に対して反応性を有する官能基を2以上有する化合物が適宜選択される。
 硬化剤としては、イソシアネート系硬化剤、ブロック化イソシアネート系硬化剤、アミノ樹脂などが好ましい。
The antifouling coating material of the present invention may contain other components in addition to the specific polymer. Examples of other components include a solvent, a surfactant, a pigment, and a curing agent.
A hardening | curing agent plays the role which hardens the coating layer which apply | coated the coating composition by reacting with the crosslinkable group of a specific polymer, and forming a crosslinked structure. As the curing agent, a compound having two or more functional groups having reactivity with the crosslinkable group is appropriately selected according to the kind of the crosslinkable group possessed by the specific polymer.
As the curing agent, an isocyanate curing agent, a blocked isocyanate curing agent, an amino resin, or the like is preferable.
 特定重合体が水酸基を有する場合、硬化剤としては、イソシアネート系硬化剤、ブロック化イソシアネート系硬化剤、アミノ樹脂が好ましい。重合体がカルボキシル基を有する場合、硬化剤としては、アミン系硬化剤、エポキシ系硬化剤等が挙げられる。重合体がアミノ基を有する場合、硬化剤としては、カルボキシル基含有硬化剤、エポキシ系硬化剤、酸無水物系硬化剤等が挙げられる。重合体がエポキシ基を有する場合、硬化剤としては、カルボキシル基含有硬化剤、酸無水物系硬化剤、アミン系硬化剤等が挙げられる。
 前記イソシアネート系硬化剤としては、無黄変ポリイソシアネート、無黄変ポリイソシアネート変性体などが挙げられる。
 無黄変ポリイソシアネートとしては、例えば、イソホロンジイソシアネート(IPDI)、ジシクロヘキシルメタンジイソシアネート(HMDI)等の脂環族ポリイソシアネート;ヘキサメチレンジイソシアネート(HDI)等の脂肪族ポリイソシアネートが挙げられる。
When the specific polymer has a hydroxyl group, the curing agent is preferably an isocyanate curing agent, a blocked isocyanate curing agent, or an amino resin. When the polymer has a carboxyl group, examples of the curing agent include amine-based curing agents and epoxy-based curing agents. When the polymer has an amino group, examples of the curing agent include a carboxyl group-containing curing agent, an epoxy curing agent, and an acid anhydride curing agent. When the polymer has an epoxy group, examples of the curing agent include a carboxyl group-containing curing agent, an acid anhydride curing agent, and an amine curing agent.
Examples of the isocyanate curing agent include non-yellowing polyisocyanate and non-yellowing polyisocyanate modified.
Examples of the non-yellowing polyisocyanate include alicyclic polyisocyanates such as isophorone diisocyanate (IPDI) and dicyclohexylmethane diisocyanate (HMDI); and aliphatic polyisocyanates such as hexamethylene diisocyanate (HDI).
 無黄変ポリイソシアネート変性体としては、例えば、下記変性体が挙げられる。脂肪族ジイソシアネートまたは脂環族ジイソシアネートのイソシアヌレート体;脂肪族ジイソシアネートまたは脂環族ジイソシアネートをポリオールまたはポリアミンで変性した、-X-C(=O)-NH-で表される構造を有する変性体;脂肪族ジイソシアネートまたは脂環族ジイソシアネートのイソシアヌレート体の一部のイソシアネート基をポリオールで変性した、-X-C(=O)-NH-で表される構造を有する変性体。ただし、-X-C(=O)-NH-におけるXは、水酸基を有する化合物またはアミノ基を有する化合物に由来する有機基である。前記水酸基を有する化合物またはアミノ基を有する化合物が有する官能基数は2~3が好ましい。 Examples of the non-yellowing polyisocyanate-modified product include the following modified products. An isocyanurate of an aliphatic diisocyanate or an alicyclic diisocyanate; a modified product having a structure represented by —X—C (═O) —NH— obtained by modifying an aliphatic diisocyanate or an alicyclic diisocyanate with a polyol or a polyamine; A modified product having a structure represented by —XC (═O) —NH—, wherein a part of the isocyanate group of an isocyanurate of an aliphatic diisocyanate or an alicyclic diisocyanate is modified with a polyol. However, X in —X—C (═O) —NH— is an organic group derived from a compound having a hydroxyl group or a compound having an amino group. The number of functional groups possessed by the compound having a hydroxyl group or the compound having an amino group is preferably 2 to 3.
 前記ブロック化イソシアネート系硬化剤としては、イソシアネート基がブロック化された硬化剤である。イソシアネート基のブロック化は、イプシロンカプロラクタム(E-CAP)、メチルエチルケトンオキシム(MEK-OX)、メチルイソブチルケトンオキシム(MIBK-OX)、ピラリジン、トリアジン(TA)等によって行える。
 前記アミノ樹脂としては、例えば、メラミン樹脂、グアナミン樹脂、スルホアミド樹脂、尿素樹脂、アニリン樹脂等が挙げられる。中でも、硬化速度が速いという点で、メラミン樹脂が好ましい。メラミン樹脂としては、具体的には、アルキルエーテル化したアルキルエーテル化メラミン樹脂などをあげることができる。なかでも、メトキシ基および/またはブトキシ基で置換されたメラミン樹脂がより好ましく用いることができる。
The blocked isocyanate curing agent is a curing agent in which an isocyanate group is blocked. The isocyanate group can be blocked with epsilon caprolactam (E-CAP), methyl ethyl ketone oxime (MEK-OX), methyl isobutyl ketone oxime (MIBK-OX), pyraridine, triazine (TA) and the like.
Examples of the amino resin include melamine resin, guanamine resin, sulfoamide resin, urea resin, aniline resin, and the like. Among these, a melamine resin is preferable because it has a high curing rate. Specific examples of the melamine resin include alkyl etherified melamine resins that are alkyl etherified. Among these, a melamine resin substituted with a methoxy group and / or a butoxy group can be used more preferably.
 本発明のコーティング材には、硬化塗膜層の防錆、着色、補強等を目的として、顔料が含有されていることが好ましい。顔料としては、防錆顔料、着色顔料および体質顔料からなる群から選ばれる1種以上の顔料が好ましい。
 防錆顔料は、金属基材の腐食や変質を防止するための顔料である。環境への負荷が少ない無鉛防錆顔料が好ましい。無鉛防錆顔料としては、シアナミド亜鉛、酸化亜鉛、リン酸亜鉛、リン酸カルシウムマグネシウム、モリブデン酸亜鉛、ホウ酸バリウム、シアナミド亜鉛カルシウム等が挙げられる。
 着色顔料は、塗膜を着色するための顔料である。着色顔料としては、酸化チタン、カーボンブラック、酸化鉄等が挙げられる。
 体質顔料は、塗膜の硬度を向上させ、かつ、塗膜の厚みを増すための顔料である。体質顔料としては、タルク、硫酸バリウム、マイカ、炭酸カルシウム等が挙げられる。
The coating material of the present invention preferably contains a pigment for the purpose of rust prevention, coloring, reinforcement and the like of the cured coating film layer. The pigment is preferably at least one pigment selected from the group consisting of rust preventive pigments, colored pigments and extender pigments.
The rust preventive pigment is a pigment for preventing corrosion and alteration of the metal substrate. Lead-free rust-proof pigments with low environmental impact are preferred. Examples of lead-free rust preventive pigments include cyanamide zinc, zinc oxide, zinc phosphate, calcium magnesium phosphate, zinc molybdate, barium borate, and calcium cyanamide zinc.
The color pigment is a pigment for coloring the coating film. Examples of the color pigment include titanium oxide, carbon black, and iron oxide.
The extender pigment is a pigment for improving the hardness of the coating film and increasing the thickness of the coating film. Examples of extender pigments include talc, barium sulfate, mica, and calcium carbonate.
 また、本発明のコーティング材は、硬化反応を促進し、硬化物である硬化塗膜層に良好な化学性能および物理性能を付与させる目的で、硬化触媒を含有させてもよい。特に、低温において短時間で硬化させる場合には、硬化触媒を含有させることが好ましい。硬化触媒としては、例えば、下記の(1)~(3)が挙げられる。
 硬化触媒(1):水酸基を含有する含フッ素重合体とイソシアネート系硬化剤、またはブロック化イソシアネート系硬化剤との架橋反応に使用する硬化触媒;
 硬化触媒(2):アルコキシシリル基および水酸基の少なくとも一方を含有する含フッ素重合体と金属アルコキシドとの架橋反応に使用する硬化触媒;
 硬化触媒(3):水酸基を含有する含フッ素重合体とアミノ樹脂との架橋反応に使用する硬化触媒。
The coating material of the present invention may contain a curing catalyst for the purpose of accelerating the curing reaction and imparting good chemical performance and physical performance to the cured coating film layer that is a cured product. In particular, when curing at a low temperature in a short time, it is preferable to contain a curing catalyst. Examples of the curing catalyst include the following (1) to (3).
Curing catalyst (1): a curing catalyst used for a crosslinking reaction between a fluorine-containing polymer containing a hydroxyl group and an isocyanate curing agent or a blocked isocyanate curing agent;
Curing catalyst (2): a curing catalyst used for a crosslinking reaction between a fluoropolymer containing at least one of an alkoxysilyl group and a hydroxyl group and a metal alkoxide;
Curing catalyst (3): a curing catalyst used for a crosslinking reaction between a fluoropolymer containing a hydroxyl group and an amino resin.
 硬化触媒(1)としては、オクチル酸錫、トリブチル錫ジラウレート、ジブチルチンジラウレート等の錫触媒が好ましい。
 硬化触媒(2)としては、リン酸モノエステル、リン酸ジエステル等の酸性リン酸エステル類;ホウ酸モノエステル、ホウ酸ジエステル等の酸性ホウ酸エステル類;酸性リン酸エステルとアミンとの付加反応物、カルボン酸化合物とアミンとの付加反応物等のアミン付加物類;オクチル酸スズ、ジブチルチンジラウレート等の金属エステル類;トリス(アセチルアセトネート)アルミニウム、テトラキス(アセチルアセトネート)ジルコニウム等の金属キレート類;アルミニウムイソプロポキサイド、チタニウムブトキサイド等の金属アルコキシド類等が挙げられる。なかでも、硬化性、形成される硬化塗膜層の平滑性の点から、酸性リン酸エステル類が好ましく、硬化性、形成される硬化塗膜層の平滑性および耐水性等の点から、炭素数1~8のモノアルキルホスフェート、炭素数1~8のジアルキルホスフェート、またはその混合物がより好ましい。
 硬化触媒(3)としては、ブロック化した酸触媒が好ましい。ブロック化した酸触媒としては、カルボン酸、スルホン酸、リン酸等の各種アミン塩が挙げられる。特に、p-トルエンスルホン酸やドデシルベンゼンスルホン酸のジエタノールアミン塩、トリエチルアミン塩等の高級アルキル置換スルホン酸アミン塩が好ましい。硬化触媒は、1種を単独で使用してもよく、2種以上を併用してもよい。
As the curing catalyst (1), tin catalysts such as tin octylate, tributyltin dilaurate, and dibutyltin dilaurate are preferable.
