WO2017110743A1 - Large structure maintenance method, method for maintaining wind-power generation facility, and unmanned aircraft - Google Patents

Large structure maintenance method, method for maintaining wind-power generation facility, and unmanned aircraft Download PDF

Info

Publication number
WO2017110743A1
WO2017110743A1 PCT/JP2016/087797 JP2016087797W WO2017110743A1 WO 2017110743 A1 WO2017110743 A1 WO 2017110743A1 JP 2016087797 W JP2016087797 W JP 2016087797W WO 2017110743 A1 WO2017110743 A1 WO 2017110743A1
Authority
WO
WIPO (PCT)
Prior art keywords
maintenance
unmanned airplane
unit
rotor blade
wire
Prior art date
Application number
PCT/JP2016/087797
Other languages
French (fr)
Japanese (ja)
Inventor
直哉 小長井
靖之 福島
浩 磯部
康寛 松永
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015254111A external-priority patent/JP2017115787A/en
Priority claimed from JP2016224278A external-priority patent/JP2017125493A/en
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2017110743A1 publication Critical patent/WO2017110743A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U70/00Launching, take-off or landing arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/02Initiating means
    • B64C13/16Initiating means actuated automatically, e.g. responsive to gust detectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C25/00Alighting gear
    • B64C25/32Alighting gear characterised by elements which contact the ground or similar surface 
    • B64C25/34Alighting gear characterised by elements which contact the ground or similar surface  wheeled type, e.g. multi-wheeled bogies
    • B64C25/36Arrangements or adaptations of wheels, tyres or axles in general
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/24Aircraft characterised by the type or position of power plants using steam or spring force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/50Maintenance or repair
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to a maintenance method for large structures, a maintenance method for wind power generation facilities, and an unmanned airplane.
  • inspections have been conducted on wind power generation facilities, bridges, high-rise buildings, etc.
  • the inspection of the rotor blade of a conventional wind power generation facility has been performed by the operator according to the following procedure. The worker climbs to the nacelle part of the wind power generation facility and approaches the rotor blade while descending by rope access. An operator conducts visual inspection or hammering inspection near the rotor blade.
  • Patent Document 1 discloses that an air temperature device is used to change the temperature inside the rotor blade, and this is applied from the outside with an infrared camera mounted on an unmanned airplane or the like. A method of observing is disclosed. The defect of the rotor blade is found by observing the difference in temperature change between the normal part and the abnormal part with an infrared camera or the like.
  • Patent Document 1 since the method described in Patent Document 1 requires an air heat device mounted in the wind power generation facility, it cannot be applied to a wind power generation facility in which no air heat device is mounted.
  • large-scale wind power generation equipment of megawatt class requires a high-power air heat device to change the internal temperature, so installing the air heat device requires enormous costs and time for modification. Necessary.
  • the present invention has been made to solve the above problems, and provides a large structure maintenance method and an unmanned airplane capable of reducing the time and cost required for maintenance of a large structure maintenance object.
  • Another object of the present invention is to provide a method for maintaining a wind power generation facility and an unmanned airplane that can reduce the time and cost required for maintenance of an object to be maintained such as a rotor blade of the wind power generation facility.
  • a maintenance method for a large structure includes a step of fixing the fixing portion to the guide of the maintenance object, a step of landing an unmanned airplane on the maintenance object in a state where the fixing portion is fixed to the guide, And a step of performing maintenance on the maintenance object in which the fixing portion is fixed by the maintenance unit.
  • the maintenance unit of the unmanned airplane includes a striking unit that strikes the maintenance target, and the step of performing the maintenance includes the striking for the diagnosis of the maintenance target.
  • a step of hitting the maintenance object using a unit may be included.
  • the step of performing the maintenance includes a step of acquiring vibration generated in the maintenance target object by hitting using the hitting unit by a sensor installed on the unmanned airplane or the maintenance target object. Further, it may be included.
  • the unmanned airplane further includes a winding mechanism for winding the wire, and after the step of landing the unmanned airplane on the maintenance object, the unmanned airplane sends out the wire to the unmanned airplane. There may be further provided a step of moving.
  • the winding mechanism further includes a moving amount measuring unit that measures the wire sending amount
  • the step of moving the unmanned airplane includes the wire feeding operation and the winding operation.
  • the step of measuring the amount of wire delivered by the moving amount measuring unit may be included.
  • the unmanned airplane further includes a pair of telescopic mechanisms arranged symmetrically with respect to the wire, the tip of which moves in a direction perpendicular to the wire feeding direction. May be.
  • the maintenance unit is provided at the tip of the telescopic mechanism.
  • the unmanned airplane further includes a camera unit for photographing an appearance of the maintenance object
  • the step of performing the maintenance further includes the maintenance object using the camera unit.
  • a step of photographing may be included.
  • the unmanned airplane further includes a pair of telescopic mechanisms arranged symmetrically with respect to the wire, the tip of which moves in a direction perpendicular to the wire feeding direction. May be.
  • the maintenance unit is provided at the tip of the telescopic mechanism.
  • each of the plurality of guides provided in the maintenance object may be cut.
  • the unmanned airplane main body a plurality of rotor blades for flying the unmanned airplane main body, a fixing part fixed to a maintenance object, and the fixing part And a maintenance unit for performing maintenance on the maintenance object to which the fixing portion is fixed.
  • the unmanned airplane may further include a winding mechanism that winds up the wire, and the winding mechanism may include a moving amount measuring unit that measures the amount of the wire sent out.
  • the maintenance unit may include a hitting unit that hits the maintenance target and a sensor that acquires vibration generated in the maintenance target by the hitting unit.
  • the unmanned aerial vehicle may further include a pair of expansion / contraction mechanisms arranged symmetrically with respect to the wire, the tip of which moves in a direction perpendicular to the wire sending direction.
  • the maintenance unit is provided at the tip of the telescopic mechanism.
  • an unmanned airplane including a gripping mechanism having a moving mechanism and a maintenance unit that can be moved to a maintenance position.
  • the wind power generation equipment maintenance method includes the step of landing the unmanned airplane on the rotor blade of the wind power generation equipment and gripping the leading edge or trailing edge of the rotor blade by the gripping mechanism, and the moving mechanism of the gripping mechanism, A step of moving the unmanned airplane on the leading edge or a trailing edge; a step of moving the maintenance unit to a maintenance position; and a step of performing maintenance of the rotor blade by the maintenance unit.
  • the maintenance unit of the unmanned airplane includes a striking unit that strikes the rotor blade, and the maintenance step includes the striking unit for diagnosis of the rotor blade. And using the step of striking the rotor blade.
  • the step of performing the maintenance further includes a step of acquiring vibration generated in the rotor blade by hitting using the hitting unit by a sensor installed on the unmanned airplane or the rotor blade. But you can.
  • the unmanned airplane further includes a camera unit for photographing the appearance of the rotor blade, and the maintenance step further photographs the rotor blade using the camera unit. Steps may be included.
  • the unmanned airplane further includes a winding mechanism, and a wire having one end connected to the winding mechanism, and the other end of the wire is connected to the maintenance unit,
  • the maintenance unit can be lowered and raised, and the winding mechanism includes a winding amount measuring unit that measures the amount of wire drawn, and the moving mechanism measures the amount of movement of the unmanned airplane on the rotor blade.
  • a movement amount measuring unit may be included.
  • the unmanned airplane may further include a tilt sensor, and the shape of the trailing edge may be measured by the tilt sensor.
  • the position of the maintenance unit on the rotor blade may be specified using the shape of the trailing edge measured by the tilt sensor.
  • the unmanned airplane main body the plurality of rotor blades for flying the unmanned airplane main body, the unmanned airplane main body, and a part of the maintenance target And holding the unmanned airplane main body on the maintenance object, and a maintenance unit for performing maintenance on the maintenance object gripped by the gripping mechanism.
  • the gripping mechanism may include a moving mechanism for traveling on the maintenance target.
  • the unmanned airplane further includes a winding mechanism and a wire having one end connected to the winding mechanism, and the other end of the wire is connected to the maintenance unit so that the maintenance unit can be lowered and raised. It is good.
  • the unmanned airplane further includes a winding mechanism and a wire having one end connected to the winding mechanism, and the other end of the wire is connected to the maintenance unit so that the maintenance unit can be lowered and raised.
  • the winding mechanism includes a winding amount measuring unit that measures the amount of the wire drawn
  • the moving mechanism includes a moving amount measuring unit that measures the amount of movement of the unmanned airplane on the maintenance target. May be included.
  • the maintenance unit may include a striking unit that strikes the rotor blade and a sensor that acquires vibration generated in the rotor blade by the striking unit.
  • the unmanned airplane may further include an inclination sensor that measures the inclination of the unmanned airplane with respect to the ground.
  • the maintenance object may be a rotor blade of a wind power generation facility, and the gripping mechanism may grip a leading edge or a trailing edge of the rotor blade.
  • the large structure maintenance method and unmanned airplane according to the present invention can reduce the time and cost required for the maintenance of the large structure maintenance object.
  • the maintenance method and unmanned aircraft of the wind power generation facility it is possible to reduce the time and cost required for maintenance of a maintenance target object such as a rotor blade of the wind power generation facility.
  • a maintenance method for a wind power generation facility according to an embodiment based on the present invention and an unmanned airplane according to an embodiment based on a first aspect of the present invention will be described with reference to the drawings.
  • a maintenance object of a large structure that is maintained by an unmanned airplane is a rotor blade of a wind power generation facility.
  • FIG. 1 is a front view showing an external appearance of the wind power generation facility in the present embodiment.
  • the wind power generation facility 1 includes a tower 5, a nacelle 2 mounted on the top of the tower 5, a rotor 3 mounted on the nacelle 2, and three rotor blades 4 (4a, 4b and 4c).
  • the center side end of the rotor blade 4 is connected to the rotor 3.
  • the rotor blade 4 can rotate in the direction of the angle ⁇ shown in FIG. 1 about an axis extending in the nacelle 2 in the horizontal direction. This rotation can be stopped by a brake mechanism (not shown).
  • the rotor blade 4 can be rotated around an axis extending in the longitudinal direction of each of the rotor blades 4a, 4b and 4c by a rotation mechanism (not shown).
  • the rotation about the longitudinal direction of the rotor blade 4 can be performed in the direction of the angle ⁇ or the pitch angle shown in FIG. This rotation can be stopped by a brake mechanism (not shown).
  • the rotor blade 4 rotates in a certain direction (the direction of the angle ⁇ ), and the leading edge in the rotation direction is called the leading edge 7 and the trailing edge is called the trailing edge 8.
  • FIG. 2 is a partially enlarged view showing the structure of the rotor blade in the present embodiment.
  • FIG. 2 shows a state in which the rotor blade 4 is stopped with the leading edge 7 downward and the trailing edge 8 upward.
  • the trailing edge 8 is provided with a plurality of guides 6 at regular intervals.
  • the trailing edge 8 provided with the guide 6 is on the rear side with respect to the rotation direction of the rotor blade 4 (the direction of the angle ⁇ ).
  • interval which provides the guide 6 can be changed suitably.
  • the guide 6 is constituted by a cut.
  • the guide 6 can be configured by a structure other than the notch.
  • FIG. 3 is a plan view showing the structure of the unmanned airplane in the present embodiment
  • FIG. 4 is a front view showing the structure of the unmanned airplane in the present embodiment.
  • the unmanned airplane 10 includes an unmanned airplane main body 30, a motor 11, and a rotary wing 12 connected to the motor 11.
  • the unmanned airplane 10 has a controller 13 that controls the aircraft.
  • An inverter 14 that drives the motor 11 and a wireless communication unit 15 that performs wireless communication are connected to the controller 13.
  • the unmanned airplane main body 30 is formed in a substantially rectangular shape in plan view.
  • a motor 11 and a rotor blade 12 are provided at the tip of each of the four arms extending in the diagonal direction of the unmanned airplane main body 30.
  • the external shape of the unmanned airplane main body 30 and the number of motors 11 and rotor blades 12 can be variously changed.
  • the unmanned airplane 10 communicates with other devices by the wireless communication unit 15 and flies by manual operation or automatic operation.
  • the unmanned airplane 10 is equipped with various sensors (not shown) such as a GPS unit, a magnetic sensor, a gyro sensor, and a barometer.
  • the unmanned aerial vehicle 10 flies while performing three-dimensional positioning by controlling the number of rotations of the rotor blade 12 and the like based on the values obtained from these sensors.
  • the unmanned aerial vehicle 10 has a maintenance unit 16 for performing maintenance work on the rotor blade.
  • the maintenance unit 16 performs various inspections and operations in cooperation with the controller 13.
  • the unmanned airplane 10 includes a fixed portion 17 fixed to the guide 6 of the rotor blade 4, a wire 18 having one end attached to the fixed portion 17, and a winding mechanism 19 that winds the wire 18 while the other end of the wire 18 is fixed. And.
  • the winding mechanism 19 includes a moving amount measuring unit 20 that measures the amount of wire 18 delivered.
  • the winding mechanism 19 includes a drum (not shown) and a drive unit that rotationally drives the drum.
  • the wire 18 is wound around the drum.
  • the winding mechanism 19 is provided on the side surface of the unmanned airplane body 30 such that the wire 18 extends from the side surface of the unmanned airplane body 30.
  • the position where the winding mechanism 19 is provided can be changed.
  • the winding mechanism 19 is preferably provided at a position where the unmanned airplane 10 is stabilized on the surface of the rotor blade 4 when the unmanned airplane 10 is suspended by the wire 18.
  • the wire 18 may be of any structure that can suspend the unmanned airplane 10.
  • the wire is not limited to a metal wire, and may be a resin wire or a wire formed of a chain.
  • a maintenance unit 16, a camera unit 22, and a passive wheel 21 are provided on the bottom surface of the unmanned airplane main body 30.
  • the passive wheel 21 is for smoothly moving on the rotor blade 4 in a state where the unmanned airplane 10 has landed on the surface of the rotor blade 4.
  • the passive wheels 21 are constituted by wheels, and are provided at four locations on the unmanned airplane main body 30.
  • the maintenance operation of the rotor blade 4 is performed using the unmanned airplane 10 as described above.
  • Maintenance work by the unmanned aerial vehicle 10 includes work for obtaining the state of the rotor blade 4, for example, photo shooting with a camera and hammering inspection, defect repair work for the rotor blade 4, cleaning work, and the like.
  • the unmanned airplane 10 in order to avoid the influence of wind, the unmanned airplane 10 is landed on the rotor blade 4 with the fixing portion 17 fixed to the guide 6 provided on the rotor blade 4. More specifically, the unmanned airplane 10 is landed on the rotor blade 4 so that the unmanned airplane 10 is suspended by the wire 18 in which the fixing portion 17 is fixed to the guide 6. Maintenance work is performed in a stable state after landing.
  • FIG. 5 is a front view showing the position of the rotor blade when performing maintenance work in the present embodiment.
  • the rotor blade 4a to be subjected to the hammering test is stopped so as to be substantially horizontal with the ground.
  • the rotor blade 4a is stopped so that the trailing edge 8 is on the upper side.
  • the trailing edge 8 is provided with a plurality of guides 6 as shown.
  • the unmanned airplane 10 is caused to fly to the vicinity of the sky above the rotor blade 4a.
  • the wire 18 and the fixing portion 17 are sent out from the unmanned airplane 10 by the winding mechanism 19. Since the amount to be sent out can be confirmed by the movement amount measuring unit 20, the designated appropriate length is sent out. The fixed portion 17 and the wire 18 that have been sent out are hung from the unmanned airplane 10 because the unmanned airplane 10 is waiting in the air.
  • FIG. 6 is a view seen from the longitudinal direction of the rotor blade, showing a state where the fixed portion of the unmanned airplane according to the present embodiment is fixed to the guide of the rotor blade.
  • the fixing portion 17 is a plate-like member, and the end portion of the wire 18 is connected to the center portion of the plate-like fixing portion.
  • the width of the cut forming the guide 6 is smaller than the width of the fixed portion 17.
  • FIG. 7A and FIG. 7B are views seen from the longitudinal direction of the rotor blade, showing different examples in which the fixed portion of the unmanned airplane according to the present embodiment is fixed to the guide of the rotor blade.
  • the guide 6 is formed of a cut bar and a round bar connecting both sides of the cut.
  • the guide 6 is provided as a recess that opens toward the edge of the rotor blade 4.
  • the fixing portion 17 is constituted by a hook-shaped member.
  • the fixing portion 17 can be fixed to the guide 6 by engaging the hook-shaped fixing portion 17 with the round bar shown in FIG. 7A or the concave portion shown in FIG. 7B.
  • the unmanned airplane 10 After connecting the fixed part 17 to the guide 6, the unmanned airplane 10 gradually reduces the rotational speed of the rotor blades 12. When the number of revolutions is lowered to a state where the unmanned airplane 10 cannot be stopped in the air, the unmanned airplane 10 lands on the rotor blade 4a with the connecting portion between the guide 6 and the fixed portion 17 as a starting point.
  • the aircraft control of the unmanned airplane 10 may be performed and the aircraft of the unmanned airplane 10 may be inclined before landing. Even if the aircraft is tilted, the unmanned airplane 10 is connected to the guide 6 by the wire 18, so that it does not move further than the length of the wire 18. Furthermore, it is possible to land stably by the tension acting from the wire 18.
  • the pitch angle of the rotor blade 4 may be tilted in advance so that the surface of the rotor blade 4 faces obliquely upward. By doing so, it is not necessary to make the unmanned airplane 10 vertical when landing, so that stable landing can be achieved. Further, when the unmanned airplane 10 is suspended by the wire 18, it can be avoided that the unmanned airplane 10 does not come into contact with the rotor blade 4.
  • the hammering inspection apparatus includes a striking unit that strikes the rotor blade and a sensor that acquires vibration generated in the rotor blade by the striking unit. This sensor may be arranged on the rotor blade, and the vibration generated by the striking unit may be acquired by the rotor blade sensor. As shown in FIGS. 4 and 6, since the maintenance unit 16 is provided at a position sandwiched between the passive wheels 21, the distance between the maintenance unit 16 and the rotor blade 4 is determined by the passive wheels 21 when performing a hit inspection. Can be kept constant.
  • a solenoid actuator or the like can be used as the hitting portion.
  • a sensor capable of measuring vibration such as an acceleration pickup can be used. The acquired data is subjected to pass / fail determination after vibration analysis, and the result is recorded in the controller 13.
  • FIG. 8 is a diagram showing coordinates on the rotor blade in the present embodiment.
  • the data of the inspection position is also recorded in association with the inspection result.
  • the position in the “X” direction shown in FIG. 8 can be obtained from the design value of the guide 6 that is currently connected, and the position in the “Y” direction can be obtained from the value of the moving amount measuring unit 20.
  • the inspection position may be taken by the camera unit 22, and an image may be recorded in association with the inspection position.
  • These inspection results, inspection positions, and image data may be transmitted to other devices on the ground by the wireless communication unit 15.
  • the inspection position or the defect position may be marked. By marking the mark, the operator can easily find the defect position when the rotor blade is repaired manually.
  • FIG. 9 and 10 are diagrams showing a state in which the unmanned airplane according to the present embodiment performs maintenance work.
