WO2017110906A1 - Production method for borosilicate glass - Google Patents

Production method for borosilicate glass Download PDF

Info

Publication number
WO2017110906A1
WO2017110906A1 PCT/JP2016/088174 JP2016088174W WO2017110906A1 WO 2017110906 A1 WO2017110906 A1 WO 2017110906A1 JP 2016088174 W JP2016088174 W JP 2016088174W WO 2017110906 A1 WO2017110906 A1 WO 2017110906A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
borosilicate glass
raw material
batch
producing
Prior art date
Application number
PCT/JP2016/088174
Other languages
French (fr)
Japanese (ja)
Inventor
真 東條
美樹 木村
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to JP2017558204A priority Critical patent/JPWO2017110906A1/en
Publication of WO2017110906A1 publication Critical patent/WO2017110906A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/05Containers specially adapted for medical or pharmaceutical purposes for collecting, storing or administering blood, plasma or medical fluids ; Infusion or perfusion containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Rigid or semi-rigid containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material or by deep-drawing operations performed on sheet material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Rigid or semi-rigid containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material or by deep-drawing operations performed on sheet material
    • B65D1/09Ampoules
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B3/00Charging the melting furnaces
    • C03B3/02Charging the melting furnaces combined with preheating, premelting or pretreating the glass-making ingredients, pellets or cullet
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/20Compositions for glass with special properties for chemical resistant glass