As the curing catalyst (2), acidic phosphoric acid esters such as phosphoric acid monoester and phosphoric acid diester; acidic boric acid esters such as boric acid monoester and boric acid diester; addition reaction of acidic phosphoric acid ester and amine Products, amine adducts such as addition reaction products of carboxylic acid compounds and amines; metal esters such as tin octylate and dibutyltin dilaurate; metals such as tris (acetylacetonate) aluminum and tetrakis (acetylacetonate) zirconium Chelates; metal alkoxides such as aluminum isopropoxide and titanium butoxide. Among these, acidic phosphates are preferable from the viewpoint of curability and the smoothness of the formed cured coating layer, and carbon is preferable from the viewpoints of curability, smoothness of the formed cured coating layer, water resistance, and the like. A monoalkyl phosphate having 1 to 8 carbon atoms, a dialkyl phosphate having 1 to 8 carbon atoms, or a mixture thereof is more preferable.
As the curing catalyst (3), a blocked acid catalyst is preferred. Examples of the blocked acid catalyst include various amine salts such as carboxylic acid, sulfonic acid, and phosphoric acid. In particular, higher alkyl substituted sulfonic acid amine salts such as diethanolamine salt and triethylamine salt of p-toluenesulfonic acid and dodecylbenzenesulfonic acid are preferable. A curing catalyst may be used individually by 1 type, and may use 2 or more types together.
 本発明の防汚コーティング材は船舶(特に船底)、海洋構造物、水槽、外壁、屋根、建築物の屋上、または細胞培養容器やマイクロ流路表面などに用いられる。
 被覆層の厚さは、1nm~1mmが好ましく、5nm~800μmが特に好ましい。厚さが前記下限値以上であれば、タンパク質が吸着しにくい。厚さが前記上限値以下であれば、被覆層が表面に密着しやすい。
 表面に被覆層を形成する方法としては、特に限定されず、防汚コーティング材を湿式塗布法で塗布する方法や、本発明の塗布液を公知の湿式塗布法で塗布して乾燥する方法を採用できる。
The antifouling coating material of the present invention is used for ships (particularly ship bottoms), marine structures, water tanks, outer walls, roofs, rooftops of buildings, cell culture vessels, microchannel surfaces, and the like.
The thickness of the coating layer is preferably 1 nm to 1 mm, particularly preferably 5 nm to 800 μm. If the thickness is equal to or greater than the lower limit, protein is difficult to adsorb. If the thickness is not more than the above upper limit value, the coating layer tends to adhere to the surface.
The method for forming the coating layer on the surface is not particularly limited, and a method of applying an antifouling coating material by a wet coating method or a method of applying and drying the coating solution of the present invention by a known wet coating method is adopted. it can.
 本発明の防汚コーティング材は、海洋生物が付着するのを防止するために、特に、船舶、海上構造物または海中構造物の表面に塗布される塗料として使用できる。本発明の防汚コーティング材は、タンパク質等の生体高分子や細胞が吸着または接着しにくい効果、さらには、海洋生物(フジツボ、ホヤ、セルプラ、ムラサキガイ、カラスガイ等の貝類、アオノリ、アオサ等の藻類)が付着しにくい効果を有する。
 海洋生物の付着は、海洋生物が付着対象物を固体とみなし、好適な棲息環境であると判断した場合に発生するとされている。本発明の防汚コーティング材から形成される塗膜(以下、特定塗膜ともいう。)において、例えばポリオキシアルキレン鎖は塗膜表面に配向しており、親水性のポリオキシアルキレン鎖と水との相互作用により、塗膜表面の少なくとも一部は水和または膨潤していると考えられる。そのため、海洋生物は、特定塗膜を固体ではなく水であるとみなし、特定塗膜に付着しないと考えられる。つまり、特定塗膜は、海洋生物付着防止機構を発現している。
The antifouling coating material of the present invention can be used particularly as a paint applied to the surface of a ship, offshore structure or underwater structure in order to prevent marine organisms from adhering. The antifouling coating material of the present invention has an effect that it is difficult for biopolymers such as proteins and cells to adsorb or adhere to each other. (Algae) has an effect of being difficult to adhere.
The attachment of marine organisms is considered to occur when the marine organism considers the attachment object as a solid and determines that it is a suitable habitat environment. In a coating film (hereinafter also referred to as a specific coating film) formed from the antifouling coating material of the present invention, for example, the polyoxyalkylene chain is oriented on the coating film surface, and the hydrophilic polyoxyalkylene chain, water, It is considered that at least a part of the surface of the coating film is hydrated or swollen due to the interaction. Therefore, it is considered that marine organisms regard the specific coating film as water instead of solid and do not adhere to the specific coating film. That is, the specific coating film expresses a marine organism adhesion prevention mechanism.
 また、本発明の防汚コーティング材は、耐塩水性と耐候性とに優れた塗膜を形成できる。つまり、特定塗膜は、長期間にわたって優れた海洋生物付着防止性を有するとともに、さらに、環境変化(大気曝露、温度変化等)にも耐える優れた耐塩水性および耐候性を有する。特定塗膜は、船舶、海上構造物または海中構造物に適用することが好ましい。
 船舶、海上構造物または海中構造物の対象物は、海洋(近傍を含む。)において使用される物であり、例えば、橋梁、漁網、波消ブロック、防波堤、海底ケーブル、タンク、パイプライン、海底掘削設備、海上フロート、臨海発電所の海水取水・放水口、臨海発電所の海水配管(冷却水配管)、船舶の船体(特に船底部や喫水部。)、船舶のスクリュー、船舶の錨等が挙げられる。また、上記対象物の材質は、金属、樹脂、ゴム、石材、ガラス、および、コンクリートのいずれであってもよい。
Moreover, the antifouling coating material of the present invention can form a coating film excellent in salt water resistance and weather resistance. That is, the specific coating film has excellent marine organism adhesion prevention properties over a long period of time, and also has excellent salt water resistance and weather resistance that can withstand environmental changes (such as atmospheric exposure and temperature changes). The specific coating film is preferably applied to a ship, an offshore structure or an underwater structure.
Objects of ships, offshore structures or underwater structures are objects used in the ocean (including nearby areas), for example, bridges, fishing nets, wave-dissipating blocks, breakwaters, submarine cables, tanks, pipelines, submarine Excavation facilities, marine floats, seawater intake and discharge ports at seaside power plants, seawater piping (cooling water piping) at seaside power plants, ship hulls (especially ship bottoms and drafting parts), ship screws, ship dredging, etc. Can be mentioned. The material of the object may be any of metal, resin, rubber, stone, glass, and concrete.
 また、対象物の形状や状態(海水との接触状態)も、特に限定されない。例えば、配管形状に屈曲形状があり、配管中の海水の流速や温度が大きく変化しうる対象物である、臨海発電所の海水配管(冷却水配管)でも、特定塗膜を配管の内部表面に有することにより、海洋生物付着防止機能と防食性とが長期間にわたって発現される。
 特定塗膜の厚みは、10~100μmが好ましい。厚みが、下限値以上であれば特定塗膜の耐塩水性がより優れ、上限値以下であれば特定塗膜の耐候性がより優れる。
Further, the shape and state of the object (contact state with seawater) are not particularly limited. For example, even in seawater piping (cooling water piping) at seaside power plants, where the piping shape is bent and the flow rate and temperature of seawater in the piping can change greatly, a specific coating film is applied to the inner surface of the piping. By having it, a marine organism adhesion prevention function and anticorrosiveness are expressed over a long period of time.
The thickness of the specific coating film is preferably 10 to 100 μm. If thickness is more than a lower limit, the salt-water resistance of a specific coating film will be more excellent, and if it is below an upper limit, the weather resistance of a specific coating film will be more excellent.
 また、本発明の防汚コーティング材は、上述したように、タンパク質等の生体高分子や細胞が吸着または接着しにくい効果、つまり、カビまたは藻の繁殖栄養源が付着しにくい効果を有する。このため、本発明の防汚コーティング材は、防カビ・防藻塗料として使用できる。
 特定塗膜自体が、カビまたは藻の繁殖に不適な環境を形成しており、防カビ剤(防腐剤)または防藻剤による殺菌作用によらない防カビ・防藻機構を有する。そのため、特定塗膜は、環境負荷が低く、長期間にわたって優れた防カビ・防藻性を発現できる。また、特定塗膜は、水が溜まりにくい高耐水性(低水蒸気透過性)と空気遮蔽性(低酸素透過率性)を有しており、カビまたは藻の繁殖に適さない環境を形成している。つまり、特定塗膜は、湿潤環境下または接水環境下のようなカビや藻が発生および繁殖しやすい環境下においても、長期間にわたって優れた防カビ・防藻性を発現するだけでなく、さらに、環境変化(大気曝露、温度変化等。)にも耐える優れた耐水性および耐候性を有している。
 また、本発明の防汚コーティング材は、他の添加剤(例えば、防カビ剤、防藻剤、架橋剤、造膜助剤、増粘剤、消泡剤、光安定剤、意匠剤、表面調整剤、水性媒体等。)を含んでいてもよい。
In addition, as described above, the antifouling coating material of the present invention has an effect that biopolymers such as proteins and cells are difficult to adsorb or adhere, that is, an effect that molds or algae breeding nutrients are difficult to adhere. For this reason, the antifouling coating material of the present invention can be used as an antifungal / algae paint.
