WO2017110898A1 - Composite semipermeable membrane - Google Patents

Composite semipermeable membrane Download PDF

Info

Publication number
WO2017110898A1
WO2017110898A1 PCT/JP2016/088153 JP2016088153W WO2017110898A1 WO 2017110898 A1 WO2017110898 A1 WO 2017110898A1 JP 2016088153 W JP2016088153 W JP 2016088153W WO 2017110898 A1 WO2017110898 A1 WO 2017110898A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite semipermeable
semipermeable membrane
membrane
functional layer
separation functional
Prior art date
Application number
PCT/JP2016/088153
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 一樹
佐々木 崇夫
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2017504837A priority Critical patent/JPWO2017110898A1/en
Priority to CN201680075419.0A priority patent/CN108430612B/en
Publication of WO2017110898A1 publication Critical patent/WO2017110898A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1214Chemically bonded layers, e.g. cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/82Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74 characterised by the presence of specified groups, e.g. introduced by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/32Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids from aromatic diamines and aromatic dicarboxylic acids with both amino and carboxylic groups aromatically bound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the present invention relates to a composite semipermeable membrane useful for selective separation of a liquid mixture, and relates to a composite semipermeable membrane having high oxidation resistance, acid resistance and alkali resistance.
  • Membranes used in membrane separation methods include microfiltration membranes, ultrafiltration membranes, nanofiltration membranes, and reverse osmosis membranes. These membranes can be used for beverages such as seawater, brine, and water containing harmful substances. It is used to obtain water, to manufacture industrial ultrapure water, to treat wastewater, to recover valuable materials.
  • Patent Documents 5 and 6 disclose a method in which a persulfate is brought into contact with a composite semipermeable membrane.
  • an object of the present invention is to provide a composite semipermeable membrane that is excellent in acid resistance and alkali resistance, in addition to oxidation resistance, having little change in membrane performance even by chemical cleaning.
  • the composite semipermeable membrane of the present invention has the following configurations [1] to [6].
  • [1] A composite semipermeable membrane comprising a support membrane and a separation functional layer provided on the support membrane, wherein the separation functional layer comprises a polyfunctional aromatic amine and a polyfunctional aromatic carboxylic acid
  • the total number of nitrogen atoms in the aromatic polyamide is B
  • a and B are analyzed by X-ray photoelectron spectroscopy (XPS), X-rays are irradiated from one surface of the separation functional layer.
  • XPS X-ray photoelectron spectroscopy
  • CD is 0.010 or more
  • the separation function layer A composite semipermeable membrane in which the other surface is in contact with the support membrane.
  • a composite semipermeable membrane having high oxidation resistance, acid resistance, and alkali resistance that is, a separation membrane
  • the composite semipermeable membrane of the present invention can be suitably used particularly for seawater desalination.
  • the support membrane includes a substrate and a porous support layer.
  • the present invention is not limited to this configuration.
  • Substrates of the substrate include polyester polymers, polyamide polymers, polyolefin polymers, and mixtures and copolymers thereof. Among them, a polyester polymer fabric having high mechanical and thermal stability is particularly preferable.
  • a long fiber nonwoven fabric, a short fiber nonwoven fabric, or a woven or knitted fabric can be preferably used.
  • the long-fiber nonwoven fabric refers to a nonwoven fabric having an average fiber length of 300 mm or more and an average fiber diameter of 3 to 30 ⁇ m.
  • the substrate preferably has an air flow rate of 0.5 cc / cm 2 / sec or more and 5.0 cc / cm 2 / sec or less.
  • the air flow rate of the base material is within the above range, the polymer solution forming the porous support layer can be easily impregnated into the base material, so that the adhesion between the base material and the porous support layer is improved.
  • the physical stability of the porous support membrane to be formed can be enhanced.
  • the thickness of the substrate is preferably in the range of 10 to 200 ⁇ m, more preferably in the range of 30 to 120 ⁇ m.
  • the thickness means an average value.
  • the average value represents an arithmetic average value. Specifically, the thickness is obtained by calculating an average value of thicknesses at 20 points measured at intervals of 20 ⁇ m in a direction orthogonal to the thickness direction (film surface direction) by cross-sectional observation.
  • the porous support layer is intended to give strength to the separation functional layer that has substantially no separation performance such as ions and substantially has separation performance.
  • the size and distribution of the pores of the porous support layer are not particularly limited.For example, uniform and fine pores, or gradually having fine pores from the surface on the side where the separation functional layer is formed to the other surface, and A porous support layer having a fine pore size of 0.1 nm or more and 100 nm or less on the surface on the side where the separation functional layer is formed is preferred, but the material used and its shape are not particularly limited.
  • the material for the porous support layer examples include, for example, polysulfone, polyethersulfone, polyamide, polyester, cellulosic polymer, vinyl polymer, polyphenylene sulfide, polyphenylene sulfide sulfone, polyphenylene sulfone, polyphenylene oxide, homopolymer or copolymer alone or Can be blended and used.
  • cellulose acetate and cellulose nitrate can be used as the cellulose polymer
  • polyethylene, polypropylene, polyvinyl chloride, polyacrylonitrile and the like can be used as the vinyl polymer.
  • homopolymers or copolymers such as polysulfone, polyamide, polyester, cellulose acetate, cellulose nitrate, polyvinyl chloride, polyacrylonitrile, polyphenylene sulfide, and polyphenylene sulfide sulfone are preferable. More preferred is cellulose acetate, polysulfone, polyphenylene sulfide sulfone, or polyphenylene sulfone.
  • polysulfone is highly stable chemically, mechanically and thermally, and is easy to mold. Can be used generally.
  • polysulfone composed of repeating units represented by the following chemical formula because the pore diameter of the porous support layer can be easily controlled and the dimensional stability is high.
  • n the number of repeating units.
  • the polysulfone preferably has a weight average molecular weight (Mw) of 10,000 or more and 200,000 or less when measured by gel permeation chromatography (GPC) using N-methylpyrrolidone as a solvent and polystyrene as a standard substance. 15000 or more and 100000 or less.
  • Mw weight average molecular weight
  • GPC gel permeation chromatography
  • Mw is 10,000 or more, mechanical strength and heat resistance preferable as a porous support layer can be obtained.
  • Mw is 200000 or less, the viscosity of the solution falls within an appropriate range, and good moldability can be realized.
  • a solution of the above polysulfone in N, N-dimethylformamide (hereinafter referred to as DMF) is cast on a densely woven polyester cloth or non-woven fabric as a base material to a certain thickness,
  • DMF N, N-dimethylformamide
  • a porous support layer having most of the surface with fine pores having a diameter of 10 nm or less can be obtained.
  • the porous support layer only needs to be formed on at least one of the two surfaces of the substrate, and can be arbitrarily selected depending on the desired film thickness and application of the composite semipermeable membrane.
  • the thickness of the substrate and the porous support layer affects the strength of the composite semipermeable membrane and the packing density when it is used as an element.
  • the total thickness of the base material and the porous support layer is preferably 30 ⁇ m or more and 300 ⁇ m or less, and more preferably 100 ⁇ m or more and 220 ⁇ m or less.
  • the thickness of the porous support layer is preferably 20 ⁇ m or more and 100 ⁇ m or less.
  • the separation functional layer contains an aromatic polyamide.
  • polyamide means “aromatic polyamide”.
  • the content of polyamide in the separation functional layer is preferably 80% by weight or more, and more preferably 90% by weight or more. Note that the separation functional layer may be formed substantially only of polyamide.
  • Polyamide is a polymer of a polyfunctional aromatic amine and a polyfunctional aromatic carboxylic acid derivative, and can be formed by interfacial polycondensation of a polyfunctional aromatic amine and a polyfunctional aromatic carboxylic acid derivative.
  • the polyfunctional aromatic amine refers to an amine having at least two primary and / or secondary amino groups in one molecule.
  • the polyfunctional aromatic amine for example, phenylenediamine, xylylenediamine, 1,3,5-triamine having two amino groups bonded to the benzene ring in any of the ortho, meta, and para positions.
  • Aromatic polyfunctional amines such as aminobenzene, 1,2,4-triaminobenzene, and 3,5-diaminobenzoic acid can be mentioned.
  • a polyfunctional aromatic amine having 2 to 4 primary and / or secondary amino groups in one molecule is preferable.
  • polyfunctional aromatic amines As such polyfunctional aromatic amines, m-phenylenediamine, p-phenylenediamine, and 1,3,5-triaminobenzene are preferably used. Among these, m-phenylenediamine (hereinafter referred to as m-PDA) is more preferred from the standpoint of availability and ease of handling. These polyfunctional aromatic amines may be used alone or in combination of two or more.
  • the polyfunctional aromatic carboxylic acid derivative refers to an aromatic acid halide having at least two carbonyl halide groups in one molecule.
  • multifunctional aromatic carboxylic acid derivatives include trimethic acid chloride for trifunctional acid halides, biphenyl dicarboxylic acid dichloride, azobenzene dicarboxylic acid dichloride, terephthalic acid chloride, isophthalic acid chloride, naphthalene dicarboxylic acid for difunctional acid halides. Mention may be made of aromatic bifunctional acid halides such as acid chlorides.
  • the polyfunctional aromatic carboxylic acid derivative is preferably a polyfunctional carboxylic acid chloride, and considering the selective separation property and heat resistance of the membrane,
  • the polyfunctional aromatic acid chloride having 2 to 4 carbonyl chloride groups is preferable. Among them, it is more preferable to use trimesic acid chloride from the viewpoint of easy availability and easy handling.
  • These polyfunctional aromatic carboxylic acid derivatives may be used alone or in combination of two or more.
  • An aromatic polyamide has at least one nitro group as a functional group bonded to an aromatic ring.
  • the nitro group of the aromatic polyamide is preferably an aromatic ring terminal group derived from a polyfunctional aromatic amine.
  • the aromatic polyamide has at least one nitro group, the oxidation resistance and acid resistance of the aromatic polyamide are improved.
  • a method for giving a nitro group to an aromatic polyamide is that the polyfunctional aromatic amine of the monomer constituting the aromatic polyamide or the polyfunctional aromatic carboxylic acid itself has a nitro group.
  • a method of adding a chemical action may be used, a method of adding a chemical action to an aromatic polyamide later is preferable from the viewpoint of availability of monomers and ease of handling.
  • Examples of the method of adding a chemical action include an oxidation treatment of a terminal amino group of an aromatic polyamide.
  • the separation function When the number of nitrogen atoms derived from the nitro group in the aromatic polyamide is A and the total number of nitrogen atoms in the aromatic polyamide is B, when A and B are measured by X-ray photoelectron spectroscopy (XPS), the separation function The A / B values measured from one side of the layer and from the other side are different. The larger the A / B on one side, the better the oxidation resistance and acid resistance, and the smaller the A / B on the other side, the higher order structure of the polyamide is maintained, so that the alkali resistance is improved.
  • XPS X-ray photoelectron spectroscopy
  • the inventors have realized that a film excellent in all of oxidation resistance, acid resistance, and alkali resistance can be realized when the difference in A / B between one surface and the other surface of the separation functional layer is 0.010 or more. I found it. That is, when A / B when X-rays are irradiated from one surface of the separation functional layer is C and A / B when X-rays are irradiated from the other surface of the separation functional layer is D, CD It is preferable to satisfy the relationship of ⁇ 0.010.
  • the difference (C ⁇ D) is more preferably 0.030 or more.
  • the difference (C ⁇ D) is preferably 0.20 or less.
  • one side is the side that forms the surface of the composite semipermeable membrane, the side that supplies the raw water of the separation functional layer, and the other side is the side that is in contact with the support membrane. , Also called “front side” and “back side” on the subject.
  • the ratio (A / B) of the nitrogen atom number A derived from the nitro group and the total nitrogen atom number B can be obtained by X-ray photoelectron spectroscopy (XPS) analysis of the polyamide.
  • XPS X-ray photoelectron spectroscopy
  • a and B on one side (surface) of the separation functional layer can be measured by irradiating X-rays from the side of the separation functional layer where raw water is supplied.
  • a and B on the other side (back side) of the separation functional layer are peeled off from the composite semipermeable membrane and placed on a substrate wetted with an alcohol such as ethanol so that the surface of the separation functional layer is in contact with dichloromethane. It can measure by removing a porous support layer with organic solvents, such as, and irradiating X-rays in the state where the back surface of a separation functional layer becomes an upper side.
  • the substrate used at this time is not particularly limited, and examples thereof include a silicone resin and a silicon wafer.
  • the thickness of the separation functional layer is usually in the range of 0.01 to 1 ⁇ m, preferably in the range of 0.1 to 0.5 ⁇ m, in order to obtain sufficient separation performance and permeated water amount.
  • the polyamide which is the skeleton of the separation functional layer in the composite semipermeable membrane is, for example, an aqueous solution containing the above-mentioned polyfunctional aromatic amine and an organic material immiscible with water containing the polyfunctional aromatic carboxylic acid derivative. It is formed by performing interfacial polycondensation on the surface of the support membrane using a solvent solution (or on the surface of the porous support layer if the support membrane includes a substrate and a porous support layer).
  • the concentration of the polyfunctional aromatic amine in the polyfunctional aromatic amine aqueous solution is preferably in the range of 0.1 to 20% by weight, more preferably in the range of 0.5 to 15% by weight. In this range, sufficient salt removal performance and water permeability can be obtained.
  • a surfactant, organic solvent, alkaline compound, antioxidant, etc. May be included.
  • the surfactant has the effect of improving the wettability of the support membrane surface and reducing the interfacial tension between the aqueous amine solution and the nonpolar solvent.
  • the organic solvent may act as a catalyst for the interfacial polycondensation reaction, and when added, the interfacial polycondensation reaction may be efficiently performed.
  • the concentration of the polyfunctional aromatic carboxylic acid derivative in the organic solvent solution is preferably in the range of 0.01 to 10% by weight, and more preferably in the range of 0.02 to 2.0% by weight.
  • a sufficient reaction rate can be obtained by setting the concentration of the polyfunctional aromatic carboxylic acid derivative to 0.01% by weight or more, and the occurrence of side reactions can be suppressed by setting the concentration to 10% by weight or less. It is. Further, it is more preferable to include an acylation catalyst such as DMF in the organic solvent solution, since interfacial polycondensation is promoted.
  • the organic solvent is immiscible with water and dissolves the polyfunctional aromatic carboxylic acid derivative and does not break the porous support membrane.
  • the polyfunctional aromatic amine compound and the polyfunctional aromatic carboxylic acid are desirable. Any material that is inert to the acid derivative may be used. Preferable examples include hydrocarbon compounds such as n-hexane, n-octane, isooctane and n-decane.
  • the above-mentioned polyfunctional aromatic amine aqueous solution is brought into contact with the support membrane.
  • the contact is preferably performed uniformly and continuously on the support membrane surface.
  • Specific examples include a method of coating a polyfunctional aromatic amine aqueous solution on a support membrane and a method of immersing the support membrane in a polyfunctional aromatic amine aqueous solution.
  • the contact time between the support membrane and the polyfunctional aromatic amine aqueous solution is preferably in the range of 1 to 10 minutes, and more preferably in the range of 1 to 3 minutes.
  • the solution After the polyfunctional aromatic amine aqueous solution is brought into contact with the support membrane, the solution is sufficiently drained so that no droplets remain on the membrane. By sufficiently draining the liquid, it is possible to prevent the remaining portion of the liquid droplet from becoming a film defect after the film is formed and deteriorating the film performance.
  • a method for draining for example, as described in Japanese Patent Application Laid-Open No. 2-78428, the support film after contact with the polyfunctional aromatic amine aqueous solution is vertically gripped to remove excess aqueous solution.
  • the method of making it flow down the method of blowing off air currents, such as nitrogen from an air nozzle, and forcibly draining can be used.
  • the membrane surface after draining, the membrane surface can be dried to partially remove water from the aqueous solution.
  • the organic solvent solution containing the polyfunctional aromatic carboxylic acid derivative is brought into contact with the polyfunctional aromatic amine aqueous solution phase thus obtained, and the skeleton of the crosslinked polyamide separation functional layer is formed by interfacial polycondensation.
  • the method for contacting the organic solvent solution containing the polyfunctional aromatic carboxylic acid derivative with the polyfunctional aromatic amine aqueous solution phase may be the same as the method for coating the support film with the polyfunctional aromatic amine aqueous solution.
  • the support membrane in contact with the organic solvent solution of the polyfunctional aromatic acid halide may be heated.
  • the temperature for the heat treatment is 50 ° C. or higher and 180 ° C. or lower, preferably 60 ° C. or higher and 160 ° C. or lower.
  • the heat treatment time is preferably 5 seconds or more and 180 seconds or less. The reaction promoting effect can be obtained by setting it to 5 seconds or longer, and the solvent can be prevented from completely volatilizing by setting it to 180 seconds or shorter.
  • the excess solvent is liquidized. Cut it off.
  • a method for draining for example, a method in which a film is held in a vertical direction and excess organic solvent is allowed to flow down and removed can be used.
  • the holding time in the vertical direction is preferably between 1 and 5 minutes, more preferably between 1 and 3 minutes. If it is too short, the separation functional layer will not be completely formed, and if it is too long, the organic solvent will be overdried and defects will easily occur and performance will be deteriorated.
  • the composite semipermeable membrane obtained by the above method is subjected to a hydrothermal treatment step in the range of 40 to 100 ° C., preferably in the range of 60 to 100 ° C. for 1 to 10 minutes, more preferably 2 to 8 minutes.
  • a hydrothermal treatment step in the range of 40 to 100 ° C., preferably in the range of 60 to 100 ° C. for 1 to 10 minutes, more preferably 2 to 8 minutes.
  • An oxidation reaction is used as a method for converting the terminal amino group to a nitro group.
  • a general oxidizing agent such as a water-soluble peroxide can be used for the oxidation reaction, but the oxidizing agent is preferably a persulfate compound from the viewpoint of reactivity with the aromatic polyamide and ease of handling. More preferably, it is potassium peroxymonosulfate.
  • the reaction means of the oxidizing agent and polyamide has a high introduction rate of nitro groups on the surface of the separation functional layer, and in order to have a distribution in the depth direction, for example, an aqueous solution of an oxidizing agent is applied to a composite semipermeable membrane of polyamide.
  • a method of covering the film with the film and a method of standing still or a method of applying an aqueous solution of an oxidizing agent by spraying are preferable.
  • the concentration of the oxidizing agent is preferably 0.1 to 10% by weight, more preferably 0.5 to 3% by weight.
  • the pH of the oxidizing agent aqueous solution is not particularly limited as long as the oxidizing power of the oxidizing agent can be sufficiently exhibited, but is preferably in the range of 1.5 to 7.0.
  • the contact time between the aqueous oxidizing agent solution and the polyamide is preferably from 30 seconds to 20 minutes, more preferably from 1 minute to 10 minutes, in order to increase the surface nitro groups and keep the nitro groups on the back surface in contact with the support film.
  • the contact temperature between the oxidizing agent aqueous solution and the polyamide is preferably 10 ° C to 90 ° C, more preferably 40 ° C to 60 ° C.
  • the polyamide composite membrane is brought into contact with the reducing agent.
  • the reducing agent is not particularly limited as long as it causes an oxidation-reduction reaction with the oxidizing agent to be used, but it is preferable to use any one of sodium bisulfite, sodium sulfite and sodium thiosulfate from the viewpoint of availability and handling. . They are preferably used as 0.01 to 1% by weight aqueous solutions.
  • the contact time with the reducing agent may be such that the oxidation reaction is stopped and the structure of the polyamide is not changed, and an immersion time of 30 seconds to 20 minutes is usually preferable.
  • the composite semipermeable membrane of the present invention formed in this way has a large number of pores together with a raw water channel material such as a plastic net, a permeate channel material such as tricot, and a film for increasing pressure resistance if necessary. Is wound around a cylindrical water collecting pipe and is suitably used as a spiral composite semipermeable membrane element. Furthermore, a composite semipermeable membrane module in which these elements are connected in series or in parallel and accommodated in a pressure vessel can be obtained.
  • the above-described composite semipermeable membrane, its elements, and modules can be combined with a pump for supplying raw water to them, a device for pretreating the raw water, and the like to constitute a fluid separation device.
  • a separation device By using this separation device, raw water can be separated into permeated water such as drinking water and concentrated water that has not permeated through the membrane, and water suitable for the purpose can be obtained.
  • the operating pressure at that time is preferably 1.0 MPa or more and 10 MPa or less.
  • Examples of the raw water treated by the composite semipermeable membrane according to the present invention include liquid mixtures containing 500 mg / L to 100 g / L TDS (Total Dissolved Solids) such as seawater, brine, and wastewater.
  • TDS Total Dissolved Solids
  • the solution filtered with a 0.45 micron filter can be calculated from the weight of the residue by evaporating at a temperature of 39.5 to 40.5 ° C, but more simply converted from practical salt (S) To do.
  • the composite semipermeable membrane of the present invention is characterized by having high oxidation resistance and acid resistance.
  • the oxidation resistance index for example, the pH is in the vicinity of neutrality, more specifically, pH 6.0-8. It is appropriate to use the resistance to a sodium hypochlorite aqueous solution adjusted to 0.0 as an index. This is because free chlorine generated from hypochlorous acid is a typical oxidizing substance contained in the raw water described above.
  • the indexes of acid resistance and alkali resistance it is appropriate to use the resistance to a pH 1 sulfuric acid aqueous solution and a pH 13 sodium hydroxide aqueous solution, respectively.
  • the conditions of pH 1 and pH 13 are conditions stronger than the pH during acid washing and alkali washing in membrane filtration operation. Therefore, if resistance to pH 1 sulfuric acid aqueous solution and pH 13 sodium hydroxide aqueous solution is demonstrated, acid washing and alkali washing are performed. This is because it is ensured that the film is hardly deteriorated even if it is performed a plurality of times.
  • Ratio A / B of the number of nitrogen atoms derived from nitro groups and the total number of nitrogen atoms in aromatic polyamide The number of nitrogen atoms derived from the nitro group (A) and the total number of nitrogen atoms (B) on one surface (front surface) and the other surface (back surface) of the separation functional layer of the composite semipermeable membrane in Comparative Examples and Examples are It calculated from the measurement result by a line photoelectron spectroscopy (XPS).
  • N1s peak obtained by XPS is attributed to the inner electron of the nitrogen atom.
  • the N1s peak was considered to be composed of a component derived from N—C and a component derived from NOx (x ⁇ 2), the N1s peak was divided into two components. A component derived from N—C appears in the vicinity of 400 eV, and a component derived from NO x (x ⁇ 2) appears in the vicinity of 406 eV. The peak area ratio of each component was calculated by rounding off the first decimal place.
  • a / B was determined by dividing the peak area ratio derived from NOx (x ⁇ 2) groups by the peak area ratio derived from N—C. In addition, if it was 0.1% or less as a result of peak division, it was set as below the detection limit.
  • Surfaces A and B were analyzed by irradiating X-rays from the raw water supply side of the composite semipermeable membrane. The surface A / B was determined from the obtained results.
  • Backside A and B were analyzed as follows.
  • the base material is peeled off from the composite semipermeable membrane and placed on a 2 cm square silicon wafer on which one drop of ethanol is placed so that the surface of the separation functional layer is in contact with it, and dichloromethane is allowed to flow through the porous support layer in the dichloromethane solution.
  • the elution of the polymer to form was repeated until it could not be detected by thin layer chromatography.
  • a and B on the back surface of the separation functional layer were calculated by irradiating X-rays from the upper side of the sample thus obtained.
  • a / B on the back surface was determined from the obtained results. Then, assuming that A / B on the front surface is C and A / B on the back surface is D, the difference between A / B of each surface, that is, CD is calculated.
  • Ratio E / B of total nitrogen atom number B to total oxygen atom number E in aromatic polyamide Measurement by X-ray photoelectron spectroscopy (XPS) is performed by irradiating X-rays under the same conditions as described in (1) from one surface (surface) of the separation functional layer of the composite semipermeable membrane in Comparative Examples and Examples. From the results, the total number of nitrogen atoms B and the total number of oxygen atoms E were calculated. E / B was calculated based on the intensity ratio of the N1s peak and O1s peak obtained by XPS.
  • XPS X-ray photoelectron spectroscopy
  • Membrane permeation flux (m 3 / m 2 / day) is calculated by converting the permeate flow rate of the supplied water (seawater) to the permeation rate per cubic meter of membrane surface per day (cubic meter). Expressed.
  • Oxidation resistance test The composite semipermeable membrane was immersed in a 100 mg / L sodium hypochlorite aqueous solution adjusted to pH 6.5 in an atmosphere at 25 ° C for 20 hours. Then, it calculated
  • Examples 1 and 2 The porous support membrane obtained in Reference Example 1 was immersed in a 3% by weight aqueous solution of m-phenylenediamine (m-PDA) for 2 minutes, the support membrane was slowly pulled up in the vertical direction, and nitrogen was blown from an air nozzle. After removing excess aqueous solution from the surface of the support membrane, 25 ° C. Isoper M (manufactured by ExxonMobil) containing 0.165% by weight of trimesic acid chloride (TMC) was applied so that the surface was completely wetted, and the surface was allowed to stand still for 1 minute. After placing, the composite semipermeable membrane was obtained by making the membrane vertical and draining and removing excess solution.
  • m-PDA m-phenylenediamine
  • the difference (CD) between the front and back surfaces of the separation functional layer (CD) was calculated according to the method of (1) above, and the entire separation functional layer according to the method of (2) above was calculated.
  • the ratio E / B of the number of nitrogen atoms B and the total number of oxygen atoms E was calculated.
  • the membrane permeation flux and the boron removal rate of the obtained composite semipermeable membrane were measured according to the methods (3) and (4) above, and the composite semipermeable membrane was measured according to the methods (5) to (7) above. Oxidation resistance, acid resistance, and alkali resistance tests of the permeable membrane were performed, and the boron removal rate was measured. The results are shown in Table 2.
  • Examples 3 to 5 The porous support membrane obtained in Reference Example 1 was immersed in a 3% by weight aqueous solution of m-phenylenediamine (m-PDA) for 2 minutes, the support membrane was slowly pulled up in the vertical direction, and nitrogen was blown from an air nozzle. After removing the excess aqueous solution from the surface of the support membrane, 25 ° C. isooctane containing 0.165% by weight of trimesic acid chloride (TMC) was applied so that the surface was completely wetted and allowed to stand for 10 seconds. The composite semipermeable membrane was obtained by leaving still in an oven for 15 seconds.
  • m-PDA m-phenylenediamine
  • Example 3 An aqueous solution of potassium peroxymonosulfate having a predetermined pH 3 concentration (Example 3: 3 wt%, Examples 4 and 5: 1 wt%) was applied to the membrane surface of the obtained composite semipermeable membrane at a predetermined temperature (Example 3). : 90 ° C., Example 4 and Example 5: 60 ° C.) and applied at a rate of 0.33 L / m 2 , and a film is placed over the oven at the same temperature as the application (Example 3 and Example 4). : 5 minutes, Example 5: 2 minutes) and allowed to stand (see Table 1).
  • the film was immersed in a 0.1 wt% aqueous sodium hydrogen sulfite solution for 10 minutes, and then washed with water to obtain a composite semipermeable membrane.
  • the CD and E / B of the separation functional layer were calculated, the membrane permeation flux and boron removal rate of the obtained composite semipermeable membrane were measured, and the composite semipermeable membrane was further measured.
  • the film was subjected to oxidation resistance, acid resistance, and alkali resistance tests, and the boron removal rate was measured. The results are shown in Table 2.
  • Example 6 The porous support membrane obtained in Reference Example 1 was immersed in a 3% by weight aqueous solution of m-phenylenediamine (m-PDA) for 2 minutes, the support membrane was slowly pulled up in the vertical direction, and nitrogen was blown from an air nozzle. After removing the excess aqueous solution from the surface of the supporting membrane, 25 ° C. decane containing 0.165% by weight of trimesic acid chloride (TMC) was applied so that the surface was completely wetted, and allowed to stand for 10 seconds. The composite semipermeable membrane was obtained by leaving still in an oven for 15 seconds.
  • m-PDA m-phenylenediamine
  • the obtained composite semipermeable membrane was mixed with a 1 wt% aqueous solution of potassium peroxymonosulfate having a predetermined pH (Example 6: pH 6, Example 7 and Example 8: pH 2) at a predetermined temperature (Example 6 and Example 7: 60 ° C., Example 8: 40 ° C.) is applied to the film surface at a rate of 0.33 L / m 2 , and the film is placed on the oven at the same temperature as the application for a predetermined time (Examples 6 and 7: 2 minutes, Example 8: 5 minutes) was allowed to stand (see Table 1).
  • the film was immersed in a 0.1 wt% aqueous sodium hydrogen sulfite solution for 10 minutes, and then washed with water to obtain a composite semipermeable membrane.
  • the CD and E / B of the separation functional layer were calculated, the membrane permeation flux and boron removal rate of the obtained composite semipermeable membrane were measured, and the composite semipermeable membrane was further measured.
  • the film was subjected to oxidation resistance, acid resistance, and alkali resistance tests, and the boron removal rate was measured. The results are shown in Table 2.
  • the obtained composite semipermeable membrane was immersed in a 1% by weight potassium peroxymonosulfate aqueous solution having a predetermined pH (Comparative Example 1: pH 6, Comparative Example 2: pH 2) at 25 ° C. for 30 minutes (see Table 1). Then, after being immersed in a 0.1 wt% sodium hydrogen sulfite aqueous solution for 10 minutes, it was washed away with water to obtain a composite semipermeable membrane.
  • the CD and E / B of the separation functional layer were calculated, the membrane permeation flux and boron removal rate of the obtained composite semipermeable membrane were measured, and the oxidation resistance Then, acid resistance and alkali resistance tests were carried out, and the boron removal rate was measured.
  • the results are shown in Table 2.
  • a 1% by weight aqueous solution of peracetic acid was applied to the surface of the composite semipermeable membrane at a rate of 0.33 L / m 2 at 25 ° C., covered with a film, and left in an oven at 25 ° C. for 60 minutes. Thereafter, the film was immersed in a 0.1 wt% aqueous sodium hydrogen sulfite solution for 10 minutes, and then washed with water to obtain a composite semipermeable membrane.
  • the CD and E / B of the separation functional layer were calculated, the membrane permeation flux and boron removal rate of the obtained composite semipermeable membrane were measured, and the composite semipermeable membrane was further measured.
  • the film was subjected to oxidation resistance, acid resistance, and alkali resistance tests, and the boron removal rate was measured. The results are shown in Table 2.
  • the obtained composite semipermeable membrane was placed in a 1 wt% potassium peroxymonosulfate aqueous solution having a predetermined pH (Example 4: pH 8, Example 5: pH 6) at 25 ° C. for a predetermined time (Comparative Example 4:30 minutes, Comparative Example 5). : 2 minutes) soaking (see Table 1). Then, after being immersed in a 0.1 wt% sodium hydrogen sulfite aqueous solution for 10 minutes, it was washed away with water to obtain a composite semipermeable membrane.
  • the CD and E / B of the separation functional layer were calculated, the membrane permeation flux and boron removal rate of the obtained composite semipermeable membrane were measured, and the oxidation resistance Then, acid resistance and alkali resistance tests were carried out, and the boron removal rate was measured.
  • the results are shown in Table 2.
  • the obtained composite semipermeable membrane was immersed in a 1 wt% potassium peroxymonosulfate aqueous solution having a pH of 3 at 60 ° C. for 2 minutes (see Table 1). Thereafter, the film was immersed in a 0.1 wt% aqueous sodium hydrogen sulfite solution for 10 minutes, and then washed with water to obtain a composite semipermeable membrane.
  • the CD and E / B of the separation functional layer were calculated, the membrane permeation flux and boron removal rate of the obtained composite semipermeable membrane were measured, and the composite semipermeable membrane was further measured.
  • the film was subjected to oxidation resistance, acid resistance, and alkali resistance tests, and the boron removal rate was measured. The results are shown in Table 2.
  • CD was 0.010 or more. These composite semipermeable membranes maintain a boron removal rate of 85% or more after a forced deterioration test with chlorine and maintain a boron removal rate of 90% or more after a forced deterioration test with acid or alkali. It was found to have suitable high chemical resistance.
  • the composite semipermeable membrane of the present invention can be particularly suitably used for seawater desalination.