  • the other inspection position moves downward or upward as shown in FIG. 9 by the passive wheel 21 such as a tire attached to the unmanned airplane 10 and the winding mechanism 19.
  • the passive wheel 21 is provided so as to roll up and down.
  • a winding mechanism 19 is used as power for moving in the vertical direction.
  • the inspection position P is a vertical row that can be moved by the guide 6 that is currently connected, and the inspection interval can be set arbitrarily.
  • the passive wheel 21 may not be in contact with the shape and angle of the rotor blade 4a.
  • the maintenance unit 16 does not reach the surface of the rotor blade 4 and cannot be inspected.
  • the pitch angle of the rotor blade 4a is changed so that the passive wheel 21 contacts.
  • the maintenance unit 16 can be made to reach the surface of the rotor blade 4, and a hammering test or the like can be performed.
  • the operation moves to the guide 6 where the inspections are not completed.
  • This movement is performed by ascending the unmanned airplane 10 again to the sky, releasing the connection between the guide 6 and the fixed portion 17 and then connecting the fixed portion 17 to the other guide 6.
  • the inspection is executed in the same procedure, and the inspection is performed on all the designated guides 6. Further, the same inspection is performed on the back surface of the rotor blade 4a.
  • the rotor blade 4a After the rotor blade 4a is inspected, the rotor blade 4b and the rotor blade 4c are similarly inspected to complete the inspection of all the rotor blades.
  • the rotor blade is inspected.
  • the rotor blade 4 is provided with the guide 6 and the fixing portion 17 provided at the tip of the wire 18 is fixed to the guide 6 so that the unmanned airplane 10 Can be landed on the rotor blade.
  • the unmanned airplane 10 can be stabilized on the rotor blade 4, and various maintenance operations can be performed in a stable state.
  • the unmanned airplane 10 Since the unmanned airplane 10 is connected to the rotor blade 4 by the wire 18, it is possible to prevent the unmanned airplane 10 from falling during work.
  • the guide 6 is provided rearward with respect to the rotation direction of the rotor blade 4, it is possible to prevent a significant deterioration in rotational efficiency even when the rotor blade is normally rotated for power generation.
  • the pitch angle of the rotor blade 4 can be changed to make the unmanned airplane 10 face the rotor blade 4 at a constant angle. It becomes possible. As a result, the maintenance work can be performed only on the lower surface of the unmanned airplane 10. By doing so, a plurality of maintenance units are provided in different directions and a mechanism for moving the maintenance units is not necessary, so that the structure of the maintenance unit and the unmanned airplane can be simplified.
  • a winding mechanism 19 that winds the wire 18 provided with the fixing portion 17 at one end is provided so that the unmanned airplane 10 can move up and down while being suspended from the wire 18.
  • the winding mechanism 19 may be omitted and the wire 18 may be fixed in length.
  • the maintenance unit 16 can be suspended from the unmanned airplane 10 by another wire, and a winding mechanism is provided on the wire that suspends the maintenance unit 16. With the maintenance unit 16 suspended, it can be moved up and down using a winding mechanism.
  • the extensible mechanism 23 has its tip moved in a direction perpendicular to the delivery direction of the wire 18.
  • a pair of expansion / contraction mechanisms 23 are provided and are arranged symmetrically with respect to the wire 18.
  • the maintenance unit 16 or the camera unit 22 is provided at the tip of the telescopic mechanism 23. You may attach both the maintenance unit 16 and the camera unit 22 to the front-end
  • the expansion and contraction mechanism 23 expands and contracts at the same distance from the left and right at the same time, and the posture of the unmanned airplane 10 can be kept horizontal by performing inspection.
  • the up and down movement of the unmanned airplane 10 can also be performed while keeping the level. As a result, a wider range of inspection can be performed with the fixed portion 17 of the unmanned airplane 10 connected to one guide 6.
  • expansion / contraction mechanism 23 various known expansion / contraction mechanisms can be used.
  • a pantograph mechanism can be used.
  • the unmanned aerial vehicle 10 can be used for maintenance objects of various large structures such as bridges, dams, dikes, and high-rise buildings in addition to rotor blades.
  • the guide 6 is provided on the maintenance object of the bridge 24.
  • the fixed portion 17 of the unmanned airplane 10 is connected to the guide 6 provided on the bridge 24. In this state, the maintenance of the bridge 24 by the unmanned airplane 10 can be performed.
  • a wind power generation facility maintenance method according to an embodiment based on the present invention and an unmanned airplane according to an embodiment based on the second aspect of the present invention will be described with reference to the drawings.
  • a maintenance object of an unmanned airplane is a rotor blade of a wind power generation facility.
  • FIG. 13 is a front view showing an external appearance of the wind power generation facility in the present embodiment.
  • the wind power generation facility 1 includes a tower 5, a nacelle 2 mounted on the top of the tower 5, a rotor 3 mounted on the nacelle 2, and three rotor blades 4 (4a, 4b and 4c).
  • the center side end of the rotor blade 4 is connected to the rotor 3.
  • the rotor blade 4 can rotate in the direction of the angle ⁇ shown in FIG. 13 about an axis extending in the nacelle 2 in the horizontal direction. This rotation can be stopped by a brake mechanism (not shown).
  • the rotor blade 4 can be rotated around an axis extending in the longitudinal direction of each of the rotor blades 4a, 4b and 4c by a rotation mechanism (not shown).
  • the rotation about the longitudinal direction of the rotor blade 4 can be performed in the direction of the angle ⁇ or the pitch angle shown in FIG. This rotation can be stopped by a brake mechanism (not shown).
  • FIG. 14 is a diagram showing the structure of the rotor blade near the rotor in the present embodiment.
  • the rotor blade 4 rotates in a certain direction (the direction of the angle ⁇ ), and the leading edge in the rotation direction is called the leading edge 7 and the trailing edge is called the trailing edge 8.
  • a position L where the chord length, which is the length between the leading edge 7 and the trailing edge 8, is maximum is present in the vicinity of the rotor 3.
  • FIG. 15 is a plan view showing the structure of the unmanned airplane in the present embodiment
  • FIG. 16 is a front view showing the structure of the unmanned airplane in the present embodiment.
  • the unmanned airplane 110 includes an unmanned airplane main body 130, a motor 111, and a rotor blade 112 connected to the motor 111.
  • the unmanned airplane 110 has a controller 113 that controls the aircraft.
  • An inverter 114 that drives the motor 111 and a wireless communication unit 115 that performs wireless communication are connected to the controller 113.
  • the unmanned airplane main body 130 is formed in a substantially rectangular shape in plan view.
  • a motor 111 and a rotor blade 112 are provided at the tip of each of the four arms extending in the diagonal direction of the unmanned airplane main body 130.
  • the outer shape of the unmanned airplane main body 130 and the number of motors 111 and rotor blades 112 can be variously changed.
  • the unmanned airplane 110 communicates with other devices by the wireless communication unit 115 and flies by manual operation or automatic operation.
  • the unmanned airplane 110 is equipped with various sensors such as a GPS unit, a magnetic sensor, a gyro sensor, and a barometer (not shown).
  • the unmanned airplane 110 flies while performing three-dimensional positioning by controlling the number of rotations of the rotor blade 112 and the like based on the values obtained from these sensors.
  • the unmanned airplane 110 has a maintenance unit 116 that performs maintenance work on the rotor blade.
  • the maintenance unit 116 performs various inspections and operations in cooperation with the controller 113.
  • the unmanned airplane 110 is equipped with a tilt sensor 128 and can measure the tilt of the unmanned airplane 110 with respect to the ground.
  • the unmanned airplane 110 includes a gripping mechanism 117 below the unmanned airplane main body 130.
  • the gripping mechanism 117 includes a pair of side walls 140 and 140 that extend downward, and a top surface portion 141 that continues to the upper ends of the pair of side walls 140 and 140 and extends in the horizontal direction.
  • the gripping mechanism 117 has a moving mechanism 118 provided on the top surface portion 141.
  • the moving mechanism 118 has a tire driven by a motor (not shown).
  • the gripping mechanism 117 has a passive wheel 119 provided on each of the opposing surfaces of the pair of side walls 140 and 140.
  • a moving mechanism 118 is positioned between the pair of passive wheels 119 and 119.
  • the passive wheel 119 has a pair of wheels arranged along the inner surface of the side wall 140.
  • the gripping mechanism 117 has a pressing portion 120 that can push out the passive wheel 119 in a direction protruding from the side wall 140.
  • the pressing portion 120 is provided at a position corresponding to the passive wheel 119 inside the side wall 140.
  • the pressing unit 120 is configured by a spring, an actuator mechanism, or the like, and can passively or actively project and retract the passive wheel.
  • FIG. 17 is a view seen from the longitudinal direction of the rotor blade, showing a state in which the unmanned airplane according to the present embodiment grips the rotor blade. More specifically, FIG. 17 shows a state where the gripping mechanism 117 of the unmanned airplane 110 grips the trailing edge 8 of the rotor blade 4. The unmanned airplane 110 may grip the leading edge 7 of the rotor blade 4 by the gripping mechanism 117.
  • the tire of the moving mechanism 118 is in contact with the end surface of the trailing edge 8, and the passive wheel 119 is in contact with the side surface of the trailing edge 8. Yes.
  • the moving mechanism 118 and the passive wheel 119 can roll in a direction along the trailing edge 8.
  • the side wall 140 provided with the passive wheel 119 faces the side surface of the trailing edge 8 and extends substantially in parallel. As shown in FIG. 15, two pairs of side walls 140 and 140 facing each other are provided in the direction along the trailing edge 8, and a total of four side walls 140 are provided.
  • a passive ring 119 is provided on the inner surface of each side wall 140.
  • the maintenance unit 116 can be moved to a maintenance position where maintenance of an object to be maintained is performed. Although the case where the maintenance unit 116 is moved up and down is described in the present embodiment, a mechanism for moving the maintenance unit 116 horizontally may be provided and moved to the maintenance position by moving horizontally.
  • the unmanned airplane 110 has a wire 122 having one end connected to the maintenance unit 116 and a winding mechanism 126 to which the other end of the wire 122 is connected.
  • the winding mechanism 126 has a drum (not shown) and a drive unit that rotationally drives the drum.
  • the wire 122 is wound around the drum.
  • the maintenance unit 116 can be raised and lowered by winding or feeding the wire 122 by the winding mechanism 126.
  • the mechanism for raising and lowering the maintenance unit 116 is not limited to the one using the wire 122 and the winding mechanism 126, and for example, a mechanism combining a chain and a gear may be used. Moreover, you may use the arm etc. which are expanded-contracted with a link mechanism.
  • the maintenance unit 116 has a passive wheel 125 that contacts the surface of the rotor blade 4. When the maintenance unit 116 moves up and down, the passive wheel 125 rolls on the surface of the rotor blade 4.
  • the unmanned airplane 110 can move freely along the trailing edge 8 by using the moving mechanism 118.
  • the winding mechanism 126 has a winding amount measuring mechanism 121, and the moving mechanism 118 has a moving amount measuring mechanism 127.
  • the amount of movement of the maintenance unit 116 in the vertical direction and the horizontal direction on the rotor blade 4 is measured by a winding amount measuring mechanism 121 and a moving amount measuring mechanism 127, respectively.
  • the left-right direction with respect to the rotor blade 4 refers to the longitudinal direction of the rotor blade 4 in a state where one rotor blade 4 is fixed horizontally to the ground.
  • the vertical direction means a direction perpendicular to the longitudinal direction.
  • the maintenance unit 116 has a camera unit 123 and a dedicated unit 124 for performing various operations on the surface facing the rotor blade 4.
  • the unit provided in the maintenance unit 116 is selected according to the maintenance work to be performed.
  • the maintenance operation of the rotor blade 4 is performed using the unmanned airplane 110 as described above.
  • Maintenance work by the unmanned airplane 110 includes work for obtaining the state of the rotor blade 4, for example, photography of a camera and sound inspection, as well as defect repair work for the rotor blade 4 and cleaning work.
  • the unmanned airplane 110 in order to avoid the influence of wind, the unmanned airplane 110 is landed on the rotor blade 4 and the trailing edge 8 is gripped by the gripping mechanism 117 to stabilize the unmanned airplane 110. Maintenance work is performed while the unmanned airplane 110 is moved in the left-right direction by the moving mechanism 118 and the maintenance unit 116 is moved in the up-down direction by the winding mechanism 126.
  • FIG. 18 is a front view showing the position of the rotor blade when performing maintenance work in the present embodiment.
  • the rotor blade 4a to be subjected to the hammering test is stopped so as to be substantially horizontal with the ground.
  • the rotor blade 4a is stopped so that the trailing edge 8 is on the upper side.
  • the unmanned airplane 110 is caused to fly to the vicinity of the sky above the rotor blade 4a.
  • FIG. 19 is a view seen from the longitudinal direction of the rotor blade, showing a state in which the unmanned airplane according to the present embodiment grips the rotor blade
  • FIG. 20 shows a state in which the unmanned airplane according to the present embodiment grips the rotor blade. It is the figure which looked at the side of the rotor blade which looked at the state from the center side a little.
  • the unmanned airplane 110 is landed on the trailing edge 8.
  • the unmanned airplane 110 is rotated in the air in a direction in which the pair of opposed passive wheels 119 and 119 can be sandwiched between the trailing edges 8.
  • the passive wheel 119 After landing the unmanned airplane 110, the passive wheel 119 is pushed out by the pressing portion 120 of the gripping mechanism 117, and is gripped by being sandwiched between the trailing edges 8 by the passive wheel 119. As a result, the unmanned airplane 110 can be stabilized on the trailing edge 8. At that time, the end surface of the trailing edge 8 contacts the moving mechanism 118 by the dead weight of the unmanned airplane 110. As shown in FIG. 20, the maintenance unit 116 is located between a pair of side walls 140, 140 aligned in the longitudinal direction of the trailing edge 8.
  • FIG. 21 to FIG. 23 are views showing a state in which the maintenance operation is performed by the maintenance unit while the unmanned airplane according to the present embodiment holds the rotor blade.
  • the maintenance unit 116 is lowered by feeding the wire 122 by the winding mechanism 126.
  • an appearance inspection is performed by the camera unit 123, and a hammering inspection is performed by the dedicated unit 124 including a hammering inspection device.
  • the sound inspection device of the dedicated unit 124 includes a striking unit that strikes the rotor blade and a sensor that acquires vibration generated in the rotor blade by the striking unit.
  • This sensor may be arranged on the rotor blade, and the vibration generated by the striking unit may be acquired by the rotor blade sensor.
  • Various data obtained by the appearance inspection and the hammering inspection are stored in the storage unit in association with the position data measured by the winding amount measuring mechanism 121 and the moving amount measuring mechanism 127.
  • the maintenance unit 116 may not come into contact with the side surface of the rotor blade 4 at the time of hammering inspection, and the hammering inspection may not be performed. In that case, the rotor blade 4 is rotated around the longitudinal axis so that the maintenance unit 116 contacts the side surface of the rotor blade 4.
  • the wire 122 is further sent out by the winding mechanism 126 to lower the maintenance unit 116 from the inspection position P and move to the next inspection position.
  • Each inspection is similarly performed after the movement, and is continued until the inspection is completed at all positions arranged in the vertical direction shown in FIG.
  • the unmanned airplane 110 is moved in the left-right direction using the moving mechanism 118. Similarly, after moving in the left-right direction, various inspections are performed while moving the maintenance unit 116 in the up-down direction.
  • the entire surface of one side of the rotor blade 4a can be inspected.
  • the entire inspection of the rotor blade 4a is completed.
  • the rotor blade 4b and the rotor blade 4c are sequentially inspected by the same process, whereby all the inspection of the rotor blade 4 is completed.
  • Identifying the position where the inspection data is obtained on the surface of the actual rotor blade is useful for comparing the previous inspection result and accumulating information for observing the progress of the defect.
  • a common reference position is required between the position data associated with the inspection data and the actual design value of the rotor blade. .
  • providing the reference position outside the rotor blade 4 is not preferable because a large error may occur due to the deflection of the rotor blade 4 or aging of the wind power generation equipment.
  • the position data in the vertical direction is obtained by measuring the winding amount of the wire 122 by the winding amount measuring mechanism 121, and the position data in the left and right direction is determined by the moving mechanism by the movement amount measuring mechanism 127. It is obtained by measuring the amount of rotation of 118 tires.
  • the position where the inspection data is obtained can be specified on the actual rotor blade 4.
  • the reference position a reference position in the horizontal direction and the vertical direction is required.
  • a method for obtaining the reference position in the left-right direction will be described. First, when the unmanned airplane 110 is moved in the left-right direction by the above-described maintenance method, angle data of the tilt sensor 128 is acquired at each stop position.
  • FIG. 24 is a diagram showing the relationship between the position where the angle data is acquired by the tilt sensor and the absolute value of the angle data obtained by the tilt sensor in the present embodiment.
  • FIG. 24A is a diagram illustrating the position where the angle data is acquired
  • FIG. 24B is a diagram illustrating the absolute value of the angle data of the tilt sensor at each position in the left-right direction.
  • FIG. 24B there is a position where the absolute value of the obtained angle data is minimum.
  • the absolute value of the angle data is minimum.
  • the movement amount measured by the movement amount measuring mechanism 127 is the length of the ridgeline of the trailing edge 8.
  • the measured position can be associated with the actual position on the trailing edge 8.
  • the point where the angle data is the minimum value is used as the reference position.
  • the position where the value is an extreme value or a feature point calculated from all the angle data may be used as the reference position.
  • each point on the ridge line of the trailing edge 8 is set as the reference position, so that the vertical position data obtained by the winding amount measuring mechanism 121 and the actual vertical direction on the rotor blade are obtained. Can be associated with each other.
  • the actual position on the rotor blade 4 including the position in the left and right direction and the position in the up and down direction can be specified by using the reference position in the left and right direction and the up and down direction obtained by the above method.
  • the position where the inspection data is obtained can be specified on the surface of the rotor blade 4.
  • the reference position is determined based on the shape of the rotor blade, the error can be reduced. Further, since it is not necessary to provide a special structure on the rotor blade for obtaining the reference position, it is not necessary to modify the rotor blade.
  • the rotor blade 4 can be stably maintained.
  • the unmanned airplane 110 holds the rotor blade 4, it is possible to prevent the unmanned airplane 110 from falling during maintenance work.
  • the reference position using the shape of the rotor blade, it is possible to accurately associate the position data associated with the inspection data with the actual position on the rotor blade 4.
  • the unmanned airplane 110 can be used not only for rotor blades but also for various maintenance objects such as bridges and high-rise buildings.
  • the gripping mechanism 117 of the unmanned aerial vehicle 110 is configured to grip a part of a maintenance object such as a bridge.
  • the moving mechanism 118 is configured to be able to travel on the maintenance object.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Wind Motors (AREA)

Abstract

Provided are a large structure maintenance method and an unmanned aircraft which make it possible to reduce the time and cost of maintenance for a large structure. The unmanned aircraft (10) is provided with: a fixing portion (17) to be fixed to a guide (6) of an object to be maintained; a wire (18) of which one end is attached to the fixing portion (17); and a maintenance unit. The large structure maintenance method is provided with: a step of fixing the fixing portion (17) to the guide (6) of the object to be maintained (4a); a step of landing the unmanned plane (10) on the object to be maintained (4a) with the fixing portion (17) fixed to the guide (6); and a step of performing maintenance, using the maintenance unit , of the object to be maintained (4a) , to which the fixing portion (17) has been fixed.