The specific coating film itself forms an unsuitable environment for the growth of mold or algae, and has a fungicide / algae control mechanism that does not depend on the fungicidal action of the fungicide (preservative) or the algae. Therefore, the specific coating film has a low environmental load and can exhibit excellent antifungal and antialgal properties over a long period of time. In addition, the specific coating film has high water resistance (low water vapor permeability) and air shielding (low oxygen permeability) that prevent water from accumulating, and forms an environment that is not suitable for the growth of mold or algae. Yes. In other words, the specific coating film not only exhibits excellent antifungal and algal resistance over a long period of time, even in an environment where mold and algae are likely to be generated and propagated, such as in a wet or wet environment. Furthermore, it has excellent water resistance and weather resistance that can withstand environmental changes (air exposure, temperature changes, etc.).
In addition, the antifouling coating material of the present invention includes other additives (for example, an antifungal agent, an algal inhibitor, a crosslinking agent, a film-forming aid, a thickener, an antifoaming agent, a light stabilizer, a design agent, a surface Adjusting agent, aqueous medium, etc.).
 本発明の防汚コーティング材は、さらに効果を高める観点から、防カビ剤または防藻剤を含んでいてもよい。
 かかる防カビ剤または防藻剤としては、公知の防カビ剤または防藻剤が挙げられ、特定含フッ素重合体との相溶性の観点から、ハロゲン原子を含む化合物を有効成分とする剤が好ましい。また、塩素原子を含む特定含フッ素重合体(たとえば、フルオロオレフィンがCF=CFClである特定含フッ素重合体。)を使用する場合には、塩素原子、臭素原子、またはヨウ素原子を有する化合物を有効成分とする剤が好ましい。
 防カビ剤または防藻剤の量は、それぞれ、特定含フッ素重合体に対して、0.01~5質量%が好ましい。
 本発明の防汚コーティング材は、湿潤環境下または接水環境下で使用される物品に特に有用である。なお、本発明における、湿潤環境とは湿度が、典型的には40%以上の環境を意味し、接水環境とは水と常時接触するか、水と時々に接触する環境を意味する。
 湿潤環境下または接水環境下で使用される物品は、例えば、浴槽、天井パネル、壁パネル、床パン、ドア、水栓、排水ユニット、換気扇、鏡、シンク、便器、ロータンク、手洗器等の屋内水回り物品、上水管、下水管等の地下構造物、貯水槽、建築物等の屋外構造物が挙げられる。なお、上記物品の材質は、金属、樹脂、ゴム、石材、ガラス、および、コンクリートのいずれであってもよい。
The antifouling coating material of the present invention may contain a fungicide or an algae from the viewpoint of further enhancing the effect.
Examples of the fungicide or algae preventive include known fungicides or algae preventives, and from the viewpoint of compatibility with the specific fluoropolymer, an agent containing a compound containing a halogen atom as an active ingredient is preferable. . When a specific fluorine-containing polymer containing a chlorine atom (for example, a specific fluorine-containing polymer in which the fluoroolefin is CF 2 ═CFCl) is used, a compound having a chlorine atom, a bromine atom, or an iodine atom is used. An agent as an active ingredient is preferred.
The amount of the fungicide or the algae is preferably 0.01 to 5% by mass with respect to the specific fluoropolymer.
The antifouling coating material of the present invention is particularly useful for articles used in wet or wet environments. In the present invention, the wet environment means an environment where the humidity is typically 40% or more, and the wetted environment means an environment that is always in contact with water or is in contact with water occasionally.
Articles used in wet or wet environments include, for example, bathtubs, ceiling panels, wall panels, floor pans, doors, faucets, drainage units, ventilation fans, mirrors, sinks, toilets, low tanks, hand-washers, etc. Indoor structures around water, underground structures such as water pipes and sewage pipes, outdoor structures such as water storage tanks and buildings. The material of the article may be any of metal, resin, rubber, stone, glass, and concrete.
 特定塗膜の厚みは、10~100μmが好ましい。厚みが、下限値以上であれば塗膜の耐水性がより優れ、上限値以下であれば塗膜の耐候性がより優れる。
 特定塗膜は、湿潤環境下または接水環境下に曝される物品の最表面に形成されていればよい。つまり、防汚塗料は、物品の表面に直接塗布されてもよく、下塗り層を介して最表面に塗布されていてもよい。
 また、対象物への防汚塗料の塗工方法は、刷毛、ローラー、ディッピング、スプレー、ロールコーター、ダイコーター、アプリケーター、スピンコーター等の塗工装置を用いて行う方法が挙げられる。
 なお、特定塗膜が配置される物品が、陽当りの悪い北面、西面の建築物の外壁や、貯水槽の内面、上水管、下水管等の遮光環境下にある物品であっても、前記した防カビ・防藻機構により、特定塗膜を表面に有する物品は、長期にわたる防カビ・防藻性に優れており、その環境負荷も低い特徴を有している。
The thickness of the specific coating film is preferably 10 to 100 μm. If thickness is more than a lower limit, the water resistance of a coating film is more excellent, and if it is below an upper limit, the weather resistance of a coating film is more excellent.
The specific coating film should just be formed in the outermost surface of the articles | goods exposed to a wet environment or a wet-contact environment. That is, the antifouling paint may be applied directly to the surface of the article, or may be applied to the outermost surface via the undercoat layer.
Examples of the method for applying the antifouling paint to the object include a method using a coating apparatus such as a brush, a roller, dipping, spraying, a roll coater, a die coater, an applicator, and a spin coater.
In addition, even if the article on which the specific coating film is placed is an article in a shading environment such as the outer wall of the north and west buildings with poor sunlight, the inner surface of the water storage tank, the water pipe, and the sewage pipe, Articles having a specific coating film on the surface by the above-mentioned mold-proof / algae-proof mechanism are excellent in mold-proof / algae-proof properties over a long period of time and have a low environmental load.
 本発明の防汚コーティング材は、細胞培養容器及びマイクロ流路表面等に好適に用いられる。特定塗膜はタンパク質が吸着しにくく、細胞培養容器に適用した場合(つまり細胞培養容器の培地接触面が特定塗膜を備える場合)、細胞が特定塗膜に付着しにくい。仮に細胞が付着した場合であっても簡易な洗浄で細胞を除去できる。一方特定塗膜は耐久性に優れるため繰り返しての洗浄にも優れた耐久性(膜残存性)が期待できる。このため本発明の防汚コーティング材は、繰り返しでの使用を行う細胞培養容器に好適である。すなわち本発明は、特定重合体でコーティングした細胞培養容器を提供する。なお特定塗膜は顔料を含まなければ透明性が良好であり細胞の観察にも障害にならない。 The antifouling coating material of the present invention is suitably used for cell culture vessels, microchannel surfaces and the like. The specific coating film is difficult to adsorb proteins, and when applied to a cell culture container (that is, when the culture medium contact surface of the cell culture container includes the specific coating film), the cells are difficult to adhere to the specific coating film. Even if cells adhere, the cells can be removed by simple washing. On the other hand, since the specific coating film is excellent in durability, excellent durability (film persistence) can be expected even in repeated cleaning. Therefore, the antifouling coating material of the present invention is suitable for a cell culture container that is used repeatedly. That is, the present invention provides a cell culture container coated with a specific polymer. In addition, if a specific coating film does not contain a pigment, transparency will be favorable and it will not become a hindrance to cell observation.
 以下に、実施例により本発明を説明するが、本発明は以下の実施例に限定して解釈されるものではない。なお、以下における化合物の略号などはそれぞれ以下のとおりである。
CTFE:クロロトリフルオロエチレン(旭硝子社製)。
CHVE:シクロヘキシルビニルエーテル(BASF社製)。
EVE:エチルビニルエーテル(BASF社製)。
CM-15EOVE:CH=CHOCH-cHex-CHO(CHCHO)n1H、n1:15、平均分子量830(親水性マクロモノマー)(日本乳化剤社製)。
SLS:ラウリル硫酸ナトリウム(アニオン性界面活性剤(アニオン性乳化剤)、日光ケミカルズ社製)。
MPC:2-メタクリロイルオキシエチルホスホリルコリン(東京化成工業社製)。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not construed as being limited to the following examples. In addition, the symbol of the compound in the following etc. is as follows, respectively.
CTFE: chlorotrifluoroethylene (Asahi Glass Co., Ltd.).
CHVE: cyclohexyl vinyl ether (manufactured by BASF).
EVE: Ethyl vinyl ether (manufactured by BASF).
CM-15EOVE: CH 2 ═CHOCH 2 —cHex—CH 2 O (CH 2 CH 2 O) n1 H, n1: 15, average molecular weight 830 (hydrophilic macromonomer) (manufactured by Nippon Emulsifier Co., Ltd.).
SLS: sodium lauryl sulfate (anionic surfactant (anionic emulsifier), manufactured by Nikko Chemicals).
MPC: 2-methacryloyloxyethyl phosphorylcholine (manufactured by Tokyo Chemical Industry Co., Ltd.).
 製造例1 樹脂Aの製造方法
 内容積2.5Lのステンレス鋼製撹拌機付き耐圧反応器(耐圧硝子工業社製)中に、CHVEの259g、EVEの107g、CM-15EOVEの124g、イオン交換水の1031g、炭酸カリウムの2.1g、SLSの2.1gを仕込み、氷で冷却して、窒素ガスを0.7MPaになるよう加圧し、脱気した。この加圧脱気を2回繰り返し、0.01MPaまで脱気して溶存空気を除去した後、CTFE(434g)を仕込み、60℃で24時間、重合反応を行った。重合反応後、耐圧反応器を60℃から20℃まで冷却し、固形分濃度49.7質量%である樹脂Aを含む水性分散液を得た。CTFE/CHVE/EVE/CM-15EOVE(モル%)は50/28/20/2であった。
 別途作製した樹脂Aのシートの膜厚1μmあたりの水蒸気透過率と膜厚1μmあたりの酸素透過率は、それぞれ、1.0g/m・day、0.01mol/m・s・Paであった。
Production Example 1 Production Method of Resin A In a pressure resistant reactor with a 2.5 L stainless steel stirrer (made by pressure resistant glass industry), 259 g of CHVE, 107 g of EVE, 124 g of CM-15EOOVE, ion-exchanged water 1031 g, 2.1 g of potassium carbonate, and 2.1 g of SLS were charged, cooled with ice, pressurized with nitrogen gas to 0.7 MPa, and degassed. This pressure degassing was repeated twice, and after degassing to 0.01 MPa to remove dissolved air, CTFE (434 g) was charged and a polymerization reaction was performed at 60 ° C. for 24 hours. After the polymerization reaction, the pressure reactor was cooled from 60 ° C. to 20 ° C. to obtain an aqueous dispersion containing resin A having a solid content concentration of 49.7% by mass. CTFE / CHVE / EVE / CM-15EOOVE (mol%) was 50/28/20/2.