Definitions

  • the present invention relates to a method for producing borosilicate glass, and more particularly to a method for producing borosilicate glass suitable for pharmaceutical containers.
  • Borosilicate glass is used for pharmaceutical containers such as vials and ampoules because it has low expansion and high chemical resistance.
  • a pharmaceutical container is generally produced by thermally processing a glass tube.
  • the glass tube for this use is required not to be damaged when producing a vial or ampoule, to react with a chemical or a chemical solution filled therein, and to be colorless and transparent.
  • ⁇ Glass tubes for this purpose are also required to be colorless and transparent and have a stable color tone. Actually, even if the color tone of the glass tube changes, the effect of the chemical solution to be filled is hardly affected. However, the chemical solution or the container for the pharmaceutical product is suspected to be altered, and there is a possibility that the expensive chemical solution is discarded. .
  • silicate minerals such as feldspar and wax stone are advantageous in terms of production cost because they contain a plurality of glass components.
  • these silicate minerals are compounds, they are superior in solubility compared to simple oxide raw materials such as silica sand and alumina.
  • the color of the glass tube may be changed by changing the molten glass to a reduced state. More specifically, when a silicate compound material is used, Fe 2 O 3 that is a colored impurity may be reduced from Fe 3+ to Fe 2+ , resulting in a color tone different from the intended color tone.
  • the former method requires a great deal of labor and cost to remove colored impurities contained in the glass raw material in the order of ppm.
  • the latter method it is very difficult to continue to precisely control the melting atmosphere, and a huge cost is required.
  • the present invention has been made in view of the above circumstances, and its technical problem is to stabilize the color tone while suppressing coloring of the borosilicate glass by a simple method.
  • the present inventors have found that the above technical problem can be solved by using a silicate compound raw material and a nitrate raw material having a low degree of reduction in a glass batch, and propose the present invention.
  • the borosilicate glass manufacturing method of the present invention melts a glass batch containing a silicate compound raw material having a chemical oxygen demand (COD) of less than 200 ppm (less than 0.02% by mass) and a nitrate raw material. Then, the obtained molten glass is formed to produce a borosilicate glass.
  • the “silicate compound raw material” refers to an oxide raw material containing SiO 2 as a chemical composition.
  • “Chemical oxygen demand (COD)” is an index representing the content of reducing components, and the oxygen consumption measured in a titration test with potassium dichromate or potassium permanganate is calculated as C (carbon). Indicates the value.
  • the method for producing a borosilicate glass of the present invention uses a silicate compound raw material and a nitrate raw material simultaneously in a glass batch.
  • the nitrate raw material is 500 to 600.
  • This O 2 gas oxidizes the reducing substance in the silicate compound raw material and suppresses the reaction between the reducing substance and colored impurities such as Fe 2 O 3 .
  • the oxidation-reduction state of colored impurities such as Fe 2 O 3 is fixed on the oxidation side, it is possible to stabilize the color tone while suppressing coloring of the borosilicate glass.
  • the method for producing a borosilicate glass according to the present invention is such that when the glass batch is heated at 1550 ° C. for 2 hours, the amount of O 2 gas decomposed and released from the nitrate raw material is the chemical oxygen demand ( COD) is preferably 2.7 times or more.
  • COD chemical oxygen demand
  • the COD source of the silicate compound raw material is all C (carbon)
  • O 2 (molecular weight 32) required to oxidize 1 g of C (atomic weight 12) is about 2.7 g. Therefore, when C contained in the glass batch is 100 ppm, if O 2 is present at 270 ppm or more, the reducing substance in the glass batch can be effectively oxidized.
  • the amount of O 2 gas decomposed and released from the nitrate raw material is 100% by mass of the entire glass batch. In some cases, it is preferably 0.05% by mass or more. If it does in this way, it will become possible to oxidize the reducing substance in a glass batch effectively.
  • the method of producing borosilicate glass of the present invention as the silicate compound materials, it is preferable to use albite (NaAlSi 3 O 8) and / or feldspar (KAlSi 3 O 8).
  • the method for producing a borosilicate glass of the present invention is to prepare a glass batch so that a borosilicate glass in which the content of Fe 2 O 3 in the glass composition is less than 0.03% by mass is obtained. Is preferred.
  • the production method of the borosilicate glass of the present invention has a glass composition, in mass%, SiO 2 70 ⁇ 76.5% , Al 2 O 3 6.3 ⁇ 11%, B 2 O 3 3 ⁇ 12 %, Li 2 O 0 to 1%, Na 2 O 3 to 8.5%, K 2 O 0 to 5%, MgO + CaO 0 to less than 5%, Fe 2 O 3 0 to less than 0.03% It is preferred to prepare a glass batch so that an acid glass is obtained. In this way, the water resistance and chemical resistance of the borosilicate glass can be improved, and thermal processing can be performed in an appropriate temperature range.
  • MgO + CaO refers to the total amount of MgO and CaO.
  • the method for producing borosilicate glass of the present invention preferably forms molten glass into a tubular shape.
  • the borosilicate glass manufacturing method of the present invention is preferably heat-processed into a pharmaceutical container after the molten glass is formed into a tubular shape.
  • the reducing substance contained in the silicate compound raw material can be sufficiently oxidized.
  • the redox state of the molten glass becomes the oxidation side, and the color tone can be stabilized while suppressing the coloring of the borosilicate glass.
  • glass raw materials are prepared and mixed so as to have a desired glass composition to produce a glass batch.
  • a silicate compound raw material is used, and the COD of the silicate compound raw material is less than 200 ppm, preferably less than 150 ppm, particularly less than 5 to 100 ppm.
  • the higher the COD of the silicate compound raw material the more the molten glass becomes in a reduced state, and it becomes difficult to bring the molten glass into an oxidized state by the nitrate raw material.
  • silicate compound raw materials can be used as the silicate compound raw material.
  • feldspar group glass materials such as soda feldspar and potassium feldspar are preferable as the silicate compound material. Since feldspar group glass raw materials such as soda feldspar and potash feldspar are easily adapted to the glass composition of glass tubes used for pharmaceutical containers, it contributes to a reduction in the cost of glass batches.
  • a nitrate raw material is used in addition to the silicate compound raw material.
  • the nitrate raw material is normally thermally decomposed up to 600 ° C. and releases O 2 gas together with NO 2 gas and NO gas. This O 2 gas oxidizes the reducing substance in the silicate compound raw material and suppresses the reaction between the reducing substance and colored impurities such as Fe 2 O 3 .
  • Various raw materials can be used as the nitrate raw material. For example, sodium nitrate, potassium nitrate, strontium nitrate, or the like can be used.
  • the amount of O 2 gas decomposed and released from the nitrate raw material is 2.7 times or more of the COD of the glass batch. It is more preferable that it is 3.5 times or more the COD of the glass batch. If the amount of O 2 gas decomposed and released from the nitrate raw material is too small, the reducing substance cannot be sufficiently oxidized, and the color tone of the borosilicate glass tends to change.
  • the COD of the glass batch is less than 100 ppm, preferably less than 75 ppm, especially 5 to less than 50 ppm.
  • the higher the COD of the glass batch the more the molten glass is in a reduced state, and it is difficult to bring the molten glass into an oxidized state by the nitrate raw material.
  • the amount of O 2 gas decomposed and released from the nitrate raw material is preferably 0.05% by mass or more when the entire glass batch is 100% by mass. More preferably, the content is 0.1 to 0.5% by mass. If the amount of O 2 gas decomposed and released from the nitrate raw material is too small, the reducing substance cannot be sufficiently oxidized, and the color tone of the borosilicate glass tends to change.
  • glass raw materials other glass raw materials can be used besides silicate compound raw materials and nitrate raw materials.
  • silica sand, aluminum oxide, anhydrous boric acid, calcium carbonate, potassium carbonate, tin oxide and the like can be added to the glass batch.
  • the production method of the borosilicate glass of the present invention is, as a glass composition, by mass%, SiO 2 70-76.5%, Al 2 O 3 6.3-11%, B 2 O 3 3-12%, Li 2 A borosilicate glass containing O 0 to 1%, Na 2 O 3 to 8.5%, K 2 O 0 to 5%, MgO + CaO 0 to less than 5%, Fe 2 O 3 0 to less than 0.03% is obtained. It is preferred to prepare a glass batch. The reason why the content range of each component is regulated as described above is shown below. In addition, the following% display has shown the mass%.
  • SiO 2 is a component constituting the glass network.
  • the content of SiO 2 is preferably 70-76.5%, 70-75.5%, 71-75.5%, 72-75%, in particular 73-74.7%.
  • chemical durability, particularly acid resistance tends to decrease.
  • the content of SiO 2 is too large, and decreases the liquidus viscosity, the glass is liable to devitrification during molding.
  • Al 2 O 3 is a component that increases devitrification resistance, chemical durability, and hydrolysis resistance.
  • the content of Al 2 O 3 is preferably 6.3 to 11%, 6.3 to 10.5%, more than 6.3 to 10%, 6.4 to 8.5%, particularly 6.4 to 8%. .3%.
  • the content of Al 2 O 3 is too small, it becomes difficult to enjoy the effect of the above.
  • the content of Al 2 O 3 is too large, the working temperature becomes high, and the amount of evaporation of B 2 O 3 , Na 2 O, etc. becomes too large when heat-processing into a pharmaceutical container.
  • B 2 O 3 has the effect of decreasing the high temperature viscosity and increasing the liquid phase viscosity.
  • the content of B 2 O 3 is preferably 3 to 12%, 4 to 11.5%, 5.5 to less than 11.5%, 8.5 to less than 11.5%, especially 9 to 11.5% Is less than.
  • the content of B 2 O 3 is too small, the working temperature increases, B 2 O 3, Na 2 evaporation amount of O, etc. is too high when the thermal processing for pharmaceutical containers.
  • the content of B 2 O 3 is too large, hydrolysis resistance, chemical durability tends to decrease.
  • Li 2 O has the effect of reducing the high-temperature viscosity and also has the effect of increasing the thermal expansion coefficient.
  • the content of Li 2 O is preferably 0 to 1%, 0 to 0.2%, 0 to 0.1%, 0 to 0.05%, particularly 0 to 0.01%.
  • Na 2 O has an effect of decreasing the high temperature viscosity and an effect of increasing the thermal expansion coefficient.
  • the content of Na 2 O is preferably 3 to 8.5%, 4 to less than 8.5%, 4 to 8%, particularly 4 to 7%.
  • the Na 2 O content is too small, the working temperature increases, B 2 O 3, Na 2 evaporation amount of O, etc. is too high when the thermal processing for pharmaceutical containers.
  • the content of Na 2 O is too large, hydrolysis resistance tends to decrease.
  • K 2 O has an effect of lowering the high temperature viscosity and an effect of increasing the thermal expansion coefficient.
  • the content of K 2 O is preferably 0 to 5%, 0.1 to 5%, 0.5 to 4.5%, 1 to 3%, particularly 1.5 to 3%. When the content of K 2 O is too large, hydrolysis resistance tends to decrease.
  • the mass ratio K 2 O / Na 2 O is preferably 0.2 to 1, 0.2 to 0.95, 0.2 to 0.8, in particular 0.2 to 0.7.
  • the mass ratio K 2 O / Na 2 O is too small, the hydrolysis resistance tends to decrease.
  • the mass ratio K 2 O / Na 2 O is too large, the amount of evaporation of B 2 O 3 , Na 2 O, etc. becomes too large when heat-treating into a pharmaceutical container.
  • the content of Na 2 O is too large, hydrolysis resistance tends to decrease.
  • “K 2 O / Na 2 O” indicates a value obtained by dividing the content of K 2 O by the content of Na 2 O.
  • the total amount of Li 2 O, Na 2 O and K 2 O is preferably 5 to 10%, in particular 6 to 9%. If the total amount of these is too small, the heat processing temperature becomes unreasonably high. On the other hand, when there are too many these total amounts, chemical durability and hydrolysis resistance will fall easily.
  • MgO and CaO have the effect of reducing the high temperature viscosity.
  • the total amount of MgO and CaO is preferably 0 to less than 5%, 0 to less than 3%, 0 to less than 1%, especially 0 to 0.5%. When there is too much total amount of MgO and CaO, hydrolysis resistance will fall easily.
  • MgO has the effect of lowering the high temperature viscosity and the effect of increasing chemical durability.
  • the content of MgO is preferably 0 to less than 4%, 0 to less than 1%, especially 0 to 0.5%. When there is too much content of MgO, hydrolysis resistance will fall easily.
  • CaO has the effect of reducing the high temperature viscosity.
  • the CaO content is preferably 0-2%, 0-1%, especially 0-0.5%. When there is too much CaO content, hydrolysis resistance will fall easily.
  • SrO has the effect of increasing chemical durability.
  • the SrO content is preferably 0 to less than 4%, 0 to 2%, in particular 0 to 1%. When there is too much content of SrO, hydrolysis resistance will fall easily.
  • BaO has the effect of increasing chemical durability.
  • the BaO content is preferably 0 to 1.5%, 0 to 0.5%, particularly preferably 0 to 0.1%.
  • crystallization may precipitate by reaction with an alumina type
  • TiO 2 has the effect of increasing hydrolysis resistance.
  • the content of TiO 2 is preferably 0 to less than 7%, 0 to 5%, 0 to 4%, in particular 0 to 1.5%.
  • the working temperature increases, B 2 O 3, Na 2 evaporation amount of O, etc. is too high when the thermal processing for pharmaceutical containers.
  • ZrO 2 has an effect of increasing hydrolysis resistance.
  • the content of ZrO 2 is preferably 0 to less than 7%, 0 to 5%, 0 to 4%, particularly 0 to 1.5%.
  • the working temperature increases, B 2 O 3, Na 2 evaporation amount of O, etc. is too high when the thermal processing for pharmaceutical containers.
  • Fe 2 O 3 is a component that is inevitably mixed as a colored impurity, and is a component that lowers the transmittance in the visible region. Therefore, the content of Fe 2 O 3 is preferably 0.2% or less, 0.1% or less, less than 0.03%, particularly 0.001 to 0.02%. When the content of Fe 2 O 3 is too large, even if optimizing the amount of the silicate compound materials or nitrate materials, there is a fear that the glass is colored.
  • any one or more of F, Cl, Sb 2 O 3 , SnO 2 , SO 3 and the like may be employed.
  • the total amount of these components is preferably 3% or less, 1% or less, particularly 0.5% or less.
  • Cl and SnO 2 are preferable from the viewpoints of environmental load and fining.
  • the Cl content is preferably 3% or less, 0.01 to 1%, particularly 0.03 to 0.2%.
  • the SnO 2 content is preferably 0.05 to 2%, in particular 0.1 to 0.5%.
  • the glass batch is preferably adjusted by weighing each glass raw material and mixing with a mixer.
  • a powder mixer such as a bread mixer, a nauter mixer, or a rotary mixer can be used.
  • the mixing method is not particularly limited, and is appropriately determined depending on the particle size distribution, hardness, and the like of the glass raw material. However, it is necessary to pay attention to the mixing of impurities due to chipping of the components of the mixer.
  • the glass batch is put into a glass melting furnace and then heated and melted to become molten glass.
  • the molten glass is formed into a predetermined shape by a forming apparatus through a clarification step, a stirring step, and a supply step.
  • the molten glass is preferably formed into a tubular shape. If it does in this way, a glass tube can be heat-processed and it can apply to the container for pharmaceuticals.
  • Various methods can be adopted as a method for forming molten glass into a tubular shape. For example, a method is adopted in which molten glass is wound around a rotating refractory, air is blown out from the tip of the refractory, the molten glass is pulled out from the tip of the refractory, and then cut into a predetermined length. be able to.
  • the glass tube is preferably heat-processed into a pharmaceutical container.
  • a pharmaceutical container an ampoule, a vial, a prefilled syringe, and a cartridge are particularly preferable.
  • various glass raw materials were prepared so as to have the glass composition shown in Table 1, and mixed for 10 minutes with a tumbler mixer to prepare a 100 g glass batch.
  • the glass batch used the silicate compound raw material and nitrate raw material described in the table.
  • nitrate materials other than nitrate materials in the table were not used as nitrate materials.
  • the glass batch was then placed in a platinum alloy crucible.
  • the platinum alloy crucible was placed inside the heating furnace heated and held in advance at 1550 ° C., held for 2 hours, then the platinum alloy crucible was removed from the heating furnace, and the borosilicate glass was peeled off from the platinum alloy crucible, Cooled to room temperature.
  • Platinum alloy crucible (see Fig. 1) Composition: 95% by mass of Pt, 5% by mass of Au Upper diameter: 87mm Bottom diameter: 30mm Height: 51mm Heating furnace Manufacturer: Advantech Toyo Co., Ltd. Furnace dimensions: width 300 x depth 300 x height 300 mm Heating element: Molybdenum disilicide Thermocouple: Type B thermocouple based on JIS standard
  • the central portion of the borosilicate glass taken out was cut in a vertical direction with a thickness of 10 mm, and then the cut surface was polished into a mirror surface. Next, the mirror surface was visually observed to evaluate the color tone of the borosilicate glass. The results are shown in Table 1.
  • Table 1 shows the COD of the silicate compound raw material, the amount of O 2 gas decomposed and released from the nitrate raw material, and the COD of the glass batch.
  • the amount of O 2 gas is a value obtained by calculation from the chemical formula and mass of the nitrate raw material.
  • sample No. Nos. 1 to 4 were uncolored because both the silicate compound raw material and the nitrate raw material were used, and the amount of O 2 gas decomposed and released from the COD and nitrate raw material of the silicate compound raw material was appropriate.
  • sample No. In Nos. 5 and 6 since the nitrate raw material was not used, colored impurities such as Fe 2 O 3 were reduced, and the color tone was changed to blue.
  • the method for producing borosilicate glass is suitable as a method for producing borosilicate glass for use in pharmaceutical containers, but is not limited thereto.
  • it is suitable as a method for producing borosilicate glass for applications requiring strict color tone control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hematology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Glass Compositions (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

