WO2017010206A1 - Maintenance method for wind power generation facility, and unmanned flying-machine - Google Patents

Maintenance method for wind power generation facility, and unmanned flying-machine Download PDF

Info

Publication number
WO2017010206A1
WO2017010206A1 PCT/JP2016/067569 JP2016067569W WO2017010206A1 WO 2017010206 A1 WO2017010206 A1 WO 2017010206A1 JP 2016067569 W JP2016067569 W JP 2016067569W WO 2017010206 A1 WO2017010206 A1 WO 2017010206A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
unmanned airplane
power generation
wind power
generation facility
Prior art date
Application number
PCT/JP2016/067569
Other languages
French (fr)
Japanese (ja)
Inventor
康寛 松永
浩 磯部
寛哲 徳永
靖之 福島
直哉 小長井
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2017010206A1 publication Critical patent/WO2017010206A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C25/00Alighting gear
    • B64C25/32Alighting gear characterised by elements which contact the ground or similar surface 
    • B64C25/34Alighting gear characterised by elements which contact the ground or similar surface  wheeled type, e.g. multi-wheeled bogies
    • B64C25/36Arrangements or adaptations of wheels, tyres or axles in general
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U60/00Undercarriages
    • B64U60/50Undercarriages with landing legs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/50Maintenance or repair
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U60/00Undercarriages
    • B64U60/60Undercarriages with rolling cages
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to a maintenance method for wind power generation equipment, and more particularly to a maintenance method for wind power generation equipment using an unmanned airplane and the unmanned airplane.
  • Inspection of defects inside and outside of blades in wind power generation facilities which is a type of maintenance work, is mainly performed by the operator approaching the blades using rope access and listening to the sound of visual observation and hammering. .
  • Patent Document 1 Japanese Patent Publication No. 2013-542360
  • the temperature inside the blade is changed using an air heat device, and the difference in temperature change between a normal part and an abnormal part using an infrared camera or the like.
  • the blade defect is found.
  • Patent Document 1 Japanese Patent Publication No. 2013-542360
  • a megawatt-class wind power generation facility requires a large-scale facility with a large output as an air heat device in order to change the internal temperature, and enormous costs and modification time are required for installation.
  • Patent Document 1 Japanese Patent Publication No. 2013-542360 discloses an unmanned airplane as an example of a measuring device. However, three-dimensional positioning is necessary for an unmanned airplane to perform work in the air, but since it is greatly affected by wind, positioning accuracy may be deteriorated.
  • the present invention solves the above-mentioned problem, and its purpose is to reduce the burden on the operator by using an unmanned airplane and to reduce the time and cost required for the inspection, while reducing the time and cost required for the inspection.
  • the present invention provides a method for maintaining a wind power generation facility, the step of fixing the first blade of a rotor of the wind power generation facility so as to be horizontal, and the pitch angle of the first blade to be leveled being a wind receiving state. And a step of causing the unmanned airplane to reach the leveled first blade and performing maintenance work on the first blade by the unmanned airplane.
  • the unmanned airplane By changing the position of the blades of the wind power generation equipment, it is possible to perform operations and inspections on unmanned airplanes that do not require rope access, and it is possible to reduce the time and man-hours required for the work of conventional wind power generation equipment.
  • the unmanned airplane can easily perform work or inspection on the blade.
  • the unmanned aerial vehicle includes a hitting unit that hits the first blade.
  • the step of performing the maintenance operation includes the step of hitting the first blade using the hitting unit for diagnosis of the first blade.
  • the step of performing the maintenance work further includes a step of acquiring vibration generated by hitting using the hitting unit from a sensor installed on the unmanned airplane or the first blade.
  • One method of hitting can use a solenoid or the like as sounding means, but as another method, a hitting unit is mounted below the unmanned airplane and the unmanned airplane is lowered.
  • the blade may be hit by By hitting with a descending operation from the sky by an unmanned airplane, it is not necessary to mount power in the hitting portion, thus saving battery power. Further, by adjusting the height, the impact force can be adjusted using the basic functions of the unmanned airplane. Further, since the hitting portion is mounted on the lower part of the unmanned airplane, the center of gravity is lowered and the operation of the unmanned airplane is stabilized.
  • the unmanned aerial vehicle includes a camera unit for photographing the appearance of the first blade.
  • the step of performing the maintenance operation further includes a step of photographing the first blade using the camera unit for diagnosis of the first blade.
  • the step of performing the maintenance operation includes a step of landing the unmanned airplane on the first blade that is leveled and moving the unmanned airplane on the first blade in order to change the working position.
  • the unmanned airplane is configured to be able to travel on the blade. Since the unmanned airplane can travel on the blade, the sounding position on the blade can be changed at any time. Preferably, since the movement amount of the unmanned airplane can be referred to by mounting the movement amount measuring means, it is possible to obtain the hitting position and the observation position with the camera.
  • the unmanned airplane includes a drive wheel.
  • the step of moving the unmanned airplane causes the unmanned airplane to travel by driving the drive wheels.
  • the unmanned aerial vehicle includes a plurality of rotor blades.
  • the step of moving the unmanned airplane moves the unmanned airplane by changing the rotational speeds of the plurality of rotor blades.
  • the present invention is an unmanned airplane, and includes a plurality of rotor blades, a support leg that can land on a blade of a wind power generation facility, and a striking unit that strikes the blade of the wind power generation facility.
  • the unmanned aerial vehicle further includes a sensor that acquires vibrations generated by hitting using the hitting unit.
  • the unmanned airplane further includes a communication unit that communicates with a control device installed in the wind power generation facility.
  • the support legs include drive wheels for running on the blades of the leveled wind power plant.
  • the support leg includes a plurality of support legs that can be in different lengths.
  • a wheel is installed on each of the plurality of support legs.
  • the unmanned aerial vehicle is landed on the blade using a plurality of support legs in an inclined posture, and travels on the blade by rotating a plurality of rotor blades.
  • the burden on the operator is reduced during the maintenance work of the blade of the wind power generation facility, and the time and cost required for the inspection are suppressed.
  • FIG. 4 is a side view of the unmanned airplane 10 shown in FIG. 3. It is a figure showing an initial state in case there is wind power generation equipment. It is the figure which showed the state which stopped the blade 4A used as work object in a horizontal position. It is the figure which showed the state which the unmanned airplane 10 landed on the blade 4A. It is the block diagram which showed the structure of the whole installation with which the maintenance method of this Embodiment is applied.
  • FIG. 1 is a diagram showing an external appearance of a wind power generation facility to which the maintenance method of the present embodiment is applied.
  • FIG. 2 is a diagram for explaining the structure of the wind power generation facility near the nacelle.
  • a wind power generation facility 1 includes a nacelle 2 mounted on an upper portion of a tower 5, a rotor head 3, and three blades 4 attached to the rotor head 3. Has been.
  • the blade 4 can be rotated in the axial direction ( ⁇ angle) by the rotation of the rotor head 3 mounted on the nacelle 2.
  • the blade 4 can be rotated in the direction around the longitudinal axis of the blade 4 ( ⁇ angle) by a rotation mechanism (blade bearing 120). Further, the two rotational directions ⁇ and ⁇ shown in FIG. 1 can be stopped by a brake mechanism not shown.
  • wind power generation facility 1 further includes a main shaft 28, a speed increaser 55, a power generator 50, a main shaft bearing 60, and a control device 31.
  • the speed increaser 55, the generator 50, the main shaft bearing 60 and the control device 31 are stored in the nacelle 2, and the nacelle 2 is supported by the tower 5.
  • the main shaft 28 enters the nacelle 2 and is connected to the input shaft of the speed increaser 55 and is rotatably supported by the main shaft bearing 60.
  • the main shaft 28 transmits the rotational torque generated by the blade 4 receiving wind force to the input shaft of the gearbox 55.
  • the blade 4 is provided at the tip of the main shaft 28, converts wind force into rotational torque, and transmits it to the main shaft 28.
  • the speed increaser 55 is provided between the main shaft 28 and the generator 50, and increases the rotational speed of the main shaft 28 and outputs it to the generator 50.
  • the generator 50 is connected to the output shaft of the speed increaser 55, and generates power by the rotational torque received from the speed increaser 55.
  • the generator 50 is constituted by, for example, an induction generator.
  • the wind power generation facility 1 obtains an appropriate rotation by changing the angle of the blade 4 with respect to the wind direction (hereinafter referred to as pitch) according to the strength of the wind force. Similarly, when starting and stopping the windmill, the blade pitch is controlled. Further, each blade 4 is controlled to swing several degrees even during one rotation of the main shaft. In this way, the amount of energy that can be obtained from the wind can be adjusted.
  • the wind receiving surface also referred to as a blade surface or a blade surface
  • the wind receiving surface of the blade is made parallel to the wind direction in order to suppress the rotation of the windmill.
  • the blade pitch variable mechanism includes a blade pitch changing drive device 24 attached to the rotor head side, and a ring gear 26 rotated by a pinion gear fitted to the rotation shaft of the drive device 24.
  • the ring gear 26 is attached to the blade 4 in a fixed state.
  • the blade pitch variable mechanism swings (turns) a plurality of blades 4 to change (adjust) the pitch of the blades 4.
  • blade bearings 120 are provided at the base end portions of the plurality of blades 4, and the blades 4 are respectively supported by the blade bearings 120 and rotate around the rotation shaft of the blade bearings 120.
  • the pitch of the blade 4 is set so that the angle formed by the wind direction and the wind receiving surface of the blade 4 is an appropriate angle ( ⁇ 0). Then, the wind receiving surface of the blade 4 receives energy from the wind.
  • the plurality of blades 4 rotate with respect to the tower 5 together with the rotor head 3 with the main shaft 28 connected to the rotor head 3 as an axis. The rotation of the rotating shaft is transmitted to the generator, and power generation is performed.
  • the pitch of the blade 4 is changed so that the wind direction and the wind receiving surface of the blade 4 are parallel to each other.
  • the wind receiving surface of the blade 4 receives almost no energy from the wind.
  • an unmanned airplane is used for maintenance work.
  • unmanned airplanes need to perform three-dimensional positioning in the air in order to perform work in the air.
  • the positioning accuracy may deteriorate.
  • operations for obtaining the state of the blade 4 for example, camera photography or sound inspection by unmanned airplane, defect repair operation of the blade 4, cleaning operation, and the like are difficult because the body is greatly shaken.
  • the rotation angle ⁇ and the pitch angle ⁇ of the blade 4 are controlled.
  • the rotation angle ⁇ of the blade 4 to be worked is rotated in the horizontal direction, and the pitch angle ⁇ is adjusted so that the belly side or the back side of the blade 4 is substantially parallel to the ground.
  • FIG. 3 is a top view showing an example of the configuration of the unmanned airplane used in the maintenance method of the present embodiment.
  • FIG. 4 is a side view of the unmanned airplane 10 shown in FIG.
  • the unmanned airplane 10 includes four motors 11 and four propellers (rotary wings) 12 connected to the motors 11, respectively.
  • Unmanned aerial vehicle 10 further includes a controller 13 that controls the aircraft, an inverter 14, and a communication unit 15.
  • the controller 13 is connected to an inverter 14 that drives the motor 11 and a communication unit 15 that performs wireless communication.
  • the unmanned airplane 10 communicates with other devices via the communication unit 15 and flies manually or automatically.
  • the unmanned airplane 10 is equipped with various sensors (not shown) such as a GPS unit, a geomagnetic sensor, and a gyro sensor, and flies while performing a positioning operation in three dimensions by adjusting the rotation speed of the propeller and the like.
  • the unmanned aerial vehicle 10 is equipped with a work unit 16 that acquires the state of the blade, and performs various inspections and work.
  • FIG. 5 is a diagram showing an initial state when the wind power generation facility 1 is present.
  • a blade to be worked is referred to as a blade 4A.
  • the rotor head 3 is rotated in the ⁇ direction as shown in FIG. The rotation of the rotor head 3 is stopped at a position where the blade 4A which is one of the blades 4 is horizontal.
  • FIG. 6 is a view showing a state in which the blade 4A to be worked is stopped at the horizontal position. Subsequently, in the second step, the blade 4A is rotated in the ⁇ direction to a position where the ventral side or the back side of the blade 4A is parallel to the ground.
  • the first step or the second step may be performed first. Moreover, you may implement a 1st step and a 2nd step simultaneously.
  • FIG. 7 is a view showing a state in which the unmanned airplane 10 has landed on the blade 4A.
  • the work unit can reach the blade 4 from the ground or the nacelle 2.
  • the state of the blade 4A is acquired or worked by the work unit 16 while the unmanned airplane 10 is stationary in the air or landed on the blade 4A.
  • FIG. 8 is a block diagram showing the configuration of the entire equipment to which the maintenance method of the present embodiment is applied.
  • the control device 31 is installed in the wind power generation facility 1 and controls the rotor head 3 and the like installed in the facility.
  • the control device 31 may be divided into a plurality of devices.
  • the control unit that controls the rotation of the blade 4 and the communication unit that performs wireless communication may be configured as different devices.
  • the data server 32 can communicate with the control device 31, and inspection data and the like are transmitted and received from the control device 31.
  • the flight instruction unit 30 sends flight instruction information to the unmanned airplane 10 and receives state information from the unmanned airplane.