The water vapor transmission rate per 1 μm film thickness and the oxygen transmission rate per 1 μm film thickness of the separately prepared resin A sheet were 1.0 g / m 2 · day and 0.01 mol / m 2 · s · Pa, respectively. It was.
 製造例2 樹脂Bの製造方法
 内容積2.5Lのステンレス鋼製撹拌機付き耐圧反応器にキシレンの590g、エタノールの170g、EVEの70g、CHVEの385g、ヒドロキシブチルビニルエーテル(HBVE)の122g、炭酸カリウムの11gおよびパーブチルピバレード(PBPV)の3.5gを仕込み、窒素による脱気により液中の溶存酸素を除去した。次に、CTFEの620gを導入して徐々に昇温し、温度65℃に維持しながら反応を続けた。10時間後、反応器を冷却して反応を停止した。反応液を室温まで冷却した後、未反応の単量体をパージし、珪藻土で濾過して固形物を除去した。次に、キシレンとエタノールを減圧留去により除去し、樹脂B’を得た。CTFE/CHVE/EVE/HBVE(モル%)は50/30/10/10であった。
Production Example 2 Production Method of Resin B In a 2.5 L stainless steel pressure-resistant reactor with a stirrer, 590 g of xylene, 170 g of ethanol, 70 g of EVE, 385 g of CHVE, 122 g of hydroxybutyl vinyl ether (HBVE), carbonic acid 11 g of potassium and 3.5 g of perbutyl pivalde (PBPV) were charged, and dissolved oxygen in the liquid was removed by degassing with nitrogen. Next, 620 g of CTFE was introduced, the temperature was gradually raised, and the reaction was continued while maintaining the temperature at 65 ° C. After 10 hours, the reactor was cooled to stop the reaction. After the reaction solution was cooled to room temperature, unreacted monomers were purged and filtered through diatomaceous earth to remove solids. Next, xylene and ethanol were removed by distillation under reduced pressure to obtain Resin B ′. CTFE / CHVE / EVE / HBVE (mol%) was 50/30/10/10.
 得られた樹脂B’を、メチルエチルケトン(MEK)に溶解させて固形分60質量%のワニスを得た。このワニス300質量部に、無水コハク酸の20質量%アセトン溶液の16.1質量部、および触媒としてトリエチルアミンの0.072質量部を加え、70℃で6時間反応させてエステル化した。反応液の赤外吸収スペクトルを測定したところ、反応前に観測された無水コハク酸の特性吸収(1850cm-1、1780cm-1)が反応後では消失しており、カルボン酸(1710cm-1)およびエステル(1735cm-1)の吸収が観測された。エステル化後の含フッ素重合体の酸価は10.5mgKOH/g、水酸基価は39.3mgKOH/gであった。この酸価と水酸基価の値によれば、HBVEの構成単位10.1モル%の内、約2.1モル%がエステル化されたこととなる。
 次に、エステル化後の反応液に、トリエチルアミンの3.26質量部を加え、室温(23℃)で20分撹拌してカルボキシル基の一部を中和し、次いでイオン交換水の180部を徐々に加えた。これにより、エステル化されカルボキシル基が導入された構成単位の約2.1モル%の内、約2.1モル%を中和した。
 その後、アセトンおよびメチルエチルケトンを減圧留去した。さらにイオン交換水の約90質量部を加えて、樹脂Bを含む固形分濃度40質量%の水性分散液を得た。
The obtained resin B ′ was dissolved in methyl ethyl ketone (MEK) to obtain a varnish having a solid content of 60% by mass. To 300 parts by mass of this varnish, 16.1 parts by mass of a 20% by mass acetone solution of succinic anhydride and 0.072 parts by mass of triethylamine as a catalyst were added and reacted at 70 ° C. for 6 hours for esterification. When the infrared absorption spectrum of the reaction solution was measured, the characteristic absorption of succinic anhydride (1850 cm −1 , 1780 cm −1 ) observed before the reaction disappeared after the reaction, and carboxylic acid (1710 cm −1 ) and Absorption of the ester (1735 cm −1 ) was observed. The acid value of the fluoropolymer after esterification was 10.5 mgKOH / g, and the hydroxyl value was 39.3 mgKOH / g. According to the values of the acid value and the hydroxyl value, about 2.1 mol% of 10.1 mol% of the structural unit of HBVE is esterified.
Next, 3.26 parts by mass of triethylamine is added to the reaction solution after esterification, and the mixture is stirred at room temperature (23 ° C.) for 20 minutes to neutralize a part of the carboxyl groups, and then 180 parts of ion-exchanged water is added. Gradually added. This neutralized about 2.1 mol% of about 2.1 mol% of the structural unit esterified and introduced with the carboxyl group.
Thereafter, acetone and methyl ethyl ketone were distilled off under reduced pressure. Further, about 90 parts by mass of ion-exchanged water was added to obtain an aqueous dispersion containing resin B and having a solid content concentration of 40% by mass.
製造例3 樹脂Cの製造方法
 内容積2.5Lのステンレス鋼製撹拌機付き耐圧反応器にキシレンの503g,エタノールの142g,CHVEの327g、HBVEの85g,炭酸カリウムの12gを仕込み、冷却脱気,チッ素ガスによる加圧を繰返して溶存空気を除去した。CTFEの387gを耐圧反応器中に導入し昇温した。耐圧反応器内の温度が65℃に達した時点で圧力1.0kg/cmGを示した。その後PBPVの50%キシレン溶液9mlを添加し、反応を開始させた。圧力の低下に伴い圧力を維持しつつ、CTFEの273g,CHVEの231g,HBVEの60gを連続的に加え反応を続行させた。なお、反応進行中、PBPVの50%キシレン溶液23mlを連続的に加えた。14時間後、各単量体の供給を停止し0.5kg/cmGまで反応を続行し、その後耐圧反応器を水冷し、反応を停止した。室温に達した後、未反応単量体をパージし、耐圧反応器を開放した。得られた樹脂溶液を減圧乾燥し樹脂C’を得た。CTFE/CHVE/HBVE(モル%)は、50/39/11であった。
Production Example 3 Production Method of Resin C Charged with a 2.5 L stainless steel pressure-resistant reactor with a stirrer was charged 503 g of xylene, 142 g of ethanol, 327 g of CHVE, 85 g of HBVE, and 12 g of potassium carbonate, and cooled and deaerated. The dissolved air was removed by repeated pressurization with nitrogen gas. 387 g of CTFE was introduced into the pressure resistant reactor and the temperature was raised. When the temperature in the pressure resistant reactor reached 65 ° C., a pressure of 1.0 kg / cm 2 G was shown. Thereafter, 9 ml of a 50% xylene solution of PBPV was added to initiate the reaction. While maintaining the pressure as the pressure decreased, 273 g of CTFE, 231 g of CHVE, and 60 g of HBVE were continuously added to continue the reaction. During the reaction, 23 ml of 50% xylene solution of PBPV was continuously added. After 14 hours, the supply of each monomer was stopped and the reaction was continued to 0.5 kg / cm 2 G, and then the pressure-resistant reactor was cooled with water to stop the reaction. After reaching room temperature, unreacted monomer was purged and the pressure-resistant reactor was opened. The obtained resin solution was dried under reduced pressure to obtain Resin C ′. CTFE / CHVE / HBVE (mol%) was 50/39/11.
 得られた樹脂C’を、MEKに溶解させて固形分60質量%のワニスを得た。このワニス300質量部に、無水コハク酸の20質量%アセトン溶液の16.1質量部、および触媒としてトリエチルアミンの0.072質量部を加え、70℃で6時間反応させてエステル化した。次に、エステル化後の反応液に、トリエチルアミンの3.26質量部を加え、23℃で20分撹拌してカルボキシル基の一部を中和し、次いでイオン交換水の180部を徐々に加えた。その後、アセトンおよびメチルエチルケトンを減圧留去した。さらにイオン交換水の約90質量部を加えて、樹脂Cを含む固形分濃度40質量%の水性分散液を得た。 The obtained resin C ′ was dissolved in MEK to obtain a varnish having a solid content of 60% by mass. To 300 parts by mass of this varnish, 16.1 parts by mass of a 20% by mass acetone solution of succinic anhydride and 0.072 parts by mass of triethylamine as a catalyst were added and reacted at 70 ° C. for 6 hours for esterification. Next, 3.26 parts by mass of triethylamine is added to the reaction solution after esterification, and the mixture is stirred at 23 ° C. for 20 minutes to neutralize a part of the carboxyl groups, and then 180 parts of ion-exchanged water is gradually added. It was. Thereafter, acetone and methyl ethyl ketone were distilled off under reduced pressure. Further, about 90 parts by mass of ion-exchanged water was added to obtain an aqueous dispersion containing resin C and having a solid content concentration of 40% by mass.
製造例4 樹脂Dの製造方法
 内容積2.5Lのステンレス鋼製撹拌機付き耐圧反応器中に、CHVEの259g、EVEの107g、MPCの56.8g、イオン交換水の1031g、炭酸カリウムの2.1g、SLSの2.1gを仕込み、氷で冷却して、窒素ガスを0.7MPaになるよう加圧し、脱気した。この加圧脱気を2回繰り返し、0.01MPaまで脱気して溶存空気を除去した後、CTFE(434g)を仕込み、60℃で24時間、重合反応を行った。重合反応後、耐圧反応器を60℃から20℃まで冷却し、固形分濃度49.7質量%である樹脂Dを含む水性分散液を得た。CTFE/CHVE/EVE/MPC(モル%)は50/28/20/3であった。
Production Example 4 Production Method of Resin D In a pressure resistant reactor with a 2.5 L internal volume stainless steel stirrer, 259 g of CHVE, 107 g of EVE, 56.8 g of MPC, 1031 g of ion-exchanged water, 2 of potassium carbonate 0.1 g of SLS and 2.1 g of SLS were charged, cooled with ice, pressurized with nitrogen gas to 0.7 MPa, and degassed. This pressure degassing was repeated twice, and after degassing to 0.01 MPa to remove dissolved air, CTFE (434 g) was charged and a polymerization reaction was performed at 60 ° C. for 24 hours. After the polymerization reaction, the pressure resistant reactor was cooled from 60 ° C. to 20 ° C. to obtain an aqueous dispersion containing resin D having a solid content concentration of 49.7% by mass. CTFE / CHVE / EVE / MPC (mol%) was 50/28/20/3.