Abstract

A composite semipermeable membrane according to the present invention is provided with a support membrane and a separation function layer. In the membrane, the separation function layer contains an aromatic polyamide; the aromatic polyamide contains a nitro group as a functional group that is bound to an aromatic ring; when the total number, which is represented by A, of nitrogen atoms derived from the nitro group in the aromatic polyamide and the total number, which is represented by B, of nitrogen atoms in the aromatic polyamide are analyzed by X-ray photoelectron spectroscopy, the separation function layer satisfies the formula: C-D ≥ 0.010 wherein C represents an A/B value obtained when X-ray is emitted from one surface of the separation function layer and D represents an A/B value obtained when X-ray is emitted from the other surface of the separation function layer; and the other surface of the separation function layer is in contact with the support membrane.

Description

複合半透膜Composite semipermeable membrane
 本発明は、液状混合物の選択的分離に有用な複合半透膜に関し、高い耐酸化性、耐酸性および耐アルカリ性を有する複合半透膜に関する。 The present invention relates to a composite semipermeable membrane useful for selective separation of a liquid mixture, and relates to a composite semipermeable membrane having high oxidation resistance, acid resistance and alkali resistance.
 混合物の分離に関して、溶媒(例えば水)に溶解した物質(例えば塩類)を除くための技術には様々なものがあるが、近年、省エネルギーおよび省資源のためのプロセスとして膜分離法の利用が拡大している。膜分離法に使用される膜には、精密ろ過膜、限外ろ過膜、ナノろ過膜、逆浸透膜などがあり、これらの膜は、例えば海水、かん水、有害物を含んだ水などから飲料水を得る場合や、工業用超純水の製造、廃水処理、有価物の回収などに用いられている。 Regarding the separation of mixtures, there are various techniques for removing substances (eg, salts) dissolved in a solvent (eg, water), but in recent years, the use of membrane separation methods has expanded as a process for saving energy and resources. is doing. Membranes used in membrane separation methods include microfiltration membranes, ultrafiltration membranes, nanofiltration membranes, and reverse osmosis membranes. These membranes can be used for beverages such as seawater, brine, and water containing harmful substances. It is used to obtain water, to manufacture industrial ultrapure water, to treat wastewater, to recover valuable materials.
 現在市販されている逆浸透膜およびナノろ過膜の大部分は複合半透膜であり、微多孔性支持膜上にゲル層とポリマーを架橋した活性層を有するものと、微多孔性支持膜上でモノマーを重縮合した活性層を有するものとの2種類がある。なかでも、多官能アミンと多官能酸ハロゲン化物との重縮合反応によって得られる架橋ポリアミドからなる分離機能層を微多孔性支持膜上に被覆して得られる複合半透膜(特許文献1~4)は、透過性や選択分離性の高い分離膜として広く用いられている。 The majority of currently marketed reverse osmosis membranes and nanofiltration membranes are composite semipermeable membranes, which have an active layer in which a gel layer and a polymer are cross-linked on a microporous support membrane, and on a microporous support membrane. And having an active layer in which monomers are polycondensed. Among them, a composite semipermeable membrane obtained by coating a separation function layer made of a crosslinked polyamide obtained by polycondensation reaction of a polyfunctional amine and a polyfunctional acid halide on a microporous support membrane (Patent Documents 1 to 4). ) Is widely used as a separation membrane with high permeability and selective separation.
 しかし、複合半透膜を使用し続けると、被処理水中に含まれる遊離塩素のような酸化性物質との接触により、膜の分離性能が低下する問題がある。また使用経過時間とともに膜表面に汚れが付着し、膜の膜透過流束が低下する。そのため、ある期間運転後に酸、アルカリなどによる薬液洗浄が必要となるが、それにより膜の分離性能が低下する問題がある。 However, if the composite semipermeable membrane is continuously used, there is a problem that the separation performance of the membrane deteriorates due to contact with an oxidizing substance such as free chlorine contained in the water to be treated. In addition, dirt adheres to the membrane surface with the elapsed time of use, and the membrane permeation flux of the membrane decreases. Therefore, chemical cleaning with acid, alkali or the like is required after a certain period of operation, but there is a problem that the separation performance of the membrane is lowered.
 したがって、長期間にわたって安定な運転を継続するために、耐酸化性が高く、かつ酸、アルカリなどの薬液洗浄前後での膜性能変化の少ない、すなわち耐酸性が高い複合半透膜の開発が望まれている。 Therefore, in order to continue stable operation over a long period of time, it is hoped to develop a composite semipermeable membrane with high oxidation resistance and little change in membrane performance before and after cleaning with chemicals such as acids and alkalis, that is, high acid resistance. It is rare.
 耐酸化性の向上のための手段として、特許文献5、6には複合半透膜に過硫酸塩を接触させる方法が開示されている。 As means for improving oxidation resistance, Patent Documents 5 and 6 disclose a method in which a persulfate is brought into contact with a composite semipermeable membrane.
日本国特開昭55-147106号公報Japanese Unexamined Patent Publication No. 55-147106 日本国特開昭62-121603号公報Japanese Unexamined Patent Publication No. Sho 62-121603 日本国特開昭63-218208号公報Japanese Unexamined Patent Publication No. Sho 63-218208 日本国特開2001-79372号公報Japanese Unexamined Patent Publication No. 2001-79372 日本国特開2008-100214号公報Japanese Unexamined Patent Publication No. 2008-100214 日本国特開2010-234284号公報Japanese Unexamined Patent Publication No. 2010-234284
 特許文献5、6に開示された膜は、耐酸化性に優れるものであるが、さらにアルカリ薬液に対しても耐久性を備えた膜が望まれている。
 そこで、本発明は耐酸化性に加え、薬液洗浄によっても膜性能変化が少ない、耐酸性、耐アルカリ性にも優れる複合半透膜の提供を目的とする。
Although the films disclosed in Patent Documents 5 and 6 are excellent in oxidation resistance, a film having durability against alkaline chemicals is desired.
Accordingly, an object of the present invention is to provide a composite semipermeable membrane that is excellent in acid resistance and alkali resistance, in addition to oxidation resistance, having little change in membrane performance even by chemical cleaning.
 上記目的を達成するための本発明の複合半透膜は、以下の[1]~[6]の構成をとる。
[1]支持膜と、前記支持膜上に設けられた分離機能層とを備えた複合半透膜であって、前記分離機能層が、多官能性芳香族アミンと多官能性芳香族カルボン酸誘導体との重合物である芳香族ポリアミドを含有し、前記芳香族ポリアミドは、芳香族環に結合した官能基としてニトロ基を有し、前記分離機能層は、前記芳香族ポリアミドにおけるニトロ基由来の窒素原子数をA、前記芳香族ポリアミド中の全窒素原子数をBとし、X線光電子分光法(XPS)によりAとBを分析すると、前記分離機能層の一方の面からX線を照射した際のA/BをC、前記分離機能層の他方の面からX線を照射した際のA/BをDとしたとき、C-Dが0.010以上であり、前記分離機能層の前記他方の面が前記支持膜に接している複合半透膜。
[2]前記X線光電子分光法(XPS)により前記分離機能層の前記一方の面からX線を照射して分析した際、前記ポリアミド中の全酸素原子数をEとしたとき、1.00≦E/B≦1.20を満たす、前記[1]に記載の複合半透膜。
[3]前記C-Dが0.20以下である、前記[1]又は[2]に記載の複合半透膜。
[4]前記C-Dが0.030以上である、前記[1]~[3]のいずれか1つに記載の複合半透膜。
[5]TDS(Total Dissolved Solids)が500mg/L~100g/Lの液状混合物を処理するために用いられる、前記[1]~[4]のいずれか1つに記載の複合半透膜。
[6]前記[1]~[5]のいずれか1つに記載の複合半透膜を備えた複合半透膜エレメント。
In order to achieve the above object, the composite semipermeable membrane of the present invention has the following configurations [1] to [6].
[1] A composite semipermeable membrane comprising a support membrane and a separation functional layer provided on the support membrane, wherein the separation functional layer comprises a polyfunctional aromatic amine and a polyfunctional aromatic carboxylic acid An aromatic polyamide that is a polymer with a derivative, the aromatic polyamide has a nitro group as a functional group bonded to an aromatic ring, and the separation functional layer is derived from a nitro group in the aromatic polyamide. Assuming that the number of nitrogen atoms is A, the total number of nitrogen atoms in the aromatic polyamide is B, and A and B are analyzed by X-ray photoelectron spectroscopy (XPS), X-rays are irradiated from one surface of the separation functional layer. When A / B at the time is C and A / B when X-rays are irradiated from the other surface of the separation function layer is D, CD is 0.010 or more, and the separation function layer A composite semipermeable membrane in which the other surface is in contact with the support membrane.
[2] When the X-ray photoelectron spectroscopy (XPS) is analyzed by irradiating X-rays from the one surface of the separation functional layer, when the total number of oxygen atoms in the polyamide is E, 1.00 The composite semipermeable membrane according to [1], which satisfies ≦ E / B ≦ 1.20.
[3] The composite semipermeable membrane according to [1] or [2], wherein the CD is 0.20 or less.
[4] The composite semipermeable membrane according to any one of [1] to [3], wherein the CD is 0.030 or more.
[5] The composite semipermeable membrane according to any one of [1] to [4], which is used for treating a liquid mixture having a TDS (Total Dissolved Solids) of 500 mg / L to 100 g / L.
[6] A composite semipermeable membrane element comprising the composite semipermeable membrane according to any one of [1] to [5].
 本発明によれば、高い耐酸化性および耐酸性、耐アルカリ性を有する複合半透膜、すなわち分離膜、を得ることができる。本発明の複合半透膜は、特に、海水の脱塩に好適に用いることができる。 According to the present invention, a composite semipermeable membrane having high oxidation resistance, acid resistance, and alkali resistance, that is, a separation membrane can be obtained. The composite semipermeable membrane of the present invention can be suitably used particularly for seawater desalination.
I.複合半透膜
(1)支持膜
  本実施形態では、支持膜は、基材および多孔性支持層を備える。ただし、本発明はこの構成に限定されるものではない。
I. Composite Semipermeable Membrane (1) Support Membrane In this embodiment, the support membrane includes a substrate and a porous support layer. However, the present invention is not limited to this configuration.
(1-1)基材
 基材としては、ポリエステル系重合体、ポリアミド系重合体、ポリオレフィン系重合体、あるいはこれらの混合物や共重合体等が挙げられる。中でも、機械的、熱的に安定性の高いポリエステル系重合体の布帛が特に好ましい。
 布帛の形態としては、長繊維不織布や短繊維不織布、さらには織編物を好ましく用いることができる。ここで、長繊維不織布とは、平均繊維長300mm以上、かつ平均繊維径3~30μmの不織布のことを指す。
(1-1) Substrate Examples of the substrate include polyester polymers, polyamide polymers, polyolefin polymers, and mixtures and copolymers thereof. Among them, a polyester polymer fabric having high mechanical and thermal stability is particularly preferable.
As the form of the fabric, a long fiber nonwoven fabric, a short fiber nonwoven fabric, or a woven or knitted fabric can be preferably used. Here, the long-fiber nonwoven fabric refers to a nonwoven fabric having an average fiber length of 300 mm or more and an average fiber diameter of 3 to 30 μm.
 基材は、通気量が0.5cc/cm/sec以上5.0cc/cm/sec以下であることが好ましい。基材の通気量が上記範囲内にあることにより、多孔性支持層を形成する高分子溶液が基材に含浸しやすくなるため、基材と多孔性支持層との接着性が向上し、得られる多孔性支持膜の物理的安定性を高めることができる。 The substrate preferably has an air flow rate of 0.5 cc / cm 2 / sec or more and 5.0 cc / cm 2 / sec or less. When the air flow rate of the base material is within the above range, the polymer solution forming the porous support layer can be easily impregnated into the base material, so that the adhesion between the base material and the porous support layer is improved. The physical stability of the porous support membrane to be formed can be enhanced.
 基材の厚みは10~200μmの範囲内にあることが好ましく、より好ましくは30~120μmの範囲内である。なお、本書において、特に付記しない限り、厚みとは、平均値を意味する。ここで平均値とは相加平均値を表す。具体的には、厚みは、断面観察で厚み方向に直交する方向(膜の面方向)に20μm間隔で測定した20点の厚みの平均値を算出することで求められる。 The thickness of the substrate is preferably in the range of 10 to 200 μm, more preferably in the range of 30 to 120 μm. In this document, unless otherwise specified, the thickness means an average value. Here, the average value represents an arithmetic average value. Specifically, the thickness is obtained by calculating an average value of thicknesses at 20 points measured at intervals of 20 μm in a direction orthogonal to the thickness direction (film surface direction) by cross-sectional observation.
(1-2)多孔性支持層
 多孔性支持層は、実質的にイオン等の分離性能を有さず、実質的に分離性能を有する分離機能層に強度を与えるためのものである。多孔性支持層の孔のサイズや分布は特に限定されないが、例えば、均一で微細な孔、あるいは分離機能層が形成される側の表面からもう一方の面まで徐々に大きな微細孔をもち、かつ、分離機能層が形成される側の表面で微細孔の大きさが0.1nm以上100nm以下であるような多孔性支持層が好ましいが、使用する材料やその形状は特に限定されない。
(1-2) Porous Support Layer The porous support layer is intended to give strength to the separation functional layer that has substantially no separation performance such as ions and substantially has separation performance. The size and distribution of the pores of the porous support layer are not particularly limited.For example, uniform and fine pores, or gradually having fine pores from the surface on the side where the separation functional layer is formed to the other surface, and A porous support layer having a fine pore size of 0.1 nm or more and 100 nm or less on the surface on the side where the separation functional layer is formed is preferred, but the material used and its shape are not particularly limited.
 多孔性支持層の素材には、例えば、ポリスルホン、ポリエーテルスルホン、ポリアミド、ポリエステル、セルロース系ポリマー、ビニルポリマー、ポリフェニレンスルフィド、ポリフェニレンスルフィドスルホン、ポリフェニレンスルホン、ポリフェニレンオキシドなどのホモポリマーあるいはコポリマーを単独であるいはブレンドして使用することができる。ここでセルロース系ポリマーとしては酢酸セルロース、硝酸セルロースなど、ビニルポリマーとしてはポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリアクリロニトリルなどが使用できる。中でもポリスルホン、ポリアミド、ポリエステル、酢酸セルロース、硝酸セルロース、ポリ塩化ビニル、ポリアクリロニトリル、ポリフェニレンスルフィド、ポリフェニレンスルフィドスルホンなどのホモポリマーまたはコポリマーが好ましい。より好ましくは酢酸セルロース、ポリスルホン、ポリフェニレンスルフィドスルホン、またはポリフェニレンスルホンが挙げられ、さらに、これらの素材の中では化学的、機械的、熱的に安定性が高く、成型が容易であることからポリスルホンが一般的に使用できる。 Examples of the material for the porous support layer include, for example, polysulfone, polyethersulfone, polyamide, polyester, cellulosic polymer, vinyl polymer, polyphenylene sulfide, polyphenylene sulfide sulfone, polyphenylene sulfone, polyphenylene oxide, homopolymer or copolymer alone or Can be blended and used. Here, cellulose acetate and cellulose nitrate can be used as the cellulose polymer, and polyethylene, polypropylene, polyvinyl chloride, polyacrylonitrile and the like can be used as the vinyl polymer. Among them, homopolymers or copolymers such as polysulfone, polyamide, polyester, cellulose acetate, cellulose nitrate, polyvinyl chloride, polyacrylonitrile, polyphenylene sulfide, and polyphenylene sulfide sulfone are preferable. More preferred is cellulose acetate, polysulfone, polyphenylene sulfide sulfone, or polyphenylene sulfone. Among these materials, polysulfone is highly stable chemically, mechanically and thermally, and is easy to mold. Can be used generally.
 具体的には、次の化学式に示す繰り返し単位からなるポリスルホンを用いると、多孔性支持層の孔径が制御しやすく、寸法安定性が高いため好ましい。 Specifically, it is preferable to use polysulfone composed of repeating units represented by the following chemical formula because the pore diameter of the porous support layer can be easily controlled and the dimensional stability is high.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記式中、nは繰り返し単位の繰り返し数を示す。 In the above formula, n represents the number of repeating units.