  • the status information includes, for example, the motor rotation speed, current value, voltage value, communication establishment status signal, etc. of the unmanned airplane 10.
  • indication part 30 communicate the information of the completion
  • the unmanned airplane 10 exchanges information regarding work with the control device 31 mounted on the wind power generation facility 1.
  • the unmanned airplane 10 and the wind power generation facility 1 can perform work efficiently by instructing the start and end of the work.
  • Inspection data in the appearance inspection and the internal defect inspection measured by the unmanned airplane 10 is transmitted to the control device 31.
  • the inspection data transmitted to the control device 31 is transmitted to the data server 32, and the inspection data is accumulated in the data server 32.
  • the inspection data is also transmitted to the flight instruction unit 30, and the inspection position is corrected or re-inspected automatically or manually based on the inspection result.
  • the flight instruction unit 30 may be a device that operates the unmanned airplane 10 with a manual controller.
  • control device 31 and the flight instruction unit 30 may be integrated. However, in that case, a flight instruction is given directly to the unmanned airplane 10 from the control device 31. Flight instructions are performed manually or automatically.
  • FIG. 9 is a diagram showing a configuration of the unmanned aerial vehicle 10 used in blade defect inspection.
  • the work unit 16 of the unmanned airplane 10 includes a sound hitting unit 20 and a camera 21.
  • the sound hitting unit 20 includes a striking unit 20A and a vibration measuring unit 20B that measures vibration generated after the striking.
  • the striking unit 20A uses a solenoid or the like, and the vibration measuring unit 20B uses a microphone or an acceleration measuring device.
  • the unmanned airplane 10 is equipped with two wheels 22A and 22B, and each wheel is also equipped with an encoder for detecting rotation.
  • the wheel 22A and the wheel 22B are directed in different directions, and the amount of movement of the front, rear, left and right when the unmanned airplane 10 has landed is measured.
  • FIG. 10 is a flowchart showing a procedure of the maintenance work method of the present embodiment.
  • information for instructing preparation for inspection is transmitted from flight instruction unit 30 to control device 31 of wind power generation facility 1 (S ⁇ b> 1). Accordingly, the wind power generation facility 1 stops power generation (S31).
  • the blade 4A does not have to be exactly horizontal, and a slight inclination is allowed as long as the unmanned airplane can travel on the blade 4A as will be described later. Further, the change of the rotation angle ⁇ (S32) and the change of the pitch angle ⁇ (S33) may be interchanged or may be performed simultaneously.
  • the flight instruction unit 30 gives a flight instruction to the unmanned airplane 10 (S3), and the unmanned airplane 10 moves to the upper part of the blade 4A to be inspected as shown in FIG. 7 (S21).
  • the flight instruction unit 30 transmits a maintenance work instruction to the unmanned airplane 10 (S4).
  • the unmanned airplane 10 performs a maintenance operation (S22).
  • the maintenance work is, for example, defect inspection, repair work, cleaning work, etc. for the blade 4.
  • the maintenance work details of a case where a blade defect inspection is performed will be described.
  • FIG. 11 is a flowchart for explaining the blade defect inspection procedure performed by the unmanned aerial vehicle. Referring to FIG. 11, when the defect inspection is started, an appearance inspection of blade 4 is first performed (S51).
  • FIG. 12 is a diagram for explaining the appearance inspection. As shown in FIG. 12, the appearance inspection is performed by flying the unmanned airplane 10 along the blade 4 while photographing the surface of the blade 4 with the camera 21.
  • FIG. 13 is a diagram illustrating the state of the unmanned airplane 10 during ascent and hovering.
  • the propellers 12A and 12C are arranged on a diagonal line, and the rotation direction of the propeller is clockwise when viewed from above.
  • the propellers 12B and 12D are arranged on a diagonal line, and the rotation direction of the propeller is counterclockwise when viewed from above. If the rotation speeds of the propellers are the same, the unmanned airplane 10 can be raised, lowered, and hovered on the spot.
  • FIG. 14 is a diagram illustrating a state of the unmanned airplane 10 during a turn.
  • the unmanned airplane 10 when the rotation speed of the propellers 12A and 12C rotating clockwise is higher than the rotation speed of the propellers 12B and 12D rotating counterclockwise, the unmanned airplane 10 can be turned in the direction of the arrow ⁇ . it can.
  • the forward and backward movements are the same as those described later when traveling (FIGS. 17 and 18), and thus the description thereof is omitted here.
  • the appearance inspection data is transmitted from the unmanned airplane 10 to the control device 31 of the wind power generation facility 1 and stored in the data server 32 as needed.
  • the appearance inspection data is also transmitted to the flight instruction unit 30, and if necessary, the appearance inspection is performed again for reconfirmation.
  • FIG. 15 is a diagram showing a state in which the unmanned airplane has landed on the blade 4. As shown in FIGS. 7 and 15, the unmanned airplane 10 has landed on the blade 4.
  • the blade 4 is hit by the hitting unit 20A (S53), and the vibration is measured by the vibration measuring unit 20B (S54).
  • the vibration measuring unit 20B By performing striking and measurement, a single sound test is completed.
  • FIG. 16 is a diagram showing the state of the unmanned airplane at takeoff / landing and stationary.
  • FIG. 17 is a diagram illustrating a state of the unmanned airplane when moving forward.
  • FIG. 18 is a diagram illustrating the state of the unmanned airplane during reverse travel. 16 to 18 are views of the unmanned airplane shown in FIG. 13 viewed from the side with the propellers 12A and 12B coming to the front.
  • the unmanned airplane 10 may take off and land or stop. it can.
  • the lift FA becomes larger than the lift FB as shown in FIG. (The direction from the propeller 12A toward the propeller 12B is defined as forward).
  • the lift FB becomes larger than the lift FA as shown in FIG. (The direction from the propeller 12B toward the propeller 12A is set as the reverse).
  • the wheels 22A and 22B measure the movement amount, and the unmanned airplane 10 determines the interval and position of the sounding position from the measured movement amount.
  • the support legs 23A and 23B are preferably extendable to some extent by a spring or the like so that the wheels 22A and 22B can be kept in contact with the surface of the blade 4.
  • the movement amount and the sound hitting inspection data are stored as a pair of data in the data server 32 after passing through the control device 31. The hammering inspection is performed at an arbitrary location on the blade 4 or in the entire area.
  • the process returns to the flowchart of FIG. 10 (S57).
  • the flight instruction unit 30 transmits a flight instruction to the unmanned airplane 10 (S5).
  • the unmanned airplane 10 takes off from the blade 4 and stands by in the air (S23).
  • the flight instruction unit 30 notifies the control device 31 of the completion of measurement and transmits a signal instructing blade reversal (S6).
  • the control device 31 changes the pitch angle ⁇ so that the abdomen and back of the blade 4 are reversed (S34).
  • the standby position in step S23 is a position that does not affect the rotation when the pitch angle ⁇ of the blade 4 rotates.
  • the unmanned airplane 10 may be temporarily landed on the nacelle 2 instead of waiting in the air.
  • a signal indicating completion of reversal is sent from the control device 31 to the flight instruction unit 30.
  • the flight instruction unit 30 instructs the unmanned airplane 10 to perform maintenance work again (S7).
  • the unmanned airplane performs a maintenance operation (S24).
  • the content of the maintenance work is the same as that in step S22 and has been described with reference to FIG. 11, and therefore description thereof will not be repeated here.
  • the flight instruction unit 30 transmits a flight instruction to the unmanned airplane 10 (S8), and the unmanned airplane 10 takes off from the blade 4 and waits in the air (S25).
  • the process of step S25 is performed, the measurement of one blade 4 is completed.
  • the flight instruction unit 30 determines whether or not the work of all the blades 4 is completed at this time (S9). The determination result is communicated from the flight instruction unit to the unmanned airplane and the wind power generation facility. Based on this result, it is determined whether or not all the blades 4 have been finished in the unmanned airplane 10 and the wind power generation equipment (S26, S35).
  • the flight instruction unit 30 repeats the processes of steps S2 to S8 for the next blade 4 again.
  • the unmanned airplane 10 repeats the processing of steps S21 to S25, and the wind turbine generator 1 repeats the processing of S32 to S34.
  • the flight instruction unit 30 transmits a return instruction to the unmanned airplane 10 (S10), and the unmanned airplane returns (S27). Then, the flight instruction unit 30 instructs the wind power generation facility 1 to complete the inspection (S11), and the wind power generation facility 1 resumes power generation (S36). Thus, the inspection of the blade 4 is completed (S12, S28, S37).
  • FIG. 19 is a diagram illustrating an example in which the vibration measurement unit is installed in the blade.
  • the vibration measuring unit 40 is installed in a hollow portion in the blade 4 or a member constituting the blade 4.
  • the control device 31 and the vibration measuring unit 40 are connected wirelessly or by wire, and the control device 31 can directly obtain the inspection data.
  • the unmanned airplane 10 may have a drivable wheel.
  • a drive unit such as a motor may be attached to the wheels 22A and 22B in FIG. 16, or drive wheels may be provided separately from the wheels 22A and 22B.
  • FIG. 20 is a diagram for explaining a sounding method by descent.
  • the sound hitting unit 20 of the unmanned airplane 10 includes a spherical hitting part 51 attached to the lower part.
  • the unmanned aerial vehicle 10 moves to the sky above the sounding location when sounding is performed, and performs a dropping operation from a predetermined altitude by stopping or decreasing the rotation of the propeller 12. Thereby, at the time of landing, the striking part 51 and the blade 4 come into contact with each other, and a striking occurs.
  • the predetermined altitude is preferably changed according to the material and shape of the blade 4.
  • the vibration is measured by the vibration measuring unit 40 mounted in the unmanned airplane 10 or the blade 4.
  • the vibration measuring unit 40 mounted in the unmanned airplane 10 or the blade 4.
  • the hitting unit is mounted on the lower part of the unmanned airplane 10 because the center of gravity is lowered by the weight of the hitting part and the operation of the unmanned airplane 10 is stabilized.
  • the wind power generation equipment maintenance method disclosed in the present embodiment fixes the rotor blades 4 ⁇ / b> A of wind power generation equipment 1 to be horizontal (S ⁇ b> 32 and FIG. 5), The step of changing the pitch angle ⁇ of the blade 4A to be changed from the wind receiving state (S33 and FIG. 6), the step of causing the unmanned airplane 10 to reach the horizontal blade 4A, and performing the maintenance work on the blade 4A by the unmanned airplane 10 ( S22 and FIG. 7).
  • the unmanned airplane 10 includes a hitting unit 20A (or hitting unit 51) that hits the blade 4A.
  • the step of performing maintenance work (S22) includes the step of hitting the blade 4A using the hitting portion 20A (or hitting portion 51) for the diagnosis of the blade 4A (S53 in FIG. 11).
  • the vibration measuring unit 20B (or the vibration installed on the blade 4) installed in the unmanned airplane 10 is the vibration generated by the hit using the hitting unit 20A (or the hitting unit 51). It further includes a step (S54 in FIG. 11) obtained from the measurement unit 40).
  • the unmanned airplane 10 includes a camera unit 21 that captures an image of the appearance of the blade 4A.
  • the step of performing maintenance work (S22) further includes a step of photographing the blade 4A using the camera unit 21 for diagnosis of the blade 4A (S51 in FIG. 11).
  • the unmanned airplane 10 is landed on the horizontal blade 4A, and the unmanned airplane 10 is moved on the blade 4A to change the work position (S56 in FIG. 11). )including.
  • the unmanned airplane 10 includes driving wheels 22A and 22B.
  • the step of moving the unmanned airplane 10 causes the unmanned airplane 10 to travel by driving the drive wheels 22A and 22B.
  • the unmanned airplane 10 includes a plurality of rotor blades 12.
  • the step (S56) of moving the unmanned airplane 10 causes the unmanned airplane 10 to travel by changing the rotational speeds of the plurality of rotor blades 12.
  • the present invention is an unmanned aerial vehicle, and includes a plurality of rotor blades 12, support legs 23 ⁇ / b> A and 23 ⁇ / b> B that can land on a blade of a wind power generation facility, and a striking unit 20 ⁇ / b> A that strikes the blade of the wind power generation facility. (Or striking part 51).
  • the unmanned airplane 10 further includes a vibration measurement unit 20B that acquires vibrations generated by the hit using the hitting unit 20A (or the hitting unit 51).
  • the vibration measurement unit may be provided on the blade 4 of the wind power generation facility without being mounted on the unmanned airplane 10.
  • the unmanned airplane 10 further includes a communication unit 15 that communicates with the control device 31 mounted in the wind power generation facility.
  • the support leg 23 includes drive wheels 22A and 22B for traveling on the blades of the horizontal wind power generation facility.
  • the support leg 23 includes a plurality of support legs 23A and 23B that can take different states. Wheels 22A and 22B are installed on each of the plurality of support legs 23A and 23B.
  • the unmanned airplane 10 is landed on the blade using a plurality of support legs 23A and 23B in an inclined posture, and travels on the blade 4 that is leveled by rotating the plurality of rotor blades 12A to 12D.
  • Wind power generation facilities 2 nacelles, 3 rotor heads, 4, 4A-4C blades, 5 towers, 10 unmanned airplanes, 11 motors, 12, 12A-12C propellers, 13 controllers, 14 inverters, 15 communication units, 16 work units, 20 sounding unit, 20A, 51 impact unit, 20B, 40 vibration measurement unit, 21 camera, 22A, 22B wheel, 23, 23A, 23B support leg, 24 drive unit, 26 ring gear, 28 main shaft, 30 flight instruction unit, 31 Control device, 32 data server, 50 generator, 55 speed increaser, 60 spindle bearing, 120 blade bearing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Wind Motors (AREA)

Abstract

This maintenance method includes: a step (S32) for fixing a blade, of a rotor of a wind power generation facility, to be horizontalized; a step (S33) for changing the pitch angle θ, of the blade that is to be horizontal, from that in a wind receiving state; and a step (S22) for causing an unmanned flying machine to reach the horizontalized blade and perform a maintenance task for the blade. Preferably, the maintenance task includes a defect inspection of the blade. Thus, the present invention is capable of providing a maintenance method for a wind power generation facility which enables maintenance tasks for blades of a wind power generation facility while reducing burden on a worker and suppressing time and cost that are required for inspection.