The production method for borosilicate glass according to the present invention is characterized by creating borosilicate glass by melting a glass batch that contains a nitrate material and a silicate compound material having a chemical oxygen demand (COD) less than 200 ppm (less than 0.02 mass%), and then molding the obtained molten glass.

Description

ホウケイ酸ガラスの製造方法Method for producing borosilicate glass
 本発明はホウケイ酸ガラスの製造方法に関し、特に医薬品用容器に好適なホウケイ酸ガラスの製造方法に関する。 The present invention relates to a method for producing borosilicate glass, and more particularly to a method for producing borosilicate glass suitable for pharmaceutical containers.
 ホウケイ酸ガラスは、低膨張、且つ高耐薬品性を有するため、バイアル、アンプル等の医薬品用容器に用いられている。医薬品用容器は、一般的に、ガラス管を熱加工することにより作製される。この用途のガラス管には、バイアルやアンプルの作製時に破損しないこと、内部に充填される薬品や薬液と反応しないこと、無色透明であること等が要求される。 Borosilicate glass is used for pharmaceutical containers such as vials and ampoules because it has low expansion and high chemical resistance. A pharmaceutical container is generally produced by thermally processing a glass tube. The glass tube for this use is required not to be damaged when producing a vial or ampoule, to react with a chemical or a chemical solution filled therein, and to be colorless and transparent.
 近年、薬効が高い薬液が鋭意開発されており、その一部は既に市販されている。これらの薬液の中には、化学的に不安定で変性し易く、ガラス管との反応性が高いものがある。よって、この用途のガラス管は、従来よりも化学的耐久性や加水分解抵抗性の向上が要求されている。 In recent years, medicinal solutions with high medicinal effects have been intensively developed, and some of them are already on the market. Some of these chemical solutions are chemically unstable, easily denatured, and have high reactivity with glass tubes. Therefore, the glass tube for this use is required to have improved chemical durability and hydrolysis resistance than before.
 この用途のガラス管は、更に無色透明で色調が安定していることも要求されている。実際のところ、ガラス管の色調が変化しても、充填される薬液の効能には殆ど影響しないが、薬液又は医薬品用容器の変質が疑われて、高価な薬液が廃棄されてしまう虞が生じる。 ¡Glass tubes for this purpose are also required to be colorless and transparent and have a stable color tone. Actually, even if the color tone of the glass tube changes, the effect of the chemical solution to be filled is hardly affected. However, the chemical solution or the container for the pharmaceutical product is suspected to be altered, and there is a possibility that the expensive chemical solution is discarded. .
特開2015-098430号公報JP2015-098430A
 ところで、一般的に、ガラス管の生産には、珪砂、長石、蝋石(パイロフィライト、カオリナイト等)等の天然原料が使用される。特に長石、蝋石等のケイ酸塩鉱物は、ガラス成分を複数種含むため、製造コストの点で有利である。またこれらのケイ酸塩鉱物は、化合物であるため、珪砂、アルミナ等の単体酸化物原料に比べて、溶解性が優れている。 By the way, in general, natural raw materials such as quartz sand, feldspar, and beryl (pyrophyllite, kaolinite, etc.) are used for the production of glass tubes. In particular, silicate minerals such as feldspar and wax stone are advantageous in terms of production cost because they contain a plurality of glass components. In addition, since these silicate minerals are compounds, they are superior in solubility compared to simple oxide raw materials such as silica sand and alumina.
 しかし、ケイ酸塩化合物原料は、還元性物質を含むため、溶融ガラスを還元状態に変化させて、ガラス管の色調を変化させることがある。具体的に説明すると、ケイ酸塩化合物原料を用いると、着色不純物であるFeがFe3+からFe2+に還元されて、意図した色調とは異なる色調になる場合がある。 However, since the silicate compound raw material contains a reducing substance, the color of the glass tube may be changed by changing the molten glass to a reduced state. More specifically, when a silicate compound material is used, Fe 2 O 3 that is a colored impurity may be reduced from Fe 3+ to Fe 2+ , resulting in a color tone different from the intended color tone.
 この色調変化を抑制するには、色調に影響を及ぼす酸化還元成分を排除する方法、例えばガラス原料に含まれるFe等の着色不純物を極力除去する方法がある。更に、酸化還元状態を一定に制御する方法、例えば溶融雰囲気中の酸素濃度を一定に制御する方法もある。 In order to suppress this color tone change, there is a method of eliminating redox components that affect the color tone, for example, a method of removing colored impurities such as Fe 2 O 3 contained in the glass raw material as much as possible. Further, there is a method for controlling the oxidation-reduction state to be constant, for example, a method for controlling the oxygen concentration in the molten atmosphere to be constant.
 しかし、前者の方法は、ガラス原料中にppmオーダーで含まれる着色不純物の除去に多大な労力とコストを要する。後者の方法は、溶融雰囲気を精密に制御し続けることが非常に困難であり、更に膨大なコストを要する。 However, the former method requires a great deal of labor and cost to remove colored impurities contained in the glass raw material in the order of ppm. In the latter method, it is very difficult to continue to precisely control the melting atmosphere, and a huge cost is required.
 本発明は、上記事情に鑑み成されたものであり、その技術的課題は、簡便な手法により、ホウケイ酸ガラスの着色を抑制しつつ、色調を安定化させることである。 The present invention has been made in view of the above circumstances, and its technical problem is to stabilize the color tone while suppressing coloring of the borosilicate glass by a simple method.
 本発明者は、鋭意検討の結果、ガラスバッチ中に、還元度が低いケイ酸塩化合物原料と硝酸塩原料を使用することにより、上記技術的課題を解決し得ることを見出し、本発明として提案するものである。すなわち、本発明のホウケイ酸ガラスの製造方法は、化学的酸素要求量(COD)が200ppm未満(0.02質量%未満)となるケイ酸塩化合物原料と、硝酸塩原料とを含むガラスバッチを溶融した後、得られた溶融ガラスを成形して、ホウケイ酸ガラスを作製することを特徴とする。ここで、「ケイ酸塩化合物原料」とは、化学組成としてSiOを含む酸化物原料を指す。「化学的酸素要求量(COD)」とは、還元成分の含有量を表す指標であり、重クロム酸カリウム又は過マンガン酸カリウムによる滴定試験で測定された酸素消費量をC(カーボン)として算出した値を指す。 As a result of intensive studies, the present inventors have found that the above technical problem can be solved by using a silicate compound raw material and a nitrate raw material having a low degree of reduction in a glass batch, and propose the present invention. Is. That is, the borosilicate glass manufacturing method of the present invention melts a glass batch containing a silicate compound raw material having a chemical oxygen demand (COD) of less than 200 ppm (less than 0.02% by mass) and a nitrate raw material. Then, the obtained molten glass is formed to produce a borosilicate glass. Here, the “silicate compound raw material” refers to an oxide raw material containing SiO 2 as a chemical composition. “Chemical oxygen demand (COD)” is an index representing the content of reducing components, and the oxygen consumption measured in a titration test with potassium dichromate or potassium permanganate is calculated as C (carbon). Indicates the value.
 本発明のホウケイ酸ガラスの製造方法は、ガラスバッチ中にケイ酸塩化合物原料と硝酸塩原料を同時に使用するが、このガラスバッチが溶解し、溶融ガラスになる際に、硝酸塩原料は、500~600℃の温度範囲でOガスを分解、放出する。このOガスは、ケイ酸塩化合物原料中の還元性物質を酸化して、還元性物質とFe等の着色不純物の反応を抑制する。その結果、Fe等の着色不純物の酸化還元状態が酸化側に固定されるため、ホウケイ酸ガラスの着色を抑制しつつ、色調を安定化させることができる。 The method for producing a borosilicate glass of the present invention uses a silicate compound raw material and a nitrate raw material simultaneously in a glass batch. When the glass batch is melted to form molten glass, the nitrate raw material is 500 to 600. Decomposes and releases O 2 gas in the temperature range of ° C. This O 2 gas oxidizes the reducing substance in the silicate compound raw material and suppresses the reaction between the reducing substance and colored impurities such as Fe 2 O 3 . As a result, since the oxidation-reduction state of colored impurities such as Fe 2 O 3 is fixed on the oxidation side, it is possible to stabilize the color tone while suppressing coloring of the borosilicate glass.
 第二に、本発明のホウケイ酸ガラスの製造方法は、ガラスバッチを1550℃で2時間加熱した時に硝酸塩原料から分解、放出されるOガスの量が、ガラスバッチの化学的酸素要求量(COD)の2.7倍以上になることが好ましい。ケイ酸塩化合物原料のCOD源が全てC(炭素)で存在している場合、CとOはC+O=COの反応を起こす。この場合、C(原子量12)1gを酸化するために必要なO(分子量32)は約2.7gである。よって、ガラスバッチに含まれるCが100ppmである場合、Oが270ppm以上存在すれば、ガラスバッチ中の還元性物質を有効に酸化することが可能になる。 Second, the method for producing a borosilicate glass according to the present invention is such that when the glass batch is heated at 1550 ° C. for 2 hours, the amount of O 2 gas decomposed and released from the nitrate raw material is the chemical oxygen demand ( COD) is preferably 2.7 times or more. When the COD source of the silicate compound raw material is all C (carbon), C and O 2 cause a reaction of C + O 2 = CO 2 . In this case, O 2 (molecular weight 32) required to oxidize 1 g of C (atomic weight 12) is about 2.7 g. Therefore, when C contained in the glass batch is 100 ppm, if O 2 is present at 270 ppm or more, the reducing substance in the glass batch can be effectively oxidized.