Description

大型構造物のメンテナンス方法および風力発電設備のメンテナンス方法ならびに無人飛行機Large structure maintenance method and wind power generation facility maintenance method and unmanned aerial vehicle
 この発明は、大型構造物のメンテナンス方法および風力発電設備のメンテナンス方法ならびに無人飛行機に関する。 The present invention relates to a maintenance method for large structures, a maintenance method for wind power generation facilities, and an unmanned airplane.
 従来から風力発電設備、橋梁、高層建築物などでの検査が行われている。たとえば、従来の風力発電設備のロータブレードの検査は、作業者により次のような手順により行なっていた。作業者が風力発電設備のナセル部まで上り、ロープアクセスにより下降しながらロータブレードに近づく。作業者がロータブレードの付近で目視観察やハンマリングによる打音検査を行なう。 Conventionally, inspections have been conducted on wind power generation facilities, bridges, high-rise buildings, etc. For example, the inspection of the rotor blade of a conventional wind power generation facility has been performed by the operator according to the following procedure. The worker climbs to the nacelle part of the wind power generation facility and approaches the rotor blade while descending by rope access. An operator conducts visual inspection or hammering inspection near the rotor blade.
 その他のロータブレードの検査方法として特許文献1(特表2013-542360)には、空気熱デバイスを用いてロータブレード内部の温度を変化させ、無人飛行機などに搭載した赤外線カメラなどでこれを外側から観察する方法が開示されている。赤外線カメラなどにより正常部と異常部の温度変化の差異を観察することで、ロータブレードの欠陥を見つけている。 As another method for inspecting a rotor blade, Patent Document 1 (Special Table 2013-542360) discloses that an air temperature device is used to change the temperature inside the rotor blade, and this is applied from the outside with an infrared camera mounted on an unmanned airplane or the like. A method of observing is disclosed. The defect of the rotor blade is found by observing the difference in temperature change between the normal part and the abnormal part with an infrared camera or the like.
特表2013-542360号公報Special table 2013-542360 gazette
 従来の作業者がロープアクセスを行なう方法では、メンテナンス対象物ごとにロープアクセスを行なっている。また、風力発電設備では、数十メートルものロータブレードを上から下へ降下しながら作業している。そのため、作業者の負担が大きかった。風力発電設備では、一本のロータブレードへのロープアクセスは上下に往復しながら複数回にわたって行われるため多くの時間を要していた。特に集合型風力発電所(ウィンドファーム)などでは多くの風力発電設備が設置されているため、全ての風力発電設備を検査するには莫大な時間とコストが必要であった。同様に橋梁、ダム、堤防、高層建築などの検査においても、作業負担が大きく、多くの時間が必要であった。 In the conventional method of performing rope access by an operator, rope access is performed for each maintenance target. Also, in wind power generation facilities, several tens of meters of rotor blades are moved down from top to bottom. For this reason, the burden on the worker was great. In a wind power generation facility, rope access to a single rotor blade is performed a plurality of times while reciprocating up and down, so it takes a lot of time. In particular, since a large number of wind power generation facilities are installed in a collective wind power plant (wind farm) or the like, it takes enormous time and cost to inspect all the wind power generation facilities. Similarly, inspecting bridges, dams, dikes, high-rise buildings, etc., have a heavy work load and require a lot of time.
 一方、特許文献1に記載の方法においては、風力発電設備内に搭載された空気熱デバイスが必要とされるため、空気熱デバイスが搭載されていない風力発電設備には適用できない。また、メガワット級の大型の風力発電設備では、内部温度を変化させるために大出力の空気熱デバイスが必要となるので、空気熱デバイスを設置するためには莫大なコストと改造のための時間が必要となる。 On the other hand, since the method described in Patent Document 1 requires an air heat device mounted in the wind power generation facility, it cannot be applied to a wind power generation facility in which no air heat device is mounted. In addition, large-scale wind power generation equipment of megawatt class requires a high-power air heat device to change the internal temperature, so installing the air heat device requires enormous costs and time for modification. Necessary.
 この発明は、上記課題を解決するためになされたものであり、大型構造物のメンテナンス対象物のメンテナンスに要する時間とコストとを減らすことができる、大型構造物のメンテナンス方法および無人飛行機を提供することを目的とする。また、この発明は、風力発電設備のロータブレードなどのメンテナンス対象物のメンテナンスに要する時間とコストとを減らすことができる、風力発電設備のメンテナンス方法および無人飛行機を提供することを目的とする。 The present invention has been made to solve the above problems, and provides a large structure maintenance method and an unmanned airplane capable of reducing the time and cost required for maintenance of a large structure maintenance object. For the purpose. Another object of the present invention is to provide a method for maintaining a wind power generation facility and an unmanned airplane that can reduce the time and cost required for maintenance of an object to be maintained such as a rotor blade of the wind power generation facility.
 この発明に基づいた大型構造物のメンテナンス方法に従えば、大型構造物のメンテナンス対象物のガイドに固定される固定部と、上記固定部に一端が取り付けられたワイヤと、メンテナンスユニットとを備えた無人飛行機を用いて、複数の上記ガイドが設けられた大型構造物のメンテナンス対象物のメンテナンスを行なう。大型構造物のメンテナンス方法は、上記固定部を上記メンテナンス対象物の上記ガイドに固定するステップと、上記固定部を上記ガイドに固定した状態で上記メンテナンス対象物上に無人飛行機を着陸させるステップと、上記メンテナンスユニットによって上記固定部が固定された上記メンテナンス対象物のメンテナンスを行なうステップとを備えている。 According to the large structure maintenance method based on the present invention, a fixed portion fixed to the guide of the large structure maintenance object, a wire having one end attached to the fixed portion, and a maintenance unit are provided. Using an unmanned aerial vehicle, maintenance is performed on a maintenance object of a large structure provided with a plurality of guides. A maintenance method for a large structure includes a step of fixing the fixing portion to the guide of the maintenance object, a step of landing an unmanned airplane on the maintenance object in a state where the fixing portion is fixed to the guide, And a step of performing maintenance on the maintenance object in which the fixing portion is fixed by the maintenance unit.
 上記大型構造物のメンテナンス方法においては、上記無人飛行機の上記メンテナンスユニットは、上記メンテナンス対象物の打撃を行なう打撃部を含み、上記メンテナンスを行なうステップは、上記メンテナンス対象物の診断のために上記打撃部を用いて上記メンテナンス対象物を打撃するステップを含んでもよい。 In the maintenance method of the large structure, the maintenance unit of the unmanned airplane includes a striking unit that strikes the maintenance target, and the step of performing the maintenance includes the striking for the diagnosis of the maintenance target. A step of hitting the maintenance object using a unit may be included.
 上記大型構造物のメンテナンス方法においては、上記メンテナンスを行なうステップは、上記打撃部を用いた打撃によってメンテナンス対象物に発生した振動を上記無人飛行機または上記メンテナンス対象物に設置したセンサにより取得するステップをさらに含んでもよい。 In the maintenance method of the large structure, the step of performing the maintenance includes a step of acquiring vibration generated in the maintenance target object by hitting using the hitting unit by a sensor installed on the unmanned airplane or the maintenance target object. Further, it may be included.
 上記大型構造物のメンテナンス方法においては、上記無人飛行機は、上記ワイヤを巻き取る巻取機構をさらに備え、上記メンテナンス対象物上に無人飛行機を着陸させるステップより後に、上記ワイヤを送り出して上記無人飛行機を移動させるステップをさらに備えてもよい。 In the large structure maintenance method, the unmanned airplane further includes a winding mechanism for winding the wire, and after the step of landing the unmanned airplane on the maintenance object, the unmanned airplane sends out the wire to the unmanned airplane. There may be further provided a step of moving.
 上記大型構造物のメンテナンス方法においては、上記巻取機構は、上記ワイヤの送出量を測定する移動量測定部をさらに備え、上記無人飛行機を移動させるステップは、上記ワイヤの送り出し動作と巻き取り動作を行なう際に、上記ワイヤの送出量を上記移動量測定部で測定するステップを含んでもよい。 In the maintenance method for the large structure, the winding mechanism further includes a moving amount measuring unit that measures the wire sending amount, and the step of moving the unmanned airplane includes the wire feeding operation and the winding operation. When performing, the step of measuring the amount of wire delivered by the moving amount measuring unit may be included.
 上記大型構造物のメンテナンス方法においては、上記無人飛行機は、上記ワイヤの送出方向に対して直角方向にその先端が移動する、上記ワイヤに対して対称に配置された一対の伸縮機構をさらに備えていてもよい。上記メンテナンスユニットは、上記伸縮機構の先端に設けられている。 In the maintenance method for the large structure, the unmanned airplane further includes a pair of telescopic mechanisms arranged symmetrically with respect to the wire, the tip of which moves in a direction perpendicular to the wire feeding direction. May be. The maintenance unit is provided at the tip of the telescopic mechanism.
 上記大型構造物のメンテナンス方法においては、上記無人飛行機は、上記メンテナンス対象物の外観の撮影を行なうカメラユニットをさらに備え、上記メンテナンスを行なうステップはさらに、上記カメラユニットを用いて上記メンテナンス対象物を撮影するステップを含んでもよい。 In the maintenance method for the large structure, the unmanned airplane further includes a camera unit for photographing an appearance of the maintenance object, and the step of performing the maintenance further includes the maintenance object using the camera unit. A step of photographing may be included.
 上記大型構造物のメンテナンス方法においては、上記無人飛行機は、上記ワイヤの送出方向に対して直角方向にその先端が移動する、上記ワイヤに対して対称に配置された一対の伸縮機構をさらに備えていてもよい。上記メンテナンスユニットは、上記伸縮機構の先端に設けられている。 In the maintenance method for the large structure, the unmanned airplane further includes a pair of telescopic mechanisms arranged symmetrically with respect to the wire, the tip of which moves in a direction perpendicular to the wire feeding direction. May be. The maintenance unit is provided at the tip of the telescopic mechanism.
 上記大型構造物のメンテナンス方法においては、上記メンテナンス対象物に設けられた複数の上記ガイドの各々は、切れ込みであってもよい。 In the maintenance method of the large structure, each of the plurality of guides provided in the maintenance object may be cut.
 この発明の第1の局面に基づいた無人飛行機に従えば、無人飛行機本体と、上記無人飛行機本体を飛行させるための複数の回転翼と、メンテナンス対象物に固定される固定部と、上記固定部に一端が取り付けられたワイヤと、上記固定部が固定された上記メンテナンス対象物メンテナンスを行なうメンテナンスユニットとを備えている。 According to the unmanned airplane according to the first aspect of the present invention, the unmanned airplane main body, a plurality of rotor blades for flying the unmanned airplane main body, a fixing part fixed to a maintenance object, and the fixing part And a maintenance unit for performing maintenance on the maintenance object to which the fixing portion is fixed.
 上記無人飛行機においては、上記無人飛行機は、上記ワイヤを巻き取る巻取機構をさらに備え、上記巻取機構は上記ワイヤの送出量を測定する移動量測定部を含んでもよい。 In the unmanned airplane, the unmanned airplane may further include a winding mechanism that winds up the wire, and the winding mechanism may include a moving amount measuring unit that measures the amount of the wire sent out.
 上記無人飛行機においては、上記メンテナンスユニットは、上記メンテナンス対象物を打撃する打撃部と、上記打撃部によってメンテナンス対象物に発生した振動を取得するセンサとを含んでもよい。 In the unmanned airplane, the maintenance unit may include a hitting unit that hits the maintenance target and a sensor that acquires vibration generated in the maintenance target by the hitting unit.
 上記無人飛行機においては、上記無人飛行機は、上記ワイヤの送出方向に対して直角方向にその先端が移動する、上記ワイヤに対して対称に配置された一対の伸縮機構をさらに備えていてもよい。上記メンテナンスユニットは、上記伸縮機構の先端に設けられている。 In the unmanned aerial vehicle, the unmanned aerial vehicle may further include a pair of expansion / contraction mechanisms arranged symmetrically with respect to the wire, the tip of which moves in a direction perpendicular to the wire sending direction. The maintenance unit is provided at the tip of the telescopic mechanism.
 この発明に基づいた風力発電設備のメンテナンス方法に従えば、移動機構を有する把持機構と、メンテナンス位置に移動させることが可能なメンテナンスユニットとを備えた無人飛行機が用いられる。風力発電設備のメンテナンス方法は、上記無人飛行機を風力発電設備のロータブレードに着陸させ上記把持機構によって上記ロータブレードのリーディングエッジまたはトレーリングエッジを把持するステップと、上記把持機構の上記移動機構によって、上記リーディングエッジまたはトレーリングエッジ上を上記無人飛行機が移動するステップと、上記メンテナンスユニットをメンテナンス位置に移動させるステップと、上記メンテナンスユニットによって上記ロータブレードのメンテナンスを行なうステップとを備える。 According to the maintenance method for wind power generation equipment based on the present invention, an unmanned airplane including a gripping mechanism having a moving mechanism and a maintenance unit that can be moved to a maintenance position is used. The wind power generation equipment maintenance method includes the step of landing the unmanned airplane on the rotor blade of the wind power generation equipment and gripping the leading edge or trailing edge of the rotor blade by the gripping mechanism, and the moving mechanism of the gripping mechanism, A step of moving the unmanned airplane on the leading edge or a trailing edge; a step of moving the maintenance unit to a maintenance position; and a step of performing maintenance of the rotor blade by the maintenance unit.
 上記風力発電設備のメンテナンス方法においては、上記無人飛行機の上記メンテナンスユニットは、上記ロータブレードの打撃を行なう打撃部を含み、上記メンテナンスを行なうステップは、上記ロータブレードの診断のために上記打撃部を用いて上記ロータブレードを打撃するステップを含んでもよい。 In the maintenance method of the wind power generation facility, the maintenance unit of the unmanned airplane includes a striking unit that strikes the rotor blade, and the maintenance step includes the striking unit for diagnosis of the rotor blade. And using the step of striking the rotor blade.
 上記風力発電設備のメンテナンス方法においては、上記メンテナンスを行なうステップは、上記打撃部を用いた打撃によってロータブレードに発生した振動を上記無人飛行機または上記ロータブレードに設置したセンサにより取得するステップをさらに含んでもよい。 In the wind power generation facility maintenance method, the step of performing the maintenance further includes a step of acquiring vibration generated in the rotor blade by hitting using the hitting unit by a sensor installed on the unmanned airplane or the rotor blade. But you can.
 上記風力発電設備のメンテナンス方法においては、上記無人飛行機が、上記ロータブレードの外観の撮影を行なうカメラユニットをさらに備え、上記メンテナンスを行なうステップはさらに、上記カメラユニットを用いて上記ロータブレードを撮影するステップを含んでもよい。 In the maintenance method of the wind power generation facility, the unmanned airplane further includes a camera unit for photographing the appearance of the rotor blade, and the maintenance step further photographs the rotor blade using the camera unit. Steps may be included.
 上記風力発電設備のメンテナンス方法においては、上記無人飛行機が巻取機構と、上記巻取機構に一端が接続されたワイヤとをさらに備え、上記ワイヤの他端は上記メンテナンスユニットに接続されて、上記メンテナンスユニットの下降および上昇を可能とし、上記巻取機構は、上記ワイヤの引出量を測定する巻取量測定部を含み、上記移動機構は、ロータブレード上で上記無人飛行機が移動した量を測定する移動量測定部を含んでもよい。 In the maintenance method of the wind power generation facility, the unmanned airplane further includes a winding mechanism, and a wire having one end connected to the winding mechanism, and the other end of the wire is connected to the maintenance unit, The maintenance unit can be lowered and raised, and the winding mechanism includes a winding amount measuring unit that measures the amount of wire drawn, and the moving mechanism measures the amount of movement of the unmanned airplane on the rotor blade. A movement amount measuring unit may be included.
 上記風力発電設備のメンテナンス方法においては、上記無人飛行機が傾斜センサをさらに備え、上記傾斜センサによって上記トレーリングエッジの形状を測定してもよい。 In the maintenance method of the wind power generation facility, the unmanned airplane may further include a tilt sensor, and the shape of the trailing edge may be measured by the tilt sensor.
 上記風力発電設備のメンテナンス方法においては、上記傾斜センサにより測定したトレーリングエッジの形状を用いて、上記ロータブレード上でのメンテナンスユニットの位置を特定してもよい。 In the maintenance method of the wind power generation facility, the position of the maintenance unit on the rotor blade may be specified using the shape of the trailing edge measured by the tilt sensor.
 この発明の第2の局面に基づいた無人飛行機に従えば、無人飛行機本体と、上記無人飛行機本体を飛行させるための複数の回転翼と、上記無人飛行機本体に設けられ、メンテナンス対象物の一部を把持して、上記無人飛行機本体をメンテナンス対象物上に位置させる把持機構と、上記把持機構が把持した上記メンテナンス対象物のメンテナンスを行なうメンテナンスユニットとを備えている。 According to the unmanned airplane according to the second aspect of the present invention, the unmanned airplane main body, the plurality of rotor blades for flying the unmanned airplane main body, the unmanned airplane main body, and a part of the maintenance target And holding the unmanned airplane main body on the maintenance object, and a maintenance unit for performing maintenance on the maintenance object gripped by the gripping mechanism.
 上記無人飛行機においては、上記把持機構は、メンテナンス対象物上を走行するための移動機構を含んでもよい。 In the unmanned aerial vehicle, the gripping mechanism may include a moving mechanism for traveling on the maintenance target.
 上記無人飛行機においては、巻取機構と、上記巻取機構に一端が接続されたワイヤとをさらに備え、上記ワイヤの他端は上記メンテナンスユニットに接続されて、上記メンテナンスユニットの下降および上昇を可能としてもよい。 The unmanned airplane further includes a winding mechanism and a wire having one end connected to the winding mechanism, and the other end of the wire is connected to the maintenance unit so that the maintenance unit can be lowered and raised. It is good.
 上記無人飛行機においては、巻取機構と、上記巻取機構に一端が接続されたワイヤとをさらに備え、上記ワイヤの他端は上記メンテナンスユニットに接続されて、上記メンテナンスユニットの下降および上昇を可能としており、上記巻取機構は、上記ワイヤの引出量を測定する巻取量測定部を含み、上記移動機構は、メンテナンス対象物上で上記無人飛行機が移動した量を測定する移動量測定部を含んでもよい。 The unmanned airplane further includes a winding mechanism and a wire having one end connected to the winding mechanism, and the other end of the wire is connected to the maintenance unit so that the maintenance unit can be lowered and raised. The winding mechanism includes a winding amount measuring unit that measures the amount of the wire drawn, and the moving mechanism includes a moving amount measuring unit that measures the amount of movement of the unmanned airplane on the maintenance target. May be included.
 上記無人飛行機においては、上記メンテナンスユニットは、上記ロータブレードを打撃する打撃部と、上記打撃部によってロータブレードに発生した振動を取得するセンサとを含んでもよい。 In the unmanned airplane, the maintenance unit may include a striking unit that strikes the rotor blade and a sensor that acquires vibration generated in the rotor blade by the striking unit.
 上記無人飛行機においては、無人飛行機の地面に対する傾きを測定する傾斜センサをさらに備えてもよい。 The unmanned airplane may further include an inclination sensor that measures the inclination of the unmanned airplane with respect to the ground.
 上記無人飛行機においては、上記メンテナンス対象物は風力発電設備のロータブレードであり、上記把持機構は上記ロータブレードのリーディングエッジまたはトレーリングエッジを把持してもよい。 In the unmanned airplane, the maintenance object may be a rotor blade of a wind power generation facility, and the gripping mechanism may grip a leading edge or a trailing edge of the rotor blade.
 本発明に係る大型構造物のメンテナンス方法および無人飛行機によると、大型構造物のメンテナンス対象物のメンテナンスに要する時間とコストとを減らすことができる。 The large structure maintenance method and unmanned airplane according to the present invention can reduce the time and cost required for the maintenance of the large structure maintenance object.
 本発明に係る風力発電設備のメンテナンス方法および無人飛行機によると、風力発電設備のロータブレードなどのメンテナンス対象物のメンテナンスに要する時間とコストとを減らすことができる。 According to the maintenance method and unmanned aircraft of the wind power generation facility according to the present invention, it is possible to reduce the time and cost required for maintenance of a maintenance target object such as a rotor blade of the wind power generation facility.