Description

風力発電設備のメンテナンス方法および無人飛行機Wind power generation facility maintenance method and unmanned aerial vehicle
 この発明は、風力発電設備のメンテナンス方法に関し、より特定的には、無人飛行機を用いた風力発電設備のメンテナンス方法とその無人飛行機に関する。 The present invention relates to a maintenance method for wind power generation equipment, and more particularly to a maintenance method for wind power generation equipment using an unmanned airplane and the unmanned airplane.
 従来、既設の風力発電設備において、ロータヘッドに取り付けられたブレードのメンテナンス作業を行なう場合は、作業者が風力発電設備のナセル部まで上り、ロープアクセスにより下降しながら作業を行なっている。 Conventionally, when performing maintenance work on a blade attached to a rotor head in an existing wind power generation facility, an operator goes up to the nacelle part of the wind power generation facility and works while descending by rope access.
 メンテナンス作業の一種である風力発電設備におけるブレードの内外部の欠陥検査は、主に、作業者がロープアクセスを用いてブレードに近付き、目視観察やハンマリングによる打音を聞くことによって行なわれている。 Inspection of defects inside and outside of blades in wind power generation facilities, which is a type of maintenance work, is mainly performed by the operator approaching the blades using rope access and listening to the sound of visual observation and hammering. .
 しかし、集合型風力発電所(ウィンドファーム)などでは多くの風力発電設備が設置されているため、すべての設備を検査するには莫大な時間とコストが必要である。 However, since a large number of wind power generation facilities are installed in a collective wind power plant (wind farm) or the like, enormous time and cost are required to inspect all the facilities.
 その他の方法として、特許文献1(特表2013-542360号公報)では、空気熱デバイスを用いてブレード内部の温度を変化させ、赤外線カメラなどを用いて、正常部と異常部の温度変化の差異を判定することで、ブレードの欠陥を見つけている。 As another method, in Patent Document 1 (Japanese Patent Publication No. 2013-542360), the temperature inside the blade is changed using an air heat device, and the difference in temperature change between a normal part and an abnormal part using an infrared camera or the like. By determining, the blade defect is found.
特表2013-542360号公報Special table 2013-542360 gazette
 作業者がロープアクセスを行なう従来の方法では、ブレードの一本ごとにロープアクセスを行ない、数十メートルものブレードを上から下へ降下する形で作業しなければならないため、作業者に対して負担がかかっていた。また、一本のブレードに対してロープアクセスは数回行なわれるため、作業者はブレードに沿って往復する必要があり、多くの時間を要していた。 In the conventional method in which the operator performs rope access, the rope access must be performed for each blade, and the blade must be lowered by several tens of meters from top to bottom. It was over. Further, since the rope access is performed several times for one blade, the operator needs to reciprocate along the blade, which takes a lot of time.
 特許文献1(特表2013-542360号公報)に開示された方法では、風力発電設備内には空気熱デバイスを搭載する必要があるため、搭載されていない風力発電設備には適用できない。また、メガワット級の風力発電設備では、内部温度を変化させるために空気熱デバイスとして大出力の大型設備が必要とされ、設置するには莫大なコストや改造時間を費やすことになる。 In the method disclosed in Patent Document 1 (Japanese Patent Publication No. 2013-542360), it is necessary to mount an air thermal device in the wind power generation facility, and therefore it cannot be applied to a wind power generation facility that is not mounted. In addition, a megawatt-class wind power generation facility requires a large-scale facility with a large output as an air heat device in order to change the internal temperature, and enormous costs and modification time are required for installation.
 また、特許文献1(特表2013-542360号公報)には、測定装置の一例として、無人飛行機が開示されている。しかし、無人飛行機が空中で作業を行なうには3次元の位置決めが必要であるが、風の影響を大きく受けるため、位置決め精度が悪化するおそれがある。 Patent Document 1 (Japanese Patent Publication No. 2013-542360) discloses an unmanned airplane as an example of a measuring device. However, three-dimensional positioning is necessary for an unmanned airplane to perform work in the air, but since it is greatly affected by wind, positioning accuracy may be deteriorated.
 この発明は、上記の課題を解決するものであって、その目的は、無人飛行機を使用することによって作業者の負担を減らし、かつ検査に必要な時間とコストを抑制しつつ、風力発電設備のブレードのメンテナンス作業が可能な、風力発電設備のメンテナンス方法および無人飛行機を提供することである。 The present invention solves the above-mentioned problem, and its purpose is to reduce the burden on the operator by using an unmanned airplane and to reduce the time and cost required for the inspection, while reducing the time and cost required for the inspection. A maintenance method for wind power generation equipment and an unmanned aerial vehicle capable of performing blade maintenance work.
 この発明は、要約すると、風力発電設備のメンテナンス方法であって、風力発電設備のロータの第1ブレードを水平となるように固定するステップと、水平にする第1ブレードのピッチ角を受風状態から変更するステップと、水平にした第1ブレードに無人飛行機を到達させ、無人飛行機によって第1ブレードに対するメンテナンス作業を行なうステップとを備える。 In summary, the present invention provides a method for maintaining a wind power generation facility, the step of fixing the first blade of a rotor of the wind power generation facility so as to be horizontal, and the pitch angle of the first blade to be leveled being a wind receiving state. And a step of causing the unmanned airplane to reach the leveled first blade and performing maintenance work on the first blade by the unmanned airplane.
 風力発電設備のブレードの位置を変えることで、ロープアクセスを必要としない無人飛行機での作業や検査が可能となり、従来の風力発電設備の作業で必要としていた時間や工数を削減することができる。特に、ブレードの一つを水平付近に移動させ、ブレード長手軸回りのピッチ角を調整することによって、無人飛行機がブレード上での作業もしくは検査を簡易に行なうことが可能となる。 By changing the position of the blades of the wind power generation equipment, it is possible to perform operations and inspections on unmanned airplanes that do not require rope access, and it is possible to reduce the time and man-hours required for the work of conventional wind power generation equipment. In particular, by moving one of the blades near the horizontal and adjusting the pitch angle around the longitudinal axis of the blade, the unmanned airplane can easily perform work or inspection on the blade.
 好ましくは、無人飛行機は、第1ブレードの打撃を行なう打撃部を含む。メンテナンス作業を行なうステップは、第1ブレードの診断のために打撃部を用いて第1ブレードを打撃するステップを含む。 Preferably, the unmanned aerial vehicle includes a hitting unit that hits the first blade. The step of performing the maintenance operation includes the step of hitting the first blade using the hitting unit for diagnosis of the first blade.
 より好ましくは、メンテナンス作業を行なうステップは、打撃部を用いた打撃によって発生した振動を無人飛行機または第1ブレードに設置したセンサから取得するステップをさら含む。 More preferably, the step of performing the maintenance work further includes a step of acquiring vibration generated by hitting using the hitting unit from a sensor installed on the unmanned airplane or the first blade.
 上記の処理によって、ブレード上で打音検査の実施を可能にすることができる。なお、打撃を行なう方法の1つは、打音手段として、ソレノイドなどを使用することができるが、他の方法として、前記無人飛行機の下部に打撃部を搭載し、前記無人飛行機を降下させることによりブレードを打撃してもよい。無人飛行機による上空からの下降動作により打撃することで、打撃部に動力を搭載する必要がなくなるため、バッテリーの節約になる。また、高さを調整することで、打撃力の調整が無人飛行機の基本的な機能を用いて可能になる。また、打撃部を無人飛行機の下部に搭載するため、重心が低くなり無人飛行機の動作が安定する。 ¡By the above processing, it is possible to perform a hammering test on the blade. One method of hitting can use a solenoid or the like as sounding means, but as another method, a hitting unit is mounted below the unmanned airplane and the unmanned airplane is lowered. The blade may be hit by By hitting with a descending operation from the sky by an unmanned airplane, it is not necessary to mount power in the hitting portion, thus saving battery power. Further, by adjusting the height, the impact force can be adjusted using the basic functions of the unmanned airplane. Further, since the hitting portion is mounted on the lower part of the unmanned airplane, the center of gravity is lowered and the operation of the unmanned airplane is stabilized.
 さらに好ましくは、無人飛行機は、第1ブレードの外観の撮影を行なうカメラユニットを含む。メンテナンス作業を行なうステップは、第1ブレードの診断のためにカメラユニットを用いて第1ブレードを撮影するステップをさらに含む。 More preferably, the unmanned aerial vehicle includes a camera unit for photographing the appearance of the first blade. The step of performing the maintenance operation further includes a step of photographing the first blade using the camera unit for diagnosis of the first blade.
 好ましくは、メンテナンス作業を行なうステップは、無人飛行機を水平にした第1ブレード上に着陸させ、作業位置を変更するために第1ブレード上で無人飛行機を移動させるステップを含む。 Preferably, the step of performing the maintenance operation includes a step of landing the unmanned airplane on the first blade that is leveled and moving the unmanned airplane on the first blade in order to change the working position.
 無人飛行機は、ブレード上を走行することが可能に構成される。無人飛行機が、ブレード上を走行可能であるため、ブレード上の打音位置を随時変更できる。好ましくは、移動量測定手段を搭載することで、無人飛行機の移動量を参照できるため、打音位置やカメラでの観察位置を求めることが可能である。 The unmanned airplane is configured to be able to travel on the blade. Since the unmanned airplane can travel on the blade, the sounding position on the blade can be changed at any time. Preferably, since the movement amount of the unmanned airplane can be referred to by mounting the movement amount measuring means, it is possible to obtain the hitting position and the observation position with the camera.
 より好ましくは、無人飛行機は、駆動輪を含む。無人飛行機を移動させるステップは、駆動輪を駆動させることによって無人飛行機を走行させる。 More preferably, the unmanned airplane includes a drive wheel. The step of moving the unmanned airplane causes the unmanned airplane to travel by driving the drive wheels.
 より好ましくは、無人飛行機は、複数の回転翼を含む。無人飛行機を移動させるステップは、複数の回転翼の回転速度を変化させることによって無人飛行機を走行させる。走行に回転翼を使用することで、新たにモータや駆動基板を設けないで済むため、無人飛行機の軽量化やバッテリーの節約が可能になる。 More preferably, the unmanned aerial vehicle includes a plurality of rotor blades. The step of moving the unmanned airplane moves the unmanned airplane by changing the rotational speeds of the plurality of rotor blades. By using rotor blades for traveling, it is not necessary to install a new motor or drive board, so it is possible to reduce the weight of unmanned airplanes and save battery power.
 この発明は、他の局面では、無人飛行機であって、複数の回転翼と、風力発電設備のブレード上に着陸可能な支持脚と、風力発電設備のブレードを打撃する打撃部とを備える。 In another aspect, the present invention is an unmanned airplane, and includes a plurality of rotor blades, a support leg that can land on a blade of a wind power generation facility, and a striking unit that strikes the blade of the wind power generation facility.
 好ましくは、無人飛行機は、打撃部を用いた打撃によって発生した振動を取得するセンサをさらに備える。 Preferably, the unmanned aerial vehicle further includes a sensor that acquires vibrations generated by hitting using the hitting unit.
 より好ましくは、無人飛行機は、風力発電設備に搭載されている制御装置と通信を行なう通信部をさらに備える。 More preferably, the unmanned airplane further includes a communication unit that communicates with a control device installed in the wind power generation facility.
 好ましくは、支持脚は、水平にした風力発電設備のブレード上を走行するための駆動輪を含む。 Preferably, the support legs include drive wheels for running on the blades of the leveled wind power plant.
 より好ましくは、支持脚は、長さが異なる状態をとりうる複数の支持脚を含む。複数の支持脚の各々には車輪が設置される。無人飛行機は、傾いた姿勢で複数の支持脚を用いてブレード上に着陸し、複数の回転翼を回転させることによってブレード上を走行する。 More preferably, the support leg includes a plurality of support legs that can be in different lengths. A wheel is installed on each of the plurality of support legs. The unmanned aerial vehicle is landed on the blade using a plurality of support legs in an inclined posture, and travels on the blade by rotating a plurality of rotor blades.
 本発明によれば、風力発電設備のブレードのメンテナンス作業時に、作業者の負担が減り、検査に必要な時間とコストが抑制される。 According to the present invention, the burden on the operator is reduced during the maintenance work of the blade of the wind power generation facility, and the time and cost required for the inspection are suppressed.
本実施の形態のメンテナンス方法が適用される風力発電設備の外観を示した図である。It is the figure which showed the external appearance of the wind power generation equipment to which the maintenance method of this Embodiment is applied. 風力発電設備のナセル付近の構造を説明するための図である。It is a figure for demonstrating the structure of the nacelle vicinity of a wind power generation facility. 本実施の形態のメンテナンス方法において使用される無人飛行機の構成の一例を示した上面図である。It is the top view which showed an example of the structure of the unmanned airplane used in the maintenance method of this Embodiment. 図3に示した無人飛行機10の側面図である。FIG. 4 is a side view of the unmanned airplane 10 shown in FIG. 3. 風力発電設備1のある場合の初期状態を示す図である。It is a figure showing an initial state in case there is wind power generation equipment. 作業対象となるブレード4Aを水平位置で停止させた状態を示した図である。It is the figure which showed the state which stopped the blade 4A used as work object in a horizontal position. 無人飛行機10がブレード4Aに着陸した状態を示した図である。It is the figure which showed the state which the unmanned airplane 10 landed on the blade 4A. 本実施の形態のメンテナンス方法が適用される設備全体の構成を示したブロック図である。It is the block diagram which showed the structure of the whole installation with which the maintenance method of this Embodiment is applied. ブレードの欠陥検査で使用される無人飛行機10の構成を示す図である。It is a figure which shows the structure of the unmanned airplane 10 used by the defect inspection of a blade. 本実施の形態のメンテナンス作業方法の手順を示すフローチャートである。It is a flowchart which shows the procedure of the maintenance work method of this Embodiment. 無人飛行機が行なうブレードの欠陥検査の手順を説明するためのフローチャートである。It is a flowchart for demonstrating the procedure of the defect inspection of the blade which an unmanned airplane performs. 外観検査を説明するための図である。It is a figure for demonstrating appearance inspection. 上昇時およびホバリング時の無人飛行機10の状態を示す図である。It is a figure which shows the state of the unmanned airplane 10 at the time of a climbing and hovering. 旋回時の無人飛行機10の状態を示す図である。It is a figure which shows the state of the unmanned airplane 10 at the time of turning. 無人飛行機がブレードに着陸した状態を示した図である。It is the figure which showed the state which the unmanned airplane landed on the blade. 離着陸時および静止時の無人飛行機の状態を示す図である。It is a figure which shows the state of the unmanned airplane at the time of takeoff and landing and stationary. 前進時の無人飛行機の状態を示す図である。It is a figure which shows the state of the unmanned airplane at the time of advance. 後進時の無人飛行機の状態を示す図である。It is a figure which shows the state of the unmanned airplane at the time of reverse travel. 振動測定部をブレード内に設置した例を示す図である。It is a figure which shows the example which installed the vibration measurement part in the braid | blade. 降下による打音方法を説明するための図である。It is a figure for demonstrating the sounding method by a fall.