 ポリスルホンは、ゲルパーミエーションクロマトグラフィー(GPC)でN-メチルピロリドンを溶媒に、ポリスチレンを標準物質として測定した場合の重量平均分子量(Mw)が、10000以上200000以下であることが好ましく、より好ましくは15000以上100000以下である。Mwが10000以上であることで、多孔性支持層として好ましい機械的強度および耐熱性を得ることができる。また、Mwが200000以下であることで、溶液の粘度が適切な範囲となり、良好な成形性を実現することができる。 The polysulfone preferably has a weight average molecular weight (Mw) of 10,000 or more and 200,000 or less when measured by gel permeation chromatography (GPC) using N-methylpyrrolidone as a solvent and polystyrene as a standard substance. 15000 or more and 100000 or less. When Mw is 10,000 or more, mechanical strength and heat resistance preferable as a porous support layer can be obtained. Moreover, when Mw is 200000 or less, the viscosity of the solution falls within an appropriate range, and good moldability can be realized.
 例えば、上記ポリスルホンのN,N-ジメチルホルムアミド(以降、DMFと記載する。)溶液を、基材としての密に織ったポリエステル布あるいは不織布の上に一定の厚さに注型し、それを水中で湿式凝固させることによって、表面の大部分が直径10nm以下の微細な孔を有する多孔性支持層を得ることができる。多孔性支持層は、基材の2つの表面のうちの少なくとも一方の表面に形成されればよく、複合半透膜の所望の膜厚や用途により任意に選ぶことができる。 For example, a solution of the above polysulfone in N, N-dimethylformamide (hereinafter referred to as DMF) is cast on a densely woven polyester cloth or non-woven fabric as a base material to a certain thickness, By wet coagulation with, a porous support layer having most of the surface with fine pores having a diameter of 10 nm or less can be obtained. The porous support layer only needs to be formed on at least one of the two surfaces of the substrate, and can be arbitrarily selected depending on the desired film thickness and application of the composite semipermeable membrane.
 基材と多孔性支持層の厚みは、複合半透膜の強度およびそれをエレメントにしたときの充填密度に影響を与える。十分な機械的強度および充填密度を得るためには、基材と多孔性支持層の厚みの合計が、30μm以上300μm以下であることが好ましく、100μm以上220μm以下であるとより好ましい。また、多孔性支持層の厚みは、20μm以上100μm以下であることが好ましい。 The thickness of the substrate and the porous support layer affects the strength of the composite semipermeable membrane and the packing density when it is used as an element. In order to obtain sufficient mechanical strength and packing density, the total thickness of the base material and the porous support layer is preferably 30 μm or more and 300 μm or less, and more preferably 100 μm or more and 220 μm or less. The thickness of the porous support layer is preferably 20 μm or more and 100 μm or less.
(2)分離機能層
 分離機能層は、芳香族ポリアミドを含有する。本書において、特に断らない限り、「ポリアミド」とは「芳香族ポリアミド」を意味する。分離機能層におけるポリアミドの含有率は80重量%以上であることが好ましく、90重量%以上であることがより好ましい。なお、分離機能層は実質的にポリアミドのみで形成されていてもよい。
(2) Separation functional layer The separation functional layer contains an aromatic polyamide. In this document, unless otherwise specified, “polyamide” means “aromatic polyamide”. The content of polyamide in the separation functional layer is preferably 80% by weight or more, and more preferably 90% by weight or more. Note that the separation functional layer may be formed substantially only of polyamide.
 ポリアミドは多官能性芳香族アミンと多官能性芳香族カルボン酸誘導体の重合物であり、多官能性芳香族アミンと多官能性芳香族カルボン酸誘導体との界面重縮合により形成することができる。ここで、多官能性芳香族アミンまたは多官能性芳香族カルボン酸誘導体の少なくとも一方が3官能以上の化合物を含んでいることが好ましい。 Polyamide is a polymer of a polyfunctional aromatic amine and a polyfunctional aromatic carboxylic acid derivative, and can be formed by interfacial polycondensation of a polyfunctional aromatic amine and a polyfunctional aromatic carboxylic acid derivative. Here, it is preferable that at least one of the polyfunctional aromatic amine or the polyfunctional aromatic carboxylic acid derivative contains a trifunctional or higher functional compound.
 多官能性芳香族アミンとは、一分子中に少なくとも2個の一級および/または二級アミノ基を有するアミンをいう。多官能性芳香族アミンとして、例えば、2個のアミノ基がオルト位やメタ位、パラ位のいずれかの位置関係でベンゼン環に結合したフェニレンジアミン、キシリレンジアミン、1,3,5-トリアミノベンゼン、1,2,4-トリアミノベンゼン、3,5-ジアミノ安息香酸などの芳香族多官能アミンを挙げることができる。中でも、膜の選択分離性や透過性、耐熱性を考慮すると、一分子中に2~4個の一級および/または二級アミノ基を有する多官能性芳香族アミンであることが好ましく、このような多官能性芳香族アミンとしては、m-フェニレンジアミン、p-フェニレンジアミン、1,3,5-トリアミノベンゼンが好適に用いられる。中でも、入手の容易性や取り扱いのしやすさから、m-フェニレンジアミン(以下、m-PDAと記す。)を用いることがより好ましい。これらの多官能性芳香族アミンは、単独で用いても、2種以上を同時に用いてもよい。 The polyfunctional aromatic amine refers to an amine having at least two primary and / or secondary amino groups in one molecule. As the polyfunctional aromatic amine, for example, phenylenediamine, xylylenediamine, 1,3,5-triamine having two amino groups bonded to the benzene ring in any of the ortho, meta, and para positions. Aromatic polyfunctional amines such as aminobenzene, 1,2,4-triaminobenzene, and 3,5-diaminobenzoic acid can be mentioned. Among these, considering the selective separation property, permeability, and heat resistance of the membrane, a polyfunctional aromatic amine having 2 to 4 primary and / or secondary amino groups in one molecule is preferable. As such polyfunctional aromatic amines, m-phenylenediamine, p-phenylenediamine, and 1,3,5-triaminobenzene are preferably used. Among these, m-phenylenediamine (hereinafter referred to as m-PDA) is more preferred from the standpoint of availability and ease of handling. These polyfunctional aromatic amines may be used alone or in combination of two or more.
 多官能性芳香族カルボン酸誘導体とは、一分子中に少なくとも2個のハロゲン化カルボニル基を有する芳香族酸ハロゲン化物をいう。多官能性芳香族カルボン酸誘導体として、例えば、3官能酸ハロゲン化物では、トリメシン酸クロリド、2官能酸ハロゲン化物では、ビフェニルジカルボン酸ジクロリド、アゾベンゼンジカルボン酸ジクロリド、テレフタル酸クロリド、イソフタル酸クロリド、ナフタレンジカルボン酸クロリドなどの芳香族2官能酸ハロゲン化物を挙げることができる。多官能アミンとの反応性を考慮すると、多官能性芳香族カルボン酸誘導体は多官能性カルボン酸塩化物であることが好ましく、また、膜の選択分離性、耐熱性を考慮すると、一分子中に2~4個の塩化カルボニル基を有する多官能芳香族酸塩化物であることが好ましい。中でも、入手の容易性や取り扱いのしやすさの観点から、トリメシン酸クロリドを用いるとより好ましい。これらの多官能性芳香族カルボン酸誘導体は、単独で用いても、2種以上を同時に用いてもよい。 The polyfunctional aromatic carboxylic acid derivative refers to an aromatic acid halide having at least two carbonyl halide groups in one molecule. Examples of multifunctional aromatic carboxylic acid derivatives include trimethic acid chloride for trifunctional acid halides, biphenyl dicarboxylic acid dichloride, azobenzene dicarboxylic acid dichloride, terephthalic acid chloride, isophthalic acid chloride, naphthalene dicarboxylic acid for difunctional acid halides. Mention may be made of aromatic bifunctional acid halides such as acid chlorides. Considering the reactivity with the polyfunctional amine, the polyfunctional aromatic carboxylic acid derivative is preferably a polyfunctional carboxylic acid chloride, and considering the selective separation property and heat resistance of the membrane, The polyfunctional aromatic acid chloride having 2 to 4 carbonyl chloride groups is preferable. Among them, it is more preferable to use trimesic acid chloride from the viewpoint of easy availability and easy handling. These polyfunctional aromatic carboxylic acid derivatives may be used alone or in combination of two or more.
 芳香族ポリアミドは、芳香族環に結合した官能基としてニトロ基を少なくとも1つ有する。芳香族ポリアミドが有するニトロ基は、多官能性芳香族アミン由来の芳香環末端基であることが好ましい。芳香族ポリアミドがニトロ基を少なくとも1つ有することで、芳香族ポリアミドの耐酸化性および耐酸性が向上する。 An aromatic polyamide has at least one nitro group as a functional group bonded to an aromatic ring. The nitro group of the aromatic polyamide is preferably an aromatic ring terminal group derived from a polyfunctional aromatic amine. When the aromatic polyamide has at least one nitro group, the oxidation resistance and acid resistance of the aromatic polyamide are improved.
 芳香族ポリアミドにニトロ基を与える方法は、芳香族ポリアミドを構成するモノマーの多官能性芳香族アミンあるいは多官能性芳香族カルボン酸自体がニトロ基を有していても、芳香族ポリアミドに後から化学的作用を加える方法でもよいが、モノマーの入手のしやすさや取扱の簡便さから芳香族ポリアミドに後から化学的作用を加える方法が好ましい。化学的作用を加える方法としては、例えば、芳香族ポリアミドが有する末端アミノ基の酸化処理が挙げられる。具体的には、水溶性の酸化剤を複合半透膜に接触させることが好ましく、水溶性の酸化剤としては、過酸化水素、過酢酸、過ホウ酸ナトリウム、ペルオキシ一硫酸カリウムなどが挙げられる。 A method for giving a nitro group to an aromatic polyamide is that the polyfunctional aromatic amine of the monomer constituting the aromatic polyamide or the polyfunctional aromatic carboxylic acid itself has a nitro group. Although a method of adding a chemical action may be used, a method of adding a chemical action to an aromatic polyamide later is preferable from the viewpoint of availability of monomers and ease of handling. Examples of the method of adding a chemical action include an oxidation treatment of a terminal amino group of an aromatic polyamide. Specifically, it is preferable to bring a water-soluble oxidant into contact with the composite semipermeable membrane, and examples of the water-soluble oxidant include hydrogen peroxide, peracetic acid, sodium perborate, potassium peroxymonosulfate, and the like. .
 芳香族ポリアミド中のニトロ基由来の窒素原子数をA、芳香族ポリアミド中の全窒素原子数をBとしたとき、X線光電子分光法(XPS)によりA、Bの測定を行うと、分離機能層の一方の面からと他方の面から測定したA/Bの値が異なる。一方の面のA/Bが大きいほど耐酸化性および耐酸性が向上し、他方の面のA/Bが小さいほどポリアミドがもともと有する高次構造が保たれるため、耐アルカリ性が向上する。
 本発明者らは分離機能層の一方の面と他方の面のA/Bの差が0.010以上であることにより、耐酸化性、耐酸性、耐アルカリ性すべてにおいて優れた膜が実現できることを見出した。すなわち、分離機能層の一方の面からX線を照射した際のA/BをC、分離機能層の他方の面からX線を照射した際のA/BをDとしたとき、C-D≧0.010の関係を満たすことが好ましい。また、差(C-D)は、0.030以上であることがより好ましい。また、差(C-D)は、0.20以下であることが好ましい。
 ここで、一方の面とは、複合半透膜の表面を成す側であって、分離機能層の原水を供給する側であり、他方の面とは、支持膜と接している面であって、「表面」と対象に「裏面」ともいう。
When the number of nitrogen atoms derived from the nitro group in the aromatic polyamide is A and the total number of nitrogen atoms in the aromatic polyamide is B, when A and B are measured by X-ray photoelectron spectroscopy (XPS), the separation function The A / B values measured from one side of the layer and from the other side are different. The larger the A / B on one side, the better the oxidation resistance and acid resistance, and the smaller the A / B on the other side, the higher order structure of the polyamide is maintained, so that the alkali resistance is improved.
The inventors have realized that a film excellent in all of oxidation resistance, acid resistance, and alkali resistance can be realized when the difference in A / B between one surface and the other surface of the separation functional layer is 0.010 or more. I found it. That is, when A / B when X-rays are irradiated from one surface of the separation functional layer is C and A / B when X-rays are irradiated from the other surface of the separation functional layer is D, CD It is preferable to satisfy the relationship of ≧ 0.010. The difference (C−D) is more preferably 0.030 or more. The difference (C−D) is preferably 0.20 or less.
Here, one side is the side that forms the surface of the composite semipermeable membrane, the side that supplies the raw water of the separation functional layer, and the other side is the side that is in contact with the support membrane. , Also called “front side” and “back side” on the subject.
 なお、上記ニトロ基由来の窒素原子数Aと上記全窒素原子数Bの比率(A/B)は、ポリアミドをX線光電子分光法(XPS)分析することで求めることができる。具体的には、「Journal of Polymer Science」,Vol.26,559-572(1988)および「日本接着学会誌」,Vol.27,No.4(1991)で例示されているX線光電子分光法(XPS)を用いることにより求めることができる。分離機能層の一方の面(表面)のAおよびBは、分離機能層の原水を供給する側からX線を照射することによって測定ができる。分離機能層の他方の面(裏面)のAおよびBは、複合半透膜から基材を剥がし、エタノールなどのアルコールで湿らせた基板上に分離機能層の表面が接するようにして載せ、ジクロロメタンなどの有機溶媒で多孔性支持層を除去し、分離機能層の裏面が上側になる状態でX線を照射することにより、測定することができる。このとき用いる基板は特に限定されないが、シリコーン樹脂、シリコンウエハなどを挙げることができる。 In addition, the ratio (A / B) of the nitrogen atom number A derived from the nitro group and the total nitrogen atom number B can be obtained by X-ray photoelectron spectroscopy (XPS) analysis of the polyamide. Specifically, “Journal of Polymer Science”, Vol. 26, 559-572 (1988) and “Journal of the Adhesion Society of Japan”, Vol. 27, no. 4 (1991), X-ray photoelectron spectroscopy (XPS) can be used. A and B on one side (surface) of the separation functional layer can be measured by irradiating X-rays from the side of the separation functional layer where raw water is supplied. A and B on the other side (back side) of the separation functional layer are peeled off from the composite semipermeable membrane and placed on a substrate wetted with an alcohol such as ethanol so that the surface of the separation functional layer is in contact with dichloromethane. It can measure by removing a porous support layer with organic solvents, such as, and irradiating X-rays in the state where the back surface of a separation functional layer becomes an upper side. The substrate used at this time is not particularly limited, and examples thereof include a silicone resin and a silicon wafer.
 さらに、分離機能層の一方の面、すなわち表面からX線を照射して全窒素原子数Bと酸素原子数Eを測定したとき、1.00≦E/B≦1.20を満たすことで、より耐酸化性、耐酸性、耐アルカリ性のバランスに優れた膜を得ることができる。 Furthermore, when the total number of nitrogen atoms B and the number of oxygen atoms E are measured by irradiating one surface of the separation functional layer, that is, the surface, by satisfying 1.00 ≦ E / B ≦ 1.20, A film having a better balance of oxidation resistance, acid resistance, and alkali resistance can be obtained.
 分離機能層の厚みは、十分な分離性能および透過水量を得るために、通常0.01~1μmの範囲内であり、好ましくは0.1~0.5μmの範囲内である。 The thickness of the separation functional layer is usually in the range of 0.01 to 1 μm, preferably in the range of 0.1 to 0.5 μm, in order to obtain sufficient separation performance and permeated water amount.
II.製造方法
 次に、複合半透膜の製造方法について、具体例を挙げつつ説明する。
 複合半透膜における分離機能層の骨格であるポリアミドは、例えば、前述の多官能性芳香族アミンを含有する水溶液と、多官能性芳香族カルボン酸誘導体を含有する、水と非混和性の有機溶媒溶液とを用い、支持膜の表面上で(支持膜が基材と多孔性支持層とを備えるのであれば多孔性支持層の表面上で)、界面重縮合を行うことにより形成される。
II. Manufacturing Method Next, the manufacturing method of the composite semipermeable membrane will be described with specific examples.
The polyamide which is the skeleton of the separation functional layer in the composite semipermeable membrane is, for example, an aqueous solution containing the above-mentioned polyfunctional aromatic amine and an organic material immiscible with water containing the polyfunctional aromatic carboxylic acid derivative. It is formed by performing interfacial polycondensation on the surface of the support membrane using a solvent solution (or on the surface of the porous support layer if the support membrane includes a substrate and a porous support layer).