この発明に基づいた実施の形態における風力発電設備の外観を示す正面図である。It is a front view which shows the external appearance of the wind power generation facility in embodiment based on this invention. この発明に基づいた実施の形態におけるロータブレードの構造を示す部分拡大図である。It is the elements on larger scale which show the structure of the rotor blade in embodiment based on this invention. この発明に基づいた実施の形態における無人飛行機の構造を示す平面図である。It is a top view which shows the structure of the unmanned airplane in embodiment based on this invention. この発明に基づいた実施の形態における無人飛行機の構造を示す正面図である。It is a front view which shows the structure of the unmanned airplane in embodiment based on this invention. この発明に基づいた実施の形態においてメンテナンス作業を行なうときのロータブレードの位置を示す正面図である。It is a front view which shows the position of the rotor blade when performing maintenance work in embodiment based on this invention. この発明に基づいた実施の形態の無人飛行機の固定部をロータブレードのガイドに固定した状態を示す、ロータブレードの長手方向から見た図である。It is the figure seen from the longitudinal direction of the rotor blade which shows the state which fixed the fixing | fixed part of the unmanned airplane of embodiment based on this invention to the guide of the rotor blade. この発明に基づいた実施の形態における無人飛行機の固定部をロータブレードのガイドに固定した状態の異なる例を示す、ロータブレードの長手方向から見た図である。It is the figure seen from the longitudinal direction of the rotor blade which shows the example from which the fixing | fixed part of the unmanned airplane in embodiment based on this invention was fixed to the guide of the rotor blade. この発明に基づいた実施の形態における無人飛行機の固定部をロータブレードのガイドに固定した状態の異なる例を示す、ロータブレードの長手方向から見た図である。It is the figure seen from the longitudinal direction of the rotor blade which shows the example from which the fixing | fixed part of the unmanned airplane in embodiment based on this invention was fixed to the guide of the rotor blade. この発明に基づいた実施の形態におけるロータブレード上における座標を示す図である。It is a figure which shows the coordinate on the rotor blade in embodiment based on this invention. この発明に基づいた実施の形態における無人飛行機がメンテナンス作業を行なう状態を示す図である。It is a figure which shows the state which the unmanned airplane in embodiment based on this invention performs a maintenance operation | work. この発明に基づいた実施の形態における無人飛行機がメンテナンス作業を行なう状態を示す図である。It is a figure which shows the state which the unmanned airplane in embodiment based on this invention performs a maintenance operation | work. この発明に基づいた実施の形態における無人飛行機がメンテナンス作業を行なう状態を示す図である。It is a figure which shows the state which the unmanned airplane in embodiment based on this invention performs a maintenance operation | work. この発明に基づいた実施の形態における無人飛行機がメンテナンス作業を行なう状態を示す図である。It is a figure which shows the state which the unmanned airplane in embodiment based on this invention performs a maintenance operation | work. この発明に基づいた実施の形態における風力発電設備の外観を示す正面図である。It is a front view which shows the external appearance of the wind power generation facility in embodiment based on this invention. この発明に基づいた実施の形態におけるロータ付近のロータブレードの構造を示す図である。It is a figure which shows the structure of the rotor blade of the rotor vicinity in embodiment based on this invention. この発明に基づいた実施の形態における無人飛行機の構造を示す平面図である。It is a top view which shows the structure of the unmanned airplane in embodiment based on this invention. この発明に基づいた実施の形態における無人飛行機の構造を示す正面図である。It is a front view which shows the structure of the unmanned airplane in embodiment based on this invention. この発明に基づいた実施の形態の無人飛行機がロータブレードを把持した状態を示すロータブレードの長手方向から見た図である。It is the figure seen from the longitudinal direction of the rotor blade which shows the state which the unmanned airplane of embodiment based on this invention hold | gripped the rotor blade. この発明に基づいた本実施の形態においてメンテナンス作業を行なうときのロータブレードの位置を示す正面図である。It is a front view which shows the position of the rotor blade when performing a maintenance operation | work in this Embodiment based on this invention. この発明に基づいた実施の形態の無人飛行機がロータブレードを把持した状態を示す、ロータブレードの長手方向から見た図である。It is the figure seen from the longitudinal direction of the rotor blade which shows the state which the unmanned airplane of embodiment based on this invention hold | gripped the rotor blade. この発明に基づいた実施の形態の無人飛行機がロータブレードを把持した状態を示す、ロータブレードの側面をやや中心側から見た図である。It is the figure which looked at the side of a rotor blade from the center side a little, showing the state where the unmanned airplane of an embodiment based on this invention grasped the rotor blade. この発明に基づいた実施の形態の無人飛行機がロータブレードを把持した状態でメンテナンスユニットによりメンテナンス作業を行なう状態を示す図である。It is a figure which shows the state which performs a maintenance operation | work with a maintenance unit in the state which the unmanned airplane of embodiment based on this invention hold | gripped the rotor blade. この発明に基づいた実施の形態の無人飛行機がロータブレードを把持した状態でメンテナンスユニットによりメンテナンス作業を行なう状態を示す図である。It is a figure which shows the state which performs a maintenance operation | work with a maintenance unit in the state which the unmanned airplane of embodiment based on this invention hold | gripped the rotor blade. この発明に基づいた実施の形態の無人飛行機がロータブレードを把持した状態でメンテナンスユニットによりメンテナンス作業を行なう状態を示す図である。It is a figure which shows the state which performs a maintenance operation | work with a maintenance unit in the state which the unmanned airplane of embodiment based on this invention hold | gripped the rotor blade. この発明に基づいた実施の形態において、傾斜センサで角度データが取得された位置と傾斜センサで得られた角度データの絶対値との関係を示す図であり、(a)は角度データが取得された位置を示す図であり、(b)は左右方向の各位置における傾斜センサの角度データの絶対値を示す図である。In embodiment based on this invention, it is a figure which shows the relationship between the position where angle data was acquired with the inclination sensor, and the absolute value of angle data acquired with the inclination sensor, (a) is angle data acquired. (B) is a figure which shows the absolute value of the angle data of the inclination sensor in each position of the left-right direction.
 この発明に基づいた実施の形態における風力発電設備のメンテナンス方法およびこの発明の第1の局面に基づいた実施の形態における無人飛行機について、図を参照しながら説明する。本実施の形態においては、一例として、無人飛行機によりメンテナンスを行なう大型構造物のメンテナンス対象物が風力発電設備のロータブレードである場合について説明する。 A maintenance method for a wind power generation facility according to an embodiment based on the present invention and an unmanned airplane according to an embodiment based on a first aspect of the present invention will be described with reference to the drawings. In the present embodiment, as an example, a case will be described in which a maintenance object of a large structure that is maintained by an unmanned airplane is a rotor blade of a wind power generation facility.
 図1は、本実施の形態における風力発電設備の外観を示す正面図である。風力発電設備1は、タワー5と、タワー5の上部に搭載されたナセル2と、ナセル2に搭載されているロータ3と、3枚のロータブレード4(4a,4bおよび4c)を有する。ロータブレード4の中心側端部はロータ3に接続されている。ロータブレード4は、ナセル2内を水平方向に延びる軸を中心に図1に示す角度φの方向に回転することが可能である。この回転は図示しないブレーキ機構によって停止させることが可能である。 FIG. 1 is a front view showing an external appearance of the wind power generation facility in the present embodiment. The wind power generation facility 1 includes a tower 5, a nacelle 2 mounted on the top of the tower 5, a rotor 3 mounted on the nacelle 2, and three rotor blades 4 (4a, 4b and 4c). The center side end of the rotor blade 4 is connected to the rotor 3. The rotor blade 4 can rotate in the direction of the angle φ shown in FIG. 1 about an axis extending in the nacelle 2 in the horizontal direction. This rotation can be stopped by a brake mechanism (not shown).
 また、ロータブレード4は、図示しない回転機構によって各ロータブレード4a,4bおよび4cの長手方向に延びる軸を中心として回転が可能である。ロータブレード4の長手方向を軸とする回転は、図1に示す角度θまたはピッチ角の方向に回転が可能とされている。この回転は図示しないブレーキ機構によって停止させることが可能である。 The rotor blade 4 can be rotated around an axis extending in the longitudinal direction of each of the rotor blades 4a, 4b and 4c by a rotation mechanism (not shown). The rotation about the longitudinal direction of the rotor blade 4 can be performed in the direction of the angle θ or the pitch angle shown in FIG. This rotation can be stopped by a brake mechanism (not shown).
 ロータブレード4は一定方向(角度φの方向)に回転するが、回転方向の前縁をリーディングエッジ7、後縁をトレーリングエッジ8という。 The rotor blade 4 rotates in a certain direction (the direction of the angle φ), and the leading edge in the rotation direction is called the leading edge 7 and the trailing edge is called the trailing edge 8.
 図2は、本実施の形態におけるロータブレードの構造を示す部分拡大図である。図2は、ロータブレード4がリーディングエッジ7を下方に向けトレーリングエッジ8を上方に向けて停止した状態を示している。 FIG. 2 is a partially enlarged view showing the structure of the rotor blade in the present embodiment. FIG. 2 shows a state in which the rotor blade 4 is stopped with the leading edge 7 downward and the trailing edge 8 upward.
 トレーリングエッジ8には複数のガイド6が一定間隔で設けられている。ガイド6が設けられているトレーリングエッジ8は、ロータブレード4の回転方向(角度φの方向)に対して後方側となる。ガイド6を設ける間隔は適宜変更することができる。ガイド6は、本実施の形態では切れ込みにより構成されている。ガイド6は、後述するように、切れ込み以外の構造により構成することができる。 The trailing edge 8 is provided with a plurality of guides 6 at regular intervals. The trailing edge 8 provided with the guide 6 is on the rear side with respect to the rotation direction of the rotor blade 4 (the direction of the angle φ). The space | interval which provides the guide 6 can be changed suitably. In the present embodiment, the guide 6 is constituted by a cut. As will be described later, the guide 6 can be configured by a structure other than the notch.
 図3は本実施の形態における無人飛行機の構造を示す平面図、図4は本実施の形態における無人飛行機の構造を示す正面図である。 FIG. 3 is a plan view showing the structure of the unmanned airplane in the present embodiment, and FIG. 4 is a front view showing the structure of the unmanned airplane in the present embodiment.
 無人飛行機10は、無人飛行機本体30と、モータ11と、モータ11に接続された回転翼12とを有する。無人飛行機10は、機体制御を行なうコントローラ13を有している。コントローラ13には、モータ11を駆動させるインバータ14および無線通信を行う無線通信ユニット15が接続されている。 The unmanned airplane 10 includes an unmanned airplane main body 30, a motor 11, and a rotary wing 12 connected to the motor 11. The unmanned airplane 10 has a controller 13 that controls the aircraft. An inverter 14 that drives the motor 11 and a wireless communication unit 15 that performs wireless communication are connected to the controller 13.
 無人飛行機本体30は平面視略矩形に形成されている。無人飛行機本体30の対角線方向に延びる4本のアームの各々の先端に、モータ11および回転翼12が設けられている。無人飛行機本体30の外形ならびにモータ11および回転翼12の数などは種々変更することができる。 The unmanned airplane main body 30 is formed in a substantially rectangular shape in plan view. A motor 11 and a rotor blade 12 are provided at the tip of each of the four arms extending in the diagonal direction of the unmanned airplane main body 30. The external shape of the unmanned airplane main body 30 and the number of motors 11 and rotor blades 12 can be variously changed.
 無人飛行機10は、無線通信ユニット15で他装置と通信を行ない、マニュアル操縦または自動操縦で飛行する。無人飛行機10は、図示しないGPSユニットや磁気センサ、ジャイロセンサ、気圧計などの各種センサを搭載している。無人飛行機10は、これらのセンサから得られた値により回転翼12の回転数などを制御することで、3次元の位置決めを行ないながら飛行する。 The unmanned airplane 10 communicates with other devices by the wireless communication unit 15 and flies by manual operation or automatic operation. The unmanned airplane 10 is equipped with various sensors (not shown) such as a GPS unit, a magnetic sensor, a gyro sensor, and a barometer. The unmanned aerial vehicle 10 flies while performing three-dimensional positioning by controlling the number of rotations of the rotor blade 12 and the like based on the values obtained from these sensors.
 無人飛行機10はロータブレードに対してメンテナンス作業を行なうメンテナンスユニット16を有している。メンテナンスユニット16はコントローラ13と協調しながら各種の検査や作業を行う。 The unmanned aerial vehicle 10 has a maintenance unit 16 for performing maintenance work on the rotor blade. The maintenance unit 16 performs various inspections and operations in cooperation with the controller 13.
 無人飛行機10は、ロータブレード4のガイド6に固定される固定部17と、固定部17に一端が取り付けられたワイヤ18と、ワイヤ18の他端が固定されワイヤ18を巻き取る巻取機構19とを備えている。 The unmanned airplane 10 includes a fixed portion 17 fixed to the guide 6 of the rotor blade 4, a wire 18 having one end attached to the fixed portion 17, and a winding mechanism 19 that winds the wire 18 while the other end of the wire 18 is fixed. And.
 巻取機構19は、ワイヤ18の送出量を測定する移動量測定部20を備えている。巻取機構19は図示しないドラムとドラムを回転駆動する駆動部とを有している。ワイヤ18はドラムに巻き付けられている。 The winding mechanism 19 includes a moving amount measuring unit 20 that measures the amount of wire 18 delivered. The winding mechanism 19 includes a drum (not shown) and a drive unit that rotationally drives the drum. The wire 18 is wound around the drum.
 巻取機構19は、無人飛行機本体30の側面からワイヤ18が延出するように、無人飛行機本体30の側面に設けられている。巻取機構19を設ける位置は変更することが可能である。巻取機構19は、無人飛行機10がワイヤ18により吊り下げられた状態となった場合に、無人飛行機10がロータブレード4の表面で安定する位置に設けることが好ましい。ワイヤ18は、無人飛行機10を吊り下げられる構造のものであれば良い。金属製のワイヤに限らず、樹脂製のワイヤや、チェーンなどで形成されたワイヤでもよい。 The winding mechanism 19 is provided on the side surface of the unmanned airplane body 30 such that the wire 18 extends from the side surface of the unmanned airplane body 30. The position where the winding mechanism 19 is provided can be changed. The winding mechanism 19 is preferably provided at a position where the unmanned airplane 10 is stabilized on the surface of the rotor blade 4 when the unmanned airplane 10 is suspended by the wire 18. The wire 18 may be of any structure that can suspend the unmanned airplane 10. The wire is not limited to a metal wire, and may be a resin wire or a wire formed of a chain.
 無人飛行機本体30の底面にはメンテナンスユニット16、カメラユニット22および受動輪21が設けられている。受動輪21は無人飛行機10がロータブレード4の表面に着陸した状態において、ロータブレード4上をスムーズに移動するためのものである。受動輪21は、本実施の形態では車輪により構成されており、無人飛行機本体30の4箇所に設けられている。 A maintenance unit 16, a camera unit 22, and a passive wheel 21 are provided on the bottom surface of the unmanned airplane main body 30. The passive wheel 21 is for smoothly moving on the rotor blade 4 in a state where the unmanned airplane 10 has landed on the surface of the rotor blade 4. In the present embodiment, the passive wheels 21 are constituted by wheels, and are provided at four locations on the unmanned airplane main body 30.
 上述のような無人飛行機10を用いて、ロータブレード4のメンテナンス作業を行なう。無人飛行機10によるメンテナンス作業には、ロータブレード4の状態を取得する作業、たとえばカメラによる写真撮影や打音検査の他、ロータブレード4の欠陥修復作業、清掃作業などが含まれる。 The maintenance operation of the rotor blade 4 is performed using the unmanned airplane 10 as described above. Maintenance work by the unmanned aerial vehicle 10 includes work for obtaining the state of the rotor blade 4, for example, photo shooting with a camera and hammering inspection, defect repair work for the rotor blade 4, cleaning work, and the like.
 無人飛行機が空中で飛行しながら風力発電設備のメンテナンス作業を行なう場合には、空中における3次元の位置決めが必要である。この場合、風の影響を大きく受けるため位置決め精度が低く、上記のようなメンテナンス作業を行なうことは現実的には困難である。 When performing maintenance work on wind power generation equipment while an unmanned airplane flies in the air, three-dimensional positioning in the air is necessary. In this case, the positioning accuracy is low because it is greatly affected by the wind, and it is practically difficult to perform the above maintenance work.
 本実施の形態においては、風の影響を回避するため、ロータブレード4に設けられたガイド6に固定部17を固定した状態で、無人飛行機10をロータブレード4に着陸させる。より具体的には、ガイド6に固定部17が固定されたワイヤ18により無人飛行機10が吊り下げられる状態となるようにロータブレード4上に無人飛行機10を着陸させる。着陸して安定した状態において、メンテナンス作業を行なう。 In this embodiment, in order to avoid the influence of wind, the unmanned airplane 10 is landed on the rotor blade 4 with the fixing portion 17 fixed to the guide 6 provided on the rotor blade 4. More specifically, the unmanned airplane 10 is landed on the rotor blade 4 so that the unmanned airplane 10 is suspended by the wire 18 in which the fixing portion 17 is fixed to the guide 6. Maintenance work is performed in a stable state after landing.
 風力発電設備のロータブレード4へのメンテナンス作業の方法についてより詳細を説明する。ここでは特に、メンテナンス作業としてロータブレードの打音検査が含まれる場合について説明する。 The details of the maintenance work method for the rotor blade 4 of the wind power generation facility will be described. Here, a case where a hammering sound inspection of the rotor blade is included as the maintenance work will be described.
 図5は、本実施の形態においてメンテナンス作業を行なうときのロータブレードの位置を示す正面図である。まず、図5に示すように、打音検査の対象となるロータブレード4aを地面と略水平となるように停止させる。ロータブレード4aは、トレーリングエッジ8が上側になるように停止させる。トレーリングエッジ8には図示するように複数のガイド6が設けられている。その後、無人飛行機10をロータブレード4aの上空付近まで飛行させる。 FIG. 5 is a front view showing the position of the rotor blade when performing maintenance work in the present embodiment. First, as shown in FIG. 5, the rotor blade 4a to be subjected to the hammering test is stopped so as to be substantially horizontal with the ground. The rotor blade 4a is stopped so that the trailing edge 8 is on the upper side. The trailing edge 8 is provided with a plurality of guides 6 as shown. Thereafter, the unmanned airplane 10 is caused to fly to the vicinity of the sky above the rotor blade 4a.
 次に無人飛行機10からワイヤ18および固定部17を巻取機構19で送り出す。送り出す量は移動量測定部20にて確認できるので、指定した適切な長さが送り出される。送り出された固定部17とワイヤ18は、無人飛行機10が空中で待機しているため、無人飛行機10からぶら下がった状態となる。 Next, the wire 18 and the fixing portion 17 are sent out from the unmanned airplane 10 by the winding mechanism 19. Since the amount to be sent out can be confirmed by the movement amount measuring unit 20, the designated appropriate length is sent out. The fixed portion 17 and the wire 18 that have been sent out are hung from the unmanned airplane 10 because the unmanned airplane 10 is waiting in the air.
 図6は、本実施の形態における無人飛行機の固定部をロータブレードのガイドに固定した状態を示す、ロータブレードの長手方向から見た図である。 FIG. 6 is a view seen from the longitudinal direction of the rotor blade, showing a state where the fixed portion of the unmanned airplane according to the present embodiment is fixed to the guide of the rotor blade.
 図6に示すように、無人飛行機10を移動させることにより、ぶら下がった状態の固定部17をガイド6に引っ掛ける。固定部17は板状の部材であり、板状の固定部の中心部にワイヤ18の端部が接続されている。本実施の形態ではガイド6を構成する切れ込みの幅が固定部17の幅よりも小さい。これにより固定部17をガイド6に引っ掛けて固定することができる。 As shown in FIG. 6, by hanging the unmanned airplane 10, the hanging fixed part 17 is hooked on the guide 6. The fixing portion 17 is a plate-like member, and the end portion of the wire 18 is connected to the center portion of the plate-like fixing portion. In the present embodiment, the width of the cut forming the guide 6 is smaller than the width of the fixed portion 17. As a result, the fixing portion 17 can be hooked and fixed to the guide 6.
 図7Aおよび図7Bは、本実施の形態における無人飛行機の固定部をロータブレードのガイドに固定した状態の異なる例を示す、ロータブレードの長手方向から見た図である。図7Aではガイド6は切れ込みおよび切れ込みの両側部をつなぐ丸棒により構成されている。図7Bではガイド6は、ロータブレード4の縁部に向かって開放した凹部として設けられている。 FIG. 7A and FIG. 7B are views seen from the longitudinal direction of the rotor blade, showing different examples in which the fixed portion of the unmanned airplane according to the present embodiment is fixed to the guide of the rotor blade. In FIG. 7A, the guide 6 is formed of a cut bar and a round bar connecting both sides of the cut. In FIG. 7B, the guide 6 is provided as a recess that opens toward the edge of the rotor blade 4.
 これに対応して図7Aおよび図7Bに示す例においては、固定部17をフック状の部材で構成している。フック状の固定部17を図7Aに示す丸棒または図7Bに示す凹部に係止することで、固定部17をガイド6に固定することができる。ガイド6および固定部17の構造については、相互に係合できるものであればよく、その他種々の構造を採用することができる。 Correspondingly, in the example shown in FIGS. 7A and 7B, the fixing portion 17 is constituted by a hook-shaped member. The fixing portion 17 can be fixed to the guide 6 by engaging the hook-shaped fixing portion 17 with the round bar shown in FIG. 7A or the concave portion shown in FIG. 7B. About the structure of the guide 6 and the fixing | fixed part 17, what is necessary is just to be able to engage with each other, and various other structures can be employ | adopted.
 固定部17をガイド6に連結した後、無人飛行機10は徐々に回転翼12の回転数を落とす。無人飛行機10が空中に静止できない状態まで回転数を下げたところで、無人飛行機10はガイド6と固定部17の連結部を起点として、ロータブレード4a上に着陸する。 After connecting the fixed part 17 to the guide 6, the unmanned airplane 10 gradually reduces the rotational speed of the rotor blades 12. When the number of revolutions is lowered to a state where the unmanned airplane 10 cannot be stopped in the air, the unmanned airplane 10 lands on the rotor blade 4a with the connecting portion between the guide 6 and the fixed portion 17 as a starting point.
 このとき、無人飛行機10の下面がロータブレード4aの表面に接触しながら着陸することが好ましい。このように着陸させるために、無人飛行機10の機体制御を行なって無人飛行機10の機体を斜めにしてから着陸しても良い。機体を斜めにしても、ワイヤ18で無人飛行機10がガイド6に連結されているため、ワイヤ18の長さより遠くへ移動してしまうことが無い。さらに、ワイヤ18から作用する張力により安定して着陸することができる。 At this time, it is preferable to land while the lower surface of the unmanned airplane 10 is in contact with the surface of the rotor blade 4a. In order to land in this way, the aircraft control of the unmanned airplane 10 may be performed and the aircraft of the unmanned airplane 10 may be inclined before landing. Even if the aircraft is tilted, the unmanned airplane 10 is connected to the guide 6 by the wire 18, so that it does not move further than the length of the wire 18. Furthermore, it is possible to land stably by the tension acting from the wire 18.
 また、予めロータブレード4のピッチ角を傾けて、ロータブレード4の表面が斜め上を向くようにしてもよい。このようにすることで無人飛行機10を着陸時に垂直にする必要が無くなるため、安定して着陸できる。また、無人飛行機10がワイヤ18により吊り下げられた状態となった時に、無人飛行機10がロータブレード4に接触しない状態となることを避けることができる。 Alternatively, the pitch angle of the rotor blade 4 may be tilted in advance so that the surface of the rotor blade 4 faces obliquely upward. By doing so, it is not necessary to make the unmanned airplane 10 vertical when landing, so that stable landing can be achieved. Further, when the unmanned airplane 10 is suspended by the wire 18, it can be avoided that the unmanned airplane 10 does not come into contact with the rotor blade 4.
 ロータブレード4に着陸した後、無人飛行機10に搭載されているメンテナンスユニット16により打音検査が行われる。打音検査装置は、ロータブレードを打撃する打撃部と、打撃部によってロータブレードに発生した振動を取得するセンサとを含む。このセンサをロータブレードに配置し、打撃部によって発生した振動をロータブレードのセンサで取得してもよい。図4および図6に示すように、メンテナンスユニット16が受動輪21に挟まれる位置に設けられているので、打撃検査を行なう際にはメンテナンスユニット16とロータブレード4との距離を受動輪21によって一定に保つことができる。 After landing on the rotor blade 4, a hammering test is performed by the maintenance unit 16 mounted on the unmanned airplane 10. The hammering inspection apparatus includes a striking unit that strikes the rotor blade and a sensor that acquires vibration generated in the rotor blade by the striking unit. This sensor may be arranged on the rotor blade, and the vibration generated by the striking unit may be acquired by the rotor blade sensor. As shown in FIGS. 4 and 6, since the maintenance unit 16 is provided at a position sandwiched between the passive wheels 21, the distance between the maintenance unit 16 and the rotor blade 4 is determined by the passive wheels 21 when performing a hit inspection. Can be kept constant.
 打撃部としてはソレノイドアクチュエータなどを用いることができる。センサとしては、加速度ピックアップなど振動を測定可能なものを用いることができる。取得されたデータは振動解析後、合否判定を行ない、結果をコントローラ13に記録しておく。 A solenoid actuator or the like can be used as the hitting portion. As the sensor, a sensor capable of measuring vibration such as an acceleration pickup can be used. The acquired data is subjected to pass / fail determination after vibration analysis, and the result is recorded in the controller 13.