 第三に、本発明のホウケイ酸ガラスの製造方法は、ガラスバッチを1550℃で2時間加熱した時に硝酸塩原料から分解、放出されるOガスの量が、ガラスバッチ全体を100質量%とした場合に、0.05質量%以上になることが好ましい。このようにすれば、ガラスバッチ中の還元性物質を有効に酸化することが可能になる。 Third, in the method for producing a borosilicate glass according to the present invention, when the glass batch is heated at 1550 ° C. for 2 hours, the amount of O 2 gas decomposed and released from the nitrate raw material is 100% by mass of the entire glass batch. In some cases, it is preferably 0.05% by mass or more. If it does in this way, it will become possible to oxidize the reducing substance in a glass batch effectively.
 第四に、本発明のホウケイ酸ガラスの製造方法は、ケイ酸塩化合物原料として、ソーダ長石(NaAlSi)及び/又はカリ長石(KAlSi)を使用することが好ましい。 Fourth, the method of producing borosilicate glass of the present invention, as the silicate compound materials, it is preferable to use albite (NaAlSi 3 O 8) and / or feldspar (KAlSi 3 O 8).
 第五に、本発明のホウケイ酸ガラスの製造方法は、ガラス組成中のFeの含有量が0.03質量%未満となるホウケイ酸ガラスが得られるように、ガラスバッチを調製することが好ましい。 Fifth, the method for producing a borosilicate glass of the present invention is to prepare a glass batch so that a borosilicate glass in which the content of Fe 2 O 3 in the glass composition is less than 0.03% by mass is obtained. Is preferred.
 第六に、本発明のホウケイ酸ガラスの製造方法は、ガラス組成として、質量%で、SiO 70~76.5%、Al 6.3~11%、B 3~12%、LiO 0~1%、NaO 3~8.5%、KO 0~5%、MgO+CaO 0~5%未満、Fe 0~0.03%未満を含有するホウケイ酸ガラスが得られるように、ガラスバッチを調製することが好ましい。このようにすれば、ホウケイ酸ガラスの耐水性、耐薬品性が向上し、更に適正な温度範囲で熱加工を行うことができる。ここで、「MgO+CaO」は、MgOとCaOの合量を指す。 Sixth, the production method of the borosilicate glass of the present invention has a glass composition, in mass%, SiO 2 70 ~ 76.5% , Al 2 O 3 6.3 ~ 11%, B 2 O 3 3 ~ 12 %, Li 2 O 0 to 1%, Na 2 O 3 to 8.5%, K 2 O 0 to 5%, MgO + CaO 0 to less than 5%, Fe 2 O 3 0 to less than 0.03% It is preferred to prepare a glass batch so that an acid glass is obtained. In this way, the water resistance and chemical resistance of the borosilicate glass can be improved, and thermal processing can be performed in an appropriate temperature range. Here, “MgO + CaO” refers to the total amount of MgO and CaO.
 第七に、本発明のホウケイ酸ガラスの製造方法は、溶融ガラスを管状に成形することが好ましい。 Seventh, the method for producing borosilicate glass of the present invention preferably forms molten glass into a tubular shape.
 第八に、本発明のホウケイ酸ガラスの製造方法は、溶融ガラスを管状に成形した後に、医薬品用容器に熱加工することが好ましい。 Eighth, the borosilicate glass manufacturing method of the present invention is preferably heat-processed into a pharmaceutical container after the molten glass is formed into a tubular shape.
 本発明のホウケイ酸ガラスの製造方法によれば、ケイ酸塩化合物原料に含まれる還元性物質を十分に酸化することができる。その結果、溶融ガラスの酸化還元状態が酸化側になり、ホウケイ酸ガラスの着色を抑制しつつ、色調を安定化することができる。 According to the method for producing a borosilicate glass of the present invention, the reducing substance contained in the silicate compound raw material can be sufficiently oxidized. As a result, the redox state of the molten glass becomes the oxidation side, and the color tone can be stabilized while suppressing the coloring of the borosilicate glass.
[実施例]の欄で使用した白金合金ルツボの外観、寸法を示す概念斜視図である。It is a conceptual perspective view which shows the external appearance and dimension of the platinum alloy crucible used in the column of [Example].
 以下、本発明のホウケイ酸ガラスの製造方法について詳述する。 Hereinafter, the method for producing the borosilicate glass of the present invention will be described in detail.
 まず、所望のガラス組成になるようにガラス原料を調合、混合して、ガラスバッチを作製する。本発明のホウケイ酸ガラスの製造方法では、ケイ酸塩化合物原料を用いるが、ケイ酸塩化合物原料のCODは200ppm未満であり、好ましくは150ppm未満、特に5~100ppm未満である。ケイ酸塩化合物原料のCODが高い程、溶融ガラスは還元状態になり、硝酸塩原料により溶融ガラスを酸化状態にすることが困難になる。 First, glass raw materials are prepared and mixed so as to have a desired glass composition to produce a glass batch. In the method for producing a borosilicate glass of the present invention, a silicate compound raw material is used, and the COD of the silicate compound raw material is less than 200 ppm, preferably less than 150 ppm, particularly less than 5 to 100 ppm. The higher the COD of the silicate compound raw material, the more the molten glass becomes in a reduced state, and it becomes difficult to bring the molten glass into an oxidized state by the nitrate raw material.
 ケイ酸塩化合物原料として、種々のケイ酸塩化合物原料を用いることができる。その中でも、ケイ酸塩化合物原料として、ソーダ長石、カリ長石等の長石族ガラス原料が好ましい。ソーダ長石、カリ長石等の長石族ガラス原料は、医薬品用容器に用いられるガラス管のガラス組成に適合し易いため、ガラスバッチの低廉化に資する。 Various silicate compound raw materials can be used as the silicate compound raw material. Among them, feldspar group glass materials such as soda feldspar and potassium feldspar are preferable as the silicate compound material. Since feldspar group glass raw materials such as soda feldspar and potash feldspar are easily adapted to the glass composition of glass tubes used for pharmaceutical containers, it contributes to a reduction in the cost of glass batches.
 本発明のホウケイ酸ガラスの製造方法では、ケイ酸塩化合物原料に加えて、硝酸塩原料を用いる。硝酸塩原料は、通常、600℃までに熱的に分解されて、NOガスやNOガスと共に、Oガスを放出する。このOガスは、ケイ酸塩化合物原料中の還元性物質を酸化して、還元性物質とFe等の着色不純物の反応を抑制する。硝酸塩原料として、種々の原料を用いることができる。例えば、硝酸ナトリウム、硝酸カリウム、硝酸ストロンチウム等を用いることができる。 In the method for producing borosilicate glass of the present invention, a nitrate raw material is used in addition to the silicate compound raw material. The nitrate raw material is normally thermally decomposed up to 600 ° C. and releases O 2 gas together with NO 2 gas and NO gas. This O 2 gas oxidizes the reducing substance in the silicate compound raw material and suppresses the reaction between the reducing substance and colored impurities such as Fe 2 O 3 . Various raw materials can be used as the nitrate raw material. For example, sodium nitrate, potassium nitrate, strontium nitrate, or the like can be used.
 本発明のホウケイ酸ガラスの製造方法において、ガラスバッチを1550℃で2時間加熱した時に、硝酸塩原料から分解、放出されるOガスの量が、ガラスバッチのCODの2.7倍以上になることが好ましく、ガラスバッチのCODの3.5倍以上になることが更に好ましい。硝酸塩原料から分解、放出されるOガスの量が少な過ぎると、還元性物質を十分に酸化することができず、ホウケイ酸ガラスの色調が変化し易くなる。 In the method for producing borosilicate glass of the present invention, when a glass batch is heated at 1550 ° C. for 2 hours, the amount of O 2 gas decomposed and released from the nitrate raw material is 2.7 times or more of the COD of the glass batch. It is more preferable that it is 3.5 times or more the COD of the glass batch. If the amount of O 2 gas decomposed and released from the nitrate raw material is too small, the reducing substance cannot be sufficiently oxidized, and the color tone of the borosilicate glass tends to change.
 ガラスバッチのCODは100ppm未満であり、好ましくは75ppm未満、特に5~50ppm未満である。ガラスバッチのCODが高い程、溶融ガラスは還元状態になり、硝酸塩原料により溶融ガラスを酸化状態にすることが困難になる。 The COD of the glass batch is less than 100 ppm, preferably less than 75 ppm, especially 5 to less than 50 ppm. The higher the COD of the glass batch, the more the molten glass is in a reduced state, and it is difficult to bring the molten glass into an oxidized state by the nitrate raw material.
 ガラスバッチを1550℃で2時間加熱した時に、硝酸塩原料から分解、放出されるOガスの量が、ガラスバッチ全体を100質量%とした場合に、0.05質量%以上になることが好ましく、0.1~0.5質量%になることが更に好ましい。硝酸塩原料から分解、放出されるOガスの量が少な過ぎると、還元性物質を十分に酸化することができず、ホウケイ酸ガラスの色調が変化し易くなる。 When the glass batch is heated at 1550 ° C. for 2 hours, the amount of O 2 gas decomposed and released from the nitrate raw material is preferably 0.05% by mass or more when the entire glass batch is 100% by mass. More preferably, the content is 0.1 to 0.5% by mass. If the amount of O 2 gas decomposed and released from the nitrate raw material is too small, the reducing substance cannot be sufficiently oxidized, and the color tone of the borosilicate glass tends to change.
 ガラス原料として、ケイ酸塩化合物原料、硝酸塩原料以外に、他のガラス原料を使用することができる。例えば、珪砂、酸化アルミニウム、無水ホウ酸、炭酸カルシウム、炭酸カリウム、酸化錫等をガラスバッチ中に添加することができる。 As glass raw materials, other glass raw materials can be used besides silicate compound raw materials and nitrate raw materials. For example, silica sand, aluminum oxide, anhydrous boric acid, calcium carbonate, potassium carbonate, tin oxide and the like can be added to the glass batch.
 本発明のホウケイ酸ガラスの製造方法は、ガラス組成として、質量%で、SiO 70~76.5%、Al 6.3~11%、B 3~12%、LiO 0~1%、NaO 3~8.5%、KO 0~5%、MgO+CaO 0~5%未満、Fe 0~0.03%未満を含有するホウケイ酸ガラスが得られるように、ガラスバッチを調製することが好ましい。上記のように、各成分の含有範囲を規制した理由を以下に示す。なお、以下の%表示は、質量%を示している。 The production method of the borosilicate glass of the present invention is, as a glass composition, by mass%, SiO 2 70-76.5%, Al 2 O 3 6.3-11%, B 2 O 3 3-12%, Li 2 A borosilicate glass containing O 0 to 1%, Na 2 O 3 to 8.5%, K 2 O 0 to 5%, MgO + CaO 0 to less than 5%, Fe 2 O 3 0 to less than 0.03% is obtained. It is preferred to prepare a glass batch. The reason why the content range of each component is regulated as described above is shown below. In addition, the following% display has shown the mass%.