 多官能性芳香族アミン水溶液における多官能性芳香族アミンの濃度は0.1~20重量%の範囲内であることが好ましく、より好ましくは0.5~15重量%の範囲内である。この範囲であると十分な塩除去性能および透水性を得ることができる。多官能性芳香族アミン水溶液には、多官能性芳香族アミンと多官能性芳香族カルボン酸誘導体との反応を妨害しないものであれば、界面活性剤や有機溶媒、アルカリ性化合物、酸化防止剤などが含まれていてもよい。界面活性剤は、支持膜表面の濡れ性を向上させ、アミン水溶液と非極性溶媒との間の界面張力を減少させる効果がある。有機溶媒は界面重縮合反応の触媒として働くことがあり、添加することにより界面重縮合反応を効率よく行える場合がある。 The concentration of the polyfunctional aromatic amine in the polyfunctional aromatic amine aqueous solution is preferably in the range of 0.1 to 20% by weight, more preferably in the range of 0.5 to 15% by weight. In this range, sufficient salt removal performance and water permeability can be obtained. As long as the polyfunctional aromatic amine aqueous solution does not interfere with the reaction between the polyfunctional aromatic amine and the polyfunctional aromatic carboxylic acid derivative, a surfactant, organic solvent, alkaline compound, antioxidant, etc. May be included. The surfactant has the effect of improving the wettability of the support membrane surface and reducing the interfacial tension between the aqueous amine solution and the nonpolar solvent. The organic solvent may act as a catalyst for the interfacial polycondensation reaction, and when added, the interfacial polycondensation reaction may be efficiently performed.
 有機溶媒溶液中の多官能性芳香族カルボン酸誘導体の濃度は、0.01~10重量%の範囲内であると好ましく、0.02~2.0重量%の範囲内であるとさらに好ましい。多官能性芳香族カルボン酸誘導体の濃度を0.01重量%以上とすることで十分な反応速度が得られ、また、10重量%以下とすることで副反応の発生を抑制することができるためである。さらに、この有機溶媒溶液にDMFのようなアシル化触媒を含有させると、界面重縮合が促進され、さらに好ましい。 The concentration of the polyfunctional aromatic carboxylic acid derivative in the organic solvent solution is preferably in the range of 0.01 to 10% by weight, and more preferably in the range of 0.02 to 2.0% by weight. A sufficient reaction rate can be obtained by setting the concentration of the polyfunctional aromatic carboxylic acid derivative to 0.01% by weight or more, and the occurrence of side reactions can be suppressed by setting the concentration to 10% by weight or less. It is. Further, it is more preferable to include an acylation catalyst such as DMF in the organic solvent solution, since interfacial polycondensation is promoted.
 有機溶媒は、水と非混和性であり、かつ多官能性芳香族カルボン酸誘導体を溶解し、多孔性支持膜を破壊しないものが望ましく、多官能性芳香族アミン化合物および多官能性芳香族カルボン酸誘導体に対して不活性であるものであればよい。好ましい例として、n-ヘキサン、n-オクタン、イソオクタン、n-デカンなどの炭化水素化合物が挙げられる。 It is desirable that the organic solvent is immiscible with water and dissolves the polyfunctional aromatic carboxylic acid derivative and does not break the porous support membrane. The polyfunctional aromatic amine compound and the polyfunctional aromatic carboxylic acid are desirable. Any material that is inert to the acid derivative may be used. Preferable examples include hydrocarbon compounds such as n-hexane, n-octane, isooctane and n-decane.
 界面重縮合を多孔性支持膜上で行うために、まず、上述の多官能性芳香族アミン水溶液を支持膜に接触させる。接触は、支持膜面上に均一にかつ連続的に行うことが好ましい。具体的には、例えば、多官能性芳香族アミン水溶液を支持膜にコーティングする方法や支持膜を多官能性芳香族アミン水溶液に浸漬する方法を挙げることができる。支持膜と多官能性芳香族アミン水溶液との接触時間は、1~10分間の範囲内であることが好ましく、1~3分間の範囲内であるとさらに好ましい。 In order to perform interfacial polycondensation on the porous support membrane, first, the above-mentioned polyfunctional aromatic amine aqueous solution is brought into contact with the support membrane. The contact is preferably performed uniformly and continuously on the support membrane surface. Specific examples include a method of coating a polyfunctional aromatic amine aqueous solution on a support membrane and a method of immersing the support membrane in a polyfunctional aromatic amine aqueous solution. The contact time between the support membrane and the polyfunctional aromatic amine aqueous solution is preferably in the range of 1 to 10 minutes, and more preferably in the range of 1 to 3 minutes.
 多官能性芳香族アミン水溶液を支持膜に接触させた後は、膜上に液滴が残らないように十分に液切りする。十分に液切りすることで、膜形成後に液滴残存部分が膜欠点となって膜性能が低下することを防ぐことができる。液切りの方法としては、例えば、日本国特開平2-78428号公報に記載されているように、多官能性芳香族アミン水溶液接触後の支持膜を垂直方向に把持して過剰の水溶液を自然流下させる方法や、エアーノズルから窒素などの気流を吹き付け、強制的に液切りする方法などを用いることができる。また、液切り後、膜面を乾燥させて水溶液の水分を一部除去することもできる。 After the polyfunctional aromatic amine aqueous solution is brought into contact with the support membrane, the solution is sufficiently drained so that no droplets remain on the membrane. By sufficiently draining the liquid, it is possible to prevent the remaining portion of the liquid droplet from becoming a film defect after the film is formed and deteriorating the film performance. As a method for draining, for example, as described in Japanese Patent Application Laid-Open No. 2-78428, the support film after contact with the polyfunctional aromatic amine aqueous solution is vertically gripped to remove excess aqueous solution. The method of making it flow down, the method of blowing off air currents, such as nitrogen from an air nozzle, and forcibly draining can be used. In addition, after draining, the membrane surface can be dried to partially remove water from the aqueous solution.
 このようにして得られた多官能性芳香族アミン水溶液相に多官能性芳香族カルボン酸誘導体を含む有機溶媒溶液を接触させ、界面重縮合により架橋ポリアミド分離機能層の骨格を形成させる。 The organic solvent solution containing the polyfunctional aromatic carboxylic acid derivative is brought into contact with the polyfunctional aromatic amine aqueous solution phase thus obtained, and the skeleton of the crosslinked polyamide separation functional layer is formed by interfacial polycondensation.
 多官能性芳香族カルボン酸誘導体を含む有機溶媒溶液の多官能性芳香族アミン水溶液相への接触の方法は、多官能性芳香族アミン水溶液の支持膜への被覆方法と同様に行えばよい。 The method for contacting the organic solvent solution containing the polyfunctional aromatic carboxylic acid derivative with the polyfunctional aromatic amine aqueous solution phase may be the same as the method for coating the support film with the polyfunctional aromatic amine aqueous solution.
 このとき、多官能芳香族酸ハロゲン化物の有機溶媒溶液を接触させた支持膜を加熱してもよい。加熱処理する温度としては50℃以上180℃以下、好ましくは60℃以上160℃以下である。50℃以上で加熱することで、界面重合反応でのモノマー消費に伴う反応性の低下を熱による反応の促進効果で補うことができる。180℃以下で加熱することで溶媒が完全に揮発して反応効率が著しく低下するのを防ぐことができる。また、加熱処理時間は、5秒以上180秒以下であることが好ましい。5秒以上とすることで反応の促進効果を得ることができ、180秒以下とすることで溶媒が完全に揮発することを防ぐことができる。 At this time, the support membrane in contact with the organic solvent solution of the polyfunctional aromatic acid halide may be heated. The temperature for the heat treatment is 50 ° C. or higher and 180 ° C. or lower, preferably 60 ° C. or higher and 160 ° C. or lower. By heating at 50 ° C. or higher, it is possible to compensate for the decrease in reactivity associated with monomer consumption in the interfacial polymerization reaction by the effect of promoting the reaction by heat. By heating at 180 ° C. or lower, it is possible to prevent the solvent from being completely volatilized and the reaction efficiency from being significantly lowered. The heat treatment time is preferably 5 seconds or more and 180 seconds or less. The reaction promoting effect can be obtained by setting it to 5 seconds or longer, and the solvent can be prevented from completely volatilizing by setting it to 180 seconds or shorter.
 上述したように、多官能性芳香族カルボン酸誘導体を含む有機溶媒溶液を接触させて界面重縮合を行い、支持膜上に架橋ポリアミドを含む分離機能層を形成したあとは、余剰の溶媒を液切りするとよい。液切りの方法は、例えば、膜を垂直方向に把持して過剰の有機溶媒を自然流下して除去する方法を用いることができる。この場合、垂直方向に把持する時間としては、1~5分の間にあることが好ましく、1~3分の間であるとより好ましい。短すぎると分離機能層が完全に形成せず、長すぎると有機溶媒が過乾燥となり欠点が発生しやすく、性能低下を起こしやすい。 As described above, after the interfacial polycondensation is performed by bringing the organic solvent solution containing the polyfunctional aromatic carboxylic acid derivative into contact with each other and the separation functional layer containing the crosslinked polyamide is formed on the support membrane, the excess solvent is liquidized. Cut it off. As a method for draining, for example, a method in which a film is held in a vertical direction and excess organic solvent is allowed to flow down and removed can be used. In this case, the holding time in the vertical direction is preferably between 1 and 5 minutes, more preferably between 1 and 3 minutes. If it is too short, the separation functional layer will not be completely formed, and if it is too long, the organic solvent will be overdried and defects will easily occur and performance will be deteriorated.
 上述の方法により得られた複合半透膜は、40~100℃の範囲内、好ましくは60~100℃の範囲内で1~10分間、より好ましくは2~8分間熱水処理する工程などを付加することで、複合半透膜の溶質阻止性能や透水性をより一層向上させることができる。 The composite semipermeable membrane obtained by the above method is subjected to a hydrothermal treatment step in the range of 40 to 100 ° C., preferably in the range of 60 to 100 ° C. for 1 to 10 minutes, more preferably 2 to 8 minutes. By adding, the solute blocking performance and water permeability of the composite semipermeable membrane can be further improved.
 次に芳香族ポリアミドに後から化学的作用を加え、官能性芳香族アミン由来の芳香環上にニトロ基を与える方法について説明する。 Next, a method for adding a nitro group on an aromatic ring derived from a functional aromatic amine by applying a chemical action to the aromatic polyamide later will be described.
 ポリアミドの末端基としてニトロ基を与える方法は二通りあり、一つは末端アミノ基を変換する方法で、もう一つは無置換の芳香族環上に置換する方法であるが、変換や置換位置制御の容易さの点から、末端アミノ基を変換する方法が好ましい。 There are two methods for giving a nitro group as a terminal group of polyamide, one is a method for converting a terminal amino group, and the other is a method for substitution on an unsubstituted aromatic ring. From the viewpoint of ease of control, a method of converting the terminal amino group is preferred.
 末端アミノ基のニトロ基への変換方法としては酸化反応を利用する。酸化反応には水溶性過酸化物のような一般的な酸化剤を用いることができるが、酸化剤は芳香族ポリアミドとの反応性や取扱の容易さの点から過硫酸化合物であることが好ましく、ペルオキシ一硫酸カリウムであることがより好ましい。 An oxidation reaction is used as a method for converting the terminal amino group to a nitro group. A general oxidizing agent such as a water-soluble peroxide can be used for the oxidation reaction, but the oxidizing agent is preferably a persulfate compound from the viewpoint of reactivity with the aromatic polyamide and ease of handling. More preferably, it is potassium peroxymonosulfate.
 酸化剤とポリアミドの反応手段は分離機能層の表面へのニトロ基の導入率が高く、深さ方向で分布を持たせるために、例えば、酸化剤の水溶液をポリアミドの複合半透膜に塗布し、ここにフィルムをかぶせて静置する方法や、スプレーで酸化剤の水溶液を塗布する方法などが好ましい。 The reaction means of the oxidizing agent and polyamide has a high introduction rate of nitro groups on the surface of the separation functional layer, and in order to have a distribution in the depth direction, for example, an aqueous solution of an oxidizing agent is applied to a composite semipermeable membrane of polyamide. A method of covering the film with the film and a method of standing still or a method of applying an aqueous solution of an oxidizing agent by spraying are preferable.
 酸化剤の濃度は0.1~10重量%が好ましく、より好ましくは0.5~3重量%である。 The concentration of the oxidizing agent is preferably 0.1 to 10% by weight, more preferably 0.5 to 3% by weight.
 酸化剤水溶液のpHは酸化剤の酸化力を十分発揮できる範囲であれば特に限定されないが、1.5~7.0の範囲であることが好ましい。 The pH of the oxidizing agent aqueous solution is not particularly limited as long as the oxidizing power of the oxidizing agent can be sufficiently exhibited, but is preferably in the range of 1.5 to 7.0.
 酸化剤水溶液とポリアミドの接触時間は表面のニトロ基を多くし、支持膜と接する裏面にはニトロ基が少ない状態を保つために30秒~20分が好ましく、1分~10分がより好ましい。 The contact time between the aqueous oxidizing agent solution and the polyamide is preferably from 30 seconds to 20 minutes, more preferably from 1 minute to 10 minutes, in order to increase the surface nitro groups and keep the nitro groups on the back surface in contact with the support film.
 酸化剤水溶液とポリアミドとの接触温度は10℃~90℃が好ましく、より好ましくは40℃~60℃である。この温度で処理を行うことで、短時間で表面に多くのニトロ基を持たせ、内部および裏面にはニトロ基が少ない状態にすることができ、耐酸化剤や耐酸性、耐アルカリ性に優れた膜を得ることが可能となる。 The contact temperature between the oxidizing agent aqueous solution and the polyamide is preferably 10 ° C to 90 ° C, more preferably 40 ° C to 60 ° C. By carrying out the treatment at this temperature, it is possible to have many nitro groups on the surface in a short period of time, and to reduce the number of nitro groups on the inside and back surface, which is excellent in oxidation resistance, acid resistance, and alkali resistance A film can be obtained.
 酸化剤との接触後は酸化反応を停止させるため、ポリアミド複合膜を還元剤と接触させる。ここで還元剤とは使用する酸化剤と酸化還元反応を起こすものであれば特に限定されないが、入手、取扱の容易さから亜硫酸水素ナトリウム、亜硫酸ナトリウム及びチオ硫酸ナトリウムのいずれかを用いるのが好ましい。また、それらは0.01~1重量%水溶液として用いるのが好ましい。 In order to stop the oxidation reaction after contact with the oxidizing agent, the polyamide composite membrane is brought into contact with the reducing agent. Here, the reducing agent is not particularly limited as long as it causes an oxidation-reduction reaction with the oxidizing agent to be used, but it is preferable to use any one of sodium bisulfite, sodium sulfite and sodium thiosulfate from the viewpoint of availability and handling. . They are preferably used as 0.01 to 1% by weight aqueous solutions.
 還元剤との接触時間は、酸化反応を停止させ、ポリアミドの構造を変化させない程度であればよく、通常30秒~20分の浸漬時間が好ましい。 The contact time with the reducing agent may be such that the oxidation reaction is stopped and the structure of the polyamide is not changed, and an immersion time of 30 seconds to 20 minutes is usually preferable.
 還元剤との接触後は、ポリアミド複合膜に残存する還元剤を洗い流すために水でリンスすることが好ましい。 After contact with the reducing agent, it is preferable to rinse with water in order to wash away the reducing agent remaining in the polyamide composite membrane.
 このように形成される本発明の複合半透膜は、プラスチックネットなどの原水流路材と、トリコットなどの透過水流路材と、必要に応じて耐圧性を高めるためのフィルムと共に、多数の孔を穿設した筒状の集水管の周りに巻回され、スパイラル型の複合半透膜エレメントとして好適に用いられる。さらに、このエレメントを直列または並列に接続して圧力容器に収納した複合半透膜モジュールとすることもできる。 The composite semipermeable membrane of the present invention formed in this way has a large number of pores together with a raw water channel material such as a plastic net, a permeate channel material such as tricot, and a film for increasing pressure resistance if necessary. Is wound around a cylindrical water collecting pipe and is suitably used as a spiral composite semipermeable membrane element. Furthermore, a composite semipermeable membrane module in which these elements are connected in series or in parallel and accommodated in a pressure vessel can be obtained.