 図8は、本実施の形態におけるロータブレード上における座標を示す図である。コントローラ13に結果が記録される際には、検査結果に関連付けられて検査位置のデータも記録される。検査位置に関し、図8に示される“X”方向の位置は現在連結しているガイド6の設計値から求められ、“Y”方向の位置は移動量測定部20の値から求めることができる。 FIG. 8 is a diagram showing coordinates on the rotor blade in the present embodiment. When the result is recorded in the controller 13, the data of the inspection position is also recorded in association with the inspection result. Regarding the inspection position, the position in the “X” direction shown in FIG. 8 can be obtained from the design value of the guide 6 that is currently connected, and the position in the “Y” direction can be obtained from the value of the moving amount measuring unit 20.
 検査位置をカメラユニット22により撮影してもよく、前記検査位置に追加して関連付けて画像を記録してもよい。これらの検査結果、検査位置および画像のデータを無線通信ユニット15で地上にある他装置に送信してもよい。 The inspection position may be taken by the camera unit 22, and an image may be recorded in association with the inspection position. These inspection results, inspection positions, and image data may be transmitted to other devices on the ground by the wireless communication unit 15.
 合否判定後、検査位置もしくは欠陥位置に印を打つようにしてもよい。印を打つことで、ロータブレードの修復を人手で行なう場合には、作業者が欠陥位置を容易に見つけることができる。 After the pass / fail judgment, the inspection position or the defect position may be marked. By marking the mark, the operator can easily find the defect position when the rotor blade is repaired manually.
 図9および図10は、本実施の形態における無人飛行機がメンテナンス作業を行なう状態を示す図である。一箇所の検査が終わると、他の検査位置へは無人飛行機10に取り付けられたタイヤなどの受動輪21と巻取機構19により、図9で示す下方または上方へ移動する。受動輪21が設けられていることで上下方向の移動をスムーズに行うことができる。受動輪21は上下方向に転動するように設けられている。上下方向に移動する際の動力としては、巻取機構19が用いられる。 9 and 10 are diagrams showing a state in which the unmanned airplane according to the present embodiment performs maintenance work. When the inspection of one place is completed, the other inspection position moves downward or upward as shown in FIG. 9 by the passive wheel 21 such as a tire attached to the unmanned airplane 10 and the winding mechanism 19. By providing the passive wheel 21, the vertical movement can be performed smoothly. The passive wheel 21 is provided so as to roll up and down. A winding mechanism 19 is used as power for moving in the vertical direction.
 移動後は同様に検査が行われる。検査後はさらに移動し、残りの検査位置の検査を実施していく。ここで、検査位置Pは、現在連結しているガイド6で移動可能な上下方向の列であり検査間隔は任意に設定し得る。 After the move, the same inspection will be performed. After the inspection, it moves further and inspects the remaining inspection positions. Here, the inspection position P is a vertical row that can be moved by the guide 6 that is currently connected, and the inspection interval can be set arbitrarily.
 移動した地点によってはロータブレード4aの形状と角度により、受動輪21が接しない場合がある。この場合にはメンテナンスユニット16がロータブレード4の表面に届かず検査することができない。この場合は受動輪21が接するようにロータブレード4aのピッチ角を変更する。メンテナンスユニット16をロータブレード4の表面に到達させることが可能となり、打音検査などを行なうことができる。 Depending on the point of movement, the passive wheel 21 may not be in contact with the shape and angle of the rotor blade 4a. In this case, the maintenance unit 16 does not reach the surface of the rotor blade 4 and cannot be inspected. In this case, the pitch angle of the rotor blade 4a is changed so that the passive wheel 21 contacts. The maintenance unit 16 can be made to reach the surface of the rotor blade 4, and a hammering test or the like can be performed.
 図10に示すように1列すべての点検が完了した後は検査が完了していないガイド6に移動する。この移動は、無人飛行機10を再び上空に浮上させ、ガイド6と固定部17の連結を解除した後、他のガイド6に固定部17を連結することで行なう。移動後も、同様の手順で検査が実行され、指定した全てのガイド6に対して検査が実施される。また、ロータブレード4aの裏面に対しても同じように検査が行なわれる。 As shown in FIG. 10, after all the inspections in one row are completed, the operation moves to the guide 6 where the inspections are not completed. This movement is performed by ascending the unmanned airplane 10 again to the sky, releasing the connection between the guide 6 and the fixed portion 17 and then connecting the fixed portion 17 to the other guide 6. After the movement, the inspection is executed in the same procedure, and the inspection is performed on all the designated guides 6. Further, the same inspection is performed on the back surface of the rotor blade 4a.
 ロータブレード4aの検査実施後は、ロータブレード4b、ロータブレード4cに対しても同様に検査を行なうことで、全てのロータブレードの検査が完了する。 After the rotor blade 4a is inspected, the rotor blade 4b and the rotor blade 4c are similarly inspected to complete the inspection of all the rotor blades.
 以上により、ロータブレードの検査が実施されるが、本実施の形態では、特に、ロータブレード4にガイド6を設け、ワイヤ18の先端に設けた固定部17をガイド6に固定して無人飛行機10をロータブレード上に着陸させることができる。これにより、無人飛行機10をロータブレード4上で安定させることが可能となり、各種メンテナンス作業を安定した状態で実施することができる。 As described above, the rotor blade is inspected. In the present embodiment, in particular, the rotor blade 4 is provided with the guide 6 and the fixing portion 17 provided at the tip of the wire 18 is fixed to the guide 6 so that the unmanned airplane 10 Can be landed on the rotor blade. Thereby, the unmanned airplane 10 can be stabilized on the rotor blade 4, and various maintenance operations can be performed in a stable state.
 ワイヤ18で無人飛行機10がロータブレード4につながっているため、作業時に無人飛行機10が落下することを防止することができる。 Since the unmanned airplane 10 is connected to the rotor blade 4 by the wire 18, it is possible to prevent the unmanned airplane 10 from falling during work.
 ガイド6がロータブレード4の回転方向に対して後方に設けられているので、通常ロータブレードが発電のために回転している際も、回転効率の大幅な悪化を防ぐことが可能である。 Since the guide 6 is provided rearward with respect to the rotation direction of the rotor blade 4, it is possible to prevent a significant deterioration in rotational efficiency even when the rotor blade is normally rotated for power generation.
 ワイヤ18を固定して無人飛行機10をロータブレード4上に着陸させて作業する際、ロータブレード4のピッチ角を変更することで、無人飛行機10を一定の角度でロータブレード4に相対させることが可能となる。その結果、メンテナンス作業を無人飛行機10の下面のみで行なうことができる。このようにすることで、異なる方向に複数のメンテナンスユニットを設けたり、メンテナンスユニットを移動させるための機構が不要となるので、メンテナンスユニットや無人飛行機の構造を簡易なものにすることができる。 When working by landing the unmanned airplane 10 on the rotor blade 4 with the wire 18 fixed, the pitch angle of the rotor blade 4 can be changed to make the unmanned airplane 10 face the rotor blade 4 at a constant angle. It becomes possible. As a result, the maintenance work can be performed only on the lower surface of the unmanned airplane 10. By doing so, a plurality of maintenance units are provided in different directions and a mechanism for moving the maintenance units is not necessary, so that the structure of the maintenance unit and the unmanned airplane can be simplified.
 本実施の形態では、一端に固定部17が設けられたワイヤ18を巻き取る巻取機構19を設け、無人飛行機10がワイヤ18に吊り下げられた状態で上下に移動できるようにした。巻取機構19を省略してワイヤ18を長さが固定されたものとしてもよい。この場合には、メンテナンスユニット16を無人飛行機10から別のワイヤで吊り下げ可能とし、メンテナンスユニット16を吊り下げるワイヤに巻取機構を設ける。メンテナンスユニット16を吊り下げた状態で、巻取機構を用いて上下移動させることができる。 In the present embodiment, a winding mechanism 19 that winds the wire 18 provided with the fixing portion 17 at one end is provided so that the unmanned airplane 10 can move up and down while being suspended from the wire 18. The winding mechanism 19 may be omitted and the wire 18 may be fixed in length. In this case, the maintenance unit 16 can be suspended from the unmanned airplane 10 by another wire, and a winding mechanism is provided on the wire that suspends the maintenance unit 16. With the maintenance unit 16 suspended, it can be moved up and down using a winding mechanism.
 図11に示す無人飛行機10は伸縮機構23をさらに有している。伸縮機構23はワイヤ18の送出方向に対して直角方向にその先端が移動する。伸縮機構23は一対設けられており、ワイヤ18に対して対称に配置されている。メンテナンスユニット16またはカメラユニット22が、伸縮機構23の先端に設けられている。メンテナンスユニット16およびカメラユニット22の両方を伸縮機構23の先端に取り付けても良い。また、一対の伸縮機構23を二組設け、一方の組の伸縮機構23の先端にメンテナンスユニット16を設け、他方の組の伸縮機構23の先端にカメラユニット22を設けても良い。 The unmanned airplane 10 shown in FIG. The extensible mechanism 23 has its tip moved in a direction perpendicular to the delivery direction of the wire 18. A pair of expansion / contraction mechanisms 23 are provided and are arranged symmetrically with respect to the wire 18. The maintenance unit 16 or the camera unit 22 is provided at the tip of the telescopic mechanism 23. You may attach both the maintenance unit 16 and the camera unit 22 to the front-end | tip of the expansion-contraction mechanism 23. FIG. Alternatively, two pairs of the expansion / contraction mechanisms 23 may be provided, the maintenance unit 16 may be provided at the tip of one set of the expansion / contraction mechanisms 23, and the camera unit 22 may be provided at the tip of the other set of the expansion / contraction mechanisms 23.
 伸縮機構23が左右同時に同じ距離だけ伸縮し、検査を行うことで無人飛行機10の姿勢を水平に保つことができる。無人飛行機10の上下動も、水平を保って行なうことができる。これにより一箇所のガイド6に無人飛行機10の固定部17を連結した状態でより広範囲の検査が可能となる。 The expansion and contraction mechanism 23 expands and contracts at the same distance from the left and right at the same time, and the posture of the unmanned airplane 10 can be kept horizontal by performing inspection. The up and down movement of the unmanned airplane 10 can also be performed while keeping the level. As a result, a wider range of inspection can be performed with the fixed portion 17 of the unmanned airplane 10 connected to one guide 6.
 伸縮機構23としては、公知の種々の伸縮機構を用いることができる。たとえばパンタグラフ機構などを用いることができる。 As the expansion / contraction mechanism 23, various known expansion / contraction mechanisms can be used. For example, a pantograph mechanism can be used.
 本実施の形態では、無人飛行機10により風力発電設備のロータブレード4のメンテナンスを行なう場合について説明した。無人飛行機10はロータブレードのほか、橋梁、ダム、堤防、高層建築物などの様々な大型構造物のメンテナンス対象物に対して使用することができる。 In the present embodiment, the case where maintenance of the rotor blade 4 of the wind power generation facility is performed by the unmanned airplane 10 has been described. The unmanned aerial vehicle 10 can be used for maintenance objects of various large structures such as bridges, dams, dikes, and high-rise buildings in addition to rotor blades.
 たとえば図12に示すような橋梁24のメンテナンス作業においては、橋梁24のメンテナンス対象物にガイド6を設ける。無人飛行機10の固定部17は、橋梁24に設けられたガイド6と連結される。この状態で無人飛行機10による橋梁24のメンテナンスを行なうことができる。 For example, in the maintenance work of the bridge 24 as shown in FIG. 12, the guide 6 is provided on the maintenance object of the bridge 24. The fixed portion 17 of the unmanned airplane 10 is connected to the guide 6 provided on the bridge 24. In this state, the maintenance of the bridge 24 by the unmanned airplane 10 can be performed.
 次に、この発明に基づいた実施の形態における風力発電設備のメンテナンス方法およびこの発明の第2の局面に基づいた実施の形態における無人飛行機について、図を参照しながら説明する。本実施の形態においては、一例として、無人飛行機のメンテナンス対象物が風力発電設備のロータブレードである場合について説明する。 Next, a wind power generation facility maintenance method according to an embodiment based on the present invention and an unmanned airplane according to an embodiment based on the second aspect of the present invention will be described with reference to the drawings. In the present embodiment, as an example, a case will be described in which a maintenance object of an unmanned airplane is a rotor blade of a wind power generation facility.
 図13は、本実施の形態における風力発電設備の外観を示す正面図である。風力発電設備1は、タワー5と、タワー5の上部に搭載されたナセル2と、ナセル2に搭載されているロータ3と、3枚のロータブレード4(4a,4bおよび4c)を有する。ロータブレード4の中心側端部はロータ3に接続されている。ロータブレード4は、ナセル2内を水平方向に延びる軸を中心に図13に示す角度φの方向に回転することが可能である。この回転は図示しないブレーキ機構によって停止させることが可能である。 FIG. 13 is a front view showing an external appearance of the wind power generation facility in the present embodiment. The wind power generation facility 1 includes a tower 5, a nacelle 2 mounted on the top of the tower 5, a rotor 3 mounted on the nacelle 2, and three rotor blades 4 (4a, 4b and 4c). The center side end of the rotor blade 4 is connected to the rotor 3. The rotor blade 4 can rotate in the direction of the angle φ shown in FIG. 13 about an axis extending in the nacelle 2 in the horizontal direction. This rotation can be stopped by a brake mechanism (not shown).
 また、ロータブレード4は、図示しない回転機構によって各ロータブレード4a,4bおよび4cの長手方向に延びる軸を中心として回転が可能である。ロータブレード4の長手方向を軸とする回転は、図13に示す角度θまたはピッチ角の方向に回転が可能とされている。この回転は図示しないブレーキ機構によって停止させることが可能である。 The rotor blade 4 can be rotated around an axis extending in the longitudinal direction of each of the rotor blades 4a, 4b and 4c by a rotation mechanism (not shown). The rotation about the longitudinal direction of the rotor blade 4 can be performed in the direction of the angle θ or the pitch angle shown in FIG. This rotation can be stopped by a brake mechanism (not shown).
 図14は、本実施の形態におけるロータ付近のロータブレードの構造を示す図である。
 ロータブレード4は一定方向(角度φの方向)に回転するが、回転方向の前縁をリーディングエッジ7、後縁をトレーリングエッジ8という。リーディングエッジ7とトレーリングエッジ8との間の長さである翼弦長が最大となる位置Lは、ロータ3の付近に存在している。翼弦長が最大となる位置Lをロータ3の付近に設けることで、風力発電設備1の発電効率を向上させている。
FIG. 14 is a diagram showing the structure of the rotor blade near the rotor in the present embodiment.
The rotor blade 4 rotates in a certain direction (the direction of the angle φ), and the leading edge in the rotation direction is called the leading edge 7 and the trailing edge is called the trailing edge 8. A position L where the chord length, which is the length between the leading edge 7 and the trailing edge 8, is maximum is present in the vicinity of the rotor 3. By providing the position L where the chord length is maximum in the vicinity of the rotor 3, the power generation efficiency of the wind power generation facility 1 is improved.
 図15は本実施の形態における無人飛行機の構造を示す平面図、図16は本実施の形態における無人飛行機の構造を示す正面図である。 15 is a plan view showing the structure of the unmanned airplane in the present embodiment, and FIG. 16 is a front view showing the structure of the unmanned airplane in the present embodiment.
 無人飛行機110は、無人飛行機本体130と、モータ111と、モータ111に接続された回転翼112とを有する。無人飛行機110は、機体制御を行なうコントローラ113を有している。コントローラ113には、モータ111を駆動させるインバータ114および無線通信を行なう無線通信ユニット115が接続されている。 The unmanned airplane 110 includes an unmanned airplane main body 130, a motor 111, and a rotor blade 112 connected to the motor 111. The unmanned airplane 110 has a controller 113 that controls the aircraft. An inverter 114 that drives the motor 111 and a wireless communication unit 115 that performs wireless communication are connected to the controller 113.
 無人飛行機本体130は平面視略矩形に形成されている。無人飛行機本体130の対角線方向に延びる4本のアームの各々の先端に、モータ111および回転翼112が設けられている。無人飛行機本体130の外形ならびにモータ111および回転翼112の数などは種々変更することができる。 The unmanned airplane main body 130 is formed in a substantially rectangular shape in plan view. A motor 111 and a rotor blade 112 are provided at the tip of each of the four arms extending in the diagonal direction of the unmanned airplane main body 130. The outer shape of the unmanned airplane main body 130 and the number of motors 111 and rotor blades 112 can be variously changed.
 無人飛行機110は、無線通信ユニット115で他装置と通信を行ない、マニュアル操縦または自動操縦で飛行する。無人飛行機110は、図示しないGPSユニットや磁気センサ、ジャイロセンサ、気圧計などの各種センサを搭載している。無人飛行機110は、これらのセンサから得られた値により回転翼112の回転数などを制御することで、3次元の位置決めを行ないながら飛行している。 The unmanned airplane 110 communicates with other devices by the wireless communication unit 115 and flies by manual operation or automatic operation. The unmanned airplane 110 is equipped with various sensors such as a GPS unit, a magnetic sensor, a gyro sensor, and a barometer (not shown). The unmanned airplane 110 flies while performing three-dimensional positioning by controlling the number of rotations of the rotor blade 112 and the like based on the values obtained from these sensors.
 無人飛行機110はロータブレードに対してメンテナンス作業を行なうメンテナンスユニット116を有している。メンテナンスユニット116はコントローラ113と協調しながら各種の検査や作業を行う。無人飛行機110は、傾斜センサ128を搭載しており、地面に対する無人飛行機110の傾きを測定することができる。 The unmanned airplane 110 has a maintenance unit 116 that performs maintenance work on the rotor blade. The maintenance unit 116 performs various inspections and operations in cooperation with the controller 113. The unmanned airplane 110 is equipped with a tilt sensor 128 and can measure the tilt of the unmanned airplane 110 with respect to the ground.
 無人飛行機110は、無人飛行機本体130の下方に把持機構117を備えている。把持機構117は、下方に向かって広がる一対の側壁140,140と、一対の側壁140,140の上端に連続し水平方向に延びる天面部141とを有している。把持機構117は、天面部141に設けられた移動機構118を有する。移動機構118は、図示しないモータによって駆動されるタイヤを有している。 The unmanned airplane 110 includes a gripping mechanism 117 below the unmanned airplane main body 130. The gripping mechanism 117 includes a pair of side walls 140 and 140 that extend downward, and a top surface portion 141 that continues to the upper ends of the pair of side walls 140 and 140 and extends in the horizontal direction. The gripping mechanism 117 has a moving mechanism 118 provided on the top surface portion 141. The moving mechanism 118 has a tire driven by a motor (not shown).
 把持機構117は、一対の側壁140,140の対向する面の各々に設けられた受動輪119を有している。一対の受動輪119,119の間に移動機構118が位置する。受動輪119は、側壁140の内側の面に沿って並ぶ一対の車輪を有している。把持機構117は、受動輪119を側壁140から突出する方向に押し出すことができる押付部120を有している。押付部120は、側壁140の内部の、受動輪119に対応する位置に設けられている。押付部120は、ばねやアクチュエータ機構などにより構成されており、受動的あるいは能動的に受動輪を突出および後退させることが可能である。 The gripping mechanism 117 has a passive wheel 119 provided on each of the opposing surfaces of the pair of side walls 140 and 140. A moving mechanism 118 is positioned between the pair of passive wheels 119 and 119. The passive wheel 119 has a pair of wheels arranged along the inner surface of the side wall 140. The gripping mechanism 117 has a pressing portion 120 that can push out the passive wheel 119 in a direction protruding from the side wall 140. The pressing portion 120 is provided at a position corresponding to the passive wheel 119 inside the side wall 140. The pressing unit 120 is configured by a spring, an actuator mechanism, or the like, and can passively or actively project and retract the passive wheel.
 図17は、本実施の形態の無人飛行機がロータブレードを把持した状態を示すロータブレードの長手方向から見た図である。より詳しくは、図17は、無人飛行機110の把持機構117がロータブレード4のトレーリングエッジ8を把持した状態を示している。無人飛行機110は、把持機構117によりロータブレード4のリーディングエッジ7を把持するようにしてもよい。 FIG. 17 is a view seen from the longitudinal direction of the rotor blade, showing a state in which the unmanned airplane according to the present embodiment grips the rotor blade. More specifically, FIG. 17 shows a state where the gripping mechanism 117 of the unmanned airplane 110 grips the trailing edge 8 of the rotor blade 4. The unmanned airplane 110 may grip the leading edge 7 of the rotor blade 4 by the gripping mechanism 117.
 把持機構117がロータブレード4のトレーリングエッジ8を把持した状態において、移動機構118のタイヤはトレーリングエッジ8の端面に当接しており、受動輪119はトレーリングエッジ8の側面に当接している。移動機構118および受動輪119は、トレーリングエッジ8に沿う方向に転動することができる。受動輪119が設けられた側壁140は、トレーリングエッジ8の側面に対して対向しかつ略平行に延びる。図15に示すように、互いに対向する一対の側壁140,140はトレーリングエッジ8に沿う方向に2組設けられており、合計4個の側壁140が設けられている。各々の側壁140の内側の面に受動輪119が設けられている。 In a state where the gripping mechanism 117 grips the trailing edge 8 of the rotor blade 4, the tire of the moving mechanism 118 is in contact with the end surface of the trailing edge 8, and the passive wheel 119 is in contact with the side surface of the trailing edge 8. Yes. The moving mechanism 118 and the passive wheel 119 can roll in a direction along the trailing edge 8. The side wall 140 provided with the passive wheel 119 faces the side surface of the trailing edge 8 and extends substantially in parallel. As shown in FIG. 15, two pairs of side walls 140 and 140 facing each other are provided in the direction along the trailing edge 8, and a total of four side walls 140 are provided. A passive ring 119 is provided on the inner surface of each side wall 140.
 メンテナンスユニット116はメンテナンス対象物のメンテナンスを行なうメンテナンス位置に移動させることが可能である。本実施の形態ではメンテナンスユニット116を昇降させる場合について説明するが、メンテナンスユニット116を水平移動させる機構を設けて、水平移動させることによりメンテナンス位置に移動させてもよい。 The maintenance unit 116 can be moved to a maintenance position where maintenance of an object to be maintained is performed. Although the case where the maintenance unit 116 is moved up and down is described in the present embodiment, a mechanism for moving the maintenance unit 116 horizontally may be provided and moved to the maintenance position by moving horizontally.
 無人飛行機110は、一端がメンテナンスユニット116に接続されたワイヤ122と、ワイヤ122の他端が接続された巻取機構126とを有している。巻取機構126は図示しないドラムとドラムを回転駆動する駆動部とを有している。ワイヤ122はドラムに巻き付けられている。巻取機構126によりワイヤ122を巻き取りまたは送り出すことによりメンテナンスユニット116を昇降させることが可能である。 The unmanned airplane 110 has a wire 122 having one end connected to the maintenance unit 116 and a winding mechanism 126 to which the other end of the wire 122 is connected. The winding mechanism 126 has a drum (not shown) and a drive unit that rotationally drives the drum. The wire 122 is wound around the drum. The maintenance unit 116 can be raised and lowered by winding or feeding the wire 122 by the winding mechanism 126.