 SiOは、ガラスネットワークを構成する成分である。SiOの含有量は、好ましくは70~76.5%、70~75.5%、71~75.5%未満、72~75%未満、特に73~74.7%である。SiOの含有量が少な過ぎると、化学的耐久性、特に耐酸性が低下し易くなる。一方、SiOの含有量が多過ぎると、液相粘度が低下して、成形時にガラスが失透し易くなる。 SiO 2 is a component constituting the glass network. The content of SiO 2 is preferably 70-76.5%, 70-75.5%, 71-75.5%, 72-75%, in particular 73-74.7%. When the content of SiO 2 is too small, chemical durability, particularly acid resistance tends to decrease. On the other hand, if the content of SiO 2 is too large, and decreases the liquidus viscosity, the glass is liable to devitrification during molding.
 Alは、耐失透性、化学的耐久性及び加水分解抵抗性を高める成分である。Alの含有量は、好ましくは6.3~11%、6.3~10.5%、6.3超~10%、6.4~8.5%、特に6.4~8.3%である。Alの含有量が少な過ぎると、上記の効果を享受し難くなる。一方、Alの含有量が多過ぎると、作業温度が高くなり、医薬品用容器に熱加工する際にB、NaO等の蒸発量が多くなり過ぎる。 Al 2 O 3 is a component that increases devitrification resistance, chemical durability, and hydrolysis resistance. The content of Al 2 O 3 is preferably 6.3 to 11%, 6.3 to 10.5%, more than 6.3 to 10%, 6.4 to 8.5%, particularly 6.4 to 8%. .3%. When the content of Al 2 O 3 is too small, it becomes difficult to enjoy the effect of the above. On the other hand, if the content of Al 2 O 3 is too large, the working temperature becomes high, and the amount of evaporation of B 2 O 3 , Na 2 O, etc. becomes too large when heat-processing into a pharmaceutical container.
 Bは、高温粘度を低下させて、液相粘度を上昇させる効果を有する。Bの含有量は、好ましくは3~12%、4~11.5%、5.5~11.5%未満、8.5~11.5%未満、特に9~11.5%未満である。Bの含有量が少な過ぎると、作業温度が高くなり、医薬品用容器に熱加工する際にB、NaO等の蒸発量が多くなり過ぎる。一方、Bの含有量が多過ぎると、加水分解抵抗性、化学的耐久性が低下し易くなる。 B 2 O 3 has the effect of decreasing the high temperature viscosity and increasing the liquid phase viscosity. The content of B 2 O 3 is preferably 3 to 12%, 4 to 11.5%, 5.5 to less than 11.5%, 8.5 to less than 11.5%, especially 9 to 11.5% Is less than. When the content of B 2 O 3 is too small, the working temperature increases, B 2 O 3, Na 2 evaporation amount of O, etc. is too high when the thermal processing for pharmaceutical containers. On the other hand, when the content of B 2 O 3 is too large, hydrolysis resistance, chemical durability tends to decrease.
 LiOは、高温粘度を低下させる効果を有し、また熱膨張係数を上昇させる効果を有する。しかし、LiOの量が過剰になると、溶融時に炉内耐火物を侵食し、溶融コストが高騰し易くなる。よって、LiOの含有量は、好ましくは0~1%、0~0.2%、0~0.1%、0~0.05%、特に0~0.01%である。 Li 2 O has the effect of reducing the high-temperature viscosity and also has the effect of increasing the thermal expansion coefficient. However, when the amount of Li 2 O is excessive, the refractory in the furnace is eroded during melting and the melting cost is likely to increase. Therefore, the content of Li 2 O is preferably 0 to 1%, 0 to 0.2%, 0 to 0.1%, 0 to 0.05%, particularly 0 to 0.01%.
 NaOは、高温粘度を低下させる効果を有し、また熱膨張係数を上昇させる効果を有する。NaOの含有量は、好ましくは3~8.5%、4~8.5%未満、4~8%、特に4~7%である。NaOの含有量が少な過ぎると、作業温度が高くなり、医薬品用容器に熱加工する際にB、NaO等の蒸発量が多くなり過ぎる。一方、NaOの含有量が多過ぎると、加水分解抵抗性が低下し易くなる。 Na 2 O has an effect of decreasing the high temperature viscosity and an effect of increasing the thermal expansion coefficient. The content of Na 2 O is preferably 3 to 8.5%, 4 to less than 8.5%, 4 to 8%, particularly 4 to 7%. When the Na 2 O content is too small, the working temperature increases, B 2 O 3, Na 2 evaporation amount of O, etc. is too high when the thermal processing for pharmaceutical containers. On the other hand, when the content of Na 2 O is too large, hydrolysis resistance tends to decrease.
 KOは、高温粘度を低下させる効果を有し、また熱膨張係数を上昇させる効果を有する。KOの含有量は、好ましくは0~5%、0.1~5%、0.5~4.5%、1~3%、特に1.5~3%である。KOの含有量が多過ぎると、加水分解抵抗性が低下し易くなる。 K 2 O has an effect of lowering the high temperature viscosity and an effect of increasing the thermal expansion coefficient. The content of K 2 O is preferably 0 to 5%, 0.1 to 5%, 0.5 to 4.5%, 1 to 3%, particularly 1.5 to 3%. When the content of K 2 O is too large, hydrolysis resistance tends to decrease.
 KOとNaOの両方を含有させると、混合アルカリ効果により、加水分解抵抗性を高めることができる。質量比KO/NaOは、好ましくは0.2~1、0.2~0.95、0.2~0.8、特に0.2~0.7である。質量比KO/NaOが小さ過ぎると、加水分解抵抗性が低下し易くなる。一方、質量比KO/NaOが大き過ぎると、医薬品用容器に熱加工する際にB、NaO等の蒸発量が多くなり過ぎる。一方、NaOの含有量が多過ぎると、加水分解抵抗性が低下し易くなる。なお、「KO/NaO」は、KOの含有量をNaOの含有量で割った値を指す。 When both K 2 O and Na 2 O are contained, hydrolysis resistance can be increased by the mixed alkali effect. The mass ratio K 2 O / Na 2 O is preferably 0.2 to 1, 0.2 to 0.95, 0.2 to 0.8, in particular 0.2 to 0.7. When the mass ratio K 2 O / Na 2 O is too small, the hydrolysis resistance tends to decrease. On the other hand, if the mass ratio K 2 O / Na 2 O is too large, the amount of evaporation of B 2 O 3 , Na 2 O, etc. becomes too large when heat-treating into a pharmaceutical container. On the other hand, when the content of Na 2 O is too large, hydrolysis resistance tends to decrease. “K 2 O / Na 2 O” indicates a value obtained by dividing the content of K 2 O by the content of Na 2 O.
 LiO、NaO及びKOの合量は、好ましくは5~10%、特に6~9%である。これらの合量が少な過ぎると、熱加工温度が不当に高くなる。一方、これらの合量が多過ぎると、化学耐久性、加水分解抵抗性が低下し易くなる。 The total amount of Li 2 O, Na 2 O and K 2 O is preferably 5 to 10%, in particular 6 to 9%. If the total amount of these is too small, the heat processing temperature becomes unreasonably high. On the other hand, when there are too many these total amounts, chemical durability and hydrolysis resistance will fall easily.
 MgOとCaOは、高温粘度を低下させる効果がある。MgOとCaOの合量は、好ましくは0~5%未満、0~3%未満、0~1%未満、特に0~0.5%である。MgOとCaOの合量が多過ぎると、加水分解抵抗性が低下し易くなる。 MgO and CaO have the effect of reducing the high temperature viscosity. The total amount of MgO and CaO is preferably 0 to less than 5%, 0 to less than 3%, 0 to less than 1%, especially 0 to 0.5%. When there is too much total amount of MgO and CaO, hydrolysis resistance will fall easily.
 MgOは、高温粘度を低下させる効果があり、また化学的耐久性を高める効果がある。MgOの含有量は、好ましくは0~4%未満、0~1%未満、特に0~0.5%である。MgOの含有量が多過ぎると、加水分解抵抗性が低下し易くなる。 MgO has the effect of lowering the high temperature viscosity and the effect of increasing chemical durability. The content of MgO is preferably 0 to less than 4%, 0 to less than 1%, especially 0 to 0.5%. When there is too much content of MgO, hydrolysis resistance will fall easily.
 CaOは、高温粘度を低下させる効果がある。CaOの含有量は、好ましくは0~2%未満、0~1%未満、特に0~0.5%である。CaO含有量が多過ぎると、加水分解抵抗性が低下し易くなる。 CaO has the effect of reducing the high temperature viscosity. The CaO content is preferably 0-2%, 0-1%, especially 0-0.5%. When there is too much CaO content, hydrolysis resistance will fall easily.
 上記成分以外にも、例えば、以下の成分を導入することができる。 In addition to the above components, for example, the following components can be introduced.
 SrOは、化学的耐久性を高める効果を有する。SrOの含有量は、好ましくは0~4%未満、0~2%、特に0~1%である。SrOの含有量が多過ぎると、加水分解抵抗性が低下し易くなる。 SrO has the effect of increasing chemical durability. The SrO content is preferably 0 to less than 4%, 0 to 2%, in particular 0 to 1%. When there is too much content of SrO, hydrolysis resistance will fall easily.
 BaOは、化学的耐久性を高める効果を有する。BaOの含有量は0~1.5%、0~0.5%、特に0~0.1%が好ましい。BaOの含有量が多過ぎると、アルミナ系成形耐火物との反応により結晶が析出したり、ガラス管から溶出したBaイオンと薬液中の硫酸イオンとの反応により結晶が析出する虞がある。 BaO has the effect of increasing chemical durability. The BaO content is preferably 0 to 1.5%, 0 to 0.5%, particularly preferably 0 to 0.1%. When there is too much content of BaO, there exists a possibility that a crystal | crystallization may precipitate by reaction with an alumina type | mold molded refractory, or a crystal | crystallization may precipitate by reaction of Ba ion eluted from the glass tube, and the sulfate ion in a chemical | medical solution.
 TiOは、加水分解抵抗性を高める効果を有する。TiOの含有量は、好ましくは0~7%未満、0~5%、0~4%、特に0~1.5%である。TiOの含有量が多過ぎると、作業温度が高くなり、医薬品用容器に熱加工する際にB、NaO等の蒸発量が多くなり過ぎる。 TiO 2 has the effect of increasing hydrolysis resistance. The content of TiO 2 is preferably 0 to less than 7%, 0 to 5%, 0 to 4%, in particular 0 to 1.5%. When the content of TiO 2 is too large, the working temperature increases, B 2 O 3, Na 2 evaporation amount of O, etc. is too high when the thermal processing for pharmaceutical containers.