タンパク質吸着量測定
(1)発色液、タンパク質溶液の準備
 発色液は、ペルオキシダーゼ発色液(3,3’,5,5’-テトラメチルベンジジン(TMBZ)、KPL社製)50mLとTMB Peroxidase Substrate(KPL社製)50mLとを混合したものを使用した。
 タンパク質溶液として、タンパク質(POD-goat anti mouse IgG、Biorad社製)をリン酸緩衝溶液(D-PBS、Sigma社製)で16,000倍に希釈したものを使用した。
Protein adsorption amount measurement (1) Preparation of color developing solution and protein solution The color developing solution is peroxidase color developing solution (3,3 ', 5,5'-tetramethylbenzidine (TMBZ), manufactured by KPL) and TMB Peroxidase Substrate (KPL). What was mixed with 50 mL was used.
As a protein solution, a protein (POD-goat anti mouse IgG, manufactured by Biorad) diluted 16,000 times with a phosphate buffer solution (D-PBS, manufactured by Sigma) was used.
(2)タンパク質吸着
 各ウェル表面に被覆層を形成した24ウェルマイクロプレート(ポリスチレン(PS)製)における3ウェルに、タンパク質溶液の2mLを分注し(1ウェル毎に2mLを使用)、室温で1時間放置した。ガラス基板の場合は6cmφのディッシュ60にタンパク質溶液の6.5mLを分注した以外は同様の方法で行った。ブランクとして、タンパク質溶液を96ウェルマイクロプレートにおける3ウェルに、2μL分注(1ウェル毎に2μLを使用)した。
(2) Protein adsorption 2 mL of the protein solution is dispensed into 3 wells in a 24-well microplate (made of polystyrene (PS)) having a coating layer formed on the surface of each well (2 mL is used for each well) at room temperature. Left for 1 hour. In the case of a glass substrate, the same procedure was performed except that 6.5 mL of the protein solution was dispensed into a 6 cmφ dish 60. As a blank, 2 μL of the protein solution was dispensed into 3 wells of a 96-well microplate (2 μL was used per well).
(3)ウェル洗浄
 24ウェルマイクロプレートを、界面活性剤(Tween20、和光純薬社製)を0.05質量%含ませたリン酸緩衝溶液(D-PBS、Sigma社製)の4mLで4回洗浄した(1ウェル毎に4mLを使用)。ガラス基板の場合は界面活性剤溶液を13mL使用し4回洗浄した後新たなディッシュ60に移し替えた。
(3) Well washing Four times with 4 mL of a phosphate buffer solution (D-PBS, manufactured by Sigma) containing 0.05% by mass of a surfactant (Tween 20, manufactured by Wako Pure Chemical Industries) on a 24-well microplate. Washed (use 4 mL per well). In the case of the glass substrate, 13 mL of the surfactant solution was used and washed four times, and then transferred to a new dish 60.
(4)発色液分注
 洗浄を終えた24ウェルマイクロプレートに、発色液の2mLを分注し(1ウェル毎に2mLを使用)、7分間発色反応を行った。2N硫酸の1mLを加えることで(1ウェル毎に1mLを使用)発色反応を停止させた。ガラス基板は発色液を6.5MLと硫酸が3.25mL以外は同様の方法で行った。
 ブランクは、96ウェルマイクロプレートに、発色液の100μLを分注し(1ウェル毎に100μLを使用)、7分間発色反応を行い、2N硫酸の50μLを加えることで(1ウェル毎に50μLを使用)発色反応を停止させた。
(4) Coloring solution dispensing 2 mL of the coloring solution was dispensed onto the washed 24-well microplate (2 mL was used for each well), and a coloring reaction was performed for 7 minutes. The color reaction was stopped by adding 1 mL of 2N sulfuric acid (1 mL per well was used). The glass substrate was subjected to the same method except that the color developing solution was 6.5 mL and the sulfuric acid was 3.25 mL.
For the blank, dispense 100 μL of the coloring solution to a 96-well microplate (use 100 μL per well), perform the color reaction for 7 minutes, and add 50 μL of 2N sulfuric acid (use 50 μL per well). ) The color reaction was stopped.
(5)吸光度測定準備
 24ウェルマイクロプレートの各ウェルから150μLの液を取り、96ウェルマイクロプレートに移した。ガラス基板の場合はディッシュ60から150μLの液を取り、96ウェルマイクロプレートに移した。
(5) Preparation for absorbance measurement 150 μL of liquid was taken from each well of a 24-well microplate and transferred to a 96-well microplate. In the case of a glass substrate, 150 μL of liquid was taken from the dish 60 and transferred to a 96-well microplate.
(6)吸光度測定およびタンパク質吸着率Q
 吸光度は、MTP-810Lab(コロナ電気社製)により450nmの吸光度を測定した。ここで、ブランクの吸光度(N=3)の平均値をA0とした。24ウェルマイクロプレートから96ウェルマイクロプレートに移動させた液の吸光度をA1とした。
 タンパク質吸着率Q1を下式により求め、タンパク質吸着率Qはその平均値とした。
 Q1=A1/{A0×(100/ブランクのたんぱく質溶液の分注量)}×100
 =A1/{A0×(100/2μL)}×100 [%]
(6) Absorbance measurement and protein adsorption rate Q
Absorbance was measured at 450 nm using MTP-810Lab (Corona Electric Co., Ltd.). Here, the average value of the absorbance (N = 3) of the blank was defined as A0. The absorbance of the liquid transferred from the 24-well microplate to the 96-well microplate was defined as A1.
The protein adsorption rate Q1 was determined by the following equation, and the protein adsorption rate Q was the average value.
Q1 = A1 / {A0 × (100 / amount of dispensed blank protein solution)} × 100
= A1 / {A0 × (100/2 μL)} × 100 [%]
[例1]
 製造例1で得た樹脂Aの分散液をその濃度が0.05質量%となるように水を加え、塗布液を調製した。該塗布液を24ウェルのマイクロプレートに2.2mL分注し、50℃で3日間放置して溶媒を揮発させ、ウェル表面に厚み約100nmの被覆層を形成した。
[例2]
 例1における、24ウェルのマイクロプレートのウェル表面を樹脂Aの分散液をコートしないで使用した。
[Example 1]
Water was added to the dispersion liquid of the resin A obtained in Production Example 1 so that its concentration was 0.05% by mass to prepare a coating liquid. The coating solution was dispensed in a volume of 2.2 mL onto a 24-well microplate and allowed to stand at 50 ° C. for 3 days to evaporate the solvent, thereby forming a coating layer having a thickness of about 100 nm on the well surface.
[Example 2]
The well surface of the 24-well microplate in Example 1 was used without coating the resin A dispersion.
[例3]
 樹脂Aの分散液の代わりに樹脂B分散液を用いた以外は、例1と同様にして塗布液を調製した。また、該塗布液を用いて、例1と同様にして24ウェルのマイクロプレートのウェル表面に厚み約100nmの被覆層を形成した。
[例4]
 樹脂Aの分散液の代わりに樹脂C分散液を用いた以外は、例1と同様にして塗布液を調製した。また、該塗布液を用いて、例1と同様にして24ウェルのマイクロプレートのウェル表面に厚み約100nmの被覆層を形成した。
[Example 3]
A coating solution was prepared in the same manner as in Example 1 except that the resin B dispersion was used instead of the resin A dispersion. Further, using the coating solution, a coating layer having a thickness of about 100 nm was formed on the well surface of a 24-well microplate in the same manner as in Example 1.
[Example 4]
A coating solution was prepared in the same manner as in Example 1 except that the resin C dispersion was used instead of the resin A dispersion. Further, using the coating solution, a coating layer having a thickness of about 100 nm was formed on the well surface of a 24-well microplate in the same manner as in Example 1.
[例5]
 製造例1で得た樹脂Aの分散液をその濃度が5質量%となるように水を加え、塗布液を調製した。SDI社製マイクロディップコーターを使用して該塗布液に5cm角のガラス板を4cm浸漬し1mm/sの引き上げ速度で引き上げコートした後50℃で1日乾燥してガラス基板上に厚み約100nmの被覆層を形成した。ガラスカッターを用いて被覆部分を3cm角に切り出して試験サンプルとした。
[例6]
 例1におけるガラス基の表面を樹脂Aの分散液をコートしないで使用した。
[例7]
 樹脂Aの分散液の代わりに樹脂Bの分散液を用いた以外は、例5と同様にして塗布液を調製した。また、該塗布液を用いて例5と同様にしてガラス基板上に厚み約100nmの被覆層を形成した。
[Example 5]
Water was added to the dispersion liquid of the resin A obtained in Production Example 1 so that the concentration became 5% by mass to prepare a coating liquid. Using a micro dip coater manufactured by SDI, 4 cm of a 5 cm square glass plate is dipped in the coating solution, coated at a pulling rate of 1 mm / s, then dried at 50 ° C. for one day, and about 100 nm thick on a glass substrate. A coating layer was formed. Using a glass cutter, the coated part was cut into a 3 cm square and used as a test sample.
[Example 6]
The surface of the glass substrate in Example 1 was used without coating the resin A dispersion.
[Example 7]
A coating solution was prepared in the same manner as in Example 5 except that the resin B dispersion was used instead of the resin A dispersion. Further, a coating layer having a thickness of about 100 nm was formed on the glass substrate in the same manner as in Example 5 using the coating solution.
[例8]
 樹脂Aの分散液の代わりに樹脂Cの分散液を用いた以外は、例5と同様にして塗布液を調製した。また、該塗布液を用いて例5と同様にしてガラス基板上に厚み約100nmの被覆層を形成した。
[例9]
 樹脂Aの分散液の代わりに樹脂Dの分散液を用いた以外は、例1と同様にして塗布液を調製した。また、該塗布液を用いて、例1と同様にして24ウェルのマイクロプレートのウェル表面に厚み約100nmの被覆層を形成した。
[Example 8]
A coating solution was prepared in the same manner as in Example 5 except that the dispersion of resin C was used instead of the dispersion of resin A. Further, a coating layer having a thickness of about 100 nm was formed on the glass substrate in the same manner as in Example 5 using the coating solution.