 メンテナンスユニット116を昇降させる機構は、ワイヤ122と巻取機構126を用いたものに限定されず、たとえばチェーンとギアなどを組み合わせた機構を用いてもよい。また、リンク機構により伸縮するアームなどを用いてもよい。 The mechanism for raising and lowering the maintenance unit 116 is not limited to the one using the wire 122 and the winding mechanism 126, and for example, a mechanism combining a chain and a gear may be used. Moreover, you may use the arm etc. which are expanded-contracted with a link mechanism.
 メンテナンスユニット116は、ロータブレード4の表面に接触する受動輪125を有している。メンテナンスユニット116が昇降する際には、受動輪125がロータブレード4の表面を転動する。無人飛行機110は、移動機構118を用いることによりトレーリングエッジ8に沿って自在に移動することが可能である。巻取機構126は巻取量測定機構121を有しており、移動機構118は移動量測定機構127を有している。 The maintenance unit 116 has a passive wheel 125 that contacts the surface of the rotor blade 4. When the maintenance unit 116 moves up and down, the passive wheel 125 rolls on the surface of the rotor blade 4. The unmanned airplane 110 can move freely along the trailing edge 8 by using the moving mechanism 118. The winding mechanism 126 has a winding amount measuring mechanism 121, and the moving mechanism 118 has a moving amount measuring mechanism 127.
 メンテナンスユニット116のロータブレード4上における上下方向および左右方向への移動量は、それぞれ巻取量測定機構121と移動量測定機構127により測定されている。本明細書において、ロータブレード4に関して左右方向とは一つのロータブレード4を地面と水平に固定した状態においてロータブレード4の長手方向をいう。上下方向とは該長手方向に対して垂直な方向をいう。 The amount of movement of the maintenance unit 116 in the vertical direction and the horizontal direction on the rotor blade 4 is measured by a winding amount measuring mechanism 121 and a moving amount measuring mechanism 127, respectively. In this specification, the left-right direction with respect to the rotor blade 4 refers to the longitudinal direction of the rotor blade 4 in a state where one rotor blade 4 is fixed horizontally to the ground. The vertical direction means a direction perpendicular to the longitudinal direction.
 メンテナンスユニット116は、ロータブレード4に対向する面に、カメラユニット123および各種作業を行なう専用ユニット124を有している。メンテナンスユニット116に設けるユニットは、行なわれるメンテナンス作業に応じて選択される。 The maintenance unit 116 has a camera unit 123 and a dedicated unit 124 for performing various operations on the surface facing the rotor blade 4. The unit provided in the maintenance unit 116 is selected according to the maintenance work to be performed.
 上述のような無人飛行機110を用いて、ロータブレード4のメンテナンス作業を行なう。無人飛行機110によるメンテナンス作業には、ロータブレード4の状態を取得する作業、たとえばカメラによる写真撮影や打音検査の他、ロータブレード4の欠陥修復作業、清掃作業などが含まれる。 The maintenance operation of the rotor blade 4 is performed using the unmanned airplane 110 as described above. Maintenance work by the unmanned airplane 110 includes work for obtaining the state of the rotor blade 4, for example, photography of a camera and sound inspection, as well as defect repair work for the rotor blade 4 and cleaning work.
 無人飛行機が空中で飛行しながら風力発電設備のメンテナンス作業を行なう場合には、空中における3次元の位置決めが必要である。この場合、風の影響を大きく受けるため位置決め精度が低く、上記のようなメンテナンス作業を行なうことは現実的には困難である。 When performing maintenance work on wind power generation equipment while an unmanned airplane flies in the air, three-dimensional positioning in the air is necessary. In this case, the positioning accuracy is low because it is greatly affected by the wind, and it is practically difficult to perform the above maintenance work.
 本実施の形態においては、風の影響を回避するため、無人飛行機110をロータブレード4に着陸させ、トレーリングエッジ8を把持機構117により把持して無人飛行機110を安定させる。無人飛行機110を移動機構118により左右方向に移動させるとともに、巻取機構126によりメンテナンスユニット116を上下方向に移動させながら、メンテナンス作業を行なう。 In this embodiment, in order to avoid the influence of wind, the unmanned airplane 110 is landed on the rotor blade 4 and the trailing edge 8 is gripped by the gripping mechanism 117 to stabilize the unmanned airplane 110. Maintenance work is performed while the unmanned airplane 110 is moved in the left-right direction by the moving mechanism 118 and the maintenance unit 116 is moved in the up-down direction by the winding mechanism 126.
 風力発電設備のロータブレード4へのメンテナンス作業の方法についてより詳細を説明する。ここでは特に、メンテナンス作業としてロータブレードの打音検査が含まれる場合について説明する。 The details of the maintenance work method for the rotor blade 4 of the wind power generation facility will be described. Here, a case where a hammering sound inspection of the rotor blade is included as the maintenance work will be described.
 図18は、本実施の形態においてメンテナンス作業を行なうときのロータブレードの位置を示す正面図である。まず、図18に示すように、打音検査の対象となるロータブレード4aを地面と略水平となるように停止させる。ロータブレード4aは、トレーリングエッジ8が上側になるように停止させる。その後、ロータブレード4aの上空付近まで無人飛行機110を飛行させる。 FIG. 18 is a front view showing the position of the rotor blade when performing maintenance work in the present embodiment. First, as shown in FIG. 18, the rotor blade 4a to be subjected to the hammering test is stopped so as to be substantially horizontal with the ground. The rotor blade 4a is stopped so that the trailing edge 8 is on the upper side. Thereafter, the unmanned airplane 110 is caused to fly to the vicinity of the sky above the rotor blade 4a.
 図19は、本実施の形態の無人飛行機がロータブレードを把持した状態を示す、ロータブレードの長手方向から見た図であり、図20は、本実施の形態の無人飛行機がロータブレードを把持した状態を示す、ロータブレードの側面をやや中心側から見た図である。次に、図19および図20に示すように無人飛行機110をトレーリングエッジ8に着陸させる。着陸の際は、対向する一対の受動輪119,119がトレーリングエッジ8に挟み込むことができる方向に、無人飛行機110を空中で回転させる。 FIG. 19 is a view seen from the longitudinal direction of the rotor blade, showing a state in which the unmanned airplane according to the present embodiment grips the rotor blade, and FIG. 20 shows a state in which the unmanned airplane according to the present embodiment grips the rotor blade. It is the figure which looked at the side of the rotor blade which looked at the state from the center side a little. Next, as shown in FIGS. 19 and 20, the unmanned airplane 110 is landed on the trailing edge 8. At the time of landing, the unmanned airplane 110 is rotated in the air in a direction in which the pair of opposed passive wheels 119 and 119 can be sandwiched between the trailing edges 8.
 無人飛行機110を着陸させた後、把持機構117の押付部120により受動輪119を押出し、受動輪119でトレーリングエッジ8に挟み込むようにして把持する。これにより無人飛行機110をトレーリングエッジ8上に安定させることができる。その際、無人飛行機110の自重によってトレーリングエッジ8の端面が移動機構118に接触する。図20に示すように、メンテナンスユニット116は、トレーリングエッジ8の長手方向に並ぶ一対の側壁140,140の間に位置している。 After landing the unmanned airplane 110, the passive wheel 119 is pushed out by the pressing portion 120 of the gripping mechanism 117, and is gripped by being sandwiched between the trailing edges 8 by the passive wheel 119. As a result, the unmanned airplane 110 can be stabilized on the trailing edge 8. At that time, the end surface of the trailing edge 8 contacts the moving mechanism 118 by the dead weight of the unmanned airplane 110. As shown in FIG. 20, the maintenance unit 116 is located between a pair of side walls 140, 140 aligned in the longitudinal direction of the trailing edge 8.
 図21から図23は、本実施の形態の無人飛行機がロータブレードを把持した状態でメンテナンスユニットによりメンテナンス作業を行なう状態を示す図である。次に、図21に示すように、巻取機構126でワイヤ122を送り出すことでメンテナンスユニット116を下降させる。メンテナンスユニット116が測定位置に到達した時点で、カメラユニット123により外観検査が実施され、打音検査装置を含む専用ユニット124で打音検査が実施される。 FIG. 21 to FIG. 23 are views showing a state in which the maintenance operation is performed by the maintenance unit while the unmanned airplane according to the present embodiment holds the rotor blade. Next, as shown in FIG. 21, the maintenance unit 116 is lowered by feeding the wire 122 by the winding mechanism 126. When the maintenance unit 116 reaches the measurement position, an appearance inspection is performed by the camera unit 123, and a hammering inspection is performed by the dedicated unit 124 including a hammering inspection device.
 専用ユニット124の打音検査装置は、ロータブレードを打撃する打撃部と、打撃部によってロータブレードに発生した振動を取得するセンサとを含む。このセンサをロータブレードに配置し、打撃部によって発生した振動をロータブレードのセンサで取得してもよい。外観検査および打音検査により得られた各種データは、巻取量測定機構121および移動量測定機構127により測定された位置データと関連付けられて記憶部に保存される。 The sound inspection device of the dedicated unit 124 includes a striking unit that strikes the rotor blade and a sensor that acquires vibration generated in the rotor blade by the striking unit. This sensor may be arranged on the rotor blade, and the vibration generated by the striking unit may be acquired by the rotor blade sensor. Various data obtained by the appearance inspection and the hammering inspection are stored in the storage unit in association with the position data measured by the winding amount measuring mechanism 121 and the moving amount measuring mechanism 127.
 ロータブレードの形状によっては、打音検査時にメンテナンスユニット116がロータブレード4の側面と接触しなくなり、打音検査が実施できない場合もある。その場合には、ロータブレード4を長手方向の軸を中心に回転させてメンテナンスユニット116をロータブレード4の側面に接触させる。 Depending on the shape of the rotor blade, the maintenance unit 116 may not come into contact with the side surface of the rotor blade 4 at the time of hammering inspection, and the hammering inspection may not be performed. In that case, the rotor blade 4 is rotated around the longitudinal axis so that the maintenance unit 116 contacts the side surface of the rotor blade 4.
 検査の実施後は、図22に示すように、さらに巻取機構126でワイヤ122を送り出してメンテナンスユニット116を検査位置Pから下降させ、次の検査位置に移動させる。移動後も同様に各検査が実施され、図23に示す上下方向に並ぶ全ての位置で検査が完了するまで続けられる。 After the inspection, as shown in FIG. 22, the wire 122 is further sent out by the winding mechanism 126 to lower the maintenance unit 116 from the inspection position P and move to the next inspection position. Each inspection is similarly performed after the movement, and is continued until the inspection is completed at all positions arranged in the vertical direction shown in FIG.
 上下方向の検査を実施した後は、移動機構118を用いて無人飛行機110を左右方向に移動させる。左右方向に移動した後も、同様にメンテナンスユニット116を上下方向に移動させながら、各種検査を実施する。 After the vertical inspection, the unmanned airplane 110 is moved in the left-right direction using the moving mechanism 118. Similarly, after moving in the left-right direction, various inspections are performed while moving the maintenance unit 116 in the up-down direction.
 以上の工程を繰り返すことでロータブレード4aの片面全面の検査を行なうことができる。反対面についても同様に検査を実施することで、ロータブレード4aの全面の検査が完了する。続いて、同様の工程により、ロータブレード4bおよびロータブレード4cについても順次検査を実施することで、ロータブレード4の全ての検査が完了する。 By repeating the above steps, the entire surface of one side of the rotor blade 4a can be inspected. By similarly inspecting the opposite surface, the entire inspection of the rotor blade 4a is completed. Subsequently, the rotor blade 4b and the rotor blade 4c are sequentially inspected by the same process, whereby all the inspection of the rotor blade 4 is completed.
 次に、ロータブレードの表面における検査データが得られた位置を特定する方法について説明する。 Next, a method for specifying the position where the inspection data is obtained on the surface of the rotor blade will be described.
 検査データが得られた位置を実際のロータブレードの表面上で特定することは、欠陥の経過観察のために前回の点検結果と比較したり、情報を蓄積する上で有用である。ロータブレード4の表面における各検査データが得られた位置を特定するためには、検査データに関連付けられた位置データと、実際のロータブレードの設計値との間に共通する基準位置が必要となる。ここで、基準位置をロータブレード4の外部に設けるとロータブレード4のたわみや風力発電設備の経年変化により大きな誤差が発生する場合があるため好ましくない。 Identifying the position where the inspection data is obtained on the surface of the actual rotor blade is useful for comparing the previous inspection result and accumulating information for observing the progress of the defect. In order to specify the position where each inspection data is obtained on the surface of the rotor blade 4, a common reference position is required between the position data associated with the inspection data and the actual design value of the rotor blade. . Here, providing the reference position outside the rotor blade 4 is not preferable because a large error may occur due to the deflection of the rotor blade 4 or aging of the wind power generation equipment.
 検査データに関連付けられた位置データに関して、上下方向の位置データは巻取量測定機構121でワイヤ122の巻取量を測定することにより求め、左右方向の位置データは移動量測定機構127で移動機構118のタイヤの回転量を測定することで求めている。これらの位置データの基準位置を実際のロータブレード上の基準位置と対応させることで、検査データが得られた位置を実際のロータブレード4上で特定することができる。 Regarding the position data associated with the inspection data, the position data in the vertical direction is obtained by measuring the winding amount of the wire 122 by the winding amount measuring mechanism 121, and the position data in the left and right direction is determined by the moving mechanism by the movement amount measuring mechanism 127. It is obtained by measuring the amount of rotation of 118 tires. By associating the reference position of these position data with the reference position on the actual rotor blade, the position where the inspection data is obtained can be specified on the actual rotor blade 4.
 基準位置については、左右方向と上下方向の基準位置が必要となるが、本実施の形態においては以下の方法で求める。 As for the reference position, a reference position in the horizontal direction and the vertical direction is required.
 左右方向の基準位置を得る方法について説明する。まず、上記のメンテナンス方法にて無人飛行機110を左右方向に動かした際に、各停止位置において傾斜センサ128の角度データを取得しておく。 A method for obtaining the reference position in the left-right direction will be described. First, when the unmanned airplane 110 is moved in the left-right direction by the above-described maintenance method, angle data of the tilt sensor 128 is acquired at each stop position.
 図24は本実施の形態において、傾斜センサで角度データが取得された位置と傾斜センサで得られた角度データの絶対値との関係を示す図である。図24(a)は角度データが取得された位置を示す図であり、図24(b)は左右方向の各位置における傾斜センサの角度データの絶対値を示す図である。 FIG. 24 is a diagram showing the relationship between the position where the angle data is acquired by the tilt sensor and the absolute value of the angle data obtained by the tilt sensor in the present embodiment. FIG. 24A is a diagram illustrating the position where the angle data is acquired, and FIG. 24B is a diagram illustrating the absolute value of the angle data of the tilt sensor at each position in the left-right direction.
 図24(b)に示すように、得られた角度データの絶対値が最小となる位置が存在する。これはロータ付近のロータブレードの翼弦長が最大となる位置Lに対応する。図24(a)から明らかなように、この位置Lの付近を無人飛行機110が左右方向に移動したときに無人飛行機110の傾きが大きく変化する。この位置Lにおいて角度データの絶対値が最小となる。傾斜センサの角度データの最小値が得られた位置と設計上の位置Lとを対応させて共通の基準位置として用いることで、取得した左右方向の各位置データをトレーリングエッジ8上の実際の位置に対応させることができる。 As shown in FIG. 24B, there is a position where the absolute value of the obtained angle data is minimum. This corresponds to the position L where the chord length of the rotor blade near the rotor is maximum. As apparent from FIG. 24A, when the unmanned airplane 110 moves in the left-right direction in the vicinity of the position L, the inclination of the unmanned airplane 110 changes greatly. At this position L, the absolute value of the angle data is minimum. By using the position where the minimum value of the angle data of the tilt sensor is obtained and the design position L as a common reference position, the obtained position data in the left and right directions are actually used on the trailing edge 8. It can correspond to the position.
 具体的には移動量測定機構127で測定される移動量はトレーリングエッジ8の稜線の長さとなる。測定時の基準位置からの移動量を、トレーリングエッジ8の稜線上にプロットすることで、測定位置をトレーリングエッジ8上の実際の位置に対応付けることができる。 Specifically, the movement amount measured by the movement amount measuring mechanism 127 is the length of the ridgeline of the trailing edge 8. By plotting the movement amount from the reference position at the time of measurement on the ridge line of the trailing edge 8, the measured position can be associated with the actual position on the trailing edge 8.
 ここでは一例として角度データが最小値となる点を基準位置としたが、ロータブレード4の形状によっては、極値となる位置や、全ての角度データから計算される特徴点を基準位置としてもよい。 Here, as an example, the point where the angle data is the minimum value is used as the reference position. However, depending on the shape of the rotor blade 4, the position where the value is an extreme value or a feature point calculated from all the angle data may be used as the reference position. .
 上下方向の基準位置に関して、トレーリングエッジ8の稜線上の各点を基準位置とすることで、巻取量測定機構121で求めた上下方向の位置データと、ロータブレード上での実際の上下方向の位置とを対応付けることができる。左右方向の位置および上下方向の位置を含む、ロータブレード4上の実際の位置は、上述の方法で求めた左右方向および上下方向の基準位置を用いることで特定することができる。 With respect to the reference position in the vertical direction, each point on the ridge line of the trailing edge 8 is set as the reference position, so that the vertical position data obtained by the winding amount measuring mechanism 121 and the actual vertical direction on the rotor blade are obtained. Can be associated with each other. The actual position on the rotor blade 4 including the position in the left and right direction and the position in the up and down direction can be specified by using the reference position in the left and right direction and the up and down direction obtained by the above method.
 このようにして決定した基準位置を用いることで、検査データが得られた位置をロータブレード4の表面上で特定することができる。本実施の形態では基準位置をロータブレードの形状を基準に決定するので誤差を少なくすることができる。また、基準位置を得るための特別な構造をロータブレード上に設ける必要もないので、ロータブレードの改造する必要がない。 By using the reference position determined in this way, the position where the inspection data is obtained can be specified on the surface of the rotor blade 4. In this embodiment, since the reference position is determined based on the shape of the rotor blade, the error can be reduced. Further, since it is not necessary to provide a special structure on the rotor blade for obtaining the reference position, it is not necessary to modify the rotor blade.
 本実施の形態においては、特に、ロータブレード4の上に無人飛行機110を位置させることで、安定してロータブレード4のメンテナンスを行なうことができる。また、無人飛行機110はロータブレード4を把持するので、メンテナンス作業時に無人飛行機110が落下することを防止することができる。さらに、ロータブレードの形状を利用して基準位置を設定することで、検査データと関連付けられた位置データと実際のロータブレード4上の位置とを正確に対応づけることが可能となる。 In the present embodiment, in particular, by positioning the unmanned airplane 110 on the rotor blade 4, the rotor blade 4 can be stably maintained. In addition, since the unmanned airplane 110 holds the rotor blade 4, it is possible to prevent the unmanned airplane 110 from falling during maintenance work. Further, by setting the reference position using the shape of the rotor blade, it is possible to accurately associate the position data associated with the inspection data with the actual position on the rotor blade 4.
 本実施の形態においては、無人飛行機110により風力発電設備のロータブレード4のメンテナンスを行なう場合について説明した。無人飛行機110はロータブレードのほか、橋梁や高層建築などの様々なメンテナンス対象物に対して使用することができる。その場合には、無人飛行機110の把持機構117は、橋梁などのメンテナンス対象物の一部を把持するように構成される。移動機構118は、当該メンテナンス対象物の上を走行できるように構成される。 In the present embodiment, the case where maintenance of the rotor blade 4 of the wind power generation facility is performed by the unmanned airplane 110 has been described. The unmanned airplane 110 can be used not only for rotor blades but also for various maintenance objects such as bridges and high-rise buildings. In that case, the gripping mechanism 117 of the unmanned aerial vehicle 110 is configured to grip a part of a maintenance object such as a bridge. The moving mechanism 118 is configured to be able to travel on the maintenance object.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1 風力発電設備、2 ナセル、3 ロータ、4(4a,4b,4c) ロータブレード、5 タワー、6 ガイド、7 リーディングエッジ、8 トレーリングエッジ、10 無人飛行機、11 モータ、12 回転翼、13 コントローラ、14 インバータ、15 無線通信ユニット、16 メンテナンスユニット、17 固定部、18 ワイヤ、19 巻取機構、20 移動量測定部、21 受動輪、22 カメラユニット、23 伸縮機構、24 橋梁、30 無人飛行機本体、110 無人飛行機、111 モータ、112 回転翼、113 コントローラ、114 インバータ、115 無線通信ユニット、116 メンテナンスユニット、117 把持機構、118 移動機構、119 受動輪、120 押付部、121 巻取量測定機構、122 ワイヤ、123 カメラユニット、124 専用ユニット、125 受動輪、126 巻取機構、127 移動量測定機構、128 傾斜センサ、130 無人飛行機本体、140 側壁、141 天面部、L 翼弦長が最大となる位置、P 検査位置。 1 Wind power generation facilities, 2 nacelles, 3 rotors, 4 (4a, 4b, 4c) rotor blades, 5 towers, 6 guides, 7 leading edges, 8 trailing edges, 10 unmanned airplanes, 11 motors, 12 rotor blades, 13 controllers , 14 inverter, 15 wireless communication unit, 16 maintenance unit, 17 fixing unit, 18 wire, 19 winding mechanism, 20 moving amount measuring unit, 21 passive wheel, 22 camera unit, 23 telescopic mechanism, 24 bridge, 30 unmanned airplane body , 110 unmanned airplane, 111 motor, 112 rotor blade, 113 controller, 114 inverter, 115 wireless communication unit, 116 maintenance unit, 117 gripping mechanism, 118 moving mechanism, 119 passive wheel, 120 pressing part, 121 Winding amount measuring mechanism, 122 wire, 123 camera unit, 124 dedicated unit, 125 passive wheel, 126 winding mechanism, 127 moving amount measuring mechanism, 128 tilt sensor, 130 unmanned airplane body, 140 side wall, 141 top surface, L wing The position where the chord length is maximum, P inspection position.