 ZrOは、加水分解抵抗性を高める効果を有する。ZrOの含有量は、好ましくは0~7%未満、0~5%、0~4%、特に0~1.5%である。ZrOの含有量が多過ぎると、作業温度が高くなり、医薬品用容器に熱加工する際にB、NaO等の蒸発量が多くなり過ぎる。 ZrO 2 has an effect of increasing hydrolysis resistance. The content of ZrO 2 is preferably 0 to less than 7%, 0 to 5%, 0 to 4%, particularly 0 to 1.5%. When the content of ZrO 2 is too high, the working temperature increases, B 2 O 3, Na 2 evaporation amount of O, etc. is too high when the thermal processing for pharmaceutical containers.
 Feは、着色不純物として不可避的に混入する成分であり、可視域における透過率を低下させる成分である。よって、Feの含有量は、好ましくは0.2%以下、0.1%以下、0.03%未満、特に0.001~0.02%である。Feの含有量が多過ぎると、ケイ酸塩化合物原料や硝酸塩原料の使用量を適正化しても、ガラスが着色する虞がある。 Fe 2 O 3 is a component that is inevitably mixed as a colored impurity, and is a component that lowers the transmittance in the visible region. Therefore, the content of Fe 2 O 3 is preferably 0.2% or less, 0.1% or less, less than 0.03%, particularly 0.001 to 0.02%. When the content of Fe 2 O 3 is too large, even if optimizing the amount of the silicate compound materials or nitrate materials, there is a fear that the glass is colored.
 清澄剤として、F、Cl、Sb、SnO、SO等の何れか一種以上を採用してもよい。これらの成分の合量は、好ましくは3%以下、1%以下、特に0.5%以下である。これらの清澄剤の中では、環境的負荷と清澄性の観点から、ClとSnOが好ましい。Clの含有量は、好ましくは3%以下、0.01~1%、特に0.03~0.2%である。SnOの含有量は、好ましくは0.05~2%、特に0.1~0.5%である。 As the clarifier, any one or more of F, Cl, Sb 2 O 3 , SnO 2 , SO 3 and the like may be employed. The total amount of these components is preferably 3% or less, 1% or less, particularly 0.5% or less. Among these fining agents, Cl and SnO 2 are preferable from the viewpoints of environmental load and fining. The Cl content is preferably 3% or less, 0.01 to 1%, particularly 0.03 to 0.2%. The SnO 2 content is preferably 0.05 to 2%, in particular 0.1 to 0.5%.
 本発明のホウケイ酸ガラスの製造方法では、ガラスバッチの調整は、各ガラス原料を秤量し、混合機で混合することが好ましい。混合機には、パンミキサー、ナウターミキサー、ロータリーミキサー等の粉体混合機を用いることができる。混合方法は、特に限定されず、ガラス原料の粒度分布、硬度等により適宜決定される。但し、混合機の構成部材の欠け等による不純物の混入には注意する必要がある。 In the borosilicate glass manufacturing method of the present invention, the glass batch is preferably adjusted by weighing each glass raw material and mixing with a mixer. As the mixer, a powder mixer such as a bread mixer, a nauter mixer, or a rotary mixer can be used. The mixing method is not particularly limited, and is appropriately determined depending on the particle size distribution, hardness, and the like of the glass raw material. However, it is necessary to pay attention to the mixing of impurities due to chipping of the components of the mixer.
 次に、ガラスバッチは、ガラス溶融炉に投入された後、加熱、溶解されて、溶融ガラスになる。溶融ガラスは、清澄工程、攪拌工程、供給工程を経て、成形装置により所定の形状に成形される。 Next, the glass batch is put into a glass melting furnace and then heated and melted to become molten glass. The molten glass is formed into a predetermined shape by a forming apparatus through a clarification step, a stirring step, and a supply step.
 本発明のホウケイ酸ガラスの製造方法は、溶融ガラスを管状に成形することが好ましい。このようにすれば、ガラス管を熱加工して、医薬品用容器に適用することができる。溶融ガラスを管状に成形する方法として、種々の方法を採択することができる。例えば、溶融ガラスを回転する耐火物上に巻きつけながら、耐火物先端部からエアを吹き出しつつ、耐火物先端部から溶融ガラスを管状に引き出した後、所定の長さに切断する方法を採択することができる。 In the method for producing a borosilicate glass of the present invention, the molten glass is preferably formed into a tubular shape. If it does in this way, a glass tube can be heat-processed and it can apply to the container for pharmaceuticals. Various methods can be adopted as a method for forming molten glass into a tubular shape. For example, a method is adopted in which molten glass is wound around a rotating refractory, air is blown out from the tip of the refractory, the molten glass is pulled out from the tip of the refractory, and then cut into a predetermined length. be able to.
 本発明のホウケイ酸ガラスの製造方法は、ガラス管を医薬品用容器に熱加工することが好ましい。医薬品用容器として、特にアンプル、バイアル、プレフィルドシリンジ、カートリッジが好ましい。 In the method for producing borosilicate glass of the present invention, the glass tube is preferably heat-processed into a pharmaceutical container. As the pharmaceutical container, an ampoule, a vial, a prefilled syringe, and a cartridge are particularly preferable.
 以下、実施例を用いて、本発明を更に説明する。但し、本発明の実施例は単なる例示である。本発明は、以下の実施例に何ら限定されない。 Hereinafter, the present invention will be further described with reference to examples. However, the embodiments of the present invention are merely illustrative. The present invention is not limited to the following examples.
 まず表1に記載のガラス組成になるように、各種ガラス原料を調合し、ターブラーミキサーで10分間混合して、100gのガラスバッチを作製した。ガラスバッチには、表中に記載のケイ酸塩化合物原料と硝酸塩原料を使用した。なお、ケイ酸塩化合物原料として、表中のケイ酸塩化合物原料以外のケイ酸塩化合物原料を使用しないようにした。また硝酸塩原料として、表中の硝酸塩原料以外の硝酸塩原料を使用しないようにした。次に、このガラスバッチを白金合金ルツボに入れた。続いて、予め1550℃に加熱保持された加熱炉の内部に白金合金ルツボを配置し、2時間保持した後、白金合金ルツボを加熱炉から取り出し、更に白金合金ルツボからホウケイ酸ガラスを剥がし出し、室温まで冷却した。 First, various glass raw materials were prepared so as to have the glass composition shown in Table 1, and mixed for 10 minutes with a tumbler mixer to prepare a 100 g glass batch. The glass batch used the silicate compound raw material and nitrate raw material described in the table. In addition, it was made not to use silicate compound raw materials other than the silicate compound raw material in a table | surface as a silicate compound raw material. Also, nitrate materials other than nitrate materials in the table were not used as nitrate materials. The glass batch was then placed in a platinum alloy crucible. Subsequently, the platinum alloy crucible was placed inside the heating furnace heated and held in advance at 1550 ° C., held for 2 hours, then the platinum alloy crucible was removed from the heating furnace, and the borosilicate glass was peeled off from the platinum alloy crucible, Cooled to room temperature.
 白金合金ルツボと加熱炉の詳細な情報は下記の通りである。 Detailed information on platinum alloy crucible and furnace is as follows.
白金合金ルツボ(図1参照)
 組成:Pt95質量%、Au5質量%
 上部径:87mm
 底部径:30mm
 高さ:51mm
加熱炉
 製造元:アドバンテック東洋社製
 炉内寸法:幅300×奥300×高さ300mm
 発熱体:ニ珪化モリブデン
 熱電対:JIS規格に基づくB型熱電対
Platinum alloy crucible (see Fig. 1)
Composition: 95% by mass of Pt, 5% by mass of Au
Upper diameter: 87mm
Bottom diameter: 30mm
Height: 51mm
Heating furnace Manufacturer: Advantech Toyo Co., Ltd. Furnace dimensions: width 300 x depth 300 x height 300 mm
Heating element: Molybdenum disilicide Thermocouple: Type B thermocouple based on JIS standard
 取り出したホウケイ酸ガラスの中央部分を縦方向に厚み10mmで切断した後、その切断面を鏡面に研磨した。次に、その鏡面を目視観察し、ホウケイ酸ガラスの色調を評価した。その結果を表1に示す。 The central portion of the borosilicate glass taken out was cut in a vertical direction with a thickness of 10 mm, and then the cut surface was polished into a mirror surface. Next, the mirror surface was visually observed to evaluate the color tone of the borosilicate glass. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 ケイ酸塩化合物原料のCOD、硝酸塩原料から分解、放出されたOガス量及びガラスバッチのCODを表1に示す。なお、Oガス量は、硝酸塩原料の化学式と質量から計算で求めた値である。 Table 1 shows the COD of the silicate compound raw material, the amount of O 2 gas decomposed and released from the nitrate raw material, and the COD of the glass batch. The amount of O 2 gas is a value obtained by calculation from the chemical formula and mass of the nitrate raw material.
 表1から明らかなように、試料No.1~4は、ケイ酸塩化合物原料と硝酸塩原料を共に使用し、ケイ酸塩化合物原料のCODと硝酸塩原料から分解、放出されるOガス量が適正であるため、無着色であった。一方、試料No.5、6は、硝酸塩原料を使用していないため、Fe等の着色不純物が還元されて、色調が青色に変化していた。 As is clear from Table 1, sample No. Nos. 1 to 4 were uncolored because both the silicate compound raw material and the nitrate raw material were used, and the amount of O 2 gas decomposed and released from the COD and nitrate raw material of the silicate compound raw material was appropriate. On the other hand, sample No. In Nos. 5 and 6, since the nitrate raw material was not used, colored impurities such as Fe 2 O 3 were reduced, and the color tone was changed to blue.
 [実施例1]の欄で示された効果は、表2に記載のホウケイ酸ガラス(試料No.7~11)でも同様に得られるものと考えられる。 The effect shown in the column of [Example 1] is considered to be obtained in the same manner with the borosilicate glass (sample Nos. 7 to 11) shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明はホウケイ酸ガラスの製造方法は、医薬品用容器に用いるホウケイ酸ガラスの製造方法として好適であるが、これに限られるものではない。例えば、厳密な色調制御が要求される用途のホウケイ酸ガラスの製造方法として好適である。 In the present invention, the method for producing borosilicate glass is suitable as a method for producing borosilicate glass for use in pharmaceutical containers, but is not limited thereto. For example, it is suitable as a method for producing borosilicate glass for applications requiring strict color tone control.