[Example 9]
A coating solution was prepared in the same manner as in Example 1 except that the dispersion of resin D was used instead of the dispersion of resin A. Further, using the coating solution, a coating layer having a thickness of about 100 nm was formed on the well surface of a 24-well microplate in the same manner as in Example 1.
 上記例1~9のタンパク質吸着量を測定し、その結果を表1に示す。タンパク質吸着量はタンパク質吸着率Qである。なお、Qは0.1(1.0E-01)未満のものが良好である。 The protein adsorption amounts of Examples 1 to 9 above were measured, and the results are shown in Table 1. The protein adsorption amount is the protein adsorption rate Q. Q is preferably less than 0.1 (1.0E-01).
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表1に示すように、生体適合性部位が導入された樹脂A被覆表面では未コート表面や生体適合性部位非含有樹脂コート基板と比較してタンパク質吸着が抑制されていた。 As shown in Table 1, protein adsorption was suppressed on the surface of the resin A coated with the biocompatible site introduced as compared with the uncoated surface and the resin-coated substrate containing no biocompatible site.
 分散性
 製造例1で得た樹脂Aの分散液を用い樹脂Aの100質量部(固形分換算)、酸化チタン顔料CR-90(石原産業社製)の60質量部、ディスロールH-14N分散剤(日本乳化剤社製)の2.9質量部、FSアンチフォーム013B消泡剤(ダウコーニング社製)の0.2質量部、イオン交換水の38質量部、ガラスビーズの100質量部を混合し、グレンミフレ分散機を用い分散し、ガラスビーズをろ過して顔料分散液を調製した。当該顔料分散液の顔料分散性は非常に良好であった。
Dispersibility Using the dispersion of resin A obtained in Production Example 1, 100 parts by mass of resin A (in terms of solid content), 60 parts by mass of titanium oxide pigment CR-90 (manufactured by Ishihara Sangyo Co., Ltd.), Dispersion H-14N dispersion 2.9 parts by mass of an agent (made by Nippon Emulsifier Co., Ltd.), 0.2 parts by mass of FS Antifoam 013B antifoaming agent (made by Dow Corning), 38 parts by mass of ion-exchanged water, and 100 parts by mass of glass beads are mixed. Then, using a Glenmifle disperser, the glass beads were filtered to prepare a pigment dispersion. The pigment dispersion of the pigment dispersion was very good.
 防食性
 JIS5600-7-9に準拠して防食性を評価した。塗膜付きアルミニウム板に、素地に達するようにカッターでクロスカット傷を入れ、これを、塩水噴霧環境下に、4000時間静置し、その後、イオン交換水を用いて水洗・乾燥後の塗膜クロスカット傷部の状態を、以下の基準に従って評価した。「○(良好)」:クロスカット部位の膨れ幅は、1.0mm未満。「△(やや良好)」:クロスカット部位の膨れ幅は、1.0mm以上、3.0mm未満。「×(不良)」:クロスカット部位の膨れ幅は、3.0mm以上。すなわちアルミニウム基板に、製造例1で得た樹脂Aの分散液を用いて、厚みが約50μmとなる試験片を用意し、この試験を行った。試験後の評価はクロスカット部位の膨れ幅が1.0mm未満であり○であった。
Anticorrosion The anticorrosion was evaluated according to JIS 5600-7-9. The aluminum plate with a coating is cut with a cutter so that it reaches the substrate, and this is left in a salt spray environment for 4000 hours, and then washed with ion-exchanged water and dried. The state of the crosscut wound was evaluated according to the following criteria. “◯ (good)”: The swollen width of the cross-cut portion is less than 1.0 mm. “Δ (slightly good)”: The swollen width of the cross-cut portion is 1.0 mm or more and less than 3.0 mm. “× (defect)”: The swollen width of the cross-cut portion is 3.0 mm or more. That is, a test piece having a thickness of about 50 μm was prepared on the aluminum substrate using the dispersion liquid of the resin A obtained in Production Example 1, and this test was performed. In the evaluation after the test, the swollen width of the cross-cut portion was less than 1.0 mm, and the evaluation was “good”.
 表1に示すように、本発明の範囲である樹脂Aを含むコーティング材を用いた例1、例5、例9では基材によらず、被覆層を形成していない例2、例6に比べてタンパク質が吸着しにくかった。また、比較例である重合体を有する樹脂Bおよび樹脂Cを含むコーティング材を用いた例3~4および例7~例8はタンパク質が吸着しやすかった。 As shown in Table 1, in Example 1, Example 5 and Example 9 using the coating material containing the resin A which is the scope of the present invention, the coating layer is not formed in Examples 2 and 6 regardless of the base material. Compared to the protein, it was difficult to adsorb. Further, in Examples 3 to 4 and Examples 7 to 8 using the coating material containing the resin B and the resin C having a polymer as a comparative example, protein was easily adsorbed.
<塗料の製造>
 [製造例11]
 製造例1で得た、樹脂Aを含む分散液(固形分濃度49.7質量%)(100.0g)に、造膜助剤である2,2,4-トリメチル-1,3-ペンタジオールモノ(2-メチルプロパネート)(7.5g)、増粘剤であるレオレート288(商標)(エレメンティスジャパン社製)(0.1g)を加え、よく混合して、樹脂Aを含む塗料(1)を得た。
<Manufacture of paints>
[Production Example 11]
The 2,2,4-trimethyl-1,3-pentadiol, a film-forming aid, was added to the dispersion containing the resin A (solid content concentration 49.7% by mass) (100.0 g) obtained in Production Example 1. Mono (2-methylpropanate) (7.5 g), Rheolate 288 (trademark) (made by Elementis Japan) (0.1 g) as a thickener was added, mixed well, and a paint containing resin A ( 1) was obtained.
 [製造例12]
 製造例1で得た、樹脂Aを含む分散液(固形分濃度49.7質量%)(100.0g)に、造膜助剤である2,2,4-トリメチル-1,3-ペンタジオールモノ(2-メチルプロパネート)(7.5g)、増粘剤であるレオレート288(商標)(エレメンティスジャパン社製)(0.1g)、架橋剤である水分散型イソシアネート硬化剤(住化バイエル社製、バイヒジュール3100(商標)。)(5.4g)を加え、よく混合し、樹脂Aを含む塗料(2)を得た。
 なお、上記水分散型イソシアネート硬化剤により架橋した樹脂Aのシートの膜厚1μmあたりの水蒸気透過率と膜厚1μmあたりの酸素透過率は、それぞれ、0.05g/m・day、0.01mol/m・s・Paであった。上記シートを作製する際の、樹脂Aと水分散型イソシアネート硬化剤との使用量比は、塗料(2)中での使用量比と同じであった。
[Production Example 12]
The 2,2,4-trimethyl-1,3-pentadiol, a film-forming aid, was added to the dispersion containing the resin A (solid content concentration 49.7% by mass) (100.0 g) obtained in Production Example 1. Mono (2-methylpropanate) (7.5 g), Reoleate 288 (trademark) (made by Elementis Japan) (0.1 g) as a thickener, Water-dispersed isocyanate curing agent (Sumika) as a crosslinking agent Bayer Co., Ltd. (Baihijoule 3100 (trademark)) (5.4 g) was added and mixed well to obtain a paint (2) containing Resin A.
The water vapor transmission rate per 1 μm film thickness and the oxygen transmission rate per 1 μm film thickness of the resin A sheet cross-linked with the water-dispersed isocyanate curing agent were 0.05 g / m 2 · day and 0.01 mol, respectively. / M 2 · s · Pa. The amount ratio of the resin A and the water-dispersed isocyanate curing agent used to produce the sheet was the same as the amount ratio used in the paint (2).
 [比較例11]
 製造例1で得た樹脂Aを含む分散液を、フッ化ビニリデン系重合体と(メタ)アクリル系重合体とを含む水分散液(Arkema社製、製品名「Kynar Aquatec FMA-12」)に変更した以外は、[製造例11]と同様にして、側鎖にポリオキシアルキレン鎖を有さない含フッ素重合体を含む塗料(3)を得た。
 なお、別途作製したPVDFのシート(PVDFからなるシート)の膜厚1μmあたりの水蒸気透過率と膜厚1μmあたりの酸素透過率は、それぞれ19.6g/m・day、0.5mol/m・s・Paであった。
[Comparative Example 11]
The dispersion containing the resin A obtained in Production Example 1 was converted into an aqueous dispersion containing a vinylidene fluoride polymer and a (meth) acrylic polymer (product name “Kynar Aquatec FMA-12” manufactured by Arkema). A coating material (3) containing a fluoropolymer having no polyoxyalkylene chain in the side chain was obtained in the same manner as in [Production Example 11] except for the change.
The separately prepared PVDF sheet (sheet made of PVDF) has a water vapor transmission rate per 1 μm thickness and an oxygen transmission rate per 1 μm thickness of 19.6 g / m 2 · day and 0.5 mol / m 2 , respectively. · S · Pa.
<防カビ・防藻試験>
 以下の手順で、試験板を作製した。
 アルミニウム基材の両面に、エポキシ樹脂系塗料(中国塗料社製、製品名「SEAJET 013 主剤」と製品名「SEAJET 013 硬化剤」を、質量比4:1で混合した塗料。)を、乾燥塗膜の膜厚が約60μmになるように刷毛塗りし、常温で1週間硬化させた。つぎに、アルミ基材の片面に、塗料(1)を、乾燥塗膜の膜厚が約30μmになるようにアプリケーターで塗装し、常温で2週間乾燥することで、表面に樹脂Aを構成成分とする塗膜を有する試験板(1)を作製した。塗料(2)および(3)に関しても同様にして試験板を作製し、試験板(2)および試験板(3)を作製した。
 試験板(1)~(3)のそれぞれを、湿潤状態に曝される陽当りの悪い建物の北側に設置して、4か月後のカビ・藻類の付着状態を目視観察する。なお、設置場所は千葉県市原市である。それぞれの試験板のカビ・藻付着試験の結果を表2に示す。
<Anti-mold / algae test>
A test plate was prepared by the following procedure.