Claims (27)

  1.  大型構造物のガイドに固定される固定部と、前記固定部に一端が取り付けられたワイヤと、メンテナンスユニットとを備えた無人飛行機を用いて、複数の前記ガイドが設けられた大型構造物のメンテナンス対象物のメンテナンスを行なう、大型構造物のメンテナンス方法であって、
     前記固定部を前記メンテナンス対象物の前記ガイドに固定するステップと、
     前記固定部を前記ガイドに固定した状態で前記メンテナンス対象物上に無人飛行機を着陸させるステップと、
     前記メンテナンスユニットによって前記固定部が固定された前記メンテナンス対象物のメンテナンスを行なうステップとを備えた、大型構造物のメンテナンス方法。
    Maintenance of a large structure provided with a plurality of guides using an unmanned airplane including a fixed portion fixed to a guide of a large structure, a wire having one end attached to the fixed portion, and a maintenance unit A maintenance method of a large structure that performs maintenance of an object,
    Fixing the fixing part to the guide of the maintenance object;
    Landing an unmanned airplane on the maintenance object in a state where the fixing portion is fixed to the guide;
    A maintenance method for a large structure, comprising: performing maintenance on the maintenance object in which the fixing portion is fixed by the maintenance unit.
  2.  前記無人飛行機の前記メンテナンスユニットは、前記メンテナンス対象物の打撃を行なう打撃部を含み、
     前記メンテナンスを行なうステップは、前記メンテナンス対象物の診断のために前記打撃部を用いて前記メンテナンス対象物を打撃するステップを含む、請求項1に記載の大型構造物のメンテナンス方法。
    The maintenance unit of the unmanned airplane includes a striking unit that strikes the maintenance object,
    The large-scale structure maintenance method according to claim 1, wherein the maintenance step includes a step of hitting the maintenance object using the hitting unit for diagnosis of the maintenance object.
  3.  前記メンテナンスを行なうステップは、前記打撃部を用いた打撃によってメンテナンス対象物に発生した振動を前記無人飛行機または前記メンテナンス対象物に設置したセンサにより取得するステップをさらに含む、請求項2に記載の大型構造物のメンテナンス方法。 The large-scale operation according to claim 2, wherein the maintenance step further includes a step of acquiring vibration generated in the maintenance target object by hitting using the hitting unit by a sensor installed on the unmanned airplane or the maintenance target object. Structure maintenance method.
  4.  前記無人飛行機は、前記ワイヤを巻き取る巻取機構をさらに備え、
     前記メンテナンス対象物上に無人飛行機を着陸させるステップより後に、前記ワイヤを送り出して前記無人飛行機を移動させるステップをさらに備える、請求項1から請求項3のいずれか1項に記載の大型構造物のメンテナンス方法。
    The unmanned airplane further comprises a winding mechanism for winding the wire,
    The large structure according to any one of claims 1 to 3, further comprising a step of sending the wire and moving the unmanned airplane after the step of landing the unmanned airplane on the maintenance object. Maintenance method.
  5.  前記巻取機構は、前記ワイヤの送出量を測定する移動量測定部をさらに備え、
     前記無人飛行機を移動させるステップは、前記ワイヤの送り出し動作と巻き取り動作を行なう際に、前記ワイヤの送出量を前記移動量測定部で測定するステップを含む、請求項4に記載の大型構造物のメンテナンス方法。
    The winding mechanism further includes a movement amount measuring unit that measures the amount of wire delivered;
    5. The large structure according to claim 4, wherein the step of moving the unmanned airplane includes a step of measuring the amount of the wire sent by the moving amount measuring unit when performing the wire feeding operation and the winding operation. Maintenance method.
  6.  前記無人飛行機は、前記ワイヤの送出方向に対して直角方向にその先端が移動する、前記ワイヤに対して対称に配置された一対の伸縮機構をさらに備え、
     前記メンテナンスユニットは、前記伸縮機構の先端に設けられている、請求項1から請求項5のいずれか1項に記載の大型構造物のメンテナンス方法。
    The unmanned airplane further includes a pair of telescopic mechanisms disposed symmetrically with respect to the wire, the tip of which moves in a direction perpendicular to the wire sending direction,
    The large-scale structure maintenance method according to any one of claims 1 to 5, wherein the maintenance unit is provided at a tip of the telescopic mechanism.
  7.  前記無人飛行機は、前記メンテナンス対象物の外観の撮影を行なうカメラユニットをさらに備え、
     前記メンテナンスを行なうステップはさらに、前記カメラユニットを用いて前記メンテナンス対象物を撮影するステップを含む、請求項1から請求項5のいずれか1項に記載の大型構造物のメンテナンス方法。
    The unmanned airplane further includes a camera unit that takes an image of the appearance of the maintenance object,
    The large-scale structure maintenance method according to any one of claims 1 to 5, wherein the maintenance step further includes a step of photographing the maintenance object using the camera unit.
  8.  前記無人飛行機は、前記ワイヤの送出方向に対して直角方向にその先端が移動する、前記ワイヤに対して対称に配置された一対の伸縮機構をさらに備え、
     前記カメラユニットは、前記伸縮機構の先端に設けられている、請求項7に記載の大型構造物のメンテナンス方法。
    The unmanned airplane further includes a pair of telescopic mechanisms disposed symmetrically with respect to the wire, the tip of which moves in a direction perpendicular to the wire sending direction,
    The large camera structure maintenance method according to claim 7, wherein the camera unit is provided at a tip of the telescopic mechanism.
  9.  前記メンテナンス対象物に設けられた複数の前記ガイドの各々は、切れ込みである、請求項1から請求項8のいずれか1項に記載の大型構造物のメンテナンス方法。 The maintenance method for a large structure according to any one of claims 1 to 8, wherein each of the plurality of guides provided in the maintenance object is a cut.
  10.  無人飛行機本体と、
     前記無人飛行機本体を飛行させるための複数の回転翼と、
     メンテナンス対象物に固定される固定部と、
     前記固定部に一端が取り付けられたワイヤと、
     前記固定部が固定された前記メンテナンス対象物のメンテナンスを行なうメンテナンスユニットとを備えた、無人飛行機。
    The unmanned airplane body,
    A plurality of rotor blades for flying the unmanned airplane body;
    A fixed part fixed to the maintenance object;
    A wire having one end attached to the fixed part;
    An unmanned aerial vehicle comprising: a maintenance unit that performs maintenance of the maintenance object to which the fixing portion is fixed.
  11.  前記無人飛行機は、前記ワイヤを巻き取る巻取機構をさらに備え、
     前記巻取機構は前記ワイヤの送出量を測定する移動量測定部を含む、請求項10に記載の無人飛行機。
    The unmanned airplane further comprises a winding mechanism for winding the wire,
    The unmanned aerial vehicle according to claim 10, wherein the winding mechanism includes a movement amount measuring unit that measures a delivery amount of the wire.
  12.  前記メンテナンスユニットは、前記メンテナンス対象物を打撃する打撃部と、前記打撃部によってメンテナンス対象物に発生した振動を取得するセンサとを含む、請求項10または請求項11に記載の無人飛行機。 The unmanned airplane according to claim 10 or 11, wherein the maintenance unit includes a hitting unit that hits the maintenance target and a sensor that acquires vibration generated in the maintenance target by the hitting unit.
  13.  前記無人飛行機は、前記ワイヤの送出方向に対して直角方向にその先端が移動する、前記ワイヤに対して対称に配置された一対の伸縮機構をさらに備え、
     前記メンテナンスユニットは、前記伸縮機構の先端に設けられている、請求項10から請求項12のいずれか1項に記載の無人飛行機。
    The unmanned airplane further includes a pair of telescopic mechanisms disposed symmetrically with respect to the wire, the tip of which moves in a direction perpendicular to the wire sending direction,
    The unmanned airplane according to any one of claims 10 to 12, wherein the maintenance unit is provided at a tip of the telescopic mechanism.
  14.  移動機構を有する把持機構と、メンテナンス位置に移動させることが可能なメンテナンスユニットとを備えた無人飛行機を用いた風力発電設備のメンテナンス方法であって、
     前記無人飛行機を風力発電設備のロータブレードに着陸させ前記把持機構によって前記ロータブレードのリーディングエッジまたはトレーリングエッジを把持するステップと、
     前記把持機構の前記移動機構によって、前記リーディングエッジまたはトレーリングエッジ上を前記無人飛行機が移動するステップと、
     前記メンテナンスユニットをメンテナンス位置に移動させるステップと、
     前記メンテナンスユニットによって前記ロータブレードのメンテナンスを行なうステップとを備える、風力発電設備のメンテナンス方法。
    A maintenance method for wind power generation equipment using an unmanned aerial vehicle comprising a gripping mechanism having a moving mechanism and a maintenance unit that can be moved to a maintenance position,
    Landing the unmanned airplane on a rotor blade of a wind power generation facility and gripping a leading edge or a trailing edge of the rotor blade by the gripping mechanism;
    Moving the unmanned airplane on the leading edge or trailing edge by the moving mechanism of the gripping mechanism;
    Moving the maintenance unit to a maintenance position;
    A maintenance method of the wind power generation facility, comprising: maintaining the rotor blade by the maintenance unit.
  15.  前記無人飛行機の前記メンテナンスユニットは、前記ロータブレードの打撃を行なう打撃部を含み、
     前記メンテナンスを行なうステップは、前記ロータブレードの診断のために前記打撃部を用いて前記ロータブレードを打撃するステップを含む、請求項14に記載の風力発電設備のメンテナンス方法。
    The maintenance unit of the unmanned airplane includes a striking unit that strikes the rotor blade,
    The method of maintaining a wind power generation facility according to claim 14, wherein the maintenance step includes a step of hitting the rotor blade using the hitting unit for diagnosis of the rotor blade.
  16.  前記メンテナンスを行なうステップは、前記打撃部を用いた打撃によってロータブレードに発生した振動を前記無人飛行機または前記ロータブレードに設置したセンサにより取得するステップをさらに含む、請求項15に記載の風力発電設備のメンテナンス方法。 The wind power generation facility according to claim 15, wherein the step of performing the maintenance further includes a step of acquiring vibration generated in the rotor blade by hitting using the hitting unit by a sensor installed on the unmanned airplane or the rotor blade. Maintenance method.
  17.  前記無人飛行機は、前記ロータブレードの外観の撮影を行なうカメラユニットをさらに備え、
     前記メンテナンスを行なうステップはさらに、前記カメラユニットを用いて前記ロータブレードを撮影するステップを含む、請求項14から請求項16のいずれか1項に記載の風力発電設備のメンテナンス方法。
    The unmanned airplane further includes a camera unit that takes an image of the appearance of the rotor blade,
    The method of maintaining a wind power generation facility according to any one of claims 14 to 16, wherein the step of performing the maintenance further includes a step of photographing the rotor blade using the camera unit.
  18.  前記無人飛行機は巻取機構と、前記巻取機構に一端が接続されたワイヤとをさらに備え、
     前記ワイヤの他端は前記メンテナンスユニットに接続されて、前記メンテナンスユニットの下降および上昇を可能としており、
     前記巻取機構は、前記ワイヤの引出量を測定する巻取量測定部を含み、
     前記移動機構は、ロータブレード上で前記無人飛行機が移動した量を測定する移動量測定部を含む、請求項14から請求項17のいずれか1項に記載の風力発電設備のメンテナンス方法。
    The unmanned airplane further comprises a winding mechanism, and a wire having one end connected to the winding mechanism,
    The other end of the wire is connected to the maintenance unit, allowing the maintenance unit to be lowered and raised,
    The winding mechanism includes a winding amount measuring unit that measures a drawing amount of the wire,
    The wind turbine generator maintenance method according to any one of claims 14 to 17, wherein the moving mechanism includes a moving amount measuring unit that measures an amount of movement of the unmanned airplane on a rotor blade.
  19.  前記無人飛行機は傾斜センサをさらに備え、
     前記傾斜センサによって前記トレーリングエッジの形状を測定する、請求項14から請求項18のいずれか1項に記載の風力発電設備のメンテナンス方法。
    The unmanned airplane further includes a tilt sensor;
    The maintenance method of the wind power generation facility according to any one of claims 14 to 18, wherein the shape of the trailing edge is measured by the tilt sensor.
  20.  前記傾斜センサにより測定したトレーリングエッジの形状を用いて、前記ロータブレード上でのメンテナンスユニットの位置を特定する、請求項19に記載の風力発電設備のメンテナンス方法。 The maintenance method of the wind power generation facility according to claim 19, wherein the position of the maintenance unit on the rotor blade is specified using the shape of the trailing edge measured by the tilt sensor.
  21.  無人飛行機本体と、
     前記無人飛行機本体を飛行させるための複数の回転翼と、
     前記無人飛行機本体に設けられ、メンテナンス対象物の一部を把持して、前記無人飛行機本体をメンテナンス対象物上に位置させる把持機構と、
     前記把持機構が把持した前記メンテナンス対象物のメンテナンスを行なうメンテナンスユニットとを備えた、無人飛行機。
    The unmanned airplane body,
    A plurality of rotor blades for flying the unmanned airplane body;
    A gripping mechanism that is provided in the unmanned airplane main body, grips a part of the maintenance target, and positions the unmanned airplane main body on the maintenance target;
    An unmanned aerial vehicle comprising: a maintenance unit that performs maintenance of the maintenance object gripped by the gripping mechanism.
  22.  前記把持機構は、メンテナンス対象物上を走行するための移動機構を含む、請求項21に記載の無人飛行機。 The unmanned airplane according to claim 21, wherein the gripping mechanism includes a moving mechanism for traveling on a maintenance object.
  23.  巻取機構と、前記巻取機構に一端が接続されたワイヤとをさらに備え、前記ワイヤの他端は前記メンテナンスユニットに接続されて、前記メンテナンスユニットの下降および上昇を可能としている、請求項21または請求項22に記載の無人飛行機。 The winding mechanism and a wire having one end connected to the winding mechanism, and the other end of the wire is connected to the maintenance unit to allow the maintenance unit to be lowered and raised. Or an unmanned aerial vehicle according to claim 22.
  24.  巻取機構と、前記巻取機構に一端が接続されたワイヤとをさらに備え、前記ワイヤの他端は前記メンテナンスユニットに接続されて、前記メンテナンスユニットの下降および上昇を可能としており、
     前記巻取機構は、前記ワイヤの引出量を測定する巻取量測定部を含み、
     前記移動機構は、メンテナンス対象物上で前記無人飛行機が移動した量を測定する移動量測定部を含む、請求項22に記載の無人飛行機。
    A winding mechanism; and a wire having one end connected to the winding mechanism, the other end of the wire being connected to the maintenance unit, allowing the maintenance unit to be lowered and raised,
    The winding mechanism includes a winding amount measuring unit that measures a drawing amount of the wire,
    The unmanned airplane according to claim 22, wherein the movement mechanism includes a movement amount measurement unit that measures an amount of movement of the unmanned airplane on a maintenance target.
  25.  前記メンテナンスユニットは、前記ロータブレードを打撃する打撃部と、前記打撃部によってロータブレードに発生した振動を取得するセンサとを含む、請求項21から請求項24のいずれか1項に記載の無人飛行機。 The unmanned airplane according to any one of claims 21 to 24, wherein the maintenance unit includes a hitting unit that hits the rotor blade and a sensor that acquires vibration generated in the rotor blade by the hitting unit. .
  26.  無人飛行機の地面に対する傾きを測定する傾斜センサをさらに備えた、請求項21から請求項25のいずれか1項に記載の無人飛行機。 26. The unmanned aerial vehicle according to any one of claims 21 to 25, further comprising a tilt sensor that measures a tilt of the unmanned aerial plane relative to the ground.
  27.  前記メンテナンス対象物は風力発電設備のロータブレードであり、前記把持機構は前記ロータブレードのリーディングエッジまたはトレーリングエッジを把持する、請求項21から請求項26のいずれか1項に記載の無人飛行機。 The unmanned airplane according to any one of claims 21 to 26, wherein the maintenance object is a rotor blade of a wind power generation facility, and the gripping mechanism grips a leading edge or a trailing edge of the rotor blade.
PCT/JP2016/087797 2015-12-25 2016-12-19 Large structure maintenance method, method for maintaining wind-power generation facility, and unmanned aircraft WO2017110743A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2015-254111 2015-12-25
JP2015254111A JP2017115787A (en) 2015-12-25 2015-12-25 Maintenance method for wind turbine generator system and unmanned airplane
JP2016-002548 2016-01-08
JP2016002548 2016-01-08
JP2016224278A JP2017125493A (en) 2016-01-08 2016-11-17 Maintenance method of large structure and unmanned aircraft
JP2016-224278 2016-11-17