 以下、図面に基づいてこの発明の実施の形態を説明する。なお、以下の図面において、同一または相当する部分には同一の参照番号を付し、その説明は繰返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.
 図1は、本実施の形態のメンテナンス方法が適用される風力発電設備の外観を示した図である。図2は、風力発電設備のナセル付近の構造を説明するための図である。図1、図2を参照して、風力発電設備1は、タワー5の上部に搭載されたナセル2と、ロータヘッド3と、ロータヘッド3に取り付けられた3枚のブレード4とを含んで構成されている。 FIG. 1 is a diagram showing an external appearance of a wind power generation facility to which the maintenance method of the present embodiment is applied. FIG. 2 is a diagram for explaining the structure of the wind power generation facility near the nacelle. Referring to FIGS. 1 and 2, a wind power generation facility 1 includes a nacelle 2 mounted on an upper portion of a tower 5, a rotor head 3, and three blades 4 attached to the rotor head 3. Has been.
 ブレード4は、ナセル2に搭載されているロータヘッド3の回転によって軸方向回り(φ角度)方向に回転が可能である。また、ブレード4は、回転機構(ブレード用軸受120)によってブレード4の長手方向の軸回り(θ角度)方向に回転が可能である。さらに、図1に示される2つの回転方向φおよびθはそれぞれ図示されていないブレーキ機構によって停止動作が可能である。 The blade 4 can be rotated in the axial direction (φ angle) by the rotation of the rotor head 3 mounted on the nacelle 2. The blade 4 can be rotated in the direction around the longitudinal axis of the blade 4 (θ angle) by a rotation mechanism (blade bearing 120). Further, the two rotational directions φ and θ shown in FIG. 1 can be stopped by a brake mechanism not shown.
 図2を参照して、風力発電設備1は、主軸28と、増速機55と、発電機50と、主軸用軸受60と、制御装置31とをさらに含む。増速機55、発電機50、主軸用軸受60および制御装置31は、ナセル2に格納され、ナセル2は、タワー5によって支持される。 Referring to FIG. 2, wind power generation facility 1 further includes a main shaft 28, a speed increaser 55, a power generator 50, a main shaft bearing 60, and a control device 31. The speed increaser 55, the generator 50, the main shaft bearing 60 and the control device 31 are stored in the nacelle 2, and the nacelle 2 is supported by the tower 5.
 主軸28は、ナセル2内に進入して増速機55の入力軸に接続され、主軸用軸受60によって回転自在に支持される。そして、主軸28は、風力を受けたブレード4により発生する回転トルクを増速機55の入力軸へ伝達する。ブレード4は、主軸28の先端に設けられ、風力を回転トルクに変換して主軸28に伝達する。 The main shaft 28 enters the nacelle 2 and is connected to the input shaft of the speed increaser 55 and is rotatably supported by the main shaft bearing 60. The main shaft 28 transmits the rotational torque generated by the blade 4 receiving wind force to the input shaft of the gearbox 55. The blade 4 is provided at the tip of the main shaft 28, converts wind force into rotational torque, and transmits it to the main shaft 28.
 増速機55は、主軸28と発電機50との間に設けられ、主軸28の回転速度を増速して発電機50へ出力する。発電機50は、増速機55の出力軸に接続され、増速機55から受ける回転トルクによって発電する。発電機50は、たとえば、誘導発電機によって構成される。 The speed increaser 55 is provided between the main shaft 28 and the generator 50, and increases the rotational speed of the main shaft 28 and outputs it to the generator 50. The generator 50 is connected to the output shaft of the speed increaser 55, and generates power by the rotational torque received from the speed increaser 55. The generator 50 is constituted by, for example, an induction generator.
 風力発電設備1は、風力の強さに応じてブレード4の風の方向に対する角度(以下、ピッチとする)を変化させることによって、適度な回転を得ている。また、風車の起動・停止を行なう場合にも同様に、ブレードピッチが制御される。また、主軸を1回転させる間においても、各ブレード4が数度揺動するように制御されている。このようにすることによって、風から得ることのできるエネルギーの量を調整することができる。強風時などでは、風車の回転を抑制するためにブレードの風受け面(翼面、羽面ともいう)を風の方向と平行にする。 The wind power generation facility 1 obtains an appropriate rotation by changing the angle of the blade 4 with respect to the wind direction (hereinafter referred to as pitch) according to the strength of the wind force. Similarly, when starting and stopping the windmill, the blade pitch is controlled. Further, each blade 4 is controlled to swing several degrees even during one rotation of the main shaft. In this way, the amount of energy that can be obtained from the wind can be adjusted. In a strong wind or the like, the wind receiving surface (also referred to as a blade surface or a blade surface) of the blade is made parallel to the wind direction in order to suppress the rotation of the windmill.
 ブレードピッチ可変機構は、ロータヘッド側に取り付けられたブレードピッチ変更用の駆動装置24と、駆動装置24の回転軸に嵌合されたピニオンギヤによって回転されるリングギヤ26とを含む。リングギヤ26はブレード4に固定された状態に取り付けられている。 The blade pitch variable mechanism includes a blade pitch changing drive device 24 attached to the rotor head side, and a ring gear 26 rotated by a pinion gear fitted to the rotation shaft of the drive device 24. The ring gear 26 is attached to the blade 4 in a fixed state.
 ブレードピッチ可変機構は、複数のブレード4を揺動(回動)させ、ブレード4のピッチを変更(調整)する。ここで、この複数のブレード4の基端部には、ブレード用軸受120が設けられており、ブレード4はブレード用軸受120によってそれぞれ支持され、ブレード用軸受120の回転軸を中心として回転する。 The blade pitch variable mechanism swings (turns) a plurality of blades 4 to change (adjust) the pitch of the blades 4. Here, blade bearings 120 are provided at the base end portions of the plurality of blades 4, and the blades 4 are respectively supported by the blade bearings 120 and rotate around the rotation shaft of the blade bearings 120.
 発電機50に負荷がかかっている場合には、風の方向とブレード4の風受け面とがなす角度が適切な角度(≠0)となるようにブレード4のピッチが設定される。すると、ブレード4の風受け面は、風からのエネルギーを受ける。そして複数のブレード4は、ロータヘッド3に接続された主軸28を軸とし、ロータヘッド3と共にタワー5に対して回転する。この回転軸の回転は発電機へと伝達され、発電が行なわれる。 When a load is applied to the generator 50, the pitch of the blade 4 is set so that the angle formed by the wind direction and the wind receiving surface of the blade 4 is an appropriate angle (≠ 0). Then, the wind receiving surface of the blade 4 receives energy from the wind. The plurality of blades 4 rotate with respect to the tower 5 together with the rotor head 3 with the main shaft 28 connected to the rotor head 3 as an axis. The rotation of the rotating shaft is transmitted to the generator, and power generation is performed.
 また強風時などには、風の方向とブレード4の風受け面とが平行となるようにブレード4のピッチが変更される。このように、風の方向とブレード4のピッチとが平行となる状態(フェザリング)では、ブレード4の風受け面は風からエネルギーをほとんど受けなくなる。このようにすることによって、ブレード4およびロータヘッド3の回転速度の異常上昇による風力発電設備1の破損を防止することができる。 Also, when the wind is strong, the pitch of the blade 4 is changed so that the wind direction and the wind receiving surface of the blade 4 are parallel to each other. Thus, in a state where the wind direction and the pitch of the blade 4 are parallel (feathering), the wind receiving surface of the blade 4 receives almost no energy from the wind. By doing so, it is possible to prevent the wind power generation facility 1 from being damaged due to an abnormal increase in the rotational speed of the blade 4 and the rotor head 3.
 本実施の形態では、メンテナンス作業に無人飛行機を使用する。通常、無人飛行機が空中で作業を行なうには空中における3次元の位置決めが必要であるが、風の影響を大きく受けるため、位置決め精度が悪化するおそれがある。風がある状態では、ブレード4の状態を取得する作業、たとえば無人飛行機によるカメラ撮影や打音検査、ブレード4の欠陥修復作業、清掃作業などは、機体が大きく揺れるために困難となる。 In this embodiment, an unmanned airplane is used for maintenance work. Normally, unmanned airplanes need to perform three-dimensional positioning in the air in order to perform work in the air. However, since they are greatly affected by wind, the positioning accuracy may deteriorate. In a state where there is a wind, operations for obtaining the state of the blade 4, for example, camera photography or sound inspection by unmanned airplane, defect repair operation of the blade 4, cleaning operation, and the like are difficult because the body is greatly shaken.
 そこで、本実施の形態では、メンテナンス作業を行なう際に、ブレード4の回転角φとピッチ角θとを制御する。作業対象のブレード4の回転角φを水平方向に回転移動させ、ブレード4の腹側または背側が地面とほぼ平行になるようにピッチ角θを調整する。この調整を行なうことで、ブレード4上に無人飛行機を着陸可能にし、空中での3次元の位置決めを不要としたことで無人飛行機が受ける風の影響が減少する。そのため、ブレード4におけるメンテナンス作業が容易になる。 Therefore, in this embodiment, when the maintenance work is performed, the rotation angle φ and the pitch angle θ of the blade 4 are controlled. The rotation angle φ of the blade 4 to be worked is rotated in the horizontal direction, and the pitch angle θ is adjusted so that the belly side or the back side of the blade 4 is substantially parallel to the ground. By making this adjustment, it is possible to land the unmanned airplane on the blade 4, and the influence of the wind on the unmanned airplane is reduced by eliminating the need for three-dimensional positioning in the air. Therefore, maintenance work on the blade 4 is facilitated.
 図3は、本実施の形態のメンテナンス方法において使用される無人飛行機の構成の一例を示した上面図である。図4は、図3に示した無人飛行機10の側面図である。 FIG. 3 is a top view showing an example of the configuration of the unmanned airplane used in the maintenance method of the present embodiment. FIG. 4 is a side view of the unmanned airplane 10 shown in FIG.
 図3、図4を参照して、無人飛行機10は、4つのモータ11と、モータ11にそれぞれ接続された4つのプロペラ(回転翼)12とを含む。無人飛行機10は、さらに、機体制御を行なうコントローラ13と、インバータ14と、通信部15とを含む。コントローラ13には、モータ11を駆動させるインバータ14と無線通信を行なう通信部15とが接続されている。 3 and 4, the unmanned airplane 10 includes four motors 11 and four propellers (rotary wings) 12 connected to the motors 11, respectively. Unmanned aerial vehicle 10 further includes a controller 13 that controls the aircraft, an inverter 14, and a communication unit 15. The controller 13 is connected to an inverter 14 that drives the motor 11 and a communication unit 15 that performs wireless communication.
 無人飛行機10は、通信部15で他装置と通信を行ない、マニュアルまたはオートで飛行を行なう。また、無人飛行機10は、図示しないGPSユニットや地磁気センサ、ジャイロセンサなどの各種センサを搭載しており、プロペラの回転数等を調整することで、3次元に位置決め動作を行ないながら飛行している。また、無人飛行機10は、ブレードの状態を取得する作業ユニット16を搭載しており、各種の検査や作業を行なう。 The unmanned airplane 10 communicates with other devices via the communication unit 15 and flies manually or automatically. The unmanned airplane 10 is equipped with various sensors (not shown) such as a GPS unit, a geomagnetic sensor, and a gyro sensor, and flies while performing a positioning operation in three dimensions by adjusting the rotation speed of the propeller and the like. . The unmanned aerial vehicle 10 is equipped with a work unit 16 that acquires the state of the blade, and performs various inspections and work.
 次に、図5~図7を用いて本実施の形態において行なわれる風力発電設備のブレードへの作業方法の概略について説明する。図5は風力発電設備1のある場合の初期状態を示す図である。図5を参照して、作業対象となるブレードをブレード4Aとする。第1のステップとして、ロータヘッド3を図5に示すようにφ方向に回転させる。ロータヘッド3の回転は、ブレード4の一つであるブレード4Aが水平となる位置で停止させる。 Next, an outline of a method for working with the blades of the wind power generation equipment performed in the present embodiment will be described with reference to FIGS. FIG. 5 is a diagram showing an initial state when the wind power generation facility 1 is present. With reference to FIG. 5, a blade to be worked is referred to as a blade 4A. As a first step, the rotor head 3 is rotated in the φ direction as shown in FIG. The rotation of the rotor head 3 is stopped at a position where the blade 4A which is one of the blades 4 is horizontal.
 図6は、作業対象となるブレード4Aを水平位置で停止させた状態を示した図である。続いて、第2のステップにおいて、ブレード4Aをθ方向にブレード4Aの腹側もしくは背側が地面と平行になる位置まで回転させる。ここで、第1のステップと第2のステップの順番は、どちらを先に実施してもよい。また、第1のステップと第2のステップとを同時に実施しても良い。 FIG. 6 is a view showing a state in which the blade 4A to be worked is stopped at the horizontal position. Subsequently, in the second step, the blade 4A is rotated in the θ direction to a position where the ventral side or the back side of the blade 4A is parallel to the ground. Here, either the first step or the second step may be performed first. Moreover, you may implement a 1st step and a 2nd step simultaneously.
 続く第3のステップでは、第1と第2のステップを実施した状態から、ブレードの腹側または背側に無人飛行機10を着陸させる。図7は、無人飛行機10がブレード4Aに着陸した状態を示した図である。無人飛行機10を飛行させることによって、地上もしくはナセル2からブレード4に作業ユニットを到達させることができる。最後に、第4のステップでは、無人飛行機10が空中で静止した状態またはブレード4A上に着陸した状態で、作業ユニット16によってブレード4Aの状態取得または作業を実施する。 In the subsequent third step, the unmanned airplane 10 is landed on the ventral side or the back side of the blade from the state in which the first and second steps are performed. FIG. 7 is a view showing a state in which the unmanned airplane 10 has landed on the blade 4A. By flying the unmanned airplane 10, the work unit can reach the blade 4 from the ground or the nacelle 2. Finally, in the fourth step, the state of the blade 4A is acquired or worked by the work unit 16 while the unmanned airplane 10 is stationary in the air or landed on the blade 4A.
 続いて、メンテナンス作業の一例として、無人飛行機10を使用してブレード4の外観や内部の欠陥検査を行なう例を説明する。 Subsequently, as an example of the maintenance work, an example in which the unmanned airplane 10 is used to inspect the appearance and internal defects of the blade 4 will be described.
 図8は本実施の形態のメンテナンス方法が適用される設備全体の構成を示したブロック図である。制御装置31は風力発電設備1内に設置され、設備内に設置されているロータヘッド3などの制御を行なっている。制御装置31は複数の装置に分割されて構成されても良い。たとえば、ブレード4の回転を制御する制御部と無線通信を実施する通信部が異なった装置として構成される場合もある。また、データサーバ32は制御装置31と通信が可能であり、制御装置31から検査データなどが送受信されている。飛行指示部30は、無人飛行機10に対して飛行指示の情報を送り、無人飛行機から状態情報を受ける。 FIG. 8 is a block diagram showing the configuration of the entire equipment to which the maintenance method of the present embodiment is applied. The control device 31 is installed in the wind power generation facility 1 and controls the rotor head 3 and the like installed in the facility. The control device 31 may be divided into a plurality of devices. For example, the control unit that controls the rotation of the blade 4 and the communication unit that performs wireless communication may be configured as different devices. Further, the data server 32 can communicate with the control device 31, and inspection data and the like are transmitted and received from the control device 31. The flight instruction unit 30 sends flight instruction information to the unmanned airplane 10 and receives state information from the unmanned airplane.