Claims (8)

  1.  化学的酸素要求量(COD)が200ppm未満となるケイ酸塩化合物原料と、硝酸塩原料とを含むガラスバッチを溶融した後、得られた溶融ガラスを成形して、ホウケイ酸ガラスを作製することを特徴とするホウケイ酸ガラスの製造方法。 After melting a glass batch containing a silicate compound raw material having a chemical oxygen demand (COD) of less than 200 ppm and a nitrate raw material, the resulting molten glass is molded to produce a borosilicate glass. A method for producing a borosilicate glass.
  2.  ガラスバッチを1550℃で2時間加熱した時に、硝酸塩原料から分解、放出されるOガスの量が、ガラスバッチの化学的酸素要求量(COD)の2.7倍以上になることを特徴とする請求項1に記載のホウケイ酸ガラスの製造方法。 When the glass batch is heated at 1550 ° C. for 2 hours, the amount of O 2 gas decomposed and released from the nitrate raw material is 2.7 times or more the chemical oxygen demand (COD) of the glass batch. The manufacturing method of the borosilicate glass of Claim 1 to do.
  3.  ガラスバッチを1550℃で2時間加熱した時に、硝酸塩原料から分解、放出されるOガスの量が、ガラスバッチ全体を100質量%とした場合に、0.05質量%以上になることを特徴とする請求項1又は2に記載のホウケイ酸ガラスの製造方法。 When the glass batch is heated at 1550 ° C. for 2 hours, the amount of O 2 gas decomposed and released from the nitrate raw material is 0.05% by mass or more when the entire glass batch is 100% by mass. The manufacturing method of the borosilicate glass of Claim 1 or 2.
  4.  ケイ酸塩化合物原料として、ソーダ長石(NaAlSi)及び/又はカリ長石(KAlSi)を使用することを特徴とする請求項1乃至3の何れかに記載のホウケイ酸ガラスの製造方法。 The borosilicate glass according to any one of claims 1 to 3 , wherein soda feldspar (NaAlSi 3 O 8 ) and / or potash feldspar (KAlSi 3 O 8 ) is used as a silicate compound raw material. Method.
  5.  ガラス組成中のFeの含有量が0.03質量%未満となるホウケイ酸ガラスが得られるように、ガラスバッチを調製することを特徴とする請求項1乃至4の何れかに記載のホウケイ酸ガラスの製造方法。 The glass batch is prepared so that a borosilicate glass in which the content of Fe 2 O 3 in the glass composition is less than 0.03% by mass is obtained. A method for producing borosilicate glass.
  6.  ガラス組成として、質量%で、SiO 70~76.5%、Al 6.3~11%、B 3~12%、LiO 0~1%、NaO 3~8.5%、KO 0~5%、MgO+CaO 0~5%未満、Fe 0~0.03%未満を含有するホウケイ酸ガラスが得られるように、ガラスバッチを調製することを特徴とする請求項1乃至5の何れかに記載のホウケイ酸ガラスの製造方法。 As a glass composition, SiO 2 70 to 76.5%, Al 2 O 3 6.3 to 11%, B 2 O 3 3 to 12%, Li 2 O 0 to 1%, Na 2 O 3 to 3% by mass Preparing a glass batch so as to obtain a borosilicate glass containing 8.5%, K 2 O 0-5%, MgO + CaO 0-5%, Fe 2 O 3 0-0.03%. A method for producing a borosilicate glass according to any one of claims 1 to 5.
  7.  溶融ガラスを管状に成形することを特徴とする請求項1乃至6の何れかに記載のホウケイ酸ガラスの製造方法。 The method for producing a borosilicate glass according to any one of claims 1 to 6, wherein the molten glass is formed into a tubular shape.
  8.  溶融ガラスを管状に成形した後に、医薬品用容器に熱加工することを特徴とする請求項1乃至7の何れかに記載のホウケイ酸ガラスの製造方法。 The method for producing borosilicate glass according to any one of claims 1 to 7, wherein the molten glass is formed into a tubular shape and then thermally processed into a pharmaceutical container.
PCT/JP2016/088174 2015-12-24 2016-12-21 Production method for borosilicate glass WO2017110906A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017558204A JPWO2017110906A1 (en) 2015-12-24 2016-12-21 Method for producing borosilicate glass