Publications (1)

Publication Number Publication Date
WO2017110743A1 true WO2017110743A1 (en) 2017-06-29

Family

ID=59090399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/087797 WO2017110743A1 (en) 2015-12-25 2016-12-19 Large structure maintenance method, method for maintaining wind-power generation facility, and unmanned aircraft

Country Status (1)

Country Link
WO (1) WO2017110743A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019001664A1 (en) * 2017-06-30 2019-01-03 Vestas Wind Systems A/S System and method for handling wind turbine components for assembly thereof
WO2019001661A1 (en) * 2017-06-30 2019-01-03 Vestas Wind Systems A/S Method for reducing oscillations in wind turbine blades
WO2019001662A1 (en) * 2017-06-30 2019-01-03 Vestas Wind Systems A/S System and method for positioning wind turbine components
EP3540217A1 (en) * 2018-03-15 2019-09-18 The Boeing Company Apparatus and methods for maintenance of wind turbine blades
WO2020001714A1 (en) * 2018-06-25 2020-01-02 Vestas Wind Systems A/S Improvements relating to wind turbine maintenance

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5934146A (en) * 1982-08-20 1984-02-24 Nissan Motor Co Ltd Flaw detector for rotor blade
JP2015101991A (en) * 2013-11-22 2015-06-04 三菱日立パワーシステムズ株式会社 Inspection method of turbine rotor
US20150267688A1 (en) * 2012-10-16 2015-09-24 Susanne Krampe Robot for inspecting rotor blades of wind energy installations
JP2016109557A (en) * 2014-12-05 2016-06-20 有限会社ボーダック Inspection method of structure and inspection device of structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5934146A (en) * 1982-08-20 1984-02-24 Nissan Motor Co Ltd Flaw detector for rotor blade
US20150267688A1 (en) * 2012-10-16 2015-09-24 Susanne Krampe Robot for inspecting rotor blades of wind energy installations
JP2015101991A (en) * 2013-11-22 2015-06-04 三菱日立パワーシステムズ株式会社 Inspection method of turbine rotor
JP2016109557A (en) * 2014-12-05 2016-06-20 有限会社ボーダック Inspection method of structure and inspection device of structure

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019001664A1 (en) * 2017-06-30 2019-01-03 Vestas Wind Systems A/S System and method for handling wind turbine components for assembly thereof
WO2019001661A1 (en) * 2017-06-30 2019-01-03 Vestas Wind Systems A/S Method for reducing oscillations in wind turbine blades
WO2019001662A1 (en) * 2017-06-30 2019-01-03 Vestas Wind Systems A/S System and method for positioning wind turbine components
CN110799749A (en) * 2017-06-30 2020-02-14 维斯塔斯风力系统有限公司 Method for mitigating oscillations in a wind turbine blade
US11359604B2 (en) 2017-06-30 2022-06-14 Vestas Wind Systems A/S Method for reducing oscillations in wind turbine blades
US11391267B2 (en) 2017-06-30 2022-07-19 Vestas Wind Systems A/S System and method for handling wind turbine components for assembly thereof
EP3540217A1 (en) * 2018-03-15 2019-09-18 The Boeing Company Apparatus and methods for maintenance of wind turbine blades
US10953938B2 (en) 2018-03-15 2021-03-23 The Boeing Company Apparatus and methods for maintenance of wind turbine blades
WO2020001714A1 (en) * 2018-06-25 2020-01-02 Vestas Wind Systems A/S Improvements relating to wind turbine maintenance
CN112313412A (en) * 2018-06-25 2021-02-02 维斯塔斯风力系统有限公司 Improvements relating to wind turbine maintenance
JP2021528593A (en) * 2018-06-25 2021-10-21 ヴェスタス ウィンド システムズ エー/エス Improvements in wind turbine maintenance
JP7493463B2 (en) 2018-06-25 2024-05-31 ヴェスタス ウィンド システムズ エー/エス Improving Wind Turbine Maintenance

Similar Documents

Publication Publication Date Title
WO2017110743A1 (en) Large structure maintenance method, method for maintaining wind-power generation facility, and unmanned aircraft
JP2017115787A (en) Maintenance method for wind turbine generator system and unmanned airplane
US11029708B2 (en) Method and apparatus for remote, interior inspection of cavities using an unmanned aircraft system
WO2017010206A1 (en) Maintenance method for wind power generation facility, and unmanned flying-machine
JP6262318B1 (en) Cable inspection device
US11053925B2 (en) Cable-suspended non-destructive inspection units for rapid large-area scanning
US10927818B2 (en) System and method for wind blade inspection, repair and upgrade
US10823709B2 (en) Methods and apparatus for realigning and re-adhering a hanging crawler vehicle on a non-level surface
US8171809B2 (en) System and method for wind turbine inspection
JP6881296B2 (en) Defect inspection equipment, defect inspection methods and programs
CN104362545B (en) Routing inspection air vehicle with multiple rotor wings and electric transmission line hanging method thereof
US11408401B2 (en) Robotic access system including robotic fan crawler for wind blade inspection and maintenance
EP3540217B1 (en) Apparatus and methods for maintenance of wind turbine blades
JP2017090145A (en) Windmill blade deformation measurement device, and windmill blade deformation evaluation system
KR102137316B1 (en) Drone-bot apparatus for plant inspection
JP6333222B2 (en) Blade inspection apparatus and blade inspection method
JP6371895B1 (en) How to measure wind conditions
CN107059611B (en) Multi-rotor-wing inhaul cable detection robot and inhaul cable detection method thereof
JP2017125493A (en) Maintenance method of large structure and unmanned aircraft
KR102382888B1 (en) Flying performance testing apparatus for drone
EP3653875B1 (en) System and method for wind blade inspection, repair and upgrade
KR101600424B1 (en) Blade Measuring Apparatus and Method
WO2016139928A1 (en) Defect inspection device, defect inspection method, and program
KR101965362B1 (en) Unmanned aircraft for power cable checking using take-off and landing on power cable
JP6573536B2 (en) Inspection robot and structure inspection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16878632

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16878632

Country of ref document: EP

Kind code of ref document: A1