 状態情報は、たとえば、無人飛行機10のモータの回転速度や電流値、電圧値、通信の確立状態信号などを含む。また、制御装置31と飛行指示部30とは、検査開始終了の情報や風力発電設備1の情報、たとえばブレード4の角度や風向、風力の情報を通信する。 The status information includes, for example, the motor rotation speed, current value, voltage value, communication establishment status signal, etc. of the unmanned airplane 10. Moreover, the control apparatus 31 and the flight instruction | indication part 30 communicate the information of the completion | finish of a test | inspection, the information of the wind power generation equipment 1, for example, the angle of a blade 4, a wind direction, and the information of a wind force.
 このように、無人飛行機10は、風力発電設備1に搭載されている制御装置31との間で、作業に関しての情報を相互に交換する。無人飛行機10と風力発電設備1が、互いに作業開始や終了などを指示することで、作業を効率的に実施することができる。 In this way, the unmanned airplane 10 exchanges information regarding work with the control device 31 mounted on the wind power generation facility 1. The unmanned airplane 10 and the wind power generation facility 1 can perform work efficiently by instructing the start and end of the work.
 次に、検査データの流れについて説明する。無人飛行機10により測定された外観検査と内部欠陥検査における検査データは、制御装置31に送信される。制御装置31に送信された検査データは、データサーバ32に送信され、データサーバ32において検査データの蓄積が行なわれる。この時、検査データは飛行指示部30にも送信され、検査結果をもとに検査位置の修正や再検査が自動または手動で実施される。 Next, the flow of inspection data will be described. Inspection data in the appearance inspection and the internal defect inspection measured by the unmanned airplane 10 is transmitted to the control device 31. The inspection data transmitted to the control device 31 is transmitted to the data server 32, and the inspection data is accumulated in the data server 32. At this time, the inspection data is also transmitted to the flight instruction unit 30, and the inspection position is corrected or re-inspected automatically or manually based on the inspection result.
 ここで、飛行指示部30は、手動コントローラにて無人飛行機10を操作する装置であっても良い。 Here, the flight instruction unit 30 may be a device that operates the unmanned airplane 10 with a manual controller.
 また、制御装置31と飛行指示部30は統合しても良い。ただし、その場合は制御装置31から直接無人飛行機10に飛行指示がなされる。飛行指示は、マニュアルまたはオートにて実施される。 Further, the control device 31 and the flight instruction unit 30 may be integrated. However, in that case, a flight instruction is given directly to the unmanned airplane 10 from the control device 31. Flight instructions are performed manually or automatically.
 図9は、ブレードの欠陥検査で使用される無人飛行機10の構成を示す図である。図9を参照して、無人飛行機10の作業ユニット16は、打音ユニット20とカメラ21を含む。打音ユニット20は、打撃部20Aと打撃後に発生する振動を測定する振動測定部20Bとを含んで構成されている。打撃部20Aは、ソレノイドなどが使用され、振動測定部20Bは、マイクや加速度測定器などが用いられる。また、無人飛行機10には2個の車輪22Aと車輪22Bが搭載されており、それぞれの車輪には回転を検知するエンコーダも搭載されている。車輪22Aと車輪22Bは、それぞれ異なった方向を向いており、無人飛行機10が着陸移動した時の前後左右の移動量を測定している。 FIG. 9 is a diagram showing a configuration of the unmanned aerial vehicle 10 used in blade defect inspection. Referring to FIG. 9, the work unit 16 of the unmanned airplane 10 includes a sound hitting unit 20 and a camera 21. The sound hitting unit 20 includes a striking unit 20A and a vibration measuring unit 20B that measures vibration generated after the striking. The striking unit 20A uses a solenoid or the like, and the vibration measuring unit 20B uses a microphone or an acceleration measuring device. The unmanned airplane 10 is equipped with two wheels 22A and 22B, and each wheel is also equipped with an encoder for detecting rotation. The wheel 22A and the wheel 22B are directed in different directions, and the amount of movement of the front, rear, left and right when the unmanned airplane 10 has landed is measured.
 次に、実施例の検査方法の手順について説明する。図10は、本実施の形態のメンテナンス作業方法の手順を示すフローチャートである。図8、図10を参照して、まず、飛行指示部30から風力発電設備1の制御装置31に検査準備を指示する情報が送信される(S1)。応じて、風力発電設備1は、発電を停止する(S31)。 Next, the procedure of the inspection method of the embodiment will be described. FIG. 10 is a flowchart showing a procedure of the maintenance work method of the present embodiment. Referring to FIGS. 8 and 10, first, information for instructing preparation for inspection is transmitted from flight instruction unit 30 to control device 31 of wind power generation facility 1 (S <b> 1). Accordingly, the wind power generation facility 1 stops power generation (S31).
 続いて、飛行指示部30から風力発電設備1の制御装置31に検査対象のブレード4Aを特定する情報と、ブレードを回転する指示が送信される(S2)。応じて、制御装置31はブレード4Aに対して、回転角φの変更(S32)とピッチ角θの変更の指示を出し(S33)、ブレード4Aは決められた角度に回転する。決められた角度とは検査対象となるブレード4の腹部または背部が水平となる角度である。回転完了後は、制御装置31から回転完了の情報が飛行指示部30に送信される。このとき図5~図7に示すようにブレード4Aの回転角(φ)とピッチ角(θ)が変化する。 Subsequently, information for specifying the blade 4A to be inspected and an instruction to rotate the blade are transmitted from the flight instruction unit 30 to the control device 31 of the wind power generation facility 1 (S2). In response, the control device 31 instructs the blade 4A to change the rotation angle φ (S32) and the pitch angle θ (S33), and the blade 4A rotates to a predetermined angle. The determined angle is an angle at which the abdomen or back of the blade 4 to be inspected becomes horizontal. After the completion of the rotation, information on the completion of the rotation is transmitted from the control device 31 to the flight instruction unit 30. At this time, the rotation angle (φ) and pitch angle (θ) of the blade 4A change as shown in FIGS.
 なお、ブレード4Aの水平は、厳密に水平である必要はなく、後述のように無人飛行機がブレード4Aの上を走行可能な状態であれば多少の傾きは許容される。また、回転角φの変更(S32)とピッチ角θの変更(S33)は入れ替えても良く、同時に行なうようにしても良い。 It should be noted that the blade 4A does not have to be exactly horizontal, and a slight inclination is allowed as long as the unmanned airplane can travel on the blade 4A as will be described later. Further, the change of the rotation angle φ (S32) and the change of the pitch angle θ (S33) may be interchanged or may be performed simultaneously.
 続いて、飛行指示部30は、無人飛行機10に対して飛行指示を与え(S3)、無人飛行機10は、図7に示すように、検査対象のブレード4Aの上部まで移動する(S21)。 Subsequently, the flight instruction unit 30 gives a flight instruction to the unmanned airplane 10 (S3), and the unmanned airplane 10 moves to the upper part of the blade 4A to be inspected as shown in FIG. 7 (S21).
 そして、飛行指示部30は、無人飛行機10に対してメンテナンス作業指示を送信する(S4)。応じて、無人飛行機10は、メンテナンス作業を実行する(S22)。メンテナンス作業は、例えば、ブレード4に対しての、欠陥検査、修復作業、清掃作業などである。以下、メンテナンス作業の一例として、ブレードの欠陥検査を行なう場合について詳細を説明する。 Then, the flight instruction unit 30 transmits a maintenance work instruction to the unmanned airplane 10 (S4). In response, the unmanned airplane 10 performs a maintenance operation (S22). The maintenance work is, for example, defect inspection, repair work, cleaning work, etc. for the blade 4. Hereinafter, as an example of the maintenance work, details of a case where a blade defect inspection is performed will be described.
 図11は、無人飛行機が行なうブレードの欠陥検査の手順を説明するためのフローチャートである。図11を参照して、欠陥検査が開始されると、まずブレード4の外観検査が実施される(S51)。 FIG. 11 is a flowchart for explaining the blade defect inspection procedure performed by the unmanned aerial vehicle. Referring to FIG. 11, when the defect inspection is started, an appearance inspection of blade 4 is first performed (S51).
 図12は、外観検査を説明するための図である。図12に示すように、外観検査は、カメラ21によってブレード4の表面を撮影しながらブレード4に沿って無人飛行機10を飛行させることによって実行される。 FIG. 12 is a diagram for explaining the appearance inspection. As shown in FIG. 12, the appearance inspection is performed by flying the unmanned airplane 10 along the blade 4 while photographing the surface of the blade 4 with the camera 21.
 ここで、簡単に、無人飛行機10の飛行について説明しておく。図13は、上昇時およびホバリング時の無人飛行機10の状態を示す図である。プロペラ12A、12Cは対角線上に配置され、上から見てプロペラの回転方向は時計回りである。プロペラ12B、12Dは対角線上に配置され、上から見てプロペラの回転方向は反時計回りである。各プロペラの回転速度を同じにすると、無人飛行機10はその場で上昇、下降、ホバリングを行なうことができる。 Here, the flight of the unmanned airplane 10 will be briefly explained. FIG. 13 is a diagram illustrating the state of the unmanned airplane 10 during ascent and hovering. The propellers 12A and 12C are arranged on a diagonal line, and the rotation direction of the propeller is clockwise when viewed from above. The propellers 12B and 12D are arranged on a diagonal line, and the rotation direction of the propeller is counterclockwise when viewed from above. If the rotation speeds of the propellers are the same, the unmanned airplane 10 can be raised, lowered, and hovered on the spot.
 図14は、旋回時の無人飛行機10の状態を示す図である。図14に示すように時計回りに回転するプロペラ12A、12Cの回転速度を反時計回りに回転するプロペラ12B、12Dの回転速度よりも大きくすると、矢印αの向きに無人飛行機10を旋回させることができる。なお、前進、後退については、後述の走行時の説明(図17、図18)と同じであるので、ここでは説明を省略する。 FIG. 14 is a diagram illustrating a state of the unmanned airplane 10 during a turn. As shown in FIG. 14, when the rotation speed of the propellers 12A and 12C rotating clockwise is higher than the rotation speed of the propellers 12B and 12D rotating counterclockwise, the unmanned airplane 10 can be turned in the direction of the arrow α. it can. The forward and backward movements are the same as those described later when traveling (FIGS. 17 and 18), and thus the description thereof is omitted here.
 図8および図11に戻って、外観検査データは、随時、無人飛行機10から風力発電設備1の制御装置31に送信された後、データサーバ32に蓄えられる。また、外観検査データは飛行指示部30にも送信され、必要があれば再確認のため再度外観検査が行なわれる。 8 and 11, the appearance inspection data is transmitted from the unmanned airplane 10 to the control device 31 of the wind power generation facility 1 and stored in the data server 32 as needed. The appearance inspection data is also transmitted to the flight instruction unit 30, and if necessary, the appearance inspection is performed again for reconfirmation.
 外観検査後は、打音検査に移行する。打音検査では、最初に、ブレード4上に無人飛行機10が着陸する(S52)。図15は、無人飛行機がブレード4に着陸した状態を示した図である。図7および図15に示したようにブレード4上に無人飛行機10が着陸した状態となる。 後 After visual inspection, shift to hammering inspection. In the hammering test, first, the unmanned airplane 10 lands on the blade 4 (S52). FIG. 15 is a diagram showing a state in which the unmanned airplane has landed on the blade 4. As shown in FIGS. 7 and 15, the unmanned airplane 10 has landed on the blade 4.
 その後、打撃部20Aによりブレード4に対して打撃が実行され(S53)、振動測定部20Bにて振動測定される(S54)。打撃と測定を行なうことによって1カ所の打音検査が完了する。 Thereafter, the blade 4 is hit by the hitting unit 20A (S53), and the vibration is measured by the vibration measuring unit 20B (S54). By performing striking and measurement, a single sound test is completed.
 続いて、所定箇所の打音検査が完了したか否かが判断され(S55)、まだ完了していなければ(S55でNO)、次の打音位置に無人飛行機10が移動する(S56)。次の打音位置へは、無人飛行機10は、プロペラ12A~12Dの回転運動により走行し、位置を変更する。 Subsequently, it is determined whether or not the hammering inspection at a predetermined location is completed (S55). If it is not completed yet (NO in S55), the unmanned airplane 10 moves to the next hammering position (S56). To the next sounding position, the unmanned airplane 10 travels by the rotational motion of the propellers 12A to 12D and changes its position.
 ここで、ブレード上での無人飛行機10の走行について図を用いて説明する。図16は、離着陸時および静止時の無人飛行機の状態を示す図である。図17は、前進時の無人飛行機の状態を示す図である。図18は、後進時の無人飛行機の状態を示す図である。図16~図18は、図13に示した無人飛行機をプロペラ12A,12Bが手前に来る状態で側面から見た図である。 Here, the traveling of the unmanned airplane 10 on the blade will be described with reference to the drawings. FIG. 16 is a diagram showing the state of the unmanned airplane at takeoff / landing and stationary. FIG. 17 is a diagram illustrating a state of the unmanned airplane when moving forward. FIG. 18 is a diagram illustrating the state of the unmanned airplane during reverse travel. 16 to 18 are views of the unmanned airplane shown in FIG. 13 viewed from the side with the propellers 12A and 12B coming to the front.
 図13に示したように、プロペラ12A、12B,12C,12Dの回転速度を等しくすると、図16に示したように揚力FAと揚力FBは等しくなるので、無人飛行機10は離着陸または静止することができる。 As shown in FIG. 13, when the rotation speeds of the propellers 12A, 12B, 12C, and 12D are made equal, the lift FA and the lift FB become equal as shown in FIG. 16, so the unmanned airplane 10 may take off and land or stop. it can.
 プロペラ12A、12Dの回転速度をプロペラ12B,12Cの回転速度よりも大きくすると、図17に示すように揚力FAが揚力FBより大きくなり、無人飛行機10の機体は傾くので、矢印の向きに前進する(プロペラ12Aからプロペラ12Bに向かう向きを前進とする)。 When the rotation speeds of the propellers 12A and 12D are made larger than the rotation speeds of the propellers 12B and 12C, the lift FA becomes larger than the lift FB as shown in FIG. (The direction from the propeller 12A toward the propeller 12B is defined as forward).
 逆に、プロペラ12B,12Cの回転速度をプロペラ12A、12Dの回転速度よりも大きくすると、図18に示すように揚力FBが揚力FAより大きくなり、無人飛行機10の機体は反対に傾くので、矢印の向きに後進する(プロペラ12Bからプロペラ12Aに向かう向きを後進とする)。 Conversely, if the rotational speeds of the propellers 12B and 12C are made higher than the rotational speeds of the propellers 12A and 12D, the lift FB becomes larger than the lift FA as shown in FIG. (The direction from the propeller 12B toward the propeller 12A is set as the reverse).
 図16~図18に示した状態において、車輪22Aと車輪22Bは移動量を測定しており、無人飛行機10は、測定された移動量から打音位置の間隔や位置を決める。車輪22Aと車輪22Bがブレード4の表面に接触した状態を保てるように、支持脚23A、23Bはバネなどによってある程度伸縮可能であることが好ましい。また、移動量と打音検査データは、対となるデータとなって制御装置31を経由後、データサーバ32に蓄えられる。打音検査は、ブレード4上の任意の個所もしくは全域で行なわれる。 In the state shown in FIGS. 16 to 18, the wheels 22A and 22B measure the movement amount, and the unmanned airplane 10 determines the interval and position of the sounding position from the measured movement amount. The support legs 23A and 23B are preferably extendable to some extent by a spring or the like so that the wheels 22A and 22B can be kept in contact with the surface of the blade 4. Further, the movement amount and the sound hitting inspection data are stored as a pair of data in the data server 32 after passing through the control device 31. The hammering inspection is performed at an arbitrary location on the blade 4 or in the entire area.
 再び図11に戻って、指定した全点の検査が完了した後は(S55でYES)、図10のフローチャートに戻る(S57)。飛行指示部30は、無人飛行機10に飛行指示を送信し(S5)、応じて無人飛行機10はブレード4から離陸し、空中で待機する(S23)。そして飛行指示部30から制御装置31に測定完了を知らせるとともにブレード反転を指示する信号が送信される(S6)。応じて、制御装置31はブレード4の腹部と背部が反転するようにピッチ角θを変更させる(S34)。なお、このとき、ステップS23において待機する位置は、ブレード4のピッチ角θが回転したときに、回転に対して影響がない位置とする。また、無人飛行機10の電池を節約するために、無人飛行機10を空中で待機させる代わりに、ナセル2の上に一時的に着陸させても良い。 Returning to FIG. 11 again, after all designated points have been inspected (YES in S55), the process returns to the flowchart of FIG. 10 (S57). The flight instruction unit 30 transmits a flight instruction to the unmanned airplane 10 (S5). In response, the unmanned airplane 10 takes off from the blade 4 and stands by in the air (S23). Then, the flight instruction unit 30 notifies the control device 31 of the completion of measurement and transmits a signal instructing blade reversal (S6). Accordingly, the control device 31 changes the pitch angle θ so that the abdomen and back of the blade 4 are reversed (S34). At this time, the standby position in step S23 is a position that does not affect the rotation when the pitch angle θ of the blade 4 rotates. Further, in order to save the battery of the unmanned airplane 10, the unmanned airplane 10 may be temporarily landed on the nacelle 2 instead of waiting in the air.
 ブレードの背部と腹部とを反転させた後は、制御装置31から飛行指示部30へ反転完了の信号が送られる。飛行指示部30は反転完了の信号を確認後、再び無人飛行機10にメンテナンス作業を行なうように指示する(S7)。応じて、無人飛行機は、メンテナンス作業を実行する(S24)。なお、メンテナンス作業の内容については、ステップS22と同様であり、図11で説明しているのでここでは説明は繰返さない。 After reversing the back and abdomen of the blade, a signal indicating completion of reversal is sent from the control device 31 to the flight instruction unit 30. After confirming the inversion completion signal, the flight instruction unit 30 instructs the unmanned airplane 10 to perform maintenance work again (S7). In response, the unmanned airplane performs a maintenance operation (S24). The content of the maintenance work is the same as that in step S22 and has been described with reference to FIG. 11, and therefore description thereof will not be repeated here.
 メンテナンス作業が終了すると、飛行指示部30は、無人飛行機10に飛行指示を送信し(S8)、応じて無人飛行機10はブレード4から離陸し、空中で待機する(S25)。ステップS25の処理を実施した時点で、1つのブレード4の測定は完了する。 When the maintenance work is completed, the flight instruction unit 30 transmits a flight instruction to the unmanned airplane 10 (S8), and the unmanned airplane 10 takes off from the blade 4 and waits in the air (S25). When the process of step S25 is performed, the measurement of one blade 4 is completed.
 飛行指示部30は、このときにすべてのブレード4の作業が終了したか否かを判断する(S9)。判断した結果は、飛行指示部から無人飛行機と風力発電設備に連絡される。この結果に基づいて、無人飛行機10および風力発電設備においても、すべてのブレード4の作業が終了したか否かが判断される(S26,S35)。 The flight instruction unit 30 determines whether or not the work of all the blades 4 is completed at this time (S9). The determination result is communicated from the flight instruction unit to the unmanned airplane and the wind power generation facility. Based on this result, it is determined whether or not all the blades 4 have been finished in the unmanned airplane 10 and the wind power generation equipment (S26, S35).
 他のブレード4の作業が終了していない場合には(S9でNO)、次のブレード4について、再び飛行指示部30はステップS2~S8の処理を繰返す。ステップS2~S8の処理に伴い、無人飛行機10においてはステップS21~S25の処理が繰返され、風力発電設備1においてはS32~S34の処理が繰返される。 If the operation of the other blade 4 has not been completed (NO in S9), the flight instruction unit 30 repeats the processes of steps S2 to S8 for the next blade 4 again. With the processing of steps S2 to S8, the unmanned airplane 10 repeats the processing of steps S21 to S25, and the wind turbine generator 1 repeats the processing of S32 to S34.
 ブレード4A~4Cの3枚すべての検査を完了した時点で(S9でYES)、飛行指示部30は無人飛行機10に帰投指示を送信し(S10)、無人飛行機は帰投する(S27)。そして、飛行指示部30は、風力発電設備1に検査完了を指示し(S11)、風力発電設備1は発電を再開させる(S36)。こうして、ブレード4の検査が完了する(S12、S28、S37)。 When all three blades 4A to 4C have been inspected (YES in S9), the flight instruction unit 30 transmits a return instruction to the unmanned airplane 10 (S10), and the unmanned airplane returns (S27). Then, the flight instruction unit 30 instructs the wind power generation facility 1 to complete the inspection (S11), and the wind power generation facility 1 resumes power generation (S36). Thus, the inspection of the blade 4 is completed (S12, S28, S37).
 なお、上記の説明では、打音ユニット20内に振動測定部20Bが搭載されていたが、振動測定部はブレード4内にあっても良い。図19は、振動測定部をブレード内に設置した例を示す図である。図19を参照して、振動測定部40は、ブレード4内の空洞部またはブレード4を構成する部材の中に設置される。また、制御装置31と振動測定部40は無線または有線で接続されており、検査データを制御装置31が直接入手することができる。 In the above description, the vibration measurement unit 20B is mounted in the sound hitting unit 20, but the vibration measurement unit may be in the blade 4. FIG. 19 is a diagram illustrating an example in which the vibration measurement unit is installed in the blade. Referring to FIG. 19, the vibration measuring unit 40 is installed in a hollow portion in the blade 4 or a member constituting the blade 4. Further, the control device 31 and the vibration measuring unit 40 are connected wirelessly or by wire, and the control device 31 can directly obtain the inspection data.
 また、打音測定点を移動する手段として、プロペラによる回転運動を用いていたが、駆動可能な車輪を無人飛行機10が有しても良い。図16の車輪22A,22Bにモータなどの駆動ユニットを取り付けても良いし、車輪22A,22Bとは別に駆動輪を設けても良い。 In addition, as a means for moving the hitting sound measurement point, the rotary motion by the propeller is used, but the unmanned airplane 10 may have a drivable wheel. A drive unit such as a motor may be attached to the wheels 22A and 22B in FIG. 16, or drive wheels may be provided separately from the wheels 22A and 22B.
 また、打音手段として、ソレノイドなどを使用していたが、無人飛行機10を降下させることによりブレードを打撃し、衝撃を測定する方法でも良い。図20は、降下による打音方法を説明するための図である。無人飛行機10の打音ユニット20は、下部に取り付けられた球状の打撃部51を含んで構成されている。無人飛行機10は、打音実施時には打音箇所の上空まで移動し、プロペラ12の回転停止または回転減少により、所定の高度から落下動作を実施する。これにより、着陸時に打撃部51とブレード4が接触し、打撃が生じる。所定の高度は、ブレード4の材質や形状等によって変化させることが好ましい。打撃後は、無人飛行機10またはブレード4内に搭載された振動測定部40によって振動が測定される。無人飛行機10による上空からの下降動作により打撃することで、打撃部に動力を必要としないため、バッテリーの節約や打撃力の調整が可能になる。また、打撃部を無人飛行機10の下部に搭載すると、打撃部の重さで重心が低くなり、無人飛行機10の動作が安定する点でも好ましい。 Further, although a solenoid or the like has been used as a sounding means, a method of hitting a blade by lowering the unmanned airplane 10 and measuring an impact may be used. FIG. 20 is a diagram for explaining a sounding method by descent. The sound hitting unit 20 of the unmanned airplane 10 includes a spherical hitting part 51 attached to the lower part. The unmanned aerial vehicle 10 moves to the sky above the sounding location when sounding is performed, and performs a dropping operation from a predetermined altitude by stopping or decreasing the rotation of the propeller 12. Thereby, at the time of landing, the striking part 51 and the blade 4 come into contact with each other, and a striking occurs. The predetermined altitude is preferably changed according to the material and shape of the blade 4. After the impact, the vibration is measured by the vibration measuring unit 40 mounted in the unmanned airplane 10 or the blade 4. By hitting by the lowering operation from the sky by the unmanned airplane 10, no power is required for the hitting portion, so that it is possible to save battery and adjust the hitting force. In addition, it is preferable that the hitting unit is mounted on the lower part of the unmanned airplane 10 because the center of gravity is lowered by the weight of the hitting part and the operation of the unmanned airplane 10 is stabilized.
 最後に、本実施の形態について、再び図面を参照して総括する。図10を参照して、本実施の形態に開示される風力発電設備のメンテナンス方法は、風力発電設備1のロータのブレード4Aを水平となるように固定するステップ(S32および図5)と、水平にするブレード4Aのピッチ角θを受風状態から変更するステップ(S33および図6)と、水平にしたブレード4Aに無人飛行機10を到達させ、無人飛行機10によってブレード4Aに対するメンテナンス作業を行なうステップ(S22および図7)とを備える。 Finally, the present embodiment will be summarized with reference to the drawings again. Referring to FIG. 10, the wind power generation equipment maintenance method disclosed in the present embodiment fixes the rotor blades 4 </ b> A of wind power generation equipment 1 to be horizontal (S <b> 32 and FIG. 5), The step of changing the pitch angle θ of the blade 4A to be changed from the wind receiving state (S33 and FIG. 6), the step of causing the unmanned airplane 10 to reach the horizontal blade 4A, and performing the maintenance work on the blade 4A by the unmanned airplane 10 ( S22 and FIG. 7).
 好ましくは、無人飛行機10は、ブレード4Aの打撃を行なう打撃部20A(または打撃部51)を含む。メンテナンス作業を行なうステップ(S22)は、ブレード4Aの診断のために打撃部20A(または打撃部51)を用いてブレード4Aを打撃するステップ(図11のS53)を含む。 Preferably, the unmanned airplane 10 includes a hitting unit 20A (or hitting unit 51) that hits the blade 4A. The step of performing maintenance work (S22) includes the step of hitting the blade 4A using the hitting portion 20A (or hitting portion 51) for the diagnosis of the blade 4A (S53 in FIG. 11).
 より好ましくは、メンテナンス作業を行なうステップ(S22)は、打撃部20A(または打撃部51)を用いた打撃によって発生した振動を無人飛行機10に設置した振動測定部20B(またはブレード4に設置した振動測定部40)から取得するステップ(図11のS54)をさらに含む。 More preferably, in the step (S22) of performing the maintenance work, the vibration measuring unit 20B (or the vibration installed on the blade 4) installed in the unmanned airplane 10 is the vibration generated by the hit using the hitting unit 20A (or the hitting unit 51). It further includes a step (S54 in FIG. 11) obtained from the measurement unit 40).
 さらに好ましくは、無人飛行機10は、ブレード4Aの外観の撮影を行なうカメラユニット21を含む。メンテナンス作業を行なうステップ(S22)は、ブレード4Aの診断のためにカメラユニット21を用いてブレード4Aを撮影するステップ(図11のS51)をさらに含む。 More preferably, the unmanned airplane 10 includes a camera unit 21 that captures an image of the appearance of the blade 4A. The step of performing maintenance work (S22) further includes a step of photographing the blade 4A using the camera unit 21 for diagnosis of the blade 4A (S51 in FIG. 11).
 好ましくは、メンテナンス作業を行なうステップ(S22)は、無人飛行機10を水平にしたブレード4A上に着陸させ、作業位置を変更するためにブレード4A上で無人飛行機10を移動させるステップ(図11のS56)を含む。 Preferably, in the step (S22) of performing the maintenance work, the unmanned airplane 10 is landed on the horizontal blade 4A, and the unmanned airplane 10 is moved on the blade 4A to change the work position (S56 in FIG. 11). )including.
 より好ましくは、無人飛行機10は、駆動輪22A,22Bを含む。無人飛行機10を移動させるステップは、駆動輪22A,22Bを駆動させることによって無人飛行機10を走行させる。 More preferably, the unmanned airplane 10 includes driving wheels 22A and 22B. The step of moving the unmanned airplane 10 causes the unmanned airplane 10 to travel by driving the drive wheels 22A and 22B.
 より好ましくは、無人飛行機10は、複数の回転翼12を含む。無人飛行機10を移動させるステップ(S56)は、複数の回転翼12の回転速度を変化させることによって無人飛行機10を走行させる。 More preferably, the unmanned airplane 10 includes a plurality of rotor blades 12. The step (S56) of moving the unmanned airplane 10 causes the unmanned airplane 10 to travel by changing the rotational speeds of the plurality of rotor blades 12.
 この発明は、他の局面では、無人飛行機であって、複数の回転翼12と、風力発電設備のブレード上に着陸可能な支持脚23A,23Bと、風力発電設備のブレードを打撃する打撃部20A(または打撃部51)とを備える。 In another aspect, the present invention is an unmanned aerial vehicle, and includes a plurality of rotor blades 12, support legs 23 </ b> A and 23 </ b> B that can land on a blade of a wind power generation facility, and a striking unit 20 </ b> A that strikes the blade of the wind power generation facility. (Or striking part 51).
 好ましくは、無人飛行機10は、打撃部20A(または打撃部51)を用いた打撃によって発生した振動を取得する振動測定部20Bをさらに備える。なお、図20に示すように、振動測定部は、無人飛行機10に搭載しなくても、風力発電設備のブレード4に設けても良い。 Preferably, the unmanned airplane 10 further includes a vibration measurement unit 20B that acquires vibrations generated by the hit using the hitting unit 20A (or the hitting unit 51). As shown in FIG. 20, the vibration measurement unit may be provided on the blade 4 of the wind power generation facility without being mounted on the unmanned airplane 10.
 より好ましくは、図3に示すように、無人飛行機10は、風力発電設備に搭載されている制御装置31と通信を行なう通信部15をさらに備える。 More preferably, as shown in FIG. 3, the unmanned airplane 10 further includes a communication unit 15 that communicates with the control device 31 mounted in the wind power generation facility.
 好ましくは、支持脚23は、水平にした風力発電設備のブレード上を走行するための駆動輪22A,22Bを含む。 Preferably, the support leg 23 includes drive wheels 22A and 22B for traveling on the blades of the horizontal wind power generation facility.
 より好ましくは、支持脚23は、長さが異なる状態をとりうる複数の支持脚23A,23Bを含む。複数の支持脚23A,23Bの各々には車輪22A,22Bが設置される。無人飛行機10は、傾いた姿勢で複数の支持脚23A,23Bを用いてブレード上に着陸し、複数の回転翼12A~12Dを回転させることによって水平にしたブレード4上を走行する。 More preferably, the support leg 23 includes a plurality of support legs 23A and 23B that can take different states. Wheels 22A and 22B are installed on each of the plurality of support legs 23A and 23B. The unmanned airplane 10 is landed on the blade using a plurality of support legs 23A and 23B in an inclined posture, and travels on the blade 4 that is leveled by rotating the plurality of rotor blades 12A to 12D.
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明でなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description of the embodiments but by the scope of claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.
 1 風力発電設備、2 ナセル、3 ロータヘッド、4,4A~4C ブレード、5 タワー、10 無人飛行機、11 モータ、12,12A~12C プロペラ、13 コントローラ、14 インバータ、15 通信部、16 作業ユニット、20 打音ユニット、20A,51 打撃部、20B,40 振動測定部、21 カメラ、22A,22B 車輪、23,23A,23B 支持脚、24 駆動装置、26 リングギヤ、28 主軸、30 飛行指示部、31 制御装置、32 データサーバ、50 発電機、55 増速機、60 主軸用軸受、120 ブレード用軸受。 1 Wind power generation facilities, 2 nacelles, 3 rotor heads, 4, 4A-4C blades, 5 towers, 10 unmanned airplanes, 11 motors, 12, 12A-12C propellers, 13 controllers, 14 inverters, 15 communication units, 16 work units, 20 sounding unit, 20A, 51 impact unit, 20B, 40 vibration measurement unit, 21 camera, 22A, 22B wheel, 23, 23A, 23B support leg, 24 drive unit, 26 ring gear, 28 main shaft, 30 flight instruction unit, 31 Control device, 32 data server, 50 generator, 55 speed increaser, 60 spindle bearing, 120 blade bearing.