An epoxy resin-based paint (manufactured by Chugoku Paint Co., Ltd., product name “SEAJET 013 Main Agent” and product name “SEAJET 013 Curing Agent” mixed in a mass ratio of 4: 1) is dried on both surfaces of the aluminum base. A brush was applied so that the film thickness was about 60 μm, and the film was cured at room temperature for 1 week. Next, paint (1) is applied on one side of an aluminum base material with an applicator so that the film thickness of the dried coating film is about 30 μm, and dried at room temperature for 2 weeks, so that resin A is formed on the surface. A test plate (1) having a coating film was prepared. Test plates were similarly prepared for the paints (2) and (3), and a test plate (2) and a test plate (3) were prepared.
Each of the test plates (1) to (3) is installed on the north side of a badly exposed building exposed to a wet condition, and the adhesion state of mold and algae after 4 months is visually observed. The installation site is Ichihara City, Chiba Prefecture. The results of the mold / algae adhesion test of each test plate are shown in Table 2.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
<防貝試験>
 試験板(1)~(3)のそれぞれを、海中浸漬(水深1m)して、4か月後の貝類の付着状態を目視観察する。なお、海中浸漬場所は瀬戸内海であり、海中浸漬に際して、試験板は塗膜側が南を向くように設置する。それぞれの試験板の海中浸漬試験の結果を表3に示す。
<Shell protection test>
Each of the test plates (1) to (3) is immersed in the sea (water depth: 1 m), and the adhesion state of the shellfish after 4 months is visually observed. In addition, the sea immersion place is the Seto Inland Sea, and the test plate is installed so that the coating film side faces south in the sea immersion. Table 3 shows the results of the underwater immersion test of each test plate.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
<フジツボ幼生付着試験>
 タテジマフジツボのノープリウス幼生および付着期幼生(キプリス)を用いた。タテジマフジツボ成体(兵庫県姫路市沿岸産)は、循環式水槽(水温23±1℃)内でアルテミアを給餌することによって、維持・飼育した。成体から孵出したノープリウス幼生を回収し、ろ過海水で満たしたガラスビーカー内に移し、浮遊珪藻Cheatoceros calcitransを与えて飼育することによって、人工的に付着期幼生(キプリス幼生)を得た。得られたキプリス幼生は冷暗処理によって保存した。これらの幼生を試験前に室温に戻し、活発に遊泳しながら光に集まってくる個体を選別し、付着試験に用いた。ポリプロピレン容器(80×80×45mm)の底面にサンプルを静置し、海水と付着期幼生を投入した。
 天然海水(兵庫県姫路市沿岸より採取)をポアサイズ0.45μm(東洋濾紙社製)の混合セルロースメンブレンにてろ過した。海水性状は、29.3PSU、8.40pHであった。室温22℃±2、横震盪(3cm往復60回/分)により試験海水に動きを加えた。約100個体/試験容器で幼生を投入した。ただし幼生の試験容器投入時にピペットへの幼生付着が生じ、計数どおりに投入できないことから、20個体程度多め(計約120個体)に投入し、試験終了後に試験海水を除き、正確な投入幼生数を計測した。試験期間は14日間で評価した。試験基板は各1枚、30×30mmを用いた。
<Barnacle Larvae Adhesion Test>
Nauplius larvae and adherent stage larvae (Cypris) were used. Adult adult barnacles (from Himeji City, Hyogo Prefecture) were maintained and raised by feeding Artemia in a circulating water tank (water temperature 23 ± 1 ° C.). Nauplius larvae sprouted from adults were collected, transferred into a glass beaker filled with filtered seawater, and reared with the floating diatom Cheatoceros calcitrans to obtain artificially attached larvae (Cyprus larvae). The obtained cypris larvae were preserved by cold-dark treatment. These larvae were returned to room temperature before the test, and individuals that gathered in the light while actively swimming were selected and used for the adhesion test. The sample was allowed to stand on the bottom surface of a polypropylene container (80 × 80 × 45 mm), and seawater and adhering larvae were introduced.
Natural seawater (collected from the coast of Himeji City, Hyogo Prefecture) was filtered through a mixed cellulose membrane having a pore size of 0.45 μm (manufactured by Toyo Roshi Kaisha, Ltd.). The seawater state was 29.3 PSU, 8.40 pH. The test seawater was moved by shaking at room temperature 22 ° C. ± 2 and side shaking (3 cm reciprocation 60 times / min). Larvae were introduced at about 100 individuals / test container. However, since the larvae adhere to the pipette when the larvae are put into the test container, they cannot be injected as counted, so about 20 individuals (about 120 individuals in total) are added, and the test seawater is excluded after the test is completed. Was measured. The test period was evaluated at 14 days. Each test substrate was 30 × 30 mm.
[例21]
 例5と同じガラス試験片を作成して用いた。試験期間中に付着は全く見られなかった(付着率0%)。試験期間を通してサンプル表面を探索する様子は見られず、表面を避けるようにサンプルの断面を探索する様子が観察された。
[Example 21]
The same glass test piece as in Example 5 was prepared and used. No adhesion was observed during the test period (attachment rate 0%). The appearance of searching the sample surface throughout the test period was not observed, and the appearance of searching the sample cross section to avoid the surface was observed.
[例22]
 例6と同じガラス試験片を作成して用いた。試験開始後よりサンプルに対して探索行動が見られ、試験開始3日後に5個体(4.4%)の幼フジツボと4個体(3.5%)の変態中の個体が見られた。その後付着数は増加し、7日後には幼フジツボ74個体(64.9%)が認められた。さらに付着試験を延長し、14日後においては82個体(71.9%)の付着率を得た。
[Example 22]
The same glass test piece as in Example 6 was prepared and used. Exploratory behavior was observed for the samples after the start of the test, and 5 (4.4%) young barnacles and 4 (3.5%) metamorphic individuals were observed 3 days after the start of the test. Thereafter, the number of attachments increased, and after 7 days, 74 juvenile barnacles (64.9%) were observed. Further, the adhesion test was extended, and an adhesion rate of 82 individuals (71.9%) was obtained after 14 days.
[例23]
 例8と同じガラス試験片を作成して用いた。試験開始3日後に1個体(0.9%)の幼フジツボが観察され、その後付着数は増加せず、7日後にも同様に1個体の付着に留まった。14日後にサンプルへの付着が1個体増加し、付着率は1.8%となった。
[Example 23]
The same glass test piece as in Example 8 was prepared and used. One day (0.9%) of young barnacles were observed 3 days after the start of the test, and the number of attachments did not increase thereafter, and after 7 days, the number of attachments remained in the same way. After 14 days, the adhesion to the sample increased by 1 individual, and the adhesion rate was 1.8%.
<細胞付着試験>
 IWAKI社製のディッシュ(24wellプレート)に樹脂をコーティングしたものをUVで15分間滅菌した。次に細胞(TIG3)を2万細胞/wellとなるよう播種し培地を1mL添加した。インキュベータで37℃、16時間後に取り出し観察を行った。その結果、樹脂Aにおいては球状の細胞が多くみられ、細胞密度も低かった。一方で樹脂Bにおいては細胞が高密度で接着している様子が観察された。このことから樹脂Aは細胞との相互作用が小さいことを示唆している。
 さらに定量化のためCCK8を用いて生細胞の染色を行い、波長450nmにおける吸光度を測定した。レファレンスとして細胞無しで培地にCCK8を添加したものの吸光度も測定した。その値を1としたときの各細胞培養液の吸光度の増加率を計算した。吸光度の増加率が高いほど細胞付着が多いことを示す。樹脂Aでは樹脂Bと比較して小さな増加率となった。光学顕微鏡の結果と併せて、樹脂Aは細胞接着抑制に効果が高いことが示唆された。
<Cell adhesion test>
IWAKI dish (24 well plate) coated with resin was sterilized with UV for 15 minutes. Next, cells (TIG3) were seeded at 20,000 cells / well, and 1 mL of medium was added. It was taken out and observed after 16 hours at 37 ° C. in an incubator. As a result, in the resin A, many spherical cells were observed and the cell density was low. On the other hand, in the resin B, it was observed that cells were adhered at a high density. This suggests that resin A has a small interaction with cells.
Further, live cells were stained with CCK8 for quantification, and the absorbance at a wavelength of 450 nm was measured. As a reference, the absorbance of the medium added with CCK8 without cells was also measured. When the value was 1, the rate of increase in absorbance of each cell culture solution was calculated. A higher absorbance increase indicates more cell attachment. Resin A had a small increase rate compared to Resin B. Together with the results of the optical microscope, it was suggested that Resin A is highly effective in suppressing cell adhesion.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 本発明の防汚コーティング材は、船舶(特に船底)、海洋構造物、水槽、外壁、屋根、建築物の屋上、または細胞培養容器やマイクロ流路表面などの広範な分野において有用である。 The antifouling coating material of the present invention is useful in a wide range of fields such as ships (especially ship bottoms), marine structures, water tanks, outer walls, roofs, building rooftops, cell culture vessels and microchannel surfaces.
 なお、2015年12月25日に出願された日本特許出願2015-254094号、2016年4月26日に出願された日本特許出願2016-088145号、および2016年4月26日に出願された日本特許出願2016-088454号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 In addition, Japanese Patent Application No. 2015-254094 filed on December 25, 2015, Japanese Patent Application No. 2016-088145 filed on April 26, 2016, and Japanese Application filed on April 26, 2016. The entire contents of the specification, claims and abstract of patent application 2016-088454 are hereby incorporated herein by reference as the disclosure of the specification of the present invention.

Claims (9)

  1.  生体親和性基を有する単位、フルオロオレフィンに基づく単位、並びに、ビニルエーテル、ビニルエステル、及びアリルエーテルからなる群から選ばれる1種以上に基づく単位を有する含フッ素重合体を含み、前記生体親和性基が、下式(1)で表される基、下式(2)で表される基および下式(3)で表される基からなる群から選ばれる少なくとも1種である、防汚コーティング材。
    Figure JPOXMLDOC01-appb-C000001
    (ただし、前記式中、nは1~10の整数であり、mは前記式(1)で表される基が含フッ素重合体において側鎖に含まれる場合は2~100であり、主鎖に含まれる場合は5~300であり、R~Rはそれぞれ独立に炭素数1~5のアルキル基であり、aは1~5の整数であり、bは1~5の整数であり、RおよびRはそれぞれ独立に炭素数1~5のアルキル基であり、Xは下式(3-1)で表される基または下式(3-2)で表される基であり、cは1~20の整数であり、dは1~5の整数である。)
    Figure JPOXMLDOC01-appb-C000002
    A fluoropolymer having a unit having a bioaffinity group, a unit based on a fluoroolefin, and a unit based on one or more selected from the group consisting of vinyl ether, vinyl ester, and allyl ether, and the bioaffinity group Is at least one selected from the group consisting of a group represented by the following formula (1), a group represented by the following formula (2), and a group represented by the following formula (3): .