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015251394 2015-12-24
JP2015-251394 2015-12-24

Publications (1)

Publication Number Publication Date
WO2017110906A1 true WO2017110906A1 (en) 2017-06-29

Family

ID=59089461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/088174 WO2017110906A1 (en) 2015-12-24 2016-12-21 Production method for borosilicate glass

Country Status (2)

Country Link
JP (1) JPWO2017110906A1 (en)
WO (1) WO2017110906A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019119615A (en) * 2017-12-28 2019-07-22 日本電気硝子株式会社 Manufacturing method of glass
KR102104550B1 (en) * 2019-11-28 2020-04-27 한국지질자원연구원 Method for forming pyrophyllite-based smart glass
JP2022523030A (en) * 2019-01-29 2022-04-21 コーニング インコーポレイテッド A method of reducing the oxidized state of chromium during the treatment of glass compositions

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4386164A (en) * 1981-12-14 1983-05-31 Owens-Illinois, Inc. Barium-free Type I, Class B laboratory soda-alumina-borosilicate glass
JPS59174542A (en) * 1983-03-24 1984-10-03 オ−エンス−イリノイ・インコ−ポレ−テツド Barium-free soda-alumina-borosilicate glass composition for i type b class laboratory
JP2009040675A (en) * 2007-07-18 2009-02-26 Nippon Electric Glass Co Ltd Method for manufacturing silicate glass, mixed raw material for silicate glass melting and glass article for electronic material
CN103130415A (en) * 2011-11-23 2013-06-05 四川天齐矿业有限责任公司 Medical glass with spodumene
JP2014073933A (en) * 2012-10-04 2014-04-24 Nippon Electric Glass Co Ltd Method of manufacturing feldspar raw material
JP2014169209A (en) * 2013-03-05 2014-09-18 Nippon Electric Glass Co Ltd Medicine container and method for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4386164A (en) * 1981-12-14 1983-05-31 Owens-Illinois, Inc. Barium-free Type I, Class B laboratory soda-alumina-borosilicate glass
JPS59174542A (en) * 1983-03-24 1984-10-03 オ−エンス−イリノイ・インコ−ポレ−テツド Barium-free soda-alumina-borosilicate glass composition for i type b class laboratory
JP2009040675A (en) * 2007-07-18 2009-02-26 Nippon Electric Glass Co Ltd Method for manufacturing silicate glass, mixed raw material for silicate glass melting and glass article for electronic material
CN103130415A (en) * 2011-11-23 2013-06-05 四川天齐矿业有限责任公司 Medical glass with spodumene
JP2014073933A (en) * 2012-10-04 2014-04-24 Nippon Electric Glass Co Ltd Method of manufacturing feldspar raw material
JP2014169209A (en) * 2013-03-05 2014-09-18 Nippon Electric Glass Co Ltd Medicine container and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019119615A (en) * 2017-12-28 2019-07-22 日本電気硝子株式会社 Manufacturing method of glass
JP2022523030A (en) * 2019-01-29 2022-04-21 コーニング インコーポレイテッド A method of reducing the oxidized state of chromium during the treatment of glass compositions
KR102104550B1 (en) * 2019-11-28 2020-04-27 한국지질자원연구원 Method for forming pyrophyllite-based smart glass

Also Published As

Publication number Publication date
JPWO2017110906A1 (en) 2018-10-11

Similar Documents

Publication Publication Date Title
TWI391356B (en) Glass substrate for display and display
JP6279657B2 (en) Lithium aluminosilicate glass, β-quartz and / or β-spodumene glass-ceramic, glass and glass-ceramic article, method of obtaining the same
US20110302962A1 (en) Method for producing clear glass or clear drawn glass by utilizing a special refining process
PL201403B1 (en) Method for producing borosilicate glasses
JP7113827B2 (en) Solarization-resistant rare-earth-doped glasses
JP5656772B2 (en) Transparent glass ceramics
KR101178027B1 (en) Production method of glass substrate for liquid crystal display
JP2019108273A (en) Transparent las glass ceramic produced using alternative environmentally acceptable fining agent
WO2017110906A1 (en) Production method for borosilicate glass
JP2000128572A (en) Borosilicate glass and its production
JP2005053711A (en) Lithium oxide-alumina-silicon dioxide crystallized glass and method for producing the same
KR101361248B1 (en) Methods for producing glass compositions
CN114212999A (en) Phosphorus-containing and zirconium-containing borosilicate glass
US9676643B2 (en) Method for producing glasses, glass ceramics and the use of same
US20250002392A1 (en) A glass composition comprising polyhalite and a process for the production thereof
JP5484220B2 (en) Glass substrate for display device and display device
EP3004006A1 (en) Glass ceramics having low rhodium levels
CN105916821B (en) Method for producing silicate glass, and silica raw material for silicate glass
US3545952A (en) Green glass manufacture
JP2004075498A (en) Oxide-based glass and its manufacturing method
Jonson et al. Devitrification and dilatometric properties of low T g unleaded silicate glasses
JP2017105647A (en) Manufacturing method of borosilicate glass
JPS63103842A (en) Glass ceramic product, manufacture and thermal crystalline glass
JPH0474723A (en) Production of multi component glass

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16878793

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017558204

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16878793

Country of ref document: EP

Kind code of ref document: A1