Claims (12)

  1.  風力発電設備のロータの第1ブレードを水平となるように固定するステップと、
     水平にする前記第1ブレードのピッチ角を受風状態から変更するステップと、
     水平にした前記第1ブレードに無人飛行機を到達させ、前記無人飛行機によって前記第1ブレードに対するメンテナンス作業を行なうステップとを備える、風力発電設備のメンテナンス方法。
    Fixing the first blade of the rotor of the wind power generation equipment to be horizontal;
    Changing the pitch angle of the first blade to be horizontal from the wind receiving state;
    A method of maintaining a wind power generation facility, comprising: bringing an unmanned airplane to the horizontal first blade and performing maintenance work on the first blade with the unmanned airplane.
  2.  前記無人飛行機は、前記第1ブレードの打撃を行なう打撃部を含み、
     前記メンテナンス作業を行なうステップは、前記第1ブレードの診断のために前記打撃部を用いて前記第1ブレードを打撃するステップを含む、請求項1に記載の風力発電設備のメンテナンス方法。
    The unmanned airplane includes a striking unit that strikes the first blade,
    The maintenance method for a wind turbine generator according to claim 1, wherein the step of performing the maintenance operation includes a step of hitting the first blade using the hitting unit for diagnosis of the first blade.
  3.  前記メンテナンス作業を行なうステップは、前記打撃部を用いた打撃によって発生した振動を前記無人飛行機または前記第1ブレードに設置したセンサから取得するステップをさらに含む、請求項2に記載の風力発電設備のメンテナンス方法。 The step of performing the maintenance operation further includes a step of acquiring vibration generated by hitting using the hitting unit from a sensor installed on the unmanned airplane or the first blade. Maintenance method.
  4.  前記無人飛行機は、前記第1ブレードの外観の撮影を行なうカメラユニットを含み、
     前記メンテナンス作業を行なうステップは、前記第1ブレードの診断のために前記カメラユニットを用いて前記第1ブレードを撮影するステップをさらに含む、請求項3に記載の風力発電設備のメンテナンス方法。
    The unmanned airplane includes a camera unit that takes an image of the appearance of the first blade,
    The maintenance method for a wind power generation facility according to claim 3, wherein the step of performing the maintenance operation further includes a step of photographing the first blade using the camera unit for diagnosis of the first blade.
  5.  前記メンテナンス作業を行なうステップは、前記無人飛行機を水平にした前記第1ブレード上に着陸させ、作業位置を変更するために前記第1ブレード上で前記無人飛行機を移動させるステップを含む、請求項1に記載の風力発電設備のメンテナンス方法。 The step of performing the maintenance operation includes a step of landing the unmanned airplane on the first blade that is leveled and moving the unmanned airplane on the first blade to change a work position. The maintenance method of the wind power generation facility as described in 2.
  6.  前記無人飛行機は、駆動輪を含み、
     前記無人飛行機を移動させるステップは、前記駆動輪を駆動させることによって前記無人飛行機を走行させる、請求項5に記載の風力発電設備のメンテナンス方法。
    The unmanned airplane includes drive wheels,
    The wind power generation equipment maintenance method according to claim 5, wherein the step of moving the unmanned airplane causes the unmanned airplane to travel by driving the driving wheel.
  7.  前記無人飛行機は、複数の回転翼を含み、
     前記無人飛行機を移動させるステップは、前記複数の回転翼の回転速度を変化させることによって前記無人飛行機を走行させる、請求項5に記載の風力発電設備のメンテナンス方法。
    The unmanned airplane includes a plurality of rotor wings,
    The wind power generation equipment maintenance method according to claim 5, wherein in the step of moving the unmanned airplane, the unmanned airplane is caused to travel by changing a rotation speed of the plurality of rotor blades.
  8.  複数の回転翼と、
     風力発電設備のブレード上に着陸可能な支持脚と、
     風力発電設備のブレードを打撃する打撃部とを備える、無人飛行機。
    A plurality of rotor blades,
    Support legs that can land on the blades of the wind power generation facility,
    An unmanned aerial vehicle including a striking unit that strikes a blade of a wind power generation facility.
  9.  前記打撃部を用いた打撃によって発生した振動を取得するセンサをさらに備える、請求項8に記載の無人飛行機。 The unmanned airplane according to claim 8, further comprising a sensor that acquires vibration generated by hitting using the hitting unit.
  10.  前記風力発電設備に搭載されている制御装置と通信を行なう通信部をさらに備える、請求項9に記載の無人飛行機。 The unmanned airplane according to claim 9, further comprising a communication unit that communicates with a control device mounted on the wind power generation facility.
  11.  前記支持脚は、水平にした前記風力発電設備のブレード上を走行するための駆動輪を含む、請求項8に記載の無人飛行機。 The unmanned airplane according to claim 8, wherein the support leg includes a drive wheel for traveling on a blade of the wind power generation facility that is leveled.
  12.  前記支持脚は、長さが異なる状態をとりうる複数の支持脚を含み、前記複数の支持脚の各々には車輪が設置され、
     前記無人飛行機は、傾いた姿勢で前記複数の支持脚を用いて前記ブレード上に着陸し、前記複数の回転翼を回転させることによって水平にした前記ブレード上を走行する、請求項11に記載の無人飛行機。
    The support legs include a plurality of support legs that can have different lengths, and wheels are installed on each of the plurality of support legs,
    The said unmanned airplane landed on the blade using the plurality of support legs in an inclined posture and travels on the blade leveled by rotating the plurality of rotor blades. Unmanned airplane.
PCT/JP2016/067569 2015-07-10 2016-06-13 Maintenance method for wind power generation facility, and unmanned flying-machine WO2017010206A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015138462A JP2017020410A (en) 2015-07-10 2015-07-10 Method for maintaining wind turbine generator facility and unmanned aircraft
JP2015-138462 2015-07-10