    Figure JPOXMLDOC01-appb-C000001
    (In the above formula, n is an integer of 1 to 10, and m is 2 to 100 when the group represented by the formula (1) is contained in the side chain in the fluoropolymer, And R 1 to R 3 each independently represents an alkyl group having 1 to 5 carbon atoms, a is an integer of 1 to 5, and b is an integer of 1 to 5. , R 4 and R 5 are each independently an alkyl group having 1 to 5 carbon atoms, and X is a group represented by the following formula (3-1) or a group represented by the following formula (3-2): And c is an integer of 1 to 20, and d is an integer of 1 to 5.)
    Figure JPOXMLDOC01-appb-C000002
  2.  前記フルオロオレフィンが、テトラフルオロエチレン、クロロトリフルオロエチレン、トリフルオロエチレン、及び、フッ化ビニリデンからなる群より選ばれる1種以上である請求項1に記載の防汚コーティング材。 The antifouling coating material according to claim 1, wherein the fluoroolefin is at least one selected from the group consisting of tetrafluoroethylene, chlorotrifluoroethylene, trifluoroethylene, and vinylidene fluoride.
  3.  前記生体親和性基を有する単位が、下式(m1)で表わされる単量体に基づく単位である請求項1または2に記載の防汚コーティング材。
     CH=C(R11)-Q-(C2nO)-R12  (m1)
    (ただし前記式中、R11は水素原子、塩素原子またはメチル基であり、Qは単結合、エーテル性酸素原子または炭素数1~20の2価有機基であり、R12は水素原子または-(CH-R13(ただし、R13は水素原子、フッ素原子、トリフルオロメチル基またはシアノ基であり、iは1~25の整数である。)であり、nは1~10の整数であり、mは1~100である。)
    The antifouling coating material according to claim 1 or 2, wherein the unit having a biocompatible group is a unit based on a monomer represented by the following formula (m1).
    CH 2 = C (R 11 ) -Q 1- (C n H 2n O) m -R 12 (m1)
    (Wherein R 11 is a hydrogen atom, a chlorine atom or a methyl group, Q 1 is a single bond, an etheric oxygen atom or a divalent organic group having 1 to 20 carbon atoms, and R 12 is a hydrogen atom or — (CH 2 ) i —R 13 (wherein R 13 is a hydrogen atom, a fluorine atom, a trifluoromethyl group or a cyano group, i is an integer of 1 to 25), and n is 1 to 10 And m is 1 to 100.)
  4.  前記含フッ素重合体が、架橋性基を有する単量体に基づく単位を有する、請求項1~3のいずれか1項に記載の防汚コーティング材。 The antifouling coating material according to any one of claims 1 to 3, wherein the fluoropolymer has a unit based on a monomer having a crosslinkable group.
  5.  前記架橋性基が水酸基である請求項4に記載の防汚コーティング材。 The antifouling coating material according to claim 4, wherein the crosslinkable group is a hydroxyl group.
  6.  前記含フッ素重合体が、重合体全体を100モル%としたときに、生体親和性基を有する単位を0.1~40モル%有し、フルオロオレフィンに基づく単位を20~80モル%有し、かつビニルエーテル、ビニルエステル、およびアリルエーテルからなる群から選ばれる1種以上に基づく単位を10~75モル%有する、請求項1~5のいずれか1項に記載の防汚コーティング材。 The fluoropolymer has 0.1 to 40 mol% of units having bioaffinity groups and 20 to 80 mol% of units based on fluoroolefin, when the entire polymer is 100 mol%. The antifouling coating material according to any one of claims 1 to 5, further comprising 10 to 75 mol% of a unit based on one or more selected from the group consisting of vinyl ether, vinyl ester, and allyl ether.
  7.  海洋生物付着防止塗料である請求項1~6のいずれか1項に記載の防汚コーティング材 The antifouling coating material according to any one of claims 1 to 6, which is a marine organism adhesion preventing paint.
  8.  防カビ・防藻塗料である請求項1~6のいずれか1項に記載の防汚コーティング材。 The antifouling coating material according to any one of claims 1 to 6, which is an antifungal / algae paint.
  9.  防カビ剤または防藻剤を含む請求項8に記載の防汚コーティング材。 The antifouling coating material according to claim 8, comprising an antifungal agent or an algae preventing agent.
PCT/JP2016/088213 2015-12-25 2016-12-21 Antifouling coating material WO2017110926A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2015254094 2015-12-25
JP2015-254094 2015-12-25
JP2016-088145 2016-04-26
JP2016-088454 2016-04-26
JP2016088145A JP2019031582A (en) 2015-12-25 2016-04-26 Coating for preventing adhesion of marine organisms
JP2016088454A JP2019031583A (en) 2015-12-25 2016-04-26 Coating for preventing adhesion of mold or algae

Publications (1)

Publication Number Publication Date
WO2017110926A1 true WO2017110926A1 (en) 2017-06-29

Family

ID=59089422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/088213 WO2017110926A1 (en) 2015-12-25 2016-12-21 Antifouling coating material

Country Status (1)

Country Link
WO (1) WO2017110926A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01174553A (en) * 1987-12-28 1989-07-11 Neos Co Ltd Anti-adhesion agent
JPH02225550A (en) * 1988-11-29 1990-09-07 Asahi Glass Co Ltd Aqueous dispersion
JPH0753646A (en) * 1993-08-11 1995-02-28 Asahi Glass Co Ltd Fluorine-containing aqueous dispersion
JPH09302328A (en) * 1996-05-13 1997-11-25 Daikin Ind Ltd Stain-resistant sticking agent and composition for coating material
JP2001072928A (en) * 1999-09-01 2001-03-21 Daikin Ind Ltd Low staining water base coating resin composition
WO2012133655A1 (en) * 2011-03-31 2012-10-04 ダイキン工業株式会社 Aqueous fluoropolymer dispersion
WO2014192638A1 (en) * 2013-05-27 2014-12-04 旭硝子株式会社 Composition for aqueous coating material, kit for aqueous coating material, and article having coating film formed thereon
JP2015124349A (en) * 2013-12-27 2015-07-06 旭硝子株式会社 Composition for water-based paint, two-part curable water-based paint kit and article

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01174553A (en) * 1987-12-28 1989-07-11 Neos Co Ltd Anti-adhesion agent
JPH02225550A (en) * 1988-11-29 1990-09-07 Asahi Glass Co Ltd Aqueous dispersion
JPH0753646A (en) * 1993-08-11 1995-02-28 Asahi Glass Co Ltd Fluorine-containing aqueous dispersion
JPH09302328A (en) * 1996-05-13 1997-11-25 Daikin Ind Ltd Stain-resistant sticking agent and composition for coating material
JP2001072928A (en) * 1999-09-01 2001-03-21 Daikin Ind Ltd Low staining water base coating resin composition
WO2012133655A1 (en) * 2011-03-31 2012-10-04 ダイキン工業株式会社 Aqueous fluoropolymer dispersion
WO2014192638A1 (en) * 2013-05-27 2014-12-04 旭硝子株式会社 Composition for aqueous coating material, kit for aqueous coating material, and article having coating film formed thereon
JP2015124349A (en) * 2013-12-27 2015-07-06 旭硝子株式会社 Composition for water-based paint, two-part curable water-based paint kit and article

Similar Documents

Publication Publication Date Title
US11254823B2 (en) Antifouling coating material composition, antifouling coating film, substrate provided with antifouling coating film and production method therefor, and antifouling method
JP6638958B2 (en) Antifouling coating composition, antifouling coating film, substrate with antifouling coating film, method for producing the same, and antifouling method
CN108307625B (en) Antifouling composite coating film, antifouling substrate, and method for producing antifouling substrate
EP3831898A1 (en) Antifouling paint composition, antifouling coating, substrate with antifouling coating, ?production method thereof, and repair method
JP7082659B2 (en) Antifouling paint composition, antifouling coating film, base material with antifouling coating film and antifouling method
JP6948391B2 (en) Laminated antifouling coating film, base material with laminated antifouling coating film and its manufacturing method, laminated antifouling coating film forming paint kit, upper layer antifouling coating composition, and antifouling method
KR20020000783A (en) Antifouling paint composition and product coated therewith
WO2001060923A1 (en) Resin composition for preventing attachment of aquatic organism or physiological substance
JP6766651B2 (en) Aquatic organism adhesion prevention materials, aquatic organism adhesion prevention paints, aquatic organism adhesion prevention panels, underwater structures and methods for preventing aquatic organisms from adhering to underwater structures
JP7324380B1 (en) Coating composition and coating film
WO2017104766A1 (en) Aqueous dispersion liquid, fluorine-containing coating material composition and coated article
WO2017110926A1 (en) Antifouling coating material
JP3465199B2 (en) Antifouling paint composition
CN113661217A (en) Aqueous coating composition, substrate coated with the composition, and method of controlling biofouling of aquatic organisms using the coating composition
CN109715744B (en) Anti-biological adhesion coating
JP4093629B2 (en) Antifouling paint composition, antifouling coating film, underwater structure or ship coated with the antifouling coating film, and underwater structure or ship outer plate antifouling method
JP6948390B2 (en) Laminated antifouling coating film, base material with laminated antifouling coating film and its manufacturing method, laminated antifouling coating film forming paint kit, upper layer antifouling coating composition, and antifouling method
WO2019131797A1 (en) Anti-biofouling coating material
WO1984001785A1 (en) Marine anti-fouling coating composition
JP7324379B1 (en) Coating composition and coating film
JPS6187764A (en) Marine exterior finish material
WO2018047827A1 (en) Coating material for inhibiting adhesion of organisms
JP2019031582A (en) Coating for preventing adhesion of marine organisms
CN113444418A (en) Antifouling coating composition
JP2015025026A (en) Composition for coating material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16878813

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16878813

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP