WO2017110458A1 - Composition for forming laser direct structuring layer, kit, and method for manufacturing resin molded article having plating layer - Google Patents

Composition for forming laser direct structuring layer, kit, and method for manufacturing resin molded article having plating layer Download PDF

Info

Publication number
WO2017110458A1
WO2017110458A1 PCT/JP2016/086254 JP2016086254W WO2017110458A1 WO 2017110458 A1 WO2017110458 A1 WO 2017110458A1 JP 2016086254 W JP2016086254 W JP 2016086254W WO 2017110458 A1 WO2017110458 A1 WO 2017110458A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
composition
weight
thermoplastic resin
group
Prior art date
Application number
PCT/JP2016/086254
Other languages
French (fr)
Japanese (ja)
Inventor
尚秀 杉山
達也 菊地
山中 康史
Original Assignee
三菱エンジニアリングプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016209925A external-priority patent/JP6441874B2/en
Application filed by 三菱エンジニアリングプラスチックス株式会社 filed Critical 三菱エンジニアリングプラスチックス株式会社
Priority to US16/064,836 priority Critical patent/US20180363144A1/en
Priority to CN201680074863.0A priority patent/CN108431297A/en
Priority to EP16878351.2A priority patent/EP3396019A4/en
Publication of WO2017110458A1 publication Critical patent/WO2017110458A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/05Forming flame retardant coatings or fire resistant coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/044Forming conductive coatings; Forming coatings having anti-static properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/5399Phosphorus bound to nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins

Definitions

  • the present invention relates to a composition for forming a laser direct structuring layer. Furthermore, it is related with the kit which has the said composition for laser direct structuring layer formation, and a thermoplastic resin composition. Moreover, it is related with the manufacturing method of the resin molded product with a plating layer using the composition for laser direct structuring layer formation.
  • LDS laser direct structuring
  • Patent Document 5 discloses a non-conductive substrate material comprising a metal nucleus produced by crushing a fine non-conductive metal compound contained in a substrate material by use of electromagnetic radiation, and subsequently a metallized product applied thereto.
  • the non-conductive metal compound is a high oxide that is thermally stable, durable in an acidic or alkaline aqueous metallization bath, and has a spinel structure.
  • Patent Document 5 describes that a non-conductive high oxide is coated on a substrate body material and applied, and heavy metal nuclei are released by electromagnetic radiation, and this region is chemically reduced to be metallized. Has been.
  • An object of the present invention is to solve such a problem, and it is possible to form a plating layer on the surface of a resin molded product without adding an LDS additive to a thermoplastic resin composition.
  • thermoplastic resin composition is formed by forming a layer containing a curable compound, an organic solvent, and an LDS additive on the surface of a resin molded product. It has been found that a plating layer can be appropriately formed on the surface of a resin molded product without blending an LDS additive, and the present invention has been completed. Specifically, it has been found that the above problems can be solved by the following means ⁇ 1>, preferably by ⁇ 2> to ⁇ 24>. ⁇ 1> A composition for forming a laser direct structuring layer, comprising a curable compound, an organic solvent, and a laser direct structuring additive.
  • thermoplastic resin composition containing a thermoplastic resin.
  • thermoplastic resin composition does not substantially contain a laser direct structuring additive.
  • thermoplastic resin composition includes a dye / pigment and / or a flame retardant composition.
  • thermoplastic resin composition includes a pigment and / or a flame retardant composition.
  • thermoplastic resin composition contains a black dye / pigment.
  • thermoplastic resin composition contains at least one of an antimony flame retardant and an antimony flame retardant aid.
  • thermoplastic resin composition contains a halogen-based flame retardant.
  • thermoplastic resin composition contains a phosphorus-based flame retardant.
  • the phosphorus-based flame retardant is a condensed phosphate ester and / or a phosphazene compound.
  • thermoplastic resin composition contains an organometallic salt flame retardant.
  • ⁇ 21> The composition for forming a laser direct structuring layer according to any one of ⁇ 1> to ⁇ 5> is applied to the surface of a thermoplastic resin molded article, cured, and then irradiated with a laser to form a plating layer
  • the manufacturing method of the resin molded product with a plating layer including the process of forming.
  • ⁇ 22> The method for producing a resin molded product with a plating layer according to ⁇ 21>, wherein the thermoplastic resin molded product includes a crystalline resin.
  • ⁇ 23> The method for producing a resin molded product with a plating layer according to ⁇ 21>, wherein the thermoplastic resin molded product includes an amorphous resin.
  • the present invention is characterized in that a composition for forming an LDS layer containing a curable compound, an organic solvent, and an LDS additive is used separately from the resin molded product.
  • a composition for forming an LDS layer containing a curable compound, an organic solvent, and an LDS additive is used separately from the resin molded product.
  • the LDS additive when added to the thermoplastic resin composition, the LDS additive is added to the resin molded product as shown in FIG. Since it exists in a dispersed state, an LDS additive in an amount more than that necessary for forming a plating layer is blended. However, some LDS additives are expensive and it is desirable to reduce the amount of LDS additive in the resin molded product.
  • the LDS additive is useful for forming a plating layer, but becomes a foreign substance in the final resin molded product. In particular, depending on the type of LDS additive, various performances may be adversely affected. Specifically, the LDS additive damages the glass fiber and the mechanical strength is not exhibited. Moreover, in the resin composition which mix
  • FIG. 2 is a schematic view showing a step of forming a plating layer on the surface of the resin molded product in the present invention.
  • 21 indicates a resin molded product
  • 22 indicates an LDS layer
  • 23 indicates an LDS additive. That is, when the composition for forming an LDS layer of the present invention is applied (for example, applied) to the surface of the resin molded article 21, a thin LDS layer 22 in which the LDS additive 23 is uniformly dispersed can be formed (FIG. 2 (1)). .
  • a laser beam is irradiated on a portion necessary for forming the plating layer (FIG. 2 (1)).
  • the LDS additive in the portion irradiated with the laser is activated.
  • a plating solution is applied to the surface of the resin molded product.
  • the plating layer 24 is formed only in the portion irradiated with the laser (FIG. 2 (4)). As a result, it is possible to form a plating layer on the surface of the resin molded product without adding an LDS additive to the thermoplastic resin composition.
  • the plating layer is preferably formed in an atmosphere of, for example, 10 to 50 ° C., more preferably 15 to 45 ° C., particularly 20 to 40 ° C. In particular, it is preferable that no heating is performed other than the heat accompanying laser irradiation.
  • the composition for forming an LDS layer is required to be able to form an LDS layer in which the LDS additive is substantially uniformly dispersed on the surface of the resin molded product.
  • an LDS additive is dispersed in a composition containing a curable compound and an organic solvent, an LDS layer in which the LDS additive is substantially uniformly dispersed is formed on the surface of the resin molded product. it can.
  • the curable compound is cured, the LDS additive remains on the surface of the resin molded product in a state of being dispersed on the surface of the resin molded product.
  • a composition for forming an LDS layer in which an LDS additive is blended in a paint has an advantage that it is difficult to easily peel off after curing. Further, in a resin molded product using an amorphous resin such as a polycarbonate resin, the surface is likely to be uneven due to laser irradiation at the time of plating layer formation. In the method of the present invention, such unevenness is relatively Less.
  • the composition for forming an LDS layer of the present invention, a kit, and a method for producing a resin molded product with a plating layer will be described in detail.
  • composition for forming laser direct structuring layer includes a curable compound, an organic solvent, and a laser direct structuring additive. By setting it as such a structure, even if it does not mix
  • the curable compound used in the present invention is preferably a substance that can be dissolved or dispersed in an organic solvent, and more preferably a substance that can be dissolved in an organic solvent.
  • the temperature at the time of dissolution or dispersion is not particularly defined, but is preferably room temperature (for example, 25 ° C.).
  • the curable compound may be a low molecule, but is preferably a resin.
  • the curable compound used in the present invention is preferably, for example, a curable compound that cures with moisture in the air at room temperature (room temperature curable compound), an ultraviolet curable compound, or a thermosetting compound. More preferably, it is a curable compound or a thermosetting compound.
  • curable compound examples include urethane resin, epoxy resin, polyester resin, silicon resin, acrylic resin, and polyvinyl chloride resin.
  • the content of the curable compound is preferably 20 to 80% by weight, more preferably 25 to 75% by weight in the composition for forming an LDS layer.
  • the curable compound may contain only one type, or may contain two or more types. When two or more types are included, the total amount is preferably within the above range.
  • the composition for forming an LDS layer contains an organic solvent.
  • the LDS additive can be uniformly dispersed in the composition for forming an LDS layer, and as a result, an LDS layer in which the LDS additive is uniformly dispersed can be formed.
  • the organic solvent is not particularly limited as long as it is a substance that can dissolve or disperse the curable compound, and examples thereof include thinner and solvent naphtha.
  • the compounding amount of the organic solvent in the composition for forming an LDS layer of the present invention is preferably 20 to 80% by weight, and more preferably 25 to 75% by weight.
  • the composition for LDS layer formation of this invention may adjust the compounding quantity of an organic solvent and may adjust a viscosity.
  • the viscosity of the composition for forming an LDS layer is preferably 0.01 to 200 Pa ⁇ s, more preferably 0.1 to 150 Pa ⁇ s at 25 ° C. from the viewpoint of applicability.
  • a well-known coating material can be used as a composition containing a sclerosing
  • a resin paint is preferable.
  • resin coatings that can be used in the present invention include: Kansai Paint Co., Ltd., Retan PG80III Clear, Origin Denki, Origin Plate Z Meta Silver, Nippon Iupika, Neopole 8476, Nippon Paint, nax Mighty Rack
  • Various paints such as G-II KB type clear, cashew, high metal KD2850 silver, cashew, 6110 clear, Kansai paint, Million clear, Kansai paint, Binibon 100 clear can be used.
  • the main agent and the organic solvent are already mixed, there are paints composed of the main agent and the organic solvent, which are mixed at the time of use, and any aspect can be preferably used in the present invention.
  • a curing agent may be included.
  • the main agent and the curing agent correspond to the curable compound.
  • the composition for forming an LDS layer of the present invention is excellent in production suitability in that it can be made into a composition for forming an LDS layer by adding an LDS additive to a commercially available paint. Moreover, the adhesiveness of a resin molded product and a LDS layer can be improved by using the resin coating material.
  • the composition for forming an LDS layer contains an LDS additive.
  • the LDS additive in the present invention uses 10 parts by weight of an additive considered to be an LDS additive to 100 parts by weight of a thermoplastic resin (for example, polyamide resin and / or polycarbonate resin), and uses a YAG laser having a wavelength of 1064 nm. Irradiation at an output of 13 W, a frequency of 20 kHz, a scanning speed of 2 m / s, and the subsequent plating process was performed in an electroless MacDermid, MIDCopper100XB Strike plating tank, and when the metal was applied to the laser irradiation surface, A compound that can form a plating layer.
  • the LDS additive used in the present invention may be a synthetic product or a commercial product.
  • commercially available products may be substances that are sold for other uses as long as they satisfy the requirements of the LDS additive in the present invention. Only one type of LDS additive may be used, or two or more types may be used in combination.
  • preferred embodiments of the LDS additive used in the present invention will be described, but it goes without saying that the present invention is not limited thereto.
  • the LDS additive of the first embodiment and the second embodiment is preferable.
  • the first embodiment of the LDS additive used in the present invention is a compound containing copper and chromium.
  • the LDS additive of the first embodiment preferably contains 10 to 30% by weight of copper. Further, it is preferable to contain 15 to 50% by weight of chromium.
  • the LDS additive in the first embodiment is preferably an oxide containing copper and chromium.
  • the spinel structure is one of the typical crystal structure types found in double oxide AB 2 O 4 type compounds (A and B are metal elements).
  • the LDS additive of the first embodiment may contain a trace amount of other metals in addition to copper and chromium.
  • other metals include antimony, tin, lead, indium, iron, cobalt, nickel, zinc, cadmium, silver, bismuth, arsenic, manganese, magnesium, calcium, and the like, and manganese is preferable. These metals may exist as oxides.
  • a preferred example of the LDS additive of the first embodiment is an LDS additive having a content of metal oxide other than copper chromium oxide of 10% by weight or less.
  • a second embodiment of the LDS additive used in the present invention is an oxide containing antimony and / or phosphorus and tin, preferably an oxide containing antimony and tin.
  • the LDS additive of the second embodiment is more preferably one in which the amount of tin is greater than the amount of phosphorus and / or antimony, and the amount of tin with respect to the total amount of tin, phosphorus and antimony is 80% by weight or more It is more preferable that
  • the LDS additive of the second embodiment is preferably an oxide containing antimony and tin, more preferably the amount of tin added is greater than the amount of antimony, and tin relative to the total amount of tin and antimony. More preferably, the amount is 80% by weight or more.
  • tin oxide doped with antimony, tin oxide doped with antimony oxide, tin oxide doped with phosphorus, doped with phosphorous oxide examples thereof include tin oxide, tin oxide doped with antimony and tin oxide doped with antimony oxide are preferable, and tin oxide doped with antimony oxide is more preferable.
  • the phosphorus content is preferably 1 to 20% by weight.
  • the content of antimony is preferably 1 to 20% by weight.
  • the phosphorus content is preferably 0.5 to 10% by weight, and the antimony content is preferably 0.5 to 10% by weight.
  • the third embodiment of the LDS additive used in the present invention preferably contains a conductive oxide containing at least two kinds of metals and having a resistivity of 5 ⁇ 10 3 ⁇ ⁇ cm or less.
  • the resistivity of the conductive oxide is preferably 8 ⁇ 10 2 ⁇ ⁇ cm or less, more preferably 7 ⁇ 10 2 ⁇ ⁇ cm or less, and further preferably 5 ⁇ 10 2 ⁇ ⁇ cm or less.
  • it can be set to 1 * 10 ⁇ 1 > ohm * cm or more, Furthermore, it can be set to 1 * 10 ⁇ 2 > ohm * cm or more.
  • the resistivity of the conductive oxide in the present invention usually refers to the powder resistivity, and 10 g of the fine powder of the conductive oxide is charged into a cylinder having an inner diameter of 25 mm and subjected to Teflon (registered trademark) processing on the inner surface. Te 100 kg / cm 2 pressurized (filling rate 20%) can be measured by Yokogawa of "3223 Model" tester.
  • the LDS additive used in the third embodiment is not particularly limited as long as it contains a conductive oxide having a resistivity of 5 ⁇ 10 3 ⁇ ⁇ cm or less, but preferably contains at least two kinds of metals. Specifically, it preferably includes a metal of group n (n is an integer of 3 to 16) and a metal of group n + 1 of the periodic table. n is preferably an integer of 10 to 13, and more preferably 12 or 13. In the LDS additive, the LDS additive used in the third embodiment is 100 mol in total of the content of the group n metal (n is an integer of 3 to 16) and the metal content of the group n + 1 in the periodic table.
  • the content of one metal is preferably 15 mol% or less, more preferably 12 mol% or less, and particularly preferably 10 mol% or less. Although there is no restriction
  • an n group metal oxide doped with an n + 1 group metal is particularly preferable.
  • 98% by weight or more of the metal component contained in the LDS additive is composed of the group n metal content and the group n + 1 metal of the periodic table. It is preferable.
  • Examples of the metal of group n + 1 of the periodic table include group 4 (titanium, zirconium, etc.), group 5 (vanadium, niobium, etc.), group 6 (chromium, molybdenum, etc.), group 7 (manganese, etc.), group 8 (iron).
  • the LDS additive used in the third embodiment may contain a metal other than the conductive metal oxide.
  • the metal other than the conductive oxide include antimony, titanium, indium, iron, cobalt, nickel, cadmium, silver, bismuth, arsenic, manganese, chromium, magnesium, and calcium. These metals may exist as oxides.
  • the content of these metals is preferably 0.01% by weight or less with respect to the LDS additive.
  • the LDS additive used in the third embodiment preferably has an antimony content of 3% by weight or less with respect to the LDS additive from the viewpoint of improving the L value, and is 1% by weight or less. More preferably, it is more preferable that it is 0.01 weight% or less, and it is especially preferable not to contain substantially. “Substantially free” means not contained within a range that affects the effects of the present invention.
  • the average particle size of the LDS additive used in the present invention is preferably 0.01 to 100 ⁇ m, more preferably 0.05 to 30 ⁇ m, and further preferably 0.05 to 15 ⁇ m.
  • the LDS additive can be uniformly dispersed in the composition for forming an LDS layer, and the plating property tends to be further improved, which is preferable.
  • the blending amount of the LDS additive in the composition for forming an LDS layer is preferably 0.01 to 50% by weight. Moreover, it is preferable that it is 0.05 weight part or more with respect to a total of 100 weight part of the said sclerosing
  • the present invention is highly valuable in that the amount of the LDS additive in the final resin molded product with a plated layer can be reduced.
  • composition for forming an LDS layer used in the present invention may comprise only a curable compound, an organic solvent and an LDS additive, but may contain other components.
  • other components include components that are generally blended in paints and curable compounds, among which dispersants, sensitizers, compatibilizers, and dyes / pigments.
  • a composition for forming an LDS layer substantially consisting of a curable compound, an organic solvent and an LDS additive is exemplified.
  • the composition for LDS layer formation which consists only of a coating material and a LDS additive substantially is illustrated.
  • substantially means that the other components than the above are 5% by weight or less of the amount of the LDS additive, preferably 3% by weight or less, and 1% by weight or less. Is more preferable, and it is still more preferable that it is 0.1 weight% or less.
  • the composition for forming an LDS layer is a dispersion in which an LDS additive is dispersed.
  • the curable compound may be dissolved or dispersed in an organic solvent, but is preferably dissolved as described above.
  • an LDS layer in which the LDS additive is uniformly dispersed can be formed. Therefore, the composition for forming the LDS layer may be a dispersion in which the LDS additive is dispersed immediately before being applied to the surface of the resin molded product, and it is not necessarily required to be dispersed even after standing for a long time. Absent.
  • the weight ratio of the curable compound to the solvent is preferably 20:80 to 80:20, and more preferably 25:75 to 75:25. Such a range is preferable because the dispersibility of the LDS additive is excellent and the plating property tends to be improved.
  • the kit of the present invention has a composition for forming a laser direct structuring layer and a thermoplastic resin composition containing a thermoplastic resin.
  • a kit By using such a kit, it is possible to form a plating layer on the surface of the resin molded product without blending the LDS additive into the thermoplastic resin composition.
  • the amount of the LDS additive contained in the composition for forming an LDS layer can be 3.0% by weight or less of the amount of the thermoplastic resin contained in the thermoplastic resin composition, Furthermore, it can be set to 2.0% by weight or less, and particularly 1.5% by weight or less.
  • the lower limit of the amount of the LDS additive added can be, for example, 0.5% by weight or more.
  • composition for forming an LDS layer the above-described composition for forming an LDS layer can be used, and the preferred range is also the same.
  • Thermoplastic resin composition in the present invention contains a thermoplastic resin.
  • the kind of the thermoplastic resin is not particularly defined, and may be a crystalline resin or an amorphous resin.
  • the surface may be uneven due to laser irradiation.
  • the composition for forming an LDS layer of the present invention is used, Even when a crystalline resin is used, the surface can be made uniform.
  • thermoplastic resin examples include polycarbonate resin, a mixture of polycarbonate resin and polystyrene resin, an alloy of polyphenylene ether resin and polystyrene resin, an alloy of polyphenylene ether resin and polyamide resin, thermoplastic polyester resin, methyl methacrylate / acrylonitrile / Examples thereof include butadiene / styrene copolymer resin, methyl methacrylate / styrene copolymer resin, methyl methacrylate resin, rubber-reinforced methyl methacrylate resin, polyamide resin, polyacetal resin, polylactic acid resin, polyolefin resin, and polyphenylene sulfide resin.
  • a polycarbonate resin a mixture of a polycarbonate resin and a polystyrene resin, a thermoplastic polyester resin, and a polyamide resin
  • at least one of a polycarbonate resin, a mixture of a polycarbonate resin and a polystyrene resin, and a polyamide resin it is more preferable that a polyamide resin is included.
  • a polyamide resin is included.
  • a polyamide resin and a thermoplastic polyester resin are preferable.
  • amorphous resin a polycarbonate resin is preferable. A preferred embodiment will be described below.
  • thermoplastic resin in the present invention there is a case where the thermoplastic resin contains a polycarbonate resin as a main component.
  • the proportion of the polycarbonate resin in all resin components is preferably 30 to 100% by weight, more preferably 50 to 100% by weight, and further preferably 80 to 100% by weight.
  • Polycarbonate resin used in the present invention is not particularly limited, and any of an aromatic polycarbonate, an aliphatic polycarbonate, and an aromatic-aliphatic polycarbonate can be used. Of these, an aromatic polycarbonate is preferable, and a thermoplastic aromatic polycarbonate polymer or copolymer obtained by reacting an aromatic dihydroxy compound with phosgene or a diester of carbonic acid is more preferable.
  • a compound in which one or more tetraalkylphosphonium sulfonates are bonded to the above aromatic dihydroxy compound, or a polymer containing both terminal phenolic OH groups having a siloxane structure or Oligomers and the like can be used.
  • polycarbonate resins used in the present invention include polycarbonate resins derived from 2,2-bis (4-hydroxyphenyl) propane; 2,2-bis (4-hydroxyphenyl) propane and other aromatic dihydroxy compounds A polycarbonate copolymer derived from
  • the molecular weight of the polycarbonate resin is preferably 14,000 to 30,000 in terms of viscosity average molecular weight converted from the solution viscosity measured at a temperature of 25 ° C. using methylene chloride as a solvent, and 15,000 to 28,000. More preferably, it is 16,000 to 26,000. It is preferable for the viscosity average molecular weight to be in the above range since the mechanical strength becomes better and the moldability becomes better.
  • the method for producing the polycarbonate resin is not particularly limited, and the present invention also uses a polycarbonate resin produced by any method such as the phosgene method (interfacial polymerization method) and the melting method (transesterification method). can do. Moreover, in this invention, after passing through the manufacturing process of a general melting method, you may use the polycarbonate resin manufactured through the process of adjusting the amount of OH groups of a terminal group.
  • the polycarbonate resin used in the present invention may be not only a polycarbonate resin as a virgin raw material but also a polycarbonate resin regenerated from a used product, a so-called material recycled polycarbonate resin.
  • thermoplastic resin composition used in the present invention may contain only one type of polycarbonate resin or two or more types.
  • thermoplastic resin contains a polycarbonate resin and a styrene resin
  • a resin component including more than 0% by weight and less than 60% by weight of the styrene resin.
  • the resin contains 60 to 10% by weight, more preferably 60 to 80% by weight of polycarbonate resin and 40 to 20% by weight of styrene resin.
  • the description of the first embodiment can be referred to.
  • Styrene resin is a styrene polymer composed of styrene monomers, a copolymer of styrene monomers and other copolymerizable vinyl monomers, and the presence of rubbery polymers. Below, it means at least one polymer selected from the group consisting of styrene monomers or copolymers obtained by polymerizing styrene monomers and other copolymerizable vinyl monomers.
  • styrenic monomer examples include styrene derivatives such as styrene, ⁇ -methylstyrene, p-methylstyrene, divinylbenzene, ethylvinylbenzene, dimethylstyrene, pt-butylstyrene, bromostyrene, and dibromostyrene.
  • styrene is preferable.
  • these can also be used individually or in mixture of 2 or more types.
  • vinylcyan compounds such as acrylonitrile and methacrylonitrile, methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, amyl acrylate, hexyl acrylate, Acrylic acid alkyl esters such as 2-ethylhexyl acrylate, octyl acrylate and cyclohexyl acrylate, methacrylic acid such as methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, amyl methacrylate, hexyl methacrylate, 2-ethylhexyl methacrylate, octyl methacrylate and cyclohexyl methacrylate Acrylic esters, phenyl acrylate, benzyl acrylate, etc.
  • Methacrylic acid aryl esters such as acid aryl esters, phenyl methacrylate and benzyl methacrylate, epoxy group-containing acrylic acid esters or methacrylic acid esters such as glycidyl acrylate and glycidyl methacrylate, maleimides such as N, N-methylmaleimide and N-phenylmaleimide Examples thereof include ⁇ -, ⁇ -unsaturated carboxylic acids such as acrylic monomers, acrylic acid, methacrylic acid, maleic acid, maleic anhydride, fumaric acid and itaconic acid, or anhydrides thereof.
  • rubbery polymers that can be copolymerized with styrene monomers include polybutadiene, polyisoprene, styrene-butadiene random copolymers and block copolymers, acrylonitrile-butadiene random copolymers and block copolymers, acrylonitrile.
  • Such styrene resins include, for example, high impact polystyrene (HIPS), acrylonitrile-styrene copolymer (AS resin), acrylonitrile-butadiene-styrene copolymer (ABS resin), methyl methacrylate-acrylonitrile-butadiene-styrene copolymer.
  • HIPS high impact polystyrene
  • AS resin acrylonitrile-styrene copolymer
  • ABS resin acrylonitrile-butadiene-styrene copolymer
  • methyl methacrylate-acrylonitrile-butadiene-styrene copolymer methyl methacrylate-acrylonitrile-butadiene-styrene copolymer.
  • MABS resin acrylonitrile-styrene-acrylic rubber copolymer
  • ASA resin acrylonitrile-ethylenepropylene rubber-styrene copolymer
  • AES resin acrylonitrile-ethylenepropylene rubber-styrene copolymer
  • MS resin styrene-methyl methacrylate copolymer
  • styrene -Maleic anhydride copolymer and the like.
  • the styrene resin is produced by a method such as emulsion polymerization, solution polymerization, bulk polymerization, suspension polymerization or bulk / suspension polymerization.
  • the styrene resin or styrene random copolymer is used.
  • those produced by bulk polymerization, suspension polymerization, or bulk / suspension polymerization are suitable.
  • a styrene-based graft copolymer bulk polymerization, bulk / suspension polymerization or Those produced by emulsion polymerization are preferred.
  • ABS resin acrylonitrile-butadiene-styrene copolymer
  • ABS resin thermoplastic graft copolymer obtained by graft copolymerization of acrylonitrile and styrene with a butadiene rubber component, and a copolymer of acrylonitrile and styrene. It is a mixture of
  • the butadiene rubber component is preferably 5 to 40% by weight, more preferably 10 to 35% by weight, and particularly preferably 13 to 25% by weight, in 100% by weight of the ABS resin component.
  • the rubber particle size is preferably 0.1 to 5 ⁇ m, more preferably 0.2 to 3 ⁇ m, further 0.3 to 1.5 ⁇ m, and particularly preferably 0.4 to 0.9 ⁇ m.
  • the distribution of the rubber particle size may be either a single distribution or a plurality of distributions of two or more peaks.
  • thermoplastic resin composition used in the present invention may contain only one type of styrenic resin, or may contain two or more types. Moreover, resin components other than polycarbonate resin and styrene resin may be included. However, in this embodiment, these components are preferably 5% by weight or less of the total resin components.
  • thermoplastic resin in the present invention includes a case where the thermoplastic resin contains a polyamide resin.
  • the polyamide resin is more preferably contained in an amount of 80% by weight or more, more preferably 90% by weight or more, further preferably 95% by weight or more, and particularly preferably 99% by weight or more.
  • the upper limit when the thermoplastic resin includes a polyamide resin is 100% by weight or less.
  • the other resin component may be included. However, the other resin is preferably 5% by weight or less of the total resin components.
  • the polyamide resin is a polymer having a repeating unit of acid amide obtained by ring-opening polymerization of lactam, polycondensation of aminocarboxylic acid, and polycondensation of diamine and dibasic acid.
  • said "I” shows an isophthalic acid component
  • "T" shows a terephthalic acid component.
  • an appropriate polyamide resin is selected in consideration of various properties of these polyamide resins and the intended use of the molded product.
  • the semi-aromatic polyamide having an aromatic ring as a raw material dicarboxylic acid component, the polyamide MX having an aromatic ring as a raw material diamine component, or a polyamide resin obtained by mixing these is a glass fiber and a carbon fiber that increase strength. This is preferable because a compound containing a relatively large amount of filler such as can be easily obtained.
  • Specific examples of the semi-aromatic polyamide include 6I, 6T / 6I, 6 / 6T, 66 / 6T, 66 / 6T / 6I, and the like.
  • a polyamide MX resin obtained by polycondensation of xylylenediamine having an aromatic ring in the diamine component and ⁇ , ⁇ -dibasic acid is particularly preferable because a high-strength resin composition can be obtained. More preferably, it is a polyamide resin obtained by polycondensation of paraxylylenediamine and / or metaxylylenediamine with an ⁇ , ⁇ -linear aliphatic dibasic acid or aromatic dibasic acid having 6 to 12 carbon atoms. Particularly preferred are polyamide MX resins using sebacic acid and / or adipic acid as the dicarboxylic acid component, and particularly preferred is polymetaxylylene adipamide.
  • a mixture of a polyamide resin having an aromatic ring and an aliphatic polyamide resin (for example, polyamide 6, polyamide 66, etc.) is also preferably used. Even when the aliphatic polyamide resin alone is blended with a large amount of filler, the appearance and physical properties are improved by mixing with the above polyamide resin having an aromatic ring even when the appearance and physical properties are not sufficient.
  • the weight ratio is preferably 100: 1 to 100: 20.
  • thermoplastic resin in the present invention there is a case where the thermoplastic resin contains a thermoplastic polyester resin as a main component.
  • the ratio of the thermoplastic polyester resin in the total resin components is preferably 51 to 100% by weight, more preferably 80 to 100% by weight, and further 90 to 100% by weight. preferable.
  • thermoplastic polyester resin As the thermoplastic polyester resin, the description in paragraphs 0013 to 0016 of JP 2010-174223 A can be referred to.
  • a polybutylene terephthalate resin or a mixture containing 60% by weight or more, preferably 80% by weight or more of polybutylene terephthalate resin is usually used.
  • a mixture of a polybutylene terephthalate resin and a polyethylene terephthalate resin, the former occupying 60% by weight or more, and further 80% by weight or more, is one of the preferable polyester resins used in the present invention.
  • the polyethylene terephthalate resin is preferably contained in an amount of 10 to 40% by weight, and more preferably 20 to 40% by weight.
  • polybutylene terephthalate resin and polyethylene terephthalate resin are produced on a large scale by the reaction of terephthalic acid or its ester with 1,4-butanediol or ethylene glycol, and are distributed in the market. In the present invention, these resins available on the market can be used. Some commercially available resins contain a copolymer component other than a terephthalic acid component and a 1,4-butanediol component or an ethylene glycol component.
  • a small amount of a copolymer component is usually used. What contains 10 weight% or less, Preferably it is 5 weight% or less can also be used.
  • the intrinsic viscosity of the polybutylene terephthalate resin is usually 0.5 to 1.5 dl / g, particularly preferably 0.6 to 1.3 dl / g. If it is less than 0.5 dl / g, it is difficult to obtain a resin composition having excellent mechanical strength. On the other hand, if it is larger than 1.5 dl / g, the fluidity of the resin composition is lowered, and the moldability may be lowered. Moreover, it is preferable that the amount of terminal carboxyl groups is 30 meq / g or less.
  • the content of tetrahydrofuran derived from 1,4-butanediol is preferably 300 ppm or less.
  • the intrinsic viscosity of the polyethylene terephthalate resin is usually 0.4 to 1.0 dl / g, particularly preferably 0.5 to 1.0 dl / g. If the intrinsic viscosity is less than 0.4, the mechanical properties of the resin composition are likely to be lowered, and if it exceeds 1.0, the fluidity is likely to be lowered.
  • any intrinsic viscosity is a measured value in 30 degreeC in a phenol / tetrachloroethane (weight ratio 1/1) mixed solvent.
  • thermoplastic resin composition used in the present invention may contain only one kind of thermoplastic polyester resin, or may contain two or more kinds.
  • a resin component other than the thermoplastic polyester resin may be included.
  • the other resin is preferably 5% by weight or less of the total resin components.
  • thermoplastic resin in the present invention there is a case where the thermoplastic resin contains a polyacetal resin.
  • the polyacetal resin is more preferably contained in an amount of 80% by weight or more, and the upper limit is 100% by weight or less.
  • the other resin component may be included. However, the other resin is preferably 5% by weight or less of the total resin components.
  • Polyacetal Resin As for the polyacetal resin, description in paragraph Nos. 0011 of JP2003-003041A and paragraph Nos.0018 to 0020 of JP2003-220667A can be referred to.
  • Examples of the polyphenylene sulfide resin include paragraphs 0014 to 0016 in JP-A-10-292114, paragraphs 0011 to 0013 in JP-A-10-279800, and paragraphs 0011 to 0013 in JP2009-30030.
  • the description of 0015 can be considered.
  • thermoplastic resin composition used in the present invention 40% by weight or more of the total composition is preferably a resin component, more preferably 50% by weight or more is a resin component, and 60% by weight or more is a resin component. More preferably.
  • blending fibers for example, glass fillers described later
  • the thermoplastic resin composition used in the present invention may contain fibers such as glass filler and various additives in addition to the thermoplastic resin.
  • the LDS additive may damage the glass filler, which may reduce the mechanical strength originally exhibited by the glass filler.
  • the LDS additive is blended separately from the thermoplastic resin composition, such a problem can be avoided.
  • the plating layer may not be formed properly even if the LDS additive is blended.
  • the LDS additive is blended separately from the thermoplastic resin composition, such a problem can be avoided.
  • thermoplastic resin composition used in the present invention has a configuration that does not substantially contain an LDS additive.
  • the LDS additive is not substantially contained means that the LDS additive is not blended in an amount capable of forming a plating layer, for example, 0.01 parts by weight or less with respect to 100 parts by weight of the thermoplastic resin. That means.
  • the thermoplastic resin composition used in the present invention may contain a glass filler.
  • the glass filler include glass fiber, plate-like glass, glass beads, and glass flakes. Among these, glass fiber is preferable.
  • a glass filler consists of glass compositions, such as A glass, C glass, E glass, and S glass, and since E glass (an alkali free glass) does not have a bad influence on polycarbonate resin especially, it is preferable.
  • Glass fiber refers to a fiber having a fiber-like outer shape with a cross-sectional shape cut at right angles to the length direction and having a perfect circle or polygonal shape.
  • the glass fiber used for the thermoplastic resin composition used in the present invention may be a single fiber or a single fiber twisted together.
  • the form of the glass fiber is “glass roving” in which single fibers or a plurality of twisted strands are continuously wound, “chopped strand” trimmed to a length of 1 to 10 mm, and pulverized to a length of about 10 to 500 ⁇ m. Any of "Mildo fiber” etc. may be sufficient.