Publications (1)

Publication Number Publication Date
WO2017010206A1 true WO2017010206A1 (en) 2017-01-19

Family

ID=57757203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067569 WO2017010206A1 (en) 2015-07-10 2016-06-13 Maintenance method for wind power generation facility, and unmanned flying-machine

Country Status (2)

Country Link
JP (1) JP2017020410A (en)
WO (1) WO2017010206A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018157980A1 (en) * 2017-03-03 2018-09-07 Innogy Se Inspection device controller for an inspection device of a wind power plant
EP3392652A1 (en) * 2017-04-21 2018-10-24 Arborea Intellbird S.L. Method for inspecting materials and aerial vehicle to implement said method
JP2019073999A (en) * 2017-10-13 2019-05-16 三菱重工業株式会社 Inspection system of wind turbine generator system using flying body and inspection method
KR20190120399A (en) * 2017-03-13 2019-10-23 제네럴 일렉트릭 컴퍼니 System and method for integrating flight path and site motion data
CN113830292A (en) * 2021-08-20 2021-12-24 林爱金 Unmanned aerial vehicle for fire rescue
CN113830292B (en) * 2021-08-20 2024-06-04 深圳市鹏锦科技有限公司 Unmanned aerial vehicle for fire rescue

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6691878B2 (en) * 2017-02-06 2020-05-13 公益財団法人鉄道総合技術研究所 Elastic wave measurement system
JP2018128278A (en) * 2017-02-06 2018-08-16 公益財団法人鉄道総合技術研究所 Hammer sound inspector and hammer sound system
US20200057002A1 (en) * 2017-05-12 2020-02-20 Pro Drones Usa, Llc Apparatus and method for non-destructive in situ testing of windmill blades using penetrating dye
CN108894933B (en) * 2018-06-27 2020-09-01 上海扩博智能技术有限公司 Method and system for tracking, losing and re-capturing fan blade tips during tracking detection of fan blade tips through unmanned aerial vehicle
JP7377642B2 (en) * 2019-08-05 2023-11-10 株式会社フジタ Management device for multiple vehicles
JP7188832B1 (en) 2022-08-19 2022-12-13 株式会社amuse oneself Inspection system for unmanned flying vehicle and wind power generation equipment, and method for inspection of wind power generation equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5934146A (en) * 1982-08-20 1984-02-24 Nissan Motor Co Ltd Flaw detector for rotor blade
WO2010051278A1 (en) * 2008-10-27 2010-05-06 Williams Scot I Wind turbine inspection
JP2015101991A (en) * 2013-11-22 2015-06-04 三菱日立パワーシステムズ株式会社 Inspection method of turbine rotor
US20150267688A1 (en) * 2012-10-16 2015-09-24 Susanne Krampe Robot for inspecting rotor blades of wind energy installations

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5934146A (en) * 1982-08-20 1984-02-24 Nissan Motor Co Ltd Flaw detector for rotor blade
WO2010051278A1 (en) * 2008-10-27 2010-05-06 Williams Scot I Wind turbine inspection
US20150267688A1 (en) * 2012-10-16 2015-09-24 Susanne Krampe Robot for inspecting rotor blades of wind energy installations
JP2015101991A (en) * 2013-11-22 2015-06-04 三菱日立パワーシステムズ株式会社 Inspection method of turbine rotor

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110603379A (en) * 2017-03-03 2019-12-20 英诺吉能源公司 Inspection tool control device for wind power equipment inspection tool
US11555481B2 (en) 2017-03-03 2023-01-17 Innogy Se Inspection device controller for an inspection device of a wind power plant
CN110603379B (en) * 2017-03-03 2021-08-13 英诺吉能源公司 Inspection tool control device for wind power equipment inspection tool
WO2018157980A1 (en) * 2017-03-03 2018-09-07 Innogy Se Inspection device controller for an inspection device of a wind power plant
KR20190120399A (en) * 2017-03-13 2019-10-23 제네럴 일렉트릭 컴퍼니 System and method for integrating flight path and site motion data
CN110431501A (en) * 2017-03-13 2019-11-08 通用电气公司 System and method for integrating flight path and on-site operational data
JP2020512629A (en) * 2017-03-13 2020-04-23 ゼネラル・エレクトリック・カンパニイ System and method for integrating flight path and field motion data
KR102544411B1 (en) * 2017-03-13 2023-06-15 제네럴 일렉트릭 컴퍼니 Systems and methods for integrating flight path and site motion data
CN110431501B (en) * 2017-03-13 2024-03-05 通用电气公司 System and method for integrating flight path and field operation data
JP7450389B2 (en) 2017-03-13 2024-03-15 ゼネラル・エレクトリック・カンパニイ Systems and methods for integrating flight path and field operational data
EP3392652A1 (en) * 2017-04-21 2018-10-24 Arborea Intellbird S.L. Method for inspecting materials and aerial vehicle to implement said method
JP2019073999A (en) * 2017-10-13 2019-05-16 三菱重工業株式会社 Inspection system of wind turbine generator system using flying body and inspection method
CN113830292A (en) * 2021-08-20 2021-12-24 林爱金 Unmanned aerial vehicle for fire rescue
CN113830292B (en) * 2021-08-20 2024-06-04 深圳市鹏锦科技有限公司 Unmanned aerial vehicle for fire rescue

Also Published As

Publication number Publication date
JP2017020410A (en) 2017-01-26

Similar Documents

Publication Publication Date Title
WO2017010206A1 (en) Maintenance method for wind power generation facility, and unmanned flying-machine
US20210047033A1 (en) System and method for airborne wind energy production
US11079760B2 (en) Methods for maintaining difficult-to-access structures using unmanned aerial vehicles
EP3267189B1 (en) Defect inspection device, defect inspection method, and program
JP6262318B1 (en) Cable inspection device
JP2017115787A (en) Maintenance method for wind turbine generator system and unmanned airplane
JP2015223995A (en) Unmanned flight body for photographing
JP2014227155A (en) Control method for vertical takeoff and landing air vehicle
CN102628425A (en) Method and system for wind turbine inspection
CN105555659B (en) Method and system for transitioning an aircraft between hover flight and crosswind flight
CN108344553B (en) Wind tunnel test model parallel mechanism supporting device for aircraft formation flight
CN110944909A (en) Rotorcraft
JP6949071B2 (en) Measuring instrument movement assistance device using a multicopter
WO2017110743A1 (en) Large structure maintenance method, method for maintaining wind-power generation facility, and unmanned aircraft
CN103699130A (en) Multi-aircraft coordinated fly-lifting device
US20200325878A1 (en) Robotic access system including robotic fan crawler for wind blade inspection and maintenance
CN104198152B (en) Bionic flapping-wing flying vehicle rises force test device and method of testing thereof
CN112478193B (en) Real-time online measuring device and method for helicopter rotor cone
JP6881295B2 (en) Defect inspection equipment, defect inspection methods and programs
Yi et al. Design and experimental study of a new flapping wing rotor micro aerial vehicle
JP2017125493A (en) Maintenance method of large structure and unmanned aircraft
CN115892531A (en) Tunnel detection unmanned aerial vehicle with flying and crawling structure and use method
CN109720560A (en) VTOL fixed-wing patrol UAV
JP2022108420A (en) Inspection method for wind turbine generator facility
JP6669916B2 (en) Radio-controlled rotary wing aircraft

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16824186

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16824186

Country of ref document: EP

Kind code of ref document: A1