 また、上記の複合半透膜やそのエレメント、モジュールは、それらに原水を供給するポンプや、その原水を前処理する装置などと組み合わせて、流体分離装置を構成することができる。この分離装置を用いることにより、原水を飲料水などの透過水と膜を透過しなかった濃縮水とに分離して、目的にあった水を得ることができる。 Also, the above-described composite semipermeable membrane, its elements, and modules can be combined with a pump for supplying raw water to them, a device for pretreating the raw water, and the like to constitute a fluid separation device. By using this separation device, raw water can be separated into permeated water such as drinking water and concentrated water that has not permeated through the membrane, and water suitable for the purpose can be obtained.
 流体分離装置の操作圧力は高い方が塩除去率は向上するが、運転に必要なエネルギーも増加することや複合半透膜の耐久性を考慮すると、複合半透膜に被処理水を透過する際の操作圧力は、1.0MPa以上、10MPa以下が好ましい。供給水温度は、高くなると塩除去率が低下するが、低くなるにしたがい膜透過流束も減少するので、5℃以上、45℃以下が好ましい。供給水pHは、海水などの高塩濃度の供給水の場合、高くなるとマグネシウムなどのスケールが発生する恐れがあり、高pH運転による膜の劣化が懸念されるため、中性領域での運転が好ましい。 The higher the operating pressure of the fluid separation device, the better the salt removal rate, but in consideration of the increased energy required for operation and the durability of the composite semipermeable membrane, the water to be treated passes through the composite semipermeable membrane. The operating pressure at that time is preferably 1.0 MPa or more and 10 MPa or less. As the feed water temperature rises, the salt removal rate decreases, but as the feed water temperature decreases, the membrane permeation flux also decreases. When the supply water pH is high, such as seawater, there is a risk that scales such as magnesium may occur and membrane deterioration due to high pH operation is a concern. preferable.
 本発明に係る複合半透膜によって処理される原水としては、海水、かん水、廃水等の500mg/L~100g/LのTDS(Total Dissolved Solids)を含有する液状混合物が挙げられる。TDSとは総溶解固形分量で、「体積あたりの重量」あるいは「重量比」で表される。定義によれば、0.45ミクロンのフィルターで濾過した溶液を39.5~40.5℃の温度で蒸発させ残留物の重さから算出できるが、より簡便には実用塩分(S)から換算する。 Examples of the raw water treated by the composite semipermeable membrane according to the present invention include liquid mixtures containing 500 mg / L to 100 g / L TDS (Total Dissolved Solids) such as seawater, brine, and wastewater. TDS is the total dissolved solid content, and is expressed by “weight per volume” or “weight ratio”. According to the definition, the solution filtered with a 0.45 micron filter can be calculated from the weight of the residue by evaporating at a temperature of 39.5 to 40.5 ° C, but more simply converted from practical salt (S) To do.
 本発明の複合半透膜は、高い耐酸化性および耐酸性を有することを特徴とするが、耐酸化性の指標については、例えばpHを中性付近、より具体的にはpH6.0~8.0に調整した次亜塩素酸ナトリウム水溶液への耐性を指標とするのが適当である。次亜塩素酸から発生する遊離塩素は前述した原水に含まれる代表的な酸化性物質であるためである。 The composite semipermeable membrane of the present invention is characterized by having high oxidation resistance and acid resistance. Regarding the oxidation resistance index, for example, the pH is in the vicinity of neutrality, more specifically, pH 6.0-8. It is appropriate to use the resistance to a sodium hypochlorite aqueous solution adjusted to 0.0 as an index. This is because free chlorine generated from hypochlorous acid is a typical oxidizing substance contained in the raw water described above.
 耐酸性、耐アルカリ性の指標については、それぞれpH1の硫酸水溶液、pH13の水酸化ナトリウム水溶液への耐性を指標とするのが適当である。pH1、pH13の条件は、膜ろ過運転における酸洗浄、アルカリ洗浄時のpHよりも強い条件であるため、pH1の硫酸水溶液、pH13の水酸化ナトリウム水溶液に耐性を示せば、酸洗浄、アルカリ洗浄を複数回行っても膜が劣化しにくいことが担保されるためである。 As for the indexes of acid resistance and alkali resistance, it is appropriate to use the resistance to a pH 1 sulfuric acid aqueous solution and a pH 13 sodium hydroxide aqueous solution, respectively. The conditions of pH 1 and pH 13 are conditions stronger than the pH during acid washing and alkali washing in membrane filtration operation. Therefore, if resistance to pH 1 sulfuric acid aqueous solution and pH 13 sodium hydroxide aqueous solution is demonstrated, acid washing and alkali washing are performed. This is because it is ensured that the film is hardly deteriorated even if it is performed a plurality of times.
 以下に実施例によって本発明をさらに詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to examples.
(1)芳香族ポリアミドにおけるニトロ基由来の窒素原子数と全窒素原子数の比A/B
 比較例、実施例における複合半透膜の分離機能層の一方の面(表面)および他方の面(裏面)のニトロ基由来の窒素原子数(A)と全窒素原子数(B)を、X線光電子分光法(XPS)による測定結果から算出した。
 測定装置:Quantera SXM(PHI社製)
 励起X線:monochromatic Al Kα1,2線(1486.6eV)
 X線径:0.2mm
 XPSにより得られるN1sピークは、窒素原子の内殻電子に起因する。以下の例では、N1sピークは、N-C由来の成分およびNOx(x≧2)由来の成分から構成されると考えられたのでN1sピークを2つの成分でピーク分割を行った。N-C由来の成分は400eV、NOx(x≧2)由来の成分は406eV付近に現れる。この各成分のピーク面積比を、小数点第2位を四捨五入し、算出した。A/Bは、NOx(x≧2)基由来のピーク面積比をN-C由来のピーク面積比で割ることで求めた。なお、ピーク分割の結果、0.1%以下であれば、検出限界以下とした。表面のAおよびBは、複合半透膜の原水を供給する側からX線を照射することによって分析した。得られた結果から表面のA/Bを求めた。
 裏面のAおよびBは、以下のようにして分析した。複合半透膜から基材を剥がし、分離機能層の表面が接するようにして、エタノールを1滴載せた2cm四方のシリコンウエハ上に載せ、ここにジクロロメタンを流し、ジクロロメタン溶液中に多孔性支持層を形成するポリマーの溶出が、薄層クロマトグラフィーで検出できなくなるまで繰り返した。このようにして得られた試料の上側からX線を照射することにより、分離機能層の裏面のAとBを算出した。得られた結果から裏面のA/Bを求めた。
 そして、表面のA/BをC、裏面のA/BをDとしたとき、各面のA/Bの差、すなわちC-Dを算出した。
(1) Ratio A / B of the number of nitrogen atoms derived from nitro groups and the total number of nitrogen atoms in aromatic polyamide
The number of nitrogen atoms derived from the nitro group (A) and the total number of nitrogen atoms (B) on one surface (front surface) and the other surface (back surface) of the separation functional layer of the composite semipermeable membrane in Comparative Examples and Examples are It calculated from the measurement result by a line photoelectron spectroscopy (XPS).
Measuring device: Quantera SXM (manufactured by PHI)
Excitation X-ray: monochromatic Al Kα1,2 line (1486.6 eV)
X-ray diameter: 0.2mm
The N1s peak obtained by XPS is attributed to the inner electron of the nitrogen atom. In the following example, since the N1s peak was considered to be composed of a component derived from N—C and a component derived from NOx (x ≧ 2), the N1s peak was divided into two components. A component derived from N—C appears in the vicinity of 400 eV, and a component derived from NO x (x ≧ 2) appears in the vicinity of 406 eV. The peak area ratio of each component was calculated by rounding off the first decimal place. A / B was determined by dividing the peak area ratio derived from NOx (x ≧ 2) groups by the peak area ratio derived from N—C. In addition, if it was 0.1% or less as a result of peak division, it was set as below the detection limit. Surfaces A and B were analyzed by irradiating X-rays from the raw water supply side of the composite semipermeable membrane. The surface A / B was determined from the obtained results.
Backside A and B were analyzed as follows. The base material is peeled off from the composite semipermeable membrane and placed on a 2 cm square silicon wafer on which one drop of ethanol is placed so that the surface of the separation functional layer is in contact with it, and dichloromethane is allowed to flow through the porous support layer in the dichloromethane solution. The elution of the polymer to form was repeated until it could not be detected by thin layer chromatography. A and B on the back surface of the separation functional layer were calculated by irradiating X-rays from the upper side of the sample thus obtained. A / B on the back surface was determined from the obtained results.
Then, assuming that A / B on the front surface is C and A / B on the back surface is D, the difference between A / B of each surface, that is, CD is calculated.
(2)芳香族ポリアミドにおける全窒素原子数Bと全酸素原子数Eの比E/B
 比較例、実施例における複合半透膜の分離機能層の一方の面(表面)から(1)に記載したのと同様の条件でX線を照射し、X線光電子分光法(XPS)による測定結果から全窒素原子数Bと全酸素原子数Eを算出した。XPSにより得られるN1sピークとO1sピークの強度比をもとに、E/Bを算出した。
(2) Ratio E / B of total nitrogen atom number B to total oxygen atom number E in aromatic polyamide
Measurement by X-ray photoelectron spectroscopy (XPS) is performed by irradiating X-rays under the same conditions as described in (1) from one surface (surface) of the separation functional layer of the composite semipermeable membrane in Comparative Examples and Examples. From the results, the total number of nitrogen atoms B and the total number of oxygen atoms E were calculated. E / B was calculated based on the intensity ratio of the N1s peak and O1s peak obtained by XPS.
 以下、比較例、実施例における複合半透膜の各種特性は、複合半透膜に、温度25℃、pH6.5に調整した海水(TDS濃度約3.5%)を操作圧力5.5MPaで供給して膜ろ過処理を行ない、透過水、供給水の水質を測定することにより求めた。 Hereinafter, various characteristics of the composite semipermeable membranes in the comparative examples and examples are as follows. Seawater (TDS concentration of about 3.5%) adjusted to a temperature of 25 ° C. and pH 6.5 is applied to the composite semipermeable membranes at an operating pressure of 5.5 MPa. The membrane was subjected to membrane filtration treatment, and the water quality was determined by measuring the quality of the permeated water and the feed water.
(3)膜透過流束
 供給水(海水)の膜透過水量を、膜面1平方メートルあたり、1日あたりの透水量(立方メートル)に換算して膜透過流束(m/m/日)を表した。
(3) Membrane permeation flux Membrane permeation flux (m 3 / m 2 / day) is calculated by converting the permeate flow rate of the supplied water (seawater) to the permeation rate per cubic meter of membrane surface per day (cubic meter). Expressed.
(4)ホウ素除去率
 供給水と透過水中のホウ素濃度をICP発光分析装置(株式会社日立製作所製「P-4010」(商品名))で分析し、次の式から求めた。
  ホウ素除去率(%)=100×{1-(透過水中のホウ素濃度/供給水中のホウ素濃度)}
(4) Boron removal rate The boron concentration in the feed water and the permeated water was analyzed with an ICP emission analyzer (“P-4010” (trade name) manufactured by Hitachi, Ltd.), and obtained from the following formula.
Boron removal rate (%) = 100 × {1− (boron concentration in permeated water / boron concentration in feed water)}
(5)耐酸化性試験
 複合半透膜を、pH6.5に調整した100mg/L次亜塩素酸ナトリウム水溶液に25℃雰囲気下、20時間浸漬した。その後、100mg/L亜硫酸水素ナトリウム水溶液に10分間浸漬し、水で十分に洗浄し、複合半透膜のホウ素除去率を評価することにより求めた。
(5) Oxidation resistance test The composite semipermeable membrane was immersed in a 100 mg / L sodium hypochlorite aqueous solution adjusted to pH 6.5 in an atmosphere at 25 ° C for 20 hours. Then, it calculated | required by immersing in 100 mg / L sodium hydrogensulfite aqueous solution for 10 minutes, wash | cleaning sufficiently with water, and evaluating the boron removal rate of a composite semipermeable membrane.
(6)耐酸性試験
 複合半透膜を、pH1に調整した硫酸水溶液に25℃雰囲気下、20時間浸漬した。その後水で十分に洗浄し、複合半透膜のホウ素除去率を評価することにより求めた。
(6) Acid resistance test The composite semipermeable membrane was immersed in an aqueous sulfuric acid solution adjusted to pH 1 for 20 hours in an atmosphere at 25 ° C. Thereafter, it was thoroughly washed with water and evaluated by evaluating the boron removal rate of the composite semipermeable membrane.
(7)耐アルカリ性試験
 複合半透膜をpH13に調整した水酸化ナトリウム水溶液に25℃雰囲気下、20時間浸漬した。その後水で十分に洗浄し、複合半透膜のホウ素除去率を評価することにより求めた。
(7) Alkali resistance test The composite semipermeable membrane was immersed in an aqueous sodium hydroxide solution adjusted to pH 13 in an atmosphere of 25 ° C for 20 hours. Thereafter, it was thoroughly washed with water and evaluated by evaluating the boron removal rate of the composite semipermeable membrane.
(参考例1)
 ポリエステル不織布(通気量2.0cc/cm/sec)上にポリスルホン(PSf)の16.0重量%DMF溶液を25℃の条件下で200μmの厚みでキャストし、ただちに純水中に浸漬して5分間放置することによって多孔性支持膜を作製した。
(Reference Example 1)
A 16.0 wt% DMF solution of polysulfone (PSf) was cast at a thickness of 200 μm at 25 ° C. on a polyester non-woven fabric (aeration rate 2.0 cc / cm 2 / sec) and immediately immersed in pure water. A porous support membrane was prepared by leaving for 5 minutes.
(実施例1、2)
 参考例1によって得られた多孔性支持膜をm-フェニレンジアミン(m-PDA)の3重量%水溶液中に2分間浸漬し、該支持膜を垂直方向にゆっくりと引き上げ、エアーノズルから窒素を吹き付け支持膜表面から余分な水溶液を取り除いた後、トリメシン酸クロリド(TMC)0.165重量%を含む25℃のIsoper M(エクソンモービル社製)を表面が完全に濡れるように塗布して1分間静置したのち、膜を垂直にして余分な溶液を液切りして除去することで複合半透膜を得た。
 得られた複合半透膜の膜面に、所定のpH(実施例1:pH3、実施例2:pH2)の3重量%ペルオキシ一硫酸カリウム水溶液を60℃で0.33L/m塗布し、フィルムをかぶせて60℃のオーブン所定時間(実施例1:10分、実施例2:2分)静置した(表1参照)。その後0.1重量%亜硫酸水素ナトリウム水溶液に10分浸漬させた後、水で洗い流し複合半透膜を得た。
 得られた複合半透膜について、上記(1)の方法に従って分離機能層の表面と裏面のA/Bの差(C-D)を算出し、上記(2)の方法に従って分離機能層の全窒素原子数Bと全酸素原子数Eの比E/Bを算出した。また、上記(3)、(4)の方法に従い、得られた複合半透膜の膜透過流束とホウ素除去率を測定し、さらに、上記(5)~(7)の方法に従い、複合半透膜の耐酸化性、耐酸性、耐アルカリ性試験を実施し、ホウ素除去率を測定した。結果を表2に示す。
(Examples 1 and 2)
The porous support membrane obtained in Reference Example 1 was immersed in a 3% by weight aqueous solution of m-phenylenediamine (m-PDA) for 2 minutes, the support membrane was slowly pulled up in the vertical direction, and nitrogen was blown from an air nozzle. After removing excess aqueous solution from the surface of the support membrane, 25 ° C. Isoper M (manufactured by ExxonMobil) containing 0.165% by weight of trimesic acid chloride (TMC) was applied so that the surface was completely wetted, and the surface was allowed to stand still for 1 minute. After placing, the composite semipermeable membrane was obtained by making the membrane vertical and draining and removing excess solution.
On the membrane surface of the obtained composite semipermeable membrane, 0.33 L / m 2 of a 3 wt% potassium peroxymonosulfate aqueous solution having a predetermined pH (Example 1: pH 3, Example 2: pH 2) was applied at 60 ° C., The film was covered and left in an oven at 60 ° C. for a predetermined time (Example 1: 10 minutes, Example 2: 2 minutes) (see Table 1). Thereafter, the film was immersed in a 0.1 wt% aqueous sodium hydrogen sulfite solution for 10 minutes, and then washed with water to obtain a composite semipermeable membrane.
For the obtained composite semipermeable membrane, the difference (CD) between the front and back surfaces of the separation functional layer (CD) was calculated according to the method of (1) above, and the entire separation functional layer according to the method of (2) above was calculated. The ratio E / B of the number of nitrogen atoms B and the total number of oxygen atoms E was calculated. Further, the membrane permeation flux and the boron removal rate of the obtained composite semipermeable membrane were measured according to the methods (3) and (4) above, and the composite semipermeable membrane was measured according to the methods (5) to (7) above. Oxidation resistance, acid resistance, and alkali resistance tests of the permeable membrane were performed, and the boron removal rate was measured. The results are shown in Table 2.
(実施例3~5)
 参考例1によって得られた多孔性支持膜をm-フェニレンジアミン(m-PDA)の3重量%水溶液中に2分間浸漬し、該支持膜を垂直方向にゆっくりと引き上げ、エアーノズルから窒素を吹き付け支持膜表面から余分な水溶液を取り除いた後、トリメシン酸クロリド(TMC)0.165重量%を含む25℃のイソオクタンを表面が完全に濡れるように塗布して10秒間静置したのち、120℃のオーブンで15秒間静置することで複合半透膜を得た。 得られた複合半透膜の膜面に、pH3の所定の濃度(実施例3:3重量%、実施例4および5:1重量%)のペルオキシ一硫酸カリウム水溶液を所定の温度(実施例3:90℃、実施例4および実施例5:60℃)で0.33L/mの割合で塗布し、フィルムをかぶせて塗布時と同じ温度のオーブンで所定時間(実施例3および実施例4:5分、実施例5:2分)静置した(表1参照)。その後0.1重量%亜硫酸水素ナトリウム水溶液に10分浸漬させた後、水で洗い流し複合半透膜を得た。
 得られた複合半透膜について、分離機能層のC-DとE/Bを算出し、また、得られた複合半透膜の膜透過流束とホウ素除去率を測定し、さらに複合半透膜の耐酸化性、耐酸性、耐アルカリ性試験を実施し、ホウ素除去率を測定した。結果を表2に示す。
(Examples 3 to 5)
The porous support membrane obtained in Reference Example 1 was immersed in a 3% by weight aqueous solution of m-phenylenediamine (m-PDA) for 2 minutes, the support membrane was slowly pulled up in the vertical direction, and nitrogen was blown from an air nozzle. After removing the excess aqueous solution from the surface of the support membrane, 25 ° C. isooctane containing 0.165% by weight of trimesic acid chloride (TMC) was applied so that the surface was completely wetted and allowed to stand for 10 seconds. The composite semipermeable membrane was obtained by leaving still in an oven for 15 seconds. An aqueous solution of potassium peroxymonosulfate having a predetermined pH 3 concentration (Example 3: 3 wt%, Examples 4 and 5: 1 wt%) was applied to the membrane surface of the obtained composite semipermeable membrane at a predetermined temperature (Example 3). : 90 ° C., Example 4 and Example 5: 60 ° C.) and applied at a rate of 0.33 L / m 2 , and a film is placed over the oven at the same temperature as the application (Example 3 and Example 4). : 5 minutes, Example 5: 2 minutes) and allowed to stand (see Table 1). Thereafter, the film was immersed in a 0.1 wt% aqueous sodium hydrogen sulfite solution for 10 minutes, and then washed with water to obtain a composite semipermeable membrane.
For the obtained composite semipermeable membrane, the CD and E / B of the separation functional layer were calculated, the membrane permeation flux and boron removal rate of the obtained composite semipermeable membrane were measured, and the composite semipermeable membrane was further measured. The film was subjected to oxidation resistance, acid resistance, and alkali resistance tests, and the boron removal rate was measured. The results are shown in Table 2.
(実施例6~8)
 参考例1によって得られた多孔性支持膜をm-フェニレンジアミン(m-PDA)の3重量%水溶液中に2分間浸漬し、該支持膜を垂直方向にゆっくりと引き上げ、エアーノズルから窒素を吹き付け支持膜表面から余分な水溶液を取り除いた後、トリメシン酸クロリド(TMC)0.165重量%を含む25℃のデカンを表面が完全に濡れるように塗布して10秒間静置したのち、120℃のオーブンで15秒間静置することで複合半透膜を得た。
 得られた複合半透膜を所定のpH(実施例6:pH6、実施例7および実施例8:pH2)の1重量%ペルオキシ一硫酸カリウム水溶液を所定の温度(実施例6および実施例7:60℃、実施例8:40℃)で膜面に0.33L/mの割合で塗布し、フィルムをかぶせて塗布時と同じ温度のオーブンに所定時間(実施例6および7:2分間、実施例8:5分)静置した(表1参照)。その後0.1重量%亜硫酸水素ナトリウム水溶液に10分浸漬させた後、水で洗い流し複合半透膜を得た。
 得られた複合半透膜について、分離機能層のC-DとE/Bを算出し、また、得られた複合半透膜の膜透過流束とホウ素除去率を測定し、さらに複合半透膜の耐酸化性、耐酸性、耐アルカリ性試験を実施し、ホウ素除去率を測定した。結果を表2に示す。
(Examples 6 to 8)
The porous support membrane obtained in Reference Example 1 was immersed in a 3% by weight aqueous solution of m-phenylenediamine (m-PDA) for 2 minutes, the support membrane was slowly pulled up in the vertical direction, and nitrogen was blown from an air nozzle. After removing the excess aqueous solution from the surface of the supporting membrane, 25 ° C. decane containing 0.165% by weight of trimesic acid chloride (TMC) was applied so that the surface was completely wetted, and allowed to stand for 10 seconds. The composite semipermeable membrane was obtained by leaving still in an oven for 15 seconds.
The obtained composite semipermeable membrane was mixed with a 1 wt% aqueous solution of potassium peroxymonosulfate having a predetermined pH (Example 6: pH 6, Example 7 and Example 8: pH 2) at a predetermined temperature (Example 6 and Example 7: 60 ° C., Example 8: 40 ° C.) is applied to the film surface at a rate of 0.33 L / m 2 , and the film is placed on the oven at the same temperature as the application for a predetermined time (Examples 6 and 7: 2 minutes, Example 8: 5 minutes) was allowed to stand (see Table 1). Thereafter, the film was immersed in a 0.1 wt% aqueous sodium hydrogen sulfite solution for 10 minutes, and then washed with water to obtain a composite semipermeable membrane.
For the obtained composite semipermeable membrane, the CD and E / B of the separation functional layer were calculated, the membrane permeation flux and boron removal rate of the obtained composite semipermeable membrane were measured, and the composite semipermeable membrane was further measured. The film was subjected to oxidation resistance, acid resistance, and alkali resistance tests, and the boron removal rate was measured. The results are shown in Table 2.
(比較例1、2)
 国際公開第2011/105278号に記載の方法にならい、参考例1によって得られた多孔性支持膜をm-フェニレンジアミン(m-PDA)の3重量%水溶液中に2分間浸漬し、該支持膜を垂直方向にゆっくりと引き上げ、エアーノズルから窒素を吹き付け支持膜表面から余分な水溶液を取り除いた後、トリメシン酸クロリド(TMC)0.165重量%を含む25℃のIsoper M(エクソンモービル社製)を表面が完全に濡れるように塗布して1分間静置したのち、膜を垂直にして余分な溶液を液切りして除去することで複合半透膜を得た。
 得られた複合半透膜を所定のpH(比較例1:pH6、比較例2:pH2)の1重量%ペルオキシ一硫酸カリウム水溶液中に25℃で30分間浸漬した(表1参照)。その後、0.1重量%亜硫酸水素ナトリウム水溶液に10分浸漬させた後、水で洗い流し複合半透膜を得た。
 得られた複合半透膜について、分離機能層のC-DとE/Bを算出し、また、得られた複合半透膜の膜透過流束、ホウ素除去率を測定するとともに、耐酸化性、耐酸性、耐アルカリ性試験を実施し、ホウ素除去率を測定した。結果を表2に示す。
(Comparative Examples 1 and 2)
Following the method described in International Publication No. 2011/105278, the porous support membrane obtained in Reference Example 1 was immersed in a 3% by weight aqueous solution of m-phenylenediamine (m-PDA) for 2 minutes, and the support membrane Is slowly pulled up in the vertical direction, nitrogen is blown from the air nozzle to remove excess aqueous solution from the surface of the support membrane, and then Isoper M (produced by ExxonMobil) at 25 ° C. containing 0.165% by weight of trimesic acid chloride (TMC) is used. Was applied so that the surface was completely wetted and allowed to stand for 1 minute, and then the membrane was made vertical to drain off and remove the excess solution to obtain a composite semipermeable membrane.
The obtained composite semipermeable membrane was immersed in a 1% by weight potassium peroxymonosulfate aqueous solution having a predetermined pH (Comparative Example 1: pH 6, Comparative Example 2: pH 2) at 25 ° C. for 30 minutes (see Table 1). Then, after being immersed in a 0.1 wt% sodium hydrogen sulfite aqueous solution for 10 minutes, it was washed away with water to obtain a composite semipermeable membrane.
For the obtained composite semipermeable membrane, the CD and E / B of the separation functional layer were calculated, the membrane permeation flux and boron removal rate of the obtained composite semipermeable membrane were measured, and the oxidation resistance Then, acid resistance and alkali resistance tests were carried out, and the boron removal rate was measured. The results are shown in Table 2.
(比較例3)
 参考例1によって得られた多孔性支持膜をm-フェニレンジアミン(m-PDA)の3重量%水溶液中に2分間浸漬し、該支持膜を垂直方向にゆっくりと引き上げ、エアーノズルから窒素を吹き付け支持膜表面から余分な水溶液を取り除いた後、トリメシン酸クロリド(TMC)0.165重量%を含む25℃のIsoper M(エクソンモービル社製)を表面が完全に濡れるように塗布して10秒間静置したのち、25℃のオーブンで1分間静置することで複合半透膜を得た。
 得られた複合半透膜に1重量%の過酢酸水溶液を25℃で膜の表面に0.33L/mの割合で塗布し、フィルムをかぶせて25℃のオーブンに60分間静置した。その後0.1重量%亜硫酸水素ナトリウム水溶液に10分浸漬させた後、水で洗い流し複合半透膜を得た。
 得られた複合半透膜について、分離機能層のC-DとE/Bを算出し、また、得られた複合半透膜の膜透過流束とホウ素除去率を測定し、さらに複合半透膜の耐酸化性、耐酸性、耐アルカリ性試験を実施し、ホウ素除去率を測定した。結果を表2に示す。
(Comparative Example 3)
The porous support membrane obtained in Reference Example 1 was immersed in a 3% by weight aqueous solution of m-phenylenediamine (m-PDA) for 2 minutes, the support membrane was slowly pulled up in the vertical direction, and nitrogen was blown from an air nozzle. After removing the excess aqueous solution from the surface of the support membrane, 25 ° C Isoper M (ExxonMobil Corp.) containing 0.165% by weight of trimesic acid chloride (TMC) was applied so that the surface was completely wetted and allowed to stand for 10 seconds. After placing, the composite semipermeable membrane was obtained by leaving still in a 25 degreeC oven for 1 minute.
A 1% by weight aqueous solution of peracetic acid was applied to the surface of the composite semipermeable membrane at a rate of 0.33 L / m 2 at 25 ° C., covered with a film, and left in an oven at 25 ° C. for 60 minutes. Thereafter, the film was immersed in a 0.1 wt% aqueous sodium hydrogen sulfite solution for 10 minutes, and then washed with water to obtain a composite semipermeable membrane.
For the obtained composite semipermeable membrane, the CD and E / B of the separation functional layer were calculated, the membrane permeation flux and boron removal rate of the obtained composite semipermeable membrane were measured, and the composite semipermeable membrane was further measured. The film was subjected to oxidation resistance, acid resistance, and alkali resistance tests, and the boron removal rate was measured. The results are shown in Table 2.
(比較例4、5)
 参考例1によって得られた多孔性支持膜をm-フェニレンジアミン(m-PDA)の3重量%水溶液中に2分間浸漬し、該支持膜を垂直方向にゆっくりと引き上げ、エアーノズルから窒素を吹き付け支持膜表面から余分な水溶液を取り除いた後、トリメシン酸クロリド(TMC)0.165重量%を含む40℃のイソオクタンを表面が完全に濡れるように塗布して10秒間静置したのち、120℃のオーブンで1分間静置することで複合半透膜を得た。
 得られた複合半透膜を所定のpH(実施例4:pH8、実施例5:pH6)の1重量%ペルオキシ一硫酸カリウム水溶液に25℃で所定時間(比較例4:30分、比較例5:2分)浸漬した(表1参照)。その後、0.1重量%亜硫酸水素ナトリウム水溶液に10分浸漬させた後、水で洗い流し複合半透膜を得た。
 得られた複合半透膜について、分離機能層のC-DとE/Bを算出し、また、得られた複合半透膜の膜透過流束、ホウ素除去率を測定するとともに、耐酸化性、耐酸性、耐アルカリ性試験を実施し、ホウ素除去率を測定した。結果を表2に示す。
(Comparative Examples 4 and 5)
The porous support membrane obtained in Reference Example 1 was immersed in a 3% by weight aqueous solution of m-phenylenediamine (m-PDA) for 2 minutes, the support membrane was slowly pulled up in the vertical direction, and nitrogen was blown from an air nozzle. After removing the excess aqueous solution from the surface of the support membrane, 40 ° C. isooctane containing 0.165% by weight of trimesic acid chloride (TMC) was applied so that the surface was completely wetted and allowed to stand for 10 seconds. The composite semipermeable membrane was obtained by leaving still in an oven for 1 minute.
The obtained composite semipermeable membrane was placed in a 1 wt% potassium peroxymonosulfate aqueous solution having a predetermined pH (Example 4: pH 8, Example 5: pH 6) at 25 ° C. for a predetermined time (Comparative Example 4:30 minutes, Comparative Example 5). : 2 minutes) soaking (see Table 1). Then, after being immersed in a 0.1 wt% sodium hydrogen sulfite aqueous solution for 10 minutes, it was washed away with water to obtain a composite semipermeable membrane.
For the obtained composite semipermeable membrane, the CD and E / B of the separation functional layer were calculated, the membrane permeation flux and boron removal rate of the obtained composite semipermeable membrane were measured, and the oxidation resistance Then, acid resistance and alkali resistance tests were carried out, and the boron removal rate was measured. The results are shown in Table 2.
(比較例6)
 参考例1によって得られた多孔性支持膜をm-フェニレンジアミン(m-PDA)の3重量%水溶液中に2分間浸漬し、該支持膜を垂直方向にゆっくりと引き上げ、エアーノズルから窒素を吹き付け支持膜表面から余分な水溶液を取り除いた後、トリメシン酸クロリド(TMC)0.165重量%を含む40℃のデカンを表面が完全に濡れるように塗布して10秒間静置したのち、120℃のオーブンで15秒間静置することで複合半透膜を得た。
 得られた複合半透膜をpH3の1重量%ペルオキシ一硫酸カリウム水溶液に60℃で2分間浸漬した(表1参照)。その後0.1重量%亜硫酸水素ナトリウム水溶液に10分浸漬させた後、水で洗い流し複合半透膜を得た。
 得られた複合半透膜について、分離機能層のC-DとE/Bを算出し、また、得られた複合半透膜の膜透過流束とホウ素除去率を測定し、さらに複合半透膜の耐酸化性、耐酸性、耐アルカリ性試験を実施し、ホウ素除去率を測定した。結果を表2に示す。
(Comparative Example 6)
The porous support membrane obtained in Reference Example 1 was immersed in a 3% by weight aqueous solution of m-phenylenediamine (m-PDA) for 2 minutes, the support membrane was slowly pulled up in the vertical direction, and nitrogen was blown from an air nozzle. After removing the excess aqueous solution from the surface of the support membrane, 40 ° C. decane containing 0.165% by weight of trimesic acid chloride (TMC) was applied so that the surface was completely wetted, and allowed to stand for 10 seconds. The composite semipermeable membrane was obtained by leaving still in an oven for 15 seconds.
The obtained composite semipermeable membrane was immersed in a 1 wt% potassium peroxymonosulfate aqueous solution having a pH of 3 at 60 ° C. for 2 minutes (see Table 1). Thereafter, the film was immersed in a 0.1 wt% aqueous sodium hydrogen sulfite solution for 10 minutes, and then washed with water to obtain a composite semipermeable membrane.
For the obtained composite semipermeable membrane, the CD and E / B of the separation functional layer were calculated, the membrane permeation flux and boron removal rate of the obtained composite semipermeable membrane were measured, and the composite semipermeable membrane was further measured. The film was subjected to oxidation resistance, acid resistance, and alkali resistance tests, and the boron removal rate was measured. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2の結果からわかるとおり、実施例1~8は、C-Dが0.010以上であった。これらの複合半透膜は塩素による強制劣化試験後のホウ素除去率が85%以上を、かつ酸、アルカリによる強制劣化試験後のホウ素除去率がいずれも90%以上を維持しており、実用に適した高い耐薬品性を有することがわかった。 As can be seen from the results in Table 2, in Examples 1 to 8, CD was 0.010 or more. These composite semipermeable membranes maintain a boron removal rate of 85% or more after a forced deterioration test with chlorine and maintain a boron removal rate of 90% or more after a forced deterioration test with acid or alkali. It was found to have suitable high chemical resistance.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は、2015年12月25日出願の日本特許出願(特願2015-254749)に基づくものであり、その内容はここに参照として取り込まれる。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application filed on December 25, 2015 (Japanese Patent Application No. 2015-254749), the contents of which are incorporated herein by reference.
 本発明の複合半透膜は、特に、海水の脱塩に好適に用いることができる。  The composite semipermeable membrane of the present invention can be particularly suitably used for seawater desalination.

Claims (6)

  1.  支持膜と、前記支持膜上に設けられた分離機能層とを備えた複合半透膜であって、
     前記分離機能層が、多官能性芳香族アミンと多官能性芳香族カルボン酸誘導体との重合物である芳香族ポリアミドを含有し、前記芳香族ポリアミドは、芳香族環に結合した官能基としてニトロ基を有し、
     前記分離機能層は、前記芳香族ポリアミドにおけるニトロ基由来の窒素原子数をA、前記芳香族ポリアミド中の全窒素原子数をBとし、X線光電子分光法(XPS)によりAとBを分析すると、前記分離機能層の一方の面からX線を照射した際のA/BをC、前記分離機能層の他方の面からX線を照射した際のA/BをDとしたとき、C-Dが0.010以上であり、
     前記分離機能層の前記他方の面が前記支持膜に接している複合半透膜。
    A composite semipermeable membrane comprising a support membrane and a separation functional layer provided on the support membrane,
    The separation functional layer contains an aromatic polyamide which is a polymer of a polyfunctional aromatic amine and a polyfunctional aromatic carboxylic acid derivative, and the aromatic polyamide has a nitro group as a functional group bonded to an aromatic ring. Having a group,
    The separation functional layer is obtained by analyzing A and B by X-ray photoelectron spectroscopy (XPS), where A is the number of nitrogen atoms derived from the nitro group in the aromatic polyamide and B is the total number of nitrogen atoms in the aromatic polyamide. When A / B when X-rays are irradiated from one surface of the separation functional layer is C and A / B when X-rays are irradiated from the other surface of the separation functional layer is D, C− D is 0.010 or more,
    A composite semipermeable membrane in which the other surface of the separation functional layer is in contact with the support membrane.
  2.  前記X線光電子分光法(XPS)により前記分離機能層の前記一方の面からX線を照射して分析した際、前記ポリアミド中の全酸素原子数をEとしたとき、1.00≦E/B≦1.20を満たす、請求項1に記載の複合半透膜。 When X-ray photoelectron spectroscopy (XPS) is used for analysis by irradiating X-rays from the one surface of the separation functional layer, where E is the total number of oxygen atoms in the polyamide, 1.00 ≦ E / The composite semipermeable membrane according to claim 1, wherein B ≦ 1.20.
  3.  前記C-Dが0.20以下である、請求項1又は2に記載の複合半透膜。 The composite semipermeable membrane according to claim 1 or 2, wherein the CD is 0.20 or less.
  4.  前記C-Dが0.030以上である、請求項1~3のいずれか1項に記載の複合半透膜。 The composite semipermeable membrane according to any one of claims 1 to 3, wherein the CD is 0.030 or more.
  5.  TDS(Total Dissolved Solids)が500mg/L~100g/Lの液状混合物を処理するために用いられる、請求項1~4のいずれか1項に記載の複合半透膜。 The composite semipermeable membrane according to any one of claims 1 to 4, which is used for treating a liquid mixture having a TDS (Total Dissolved Solids) of 500 mg / L to 100 g / L.
  6.  請求項1~5のいずれか1項に記載の複合半透膜を備えた複合半透膜エレメント。 A composite semipermeable membrane element comprising the composite semipermeable membrane according to any one of claims 1 to 5.
PCT/JP2016/088153 2015-12-25 2016-12-21 Composite semipermeable membrane WO2017110898A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017504837A JPWO2017110898A1 (en) 2015-12-25 2016-12-21 Composite semipermeable membrane
CN201680075419.0A CN108430612B (en) 2015-12-25 2016-12-21 Composite semipermeable membrane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015254749 2015-12-25
JP2015-254749 2015-12-25

Publications (1)

Publication Number Publication Date
WO2017110898A1 true WO2017110898A1 (en) 2017-06-29

Family

ID=59089413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/088153 WO2017110898A1 (en) 2015-12-25 2016-12-21 Composite semipermeable membrane

Country Status (3)

Country Link
JP (1) JPWO2017110898A1 (en)
CN (1) CN108430612B (en)
WO (1) WO2017110898A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020137066A1 (en) * 2018-12-26 2020-07-02 東レ株式会社 Composite semipermeable membrane
JP7427190B2 (en) * 2020-03-31 2024-02-05 株式会社Lixil composite semipermeable membrane

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0596140A (en) * 1991-10-02 1993-04-20 Toray Ind Inc Production of composite translucent membrane
JP2005270794A (en) * 2004-03-24 2005-10-06 Kurita Water Ind Ltd Recycling method of reverse osmosis membrane
JP2010094641A (en) * 2008-10-20 2010-04-30 Toray Ind Inc Method of treating composite semipermeable film
WO2015087635A1 (en) * 2013-12-10 2015-06-18 学校法人 中央大学 Method for modifying organic membrane, modified organic membrane, and modification device
WO2016104781A1 (en) * 2014-12-26 2016-06-30 東レ株式会社 Composite semipermeable membrane

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6337018B1 (en) * 2000-04-17 2002-01-08 The Dow Chemical Company Composite membrane and method for making the same
DE60236935D1 (en) * 2001-06-29 2010-08-19 Millipore Corp MANUFACTURING METHOD FOR A MULTILAYER FILTER STRUCTURE
CN101780377B (en) * 2010-03-09 2012-06-20 天津膜天膜工程技术有限公司 Method for preparing compound nanofiltration membrane
CN103338846B (en) * 2011-01-31 2015-07-29 东丽株式会社 Separation membrane for water treatment and manufacture method thereof
CN105377406A (en) * 2013-01-14 2016-03-02 陶氏环球技术有限责任公司 Composite polyamide membrane including tri-hydrocarbyl phosphate
EP2962748B1 (en) * 2013-02-28 2021-05-19 Toray Industries, Inc. Composite semipermeable membrane and production thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0596140A (en) * 1991-10-02 1993-04-20 Toray Ind Inc Production of composite translucent membrane
JP2005270794A (en) * 2004-03-24 2005-10-06 Kurita Water Ind Ltd Recycling method of reverse osmosis membrane
JP2010094641A (en) * 2008-10-20 2010-04-30 Toray Ind Inc Method of treating composite semipermeable film
WO2015087635A1 (en) * 2013-12-10 2015-06-18 学校法人 中央大学 Method for modifying organic membrane, modified organic membrane, and modification device
WO2016104781A1 (en) * 2014-12-26 2016-06-30 東レ株式会社 Composite semipermeable membrane

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU,MEIHONG: "Improving fouling resistance and chlorine stability of aromatic polyamide thin-film composite RO membrane by surface grafting of polyvinyl alcohol(PVA", DESALINATION, vol. 367, 1 July 2015 (2015-07-01), pages 11 - 20, XP029216602, DOI: doi:10.1016/j.desal.2015.03.028 *

Also Published As

Publication number Publication date
JPWO2017110898A1 (en) 2018-10-11
CN108430612A (en) 2018-08-21
CN108430612B (en) 2021-04-20

Similar Documents

Publication Publication Date Title
JP6402627B2 (en) Composite semipermeable membrane
JP6136266B2 (en) Composite semipermeable membrane
JP5115196B2 (en) Composite semipermeable membrane and method for producing the same
JP6295949B2 (en) Composite semipermeable membrane and method for producing the same
KR102289642B1 (en) Composite semipermeable membrane
CN106457165B (en) Composite semipermeable membrane
JP6544245B2 (en) Composite semipermeable membrane
JPWO2014133133A1 (en) Composite semipermeable membrane
JP2001327840A (en) Composite semipermeable membrane and its manufacturing method
WO2017110898A1 (en) Composite semipermeable membrane
JP7342528B2 (en) Composite semipermeable membrane and method for manufacturing composite semipermeable membrane
JP2017213501A (en) Composite semipermeable membrane and method for producing composite semipermeable membrane
JP5239228B2 (en) Manufacturing method of composite semipermeable membrane
JP6702181B2 (en) Composite semipermeable membrane
JP6511808B2 (en) Composite semipermeable membrane
JP2009262089A (en) Manufacturing method of composite semi-permeable membrane
JP2009078218A (en) Method of manufacturing composite semi-permeable membrane
JP2013223861A (en) Composite diaphragm
WO2017057378A1 (en) Composite semipermeable membrane
JP2010234284A (en) Composite semipermeable membrane
JP4872800B2 (en) Method for treating composite semipermeable membrane and method for producing salt-treated composite semipermeable membrane
WO2024048695A1 (en) Composite semipermeable membrane and method for producing composite semipermeable membrane
JP2009220023A (en) Method for manufacturing composite semi-permeable membrane
WO2022138975A1 (en) Composite semipermeable membrane
KR20220069097A (en) composite semipermeable membrane

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017504837

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16878785

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16878785

Country of ref document: EP

Kind code of ref document: A1