  • Such glass fibers are commercially available from Asahi Fiber Glass under the trade names of “Glasslon Chopped Strand” and “Glasslon Milled Fiber” and are easily available. Glass fibers having different forms can be used in combination.
  • glass fibers having an irregular cross-sectional shape are also preferable.
  • This irregular cross-sectional shape means that the flatness indicated by the long diameter / short diameter ratio (D2 / D1) when the long diameter of the cross section perpendicular to the length direction of the fiber is D2 and the short diameter is D1, is, for example, 1. It is preferably 5 to 10, more preferably 2.5 to 10, more preferably 2.5 to 8, and particularly preferably 2.5 to 5. Regarding such flat glass, the description of paragraph numbers 0065 to 0072 of JP-A-2011-195820 can be referred to, and the contents thereof are incorporated herein.
  • Glass beads are spherical ones having an outer diameter of 10 to 100 ⁇ m, and are commercially available, for example, under the trade name “EGB731” from Potters Barotini.
  • Glass flakes are flakes having a thickness of 1 to 20 ⁇ m and a side length of 0.05 to 1 mm. For example, they are commercially available from Nippon Sheet Glass under the trade name “Fureka”. Are readily available.
  • the compounding amount of the glass filler in the thermoplastic resin composition used in the present invention is preferably 1 part by weight or more, more preferably 10 parts by weight or more, and further 15 parts by weight or more with respect to 100 parts by weight of the resin component. preferable. Moreover, depending on a use, it can also be 30 weight part or more, Furthermore, it can also be 40 weight part or more. On the other hand, the upper limit is preferably 200 parts by weight or less, and more preferably 150 parts by weight or less. Depending on the application, it may be 60 parts by weight or less, further 50 parts by weight or less, and particularly 20 parts by weight or less.
  • the thermoplastic resin composition used in the present invention may contain only one type of glass filler, or may contain two or more types. When two or more types are included, the total amount falls within the above range. By blending a glass filler, mechanical strength can be improved and plating properties tend to be improved.
  • the glass filler blended in the thermoplastic resin composition used in the present invention is preferably coated with a sizing agent.
  • the type of sizing agent is not particularly defined.
  • a sizing agent may be used alone or in combination of two or more. Examples of the sizing agent include polyolefin resin, silicone resin, epoxy resin, and urethane resin.
  • the blending amount of the sizing agent in the thermoplastic resin composition used in the present invention is preferably 0.1 to 5.0% by weight of the glass filler, and more preferably 0.2 to 2.0% by weight. .
  • the thermoplastic resin composition used in the present invention may contain only one type of sizing agent or two or more types. When two or more types are included, the total amount falls within the above range.
  • Titanium oxide The thermoplastic resin composition may contain titanium oxide.
  • examples of the titanium oxide include titanium monoxide (TiO), titanium trioxide (Ti 2 O 3 ), titanium dioxide (TiO 2 ), and any of these may be used, but titanium dioxide is preferred.
  • titanium oxide those having a rutile type crystal structure are preferably used.
  • the average primary particle size of titanium oxide is preferably 1 ⁇ m or less, more preferably in the range of 0.001 to 0.5 ⁇ m, and still more preferably in the range of 0.002 to 0.1 ⁇ m. .
  • titanium oxide a surface-treated one may be used.
  • surface treatment agent inorganic materials and / or organic materials are preferable. Specific examples include metal oxides such as silica, alumina, and zinc oxide, silane coupling agents, titanium coupling agents, organic materials such as organic acids, polyols, and silicones.
  • titanium oxide may be used.
  • a lump-shaped material or a material having a large average particle diameter may be appropriately pulverized and classified by sieving or the like as necessary to obtain the above-mentioned average particle diameter.
  • the blending amount of titanium oxide in the thermoplastic resin composition is preferably 0.1 parts by weight or more, more preferably 1 part by weight or more with respect to 100 parts by weight of the resin component. More preferably, it is at least part. Moreover, as an upper limit, 80 weight part or less is preferable, 20 weight part or less is preferable, 12 weight part or less is more preferable, and 8 weight part or less is further more preferable.
  • the thermoplastic resin composition may contain only one type of titanium oxide, or may contain two or more types. When two or more types are included, the total amount falls within the above range.
  • the thermoplastic resin composition used in the present invention may contain an elastomer. By containing an elastomer, the impact resistance of the obtained resin molded product can be improved.
  • the elastomer used in the present invention include methyl methacrylate-butadiene-styrene copolymer (MBS resin), styrene-butadiene triblock copolymer called SBS, SEBS, and hydrogenated products thereof, SPS, SEPS, Examples thereof include styrene-isoprene triblock copolymers and hydrogenated products thereof, olefinic thermoplastic elastomers, polyester elastomers, siloxane rubbers, and acrylate rubbers called TPO.
  • elastomers described in paragraph numbers 0075 to 0088 of JP2012-251061A elastomers described in paragraph numbers 0101 to 0107 of JP2012-1777047A, and the like can be used. Incorporated herein.
  • the elastomer used in the present invention preferably has an acrylonitrile / butadiene / styrene copolymer content of less than 10% by weight, more preferably 5% by weight or less, and more preferably 3% by weight or less. Further preferred.
  • the elastomer used in the present invention is preferably a graft copolymer obtained by graft copolymerizing a rubber component with a monomer component copolymerizable therewith.
  • the production method of the graft copolymer may be any production method such as bulk polymerization, solution polymerization, suspension polymerization, and emulsion polymerization, and the copolymerization method may be single-stage graft or multi-stage graft.
  • the rubber component generally has a glass transition temperature of 0 ° C. or lower, preferably ⁇ 20 ° C. or lower, more preferably ⁇ 30 ° C. or lower.
  • Specific examples of the rubber component include polybutadiene rubber, polyisoprene rubber, polybutyl acrylate and poly (2-ethylhexyl acrylate), polyalkyl acrylate rubber such as butyl acrylate / 2-ethyl hexyl acrylate copolymer, and polyorganosiloxane rubber.
  • Silicone rubber butadiene-acrylic composite rubber, IPN (Interpenetrating Polymer Network) type composite rubber composed of polyorganosiloxane rubber and polyalkylacrylate rubber, styrene-butadiene rubber, ethylene-propylene rubber, ethylene-butene rubber, ethylene-octene rubber, etc. And ethylene- ⁇ -olefin rubber, ethylene-acrylic rubber, fluororubber, and the like. These may be used alone or in admixture of two or more.
  • IPN Interpenetrating Polymer Network
  • polybutadiene rubber polyalkyl acrylate rubber, polyorganosiloxane rubber, IPN composite rubber composed of polyorganosiloxane rubber and polyalkyl acrylate rubber, and styrene-butadiene rubber are preferable. .
  • monomer components that can be graft copolymerized with the rubber component include aromatic vinyl compounds, vinyl cyanide compounds, (meth) acrylic acid ester compounds, (meth) acrylic acid compounds, glycidyl (meth) acrylates, and the like.
  • These monomer components may be used alone or in combination of two or more.
  • aromatic vinyl compounds, vinyl cyanide compounds, (meth) acrylic acid ester compounds, and (meth) acrylic acid compounds are preferable from the viewpoint of mechanical properties and surface appearance, and (meth) acrylic acid esters are more preferable.
  • Specific examples of the (meth) acrylate compound include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, cyclohexyl (meth) acrylate, octyl (meth) acrylate, and the like. be able to.
  • the graft copolymer obtained by copolymerizing the rubber component is preferably a core / shell type graft copolymer type from the viewpoint of impact resistance and surface appearance.
  • a rubber component selected from polybutadiene-containing rubber, polybutyl acrylate-containing rubber, polyorganosiloxane rubber, IPN type composite rubber composed of polyorganosiloxane rubber and polyalkyl acrylate rubber is used as a core layer, and around it.
  • a core / shell type graft copolymer comprising a shell layer formed by copolymerizing (meth) acrylic acid ester is particularly preferred.
  • the core / shell type graft copolymer preferably contains 40% by weight or more of rubber component, more preferably 60% by weight or more. Moreover, what contains 10 weight% or more of (meth) acrylic acid is preferable.
  • the core / shell type in the present invention does not necessarily have to be clearly distinguishable between the core layer and the shell layer, and widely includes compounds obtained by graft polymerization of a rubber component around the core portion. The purpose.
  • these core / shell type graft copolymers include methyl methacrylate-butadiene-styrene copolymer (MBS), methyl methacrylate-acrylonitrile-butadiene-styrene copolymer (MABS), methyl methacrylate-butadiene copolymer.
  • MB methyl methacrylate-acrylic rubber copolymer
  • MA methyl methacrylate-acrylic rubber-styrene copolymer
  • MAS methyl methacrylate-acrylic / butadiene rubber copolymer
  • methacrylate-acrylic / butadiene rubber- Styrene copolymer methyl methacrylate- (acryl / silicone IPN rubber) copolymer
  • Polyorganosiloxane polyalkyl (meth) silicone containing acrylate - acrylic composite rubber and methyl methacrylate - butadiene copolymer (MB) is particularly preferred.
  • Such rubbery polymers may be used alone or in combination of two or more.
  • elastomer for example, “Paraloid (registered trademark, same applies hereinafter) EXL2602,” “Paraloid EXL2603”, “Paraloid EXL2655”, “Paraloid EXL2311”, “Paraloid EXL2313” manufactured by Rohm and Haas Japan, “Paraloid EXL2315”, “Paraloid KM330”, “Paraloid KM336P”, “Paraloid KCZ201”, “Metabrene (registered trademark, the same applies hereinafter) C-223A” manufactured by Mitsubishi Rayon, “Metabrene E-901”, “Metabrene S-2001” ”,“ Metabrene SRK-200 ”,“ Metabrene S-2030 ”“ Kane Ace (registered trademark, the same applies hereinafter) M-511 ”,“ Kane Ace M-600 ”,“ Kane Ace M-400 ”,“ Kane Ace M- ” 5 0 "," Kane Ace M-711 "
  • the amount of the elastomer is preferably 1 to 20 parts by weight, more preferably 1 to 15 parts by weight, and further preferably 2 to 10 parts by weight with respect to 100 parts by weight of the resin component.
  • the thermoplastic resin composition used in the present invention may contain only one type of elastomer or two or more types. When two or more types are included, the total amount falls within the above range.
  • thermoplastic resin composition used in the present invention may contain a flame retardant composition.
  • a flame retardant composition it may consist only of a flame retardant, and the combination of a flame retardant and a flame retardant adjuvant may be sufficient.
  • Each of the flame retardant and the flame retardant aid may be only one type or two or more types.
  • Examples of the flame retardant and / or flame retardant aid contained in the flame retardant composition of the present invention include halogen flame retardants, organometallic salt flame retardants, phosphorus flame retardants, silicone flame retardants, antimony flame retardants and flame retardants.
  • Examples of the flame retardant can be exemplified.
  • a polyamide resin or a polyester resin is used as the thermoplastic resin, it is preferable to blend a halogen flame retardant or a phosphorus flame retardant.
  • polycarbonate resin as a thermoplastic resin
  • a phosphorus flame retardant and an organometallic salt flame retardant are preferable.
  • halogen-based flame retardant include brominated flame retardants, such as brominated polycarbonate, brominated epoxy resin, brominated phenoxy resin, brominated polyphenylene ether resin, brominated polystyrene resin, brominated bisphenol A, glycidyl.
  • brominated flame retardants such as brominated polycarbonate, brominated epoxy resin, brominated phenoxy resin, brominated polyphenylene ether resin, brominated polystyrene resin, brominated bisphenol A, glycidyl.
  • brominated bisphenol A pentabromobenzyl polyacrylate
  • brominated imide brominated imide
  • the phosphorus flame retardant examples include ethyl phosphinic acid metal salt, diethyl phosphinic acid metal salt, melamine polyphosphate, condensed phosphate ester, phosphazene compound, etc. Among them, condensed phosphate ester or phosphazene is preferable. Moreover, in order to suppress the generation
  • a thermoplastic resin is preferably a polyphenylene ether resin, a polycarbonate resin, or a styrene resin.
  • the condensed phosphate ester is preferably a compound represented by the following general formula (10).
  • General formula (10) (In the formula, R 1 , R 2 , R 3 and R 4 each independently represents a hydrogen atom or an organic group, except that R 1 , R 2 , R 3 and R 4 are all hydrogen atoms.
  • X represents a divalent organic group, p is 0 or 1, q represents an integer of 1 or more, and r represents 0 or an integer of 1 or more.)
  • examples of the organic group include an alkyl group, a cycloalkyl group, and an aryl group having a substituent or not having a substituent.
  • substituent include an alkyl group, an alkoxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, a halogen atom, and a halogenated aryl group.
  • a group in which these substituents are combined, or a group in which these substituents are combined by combining with an oxygen atom, a sulfur atom, a nitrogen atom, or the like may be used.
  • the divalent organic group refers to a divalent or higher group formed by removing one carbon atom from the above organic group. Examples thereof include an alkylene group, a phenylene group, a substituted phenylene group, and a polynuclear phenylene group derived from bisphenols.
  • condensed phosphate ester represented by the general formula (10) include, for example, trimethyl phosphate, triethyl phosphate, tributyl phosphate, trioctyl phosphate, triphenyl phosphate, tricresyl phosphate, Tricresyl phenyl phosphate, octyl diphenyl phosphate, diisopropyl phenyl phosphate, tris (chloroethyl) phosphate, tris (dichloropropyl) phosphate, tris (chloropropyl) phosphate, bis (2,3-dibromopropyl) Phosphate, bis (2,3-dibromopropyl) -2,3-dichlorophosphate, bis (chloropropyl) monooctyl phosphate, bisphenol A tetraphenyl phosphate Over DOO, bisphenol A tetra cresyl diphosphat
  • condensed phosphate esters examples include “CR733S” (resorcinol bis (diphenyl phosphate)), “CR741” (bisphenol A bis (diphenyl phosphate)), “PX-200” from Daihachi Chemical Industry Co., Ltd. (Resorcinol bis (dixylenyl phosphate)), “Adekastab FP-700” (2,2-bis (p-hydroxyphenyl) propane / trichlorophosphine oxide polycondensate (polymerization degree 1 to 4) from Asahi Denka Kogyo Co., Ltd. It is sold under the trade name such as 3) phenol condensate and is readily available.
  • the phosphazene compound is an organic compound having —P ⁇ N— bond in the molecule, preferably a cyclic phosphazene compound represented by the following general formula (1), a chain phosphazene represented by the following general formula (2) A compound, and at least one selected from the group consisting of a crosslinked phosphazene compound in which at least one phosphazene compound selected from the group consisting of the following general formula (1) and the following general formula (2) is crosslinked by a crosslinking group It is this compound.
  • a is an integer of 3 to 25, and R 1 and R 2 may be the same or different and are an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an allyloxy group, an amino group , A hydroxy group, an aryl group or an alkylaryl group.
  • R 3 and R 4 may be the same or different, and an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an allyloxy group, an amino group , A hydroxy group, an aryl group or an alkylaryl group.
  • R 5 is selected from —N ⁇ P (OR 3 ) 3 groups, —N ⁇ P (OR 4 ) 3 groups, —N ⁇ P (O) OR 3 groups, and —N ⁇ P (O) OR 4 groups.
  • R 6 represents at least one type, and R 6 represents —P (OR 3 ) 4 group, —P (OR 4 ) 4 group, —P (O) (OR 3 ) 2 group, —P (O) (OR 4 ) 2 At least one selected from the group is shown.
  • examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a t-butyl group, a pentyl group, a hexyl group, an octyl group, A decyl group, a dodecyl group, etc., and an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a t-butyl group, a pentyl group, and a hexyl group is preferable.
  • Particularly preferred are alkyl groups having 1 to 4 carbon atoms such as ethyl group and propyl group.
  • cycloalkyl group examples include a cycloalkyl group having 5 to 14 carbon atoms such as a cyclopentyl group and a cyclohexyl group, and a cycloalkyl group having 5 to 8 carbon atoms is preferable.
  • alkenyl group examples include alkenyl groups having 2 to 8 carbon atoms such as vinyl group and allyl group.
  • cycloalkenyl group examples include cycloalkenyl groups having 5 to 12 carbon atoms such as a cyclopentyl group and a cyclohexyl group.
  • alkynyl group examples include an alkynyl group having an aryl group such as an alkynyl group having 2 to 8 carbon atoms such as an ethynyl group and a propynyl group and an ethynylbenzene group as a substituent.
  • aryl group examples include aryl groups having 6 to 20 carbon atoms such as a phenyl group, a methylphenyl (ie, tolyl) group, a dimethylphenyl (ie, xylyl) group, a trimethylphenyl group, and a naphthyl group.
  • a phenyl group having 6 to 10 carbon atoms is preferable, and a phenyl group is particularly preferable.
  • alkylaryl group examples include aralkyl groups having 6 to 20 carbon atoms such as benzyl group, phenethyl group, and phenylpropyl group. Among them, aralkyl groups having 7 to 10 carbon atoms are preferable, and benzyl group is particularly preferable. .
  • R 1 and R 2 in the general formula (1) and R 3 and R 4 in the general formula (2) are an aryl group and an arylalkyl group are preferable.
  • R 1 , R 2 , R 3 and R 4 are more preferably aryl groups, and particularly preferably phenyl groups.
  • Examples of the cyclic and / or chain phosphazene compounds represented by the general formula (1) and the general formula (2) include phenoxyphosphazene, o-tolyloxyphosphazene, m-tolyloxyphosphazene, p-tolyloxyphosphazene and the like.
  • (Poly) xylyloxyphosphazenes such as (poly) tolyloxyphosphazene, o, m-xylyloxyphosphazene, o, p-xylyloxyphosphazene, m, p-xylyloxyphosphazene, o, m, p-trimethyl (Poly) phenoxytolyloxyphosphazenes such as phenyloxyphosphazene, phenoxy o-tolyloxyphosphazene, phenoxy m-tolyloxyphosphazene, phenoxy p-tolyloxyphosphazene, phenoxy o, m-xylyloxyphosphazene, phenoxyo, -Xylyloxyphosphazene, phenoxy m, p-xylyloxyphosphazene, etc.
  • (poly) phenoxytolyloxyxylyloxyphosphazene, phenoxy o, m, p-trimethylphenyloxyphosphazene, etc. can be exemplified, preferably cyclic and / or chain Phenoxyphosphazene and the like.
  • cyclic phosphazene compound represented by the general formula (1) cyclic phenoxyphosphazene in which R 1 and R 2 are phenyl groups is particularly preferable.
  • examples of such cyclic phenoxyphosphazene compounds include hexachlorocyclotriphosphazene, octachlorochloromethane, and a mixture of cyclic and linear chlorophosphazene obtained by reacting ammonium chloride and phosphorus pentachloride at a temperature of 120 to 130 ° C.
  • Examples include compounds such as phenoxycyclotriphosphazene, octaphenoxycyclotetraphosphazene, and decaffenoxycyclopentaphosphazene obtained by taking out cyclic chlorophosphazenes such as cyclotetraphosphazene and decachlorocyclopentaphosphazene and replacing them with phenoxy groups .
  • the cyclic phenoxyphosphazene compound is preferably a compound in which a in the general formula (1) is an integer of 3 to 8, and may be a mixture of compounds having different a.
  • the average a is preferably 3 to 5, more preferably 3 to 4.
  • chain phosphazene compound represented by the general formula (2) chain phenoxyphosphazene in which R 3 and R 4 are phenyl groups is particularly preferable.
  • a chain phenoxyphosphazene compound is obtained by, for example, subjecting hexachlorocyclotriphosphazene obtained by the above method to reversion polymerization at a temperature of 220 to 250 ° C., and obtaining a linear dichlorophosphazene having a polymerization degree of 3 to 10,000. Examples include compounds obtained by substitution with a phenoxy group.
  • b in the linear phenoxyphosphazene compound is preferably 3 to 1000, more preferably 3 to 100, and still more preferably 3 to 25.
  • bridged phosphazene compound examples include a compound having a crosslinked structure of 4,4′-sulfonyldiphenylene (that is, a bisphenol S residue), and a crosslinked structure of 2,2- (4,4′-diphenylene) isopropylidene group.
  • Compounds having a crosslinked structure of 4,4′-diphenylene group such as compounds having a crosslinked structure of 4,4′-oxydiphenylene group, and compounds having a crosslinked structure of 4,4′-thiodiphenylene group Etc.
  • crosslinked phosphazene compound a crosslinked phenoxyphosphazene compound in which a cyclic phenoxyphosphazene compound in which R 1 and R 2 are phenyl groups in the general formula (1) is crosslinked by the above-mentioned crosslinking group, or the above general formula (2)
  • a crosslinked phenoxyphosphazene compound in which a chain phenoxyphosphazene compound in which R 3 and R 4 are phenyl groups is crosslinked by the crosslinking group is preferable from the viewpoint of flame retardancy, and the cyclic phenoxyphosphazene compound is crosslinked by the crosslinking group.
  • a crosslinked phenoxyphosphazene compound is more preferable.
  • the content of the phenylene group in the crosslinked phenoxyphosphazene compound is such that the cyclic phosphazene compound represented by the general formula (1) and / or the all phenyl groups in the chain phenoxyphosphazene compound represented by the general formula (2) and Based on the number of phenylene groups, it is usually 50 to 99.9%, preferably 70 to 90%.
  • the crosslinked phenoxyphosphazene compound is particularly preferably a compound having no free hydroxyl group in the molecule.
  • the phosphazene compound is a crosslinked phenoxy obtained by crosslinking the cyclic phenoxyphosphazene compound represented by the general formula (1) and the cyclic phenoxyphosphazene compound represented by the general formula (1) with a crosslinking group.
  • at least one selected from the group consisting of phosphazene compounds is preferred. Examples of commercially available phosphazene compounds include FP-110 and Fushimi Pharmaceutical Co., Ltd.
  • an organic alkali metal salt compound or an organic alkaline earth metal salt compound is preferable (hereinafter, the alkali metal and the alkaline earth metal are referred to as “alkali (earth) metal”).
  • the organic metal salt flame retardant include sulfonic acid metal salt, carboxylic acid metal salt, boric acid metal salt, and phosphoric acid metal salt. To sulfonic acid metal salts are preferable, and perfluoroalkanesulfonic acid metal salts are particularly preferable.
  • metal sulfonates examples include lithium sulfonate (Li), sodium sulfonate (Na), potassium sulfonate (K), rubidium sulfonate (Rb), cesium sulfonate (Cs), and magnesium sulfonate.
  • Li lithium sulfonate
  • Na sodium sulfonate
  • K potassium sulfonate
  • Rb rubidium sulfonate
  • Cs cesium sulfonate
  • Mg magnesium sulfonate
  • Ca calcium sulfonate
  • Ba barium sulfonate
  • sodium sulfonate (Na) salt, potassium sulfonate (K ) Salt is preferred.
  • sulfonic acid metal salts examples include diphenylsulfone-3,3′-disulfonate dipotassium, diphenylsulfone-3-sulfonate potassium, sodium benzenesulfonate, sodium (poly) styrenesulfonate, paratoluenesulfonic acid.
  • diphenylsulfone-3,3′-disulfonate dipotassium, diphenylsulfone-3-sulfonate potassium, sodium paratoluenesulfonate, potassium paratoluenesulfonate, and potassium perfluorobutanesulfonate are transparent and flame retardant.
  • a perfluoroalkanesulfonic acid metal salt such as potassium perfluorobutanesulfonate is preferable.
  • the antimony flame retardant or flame retardant aid is a compound containing antimony and a compound that contributes to flame retardancy.
  • Specific examples include antimony oxide such as antimony trioxide (Sb 2 O 3 ), antimony tetroxide, and antimony pentoxide (Sb 2 O 5 ), sodium antimonate, and antimony phosphate. Of these, antimony oxide is preferable because of its excellent resistance to moist heat. More preferably, antimony trioxide is used.
  • flame retardant aids include copper oxide, magnesium oxide, zinc oxide, molybdenum oxide, zirconium oxide, tin oxide, iron oxide, titanium oxide, aluminum oxide, zinc borate and the like.
  • zinc borate is preferable from the viewpoint of more excellent flame retardancy.
  • the content of the flame retardant aid is preferably 0.3 to 1.1 (weight ratio) with respect to the flame retardant, preferably 0.4 to 1.0. Is more preferable.
  • the flame retardant composition used in the present invention includes a combination of a halogen flame retardant and an antimony flame retardant or a flame retardant aid. That is, as a result of investigation by the present inventors, it has been found that when an antimony flame retardant or a flame retardant aid is blended with a resin composition containing an LDS additive, a plating layer may not be formed properly.
  • Antimony flame retardants or flame retardant aids are useful as flame retardants for thermoplastic resins, etc., and technology to appropriately form plating layers on thermoplastic resin molded articles containing antimony flame retardants or flame retardant aids Is required.
  • the composition for forming an LDS layer separately from the thermoplastic resin composition by using the composition for forming an LDS layer separately from the thermoplastic resin composition, a plating layer is appropriately applied to the surface of the resin molded product while using an antimony flame retardant or a flame retardant aid. It has succeeded in forming.
  • the content of the antimony-based flame retardant or flame retardant aid is preferably 0.1 to 25 parts by weight, more preferably 1 to 15 parts by weight with respect to 100 parts by weight of the thermoplastic resin.
  • the content of the antimony flame retardant or the flame retardant aid is preferably 1: 0.3 to 1.1 (weight ratio) with respect to the halogen flame retardant, and is preferably 1: 0.4 to More preferably, the ratio is 1.0.
  • the blending amount of the flame retardant composition is preferably 0.01 to 40 parts by weight, more preferably 1 to 40 parts by weight, still more preferably 5 to 50 parts by weight, more preferably 6 to 35 parts per 100 parts by weight of the resin component. Part by weight is particularly preferred, and 7 to 30 parts by weight is even more preferred.
  • the flame retardant composition is blended with the thermoplastic resin composition containing the LDS additive, the plating property (plating appearance) may be deteriorated.
  • the thermoplastic resin composition and the LDS layer forming composition are used separately, the plating layer can be appropriately formed also on the surface of the resin molded product containing the flame retardant composition.
  • an organic metal salt flame retardant is used as the flame retardant composition, it is preferably 0.01 to 1 part by weight with respect to 100 parts by weight of the resin component.
  • the thermoplastic resin composition used in the present invention may contain an anti-dripping agent.
  • an anti-dripping agent polytetrafluoroethylene (PTFE) is preferable, has a fibril-forming ability, easily disperses in the resin composition, and shows a tendency to form a fibrous material by bonding the resins together. is there.
  • polytetrafluoroethylene for example, “Teflon (registered trademark) 6J” or “Teflon (registered trademark) 30J” marketed by Mitsui / Dupont Fluorochemical, and products marketed by Daikin Chemical Industries, Ltd.
  • the content ratio of the dripping inhibitor is preferably 0.01 to 20 parts by weight with respect to 100 parts by weight of the thermoplastic resin.
  • the content ratio of the anti-dripping agent is more preferably 0.05 to 10 parts by weight, preferably 0.08 to 5 parts by weight with respect to 100 parts by weight of the thermoplastic resin.
  • the thermoplastic resin composition used in the present invention may contain a silicate mineral.
  • a silicate mineral in the present invention, by adding a silicate mineral, it is possible to improve the notched Charpy impact strength.
  • the silicate mineral is not particularly limited as long as it contains silicon Si and oxygen O, but talc and / or mica is preferable, and talc is more preferable.
  • the silicate mineral used in the present invention is preferably in the form of particles, and the average particle diameter is preferably 1 to 30 ⁇ m, and more preferably 2 to 20 ⁇ m.
  • the silicate mineral used in the present invention may be a silicate mineral surface-treated with at least one compound selected from polyorganohydrogensiloxanes and organopolysiloxanes. It is preferable not to be done.
  • the blending amount of the silicate mineral is preferably 0.1 parts by weight or more, more preferably 1 part by weight or more with respect to 100 parts by weight of the resin component, and 3 parts by weight or more. More preferably, it is 3.5 parts by weight or more, particularly preferably 4.0 parts by weight or more.
  • the upper limit is preferably 30 parts by weight or less, more preferably 20 parts by weight or less, particularly preferably 10 parts by weight or less, and can be 9 parts by weight or less, and 8 parts by weight. It can also be as follows.
  • the thermoplastic resin composition used in the present invention may contain only one type of silicate mineral or two or more types. When two or more types are included, the total amount falls within the above range. When the silicate mineral is surface-treated, the total amount of the surface-treated is preferably within the above range.
  • the thermoplastic resin composition used in the present invention may contain a dye and pigment other than titanium oxide.
  • the resin molded product can be colored by adding a dye / pigment.
  • the dye / pigment is preferably a pigment.
  • the dye / pigment include white pigments containing ZnS or ZnO and black dye / pigment such as carbon black (particularly black pigment).
  • black dyes and pigments absorb the heat during laser irradiation, the surface of the resin molded product made of the thermoplastic resin composition melts, and the adhesion with the LDS additive is improved. Can be made.
  • phthalocyanine dyes such as copper phthalocyanine blue and copper phthalocyanine green
  • azo dyes such as nickel azo yellow, thioindigo, perinone, perylene, quinacridone, dioxazine, isoindolinone, quinophthalone, etc.
  • condensed polycyclic dyes anthraquinone, heterocyclic, and methyl dyes.
  • thermoplastic resin composition and the LDS layer forming composition are used separately, a plating layer is appropriately formed on the surface of the resin molded product using the thermoplastic resin composition containing the dye / pigment. it can.
  • the present invention is effective because the plating property is easily damaged.
  • the amount of the dye / pigment is preferably 0.01 to 10 parts by weight, and 0.05 to 5 parts by weight with respect to 100 parts by weight of the resin component. More preferably, it is a part.
  • the thermoplastic resin composition used in the present invention may contain only one type of dye / pigment, or may contain two or more types. When two or more types are included, the total amount is preferably within the above range.
  • thermoplastic resin composition used in the present invention preferably contains a phosphorus stabilizer.
  • a phosphorus stabilizer phosphate ester and phosphite ester are preferable.
  • phosphate ester a compound represented by the following general formula (3) is preferable.
  • General formula (3) O P (OH) m (OR) 3-m (3)
  • R is an alkyl group or an aryl group, which may be the same or different.
  • R is preferably an alkyl group having 1 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms, and an alkyl group having 2 to 25 carbon atoms, a phenyl group, a nonylphenyl group, an atarylphenyl group, 2, 4 -Di-tert-butylphenyl group, 2,4-ditert-butylmethylphenyl group, and tolyl group are more preferable.
  • phosphate esters include trimethyl phosphate, triethyl phosphate, tributyl phosphate, trioctyl phosphate, triphenyl phosphate, tricresyl phosphate, tris (nonylphenyl) phosphate, 2-ethylphenyldiphenyl phosphate, tetrakis (2,4-di-). tert-butylphenyl) -4,4-diphenylene phosphonite.
  • R ′ is an alkyl group or an aryl group, and each may be the same or different.
  • R ′ is preferably an alkyl group having 1 to 25 carbon atoms or an aryl group having 6 to 12 carbon atoms.
  • R ′ is an alkyl group, an alkyl group having 1 to 30 carbon atoms is preferable.
  • R ′ is an aryl group, an aryl group having 6 to 30 carbon atoms is preferable.
  • phosphites include triphenyl phosphite, trisnonylphenyl phosphite, tris (2,4-di-tert-butylphenyl) phosphite, trinonyl phosphite, tridecyl phosphite, trioctyl phosphite , Trioctadecyl phosphite, distearyl pentaerythritol diphosphite, tricyclohexyl phosphite, monobutyl diphenyl phosphite, monooctyl diphenyl phosphite, bis (2,4-di-tert-butylphenyl) pentaerythritol phosphite Bis (2.6-di-tert-butyl-4-methylphenyl) pentaerythritol phosphite, 2,2-methylenebis (4,
  • the amount of the phosphorus stabilizer is 0.01 to 5 parts by weight with respect to 100 parts by weight of the resin component, and 0.02 to 2 Part by weight is more preferred.
  • the thermoplastic resin composition used in the present invention may contain only one type of phosphorus-based stabilizer, or may contain two or more types. When two or more types are included, the total amount falls within the above range.
  • thermoplastic resin composition used in the present invention may contain an antioxidant.
  • an antioxidant a phenolic antioxidant is preferable, and more specifically, 2,6-di-butyl-4-methylphenol, n-octadecyl-3- (3,5-di-t-butyl- 4-hydroxyphenyl) propionate, tetrakis [methylene-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] methane, tris (3,5-di-t-butyl-4-hydroxybenzyl) Isocyanurate, 4,4′-butylidenebis- (3-methyl-6-tert-butylphenol), triethylene glycol-bis [3- (3-tert-butyl-hydroxy-5-methylphenyl) propionate], and 3, 9-bis ⁇ 2- [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy] -1,1-dimethyl Ethyl ⁇
  • thermoplastic resin composition used in the present invention contains an antioxidant, the amount of the antioxidant is 0.01 to 5 parts by weight with respect to 100 parts by weight of the resin component, and 0.05 to 3 parts by weight. Is more preferable.
  • the thermoplastic resin composition used in the present invention may contain only one kind of antioxidant or two or more kinds. When two or more types are included, the total amount falls within the above range.
  • thermoplastic resin composition used in the present invention may contain a hydrolysis resistance improver.
  • a polyester resin is included as the thermoplastic resin.
  • hydrolysis resistance improver known ones can be used, and examples thereof include carbodiimide compounds, epoxy compounds, oxazoline compounds, and oxazine compounds.
  • the carbodiimide compound which is a hydrolysis resistance improver used in the present invention, is a compound having at least two carbodiimide groups (—N ⁇ C ⁇ N—) in one molecule, for example, an isocyanate in the molecule.
  • a polyvalent isocyanate compound having at least two groups can be produced by performing a carbon dioxide condensation reaction (carbodiimidization reaction) in the presence of a carbodiimidization catalyst.
  • the carbodiimidization reaction can be carried out by a known method. Specifically, the isocyanate is dissolved in an inert solvent, or phosphorene is used without a solvent in a stream of inert gas such as nitrogen or bubbling.
  • a condensation reaction (carbodiimidization reaction) accompanied by decarbonation can be advanced.
  • a bifunctional isocyanate having two isocyanate groups in the molecule is particularly suitable, but an isocyanate compound having three or more isocyanate groups can also be used in combination with diisocyanate.
  • the polyvalent isocyanate compound may be any of aliphatic isocyanate, alicyclic isocyanate, and aromatic isocyanate.
  • polyvalent isocyanate examples include hexamethylene diisocyanate (HDI), hydrogenated xylylene diisocyanate (H6XDI), xylylene diisocyanate (XDI), 2,2,4-trimethylhexamethylene diisocyanate (TMHDI), 1,12- Diisocyanate dodecane (DDI), norbornane diisocyanate (NBDI), 2,4-bis- (8-isocyanate octyl) -1,3-dioctylcyclobutane (OCDI), 4,4'-dicyclohexylmethane diisocyanate (HMDI), tetramethylxyl Range isocyanate (TMXDI), isophorone diisocyanate (IPDI), 2,4,6-triisopropylphenyl diisocyanate (TIDI), 4,4'-diphenylmethane diisocyanate Over preparative (MDI), tolylene
  • carbodiimide compound used in the present invention a carbodiimide compound obtained from HMDI or MDI is preferably used, or a commercially available “carbodilite” (manufactured by Nisshinbo Co., Ltd.) or “stabakuzol P” (manufactured by Rhein Chemie) is used. It may be used.
  • an epoxy compound used as a hydrolysis resistance improver in the present invention bisphenol A type epoxy compound, bisphenol F type epoxy compound, resorcin type epoxy compound, novolac type epoxy compound, alicyclic compound type epoxy compound, glycidyl Ethers, epoxidized polybutadiene, and more specifically, bisphenol A type epoxy compounds, bisphenol F type epoxy compounds, resorcin type epoxy compounds, novolac type epoxy compounds, vinylcyclohexene dioxide, dicyclopentadiene oxide, and the like An epoxy compound is mentioned.
  • a novolac type epoxy resin having an epoxy equivalent of 150 to 280 g / eq or a bisphenol A type epoxy resin having an epoxy equivalent of 600 to 3000 g / eq is preferably used from the viewpoint of chemical resistance and dispersion in the resin. More preferred is a novolak type epoxy resin having an epoxy equivalent of 180 to 250 g / eq and a molecular weight of 1000 to 6000, or a bisphenol A type epoxy resin having an epoxy equivalent of 600 to 3000 g / eq and a molecular weight of 1200 to 6000. Catalog values are used for epoxy equivalent and molecular weight.
  • Examples of the compound having an oxazoline group (ring) include oxazolines, alkyloxazolines (C1-4 alkyloxazolines such as 2-methyloxazoline and 2-ethyloxazoline), and bisoxazoline compounds.
  • Examples of bisoxazoline compounds include 2,2′-bis (2-oxazoline), 2,2′-bis (alkyl-2-oxazoline) [2,2′-bis (4-methyl-2-oxazoline), 2, 2,2'-bis (C1-6 alkyl-2-oxazoline) such as 2'-bis (4-ethyl-2-oxazoline), 2,2'-bis (4,4-dimethyl-2-oxazoline), etc.
  • the compound having an oxazoline group also includes a vinyl polymer containing an oxazoline group [manufactured by Nippon Shokubai Co., Ltd., Epocros RPS series, RAS series, RMS series, etc.]. Of these oxazoline compounds, bisoxazoline compounds are preferred.
  • Examples of the compound having an oxazine group (ring) include oxazine and bisoxazine compounds.
  • Examples of bisoxazine compounds include 2,2'-bis (5,6-dihydro-4H-1,3-oxazine), 2,2'-bis (alkyl-5,6-dihydro-4H-1,3-oxazine ) [2,2'-bis (4-methyl-5,6-dihydro-4H-1,3-oxazine), 2,2'-bis (4,4-dimethyl-5,6-dihydro-4H-1 , 3-oxazine), 2,2′-bis (4,5-dimethyl-5,6-dihydro-4H-1,3-oxazine) and the like, 2,2′-bis (C1-6 alkyl-5,6) -Dihydro-4H-1,3-oxazine)], 2,2'-alkylenebis (5,6-dihydro-4H-1,3-oxazin
  • the blending amount of the hydrolysis resistance improving agent is preferably 0.05 to 3 parts by weight, more preferably 0.1 to 2 parts by weight with respect to 100 parts by weight of the thermoplastic resin.
  • the thermoplastic resin composition used in the present invention may contain a release agent.
  • the release agent is preferably at least one compound selected from an aliphatic carboxylic acid, an aliphatic carboxylic acid ester, an aliphatic hydrocarbon compound having a number average molecular weight of 200 to 15000, and a polyolefin compound.
  • at least one compound selected from polyolefin compounds, aliphatic carboxylic acids, and aliphatic carboxylic acid esters is more preferably used.
  • aliphatic carboxylic acid examples include saturated or unsaturated aliphatic monocarboxylic acid, dicarboxylic acid, and tricarboxylic acid.
  • the term “aliphatic carboxylic acid” is used to include alicyclic carboxylic acids.
  • mono- or dicarboxylic acids having 6 to 36 carbon atoms are preferable, and aliphatic saturated monocarboxylic acids having 6 to 36 carbon atoms are more preferable.
  • aliphatic carboxylic acids include palmitic acid, stearic acid, valeric acid, caproic acid, capric acid, lauric acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, mellic acid, and tetrariacontanoic acid. , Montanic acid, glutaric acid, adipic acid, azelaic acid and the like.
  • the same aliphatic carboxylic acid as that described above can be used.
  • the alcohol component constituting the aliphatic carboxylic acid ester examples include saturated or unsaturated monohydric alcohols and saturated or unsaturated polyhydric alcohols. These alcohols may have a substituent such as a fluorine atom or an aryl group. Of these alcohols, monovalent or polyvalent saturated alcohols having 30 or less carbon atoms are preferable, and aliphatic saturated monohydric alcohols or polyhydric alcohols having 30 or less carbon atoms are more preferable.
  • the aliphatic alcohol also includes an alicyclic alcohol.
  • these alcohols include octanol, decanol, dodecanol, stearyl alcohol, behenyl alcohol, ethylene glycol, diethylene glycol, glycerin, pentaerythritol, 2,2-dihydroxyperfluoropropanol, neopentylene glycol, ditrimethylolpropane, dipentaerythritol.
  • Etc. These aliphatic carboxylic acid esters may contain an aliphatic carboxylic acid and / or alcohol as impurities, and may be a mixture of a plurality of compounds.
  • aliphatic carboxylic acid ester examples include beeswax (mixture based on myricyl palmitate), stearyl stearate, behenyl behenate, octyldodecyl behenate, glycerin monopalmitate, glycerin monostearate, glycerin Examples thereof include distearate, glycerin tristearate, pentaerythritol monopalmitate, pentaerythritol monostearate, pentaerythritol distearate, pentaerythritol tristearate, and pentaerythritol tetrastearate.
  • polyolefin compound examples include compounds selected from paraffin wax and polyethylene wax. Among them, the weight average molecular weight is 700 to 10,000, and more preferably 900 to 8 from the viewpoint of good dispersion of the polyolefin compound. 1,000 polyethylene waxes are preferred.
  • the compounding amount of the release agent is 0.01 to 5 parts by weight with respect to 100 parts by weight of the resin component, and 0.05 to 3 parts by weight. Is more preferable.
  • the thermoplastic resin composition used in the present invention may contain only one type of release agent, or may contain two or more types. When two or more types are included, the total amount falls within the above range.
  • thermoplastic resin composition used in the present invention may contain other components without departing from the spirit of the present invention.
  • Other components include stabilizers other than phosphorus stabilizers, ultraviolet absorbers, inorganic fillers other than those mentioned above, white pigments other than titanium oxide, fluorescent whitening agents, anti-dripping agents, antistatic agents, antifogging agents. , Lubricants, antiblocking agents, fluidity improvers, plasticizers, dispersants, antibacterial agents and the like. Two or more of these may be used in combination.
  • JP 2007-314766 A, JP 2008-127485 A, JP 2009-51989 A, and JP 2012-72338 A can be referred to, and the contents thereof are described in this specification. Embedded in the book.
  • thermoplastic resin composition used in the present invention is not particularly defined, and a wide variety of known methods for producing a thermoplastic resin composition can be employed. Specifically, each component is mixed in advance using various mixers such as a tumbler or Henschel mixer, and then melt kneaded with a Banbury mixer, roll, Brabender, single-screw kneading extruder, twin-screw kneading extruder, kneader, etc. By doing so, a resin composition can be produced.
  • various mixers such as a tumbler or Henschel mixer, and then melt kneaded with a Banbury mixer, roll, Brabender, single-screw kneading extruder, twin-screw kneading extruder, kneader, etc.
  • thermoplastic resin composition without mixing each component in advance or by mixing only a part of the components in advance and supplying the mixture to an extruder using a feeder and melt-kneading. it can.
  • a resin composition obtained by mixing some components in advance, supplying them to an extruder and melt-kneading is used as a master batch, and this master batch is mixed with the remaining components again and melt-kneaded.
  • a thermoplastic resin composition can also be produced.
  • the method for producing a resin molded product from the thermoplastic resin composition is not particularly limited, and a molding method generally employed for thermoplastic resins, that is, a general injection molding method, an ultra-high speed injection molding method, an injection Compression molding method, two-color molding method, hollow molding method such as gas assist, molding method using heat insulating mold, molding method using rapid heating mold, foam molding (including supercritical fluid), insert molding An IMC (in-mold coating molding) molding method, an extrusion molding method, a sheet molding method, a thermoforming method, a rotational molding method, a lamination molding method, a press molding method and the like can be employed.
  • a molding method using a hot runner method can also be selected.
  • the method for producing a resin molded product with a plated layer of the present invention is applied to the surface of the resin molded product 21 with the composition for forming a laser direct structuring layer of the present invention and cured, It includes a step of forming a plating layer 24 by irradiating a laser.
  • a plating layer 24 by irradiating a laser.
  • the method for applying the composition for forming an LDS layer to the surface of the resin molded product is not particularly defined, but is preferably applied.
  • the application includes not only a method using a brush or the like but also so-called hand coating.
  • an LDS layer in which the LDS additive is more uniformly dispersed can be formed.
  • the composition for forming an LDS layer is preferably applied so that the average film thickness of the LDS layer after drying is 0.1 to 1000 ⁇ m, and more preferably 0.5 to 300 ⁇ m.
  • the resin molded product in the present invention may be a flat substrate, but may be a resin molded product that is partially or entirely curved. Moreover, the surface of the part where the plating of the resin molded product is formed may have roughness, but may be a smooth surface. In the conventionally known plating formation method, the surface of the resin molded product is roughened and then the plating is formed. However, in the present invention, the plating can be formed even if the surface of the resin molded product is smooth. Is advantageous. Further, the resin molded product is not limited to the final product, and includes various parts. The resin molded product in the present invention is preferably used for parts of portable electronic devices, vehicles and medical devices, and electronic parts including other electric circuits.
  • resin molded products have both high impact resistance, rigidity, and excellent heat resistance, as well as low anisotropy and low warpage, so PDAs and pockets for electronic notebooks, portable computers, etc. It is extremely effective as an internal structure and casing such as a bell, a mobile phone, and a PHS.
  • the resin molded product is suitable for flat plate-like parts having an average thickness excluding ribs of 1.2 mm or less (the lower limit is not particularly defined, for example, 0.4 mm or more). Particularly suitable as a housing.
  • the surface of the resin molded product may be roughened, but may not be roughened.
  • the present invention is advantageous in that plating can be formed on the surface of a resin molded product that has not been roughened while achieving high adhesion.
  • Examples of the surface roughening treatment include filing and primer treatment with a solvent.
  • the composition for forming an LDS layer is applied to the surface of the resin molded product 21, and then the curable compound is cured by means such as ultraviolet irradiation or heating. By curing the curable compound, the LDS additive is also fixed.
  • the LDS layer 22 provided on the surface of the resin molded product 21 is irradiated with a laser.
  • the laser here is not particularly defined, and can be appropriately selected from known lasers such as a YAG laser, an excimer laser, and electromagnetic radiation, and a YGA laser is preferable. Further, the wavelength of the laser is not particularly defined. A preferred wavelength range is 200 nm to 1200 nm. Particularly preferred is 800 to 1200 nm.
  • an ultraviolet curable compound When an ultraviolet curable compound is used as the curable compound, it is preferable to irradiate a laser with a wavelength of 800 to 1200 nm so that plating is not formed by ultraviolet rays.
  • the LDS additive 23 When the laser is irradiated, the LDS additive 23 is activated only in the portion irradiated with the laser. In this activated state, the resin molded product 21 having the LDS layer 22 is applied to the plating solution.
  • the plating solution is not particularly defined, and a wide variety of known plating solutions can be used. A metal component in which copper, nickel, gold, silver, and palladium are mixed is preferable, and copper is more preferable.
  • the method of applying the resin molded product 21 having the LDS layer 22 to the plating solution is not particularly defined, but for example, a method of putting it in a solution containing the plating solution can be mentioned.
  • the plating layer 24 is formed only in the portion irradiated with the laser.
  • a circuit interval having a width of 1 mm or less and further 150 ⁇ m or less (the lower limit is not particularly defined, but for example, 30 ⁇ m or more) can be formed.
  • Such a circuit is preferably used as an antenna of a portable electronic device component.
  • a resin molded product in which a plating layer provided on the surface of a portable electronic device component has performance as an antenna can be given.
  • the resin molded article with a plated layer of the present invention is preferably produced using the kit of the present invention.
  • Adeka Sizer EP-17 manufactured by Adeka ⁇ Antioxidant>
  • IRGANOX-1010 manufactured by BASF ⁇ Pigment>
  • CB-1 Carbon black, # 45, Mitsubishi Chemical ZnS: Zinc sulfide, Sacritus HD, Satris RB948G: Carbon black, Koshigaya Kasei CB-2: Carbon black, # 650B, Mitsubishi Chemical
  • Paint 1 Urethane-based thermosetting paint: Retan PG80III Clear, manufactured by Kansai Paint As a curable compound, 10 parts by weight of a curing agent and 100 parts by weight of thinner as an organic solvent were used for 100 parts by weight of a urethane resin.
  • Paint 2 Acrylic urethane-based thermosetting paint: nax Mighty-lac G-II KB type clear, manufactured by Nippon Paint As a curable compound, 100 parts by weight of acrylic urethane resin, 25 parts by weight of curing agent, thinner 125 as an organic solvent A part by weight was blended and used.
  • Paint 3 Urethane-based thermosetting paint: High Metal KD2850 Silver, manufactured by Cashew As a curable compound, 100 parts by weight of urethane-based resin was blended with 150 parts by weight of thinner as an organic solvent. Paint 4: Urethane-based UV curable paint: 6110 clear, 50% by weight of thinner as an organic solvent was mixed with 100% by weight of urethane-based resin as a curable compound made from cashew. Paint 5: Epoxy thermosetting paint: Million Clear, manufactured by Kansai Paint As a curable compound, 20 parts by weight of a curing agent and 50 parts by weight of thinner as an organic solvent were blended with 80 parts by weight of an epoxy resin.
  • Paint 6 Polyvinyl chloride paint (room temperature curing type): 100% by weight of polyvinyl chloride as a curable compound, 100 parts by weight of polyvinyl chloride as a curable compound was used by blending 80 parts by weight of thinner.
  • ⁇ LDS additive> Black 1G: Shepherd CP5C: antimony-doped tin oxide (95% by weight of tin oxide, 5% by weight of antimony oxide, 0.02% by weight of lead oxide, 0.004% by weight of copper oxide) (manufactured by Keeling & Walker) 23K: manufactured by Hakusuitec, aluminum-doped zinc oxide, resistivity (product standard value) 100 to 500 ⁇ ⁇ cm
  • thermoplastic resin composition Each component is weighed so as to have the composition shown in the table to be described later, components other than glass fibers are blended with a tumbler, charged from the root of a twin screw extruder (manufactured by Toshiba Machine, TEM26SS), and melted. Then, glass fibers were side-fed to produce resin pellets (thermoplastic resin composition).
  • the set temperature of the extruder was 280 ° C. for Examples 1 to 18 and Comparative Examples 1 to 8. Examples 19 to 22, Examples 25 to 31, Comparative Examples 9 to 12, Comparative Example 14, and Reference Example were performed at 290 ° C. About Example 23, 24 and the comparative example 13, it implemented at 260 degreeC.
  • Molding was performed by filling a cavity of 60 ⁇ 60 mm and a thickness of 2 mm as a mold with a resin melted from a fan gate having a side of 60 mm and a thickness of 1.5 mm. The gate portion was cut to obtain a test piece plate. The color of the obtained test piece was visually observed.
  • composition for forming an LDS layer (coating material for forming an LDS layer) was prepared by mixing the coating material and an LDS additive with a spoonful so as to have a composition shown in a table to be described later. After degreasing the surface of the test piece plate obtained above with isopropyl alcohol, the composition for forming an LDS layer was spray-coated on the surface of the test piece plate. After fixing for 10 minutes for fixing, baking treatment was performed at 80 ° C. for 30 minutes.
  • Example 18 was the same as in Example 1 except that the fixing time was 20 minutes, and pre-drying treatment was allowed to stand at 40 ° C. for 20 minutes, followed by baking at 70 ° C. for 50 minutes.
  • a composition for forming an LDS layer (coating material for forming an LDS layer) was prepared by mixing a coating material, a thinner, and an LDS additive with a spoonful so as to have a composition shown in a table to be described later.
  • the surface of the test piece plate obtained above was washed with a neutral detergent and further washed with methanol.
  • the composition for LDS layer formation was apply
  • Example 22, Comparative Example 10, Example 26, Example 31, Examples 40 to 42 A composition for forming an LDS layer (coating material for forming an LDS layer) was prepared by mixing a coating material, a thinner, and an LDS additive with a spoonful so as to have a composition shown in a table to be described later.
  • the surface of the test piece plate obtained above was washed with a neutral detergent and further washed with methanol.
  • the composition for LDS layer formation was apply
  • Comparative Examples 11 and 12, Reference Example, Comparative Example 14 The composition for forming the LDS layer was not applied, and the surface of the test piece plate obtained above was washed with a neutral detergent and further washed with methanol.
  • Example 23 A composition for forming an LDS layer (coating material for forming an LDS layer) was prepared by mixing the coating material and an LDS additive with a spoonful so as to have a composition shown in a table to be described later. The surface of the test piece plate obtained above was degreased with isopropyl alcohol, and then the LDS layer forming composition obtained above was spray-coated uniformly on the surface of the test piece plate. After fixing for 20 minutes for fixing, baking and drying treatment was performed at 100 ° C. for 30 minutes.
  • Example 24 A composition for forming an LDS layer (coating material for forming an LDS layer) was prepared by mixing the coating material and an LDS additive with a spoonful so as to have a composition shown in a table to be described later.
  • the surface of the test piece plate obtained above was degreased with isopropyl alcohol, and then the LDS layer forming composition obtained above was spray-coated uniformly on the surface of the test piece plate. It left still at 23 degreeC for 48 hours.
  • ⁇ Comparative Example 13 The surface of the test piece plate obtained above was degreased with isopropyl alcohol and then used as it was.
  • the flame retardancy of each resin composition was evaluated by conditioning the test piece for UL test obtained by the above-mentioned method for 48 hours in a temperature-controlled room at a temperature of 23 ° C. and a humidity of 50%, and US Underwriters Laboratories.
  • the test was conducted in accordance with the UL94 test (combustion test of plastic materials for equipment parts) defined by (UL).
  • UL94V is a method for evaluating flame retardancy from the afterflame time and drip properties after indirect flame of a burner for 10 seconds on a test piece of a predetermined size held vertically, V-0, V- In order to have flame retardancy of 1 and V-2, it is necessary to satisfy the criteria shown in the following table.
  • the afterflame time is the length of time for which the test piece continues to burn with flame after the ignition source is moved away.
  • the cotton ignition by the drip is determined by whether or not the labeling cotton, which is about 300 mm below the lower end of the test piece, is ignited by a drip from the test piece. Furthermore, if any one of the five samples did not satisfy the above criteria, it was evaluated as NR (not rated) as not satisfying V-2.

Abstract

The present invention makes it possible to form a plating layer on the surface of a resin molded article even without mixing a laser direct structuring (LDS) additive into a thermoplastic resin composition. Disclosed are: a composition for forming an LDS layer, the composition including a curable compound, an organic solvent, and an LDS additive; and a kit including the composition, or a method for manufacturing a resin molded article having a plating layer by using the composition.

Description

レーザーダイレクトストラクチャリング層形成用組成物、キット、およびメッキ層付樹脂成形品の製造方法Composition for forming laser direct structuring layer, kit, and method for producing resin molded product with plating layer
 本発明は、レーザーダイレクトストラクチャリング層形成用組成物に関する。さらに、前記レーザーダイレクトストラクチャリング層形成用組成物と熱可塑性樹脂組成物を有するキットに関する。また、レーザーダイレクトストラクチャリング層形成用組成物を用いるメッキ層付樹脂成形品の製造方法に関する。 The present invention relates to a composition for forming a laser direct structuring layer. Furthermore, it is related with the kit which has the said composition for laser direct structuring layer formation, and a thermoplastic resin composition. Moreover, it is related with the manufacturing method of the resin molded product with a plating layer using the composition for laser direct structuring layer formation.
 近年、スマートフォンを含む携帯電話の開発に伴い、携帯電話の内部にアンテナを製造する方法が種々検討されている。特に、携帯電話に3次元設計ができるアンテナを製造する方法が求められている。このような3次元アンテナを形成する技術の1つとして、レーザーダイレクトストラクチャリング(以下、「LDS」ということがある)技術が注目されている。LDS技術は、例えば、LDS添加剤を含む樹脂成形品の表面にレーザーを照射し、レーザーを照射した部分のみを活性化させ、前記活性化させた部分に金属を適用することによってメッキ層を形成する技術である。この技術の特徴は、接着剤などを使わずに、樹脂基材表面に直接にアンテナ等の金属構造体を製造できる点にある。かかるLDS技術は、例えば、特許文献1~4等に開示されている。
 また、特許文献5には、基板材料中に含まれる微細な非導電性金属化合物を電磁線の使用によって砕くことによって生じる金属核および続いてこれに施される金属化物よりなる非導電性基板材料上に設けたコンダクタートラック構造物において、非導電性金属化合物が、熱的に高安定性があり、酸性またはアルカリ性の水性金属化浴中において耐久性があり、そしてスピネル構造を有する高酸化物であるかまたは簡単なd-金属酸化物またはその混合物であるかまたはスピネル構造に類似する混合金属酸化物である不溶性無機系酸化物から形成されておりそしてその非導電性金属化合物が未照射領域において未変化のままであることを特徴とする、上記コンダクタートラック構造物について開示されている。さらに、特許文献5には、非導電性の高酸化物を構造部材上に被覆層として塗布し、製造すべきコンダクタートラック構造物の領域で電磁線によって重金属核を放出させそしてこの領域を次いで化学的に還元して金属化することについて記載されている。
In recent years, with the development of mobile phones including smartphones, various methods for manufacturing antennas inside mobile phones have been studied. In particular, there is a need for a method of manufacturing an antenna that can be three-dimensionally designed for a mobile phone. As one of the techniques for forming such a three-dimensional antenna, a laser direct structuring (hereinafter, also referred to as “LDS”) technique has attracted attention. LDS technology, for example, irradiates the surface of a resin molded product containing an LDS additive with a laser, activates only the portion irradiated with the laser, and forms a plating layer by applying metal to the activated portion. Technology. A feature of this technique is that a metal structure such as an antenna can be manufactured directly on the surface of the resin base material without using an adhesive or the like. Such LDS technology is disclosed in, for example, Patent Documents 1 to 4.
Patent Document 5 discloses a non-conductive substrate material comprising a metal nucleus produced by crushing a fine non-conductive metal compound contained in a substrate material by use of electromagnetic radiation, and subsequently a metallized product applied thereto. In the conductor track structure provided above, the non-conductive metal compound is a high oxide that is thermally stable, durable in an acidic or alkaline aqueous metallization bath, and has a spinel structure. Formed from an insoluble inorganic oxide which is a simple d-metal oxide or a mixture thereof or a mixed metal oxide similar to a spinel structure and the non-conductive metal compound is in an unirradiated region The above conductor track structure is disclosed, characterized in that it remains unchanged. In addition, US Pat. No. 6,057,059 applies a non-conductive high oxide as a coating on a structural member, releases heavy metal nuclei by electromagnetic radiation in the region of the conductor track structure to be manufactured, and this region is then chemically treated. The reduction and metallization is described.
国際公開WO2011/095632号パンフレットInternational publication WO2011 / 095632 pamphlet 国際公開WO2011/076729号パンフレットInternational Publication WO2011 / 076729 Pamphlet 国際公開WO2011/076730号パンフレットInternational Publication WO2011 / 077630 Pamphlet 国際公開WO2012/128219号パンフレットInternational Publication WO2012 / 128219 Pamphlet 特表2004-534408号公報JP-T-2004-534408
 しかしながら、LDS技術を使う際に、LDS添加剤を熱可塑性樹脂に配合すると、多量のLDS添加剤が必要となる。LDS添加剤はメッキ層の形成には役に立つが、最終的な樹脂成形品中では異物となる。特に、LDS添加剤の種類によっては、各種性能に悪影響を与えたり、熱可塑性樹脂組成物に配合されている他の添加剤によって、LDS添加剤によるメッキ層形成能に悪影響を与えたりすることがある。
 一方、特許文献5には、非導電性の高酸化物を基板体材料上に被覆して塗布し、電磁線によって重金属核を放出させこの領域を化学的に還元して金属化することが記載されている。しかしながら、具体的にどのように非導電性の高酸化物を基板体材料上に被覆するかについて具体的な記載がない。
 本発明はかかる課題を解決することを目的としたものであって、熱可塑性樹脂組成物にLDS添加剤を配合しなくても、樹脂成形品の表面にメッキ層を形成可能にすることを目的とする。
However, when the LDS technology is used, if a LDS additive is blended with a thermoplastic resin, a large amount of LDS additive is required. The LDS additive is useful for forming the plating layer, but becomes a foreign substance in the final resin molded product. In particular, depending on the type of LDS additive, various performances may be adversely affected, and other additives blended in the thermoplastic resin composition may adversely affect the ability of the LDS additive to form a plating layer. is there.
On the other hand, Patent Document 5 describes that a non-conductive high oxide is coated on a substrate body material and applied, and heavy metal nuclei are released by electromagnetic radiation, and this region is chemically reduced to be metallized. Has been. However, there is no specific description as to how to coat the non-conductive high oxide on the substrate body material.
An object of the present invention is to solve such a problem, and it is possible to form a plating layer on the surface of a resin molded product without adding an LDS additive to a thermoplastic resin composition. And
 かかる課題のもと、本発明者が検討を行った結果、樹脂成形品の表面に、硬化性化合物と、有機溶剤と、LDS添加剤を含む層を形成することにより、熱可塑性樹脂組成物にLDS添加剤を配合しなくても、樹脂成形品の表面に適切にメッキ層を形成可能であることを見出し、本発明を完成するに至った。
 具体的には、下記手段<1>により、好ましくは、<2>~<24>により、上記課題を解決しうることを見出した。
<1>硬化性化合物と、有機溶剤と、レーザーダイレクトストラクチャリング添加剤を含む、レーザーダイレクトストラクチャリング層形成用組成物。
<2>前記硬化性化合物が樹脂である、<1>に記載のレーザーダイレクトストラクチャリング層形成用組成物。
<3>前記硬化性化合物が、紫外線硬化性化合物または熱硬化性化合物である、<1>または<2>に記載のレーザーダイレクトストラクチャリング層形成用組成物。
<4>前記硬化性化合物および有機溶剤の合計100重量部に対し、レーザーダイレクトストラクチャリング添加剤を0.05~70重量部含む、<1>~<3>のいずれかに記載のレーザーダイレクトストラクチャリング層形成用組成物。
<5>前記レーザーダイレクトストラクチャリング層形成用組成物は、前記硬化性化合物を、20~80重量%含む、<1>~<4>のいずれかに記載のレーザーダイレクトストラクチャリング層形成用組成物。
<6><1>~<5>のいずれかに記載のレーザーダイレクトストラクチャリング層形成用組成物と、熱可塑性樹脂を含む熱可塑性樹脂組成物を有するキット。
<7>前記熱可塑性樹脂組成物がレーザーダイレクトストラクチャリング添加剤を実質的に含まない、<6>に記載のキット。
<8>前記熱可塑性樹脂が結晶性樹脂である、<6>または<7>に記載のキット。
<9>前記結晶性樹脂が、ポリアミド樹脂である、<8>に記載のキット。
<10>前記結晶性樹脂が、熱可塑性ポリエステル樹脂である、<8>に記載のキット。
<11>前記熱可塑性樹脂が非晶性樹脂である、<6>または<7>に記載のキット。
<12>前記非晶性樹脂が、ポリカーボネート樹脂である、<11>に記載のキット。
<13>前記熱可塑性樹脂組成物が、染顔料および/または難燃剤組成物を含む、<6>~<12>のいずれかに記載のキット。
<14>前記熱可塑性樹脂組成物が、顔料および/または難燃剤組成物を含む、<6>~<12>のいずれかに記載のキット。
<15>前記熱可塑性樹脂組成物が、黒色染顔料を含む、<6>~<14>のいずれかに記載のキット。
<16>前記熱可塑性樹脂組成物が、アンチモン系難燃剤およびアンチモン系難燃助剤の少なくとも1種を含む、<6>~<15>のいずれかに記載のキット。
<17>前記熱可塑性樹脂組成物が、ハロゲン系難燃剤を含む、<6>~<16>のいずれかに記載のキット。
<18>前記熱可塑性樹脂組成物が、リン系難燃剤を含む、<6>~<15>のいずれかに記載のキット。
<19>リン系難燃剤が、縮合リン酸エステル及び/またはホスファゼン化合物である<18>に記載のキット。
<20>前記熱可塑性樹脂組成物が、有機金属塩系難燃剤を含む、<6>~<15>のいずれか1項に記載のキット。
<21>熱可塑性樹脂成形品の表面に、<1>~<5>のいずれかに記載のレーザーダイレクトストラクチャリング層形成用組成物を適用し、硬化させた後、レーザーを照射し、メッキ層を形成する工程を含む、メッキ層付樹脂成形品の製造方法。
<22>前記熱可塑性樹脂成形品が、結晶性樹脂を含む、<21>に記載のメッキ層付樹脂成形品の製造方法。
<23>前記熱可塑性樹脂成形品が、非晶性樹脂を含む、<21>に記載のメッキ層付樹脂成形品の製造方法。
<24><6>~<20>のいずれかに記載のキットを用いる、<21>~<23>のいずれかに記載のメッキ層付樹脂成形品の製造方法。
As a result of investigation by the present inventors under such problems, a thermoplastic resin composition is formed by forming a layer containing a curable compound, an organic solvent, and an LDS additive on the surface of a resin molded product. It has been found that a plating layer can be appropriately formed on the surface of a resin molded product without blending an LDS additive, and the present invention has been completed.
Specifically, it has been found that the above problems can be solved by the following means <1>, preferably by <2> to <24>.
<1> A composition for forming a laser direct structuring layer, comprising a curable compound, an organic solvent, and a laser direct structuring additive.
<2> The composition for forming a laser direct structuring layer according to <1>, wherein the curable compound is a resin.
<3> The composition for forming a laser direct structuring layer according to <1> or <2>, wherein the curable compound is an ultraviolet curable compound or a thermosetting compound.
<4> The laser direct structure according to any one of <1> to <3>, comprising 0.05 to 70 parts by weight of a laser direct structuring additive with respect to 100 parts by weight of the total of the curable compound and the organic solvent. A composition for forming a ring layer.
<5> The composition for forming a laser direct structuring layer according to any one of <1> to <4>, wherein the composition for forming a laser direct structuring layer contains 20 to 80% by weight of the curable compound. .
<6> A kit comprising the composition for forming a laser direct structuring layer according to any one of <1> to <5> and a thermoplastic resin composition containing a thermoplastic resin.
<7> The kit according to <6>, wherein the thermoplastic resin composition does not substantially contain a laser direct structuring additive.
<8> The kit according to <6> or <7>, wherein the thermoplastic resin is a crystalline resin.
<9> The kit according to <8>, wherein the crystalline resin is a polyamide resin.
<10> The kit according to <8>, wherein the crystalline resin is a thermoplastic polyester resin.
<11> The kit according to <6> or <7>, wherein the thermoplastic resin is an amorphous resin.
<12> The kit according to <11>, wherein the amorphous resin is a polycarbonate resin.
<13> The kit according to any one of <6> to <12>, wherein the thermoplastic resin composition includes a dye / pigment and / or a flame retardant composition.
<14> The kit according to any one of <6> to <12>, wherein the thermoplastic resin composition includes a pigment and / or a flame retardant composition.
<15> The kit according to any one of <6> to <14>, wherein the thermoplastic resin composition contains a black dye / pigment.
<16> The kit according to any one of <6> to <15>, wherein the thermoplastic resin composition contains at least one of an antimony flame retardant and an antimony flame retardant aid.
<17> The kit according to any one of <6> to <16>, wherein the thermoplastic resin composition contains a halogen-based flame retardant.
<18> The kit according to any one of <6> to <15>, wherein the thermoplastic resin composition contains a phosphorus-based flame retardant.
<19> The kit according to <18>, wherein the phosphorus-based flame retardant is a condensed phosphate ester and / or a phosphazene compound.
<20> The kit according to any one of <6> to <15>, wherein the thermoplastic resin composition contains an organometallic salt flame retardant.
<21> The composition for forming a laser direct structuring layer according to any one of <1> to <5> is applied to the surface of a thermoplastic resin molded article, cured, and then irradiated with a laser to form a plating layer The manufacturing method of the resin molded product with a plating layer including the process of forming.
<22> The method for producing a resin molded product with a plating layer according to <21>, wherein the thermoplastic resin molded product includes a crystalline resin.
<23> The method for producing a resin molded product with a plating layer according to <21>, wherein the thermoplastic resin molded product includes an amorphous resin.
<24> A method for producing a resin-molded article with a plating layer according to any one of <21> to <23>, wherein the kit according to any one of <6> to <20> is used.
 熱可塑性樹脂組成物にLDS添加剤を配合しなくても、樹脂成形品の表面にメッキ層を形成可能になった。 It is now possible to form a plating layer on the surface of a resin molded product without adding an LDS additive to the thermoplastic resin composition.
従来の樹脂成形品の表面にメッキ層を形成する工程を示す概略図である。It is the schematic which shows the process of forming a plating layer on the surface of the conventional resin molded product. 本発明における樹脂成形品の表面にメッキ層を形成する工程を示す概略図である。It is the schematic which shows the process of forming a plating layer on the surface of the resin molded product in this invention.
 以下において、本発明の内容について詳細に説明する。尚、本明細書において「~」とはその前後に記載される数値を下限値及び上限値として含む意味で使用される。本明細書において、アルキル基等の「基」は、特に述べない限り、置換基を有していてもよいし、有していなくてもよい。さらに、炭素数が限定されている基の場合、前記炭素数は、置換基が有する炭素数を含めた数を意味している。
 本発明における固体、液体等は、特に述べない限り、25℃におけるものをいう。
Hereinafter, the contents of the present invention will be described in detail. In the present specification, “to” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value. In the present specification, a “group” such as an alkyl group may or may not have a substituent unless otherwise specified. Furthermore, in the case of a group having a limited number of carbon atoms, the carbon number means a number including the carbon number of the substituent.
The solid, liquid and the like in the present invention are those at 25 ° C. unless otherwise specified.
 本発明は、樹脂成形品とは別に、硬化性化合物と、有機溶剤と、LDS添加剤を含むLDS層形成用組成物を用いることを特徴とする。このような構成とすることにより、熱可塑性樹脂組成物にLDS添加剤を配合しなくても、樹脂成形品の表面にメッキ層を形成可能になる。
 この点について、図を用いて説明する。図1は、従来の樹脂成形品の表面にメッキ層を形成する工程を示す。図1において、11は熱可塑性樹脂組成物の成形品を、12はLDS添加剤をそれぞれ示している。従来の方法では、熱可塑性樹脂組成物の中に、LDS添加剤を配合し成形していた。そして、図1(1)に示すようにメッキ層を形成したい部分にのみ、レーザーを照射すると(図1(1)の矢印の部分)、レーザーが照射された部分のLDS添加剤が活性化される(図1(2))。この活性化された状態で、樹脂成形品表面にメッキ液を適用すると、樹脂成形品は、レーザー照射した部分のみ、メッキ層13が形成される(図1(3))。
 この従来の方法は、有益な方法ではあるが、LDS添加剤を熱可塑性樹脂に配合すると、樹脂成形品に対するLDS添加剤の配合量が相対的に多くなる。すなわち、LDS添加剤はメッキ層を形成する樹脂成形品の表面のみにあればよいが、熱可塑性樹脂組成物に配合すると、図1(1)に示すように、LDS添加剤が樹脂成形品に分散して存在することになるため、メッキ層を形成するために必要な量以上のLDS添加剤を配合することになる。しかしながら、LDS添加剤の中には高価なものもあり、樹脂成形品に対するLDS添加剤の量を減らすことが望ましい。また、LDS添加剤はメッキ層の形成には役に立つが、最終的な樹脂成形品中では異物となる。特に、LDS添加剤の種類によっては、各種性能に悪影響を与えたりする場合もある。具体的には、LDS添加剤がガラス繊維にダメージを与えて、機械的強度が発揮されなかったりしてしまう。また、難燃剤組成物や顔料等の添加剤を配合した樹脂組成物においては、LDS添加剤を配合しても適切にメッキ層が形成できない場合もある。
The present invention is characterized in that a composition for forming an LDS layer containing a curable compound, an organic solvent, and an LDS additive is used separately from the resin molded product. By setting it as such a structure, even if it does not mix | blend an LDS additive with a thermoplastic resin composition, it becomes possible to form a plating layer on the surface of a resin molded product.
This point will be described with reference to the drawings. FIG. 1 shows a process of forming a plating layer on the surface of a conventional resin molded product. In FIG. 1, 11 indicates a molded article of the thermoplastic resin composition, and 12 indicates an LDS additive. In the conventional method, an LDS additive is blended and molded into the thermoplastic resin composition. Then, as shown in FIG. 1 (1), when only the part where the plating layer is to be formed is irradiated with the laser (the part indicated by the arrow in FIG. 1 (1)), the LDS additive in the part irradiated with the laser is activated. (FIG. 1 (2)). When a plating solution is applied to the surface of the resin molded product in this activated state, the plating layer 13 is formed only on the laser-irradiated portion of the resin molded product (FIG. 1 (3)).
Although this conventional method is a useful method, when the LDS additive is blended with the thermoplastic resin, the blending amount of the LDS additive with respect to the resin molded product is relatively increased. That is, the LDS additive only needs to be present on the surface of the resin molded product forming the plating layer. However, when added to the thermoplastic resin composition, the LDS additive is added to the resin molded product as shown in FIG. Since it exists in a dispersed state, an LDS additive in an amount more than that necessary for forming a plating layer is blended. However, some LDS additives are expensive and it is desirable to reduce the amount of LDS additive in the resin molded product. The LDS additive is useful for forming a plating layer, but becomes a foreign substance in the final resin molded product. In particular, depending on the type of LDS additive, various performances may be adversely affected. Specifically, the LDS additive damages the glass fiber and the mechanical strength is not exhibited. Moreover, in the resin composition which mix | blended additives, such as a flame retardant composition and a pigment, even if it mix | blends an LDS additive, a plating layer may not be formed appropriately.
 一方、図2は、本発明における樹脂成形品の表面にメッキ層を形成する工程を示す概略図である。図2(1)において、21は樹脂成形品を、22はLDS層を、23はLDS添加剤をそれぞれ示している。
 すなわち、本発明のLDS層形成用組成物を樹脂成形品21の表面に適用(例えば、塗布)すると、LDS添加剤23が均一に分散した薄いLDS層22を形成できる(図2(1))。
On the other hand, FIG. 2 is a schematic view showing a step of forming a plating layer on the surface of the resin molded product in the present invention. In FIG. 2A, 21 indicates a resin molded product, 22 indicates an LDS layer, and 23 indicates an LDS additive.
That is, when the composition for forming an LDS layer of the present invention is applied (for example, applied) to the surface of the resin molded article 21, a thin LDS layer 22 in which the LDS additive 23 is uniformly dispersed can be formed (FIG. 2 (1)). .
 次に、LDS層22を硬化させた後、メッキ層形成のために必要な部分にレーザーを照射する(図2(1))。そうすると、レーザーを照射した部分のLDS添加剤が活性化される。この活性化された状態で、樹脂成形品の表面にメッキ液を適用する。メッキ液を適用後の樹脂成形品は、レーザー照射した部分のみ、メッキ層24が形成される(図2(4))。結果として、熱可塑性樹脂組成物にLDS添加剤を配合しなくても、樹脂成形品の表面にメッキ層を形成可能になる。本発明では、メッキ層形成に際し、例えば、10~50℃、さらには15~45℃、特には20~40℃の雰囲気下で行うことが好ましい。特に、レーザー照射に伴う熱以外に、何ら加熱がなされないことが好ましい。 Next, after the LDS layer 22 is cured, a laser beam is irradiated on a portion necessary for forming the plating layer (FIG. 2 (1)). Then, the LDS additive in the portion irradiated with the laser is activated. In this activated state, a plating solution is applied to the surface of the resin molded product. In the resin molded product after applying the plating solution, the plating layer 24 is formed only in the portion irradiated with the laser (FIG. 2 (4)). As a result, it is possible to form a plating layer on the surface of the resin molded product without adding an LDS additive to the thermoplastic resin composition. In the present invention, the plating layer is preferably formed in an atmosphere of, for example, 10 to 50 ° C., more preferably 15 to 45 ° C., particularly 20 to 40 ° C. In particular, it is preferable that no heating is performed other than the heat accompanying laser irradiation.
 また、均一なメッキ層を形成するためには、LDS層形成用組成物は、樹脂成形品の表面にLDS添加剤が概ね均一に分散したLDS層を形成できることが求められる。本発明では、硬化性化合物と、有機溶剤とを含む組成物に、LDS添加剤を分散させたものを用いるため、樹脂成形品の表面に、LDS添加剤が概ね均一に分散したLDS層を形成できる。そして、このようなLDS層において、硬化性化合物を硬化させると、LDS添加剤が樹脂成形品の表面に分散した状態で、樹脂成形品の表面に残る。特に、塗料にLDS添加剤を配合したLDS層形成用組成物は、硬化後に簡単にはがれにくいメリットがある。また、ポリカーボネート樹脂などの非晶性樹脂を用いた樹脂成形品では、メッキ層形成の際のレーザー照射によって、表面が凸凹になり易かったが、本発明の方法では、このような凸凹を比較的少なくできる。
 以下、本発明のLDS層形成用組成物、キット、およびメッキ層付樹脂成形品の製造方法について詳細に説明する。
In order to form a uniform plating layer, the composition for forming an LDS layer is required to be able to form an LDS layer in which the LDS additive is substantially uniformly dispersed on the surface of the resin molded product. In the present invention, since an LDS additive is dispersed in a composition containing a curable compound and an organic solvent, an LDS layer in which the LDS additive is substantially uniformly dispersed is formed on the surface of the resin molded product. it can. In such an LDS layer, when the curable compound is cured, the LDS additive remains on the surface of the resin molded product in a state of being dispersed on the surface of the resin molded product. In particular, a composition for forming an LDS layer in which an LDS additive is blended in a paint has an advantage that it is difficult to easily peel off after curing. Further, in a resin molded product using an amorphous resin such as a polycarbonate resin, the surface is likely to be uneven due to laser irradiation at the time of plating layer formation. In the method of the present invention, such unevenness is relatively Less.
Hereinafter, the composition for forming an LDS layer of the present invention, a kit, and a method for producing a resin molded product with a plating layer will be described in detail.
<レーザーダイレクトストラクチャリング層形成用組成物>
 レーザーダイレクトストラクチャリング層形成用組成物は、硬化性化合物と、有機溶剤と、レーザーダイレクトストラクチャリング添加剤を含むことを特徴とする。このような構成とすることにより、熱可塑性樹脂組成物にLDS添加剤を配合しなくても、樹脂成形品の表面にメッキ層を形成することが可能になる。
<Composition for forming laser direct structuring layer>
The composition for forming a laser direct structuring layer includes a curable compound, an organic solvent, and a laser direct structuring additive. By setting it as such a structure, even if it does not mix | blend an LDS additive with a thermoplastic resin composition, it becomes possible to form a plating layer on the surface of a resin molded product.
<<硬化性化合物>>
 本発明で用いる硬化性化合物は、有機溶剤に溶解または分散可能な物質であることが好ましく、有機溶剤に溶解する物質がより好ましい。溶解または分散の際の温度は特に定めるものではないが、室温(例えば、25℃)であることが好ましい。
<< Curable compound >>
The curable compound used in the present invention is preferably a substance that can be dissolved or dispersed in an organic solvent, and more preferably a substance that can be dissolved in an organic solvent. The temperature at the time of dissolution or dispersion is not particularly defined, but is preferably room temperature (for example, 25 ° C.).
 硬化性化合物としては、低分子であってもよいが、好ましくは樹脂である。
 本発明で用いる硬化性化合物は、例えば、常温で空気中の水分などで硬化する硬化性化合物(常温硬化型硬化性化合物)、紫外線硬化性化合物または熱硬化性化合物であることが好ましく、紫外線硬化性化合物または熱硬化性化合物であることがより好ましい。紫外線や熱によって硬化する硬化性化合物を用いることにより、低温での保管が必要な常温硬化型硬化性化合物に比べ、常温時の取扱い性が向上するという利点がある。
The curable compound may be a low molecule, but is preferably a resin.
The curable compound used in the present invention is preferably, for example, a curable compound that cures with moisture in the air at room temperature (room temperature curable compound), an ultraviolet curable compound, or a thermosetting compound. More preferably, it is a curable compound or a thermosetting compound. By using a curable compound that is cured by ultraviolet rays or heat, there is an advantage that handling at room temperature is improved as compared with a room temperature curable compound that needs to be stored at a low temperature.
 硬化性化合物としては、ウレタン系樹脂、エポキシ系樹脂、ポリエステル系樹脂、シリコン系樹脂、アクリル系樹脂、ポリ塩化ビニル系樹脂が例示される。 Examples of the curable compound include urethane resin, epoxy resin, polyester resin, silicon resin, acrylic resin, and polyvinyl chloride resin.
 本発明のLDS層形成用組成物における、硬化性化合物の含有量は、LDS層形成用組成物中20~80重量%であることが好ましく、25~75重量%であることがより好ましい。硬化性化合物は、1種類のみ含んでいても良いし、2種類以上含んでいても良い。2種類以上含む場合、合計量が上記範囲となることが好ましい。 In the composition for forming an LDS layer of the present invention, the content of the curable compound is preferably 20 to 80% by weight, more preferably 25 to 75% by weight in the composition for forming an LDS layer. The curable compound may contain only one type, or may contain two or more types. When two or more types are included, the total amount is preferably within the above range.
<<有機溶剤>>
 LDS層形成用組成物は、有機溶剤を含む。有機溶剤を含むことにより、LDS層形成用組成物中にLDS添加剤を均一に分散させることが可能になり、結果として、LDS添加剤が均一に分散したLDS層を形成可能になる。
 有機溶剤としては、硬化性化合物を溶解または分散可能な物質であれば特に定めるものではないが、シンナー、ソルベントナフサが例示される。
 本発明のLDS層形成用組成物における、有機溶剤の配合量は、20~80重量%が好ましく、25~75重量%がより好ましい。また、本発明のLDS層形成用組成物を樹脂成形品に塗布しやすくするため、有機溶剤の配合量を調整して、粘度調整してもよい。LDS層形成用組成物の粘度としては、塗布性の観点から、25℃において、0.01~200Pa・sが好ましく、0.1~150Pa・sがより好ましい。
<< Organic solvent >>
The composition for forming an LDS layer contains an organic solvent. By including the organic solvent, the LDS additive can be uniformly dispersed in the composition for forming an LDS layer, and as a result, an LDS layer in which the LDS additive is uniformly dispersed can be formed.
The organic solvent is not particularly limited as long as it is a substance that can dissolve or disperse the curable compound, and examples thereof include thinner and solvent naphtha.
The compounding amount of the organic solvent in the composition for forming an LDS layer of the present invention is preferably 20 to 80% by weight, and more preferably 25 to 75% by weight. Moreover, in order to make it easy to apply | coat the composition for LDS layer formation of this invention to a resin molded product, you may adjust the compounding quantity of an organic solvent and may adjust a viscosity. The viscosity of the composition for forming an LDS layer is preferably 0.01 to 200 Pa · s, more preferably 0.1 to 150 Pa · s at 25 ° C. from the viewpoint of applicability.
<<塗料>>
 本発明では、硬化性化合物と有機溶剤を含む組成物として、公知の塗料を用いることができる。塗料としては、樹脂用塗料が好ましい。本発明で用いることができる樹脂用塗料の具体例としては、関西ペイント株式会社製、レタンPG80IIIクリヤー、オリジン電気製、オリジプレートZメタシルバー、日本ユピカ製、ネオポール8476、日本ペイント製、naxマイティラックG-II KB型クリヤー、カシュー製、ハイメタル KD2850シルバー、カシュー製、6110クリヤー、関西ペイント製、ミリオンクリヤー、関西ペイント製、ビニボン100クリヤー等の各種塗料を用いることができる。
 塗料は、主剤と有機溶剤がすでに混合しているものの他、主剤と有機溶剤からなり使用時に混合するものがあり、本発明ではいずれの態様も好ましく用いることができる。さらに、硬化剤を含んでいても良い。本発明では、主剤および硬化剤が硬化性化合物に相当する。
本発明のLDS層形成用組成物は、市販の塗料に、LDS添加剤を配合して、LDS層形成用組成物とできる点で、製造適正にも優れている。また、樹脂用塗料を用いることにより、樹脂成形品とLDS層との密着性を向上させることができる。
<< Paint >>
In this invention, a well-known coating material can be used as a composition containing a sclerosing | hardenable compound and an organic solvent. As the paint, a resin paint is preferable. Specific examples of resin coatings that can be used in the present invention include: Kansai Paint Co., Ltd., Retan PG80III Clear, Origin Denki, Origin Plate Z Meta Silver, Nippon Iupika, Neopole 8476, Nippon Paint, nax Mighty Rack Various paints such as G-II KB type clear, cashew, high metal KD2850 silver, cashew, 6110 clear, Kansai paint, Million clear, Kansai paint, Binibon 100 clear can be used.
In addition to the paint in which the main agent and the organic solvent are already mixed, there are paints composed of the main agent and the organic solvent, which are mixed at the time of use, and any aspect can be preferably used in the present invention. Furthermore, a curing agent may be included. In the present invention, the main agent and the curing agent correspond to the curable compound.
The composition for forming an LDS layer of the present invention is excellent in production suitability in that it can be made into a composition for forming an LDS layer by adding an LDS additive to a commercially available paint. Moreover, the adhesiveness of a resin molded product and a LDS layer can be improved by using the resin coating material.
<<LDS添加剤>>
 LDS層形成用組成物は、LDS添加剤を含む。
 本発明におけるLDS添加剤は、熱可塑性樹脂(例えば、ポリアミド樹脂および/またはポリカーボネート樹脂)100重量部に対し、LDS添加剤と考えられる添加剤を10重量部添加し、波長1064nmのYAGレーザーを用い、出力13W、周波数20kHz、スキャン速度2m/sにて照射し、その後のメッキ工程は無電解のMacDermid製、MIDCopper100XB Strikeのメッキ槽にて実施し、前記レーザー照射面に金属を適用したときに、メッキ層を形成できる化合物をいう。
 本発明で用いるLDS添加剤は、合成品であってもよいし、市販品を用いてもよい。また、市販品は、LDS添加剤として市販されているものの他、本発明におけるLDS添加剤の要件を満たす限り、他の用途として販売されている物質であってもよい。LDS添加剤は、1種類のみを用いてもよいし、2種類以上を併用してもよい。
 以下に、本発明で用いられるLDS添加剤の好ましい実施形態を述べるが、本発明がこれらに限定されるものではないことは言うまでもない。本発明では、第一の実施形態および第二の実施形態のLDS添加剤が好ましい。
<< LDS additive >>
The composition for forming an LDS layer contains an LDS additive.
The LDS additive in the present invention uses 10 parts by weight of an additive considered to be an LDS additive to 100 parts by weight of a thermoplastic resin (for example, polyamide resin and / or polycarbonate resin), and uses a YAG laser having a wavelength of 1064 nm. Irradiation at an output of 13 W, a frequency of 20 kHz, a scanning speed of 2 m / s, and the subsequent plating process was performed in an electroless MacDermid, MIDCopper100XB Strike plating tank, and when the metal was applied to the laser irradiation surface, A compound that can form a plating layer.
The LDS additive used in the present invention may be a synthetic product or a commercial product. In addition to those that are commercially available as LDS additives, commercially available products may be substances that are sold for other uses as long as they satisfy the requirements of the LDS additive in the present invention. Only one type of LDS additive may be used, or two or more types may be used in combination.
Hereinafter, preferred embodiments of the LDS additive used in the present invention will be described, but it goes without saying that the present invention is not limited thereto. In the present invention, the LDS additive of the first embodiment and the second embodiment is preferable.
 本発明で用いるLDS添加剤の第一の実施形態は、銅およびクロムを含む化合物である。第一の実施形態のLDS添加剤としては、銅を10~30重量%含むことが好ましい。また、クロムを15~50重量%含むことが好ましい。第一の実施形態におけるLDS添加剤は、銅およびクロムを含む酸化物であることが好ましい。 The first embodiment of the LDS additive used in the present invention is a compound containing copper and chromium. The LDS additive of the first embodiment preferably contains 10 to 30% by weight of copper. Further, it is preferable to contain 15 to 50% by weight of chromium. The LDS additive in the first embodiment is preferably an oxide containing copper and chromium.
 銅およびクロムの含有形態としては、スピネル構造が好ましい。スピネル構造とは、複酸化物でAB24型の化合物(AとBは金属元素)にみられる代表的結晶構造型の一つである。 As the copper and chromium content, a spinel structure is preferable. The spinel structure is one of the typical crystal structure types found in double oxide AB 2 O 4 type compounds (A and B are metal elements).
 第一の実施形態のLDS添加剤は、銅およびクロムの他に、他の金属を微量含んでいてもよい。他の金属としては、アンチモン、スズ、鉛、インジウム、鉄、コバルト、ニッケル、亜鉛、カドミウム、銀、ビスマス、ヒ素、マンガン、マグネシウム、カルシウムなどが例示され、マンガンが好ましい。これら金属は酸化物として存在していてもよい。
 第一の実施形態のLDS添加剤の好ましい一例は、銅クロム酸化物以外の金属酸化物の含有量が10重量%以下であるLDS添加剤である。
The LDS additive of the first embodiment may contain a trace amount of other metals in addition to copper and chromium. Examples of other metals include antimony, tin, lead, indium, iron, cobalt, nickel, zinc, cadmium, silver, bismuth, arsenic, manganese, magnesium, calcium, and the like, and manganese is preferable. These metals may exist as oxides.
A preferred example of the LDS additive of the first embodiment is an LDS additive having a content of metal oxide other than copper chromium oxide of 10% by weight or less.
 本発明で用いるLDS添加剤の第二の実施形態は、アンチモンおよび/またはリンと、錫とを含む酸化物、好ましくはアンチモンと錫とを含む酸化物である。 A second embodiment of the LDS additive used in the present invention is an oxide containing antimony and / or phosphorus and tin, preferably an oxide containing antimony and tin.
 第二の実施形態のLDS添加剤は、錫の配合量がリンおよび/またはアンチモンの配合量よりも多いものがより好ましく、錫とリンとアンチモンの合計量に対する錫の量が、80重量%以上であることがより好ましい。 The LDS additive of the second embodiment is more preferably one in which the amount of tin is greater than the amount of phosphorus and / or antimony, and the amount of tin with respect to the total amount of tin, phosphorus and antimony is 80% by weight or more It is more preferable that
 特に、第二の実施形態のLDS添加剤としては、アンチモンと錫とを含む酸化物が好ましく、錫の配合量がアンチモンの配合量よりも多いものがより好ましく、錫とアンチモンの合計量に対する錫の量が、80重量%以上であることがより好ましい。 In particular, the LDS additive of the second embodiment is preferably an oxide containing antimony and tin, more preferably the amount of tin added is greater than the amount of antimony, and tin relative to the total amount of tin and antimony. More preferably, the amount is 80% by weight or more.
 より具体的には、第二の実施形態のLDS添加剤としては、アンチモンがドープされた酸化錫、酸化アンチモンがドープされた酸化錫、リンがドープされた酸化錫、リン酸化物がドープされた酸化錫が挙げられ、アンチモンがドープされた酸化錫、酸化アンチモンがドープされた酸化錫が好ましく、酸化アンチモンがドープされた酸化錫がより好ましい。例えば、リンと酸化錫とを含むLDS添加剤において、リンの含有量は、1~20重量%であることが好ましい。また、アンチモンと酸化錫とを含むLDS添加剤において、アンチモンの含有量は、1~20重量%であることが好ましい。また、リンとアンチモンと酸化錫とを含むLDS添加剤において、リンの含有量は、0.5~10重量%、アンチモンの含有量は、0.5~10重量%であることが好ましい。 More specifically, as the LDS additive of the second embodiment, tin oxide doped with antimony, tin oxide doped with antimony oxide, tin oxide doped with phosphorus, doped with phosphorous oxide Examples thereof include tin oxide, tin oxide doped with antimony and tin oxide doped with antimony oxide are preferable, and tin oxide doped with antimony oxide is more preferable. For example, in an LDS additive containing phosphorus and tin oxide, the phosphorus content is preferably 1 to 20% by weight. In the LDS additive containing antimony and tin oxide, the content of antimony is preferably 1 to 20% by weight. Further, in the LDS additive containing phosphorus, antimony and tin oxide, the phosphorus content is preferably 0.5 to 10% by weight, and the antimony content is preferably 0.5 to 10% by weight.
 本発明で用いるLDS添加剤の第三の実施形態は、少なくとも2種の金属を含み、かつ、抵抗率が5×103Ω・cm以下の導電性酸化物を含むことが好ましい。導電性酸化物の抵抗率は、8×102Ω・cm以下が好ましく、7×102Ω・cm以下がより好ましく、5×102Ω・cm以下がさらに好ましい。下限については特に制限はないが、例えば、1×101Ω・cm以上とすることができ、さらには、1×102Ω・cm以上とすることができる。
 本発明における導電性酸化物の抵抗率は、通常、粉末抵抗率をいい、導電性酸化物の微粉末10gを、内面にテフロン(登録商標)加工を施した内径25mmの円筒内へ装入して100kg/cm2に加圧し(充填率20%)、横河電機製の「3223型」テスターで測定することができる。
The third embodiment of the LDS additive used in the present invention preferably contains a conductive oxide containing at least two kinds of metals and having a resistivity of 5 × 10 3 Ω · cm or less. The resistivity of the conductive oxide is preferably 8 × 10 2 Ω · cm or less, more preferably 7 × 10 2 Ω · cm or less, and further preferably 5 × 10 2 Ω · cm or less. Although there is no restriction | limiting in particular about a minimum, For example, it can be set to 1 * 10 < 1 > ohm * cm or more, Furthermore, it can be set to 1 * 10 < 2 > ohm * cm or more.
The resistivity of the conductive oxide in the present invention usually refers to the powder resistivity, and 10 g of the fine powder of the conductive oxide is charged into a cylinder having an inner diameter of 25 mm and subjected to Teflon (registered trademark) processing on the inner surface. Te 100 kg / cm 2 pressurized (filling rate 20%) can be measured by Yokogawa of "3223 Model" tester.
 第三の実施形態で用いるLDS添加剤は、抵抗率が5×103Ω・cm以下の導電性酸化物を含んでいれば特に制限されないが、少なくとも2種類の金属を含むことが好ましく、具体的には、周期表のn族(nは3~16の整数)の金属とn+1族の金属を含むことが好ましい。nは10~13の整数が好ましく、12または13がさらに好ましい。
 第三の実施形態で用いるLDS添加剤は、LDS添加剤中における、周期表のn族(nは3~16の整数)の金属の含有量とn+1族の金属の含有量の合計を100モル%としたとき、一方の金属の含有量が15モル%以下であることが好ましく、12モル%以下であることがさらに好ましく、10モル%以下であることが特に好ましい。下限については特に制限はないが、0.0001モル%以上である。2種類以上の金属の含有量をこのような範囲とすることで、メッキ性を向上させることができる。本発明では特に、n+1族の金属がドープされたn族の金属酸化物が好ましい。
 さらに、第三の実施形態で用いるLDS添加剤は、LDS添加剤中に含まれる金属成分の98重量%以上が、上記周期表のn族の金属の含有量とn+1族の金属で構成されることが好ましい。
The LDS additive used in the third embodiment is not particularly limited as long as it contains a conductive oxide having a resistivity of 5 × 10 3 Ω · cm or less, but preferably contains at least two kinds of metals. Specifically, it preferably includes a metal of group n (n is an integer of 3 to 16) and a metal of group n + 1 of the periodic table. n is preferably an integer of 10 to 13, and more preferably 12 or 13.
In the LDS additive, the LDS additive used in the third embodiment is 100 mol in total of the content of the group n metal (n is an integer of 3 to 16) and the metal content of the group n + 1 in the periodic table. %, The content of one metal is preferably 15 mol% or less, more preferably 12 mol% or less, and particularly preferably 10 mol% or less. Although there is no restriction | limiting in particular about a minimum, It is 0.0001 mol% or more. By setting the content of two or more kinds of metals in such a range, the plating property can be improved. In the present invention, an n group metal oxide doped with an n + 1 group metal is particularly preferable.
Further, in the LDS additive used in the third embodiment, 98% by weight or more of the metal component contained in the LDS additive is composed of the group n metal content and the group n + 1 metal of the periodic table. It is preferable.
 周期表のn族の金属としては、例えば、3族(スカンジウム、イットリウム)、4族(チタン、ジルコニウムなど)、5族(バナジウム、ニオブなど)、6族(クロム、モリブテンなど)、7族(マンガンなど)、8族(鉄、ルテニウムなど)、9族(コバルト、ロジウム、イリジウムなど)、10族(ニッケル、パラジウム、白金)、11族(銅、銀、金など)、12族(亜鉛、カドミウムなど)、13族(アルミニウム、ガリウム、インジウムなど)、14族(ゲルマニウム、スズなど)、15族(ヒ素、アンチモンなど)、16族(セレン、テルルなど)、これらの金属酸化物などが挙げられる。中でも、12族(n=12)の金属または金属酸化物が好ましく、亜鉛がより好ましい。 Examples of the metal of group n in the periodic table include group 3 (scandium, yttrium), group 4 (titanium, zirconium, etc.), group 5 (vanadium, niobium, etc.), group 6 (chromium, molybdenum, etc.), group 7 ( Manganese, etc.), group 8 (iron, ruthenium, etc.), group 9 (cobalt, rhodium, iridium, etc.), group 10 (nickel, palladium, platinum), group 11 (copper, silver, gold etc.), group 12 (zinc, Cadmium, etc.), group 13 (aluminum, gallium, indium, etc.), group 14 (germanium, tin, etc.), group 15 (arsenic, antimony, etc.), group 16 (selenium, tellurium, etc.), and metal oxides thereof. It is done. Among them, a Group 12 (n = 12) metal or metal oxide is preferable, and zinc is more preferable.
 周期表のn+1族の金属としては、例えば、4族(チタン、ジルコニウムなど)、5族(バナジウム、ニオブなど)、6族(クロム、モリブテンなど)、7族(マンガンなど)、8族(鉄、ルテニウムなど)、9族(コバルト、ロジウム、イリジウムなど)、10族(ニッケル、パラジウム、白金)、11族(銅、銀、金など)、12族(亜鉛、カドミウムなど)、13族(アルミニウム、ガリウム、インジウムなど)、14族(ゲルマニウム、スズなど)、15族(ヒ素、アンチモンなど)、16族(セレン、テルルなど)、これらの金属酸化物などが挙げられる。中でも、13族(n+1=13)の金属または金属酸化物が好ましく、アルミニウムまたはガリウムがより好ましく、アルミニウムがさらに好ましい。 Examples of the metal of group n + 1 of the periodic table include group 4 (titanium, zirconium, etc.), group 5 (vanadium, niobium, etc.), group 6 (chromium, molybdenum, etc.), group 7 (manganese, etc.), group 8 (iron). , Ruthenium, etc.), group 9 (cobalt, rhodium, iridium, etc.), group 10 (nickel, palladium, platinum), group 11 (copper, silver, gold, etc.), group 12 (zinc, cadmium, etc.), group 13 (aluminum) Gallium, indium, etc.), group 14 (germanium, tin, etc.), group 15 (arsenic, antimony, etc.), group 16 (selenium, tellurium, etc.), and metal oxides thereof. Among them, a Group 13 (n + 1 = 13) metal or metal oxide is preferable, aluminum or gallium is more preferable, and aluminum is further preferable.
 第三の実施形態で用いるLDS添加剤は、導電性金属酸化物以外の金属を含有していてもよい。導電性酸化物以外の金属としては、アンチモン、チタン、インジウム、鉄、コバルト、ニッケル、カドミウム、銀、ビスマス、ヒ素、マンガン、クロム、マグネシウム、カルシウムなどが例示される。これら金属は酸化物として存在していてもよい。これら金属の含有量は、LDS添加剤に対してそれぞれ0.01重量%以下が好ましい。
 なお、第三の実施形態で用いるLDS添加剤は、L値を向上させる観点から、アンチモンの含有量は、LDS添加剤に対して3重量%以下であることが好ましく、1重量%以下であることがより好ましく、0.01重量%以下であることがさらに好ましく、実質的に含まないことが特に好ましい。実質的に含まないとは、本発明の効果に影響を与える範囲内で含まないことを意味する。
The LDS additive used in the third embodiment may contain a metal other than the conductive metal oxide. Examples of the metal other than the conductive oxide include antimony, titanium, indium, iron, cobalt, nickel, cadmium, silver, bismuth, arsenic, manganese, chromium, magnesium, and calcium. These metals may exist as oxides. The content of these metals is preferably 0.01% by weight or less with respect to the LDS additive.
The LDS additive used in the third embodiment preferably has an antimony content of 3% by weight or less with respect to the LDS additive from the viewpoint of improving the L value, and is 1% by weight or less. More preferably, it is more preferable that it is 0.01 weight% or less, and it is especially preferable not to contain substantially. “Substantially free” means not contained within a range that affects the effects of the present invention.
 本発明で用いるLDS添加剤の平均粒径は、0.01~100μmであることが好ましく、0.05~30μmであることがより好ましく、0.05~15μmであることがさらに好ましい。このような平均粒径とすることにより、LDS層形成用組成物中で、LDS添加剤を均一に分散させることができ、メッキ性がより向上する傾向にあり好ましい。 The average particle size of the LDS additive used in the present invention is preferably 0.01 to 100 μm, more preferably 0.05 to 30 μm, and further preferably 0.05 to 15 μm. By setting such an average particle diameter, the LDS additive can be uniformly dispersed in the composition for forming an LDS layer, and the plating property tends to be further improved, which is preferable.
 LDS層形成用組成物における、LDS添加剤の配合量は、0.01~50重量%が好ましい。また、前記硬化性化合物および有機溶剤の合計100重量部に対し、0.05重量部以上であることが好ましく、0.3重量部以上であることがより好ましく、1重量部以上であることがさらに好ましく、3重量部以上であることが一層好ましい。また、前記硬化性化合物および有機溶剤の合計100重量部に対し、70重量部以下であることが好ましく、50重量部以下であることがさらに好ましく、40重量部以下であることが一層好ましく、30重量部以下であることがより一層好ましい。このような範囲とすることにより、Plating外観をより向上させることができる。
 本発明では、最終的なメッキ層付樹脂成形品中におけるLDS添加剤の量を減らすことができる点で価値が高い。
The blending amount of the LDS additive in the composition for forming an LDS layer is preferably 0.01 to 50% by weight. Moreover, it is preferable that it is 0.05 weight part or more with respect to a total of 100 weight part of the said sclerosing | hardenable compound and an organic solvent, It is more preferable that it is 0.3 weight part or more, It is 1 weight part or more. More preferred is 3 parts by weight or more. Further, it is preferably 70 parts by weight or less, more preferably 50 parts by weight or less, still more preferably 40 parts by weight or less, based on 100 parts by weight of the total of the curable compound and the organic solvent. It is even more preferable that the amount is not more than parts by weight. By setting it as such a range, a Platting appearance can be improved more.
The present invention is highly valuable in that the amount of the LDS additive in the final resin molded product with a plated layer can be reduced.
<<LDS層形成用組成物の他の成分>>
 本発明で用いるLDS層形成用組成物には、硬化性化合物、有機溶剤およびLDS添加剤のみからなっていてもよいが、これ以外の他の成分を含んでいてもよい。他の成分としては、一般的に塗料や硬化性化合物に配合される成分、その中でも特に分散剤、増感剤、相溶化剤、染顔料が例示される。本発明におけるLDS層形成用組成物の好ましい実施形態として、実質的に、硬化性化合物、有機溶剤およびLDS添加剤のみからなるLDS層形成用組成物が例示される。あるいは、実質的に塗料とLDS添加剤のみからなるLDS層形成用組成物が例示される。ここでの実質的にとは、上記以外の他の成分がLDS添加剤の配合量の5重量%以下であることをいい、3重量%以下であることが好ましく、1重量%以下であることがさらに好ましく、0.1重量%以下であることが一層好ましい。
<< Other components of composition for forming LDS layer >>
The composition for forming an LDS layer used in the present invention may comprise only a curable compound, an organic solvent and an LDS additive, but may contain other components. Examples of other components include components that are generally blended in paints and curable compounds, among which dispersants, sensitizers, compatibilizers, and dyes / pigments. As a preferred embodiment of the composition for forming an LDS layer in the present invention, a composition for forming an LDS layer substantially consisting of a curable compound, an organic solvent and an LDS additive is exemplified. Or the composition for LDS layer formation which consists only of a coating material and a LDS additive substantially is illustrated. The term “substantially” means that the other components than the above are 5% by weight or less of the amount of the LDS additive, preferably 3% by weight or less, and 1% by weight or less. Is more preferable, and it is still more preferable that it is 0.1 weight% or less.
<<LDS層形成用組成物の特性>>
 LDS層形成用組成物は、LDS添加剤が分散した分散液である。硬化性化合物は有機溶剤に溶解していても良いし、分散していてもよいが、上述のとおり、溶解していることが好ましい。このようなLDS層形成用組成物を樹脂成形品の表面に適用することにより、LDS添加剤が均一に分散したLDS層を形成可能になる。従って、LDS層形成用組成物は、樹脂成形品の表面に適用する直前にLDS添加剤が分散した分散液であればよく、長時間静置した後も、分散していることは必ずしも必要ではない。
 本発明では、硬化性化合物と溶剤の重量比率が20:80~80:20であることが好ましく、25:75~75:25であることがより好ましい。このような範囲とすると、LDS添加剤の分散性に優れ、メッキ性が向上する傾向にあり好ましい。
<< Characteristics of LDS Layer Forming Composition >>
The composition for forming an LDS layer is a dispersion in which an LDS additive is dispersed. The curable compound may be dissolved or dispersed in an organic solvent, but is preferably dissolved as described above. By applying such a composition for forming an LDS layer to the surface of a resin molded product, an LDS layer in which the LDS additive is uniformly dispersed can be formed. Therefore, the composition for forming the LDS layer may be a dispersion in which the LDS additive is dispersed immediately before being applied to the surface of the resin molded product, and it is not necessarily required to be dispersed even after standing for a long time. Absent.
In the present invention, the weight ratio of the curable compound to the solvent is preferably 20:80 to 80:20, and more preferably 25:75 to 75:25. Such a range is preferable because the dispersibility of the LDS additive is excellent and the plating property tends to be improved.
<キット>
 本発明のキットは、レーザーダイレクトストラクチャリング層形成用組成物と、熱可塑性樹脂を含む熱可塑性樹脂組成物を有することを特徴とする。このようなキットを用いることにより、熱可塑性樹脂組成物にLDS添加剤を配合しなくても、樹脂成形品の表面にメッキ層を形成可能になる。
 特に、本発明では、LDS層形成用組成物に含まれるLDS添加剤の添加量を、前記熱可塑性樹脂組成物に含まれる熱可塑性樹脂の量の3.0重量%以下とすることができ、さらには2.0重量%以下とすることができ、特には1.5重量%以下とすることができる。前記LDS添加剤の添加量の下限値は、例えば、0.5重量%以上とすることができる。
<Kit>
The kit of the present invention has a composition for forming a laser direct structuring layer and a thermoplastic resin composition containing a thermoplastic resin. By using such a kit, it is possible to form a plating layer on the surface of the resin molded product without blending the LDS additive into the thermoplastic resin composition.
In particular, in the present invention, the amount of the LDS additive contained in the composition for forming an LDS layer can be 3.0% by weight or less of the amount of the thermoplastic resin contained in the thermoplastic resin composition, Furthermore, it can be set to 2.0% by weight or less, and particularly 1.5% by weight or less. The lower limit of the amount of the LDS additive added can be, for example, 0.5% by weight or more.
<<LDS層形成用組成物>>
 LDS層形成用組成物は、上述したLDS層形成用組成物を用いることができ、好ましい範囲も同様である。
<< LDS layer forming composition >>
As the composition for forming an LDS layer, the above-described composition for forming an LDS layer can be used, and the preferred range is also the same.
<<熱可塑性樹脂を含む熱可塑性樹脂組成物>>
 本発明における熱可塑性樹脂組成物は、熱可塑性樹脂を含む。熱可塑性樹脂の種類は特に定めるものではなく、結晶性樹脂であってもよいし、非晶性樹脂であってもよい。
 従来では、非晶性樹脂とLDS添加剤を含む樹脂組成物を用いると、レーザー照射により表面に凸凹ができてしまう場合があったが、本発明のLDS層形成用組成物を用いると、非晶性樹脂を用いた場合であっても表面を均一にすることができる。熱可塑性樹脂の具体例としては、例えば、ポリカーボネート樹脂、ポリカーボネート樹脂とポリスチレン樹脂の混合物、ポリフェニレンエーテル樹脂とポリスチレン樹脂のアロイ、ポリフェニレンエーテル樹脂とポリアミド樹脂のアロイ、熱可塑性ポリエステル樹脂、メチルメタクリレート/アクリロニトリル/ブタジエン/スチレン共重合樹脂、メチルメタクリレート/スチレン共重合樹脂、メチルメタクリレート樹脂、ゴム強化メチルメタクリレート樹脂、ポリアミド樹脂、ポリアセタール樹脂、ポリ乳酸系樹脂、ポリオレフィン樹脂、ポリフェニレンサルファイド樹脂等が挙げられる。本発明では、ポリカーボネート樹脂、ポリカーボネート樹脂とポリスチレン樹脂の混合物、熱可塑性ポリエステル樹脂およびポリアミド樹脂の少なくとも1種を含むことが好ましく、ポリカーボネート樹脂、ポリカーボネート樹脂とポリスチレン樹脂の混合物、およびポリアミド樹脂の少なくとも1種を含むことがより好ましく、ポリアミド樹脂を含むことがさらに好ましい。
 また、結晶性樹脂としては、ポリアミド樹脂、熱可塑性ポリエステル樹脂が好ましい。非晶性樹脂としては、ポリカーボネート樹脂が好ましい。
 以下に好ましい実施形態について説明する。
<< Thermoplastic resin composition containing a thermoplastic resin >>
The thermoplastic resin composition in the present invention contains a thermoplastic resin. The kind of the thermoplastic resin is not particularly defined, and may be a crystalline resin or an amorphous resin.
Conventionally, when a resin composition containing an amorphous resin and an LDS additive is used, the surface may be uneven due to laser irradiation. However, when the composition for forming an LDS layer of the present invention is used, Even when a crystalline resin is used, the surface can be made uniform. Specific examples of the thermoplastic resin include polycarbonate resin, a mixture of polycarbonate resin and polystyrene resin, an alloy of polyphenylene ether resin and polystyrene resin, an alloy of polyphenylene ether resin and polyamide resin, thermoplastic polyester resin, methyl methacrylate / acrylonitrile / Examples thereof include butadiene / styrene copolymer resin, methyl methacrylate / styrene copolymer resin, methyl methacrylate resin, rubber-reinforced methyl methacrylate resin, polyamide resin, polyacetal resin, polylactic acid resin, polyolefin resin, and polyphenylene sulfide resin. In the present invention, it is preferable to include at least one of a polycarbonate resin, a mixture of a polycarbonate resin and a polystyrene resin, a thermoplastic polyester resin, and a polyamide resin, and at least one of a polycarbonate resin, a mixture of a polycarbonate resin and a polystyrene resin, and a polyamide resin. It is more preferable that a polyamide resin is included.
Moreover, as a crystalline resin, a polyamide resin and a thermoplastic polyester resin are preferable. As the amorphous resin, a polycarbonate resin is preferable.
A preferred embodiment will be described below.
ポリカーボネート樹脂を主成分とする態様
 本発明における熱可塑性樹脂の第1の実施形態として、熱可塑性樹脂がポリカーボネート樹脂を主成分として含む場合が挙げられる。第1の実施形態では、全樹脂成分中、ポリカーボネート樹脂の割合が、30~100重量%であることが好ましく、50~100重量%であることがより好ましく、80~100重量%がさらに好ましい。
Embodiment with Polycarbonate Resin as Main Component As a first embodiment of the thermoplastic resin in the present invention, there is a case where the thermoplastic resin contains a polycarbonate resin as a main component. In the first embodiment, the proportion of the polycarbonate resin in all resin components is preferably 30 to 100% by weight, more preferably 50 to 100% by weight, and further preferably 80 to 100% by weight.
ポリカーボネート樹脂
 本発明で用いるポリカーボネート樹脂としては特に制限されず、芳香族ポリカーボネート、脂肪族ポリカーボネート、芳香族-脂肪族ポリカーボネートのいずれも用いることができる。中でも芳香族ポリカーボネートが好ましく、さらに、芳香族ジヒドロキシ化合物をホスゲンまたは炭酸のジエステルと反応させることによって得られる熱可塑性芳香族ポリカーボネート重合体または共重合体がより好ましい。
Polycarbonate resin The polycarbonate resin used in the present invention is not particularly limited, and any of an aromatic polycarbonate, an aliphatic polycarbonate, and an aromatic-aliphatic polycarbonate can be used. Of these, an aromatic polycarbonate is preferable, and a thermoplastic aromatic polycarbonate polymer or copolymer obtained by reacting an aromatic dihydroxy compound with phosgene or a diester of carbonic acid is more preferable.
 芳香族ジヒドロキシ化合物としては、2,2-ビス(4-ヒドロキシフェニル)プロパン(=ビスフェノールA)、テトラメチルビスフェノールA、ビス(4-ヒドロキシフェニル)-P-ジイソプロピルベンゼン、ハイドロキノン、レゾルシノール、4,4-ジヒドロキシジフェニルなどが挙げられ、好ましくはビスフェノールAが挙げられる。さらに、難燃性が高い組成物を調製する目的で、上記の芳香族ジヒドロキシ化合物にスルホン酸テトラアルキルホスホニウムが1個以上結合した化合物、またはシロキサン構造を有する両末端フェノール性OH基含有のポリマーもしくはオリゴマー等を、使用することができる。 As aromatic dihydroxy compounds, 2,2-bis (4-hydroxyphenyl) propane (= bisphenol A), tetramethylbisphenol A, bis (4-hydroxyphenyl) -P-diisopropylbenzene, hydroquinone, resorcinol, 4,4 -Dihydroxydiphenyl and the like are preferable, and bisphenol A is preferable. Furthermore, for the purpose of preparing a composition having a high flame retardancy, a compound in which one or more tetraalkylphosphonium sulfonates are bonded to the above aromatic dihydroxy compound, or a polymer containing both terminal phenolic OH groups having a siloxane structure or Oligomers and the like can be used.
 本発明で用いるポリカーボネート樹脂の好ましい例には、2,2-ビス(4-ヒドロキシフェニル)プロパンから誘導されるポリカーボネート樹脂;2,2-ビス(4-ヒドロキシフェニル)プロパンと他の芳香族ジヒドロキシ化合物とから誘導されるポリカーボネート共重合体;が含まれる。 Preferred examples of polycarbonate resins used in the present invention include polycarbonate resins derived from 2,2-bis (4-hydroxyphenyl) propane; 2,2-bis (4-hydroxyphenyl) propane and other aromatic dihydroxy compounds A polycarbonate copolymer derived from
 ポリカーボネート樹脂の分子量は、溶媒としてメチレンクロライドを用い、温度25℃で測定された溶液粘度より換算した粘度平均分子量で、14,000~30,000であるのが好ましく、15,000~28,000であるのがより好ましく、16,000~26,000であるのがさらに好ましい。粘度平均分子量が前記範囲であると、機械的強度がより良好となり、且つ成形性もより良好となるので好ましい。 The molecular weight of the polycarbonate resin is preferably 14,000 to 30,000 in terms of viscosity average molecular weight converted from the solution viscosity measured at a temperature of 25 ° C. using methylene chloride as a solvent, and 15,000 to 28,000. More preferably, it is 16,000 to 26,000. It is preferable for the viscosity average molecular weight to be in the above range since the mechanical strength becomes better and the moldability becomes better.
 ポリカーボネート樹脂の製造方法については、特に限定されるものではなく、本発明には、ホスゲン法(界面重合法)、および溶融法(エステル交換法)等の、いずれの方法で製造したポリカーボネート樹脂も使用することができる。また、本発明では、一般的な溶融法の製造工程を経た後に、末端基のOH基量を調整する工程を経て製造されたポリカーボネート樹脂を使用してもよい。 The method for producing the polycarbonate resin is not particularly limited, and the present invention also uses a polycarbonate resin produced by any method such as the phosgene method (interfacial polymerization method) and the melting method (transesterification method). can do. Moreover, in this invention, after passing through the manufacturing process of a general melting method, you may use the polycarbonate resin manufactured through the process of adjusting the amount of OH groups of a terminal group.
 さらに、本発明で用いるポリカーボネート樹脂は、バージン原料としてのポリカーボネート樹脂のみならず、使用済みの製品から再生されたポリカーボネート樹脂、いわゆるマテリアルリサイクルされたポリカーボネート樹脂であってもよい。 Furthermore, the polycarbonate resin used in the present invention may be not only a polycarbonate resin as a virgin raw material but also a polycarbonate resin regenerated from a used product, a so-called material recycled polycarbonate resin.
 その他、本発明で用いるポリカーボネート樹脂については、例えば、特開2012-072338号公報の段落番号0018~0066の記載を参酌でき、その内容は本明細書に組み込まれる。 In addition, with respect to the polycarbonate resin used in the present invention, for example, the description in paragraph numbers 0018 to 0066 of JP2012-072338A can be referred to, and the contents thereof are incorporated in the present specification.
 本発明で用いる熱可塑性樹脂組成物は、ポリカーボネート樹脂を1種類のみ含んでいてもよいし、2種類以上含んでいてもよい。 The thermoplastic resin composition used in the present invention may contain only one type of polycarbonate resin or two or more types.
ポリカーボネート樹脂とスチレン樹脂を含む態様
 第2の実施形態として、熱可塑性樹脂が、ポリカーボネート樹脂とスチレン樹脂を含む場合が挙げられる。具体的には、ポリカーボネート樹脂40重量%以上100重量%未満と、スチレン系樹脂0重量%を超え60重量%以下を含む樹脂成分を含むことがより好ましく、ポリカーボネート樹脂40~90重量%と、スチレン系樹脂60~10重量%を含むことがより好ましく、ポリカーボネート樹脂60~80重量%と、スチレン系樹脂40~20重量%を含むことがさらに好ましい。
 ポリカーボネート樹脂の詳細については、上記第1の実施形態の記載を参酌できる。
The aspect containing a polycarbonate resin and a styrene resin As a 2nd embodiment, the case where a thermoplastic resin contains a polycarbonate resin and a styrene resin is mentioned. Specifically, it is more preferable to include 40% by weight or more and less than 100% by weight of the polycarbonate resin, and a resin component including more than 0% by weight and less than 60% by weight of the styrene resin. More preferably, the resin contains 60 to 10% by weight, more preferably 60 to 80% by weight of polycarbonate resin and 40 to 20% by weight of styrene resin.
For the details of the polycarbonate resin, the description of the first embodiment can be referred to.
スチレン系樹脂
 スチレン系樹脂とは、スチレン系単量体からなるスチレン系重合体、スチレン系単量体と他の共重合可能なビニル系単量体との共重合体、ゴム質重合体の存在下でスチレン系単量体又はスチレン系単量体と他の共重合可能なビニル系単量体とを重合させた共重合体からなる群より選ばれる少なくとも1種の重合体を言う。
Styrene resin Styrene resin is a styrene polymer composed of styrene monomers, a copolymer of styrene monomers and other copolymerizable vinyl monomers, and the presence of rubbery polymers. Below, it means at least one polymer selected from the group consisting of styrene monomers or copolymers obtained by polymerizing styrene monomers and other copolymerizable vinyl monomers.
 スチレン系単量体の具体例としては、スチレン、α-メチルスチレン、p-メチルスチレン、ジビニルベンゼン、エチルビニルベンゼン、ジメチルスチレン、p-t-ブチルスチレン、ブロモスチレン、ジブロモスチレン等のスチレン誘導体が挙げられ、中でもスチレンが好ましい。尚、これらは単独で、又は2種類以上を混合して使用することもできる。 Specific examples of the styrenic monomer include styrene derivatives such as styrene, α-methylstyrene, p-methylstyrene, divinylbenzene, ethylvinylbenzene, dimethylstyrene, pt-butylstyrene, bromostyrene, and dibromostyrene. Among them, styrene is preferable. In addition, these can also be used individually or in mixture of 2 or more types.
 上記のスチレン系単量体と共重合可能なビニル系単量体としては、アクリロニトリル、メタクリロニトリル等のビニルシアン化合物、メチルアクリレート、エチルアクリレート、プロピルアクリレート、ブチルアクリレート、アミルアクリレート、へキシルアクリレート、2-エチルヘキシルアクリレート、オクチルアクリレート、シクロヘキシルアクリレート等のアクリル酸アルキルエステル、メチルメタクリレート、エチルメタクリレート、プロピルメタクリレート、ブチルメタクリレート、アミルメタクリレート、へキシルメタクリレート、2-エチルヘキシルメタクリレート、オクチルメタクリレート、シクロヘキシルメタクリレート等のメタクリル酸アルキルエステル、フェニルアクリレート、ベンジルアクリレート等のアクリル酸アリールエステル、フェニルメタクリレート、ベンジルメタクリレート等のメタクリル酸アリールエステル、グリシジルアクリレート、グリシジルメタクリレート等のエポキシ基含有アクリル酸エステル又はメタクリル酸エステル、マレイミド、N,N-メチルマレイミド、N-フェニルマレイミド等のマレイミド系単量体、アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、フマル酸、イタコン酸等のα,β-不飽和カルボン酸又はその無水物等が挙げられる。 As vinyl monomers copolymerizable with the above styrenic monomers, vinylcyan compounds such as acrylonitrile and methacrylonitrile, methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, amyl acrylate, hexyl acrylate, Acrylic acid alkyl esters such as 2-ethylhexyl acrylate, octyl acrylate and cyclohexyl acrylate, methacrylic acid such as methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, amyl methacrylate, hexyl methacrylate, 2-ethylhexyl methacrylate, octyl methacrylate and cyclohexyl methacrylate Acrylic esters, phenyl acrylate, benzyl acrylate, etc. Methacrylic acid aryl esters such as acid aryl esters, phenyl methacrylate and benzyl methacrylate, epoxy group-containing acrylic acid esters or methacrylic acid esters such as glycidyl acrylate and glycidyl methacrylate, maleimides such as N, N-methylmaleimide and N-phenylmaleimide Examples thereof include α-, β-unsaturated carboxylic acids such as acrylic monomers, acrylic acid, methacrylic acid, maleic acid, maleic anhydride, fumaric acid and itaconic acid, or anhydrides thereof.
 さらにスチレン系単量体と共重合可能なゴム質重合体としては、ポリブタジエン、ポリイソプレン、スチレン-ブタジエンランダム共重合体及びブロック共重合体、アクリロニトリル-ブタジエンランダム共重合体及びブロック共重合体、アクリロニトリル-ブタジエン共重合体、アクリル酸アルキルエステル又はメタクリル酸アルキルエステルとブタジエンとの共重合体、ポリブタジエン-ポリイソプレンジエン系共重合体、エチレン-イソプレンランダム共重合体及びブロック共重合体、エチレン-ブテンランダム共重合体及びブロック共重合体等のエチレンとα-オレフィンとの共重合体、エチレン-メタクリレート共重合体、エチレン-ブチルアクリレート共重合体等のエチレンとα,β-不飽和カルボン酸エステルとの共重合体、エチレン-酢酸ビニル共重合体、エチレン-プロピレン-ヘキサジエン共重合体等のエチレン-プロピレン-非共役ジエンターポリマー、アクリル系ゴム、ポリオルガノシロキサンゴムとポリアルキルアクリレート又はメタクリレートゴムとからなる複合ゴム等が挙げられる。 Further, rubbery polymers that can be copolymerized with styrene monomers include polybutadiene, polyisoprene, styrene-butadiene random copolymers and block copolymers, acrylonitrile-butadiene random copolymers and block copolymers, acrylonitrile. -Butadiene copolymers, copolymers of alkyl acrylates or alkyl methacrylates and butadiene, polybutadiene-polyisoprene diene copolymers, ethylene-isoprene random copolymers and block copolymers, ethylene-butene randoms Copolymers of ethylene and α-olefins such as copolymers and block copolymers, ethylene-methacrylate copolymers, ethylene-butyl acrylate copolymers and the like of ethylene and α, β-unsaturated carboxylic acid esters Copolymer, Ethylene-propylene-non-conjugated diene terpolymers such as tylene-vinyl acetate copolymer, ethylene-propylene-hexadiene copolymer, acrylic rubber, composite rubber composed of polyorganosiloxane rubber and polyalkyl acrylate or methacrylate rubber, etc. Can be mentioned.
 この様なスチレン系樹脂は、例えば、高衝撃ポリスチレン(HIPS)、アクリロニトリル-スチレン共重合体(AS樹脂)、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)、メチルメタクリレート-アクリロニトリル-ブタジエン-スチレン共重合体(MABS樹脂)、アクリロニトリル-スチレン-アクリルゴム共重合体(ASA樹脂)、アクリロニトリル-エチレンプロピレン系ゴム-スチレン共重合体(AES樹脂)、スチレン-メチルメタクリレート共重合体(MS樹脂)、スチレン-無水マレイン酸共重合体等が挙げられる。 Such styrene resins include, for example, high impact polystyrene (HIPS), acrylonitrile-styrene copolymer (AS resin), acrylonitrile-butadiene-styrene copolymer (ABS resin), methyl methacrylate-acrylonitrile-butadiene-styrene copolymer. Polymer (MABS resin), acrylonitrile-styrene-acrylic rubber copolymer (ASA resin), acrylonitrile-ethylenepropylene rubber-styrene copolymer (AES resin), styrene-methyl methacrylate copolymer (MS resin), styrene -Maleic anhydride copolymer and the like.
 上記のスチレン系樹脂は、乳化重合、溶液重合、塊状重合、懸濁重合あるいは塊状・懸濁重合等の方法により製造されるが、本発明においては、スチレン系重合体、又はスチレン系ランダム共重合体あるいはブロック共重合体の場合は、塊状重合、懸濁重合又は塊状・懸濁重合により製造されたものが好適であり、スチレン系グラフト共重合体の場合は塊状重合、塊状・懸濁重合あるいは乳化重合によって製造されたものが好適である。 The styrene resin is produced by a method such as emulsion polymerization, solution polymerization, bulk polymerization, suspension polymerization or bulk / suspension polymerization. In the present invention, the styrene resin or styrene random copolymer is used. In the case of a polymer or block copolymer, those produced by bulk polymerization, suspension polymerization, or bulk / suspension polymerization are suitable. In the case of a styrene-based graft copolymer, bulk polymerization, bulk / suspension polymerization or Those produced by emulsion polymerization are preferred.
 本発明において、特に好適に用いられるアクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)とは、ブタジエンゴム成分にアクリロニトリルとスチレンをグラフト共重合した熱可塑性グラフト共重合体とアクリロニトリルとスチレンの共重合体の混合物である。ブタジエンゴム成分は、ABS樹脂成分100重量%中、5~40重量%であることが好ましく、中でも10~35重量%、特に13~25重量%であることが好ましい。またゴム粒径は0.1~5μmであることが好ましく、中でも0.2~3μm、さらに0.3~1.5μm、特に0.4~0.9μmであることが好ましい。ゴム粒径の分布は、単一分布でも二山以上の複数の分布を有するもののいずれであってもよい。 In the present invention, acrylonitrile-butadiene-styrene copolymer (ABS resin) which is particularly preferably used is a thermoplastic graft copolymer obtained by graft copolymerization of acrylonitrile and styrene with a butadiene rubber component, and a copolymer of acrylonitrile and styrene. It is a mixture of The butadiene rubber component is preferably 5 to 40% by weight, more preferably 10 to 35% by weight, and particularly preferably 13 to 25% by weight, in 100% by weight of the ABS resin component. The rubber particle size is preferably 0.1 to 5 μm, more preferably 0.2 to 3 μm, further 0.3 to 1.5 μm, and particularly preferably 0.4 to 0.9 μm. The distribution of the rubber particle size may be either a single distribution or a plurality of distributions of two or more peaks.
 本発明で用いる熱可塑性樹脂組成物は、スチレン系樹脂を1種類のみ含んでいてもよいし、2種類以上含んでいてもよい。
 また、ポリカーボネート樹脂およびスチレン系樹脂以外の樹脂成分を含んでいても良い。但し、本実施形態においては、これらの成分は、全樹脂成分の5重量%以下であることが好ましい。
The thermoplastic resin composition used in the present invention may contain only one type of styrenic resin, or may contain two or more types.
Moreover, resin components other than polycarbonate resin and styrene resin may be included. However, in this embodiment, these components are preferably 5% by weight or less of the total resin components.
ポリアミド樹脂を主成分とする態様
 本発明における熱可塑性樹脂の第3の実施形態として、熱可塑性樹脂がポリアミド樹脂を含む場合が挙げられる。ポリアミド樹脂を含む場合、ポリアミド樹脂を80重量%以上含むことがより好ましく、90重量%以上含むことがより好ましく、95重量%以上含むことがさらに好ましく、99重量%以上含むことが特に好ましい。熱可塑性樹脂がポリアミド樹脂を含む場合の上限は、100重量%以下である。尚、ポリアミド樹脂を含む場合、他の樹脂成分を含んでいてもよい。しかしながら、他の樹脂は全樹脂成分の5重量%以下であることが好ましい。
Embodiment with Polyamide Resin as Main Component A third embodiment of the thermoplastic resin in the present invention includes a case where the thermoplastic resin contains a polyamide resin. When the polyamide resin is contained, the polyamide resin is more preferably contained in an amount of 80% by weight or more, more preferably 90% by weight or more, further preferably 95% by weight or more, and particularly preferably 99% by weight or more. The upper limit when the thermoplastic resin includes a polyamide resin is 100% by weight or less. In addition, when a polyamide resin is included, the other resin component may be included. However, the other resin is preferably 5% by weight or less of the total resin components.
ポリアミド樹脂
 ポリアミド樹脂としては、ラクタムの開環重合、アミノカルボン酸の重縮合、ジアミンと二塩基酸の重縮合により得られる酸アミドを繰り返し単位とする高分子であり、具体的には、ポリアミド6、11、12、46、66、610、612、6I、6/66、6T/6I、6/6T、66/6T、66/6T/6I、ポリアミドMX、ポリトリメチルヘキサメチレンテレフタルアミド、ポリビス(4-アミノシクロヘキシル)メタンドデカミド、ポリビス(3-メチル-4-アミノシクロヘキシル)メタンドデカミド、ポリウンデカメチレンヘキサヒドロテレフタルアミド等が挙げられる。なお、上記「I」はイソフタル酸成分、「T」はテレフタル酸成分を示す。
 本発明に使用されるポリアミド樹脂としては、これらのポリアミド樹脂の有する種々の特性と目的とする成形品の用途等を勘案して適切なポリアミド樹脂を選択する。
Polyamide resin The polyamide resin is a polymer having a repeating unit of acid amide obtained by ring-opening polymerization of lactam, polycondensation of aminocarboxylic acid, and polycondensation of diamine and dibasic acid. Specifically, polyamide 6 11, 12, 46, 66, 610, 612, 6I, 6/66, 6T / 6I, 6 / 6T, 66 / 6T, 66 / 6T / 6I, polyamide MX, polytrimethylhexamethylene terephthalamide, polybis (4 -Aminocyclohexyl) methane dodecamide, polybis (3-methyl-4-aminocyclohexyl) methane dodecamide, polyundecamethylene hexahydroterephthalamide and the like. In addition, said "I" shows an isophthalic acid component and "T" shows a terephthalic acid component.
As the polyamide resin used in the present invention, an appropriate polyamide resin is selected in consideration of various properties of these polyamide resins and the intended use of the molded product.
 上述のポリアミド樹脂の中、原料のジカルボン酸成分に芳香環を有する半芳香族ポリアミド或いは原料のジアミン成分に芳香環を有するポリアミドMXもしくはこれらを混合したポリアミド樹脂は、強度を高めるガラス繊維及びカーボン繊維等の充填剤を比較的多く配合したコンパウンドを容易に得られるので好ましい。
 半芳香族ポリアミドとしては具体的に、6I、6T/6I、6/6T、66/6T、66/6T/6I等が挙げられる。
 また、ジアミン成分に芳香環を有するキシリレンジアミンとα,ω-二塩基酸の重縮合で得られるポリアミドMX樹脂は、特に高強度の樹脂組成物が得られるので好ましい。さらに好ましくは、パラキシリレンジアミンおよび/またはメタキシリレンジアミンと、炭素数6~12のα,ω-直鎖脂肪族二塩基酸または芳香族二塩基酸の重縮合で得られるポリアミド樹脂であり、特に好ましくは、ジカルボン酸成分としてセバシン酸および/またはアジピン酸を使用したポリアミドMX樹脂であり、特に好ましくはポリメタキシリレンアジパミドである。
 これらの芳香環を有するポリアミド樹脂と脂肪族ポリアミド樹脂(例えば、ポリアミド6、ポリアミド66等)の混合物も好ましく使用される。脂肪族ポリアミド樹脂単独では充填剤を多く配合すると外観や物性が充分でない場合にも、上述の芳香環を有するポリアミド樹脂と混合することで外観や物性か改良される。芳香環を有するポリアミド樹脂と脂肪族ポリアミド樹脂の混合物の場合、その重量比は、100:1~100:20が好ましい。
Among the above-mentioned polyamide resins, the semi-aromatic polyamide having an aromatic ring as a raw material dicarboxylic acid component, the polyamide MX having an aromatic ring as a raw material diamine component, or a polyamide resin obtained by mixing these is a glass fiber and a carbon fiber that increase strength. This is preferable because a compound containing a relatively large amount of filler such as can be easily obtained.
Specific examples of the semi-aromatic polyamide include 6I, 6T / 6I, 6 / 6T, 66 / 6T, 66 / 6T / 6I, and the like.
A polyamide MX resin obtained by polycondensation of xylylenediamine having an aromatic ring in the diamine component and α, ω-dibasic acid is particularly preferable because a high-strength resin composition can be obtained. More preferably, it is a polyamide resin obtained by polycondensation of paraxylylenediamine and / or metaxylylenediamine with an α, ω-linear aliphatic dibasic acid or aromatic dibasic acid having 6 to 12 carbon atoms. Particularly preferred are polyamide MX resins using sebacic acid and / or adipic acid as the dicarboxylic acid component, and particularly preferred is polymetaxylylene adipamide.
A mixture of a polyamide resin having an aromatic ring and an aliphatic polyamide resin (for example, polyamide 6, polyamide 66, etc.) is also preferably used. Even when the aliphatic polyamide resin alone is blended with a large amount of filler, the appearance and physical properties are improved by mixing with the above polyamide resin having an aromatic ring even when the appearance and physical properties are not sufficient. In the case of a mixture of a polyamide resin having an aromatic ring and an aliphatic polyamide resin, the weight ratio is preferably 100: 1 to 100: 20.
熱可塑性ポリエステル樹脂を主成分とする態様
 本発明における熱可塑性樹脂の第4の実施形態として、熱可塑性樹脂が熱可塑性ポリエステル樹脂を主成分として含む場合が挙げられる。第4の実施形態では、全樹脂成分中、熱可塑性ポリエステル樹脂の割合が、51~100重量%であることが好ましく、80~100重量%であることがより好ましく、90~100重量%がさらに好ましい。
Embodiment with Thermoplastic Polyester Resin as Main Component As a fourth embodiment of the thermoplastic resin in the present invention, there is a case where the thermoplastic resin contains a thermoplastic polyester resin as a main component. In the fourth embodiment, the ratio of the thermoplastic polyester resin in the total resin components is preferably 51 to 100% by weight, more preferably 80 to 100% by weight, and further 90 to 100% by weight. preferable.
熱可塑性ポリエステル樹脂
 熱可塑性ポリエステル樹脂としては、特開2010-174223号公報の段落番号0013~0016の記載を参酌することができる。
 ポリエステル樹脂としては、通常はポリブチレンテレフタレート樹脂、又はポリブチレンテレフタレート樹脂が60重量%以上、好ましくは80重量%以上を占める混合物を用いる。例えばポリブチレンテレフタレート樹脂とポリエチレンテレフタレート樹脂との混合物であって、前者が60重量%以上、更には80重量%以上を占めるものは、本発明で用いるポリエステル樹脂として好ましいものの一つである。また、前記ポリブチレンテレフタレート樹脂とポリエチレンテレフタレート樹脂との混合物において、ポリエチレンテレフタレート樹脂は、10~40重量%含まれることが好ましく、20~40重量%含まれることがさらに好ましい。
 ポリブチレンテレフタレート樹脂及びポリエチレンテレフタレート樹脂は、周知のように、テレフタル酸又はそのエステルと、1,4-ブタンジオール又はエチレングリコールとの反応により、大規模に製造され、市場に流通している。本発明では市場で入手し得るこれらの樹脂を用いることができる。市場で入手し得る樹脂には、テレフタル酸成分と1,4-ブタンジオール成分又はエチレングリコール成分以外の共重合成分を含有しているものもあるが、本発明では共重合成分を少量、通常は10重量%以下、好ましくは5重量%以下で含有するものも用いることができる。
 ポリブチレンテレフタレート樹脂の固有粘度は、通常、0.5~1.5dl/gであり、特に0.6~1.3dl/gであることが好ましい。0.5dl/gより小さいと機械的強度に優れた樹脂組成物を得るのが困難である。また1.5dl/gより大きいと樹脂組成物の流動性が低下し、成形性が低下する場合がある。また、末端カルボキシル基量は30meq/g以下であることが好ましい。さらに1,4-ブタンジオールに由来するテトラヒドロフランの含有量は300ppm以下であることが好ましい。
 またポリエチレンテレフタレート樹脂の固有粘度は、通常、0.4~1.0dl/gであり、特に0.5~1.0dl/gであることが好ましい。固有粘度が0.4未満であると樹脂組成物の機械的特性が低下し易く、1.0を超えると流動性が低下し易い。なお、いずれの固有粘度も、フェノール/テトラクロロエタン(重量比1/1)混合溶媒中、30℃での測定値である。
 本発明で用いる熱可塑性樹脂組成物は、熱可塑性ポリエステル樹脂を1種類のみ含んでいてもよいし、2種類以上含んでいてもよい。
 尚、本実施形態において、熱可塑性ポリエステル樹脂以外の他の樹脂成分を含んでいてもよい。しかしながら、他の樹脂は全樹脂成分の5重量%以下であることが好ましい。
Thermoplastic polyester resin As the thermoplastic polyester resin, the description in paragraphs 0013 to 0016 of JP 2010-174223 A can be referred to.
As the polyester resin, a polybutylene terephthalate resin or a mixture containing 60% by weight or more, preferably 80% by weight or more of polybutylene terephthalate resin is usually used. For example, a mixture of a polybutylene terephthalate resin and a polyethylene terephthalate resin, the former occupying 60% by weight or more, and further 80% by weight or more, is one of the preferable polyester resins used in the present invention. In the mixture of the polybutylene terephthalate resin and the polyethylene terephthalate resin, the polyethylene terephthalate resin is preferably contained in an amount of 10 to 40% by weight, and more preferably 20 to 40% by weight.
As is well known, polybutylene terephthalate resin and polyethylene terephthalate resin are produced on a large scale by the reaction of terephthalic acid or its ester with 1,4-butanediol or ethylene glycol, and are distributed in the market. In the present invention, these resins available on the market can be used. Some commercially available resins contain a copolymer component other than a terephthalic acid component and a 1,4-butanediol component or an ethylene glycol component. However, in the present invention, a small amount of a copolymer component is usually used. What contains 10 weight% or less, Preferably it is 5 weight% or less can also be used.
The intrinsic viscosity of the polybutylene terephthalate resin is usually 0.5 to 1.5 dl / g, particularly preferably 0.6 to 1.3 dl / g. If it is less than 0.5 dl / g, it is difficult to obtain a resin composition having excellent mechanical strength. On the other hand, if it is larger than 1.5 dl / g, the fluidity of the resin composition is lowered, and the moldability may be lowered. Moreover, it is preferable that the amount of terminal carboxyl groups is 30 meq / g or less. Further, the content of tetrahydrofuran derived from 1,4-butanediol is preferably 300 ppm or less.
The intrinsic viscosity of the polyethylene terephthalate resin is usually 0.4 to 1.0 dl / g, particularly preferably 0.5 to 1.0 dl / g. If the intrinsic viscosity is less than 0.4, the mechanical properties of the resin composition are likely to be lowered, and if it exceeds 1.0, the fluidity is likely to be lowered. In addition, any intrinsic viscosity is a measured value in 30 degreeC in a phenol / tetrachloroethane (weight ratio 1/1) mixed solvent.
The thermoplastic resin composition used in the present invention may contain only one kind of thermoplastic polyester resin, or may contain two or more kinds.
In the present embodiment, a resin component other than the thermoplastic polyester resin may be included. However, the other resin is preferably 5% by weight or less of the total resin components.
ポリアセタール樹脂を主成分とする態様
 本発明における熱可塑性樹脂の第5の実施形態として、熱可塑性樹脂がポリアセタール樹脂を含む場合が挙げられる。ポリアセタール樹脂を含む場合、ポリアセタール樹脂を80重量%以上含むことがより好ましく、上限は、100重量%以下である。尚、ポリアセタール樹脂を含む場合、他の樹脂成分を含んでいてもよい。しかしながら、他の樹脂は全樹脂成分の5重量%以下であることが好ましい。
Embodiment with Polyacetal Resin as Main Component As a fifth embodiment of the thermoplastic resin in the present invention, there is a case where the thermoplastic resin contains a polyacetal resin. When the polyacetal resin is included, the polyacetal resin is more preferably contained in an amount of 80% by weight or more, and the upper limit is 100% by weight or less. In addition, when a polyacetal resin is included, the other resin component may be included. However, the other resin is preferably 5% by weight or less of the total resin components.
ポリアセタール樹脂
 ポリアセタール樹脂としては、特開2003-003041号公報の段落番号0011、特開2003-220667号公報の段落番号0018~0020の記載を参酌することができる。
 ポリフェニレンサルファイド樹脂としては、特開平10-292114号公報の段落番号0014~0016の記載、特開平10-279800号公報の段落番号0011~0013の記載、特開2009-30030号公報の段落番号0011~0015の記載を参酌できる。
Polyacetal Resin As for the polyacetal resin, description in paragraph Nos. 0011 of JP2003-003041A and paragraph Nos.0018 to 0020 of JP2003-220667A can be referred to.
Examples of the polyphenylene sulfide resin include paragraphs 0014 to 0016 in JP-A-10-292114, paragraphs 0011 to 0013 in JP-A-10-279800, and paragraphs 0011 to 0013 in JP2009-30030. The description of 0015 can be considered.
 本発明で用いる熱可塑性樹脂組成物は、組成物の合計の40重量%以上が樹脂成分であることが好ましく、50重量%以上が樹脂成分であることがより好ましく、60重量%以上が樹脂成分であることがさらに好ましい。繊維(例えば、後述するガラスフィラーなど)を配合する場合は、繊維と樹脂成分の合計で、80重量%以上を占めることが好ましい。 In the thermoplastic resin composition used in the present invention, 40% by weight or more of the total composition is preferably a resin component, more preferably 50% by weight or more is a resin component, and 60% by weight or more is a resin component. More preferably. When blending fibers (for example, glass fillers described later), it is preferable to occupy 80% by weight or more in total of fibers and resin components.
<<<他の成分>>>
 本発明で用いる熱可塑性樹脂組成物は、熱可塑性樹脂に加えて、ガラスフィラー等の繊維や各種添加剤を含んでいても良い。
 従来のLDS添加剤を含む熱可塑性樹脂組成物では、LDS添加剤がガラスフィラーにダメージを与えてしまい、ガラスフィラーが本来的に発揮している機械的強度を低下させてしまう場合があった。しかしながら、本発明では、LDS添加剤を熱可塑性樹脂組成物とは別に配合するため、このような問題を回避できる。
 また、従来のLDS添加剤を含む熱可塑性樹脂組成物に、染顔料や難燃剤組成物を配合すると、LDS添加剤を配合しても、適切にメッキ層を形成できない場合があった。しかしながら、本発明では、LDS添加剤を熱可塑性樹脂組成物とは別に配合するため、このような問題も回避できる。
 尚、本発明で用いる熱可塑性樹脂組成物は、LDS添加剤を実質的に含まない構成である。LDS添加剤を実質的に含まないとは、LDS添加剤がメッキ層を形成できる量で配合されていないことをいい、例えば、熱可塑性樹脂100重量部に対し、0.01重量部以下であることをいう。
<<< other ingredients >>>
The thermoplastic resin composition used in the present invention may contain fibers such as glass filler and various additives in addition to the thermoplastic resin.
In a thermoplastic resin composition containing a conventional LDS additive, the LDS additive may damage the glass filler, which may reduce the mechanical strength originally exhibited by the glass filler. However, in the present invention, since the LDS additive is blended separately from the thermoplastic resin composition, such a problem can be avoided.
In addition, when a dye / pigment or a flame retardant composition is blended with a conventional thermoplastic resin composition containing an LDS additive, the plating layer may not be formed properly even if the LDS additive is blended. However, in the present invention, since the LDS additive is blended separately from the thermoplastic resin composition, such a problem can be avoided.
In addition, the thermoplastic resin composition used in the present invention has a configuration that does not substantially contain an LDS additive. “The LDS additive is not substantially contained” means that the LDS additive is not blended in an amount capable of forming a plating layer, for example, 0.01 parts by weight or less with respect to 100 parts by weight of the thermoplastic resin. That means.
ガラスフィラー
 本発明で用いる熱可塑性樹脂組成物は、ガラスフィラーを含んでいてもよい。ガラスフィラーとしては、ガラス繊維、板状ガラス、ガラスビーズ、ガラスフレークが挙げられ、中でもガラス繊維が好ましい。
Glass Filler The thermoplastic resin composition used in the present invention may contain a glass filler. Examples of the glass filler include glass fiber, plate-like glass, glass beads, and glass flakes. Among these, glass fiber is preferable.
 ガラスフィラーは、Aガラス、Cガラス、Eガラス、Sガラスなどのガラス組成からなり、特に、Eガラス(無アルカリガラス)がポリカーボネート樹脂に悪影響を及ぼさないので好ましい。
 ガラス繊維とは、長さ方向に直角に切断した断面形状が真円状、多角形状で繊維状外嵌を呈するものをいう。
A glass filler consists of glass compositions, such as A glass, C glass, E glass, and S glass, and since E glass (an alkali free glass) does not have a bad influence on polycarbonate resin especially, it is preferable.
Glass fiber refers to a fiber having a fiber-like outer shape with a cross-sectional shape cut at right angles to the length direction and having a perfect circle or polygonal shape.
 本発明で用いる熱可塑性樹脂組成物に用いるガラス繊維は、単繊維または単繊維を複数本撚り合わせたものであってもよい。
 ガラス繊維の形態は、単繊維や複数本撚り合わせたものを連続的に巻き取った「ガラスロービング」、長さ1~10mmに切りそろえた「チョップドストランド」、長さ10~500μm程度に粉砕した「ミルドファイバー」などのいずれであってもよい。かかるガラス繊維としては、旭ファイバーグラスより、「グラスロンチョップドストランド」や「グラスロンミルドファイバー」の商品名で市販されており、容易に入手可能である。ガラス繊維は、形態が異なるものを併用することもできる。
The glass fiber used for the thermoplastic resin composition used in the present invention may be a single fiber or a single fiber twisted together.
The form of the glass fiber is “glass roving” in which single fibers or a plurality of twisted strands are continuously wound, “chopped strand” trimmed to a length of 1 to 10 mm, and pulverized to a length of about 10 to 500 μm. Any of "Mildo fiber" etc. may be sufficient. Such glass fibers are commercially available from Asahi Fiber Glass under the trade names of “Glasslon Chopped Strand” and “Glasslon Milled Fiber” and are easily available. Glass fibers having different forms can be used in combination.
 また、本発明ではガラス繊維として、異形断面形状を有するものも好ましい。この異形断面形状とは、繊維の長さ方向に直角な断面の長径をD2、短径をD1とするときの長径/短径比(D2/D1)で示される扁平率が、例えば、1.5~10であり、中でも2.5~10、更には2.5~8、特に2.5~5であることが好ましい。かかる扁平ガラスについては、特開2011-195820号公報の段落番号0065~0072の記載を参酌でき、この内容は本明細書に組み込まれる。 In the present invention, glass fibers having an irregular cross-sectional shape are also preferable. This irregular cross-sectional shape means that the flatness indicated by the long diameter / short diameter ratio (D2 / D1) when the long diameter of the cross section perpendicular to the length direction of the fiber is D2 and the short diameter is D1, is, for example, 1. It is preferably 5 to 10, more preferably 2.5 to 10, more preferably 2.5 to 8, and particularly preferably 2.5 to 5. Regarding such flat glass, the description of paragraph numbers 0065 to 0072 of JP-A-2011-195820 can be referred to, and the contents thereof are incorporated herein.
 ガラスビーズとは、外径10~100μmの球状のものであり、例えば、ポッターズ・バロティーニ社より、商品名「EGB731」として市販されており、容易に入手可能である。また、ガラスフレークとは、厚さ1~20μm、一辺の長さが0.05~1mmの燐片状のものであり、例えば、日本板硝子社より、「フレカ」の商品名で市販されており、容易に入手可能である。 Glass beads are spherical ones having an outer diameter of 10 to 100 μm, and are commercially available, for example, under the trade name “EGB731” from Potters Barotini. Glass flakes are flakes having a thickness of 1 to 20 μm and a side length of 0.05 to 1 mm. For example, they are commercially available from Nippon Sheet Glass under the trade name “Fureka”. Are readily available.
 本発明で用いる熱可塑性樹脂組成物におけるガラスフィラーの配合量は、配合する場合、樹脂成分100重量部に対し、1重量部以上が好ましく、10重量部以上がより好ましく、15重量部以上がさらに好ましい。また、用途によっては、30重量部以上とすることもでき、さらには40重量部以上とすることもできる。一方、上限値としては、200重量部以下が好ましく、150重量部以下がより好ましい。また、用途によっては、60重量部以下とすることもでき、さらには、50重量部以下とすることもでき、特には、20重量部以下とすることもできる。
 本発明で用いる熱可塑性樹脂組成物は、ガラスフィラーを1種類のみ含んでいてもよいし、2種類以上含んでいてもよい。2種類以上含む場合は、合計量が上記範囲となる。ガラスフィラーを配合することにより、機械的強度を向上できるとともに、メッキ性も向上する傾向にある。
The compounding amount of the glass filler in the thermoplastic resin composition used in the present invention is preferably 1 part by weight or more, more preferably 10 parts by weight or more, and further 15 parts by weight or more with respect to 100 parts by weight of the resin component. preferable. Moreover, depending on a use, it can also be 30 weight part or more, Furthermore, it can also be 40 weight part or more. On the other hand, the upper limit is preferably 200 parts by weight or less, and more preferably 150 parts by weight or less. Depending on the application, it may be 60 parts by weight or less, further 50 parts by weight or less, and particularly 20 parts by weight or less.
The thermoplastic resin composition used in the present invention may contain only one type of glass filler, or may contain two or more types. When two or more types are included, the total amount falls within the above range. By blending a glass filler, mechanical strength can be improved and plating properties tend to be improved.
集束剤
 本発明で用いる熱可塑性樹脂組成物に配合するガラスフィラーは、集束剤で被覆されているものが好ましい。集束剤の種類は特に定めるものではない。集束剤は1種単独で使用してもよく、2種類以上を併用してもよい。集束剤の種類としては例えば、ポリオレフィン樹脂、シリコーン樹脂、エポキシ樹脂、ウレタン樹脂などが挙げられる。
Bundling agent The glass filler blended in the thermoplastic resin composition used in the present invention is preferably coated with a sizing agent. The type of sizing agent is not particularly defined. A sizing agent may be used alone or in combination of two or more. Examples of the sizing agent include polyolefin resin, silicone resin, epoxy resin, and urethane resin.
 本発明で用いる熱可塑性樹脂組成物における集束剤の配合量は、ガラスフィラーの0.1~5.0重量%であることが好ましく、0.2~2.0重量%であることがより好ましい。本発明で用いる熱可塑性樹脂組成物は、集束剤を1種類のみ含んでいてもよいし、2種類以上含んでいてもよい。2種類以上含む場合は、合計量が上記範囲となる。 The blending amount of the sizing agent in the thermoplastic resin composition used in the present invention is preferably 0.1 to 5.0% by weight of the glass filler, and more preferably 0.2 to 2.0% by weight. . The thermoplastic resin composition used in the present invention may contain only one type of sizing agent or two or more types. When two or more types are included, the total amount falls within the above range.
酸化チタン
 熱可塑性樹脂組成物は、酸化チタンを含んでいてもよい。酸化チタンとしては、例えば、一酸化チタン(TiO)、三酸化ニチタン(Ti23)、二酸化チタン(TiO2)などが挙げられ、これらのいずれを使用してもよいが、二酸化チタンが好ましい。また、酸化チタンとしては、ルチル型の結晶構造を有するものが好ましく使用される。
Titanium oxide The thermoplastic resin composition may contain titanium oxide. Examples of the titanium oxide include titanium monoxide (TiO), titanium trioxide (Ti 2 O 3 ), titanium dioxide (TiO 2 ), and any of these may be used, but titanium dioxide is preferred. . Further, as the titanium oxide, those having a rutile type crystal structure are preferably used.
 酸化チタンの平均一次粒径は、1μm以下であることが好ましく、0.001~0.5μmの範囲内であることがより好ましく、0.002~0.1μmの範囲内であることがさらに好ましい。酸化チタンの平均粒径をこのような範囲とし、配合量を上述した範囲内とすることにより、白色度が高く、表面反射率の高い樹脂成形品を得ることができる。 The average primary particle size of titanium oxide is preferably 1 μm or less, more preferably in the range of 0.001 to 0.5 μm, and still more preferably in the range of 0.002 to 0.1 μm. . By setting the average particle diameter of titanium oxide in such a range and the blending amount in the above-described range, a resin molded product having high whiteness and high surface reflectance can be obtained.
 酸化チタンとしては、表面処理を施したものを使用してもよい。表面処理剤としては、無機材料および/または有機材料が好ましい。具体的には、シリカ、アルミナ、酸化亜鉛等の金属酸化物、シランカップリング剤、チタンカップリング剤、有機酸、ポリオール、シリコーン等の有機材料などが挙げられる。 As the titanium oxide, a surface-treated one may be used. As the surface treatment agent, inorganic materials and / or organic materials are preferable. Specific examples include metal oxides such as silica, alumina, and zinc oxide, silane coupling agents, titanium coupling agents, organic materials such as organic acids, polyols, and silicones.
 また、酸化チタンとしては、市販されているものを使用してもよい。さらに、塊状のものや平均粒径が大きなものを適宜粉砕し、必要に応じて篩い等によって分級して、上述した平均粒径となるようにしたものを使用してもよい。 Also, commercially available titanium oxide may be used. Further, a lump-shaped material or a material having a large average particle diameter may be appropriately pulverized and classified by sieving or the like as necessary to obtain the above-mentioned average particle diameter.
 熱可塑性樹脂組成物における酸化チタンの配合量は、配合する場合、樹脂成分100重量部に対し、0.1重量部以上であることが好ましく、1重量部以上であることがより好ましく、3重量部以上であることがさらに好ましい。また、上限としては、80重量部以下が好ましく、20重量部以下が好ましく、12重量部以下がより好ましく、8重量部以下がさらに好ましい。
 熱可塑性樹脂組成物は、酸化チタンを1種類のみ含んでいてもよいし、2種類以上含んでいてもよい。2種類以上含む場合は、合計量が上記範囲となる。
When blended, the blending amount of titanium oxide in the thermoplastic resin composition is preferably 0.1 parts by weight or more, more preferably 1 part by weight or more with respect to 100 parts by weight of the resin component. More preferably, it is at least part. Moreover, as an upper limit, 80 weight part or less is preferable, 20 weight part or less is preferable, 12 weight part or less is more preferable, and 8 weight part or less is further more preferable.
The thermoplastic resin composition may contain only one type of titanium oxide, or may contain two or more types. When two or more types are included, the total amount falls within the above range.
エラストマー
 本発明で用いる熱可塑性樹脂組成物は、エラストマーを含んでいてもよい。エラストマーを含有することで、得られる樹脂成形品の耐衝撃性を改良することができる。本発明に用いるエラストマーとしては、メタクリル酸メチル-ブタジエン-スチレン共重合体(MBS樹脂)、SBS、SEBSと呼ばれているスチレン-ブタジエン系トリブロック共重合体とその水添物、SPS、SEPSと呼ばれているスチレン-イソプレン系トリブロック共重合体とその水添物、TPOと呼ばれているオレフィン系熱可塑性エラストマー、ポリエステル系エラストマー、シロキサン系ゴム、アクリレート系ゴム等が挙げられる。エラストマーとしては、特開2012-251061号公報の段落番号0075~0088に記載のエラストマー、特開2012-177047号公報の段落番号0101~0107に記載のエラストマー等を用いることができ、これらの内容は本明細書に組み込まれる。
 本発明で用いるエラストマーは、アクリロニトリル/ブタジエン/スチレン共重合体の含有量が全体の10重量%未満であることが好ましく、5重量%以下であることがより好ましく、3重量%以下であることがさらに好ましい。
Elastomer The thermoplastic resin composition used in the present invention may contain an elastomer. By containing an elastomer, the impact resistance of the obtained resin molded product can be improved. Examples of the elastomer used in the present invention include methyl methacrylate-butadiene-styrene copolymer (MBS resin), styrene-butadiene triblock copolymer called SBS, SEBS, and hydrogenated products thereof, SPS, SEPS, Examples thereof include styrene-isoprene triblock copolymers and hydrogenated products thereof, olefinic thermoplastic elastomers, polyester elastomers, siloxane rubbers, and acrylate rubbers called TPO. As the elastomer, elastomers described in paragraph numbers 0075 to 0088 of JP2012-251061A, elastomers described in paragraph numbers 0101 to 0107 of JP2012-1777047A, and the like can be used. Incorporated herein.
The elastomer used in the present invention preferably has an acrylonitrile / butadiene / styrene copolymer content of less than 10% by weight, more preferably 5% by weight or less, and more preferably 3% by weight or less. Further preferred.
 本発明に用いるエラストマーは、ゴム成分にこれと共重合可能な単量体成分とをグラフト共重合したグラフト共重合体が好ましい。グラフト共重合体の製造方法としては、塊状重合、溶液重合、懸濁重合、乳化重合などのいずれの製造方法であってもよく、共重合の方式は一段グラフトでも多段グラフトであってもよい。 The elastomer used in the present invention is preferably a graft copolymer obtained by graft copolymerizing a rubber component with a monomer component copolymerizable therewith. The production method of the graft copolymer may be any production method such as bulk polymerization, solution polymerization, suspension polymerization, and emulsion polymerization, and the copolymerization method may be single-stage graft or multi-stage graft.
 ゴム成分は、ガラス転移温度が通常0℃以下、中でも-20℃以下が好ましく、更には-30℃以下が好ましい。ゴム成分の具体例としては、ポリブタジエンゴム、ポリイソプレンゴム、ポリブチルアクリレートやポリ(2-エチルヘキシルアクリレート)、ブチルアクリレート・2-エチルヘキシルアクリレート共重合体などのポリアルキルアクリレートゴム、ポリオルガノシロキサンゴムなどのシリコーン系ゴム、ブタジエン-アクリル複合ゴム、ポリオルガノシロキサンゴムとポリアルキルアクリレートゴムとからなるIPN(Interpenetrating Polymer Network)型複合ゴム、スチレン-ブタジエンゴム、エチレン-プロピレンゴムやエチレン-ブテンゴム、エチレン-オクテンゴムなどのエチレン-α-オレフィン系ゴム、エチレン-アクリルゴム、フッ素ゴムなど挙げることができる。これらは、単独でも2種類以上を混合して使用してもよい。これらの中でも、機械的特性や表面外観の面から、ポリブタジエンゴム、ポリアルキルアクリレートゴム、ポリオルガノシロキサンゴム、ポリオルガノシロキサンゴムとポリアルキルアクリレートゴムとからなるIPN型複合ゴム、スチレン-ブタジエンゴムが好ましい。 The rubber component generally has a glass transition temperature of 0 ° C. or lower, preferably −20 ° C. or lower, more preferably −30 ° C. or lower. Specific examples of the rubber component include polybutadiene rubber, polyisoprene rubber, polybutyl acrylate and poly (2-ethylhexyl acrylate), polyalkyl acrylate rubber such as butyl acrylate / 2-ethyl hexyl acrylate copolymer, and polyorganosiloxane rubber. Silicone rubber, butadiene-acrylic composite rubber, IPN (Interpenetrating Polymer Network) type composite rubber composed of polyorganosiloxane rubber and polyalkylacrylate rubber, styrene-butadiene rubber, ethylene-propylene rubber, ethylene-butene rubber, ethylene-octene rubber, etc. And ethylene-α-olefin rubber, ethylene-acrylic rubber, fluororubber, and the like. These may be used alone or in admixture of two or more. Among these, in terms of mechanical properties and surface appearance, polybutadiene rubber, polyalkyl acrylate rubber, polyorganosiloxane rubber, IPN composite rubber composed of polyorganosiloxane rubber and polyalkyl acrylate rubber, and styrene-butadiene rubber are preferable. .
 ゴム成分とグラフト共重合可能な単量体成分の具体例としては、芳香族ビニル化合物、シアン化ビニル化合物、(メタ)アクリル酸エステル化合物、(メタ)アクリル酸化合物、グリシジル(メタ)アクリレート等のエポキシ基含有(メタ)アクリル酸エステル化合物;マレイミド、N-メチルマレイミド、N-フェニルマレイミド等のマレイミド化合物;マレイン酸、フタル酸、イタコン酸等のα,β-不飽和カルボン酸化合物やそれらの無水物(例えば無水マレイン酸等)などが挙げられる。これらの単量体成分は1種を単独で用いても2種類以上を併用してもよい。これらの中でも、機械的特性や表面外観の面から、芳香族ビニル化合物、シアン化ビニル化合物、(メタ)アクリル酸エステル化合物、(メタ)アクリル酸化合物が好ましく、より好ましくは(メタ)アクリル酸エステル化合物である。(メタ)アクリル酸エステル化合物の具体例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸オクチル等を挙げることができる。 Specific examples of monomer components that can be graft copolymerized with the rubber component include aromatic vinyl compounds, vinyl cyanide compounds, (meth) acrylic acid ester compounds, (meth) acrylic acid compounds, glycidyl (meth) acrylates, and the like. Epoxy group-containing (meth) acrylic acid ester compounds; maleimide compounds such as maleimide, N-methylmaleimide and N-phenylmaleimide; α, β-unsaturated carboxylic acid compounds such as maleic acid, phthalic acid and itaconic acid and their anhydrides (For example, maleic anhydride, etc.). These monomer components may be used alone or in combination of two or more. Among these, aromatic vinyl compounds, vinyl cyanide compounds, (meth) acrylic acid ester compounds, and (meth) acrylic acid compounds are preferable from the viewpoint of mechanical properties and surface appearance, and (meth) acrylic acid esters are more preferable. A compound. Specific examples of the (meth) acrylate compound include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, cyclohexyl (meth) acrylate, octyl (meth) acrylate, and the like. be able to.
 ゴム成分を共重合したグラフト共重合体は、耐衝撃性や表面外観の点からコア/シェル型グラフト共重合体タイプのものが好ましい。なかでもポリブタジエン含有ゴム、ポリブチルアクリレート含有ゴム、ポリオルガノシロキサンゴム、ポリオルガノシロキサンゴムとポリアルキルアクリレートゴムとからなるIPN型複合ゴムから選ばれる少なくとも1種のゴム成分をコア層とし、その周囲に(メタ)アクリル酸エステルを共重合して形成されたシェル層からなる、コア/シェル型グラフト共重合体が特に好ましい。上記コア/シェル型グラフト共重合体において、ゴム成分を40重量%以上含有するものが好ましく、60重量%以上含有するものがさらに好ましい。また、(メタ)アクリル酸は、10重量%以上含有するものが好ましい。尚、本発明におけるコア/シェル型とは必ずしもコア層とシェル層が明確に区別できるものでは無なくてもよく、コアとなる部分の周囲にゴム成分をグラフト重合して得られる化合物を広く含む趣旨である。 The graft copolymer obtained by copolymerizing the rubber component is preferably a core / shell type graft copolymer type from the viewpoint of impact resistance and surface appearance. Among them, at least one rubber component selected from polybutadiene-containing rubber, polybutyl acrylate-containing rubber, polyorganosiloxane rubber, IPN type composite rubber composed of polyorganosiloxane rubber and polyalkyl acrylate rubber is used as a core layer, and around it. A core / shell type graft copolymer comprising a shell layer formed by copolymerizing (meth) acrylic acid ester is particularly preferred. The core / shell type graft copolymer preferably contains 40% by weight or more of rubber component, more preferably 60% by weight or more. Moreover, what contains 10 weight% or more of (meth) acrylic acid is preferable. The core / shell type in the present invention does not necessarily have to be clearly distinguishable between the core layer and the shell layer, and widely includes compounds obtained by graft polymerization of a rubber component around the core portion. The purpose.
 これらコア/シェル型グラフト共重合体の好ましい具体例としては、メチルメタクリレート-ブタジエン-スチレン共重合体(MBS)、メチルメタクリレート-アクリロニトリル-ブタジエン-スチレン共重合体(MABS)、メチルメタクリレート-ブタジエン共重合体(MB)、メチルメタクリレート-アクリルゴム共重合体(MA)、メチルメタクリレート-アクリルゴム-スチレン共重合体(MAS)、メチルメタクリレート-アクリル・ブタジエンゴム共重合体、メチルメタクリレート-アクリル・ブタジエンゴム-スチレン共重合体、メチルメタクリレート-(アクリル・シリコーンIPNゴム)共重合体、ポリオルガノシロキサンとポリアルキル(メタ)アクリレートとを含むシリコーン-アクリル複合ゴム等が挙げられ、ポリオルガノシロキサンとポリアルキル(メタ)アクリレートとを含むシリコーン-アクリル複合ゴムおよびメチルメタクリレート-ブタジエン共重合体(MB)が特に好ましい。このようなゴム質重合体は、1種を単独で用いても2種類以上を併用してもよい。 Preferred examples of these core / shell type graft copolymers include methyl methacrylate-butadiene-styrene copolymer (MBS), methyl methacrylate-acrylonitrile-butadiene-styrene copolymer (MABS), methyl methacrylate-butadiene copolymer. Copolymer (MB), methyl methacrylate-acrylic rubber copolymer (MA), methyl methacrylate-acrylic rubber-styrene copolymer (MAS), methyl methacrylate-acrylic / butadiene rubber copolymer, methyl methacrylate-acrylic / butadiene rubber- Styrene copolymer, methyl methacrylate- (acryl / silicone IPN rubber) copolymer, silicone-acrylic composite rubber containing polyorganosiloxane and polyalkyl (meth) acrylate Polyorganosiloxane polyalkyl (meth) silicone containing acrylate - acrylic composite rubber and methyl methacrylate - butadiene copolymer (MB) is particularly preferred. Such rubbery polymers may be used alone or in combination of two or more.
 このようなエラストマーとしては、例えば、ローム・アンド・ハース・ジャパン製の「パラロイド(登録商標、以下同じ)EXL2602」、「パラロイドEXL2603」、「パラロイドEXL2655」、「パラロイドEXL2311」、「パラロイドEXL2313」、「パラロイドEXL2315」、「パラロイドKM330」、「パラロイドKM336P」、「パラロイドKCZ201」、三菱レイヨン製の「メタブレン(登録商標、以下同じ)C-223A」、「メタブレンE-901」、「メタブレンS-2001」、「メタブレンSRK-200」、「メタブレンS-2030」カネカ製の「カネエース(登録商標、以下同じ)M-511」、「カネエースM-600」、「カネエースM-400」、「カネエースM-580」、「カネエースM-711」、「カネエースMR-01」、宇部興産製の「UBESTA XPA」等が挙げられる。 As such an elastomer, for example, “Paraloid (registered trademark, same applies hereinafter) EXL2602,” “Paraloid EXL2603”, “Paraloid EXL2655”, “Paraloid EXL2311”, “Paraloid EXL2313” manufactured by Rohm and Haas Japan, “Paraloid EXL2315”, “Paraloid KM330”, “Paraloid KM336P”, “Paraloid KCZ201”, “Metabrene (registered trademark, the same applies hereinafter) C-223A” manufactured by Mitsubishi Rayon, “Metabrene E-901”, “Metabrene S-2001” ”,“ Metabrene SRK-200 ”,“ Metabrene S-2030 ”“ Kane Ace (registered trademark, the same applies hereinafter) M-511 ”,“ Kane Ace M-600 ”,“ Kane Ace M-400 ”,“ Kane Ace M- ” 5 0 "," Kane Ace M-711 "," Kane Ace MR-01 ", manufactured by Ube Industries, Ltd. of" UBESTA XPA ", and the like.
 エラストマーの配合量は、配合する場合、樹脂成分100重量部に対し、1~20重量部が好ましく、1~15重量部がより好ましく、2~10重量部がさらに好ましい。
 本発明で用いる熱可塑性樹脂組成物は、エラストマーを1種類のみ含んでいてもよいし、2種類以上含んでいてもよい。2種類以上含む場合は、合計量が上記範囲となる。
When blended, the amount of the elastomer is preferably 1 to 20 parts by weight, more preferably 1 to 15 parts by weight, and further preferably 2 to 10 parts by weight with respect to 100 parts by weight of the resin component.
The thermoplastic resin composition used in the present invention may contain only one type of elastomer or two or more types. When two or more types are included, the total amount falls within the above range.
難燃剤組成物
 本発明で用いる熱可塑性樹脂組成物は、難燃剤組成物を含んでいても良い。難燃剤組成物としては、難燃剤のみからなっていても良いし、難燃剤と難燃助剤の組み合わせであっても良い。難燃剤および難燃助剤は、それぞれ、1種類のみであってもよいし、2種類以上であってもよい。
Flame retardant composition The thermoplastic resin composition used in the present invention may contain a flame retardant composition. As a flame retardant composition, it may consist only of a flame retardant, and the combination of a flame retardant and a flame retardant adjuvant may be sufficient. Each of the flame retardant and the flame retardant aid may be only one type or two or more types.
 本発明の難燃剤組成物に含まれる難燃剤および/または難燃助剤としては、ハロゲン系難燃剤、有機金属塩系難燃剤、リン系難燃剤、シリコーン系難燃剤、アンチモン系難燃剤または難燃助剤を例示することができ、熱可塑性樹脂としてポリアミド樹脂、ポリエステル樹脂を使用する場合は、ハロゲン系難燃剤またはリン系難燃剤を配合することが好ましい。また、熱可塑性樹脂として、ポリカーボネート樹脂を使用する場合は、リン系難燃剤、有機金属塩系難燃剤が好ましい。 Examples of the flame retardant and / or flame retardant aid contained in the flame retardant composition of the present invention include halogen flame retardants, organometallic salt flame retardants, phosphorus flame retardants, silicone flame retardants, antimony flame retardants and flame retardants. Examples of the flame retardant can be exemplified. When a polyamide resin or a polyester resin is used as the thermoplastic resin, it is preferable to blend a halogen flame retardant or a phosphorus flame retardant. Moreover, when using polycarbonate resin as a thermoplastic resin, a phosphorus flame retardant and an organometallic salt flame retardant are preferable.
 ハロゲン系難燃剤の好ましい具体例としては、臭素系難燃剤が例示され、臭素化ポリカーボネート、臭素化エポキシ樹脂、臭素化フェノキシ樹脂、臭素化ポリフェニレンエーテル樹脂、臭素化ポリスチレン樹脂、臭素化ビスフェノールA、グリシジル臭素化ビスフェノールA、ペンタブロモベンジルポリアクリレート、ブロム化イミド等が挙げられ、中でも、臭素化ポリカーボネート、臭素化ポリスチレン樹脂、グリシジル臭素化ビスフェノールA、ペンタブロモベンジルポリアクリレートが、耐衝撃性の低下を抑制しやすい傾向にあり、より好ましい。 Preferable specific examples of the halogen-based flame retardant include brominated flame retardants, such as brominated polycarbonate, brominated epoxy resin, brominated phenoxy resin, brominated polyphenylene ether resin, brominated polystyrene resin, brominated bisphenol A, glycidyl. Examples include brominated bisphenol A, pentabromobenzyl polyacrylate, and brominated imide. Among them, brominated polycarbonate, brominated polystyrene resin, glycidyl brominated bisphenol A, and pentabromobenzyl polyacrylate suppress the decrease in impact resistance. This is more preferable.
 リン系難燃剤としては、例えば、エチルホスフィン酸金属塩、ジエチルホスフィン酸金属塩、ポリリン酸メラミン、縮合リン酸エステル、ホスファゼン化合物等が挙げられ、中でも、縮合リン酸エステルまたはホスファゼンが好ましい。また、成形時のガスやモールドデポジットの発生、難燃剤のブリードアウトを抑制するために、リン系難燃剤と相溶化性に優れる熱可塑性樹脂を配合してもよい。このような熱可塑性樹脂としては、好ましくは、ポリフェニレンエーテル樹脂、ポリカーボネート樹脂、スチレン系樹脂である。 Examples of the phosphorus flame retardant include ethyl phosphinic acid metal salt, diethyl phosphinic acid metal salt, melamine polyphosphate, condensed phosphate ester, phosphazene compound, etc. Among them, condensed phosphate ester or phosphazene is preferable. Moreover, in order to suppress the generation | occurrence | production of the gas at the time of shaping | molding, a mold deposit, and the bleed-out of a flame retardant, you may mix | blend the thermoplastic resin excellent in a miscibility with a phosphorus flame retardant. Such a thermoplastic resin is preferably a polyphenylene ether resin, a polycarbonate resin, or a styrene resin.
 縮合リン酸エステルは、下記の一般式(10)で表される化合物が好ましい。
一般式(10)
Figure JPOXMLDOC01-appb-C000001
(式中、R1、R2、R3およびR4は、それぞれ独立して水素原子または有機基を表す。ただし、R1、R2、R3およびR4が全て水素原子の場合を除く。Xは2価の有機基を表し、pは0または1であり、qは1以上の整数、rは0または1以上の整数を表す。)
The condensed phosphate ester is preferably a compound represented by the following general formula (10).
General formula (10)
Figure JPOXMLDOC01-appb-C000001
(In the formula, R 1 , R 2 , R 3 and R 4 each independently represents a hydrogen atom or an organic group, except that R 1 , R 2 , R 3 and R 4 are all hydrogen atoms. X represents a divalent organic group, p is 0 or 1, q represents an integer of 1 or more, and r represents 0 or an integer of 1 or more.)
 上記の一般式(10)において、有機基とは、例えば、置換基を有する、または置換基を有しない、アルキル基、シクロアルキル基、アリール基が挙げられる。置換基としては、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、ハロゲン原子、ハロゲン化アリール基等が挙げられる。またこれらの置換基を組み合わせた基、あるいはこれらの置換基を酸素原子、イオウ原子、窒素原子などにより結合して組み合わせた基などでもよい。また2価の有機基とは、上記の有機基から炭素原子1個を除いてできる2価以上の基をいう。例えば、アルキレン基、フェニレン基、置換フェニレン基、ビスフェノール類から誘導されるような多核フェニレン基などが挙げられる。 In the above general formula (10), examples of the organic group include an alkyl group, a cycloalkyl group, and an aryl group having a substituent or not having a substituent. Examples of the substituent include an alkyl group, an alkoxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, a halogen atom, and a halogenated aryl group. Further, a group in which these substituents are combined, or a group in which these substituents are combined by combining with an oxygen atom, a sulfur atom, a nitrogen atom, or the like may be used. The divalent organic group refers to a divalent or higher group formed by removing one carbon atom from the above organic group. Examples thereof include an alkylene group, a phenylene group, a substituted phenylene group, and a polynuclear phenylene group derived from bisphenols.
 上記の一般式(10)で示される縮合リン酸エステルの具体例としては、例えば、トリメチルフォスフェート、トリエチルフォスフェート、トリブチルフォスフェート、トリオクチルフォスフェート、トリフェニルフォスフェート、トリクレジルフォスフェート、トリクレジルフェニルフォスフェート、オクチルジフェニルフォスフェート、ジイソプロピルフェニルフォスフェート、トリス(クロルエチル)フォスフェート、トリス(ジクロルプロピル)フォスフェート、トリス(クロルプロピル)フォスフェート、ビス(2,3-ジブロモプロピル)フォスフェート、ビス(2,3-ジブロモプロピル)-2,3-ジクロルフォスフェート、ビス(クロルプロピル)モノオクチルフォスフェート、ビスフェノールAテトラフェニルフォスフェート、ビスフェノールAテトラクレジルジフォスフェート、ビスフェノールAテトラキシリルジフォスフェート、ヒドロキノンテトラフェニルジフォスフェート、ヒドロキノンテトラクレジルフォスフェート、ヒドロキノンテトラキシリルジフォスフェート等の種々のものが例示される。
 また、市販の縮合リン酸エステルとしては、例えば、大八化学工業(株)より「CR733S」(レゾルシノールビス(ジフェニルホスフェート))、「CR741」(ビスフェノールAビス(ジフェニルホスフェート))、「PX-200」(レゾルシノールビス(ジキシレニルホスフェート))、旭電化工業(株)より「アデカスタブFP-700」(2,2-ビス(p-ヒドロキシフェニル)プロパン・トリクロロホスフィンオキシド重縮合物(重合度1~3)のフェノール縮合物)といった商品名で販売されており、容易に入手可能である。
Specific examples of the condensed phosphate ester represented by the general formula (10) include, for example, trimethyl phosphate, triethyl phosphate, tributyl phosphate, trioctyl phosphate, triphenyl phosphate, tricresyl phosphate, Tricresyl phenyl phosphate, octyl diphenyl phosphate, diisopropyl phenyl phosphate, tris (chloroethyl) phosphate, tris (dichloropropyl) phosphate, tris (chloropropyl) phosphate, bis (2,3-dibromopropyl) Phosphate, bis (2,3-dibromopropyl) -2,3-dichlorophosphate, bis (chloropropyl) monooctyl phosphate, bisphenol A tetraphenyl phosphate Over DOO, bisphenol A tetra cresyl diphosphate, bisphenol A tetra xylylene distearate phosphate, hydroquinone tetraphenyl diphosphate, hydroquinone tetra cresyl phosphate, various ones such as hydroquinone tetra xylylene distearate phosphate are exemplified.
Examples of commercially available condensed phosphate esters include “CR733S” (resorcinol bis (diphenyl phosphate)), “CR741” (bisphenol A bis (diphenyl phosphate)), “PX-200” from Daihachi Chemical Industry Co., Ltd. (Resorcinol bis (dixylenyl phosphate)), “Adekastab FP-700” (2,2-bis (p-hydroxyphenyl) propane / trichlorophosphine oxide polycondensate (polymerization degree 1 to 4) from Asahi Denka Kogyo Co., Ltd. It is sold under the trade name such as 3) phenol condensate and is readily available.
 ホスファゼン化合物は、分子中に-P=N-結合を有する有機化合物であり、好ましくは、下記一般式(1)で表される環状ホスファゼン化合物、下記一般式(2)で表される鎖状ホスファゼン化合物、ならびに、下記一般式(1)及び下記一般式(2)からなる群より選択される少なくとも一種のホスファゼン化合物が架橋基によって架橋されてなる架橋ホスファゼン化合物からなる群より選択される少なくとも1種の化合物である。 The phosphazene compound is an organic compound having —P═N— bond in the molecule, preferably a cyclic phosphazene compound represented by the following general formula (1), a chain phosphazene represented by the following general formula (2) A compound, and at least one selected from the group consisting of a crosslinked phosphazene compound in which at least one phosphazene compound selected from the group consisting of the following general formula (1) and the following general formula (2) is crosslinked by a crosslinking group It is this compound.
Figure JPOXMLDOC01-appb-C000002
 一般式(1)中、aは3~25の整数であり、R1及びR2は、同一又は異なっていてもよく、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリロキシ基、アミノ基、ヒドロキシ基、アリール基又はアルキルアリール基を示す。
Figure JPOXMLDOC01-appb-C000002
In the general formula (1), a is an integer of 3 to 25, and R 1 and R 2 may be the same or different and are an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an allyloxy group, an amino group , A hydroxy group, an aryl group or an alkylaryl group.
Figure JPOXMLDOC01-appb-C000003
 一般式(2)中、bは3~10000の整数であり、R3及びR4は、同一又は異なっていてもよく、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリロキシ基、アミノ基、ヒドロキシ基、アリール基又はアルキルアリール基を示す。
 R5は、-N=P(OR33基、-N=P(OR43基、-N=P(O)OR3基、-N=P(O)OR4基から選ばれる少なくとも1種を示し、R6は、-P(OR34基、-P(OR44基、-P(O)(OR32基、-P(O)(OR42基から選ばれる少なくとも1種を示す。
Figure JPOXMLDOC01-appb-C000003
In the general formula (2), b is an integer of 3 to 10000, R 3 and R 4 may be the same or different, and an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an allyloxy group, an amino group , A hydroxy group, an aryl group or an alkylaryl group.
R 5 is selected from —N═P (OR 3 ) 3 groups, —N═P (OR 4 ) 3 groups, —N═P (O) OR 3 groups, and —N═P (O) OR 4 groups. R 6 represents at least one type, and R 6 represents —P (OR 3 ) 4 group, —P (OR 4 ) 4 group, —P (O) (OR 3 ) 2 group, —P (O) (OR 4 ) 2 At least one selected from the group is shown.
 上記一般式(1)及び一般式(2)中、アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、t-ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、ドデシル基等が挙げられ、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、t-ブチル基、ペンチル基、ヘキシル基等の炭素数1~6のアルキル基が好ましく、メチル基、エチル基、プロピル基等の炭素数1~4のアルキル基が特に好ましい。 In the general formulas (1) and (2), examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a t-butyl group, a pentyl group, a hexyl group, an octyl group, A decyl group, a dodecyl group, etc., and an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a t-butyl group, a pentyl group, and a hexyl group is preferable. Particularly preferred are alkyl groups having 1 to 4 carbon atoms such as ethyl group and propyl group.
 シクロアルキル基としては、例えば、シクロペンチル基、シクロヘキシル基等の炭素数5~14のシクロアルキル基が挙げられ、炭素数5~8のシクロアルキル基が好ましい。 Examples of the cycloalkyl group include a cycloalkyl group having 5 to 14 carbon atoms such as a cyclopentyl group and a cyclohexyl group, and a cycloalkyl group having 5 to 8 carbon atoms is preferable.
 アルケニル基としては、例えば、ビニル基、アリル基等の炭素数2~8のアルケニル基が挙げられる。シクロアルケニル基としては、例えば、シクロペンチル基、シクロヘキシル基等の炭素数5~12のシクロアルケニル基が挙げられる。 Examples of the alkenyl group include alkenyl groups having 2 to 8 carbon atoms such as vinyl group and allyl group. Examples of the cycloalkenyl group include cycloalkenyl groups having 5 to 12 carbon atoms such as a cyclopentyl group and a cyclohexyl group.
 アルキニル基としては、例えば、エチニル基、プロピニル基等の炭素数2~8のアルキニル基やエチニルベンゼン基等のアリール基を置換基として有するアルキニル基等も挙げられる。 Examples of the alkynyl group include an alkynyl group having an aryl group such as an alkynyl group having 2 to 8 carbon atoms such as an ethynyl group and a propynyl group and an ethynylbenzene group as a substituent.
 アリール基としては、例えば、フェニル基、メチルフェニル(即ち、トリル)基、ジメチルフェニル(即ち、キシリル)基、トリメチルフェニル基、ナフチル基等の炭素数6~20のアリール基が挙げられるが、なかでも炭素数6~10のアリール基が好ましく、フェニル基が特に好ましい。 Examples of the aryl group include aryl groups having 6 to 20 carbon atoms such as a phenyl group, a methylphenyl (ie, tolyl) group, a dimethylphenyl (ie, xylyl) group, a trimethylphenyl group, and a naphthyl group. However, an aryl group having 6 to 10 carbon atoms is preferable, and a phenyl group is particularly preferable.
 アルキルアリール基としては、例えば、ベンジル基、フェネチル基、フェニルプロピル基等の炭素数6~20のアラルキル基が挙げられるが、なかでも炭素数7~10のアラルキル基が好ましく、ベンジル基が特に好ましい。 Examples of the alkylaryl group include aralkyl groups having 6 to 20 carbon atoms such as benzyl group, phenethyl group, and phenylpropyl group. Among them, aralkyl groups having 7 to 10 carbon atoms are preferable, and benzyl group is particularly preferable. .
 なかでも、上記一般式(1)におけるR1及びR2、上記一般式(2)におけるR3及びR4が、アリール基、アリールアルキル基であるものが好ましい。このような芳香族ホスファゼンを用いることで、熱可塑性樹脂組成物の熱安定性を効果的に高めることができる。このような観点より、上記R1、R2、R3及びR4は、アリール基であることがより好ましく、フェニル基であることが特に好ましい。 Among these, those in which R 1 and R 2 in the general formula (1) and R 3 and R 4 in the general formula (2) are an aryl group and an arylalkyl group are preferable. By using such an aromatic phosphazene, the thermal stability of the thermoplastic resin composition can be effectively increased. From such a viewpoint, R 1 , R 2 , R 3 and R 4 are more preferably aryl groups, and particularly preferably phenyl groups.
 一般式(1)及び一般式(2)で表される環状及び/又は鎖状ホスファゼン化合物としては、例えば、フェノキシホスファゼン、o-トリルオキシホスファゼン、m-トリルオキシホスファゼン、p-トリルオキシホスファゼン等の(ポリ)トリルオキシホスファゼン、o,m-キシリルオキシホスファゼン、o,p-キシリルオキシホスファゼン、m,p-キシリルオキシホスファゼン等の(ポリ)キシリルオキシホスファゼン、o,m,p-トリメチルフェニルオキシホスファゼン、フェノキシo-トリルオキシホスファゼン、フェノキシm-トリルオキシホスファゼン、フェノキシp-トリルオキシホスファゼン等の(ポリ)フェノキシトリルオキシホスファゼン、フェノキシo,m-キシリルオキシホスファゼン、フェノキシo,p-キシリルオキシホスファゼン、フェノキシm,p-キシリルオキシホスファゼン等(ポリ)フェノキシトリルオキシキシリルオキシホスファゼン、フェノキシo,m,p-トリメチルフェニルオキシホスファゼン等が例示でき、好ましくは環状及び/又は鎖状フェノキシホスファゼン等である。 Examples of the cyclic and / or chain phosphazene compounds represented by the general formula (1) and the general formula (2) include phenoxyphosphazene, o-tolyloxyphosphazene, m-tolyloxyphosphazene, p-tolyloxyphosphazene and the like. (Poly) xylyloxyphosphazenes such as (poly) tolyloxyphosphazene, o, m-xylyloxyphosphazene, o, p-xylyloxyphosphazene, m, p-xylyloxyphosphazene, o, m, p-trimethyl (Poly) phenoxytolyloxyphosphazenes such as phenyloxyphosphazene, phenoxy o-tolyloxyphosphazene, phenoxy m-tolyloxyphosphazene, phenoxy p-tolyloxyphosphazene, phenoxy o, m-xylyloxyphosphazene, phenoxyo, -Xylyloxyphosphazene, phenoxy m, p-xylyloxyphosphazene, etc. (poly) phenoxytolyloxyxylyloxyphosphazene, phenoxy o, m, p-trimethylphenyloxyphosphazene, etc. can be exemplified, preferably cyclic and / or chain Phenoxyphosphazene and the like.
 一般式(1)で表される環状ホスファゼン化合物としては、R1及びR2がフェニル基である環状フェノキシホスファゼンが特に好ましい。このような環状フェノキシホスファゼン化合物としては、例えば、塩化アンモニウムと五塩化リンとを120~130℃の温度で反応させて得られる環状及び直鎖状のクロロホスファゼン混合物から、ヘキサクロロシクロトリホスファゼン、オクタクロロシクロテトラホスファゼン、デカクロロシクロペンタホスファゼン等の環状のクロルホスファゼンを取り出した後にフェノキシ基で置換して得られる、フェノキシシクロトリホスファゼン、オクタフェノキシシクロテトラホスファゼン、デカフェノキシシクロペンタホスファゼン等の化合物が挙げられる。また、前記環状フェノキシホスファゼン化合物は、一般式(1)中のaが3~8の整数である化合物が好ましく、aの異なる化合物の混合物であってもよい。 As the cyclic phosphazene compound represented by the general formula (1), cyclic phenoxyphosphazene in which R 1 and R 2 are phenyl groups is particularly preferable. Examples of such cyclic phenoxyphosphazene compounds include hexachlorocyclotriphosphazene, octachlorochloromethane, and a mixture of cyclic and linear chlorophosphazene obtained by reacting ammonium chloride and phosphorus pentachloride at a temperature of 120 to 130 ° C. Examples include compounds such as phenoxycyclotriphosphazene, octaphenoxycyclotetraphosphazene, and decaffenoxycyclopentaphosphazene obtained by taking out cyclic chlorophosphazenes such as cyclotetraphosphazene and decachlorocyclopentaphosphazene and replacing them with phenoxy groups . The cyclic phenoxyphosphazene compound is preferably a compound in which a in the general formula (1) is an integer of 3 to 8, and may be a mixture of compounds having different a.
 上記aの平均は、3~5であることが好ましく、3~4であることがより好ましい。また、なかでも、a=3のものが50重量%以上、a=4のものが10~40重量%、a=5以上のものが合わせて30重量%以下である化合物の混合物が好ましい。 The average a is preferably 3 to 5, more preferably 3 to 4. Among them, a mixture of compounds in which a = 3 is 50% by weight or more, a = 4 is 10 to 40% by weight, and a = 5 or more is 30% by weight or less is preferable.
 一般式(2)で表される鎖状ホスファゼン化合物としては、R3及びR4がフェニル基である鎖状フェノキシホスファゼンが特に好ましい。このような鎖状フェノキシホスファゼン化合物は、例えば、上記の方法で得られるヘキサクロロシクロトリホスファゼンを220~250℃の温度で開還重合し、得られた重合度3~10000の直鎖状ジクロロホスファゼンをフェノキシ基で置換することにより得られる化合物が挙げられる。前記直鎖状フェノキシホスファゼン化合物の、一般式(2)中のbは、好ましくは3~1000、より好ましくは3~100、さらに好ましくは3~25である。 As the chain phosphazene compound represented by the general formula (2), chain phenoxyphosphazene in which R 3 and R 4 are phenyl groups is particularly preferable. Such a chain phenoxyphosphazene compound is obtained by, for example, subjecting hexachlorocyclotriphosphazene obtained by the above method to reversion polymerization at a temperature of 220 to 250 ° C., and obtaining a linear dichlorophosphazene having a polymerization degree of 3 to 10,000. Examples include compounds obtained by substitution with a phenoxy group. In the general formula (2), b in the linear phenoxyphosphazene compound is preferably 3 to 1000, more preferably 3 to 100, and still more preferably 3 to 25.
 架橋ホスファゼン化合物としては、例えば、4,4'-スルホニルジフェニレン(すなわち、ビスフェノールS残基)の架橋構造を有する化合物、2,2-(4,4'-ジフェニレン)イソプロピリデン基の架橋構造を有する化合物、4,4'-オキシジフェニレン基の架橋構造を有する化合物、4,4'-チオジフェニレン基の架橋構造を有する化合物等の、4,4'-ジフェニレン基の架橋構造を有する化合物等が挙げられる。 Examples of the bridged phosphazene compound include a compound having a crosslinked structure of 4,4′-sulfonyldiphenylene (that is, a bisphenol S residue), and a crosslinked structure of 2,2- (4,4′-diphenylene) isopropylidene group. Compounds having a crosslinked structure of 4,4′-diphenylene group, such as compounds having a crosslinked structure of 4,4′-oxydiphenylene group, and compounds having a crosslinked structure of 4,4′-thiodiphenylene group Etc.
 また、架橋ホスファゼン化合物としては、一般式(1)においてR1、R2がフェニル基である環状フェノキシホスファゼン化合物が上記架橋基によって架橋されてなる架橋フェノキシホスファゼン化合物、又は、上記一般式(2)においてR3、R4がフェニル基である鎖状フェノキシホスファゼン化合物が上記架橋基によって架橋されてなる架橋フェノキシホスファゼン化合物が難燃性の点から好ましく、環状フェノキシホスファゼン化合物が上記架橋基によって架橋されてなる架橋フェノキシホスファゼン化合物がより好ましい。
 また、架橋フェノキシホスファゼン化合物中のフェニレン基の含有量は、一般式(1)で表される環状ホスファゼン化合物及び/又は一般式(2)で表される鎖状フェノキシホスファゼン化合物中の全フェニル基及びフェニレン基数を基準として、通常50~99.9%、好ましくは70~90%である。また、前記架橋フェノキシホスファゼン化合物は、その分子内にフリーの水酸基を有しない化合物であることが特に好ましい。
In addition, as the crosslinked phosphazene compound, a crosslinked phenoxyphosphazene compound in which a cyclic phenoxyphosphazene compound in which R 1 and R 2 are phenyl groups in the general formula (1) is crosslinked by the above-mentioned crosslinking group, or the above general formula (2) In the above, a crosslinked phenoxyphosphazene compound in which a chain phenoxyphosphazene compound in which R 3 and R 4 are phenyl groups is crosslinked by the crosslinking group is preferable from the viewpoint of flame retardancy, and the cyclic phenoxyphosphazene compound is crosslinked by the crosslinking group. A crosslinked phenoxyphosphazene compound is more preferable.
The content of the phenylene group in the crosslinked phenoxyphosphazene compound is such that the cyclic phosphazene compound represented by the general formula (1) and / or the all phenyl groups in the chain phenoxyphosphazene compound represented by the general formula (2) and Based on the number of phenylene groups, it is usually 50 to 99.9%, preferably 70 to 90%. The crosslinked phenoxyphosphazene compound is particularly preferably a compound having no free hydroxyl group in the molecule.
 本発明においては、ホスファゼン化合物は、上記一般式(1)で表される環状フェノキシホスファゼン化合物、及び、上記一般式(1)で表される環状フェノキシホスファゼン化合物が架橋基によって架橋されてなる架橋フェノキシホスファゼン化合物よる成る群から選択される少なくとも1種であることが、熱可塑性樹脂組成物の難燃性及び機械的特性の点から好ましい。
 ホスファゼン化合物の市販品としては、FP-110、伏見製薬社製が例示される。
In the present invention, the phosphazene compound is a crosslinked phenoxy obtained by crosslinking the cyclic phenoxyphosphazene compound represented by the general formula (1) and the cyclic phenoxyphosphazene compound represented by the general formula (1) with a crosslinking group. From the viewpoint of flame retardancy and mechanical properties of the thermoplastic resin composition, at least one selected from the group consisting of phosphazene compounds is preferred.
Examples of commercially available phosphazene compounds include FP-110 and Fushimi Pharmaceutical Co., Ltd.
 有機金属塩系難燃剤としては、有機アルカリ金属塩化合物、有機アルカリ土類金属塩化合物が好ましい(以下、アルカリ金属とアルカリ土類金属を「アルカリ(土類)金属」と称する。)。また、有機金属塩系難燃剤としては、スルホン酸金属塩、カルボン酸金属塩、ホウ酸金属塩、リン酸金属塩等が挙げられるが、芳香族ポリカーボネート樹脂へ添加した場合の熱安定性の点からスルホン酸金属塩が好ましく、特にパーフルオロアルカンスルホン酸金属塩が好ましい。 As the organic metal salt flame retardant, an organic alkali metal salt compound or an organic alkaline earth metal salt compound is preferable (hereinafter, the alkali metal and the alkaline earth metal are referred to as “alkali (earth) metal”). Examples of the organic metal salt flame retardant include sulfonic acid metal salt, carboxylic acid metal salt, boric acid metal salt, and phosphoric acid metal salt. To sulfonic acid metal salts are preferable, and perfluoroalkanesulfonic acid metal salts are particularly preferable.
 スルホン酸金属塩としては、スルホン酸リチウム(Li)塩、スルホン酸ナトリウム(Na)塩、スルホン酸カリウム(K)塩、スルホン酸ルビジウム(Rb)塩、スルホン酸セシウム(Cs)塩、スルホン酸マグネシウム(Mg)塩、スルホン酸カルシウム(Ca)塩、スルホン酸ストロンチウム(Sr)塩、スルホン酸バリウム(Ba)塩等が挙げられ、この中でも特に、スルホン酸ナトリウム(Na)塩、スルホン酸カリウム(K)塩が好ましい。 Examples of metal sulfonates include lithium sulfonate (Li), sodium sulfonate (Na), potassium sulfonate (K), rubidium sulfonate (Rb), cesium sulfonate (Cs), and magnesium sulfonate. (Mg) salt, calcium sulfonate (Ca) salt, strontium sulfonate (Sr) salt, barium sulfonate (Ba) salt, and the like. Among these, sodium sulfonate (Na) salt, potassium sulfonate (K ) Salt is preferred.
 このような、スルホン酸金属塩としては、例えばジフェニルスルホン-3,3’-ジスルホン酸ジカリウム、ジフェニルスルホン-3-スルホン酸カリウム、ベンゼンスルホン酸ナトリウム、(ポリ)スチレンスルホン酸ナトリウム、パラトルエンスルホン酸ナトリウム、(分岐)ドデシルベンゼンスルホン酸ナトリウム、トリクロロベンゼンスルホン酸ナトリウム、ベンゼンスルホン酸カリウム、スチレンスルホン酸カリウム、(ポリ)スチレンスルホン酸カリウム、パラトルエンスルホン酸カリウム、(分岐)ドデシルベンゼンスルホン酸カリウム、トリクロロベンゼンスルホン酸カリウム、ベンゼンスルホン酸セシウム、(ポリ)スチレンスルホン酸セシウム、パラトルエンスルホン酸セシウム、(分岐)ドデシルベンゼンスルホン酸セシウム、トリクロロベンゼンスルホン酸セシウム等の芳香族スルホン酸アルカリ(土類)金属塩化合物、パ-フルオロブタンスルホン酸カリウム等のパーフルオロアルカンスルホン酸アルカリ金属塩等のパーフルオロアルカンスルホン酸金属塩(アルカンの炭素数は好ましくは2~6)が挙げられる。この中でも特に、ジフェニルスルホン-3,3’-ジスルホン酸ジカリウム、ジフェニルスルホン-3-スルホン酸カリウム、パラトルエンスルホン酸ナトリウム、パラトルエンスルホン酸カリウム、パーフルオロブタンスルホン酸カリウムが透明性、難燃性のバランスに優れるため、好ましく、特に、パ-フルオロブタンスルホン酸カリウム等のパーフルオロアルカンスルホン酸金属塩が好ましい。 Examples of such sulfonic acid metal salts include diphenylsulfone-3,3′-disulfonate dipotassium, diphenylsulfone-3-sulfonate potassium, sodium benzenesulfonate, sodium (poly) styrenesulfonate, paratoluenesulfonic acid. Sodium, (branched) sodium dodecylbenzenesulfonate, sodium trichlorobenzenesulfonate, potassium benzenesulfonate, potassium styrenesulfonate, potassium (poly) styrenesulfonate, potassium paratoluenesulfonate, (branched) potassium dodecylbenzenesulfonate, Potassium trichlorobenzenesulfonate, cesium benzenesulfonate, cesium (poly) styrenesulfonate, cesium p-toluenesulfonate, (branched) dodecylbenzenesulfone Perfluoroalkane sulfonic acid metal salts (alkanes), such as cesium, alkali (earth) metal sulfonate compounds such as cesium trichlorobenzene sulfonate, alkali metal perfluoroalkane sulfonates such as potassium perfluorobutane sulfonate The number of carbon atoms is preferably 2 to 6). Among these, diphenylsulfone-3,3′-disulfonate dipotassium, diphenylsulfone-3-sulfonate potassium, sodium paratoluenesulfonate, potassium paratoluenesulfonate, and potassium perfluorobutanesulfonate are transparent and flame retardant. In particular, a perfluoroalkanesulfonic acid metal salt such as potassium perfluorobutanesulfonate is preferable.
 アンチモン系難燃剤または難燃助剤とは、アンチモンを含む化合物であって、難燃性に寄与する化合物である。具体的には、三酸化アンチモン(Sb23)、四酸化アンチモン、五酸化アンチモン(Sb25)等の酸化アンチモン、アンチモン酸ナトリウム、燐酸アンチモンなどが挙げられる。中でも酸化アンチモンが耐湿熱性に優れるため好ましい。さらに好ましくは三酸化アンチモンが用いられる。 The antimony flame retardant or flame retardant aid is a compound containing antimony and a compound that contributes to flame retardancy. Specific examples include antimony oxide such as antimony trioxide (Sb 2 O 3 ), antimony tetroxide, and antimony pentoxide (Sb 2 O 5 ), sodium antimonate, and antimony phosphate. Of these, antimony oxide is preferable because of its excellent resistance to moist heat. More preferably, antimony trioxide is used.
 難燃助剤としては、上記の他、酸化銅、酸化マグネシウム、酸化亜鉛、酸化モリブデン、酸化ジルコニウム、酸化スズ、酸化鉄、酸化チタン、酸化アルミニウム、硼酸亜鉛等が挙げられる。これらの中でも、難燃性がより優れる点から、硼酸亜鉛が好ましい。
 難燃助剤の含有量は、難燃剤に対し、難燃助剤を0.3~1.1(重量比)の割合で用いるのが好ましく、0.4~1.0の割合で用いるのがより好ましい。
In addition to the above, flame retardant aids include copper oxide, magnesium oxide, zinc oxide, molybdenum oxide, zirconium oxide, tin oxide, iron oxide, titanium oxide, aluminum oxide, zinc borate and the like. Among these, zinc borate is preferable from the viewpoint of more excellent flame retardancy.
The content of the flame retardant aid is preferably 0.3 to 1.1 (weight ratio) with respect to the flame retardant, preferably 0.4 to 1.0. Is more preferable.
 特に、本発明で用いる難燃剤組成物として、ハロゲン系難燃剤とアンチモン系難燃剤または難燃助剤の組み合わせが例示される。すなわち、本発明者が検討したところ、LDS添加剤を含む樹脂組成物に、アンチモン系難燃剤または難燃助剤を配合すると、メッキ層が適切に形成できない場合があることが分かった。アンチモン系難燃剤または難燃助剤は、熱可塑性樹脂に用いる難燃剤等としては有用であり、アンチモン系難燃剤または難燃助剤を含む熱可塑性樹脂成形品にメッキ層を適切に形成する技術が求められる。ここで、本発明では、熱可塑性樹脂組成物とは別に、LDS層形成用組成物を用いることにより、アンチモン系難燃剤または難燃助剤を用いつつ、樹脂成形品の表面にメッキ層を適切に形成することに成功したものである。
 アンチモン系難燃剤または難燃助剤の含有量は、含有する場合、熱可塑性樹脂100重量部に対して、好ましくは0.1~25重量部であり、より好ましくは1~15重量部である。
 また、ハロゲン系難燃剤に対し、アンチモン系難燃剤または難燃助剤の含有量は、1:0.3~1.1(重量比)の割合で用いるのが好ましく、1:0.4~1.0の割合で用いるのがより好ましい。
In particular, the flame retardant composition used in the present invention includes a combination of a halogen flame retardant and an antimony flame retardant or a flame retardant aid. That is, as a result of investigation by the present inventors, it has been found that when an antimony flame retardant or a flame retardant aid is blended with a resin composition containing an LDS additive, a plating layer may not be formed properly. Antimony flame retardants or flame retardant aids are useful as flame retardants for thermoplastic resins, etc., and technology to appropriately form plating layers on thermoplastic resin molded articles containing antimony flame retardants or flame retardant aids Is required. Here, in the present invention, by using the composition for forming an LDS layer separately from the thermoplastic resin composition, a plating layer is appropriately applied to the surface of the resin molded product while using an antimony flame retardant or a flame retardant aid. It has succeeded in forming.
When contained, the content of the antimony-based flame retardant or flame retardant aid is preferably 0.1 to 25 parts by weight, more preferably 1 to 15 parts by weight with respect to 100 parts by weight of the thermoplastic resin. .
Further, the content of the antimony flame retardant or the flame retardant aid is preferably 1: 0.3 to 1.1 (weight ratio) with respect to the halogen flame retardant, and is preferably 1: 0.4 to More preferably, the ratio is 1.0.
 難燃剤組成物の配合量は、樹脂成分100重量部に対し、0.01重量部~40重量部が好ましく、1~40重量部がより好ましく、5~50重量部がさらに好ましく、6~35重量部が特に好ましく、7~30重量部が一層好ましい。LDS添加剤を含む熱可塑性樹脂組成物に難燃剤組成物を配合すると、メッキ性(Plating外観)が低下してしまう場合があった。しかしながら、本発明では、熱可塑性樹脂組成物と、LDS層形成用組成物を別々に用いるため、難燃剤組成物を配合した樹脂成形品の表面にもメッキ層を適切に形成できる。
 特に、難燃剤組成物として有機金属塩系難燃剤を用いる場合、樹脂成分100重量部に対し、0.01~1重量部であることが好ましい。
The blending amount of the flame retardant composition is preferably 0.01 to 40 parts by weight, more preferably 1 to 40 parts by weight, still more preferably 5 to 50 parts by weight, more preferably 6 to 35 parts per 100 parts by weight of the resin component. Part by weight is particularly preferred, and 7 to 30 parts by weight is even more preferred. When the flame retardant composition is blended with the thermoplastic resin composition containing the LDS additive, the plating property (plating appearance) may be deteriorated. However, in the present invention, since the thermoplastic resin composition and the LDS layer forming composition are used separately, the plating layer can be appropriately formed also on the surface of the resin molded product containing the flame retardant composition.
In particular, when an organic metal salt flame retardant is used as the flame retardant composition, it is preferably 0.01 to 1 part by weight with respect to 100 parts by weight of the resin component.
滴下防止剤
 本発明で用いる熱可塑性樹脂組成物は滴下防止剤を含んでいてもよい。滴下防止剤としては、ポリテトラフルオロエチレン(PTFE)が好ましく、フィブリル形成能を有し、樹脂組成物中に容易に分散し、かつ樹脂同士を結合して繊維状材料を作る傾向を示すものである。ポリテトラフルオロエチレンの具体例としては、例えば三井・デュポンフロロケミカルより市販されている商品名「テフロン(登録商標)6J」又は「テフロン(登録商標)30J」、ダイキン化学工業より市販されている商品名「ポリフロン」あるいは旭硝子より市販されている商品名「フルオン」等が挙げられる。
 滴下防止剤の含有割合は、好ましくは、熱可塑性樹脂100重量部に対して0.01~20重量部である。滴下防止剤を0.1重量部以上とすることにより、難燃性がより向上し、20重量部以下とすることにより、外観が向上する傾向にある。滴下防止剤の含有割合は、より好ましくは、熱可塑性樹脂100重量部に対して、0.05~10重量部であり、好ましくは0.08~5重量部である。
Anti-dripping agent The thermoplastic resin composition used in the present invention may contain an anti-dripping agent. As the anti-drip agent, polytetrafluoroethylene (PTFE) is preferable, has a fibril-forming ability, easily disperses in the resin composition, and shows a tendency to form a fibrous material by bonding the resins together. is there. As specific examples of polytetrafluoroethylene, for example, “Teflon (registered trademark) 6J” or “Teflon (registered trademark) 30J” marketed by Mitsui / Dupont Fluorochemical, and products marketed by Daikin Chemical Industries, Ltd. Examples include the name “Polyflon” or the product name “Fullon” marketed by Asahi Glass.
The content ratio of the dripping inhibitor is preferably 0.01 to 20 parts by weight with respect to 100 parts by weight of the thermoplastic resin. By setting the anti-dripping agent to 0.1 parts by weight or more, flame retardancy is further improved, and by setting it to 20 parts by weight or less, the appearance tends to be improved. The content ratio of the anti-dripping agent is more preferably 0.05 to 10 parts by weight, preferably 0.08 to 5 parts by weight with respect to 100 parts by weight of the thermoplastic resin.
ケイ酸塩鉱物
 本発明で用いる熱可塑性樹脂組成物はケイ酸塩鉱物を含んでいてもよい。本発明では、ケイ酸塩鉱物を配合することにより、ノッチ有りシャルピー衝撃強度を向上させることできる。ケイ酸塩鉱物としては、ケイ素Siと酸素Oを含む鉱物であれば、特に制限はないが、タルクおよび/またはマイカが好ましく、タルクがより好ましい。
 本発明で用いるケイ酸塩鉱物は、粒子状であることが好ましく、その平均粒径は、1~30μmであることが好ましく、2~20μmであることがより好ましい。
 また、本発明で用いるケイ酸塩鉱物は、ポリオルガノハイドロジェンシロキサン類およびオルガノポリシロキサン類から選択される化合物の少なくとも1種で表面処理されたケイ酸塩鉱物であってもよいが、表面処理されていない方が好ましい。
 ケイ酸塩鉱物の配合量は、配合する場合、樹脂成分100重量部に対し、0.1重量部以上であることが好ましく、1重量部以上であることがより好ましく、3重量部以上であることがさらに好ましく、3.5重量部以上であることが特に好ましく、4.0重量部以上とすることもできる。上限値としては、30重量部以下であることが好ましく、20重量部以下であることがより好ましく、10重量部以下であることが特に好ましく、9重量部以下とすることもでき、8重量部以下とすることもできる。
 本発明で用いる熱可塑性樹脂組成物は、ケイ酸塩鉱物を1種類のみ含んでいてもよいし、2種類以上含んでいてもよい。2種類以上含む場合は、合計量が上記範囲となる。ケイ酸塩鉱物が表面処理されている場合、表面処理された合計量が、上記範囲であることが好ましい。
Silicate mineral The thermoplastic resin composition used in the present invention may contain a silicate mineral. In the present invention, by adding a silicate mineral, it is possible to improve the notched Charpy impact strength. The silicate mineral is not particularly limited as long as it contains silicon Si and oxygen O, but talc and / or mica is preferable, and talc is more preferable.
The silicate mineral used in the present invention is preferably in the form of particles, and the average particle diameter is preferably 1 to 30 μm, and more preferably 2 to 20 μm.
Further, the silicate mineral used in the present invention may be a silicate mineral surface-treated with at least one compound selected from polyorganohydrogensiloxanes and organopolysiloxanes. It is preferable not to be done.
When blended, the blending amount of the silicate mineral is preferably 0.1 parts by weight or more, more preferably 1 part by weight or more with respect to 100 parts by weight of the resin component, and 3 parts by weight or more. More preferably, it is 3.5 parts by weight or more, particularly preferably 4.0 parts by weight or more. The upper limit is preferably 30 parts by weight or less, more preferably 20 parts by weight or less, particularly preferably 10 parts by weight or less, and can be 9 parts by weight or less, and 8 parts by weight. It can also be as follows.
The thermoplastic resin composition used in the present invention may contain only one type of silicate mineral or two or more types. When two or more types are included, the total amount falls within the above range. When the silicate mineral is surface-treated, the total amount of the surface-treated is preferably within the above range.
染顔料
 本発明で用いる熱可塑性樹脂組成物は酸化チタン以外の染顔料を含んでいてもよい。本発明では、染顔料を添加することにより、樹脂成形品を着色することが可能になる。染顔料は顔料であることが好ましい。
 染顔料としては、ZnSまたはZnOを含む白色顔料やカーボンブラックなどの黒色染顔料(特に、黒色顔料)が例示される。特に、黒色の染顔料を配合すると、黒色の染顔料がレーザー照射の際の熱を吸収し、熱可塑性樹脂組成物からなる樹脂成形品の表面が溶融し、LDS添加剤との密着性を向上させることができる。
 また、銅フタロシアニンブルー、銅フタロシアニングリーン等のフタロシアニン系染顔料、ニッケルアゾイエロー等のアゾ系染顔料、チオインジゴ系、ペリノン系、ペリレン系、キナクリドン系、ジオキサジン系、イソインドリノン系、キノフタロン系などの縮合多環染顔料、アンスラキノン系、複素環系、メチル系の染顔料などが挙げられる。
 LDS添加剤を含む熱可塑性樹脂組成物に染顔料を配合すると、メッキ性が低下してしまう場合があった。しかしながら、本発明では、熱可塑性樹脂組成物と、LDS層形成用組成物を別々に用いるため、染顔料を含む熱可塑性樹脂組成物を用いた樹脂成形品の表面にもメッキ層を適切に形成できる。特に、白色顔料を用いたときに、メッキ性にダメージを与えやすかったため、本発明は効果的である。
Dye and Pigment The thermoplastic resin composition used in the present invention may contain a dye and pigment other than titanium oxide. In the present invention, the resin molded product can be colored by adding a dye / pigment. The dye / pigment is preferably a pigment.
Examples of the dye / pigment include white pigments containing ZnS or ZnO and black dye / pigment such as carbon black (particularly black pigment). In particular, when black dyes and pigments are blended, the black dyes and pigments absorb the heat during laser irradiation, the surface of the resin molded product made of the thermoplastic resin composition melts, and the adhesion with the LDS additive is improved. Can be made.
Also, phthalocyanine dyes such as copper phthalocyanine blue and copper phthalocyanine green, azo dyes such as nickel azo yellow, thioindigo, perinone, perylene, quinacridone, dioxazine, isoindolinone, quinophthalone, etc. Examples thereof include condensed polycyclic dyes, anthraquinone, heterocyclic, and methyl dyes.
When dyes and pigments are blended with a thermoplastic resin composition containing an LDS additive, the plating property may be lowered. However, in the present invention, since the thermoplastic resin composition and the LDS layer forming composition are used separately, a plating layer is appropriately formed on the surface of the resin molded product using the thermoplastic resin composition containing the dye / pigment. it can. In particular, when a white pigment is used, the present invention is effective because the plating property is easily damaged.
 本発明で用いる熱可塑性樹脂組成物が染顔料を含む場合、染顔料の配合量は、樹脂成分100重量部に対し、0.01~10重量部であることが好ましく、0.05~5重量部であることがより好ましい。
 本発明で用いる熱可塑性樹脂組成物は、染顔料を1種類のみ含んでいてもよいし、2種類以上含んでいてもよい。2種類以上含む場合は、合計量が上記範囲となることが好ましい。
When the thermoplastic resin composition used in the present invention contains a dye / pigment, the amount of the dye / pigment is preferably 0.01 to 10 parts by weight, and 0.05 to 5 parts by weight with respect to 100 parts by weight of the resin component. More preferably, it is a part.
The thermoplastic resin composition used in the present invention may contain only one type of dye / pigment, or may contain two or more types. When two or more types are included, the total amount is preferably within the above range.
リン系安定剤
 本発明で用いる熱可塑性樹脂組成物は、リン系安定剤を含むことが好ましい。リン系安定剤としては、リン酸エステルおよび亜リン酸エステルが好ましい。
Phosphorus Stabilizer The thermoplastic resin composition used in the present invention preferably contains a phosphorus stabilizer. As the phosphorus stabilizer, phosphate ester and phosphite ester are preferable.
 リン酸エステルとしては、下記一般式(3)で表される化合物が好ましい。
 一般式(3)
O=P(OH)m(OR)3-m・・・(3)
(一般式(3)中、Rはアルキル基またはアリール基であり、それぞれ同一であっても異なっていてもよい。mは0~2の整数である。)
 Rは炭素数1~30のアルキル基または、炭素数6~30のアリール基であることが好ましく、炭素数2~25のアルキル基、フェニル基、ノニルフェニル基、アテアリルフェニル基、2,4-ジ-tert-ブチルフェニル基、2,4-ジtert-ブチルメチルフェニル基、トリル基がより好ましい。
As the phosphate ester, a compound represented by the following general formula (3) is preferable.
General formula (3)
O = P (OH) m (OR) 3-m (3)
(In general formula (3), R is an alkyl group or an aryl group, which may be the same or different. M is an integer of 0 to 2.)
R is preferably an alkyl group having 1 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms, and an alkyl group having 2 to 25 carbon atoms, a phenyl group, a nonylphenyl group, an atarylphenyl group, 2, 4 -Di-tert-butylphenyl group, 2,4-ditert-butylmethylphenyl group, and tolyl group are more preferable.
 リン酸エステルとしては、トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリオクチルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、トリス(ノニルフェニル)ホスフェート、2-エチルフェニルジフェニルホスフェート、テトラキス(2,4-ジ-tert-ブチルフェニル)-4,4-ジフェニレンホスフォナイト等が挙げられる。 Examples of phosphate esters include trimethyl phosphate, triethyl phosphate, tributyl phosphate, trioctyl phosphate, triphenyl phosphate, tricresyl phosphate, tris (nonylphenyl) phosphate, 2-ethylphenyldiphenyl phosphate, tetrakis (2,4-di-). tert-butylphenyl) -4,4-diphenylene phosphonite.
 亜リン酸エステルとしては、下記一般式(4)で表される化合物が好ましい。
一般式(4)
Figure JPOXMLDOC01-appb-C000004
(一般式(4)中、R'は、アルキル基またはアリール基であり、各々同一でも異なっていてもよい。)
 R'は炭素数1~25のアルキル基または、炭素数6~12のアリール基であることが好ましい。R’がアルキル基である場合、炭素数1~30のアルキル基が好ましい。R’がアリール基である場合、炭素数6~30のアリール基が好ましい。
As the phosphite, a compound represented by the following general formula (4) is preferable.
General formula (4)
Figure JPOXMLDOC01-appb-C000004
(In general formula (4), R ′ is an alkyl group or an aryl group, and each may be the same or different.)
R ′ is preferably an alkyl group having 1 to 25 carbon atoms or an aryl group having 6 to 12 carbon atoms. When R ′ is an alkyl group, an alkyl group having 1 to 30 carbon atoms is preferable. When R ′ is an aryl group, an aryl group having 6 to 30 carbon atoms is preferable.
 亜リン酸エステルとしては、例えば、トリフェニルホスファイト、トリスノニルフェニルホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、トリノニルホスファイト、トリデシルホスファイト、トリオクチルホスファイト、トリオクタデシルホスファイト、ジステアリルペンタエリスリトールジホスファイト、トリシクロヘキシルホスファイト、モノブチルジフエニルホスファイト、モノオクチルジフエニルホスファイト、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールホスファイト、ビス(2.6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールホスファイト、2,2-メチレンビス(4,6-ジ-tert-ブチルフェニル)オクチルホスファイト等の亜リン酸のトリエステル、ジエステル、モノエステル等が挙げられる。 Examples of phosphites include triphenyl phosphite, trisnonylphenyl phosphite, tris (2,4-di-tert-butylphenyl) phosphite, trinonyl phosphite, tridecyl phosphite, trioctyl phosphite , Trioctadecyl phosphite, distearyl pentaerythritol diphosphite, tricyclohexyl phosphite, monobutyl diphenyl phosphite, monooctyl diphenyl phosphite, bis (2,4-di-tert-butylphenyl) pentaerythritol phosphite Bis (2.6-di-tert-butyl-4-methylphenyl) pentaerythritol phosphite, 2,2-methylenebis (4,6-di-tert-butylphenyl) octyl phosphite, etc. Triesters of acid, diesters, monoesters, and the like.
 本発明で用いる熱可塑性樹脂組成物がリン系安定剤を含む場合、リン系安定剤の配合量は、樹脂成分100重量部に対し、0.01~5重量部であり、0.02~2重量部がより好ましい。
 本発明で用いる熱可塑性樹脂組成物は、リン系安定剤を1種類のみ含んでいてもよいし、2種類以上含んでいてもよい。2種類以上含む場合は、合計量が上記範囲となる。
When the thermoplastic resin composition used in the present invention contains a phosphorus stabilizer, the amount of the phosphorus stabilizer is 0.01 to 5 parts by weight with respect to 100 parts by weight of the resin component, and 0.02 to 2 Part by weight is more preferred.
The thermoplastic resin composition used in the present invention may contain only one type of phosphorus-based stabilizer, or may contain two or more types. When two or more types are included, the total amount falls within the above range.
酸化防止剤
 本発明で用いる熱可塑性樹脂組成物は、酸化防止剤を含んでいてもよい。酸化防止剤としては、フェノール系酸化防止剤が好ましく、より具体的には、2,6-ジ-オブチル-4-メチルフェノール、n-オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、テトラキス[メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン、トリス(3,5-ジ-t-ブチル-4―ヒドロキシベンジル)イソシアヌレート、4,4'-ブチリデンビス-(3-メチル-6-t-ブチルフェノール)、トリエチレングリコール-ビス[3-(3-t-ブチル-ヒドロキシ-5-メチルフェニル)プロピオネート]、および3,9-ビス{2-[3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ]-1,1-ジメチルエチル}-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、N,N’ヘキサメチレン・ビス[3-(3,5-ジ-t-ブチル-4(-ヒドロキシフェニル)プロピオンアミド)、ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]等が挙げられる。中でも、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、N,N’ヘキサメチレン・ビス[3-(3,5-ジ-t-ブチル-4(-ヒドロキシフェニル)プロピオンアミド)、ペンタエリスリトールテトラキス[3-(3,5-ジーtert-ブチル-4-ヒドロキシフェニル)プロピオネート]が好ましい。
 本発明で用いる熱可塑性樹脂組成物が酸化防止剤を含む場合、酸化防止剤の配合量は、樹脂成分100重量部に対し、0.01~5重量部であり、0.05~3重量部がより好ましい。
 本発明で用いる熱可塑性樹脂組成物は、酸化防止剤を1種類のみ含んでいてもよいし、2種類以上含んでいてもよい。2種類以上含む場合は、合計量が上記範囲となる。
Antioxidant The thermoplastic resin composition used in the present invention may contain an antioxidant. As the antioxidant, a phenolic antioxidant is preferable, and more specifically, 2,6-di-butyl-4-methylphenol, n-octadecyl-3- (3,5-di-t-butyl- 4-hydroxyphenyl) propionate, tetrakis [methylene-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] methane, tris (3,5-di-t-butyl-4-hydroxybenzyl) Isocyanurate, 4,4′-butylidenebis- (3-methyl-6-tert-butylphenol), triethylene glycol-bis [3- (3-tert-butyl-hydroxy-5-methylphenyl) propionate], and 3, 9-bis {2- [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy] -1,1-dimethyl Ethyl} -2,4,8,10-tetraoxaspiro [5,5] undecane, N, N ′ hexamethylene bis [3- (3,5-di-tert-butyl-4 (-hydroxyphenyl) propion Amide), pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] and the like. Among them, octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, N, N′hexamethylene bis [3- (3,5-di-t-butyl-4 (-hydroxy) Phenyl) propionamide) and pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] are preferred.
When the thermoplastic resin composition used in the present invention contains an antioxidant, the amount of the antioxidant is 0.01 to 5 parts by weight with respect to 100 parts by weight of the resin component, and 0.05 to 3 parts by weight. Is more preferable.
The thermoplastic resin composition used in the present invention may contain only one kind of antioxidant or two or more kinds. When two or more types are included, the total amount falls within the above range.
耐加水分解性改良剤
 本発明で用いる熱可塑性樹脂組成物は、耐加水分解性改良剤を含んでいても良い。特に、熱可塑性樹脂として、ポリエステル樹脂を含む場合に、有益である。耐加水分解性改良剤は、既知のものが使用可能であり、カルボジイミド化合物やエポキシ化合物、オキサゾリン化合物、オキサジン化合物が例示される。
Hydrolysis resistance improver The thermoplastic resin composition used in the present invention may contain a hydrolysis resistance improver. In particular, it is useful when a polyester resin is included as the thermoplastic resin. As the hydrolysis resistance improver, known ones can be used, and examples thereof include carbodiimide compounds, epoxy compounds, oxazoline compounds, and oxazine compounds.
 本発明に使用される耐加水分解性改良剤であるカルボジイミド化合物とは、1分子中にカルボジイミド基(-N=C=N-)を少なくとも2個有する化合物であって、例えば、分子中にイソシアネート基を少なくとも2個有する多価イソシアネート化合物を、カルボジイミド化触媒の存在下、脱二酸化炭素縮合反応(カルボジイミド化反応)を行わせることによって製造することが出来る。カルボジイミド化反応は、公知の方法により行うことが出来、具体的には、イソシアネートを不活性な溶媒に溶解するか、或いは無溶媒で窒素等の不活性気体の気流下又はバブリング下でフォスフォレンオキシド類に代表される有機リン系化合物等のカルボジイミド化触媒を加え、150~200℃の温度範囲で加熱及び攪拌することにより、脱二酸化炭素を伴う縮合反応(カルボジイミド化反応)を進めることが出来る。 The carbodiimide compound, which is a hydrolysis resistance improver used in the present invention, is a compound having at least two carbodiimide groups (—N═C═N—) in one molecule, for example, an isocyanate in the molecule. A polyvalent isocyanate compound having at least two groups can be produced by performing a carbon dioxide condensation reaction (carbodiimidization reaction) in the presence of a carbodiimidization catalyst. The carbodiimidization reaction can be carried out by a known method. Specifically, the isocyanate is dissolved in an inert solvent, or phosphorene is used without a solvent in a stream of inert gas such as nitrogen or bubbling. By adding a carbodiimidization catalyst such as an organic phosphorus compound typified by oxides and heating and stirring in a temperature range of 150 to 200 ° C., a condensation reaction (carbodiimidization reaction) accompanied by decarbonation can be advanced. .
 好ましい多価イソシアネート化合物としては、分子中にイソシアネート基を2個有する2官能イソシアネートが特に好適であるが、3個以上のイソシアネート基を有するイソシアネート化合物をジイソシアネートと併用して用いることも出来る。又、多価イソシアネート化合物は、脂肪族イソシアネート、脂環族イソシアネート及び芳香族イソシアネートの何れであっても構わない。多価イソシアネートの具体例としては、ヘキサメチレンジイソシアネート(HDI)、水添キシリレンジイソシアネート(H6XDI)、キシリレンジイソシアネート(XDI)、2,2,4-トリメチルヘキサメチレンジイソシアネート(TMHDI)、1,12-ジイソシアネートドデカン(DDI)、ノルボルナンジイソシアネート(NBDI)、2,4-ビス-(8-イソシアネートオクチル)-1,3-ジオクチルシクロブタン(OCDI)、4,4’-ジシクロヘキシルメタンジイソシアネート(HMDI)、テトラメチルキシリレンジイソシアネート(TMXDI)、イソホロンジイソシアネート(IPDI)、2,4,6-トリイソプロピルフェニルジイソシアネート(TIDI)、4,4’-ジフェニルメタンジイソシアネート(MDI)、トリレンジイソシアネート(TDI)、水添トリレンジイソシアネート(HTDI)等が挙げられるが、これらに限定されるものではない。 As a preferable polyvalent isocyanate compound, a bifunctional isocyanate having two isocyanate groups in the molecule is particularly suitable, but an isocyanate compound having three or more isocyanate groups can also be used in combination with diisocyanate. The polyvalent isocyanate compound may be any of aliphatic isocyanate, alicyclic isocyanate, and aromatic isocyanate. Specific examples of the polyvalent isocyanate include hexamethylene diisocyanate (HDI), hydrogenated xylylene diisocyanate (H6XDI), xylylene diisocyanate (XDI), 2,2,4-trimethylhexamethylene diisocyanate (TMHDI), 1,12- Diisocyanate dodecane (DDI), norbornane diisocyanate (NBDI), 2,4-bis- (8-isocyanate octyl) -1,3-dioctylcyclobutane (OCDI), 4,4'-dicyclohexylmethane diisocyanate (HMDI), tetramethylxyl Range isocyanate (TMXDI), isophorone diisocyanate (IPDI), 2,4,6-triisopropylphenyl diisocyanate (TIDI), 4,4'-diphenylmethane diisocyanate Over preparative (MDI), tolylene diisocyanate (TDI), but hydrogenated tolylene diisocyanate (HTDI) and the like, but is not limited thereto.
 本発明に使用されるカルボジイミド化合物として、好適に用いられるのは、HMDI或いはMDIから得られるカルボジイミド化合物であり、或いは市販の「カルボジライト」(日清紡製)、「スタバクゾールP」(ライン・ケミー製)を用いても良い。 As the carbodiimide compound used in the present invention, a carbodiimide compound obtained from HMDI or MDI is preferably used, or a commercially available “carbodilite” (manufactured by Nisshinbo Co., Ltd.) or “stabakuzol P” (manufactured by Rhein Chemie) is used. It may be used.
 次に、本発明で耐加水分解性改良剤として用いられるエポキシ化合物としては、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、レゾルシン型エポキシ化合物、ノボラック型エポキシ化合物、脂環化合物型ジエポキシ化合物、グリシジルエーテル類、エポキシ化ポリブタジエン、更に具体的には、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、レゾルシン型エポキシ化合物、ノボラック型エポキシ化合物、ビニルシクロヘキセンジオキシド、ジシクロペンタジエンオキシド等の脂環化合物型エポキシ化合物が挙げられる。また、エポキシ化合物としては、耐薬品と樹脂への分散の観点からエポキシ当量150~280g/eqのノボラック型エポキシ樹脂、またはエポキシ当量600~3000g/eqのビスフェノールA型エポキシ樹脂が好ましく用いられる。より好ましくはエポキシ当量180~250g/eqで分子量1000~6000のノボラック型エポキシ樹脂、またはエポキシ当量600~3000g/eqで分子量1200~6000のビスフェノールA型エポキシ樹脂である。エポキシ当量及び分子量はカタログ値を用いる。 Next, as an epoxy compound used as a hydrolysis resistance improver in the present invention, bisphenol A type epoxy compound, bisphenol F type epoxy compound, resorcin type epoxy compound, novolac type epoxy compound, alicyclic compound type epoxy compound, glycidyl Ethers, epoxidized polybutadiene, and more specifically, bisphenol A type epoxy compounds, bisphenol F type epoxy compounds, resorcin type epoxy compounds, novolac type epoxy compounds, vinylcyclohexene dioxide, dicyclopentadiene oxide, and the like An epoxy compound is mentioned. As the epoxy compound, a novolac type epoxy resin having an epoxy equivalent of 150 to 280 g / eq or a bisphenol A type epoxy resin having an epoxy equivalent of 600 to 3000 g / eq is preferably used from the viewpoint of chemical resistance and dispersion in the resin. More preferred is a novolak type epoxy resin having an epoxy equivalent of 180 to 250 g / eq and a molecular weight of 1000 to 6000, or a bisphenol A type epoxy resin having an epoxy equivalent of 600 to 3000 g / eq and a molecular weight of 1200 to 6000. Catalog values are used for epoxy equivalent and molecular weight.
 オキサゾリン基(環)を有する化合物としては、オキサゾリン、アルキルオキサゾリン(2-メチルオキサゾリン、2-エチルオキサゾリン等のC1-4アルキルオキサゾリン)やビスオキサゾリン化合物等が例示できる。ビスオキサゾリン化合物としては、2,2′-ビス(2-オキサゾリン)、2,2′-ビス(アルキル-2-オキサゾリン)[2,2′-ビス(4-メチル-2-オキサゾリン)、2,2′-ビス(4-エチル-2-オキサゾリン)、2,2′-ビス(4,4-ジメチル-2-オキサゾリン)等の2,2′-ビス(C1-6アルキル-2-オキサゾリン)等]、2,2′-ビス(アリール-2-オキサゾリン)[2,2′-ビス(4-フェニル-2-オキサゾリン)等]、2,2′-ビス(シクロアルキル-2-オキサゾリン)[2,2′-ビス(4-シクロヘキシル-2-オキサゾリン)等]、2,2′-ビス(アラルキル-2-オキサゾリン)[2,2′-ビス(4-ベンジル-2-オキサゾリン)等]、2,2′-アルキレンビス(2-オキサゾリン)[2,2′-エチレンビス(2-オキサゾリン)、2,2′-テトラメチレンビス(2-オキサゾリン)等の2,2′-C1-10アルキレンビス(2-オキサゾリン)等]、2,2′-アルキレンビス(アルキル-2-オキサゾリン)[2,2′-エチレンビス(4-メチル-2-オキサゾリン)、2,2′-テトラメチレンビス(4,4-ジメチル-2-オキサゾリン)等の2,2′-C1-10アルキレンビス(C1-6アルキル-2-オキサゾリン)等]、2,2′-アリーレンビス(2-オキサゾリン)[2,2′-(1,3-フェニレン)-ビス(2-オキサゾリン)、2,2′-(1,4-フェニレン)-ビス(2-オキサゾリン)、2,2′-(1,2-フェニレン)-ビス(2-オキサゾリン)、2,2′-ジフェニレンビス(2-オキサゾリン)等]、2,2′-アリーレンビス(アルキル-2-オキサゾリン)[2,2′-(1,3-フェニレン)-ビス(4-メチル-2-オキサゾリン)、2,2′-(1,4-フェニレン)-ビス(4,4-ジメチル-2-オキサゾリン)等の2,2′-フェニレン-ビス(C1-6アルキル-2-オキサゾリン)等]、2,2′-アリーロキシアルカンビス(2-オキサゾリン)[2,2′-9,9′-ジフェノキシエタンビス(2-オキサゾリン)等]、2,2′-シクロアルキレンビス(2-オキサゾリン)[2,2′-シクロヘキシレンビス(2-オキサゾリン)等]、N,N′-アルキレンビス(2-カルバモイル-2-オキサゾリン)[N,N′-エチレンビス(2-カルバモイル-2-オキサゾリン)、N,N′-テトラメチレンビス(2-カルバモイル-2-オキサゾリン)等のN,N′-C1-10アルキレンビス(2-カルバモイル-2-オキサゾリン)等]、N,N′-アルキレンビス(2-カルバモイル-アルキル-2-オキサゾリン)[N,N′-エチレンビス(2-カルバモイル-4-メチル-2-オキサゾリン)、N,N′-テトラメチレンビス(2-カルバモイル-4,4-ジメチル-2-オキサゾリン)等のN,N′-C1-10アルキレンビス(2-カルバモイル-C1-6アルキル-2-オキサゾリン)等]、N,N′-アリーレンビス(2-カルバモイル-2-オキサゾリン)[N,N′-フェニレンビス(2-カルバモイル-オキサゾリン)等]等が例示できる。また、オキサゾリン基を有する化合物には、オキサゾリン基を含有するビニルポリマー[日本触媒(株)製,エポクロスRPSシリーズ、RASシリーズ及びRMSシリーズ等]等も含まれる。これらのオキサゾリン化合物のうち、ビスオキサゾリン化合物が好ましい。 Examples of the compound having an oxazoline group (ring) include oxazolines, alkyloxazolines (C1-4 alkyloxazolines such as 2-methyloxazoline and 2-ethyloxazoline), and bisoxazoline compounds. Examples of bisoxazoline compounds include 2,2′-bis (2-oxazoline), 2,2′-bis (alkyl-2-oxazoline) [2,2′-bis (4-methyl-2-oxazoline), 2, 2,2'-bis (C1-6 alkyl-2-oxazoline) such as 2'-bis (4-ethyl-2-oxazoline), 2,2'-bis (4,4-dimethyl-2-oxazoline), etc. ], 2,2'-bis (aryl-2-oxazoline) [2,2'-bis (4-phenyl-2-oxazoline) etc.], 2,2'-bis (cycloalkyl-2-oxazoline) [2 2,2′-bis (4-cyclohexyl-2-oxazoline), etc.], 2,2′-bis (aralkyl-2-oxazoline) [2,2′-bis (4-benzyl-2-oxazoline), etc.], 2 , 2'-alkylenebis (2 Oxazoline) [2,2'-C1-10 alkylenebis (2-oxazoline) such as 2,2'-ethylenebis (2-oxazoline), 2,2'-tetramethylenebis (2-oxazoline)], 2 , 2'-alkylenebis (alkyl-2-oxazoline) [2,2'-ethylenebis (4-methyl-2-oxazoline), 2,2'-tetramethylenebis (4,4-dimethyl-2-oxazoline) 2,2'-C1-10 alkylene bis (C1-6 alkyl-2-oxazoline) etc.], 2,2'-arylene bis (2-oxazoline) [2,2 '-(1,3-phenylene) -Bis (2-oxazoline), 2,2 '-(1,4-phenylene) -bis (2-oxazoline), 2,2'-(1,2-phenylene) -bis (2-oxazoline), 2, 2 -Diphenylenebis (2-oxazoline), etc.], 2,2'-arylenebis (alkyl-2-oxazoline) [2,2 '-(1,3-phenylene) -bis (4-methyl-2-oxazoline) 2,2′-phenylene-bis (C1-6 alkyl-2-oxazoline) such as 2,2 ′-(1,4-phenylene) -bis (4,4-dimethyl-2-oxazoline)], 2 2,2′-aryloxyalkanebis (2-oxazoline) [2,2′-9,9′-diphenoxyethanebis (2-oxazoline) etc.], 2,2′-cycloalkylenebis (2-oxazoline) [ 2,2′-cyclohexylenebis (2-oxazoline) etc.], N, N′-alkylenebis (2-carbamoyl-2-oxazoline) [N, N′-ethylenebis (2-carbamoyl-2-o) Xazoline), N, N′-tetramethylenebis (2-carbamoyl-2-oxazoline), etc., N, N′-C1-10 alkylenebis (2-carbamoyl-2-oxazoline) etc.], N, N′-alkylene Bis (2-carbamoyl-alkyl-2-oxazoline) [N, N'-ethylenebis (2-carbamoyl-4-methyl-2-oxazoline), N, N'-tetramethylenebis (2-carbamoyl-4,4 N, N′-C1-10 alkylene bis (2-carbamoyl-C 1-6 alkyl-2-oxazoline) such as dimethyl-2-oxazoline), N, N′-arylene bis (2-carbamoyl-2- Examples include oxazoline) [N, N′-phenylenebis (2-carbamoyl-oxazoline) and the like]. The compound having an oxazoline group also includes a vinyl polymer containing an oxazoline group [manufactured by Nippon Shokubai Co., Ltd., Epocros RPS series, RAS series, RMS series, etc.]. Of these oxazoline compounds, bisoxazoline compounds are preferred.
 オキサジン基(環)を有する化合物としては、オキサジンやビスオキサジン化合物等が例示できる。ビスオキサジン化合物としては、2,2′-ビス(5,6-ジヒドロ-4H-1,3-オキサジン)、2,2′-ビス(アルキル-5,6-ジヒドロ-4H-1,3-オキサジン)[2,2′-ビス(4-メチル-5,6-ジヒドロ-4H-1,3-オキサジン)、2,2′-ビス(4,4-ジメチル-5,6-ジヒドロ-4H-1,3-オキサジン)、2,2′-ビス(4,5-ジメチル-5,6-ジヒドロ-4H-1,3-オキサジン)等の2,2′-ビス(C1-6アルキル-5,6-ジヒドロ-4H-1,3-オキサジン)等]、2,2′-アルキレンビス(5,6-ジヒドロ-4H-1,3-オキサジン)[2,2′-メチレンビス(5,6-ジヒドロ-4H-1,3-オキサジン)、2,2′-エチレンビス(5,6-ジヒドロ-4H-1,3-オキサジン)、2,2′-ヘキサンメチレンビス(5,6-ジヒドロ-4H-1,3-オキサジン)等の2,2′-C1-10アルキレンビス(5,6-ジヒドロ-4H-1,3-オキサジン)等]、2,2′-アリーレンビス(5,6-ジヒドロ-4H-1,3-オキサジン)[2,2′-(1,3-フェニレン)-ビス(5,6-ジヒドロ-4H-1,3-オキサジン)、2,2′-(1,4-フェニレン)-ビス(5,6-ジヒドロ-4H-1,3-オキサジン)、2,2′-(1,2-フェニレン)-ビス(5,6-ジヒドロ-4H-1,3-オキサジン)、2,2′-ナフチレンビス(5,6-ジヒドロ-4H-1,3-オキサジン)、2,2′-ジフェニレンビス(5,6-ジヒドロ-4H-1,3-オキサジン)等]、N,N′-アルキレンビス(2-カルバモイル-5,6-ジヒドロ-4H-1,3-オキサジン)[N,N′-エチレンビス(2-カルバモイル-5,6-ジヒドロ-4H-1,3-オキサジン)、N,N′-テトラメチレンビス(2-カルバモイル-5,6-ジヒドロ-4H-1,3-オキサジン)等のN,N′-C1-10アルキレンビス(2-カルバモイル-5,6-ジヒドロ-4H-1,3-オキサジン)等]、N,N′-アルキレンビス(2-カルバモイル-アルキル-5,6-ジヒドロ-4H-1,3-オキサジン)[N,N′-エチレンビス(2-カルバモイル-4-メチル-5,6-ジヒドロ-4H-1,3-オキサジン)、N,N′-ヘキサメチレンビス(2-カルバモイル-4,4-ジメチル-5,6-ジヒドロ-4H-1,3-オキサジン)等のN,N′-C1-10アルキレンビス(2-カルバモイル-C1-6アルキル-5,6-ジヒドロ-4H-1,3-オキサジン)等]、N,N′-アリーレンビス(2-カルバモイル-5,6-ジヒドロ-4H-1,3-オキサジン)[N,N′-フェニレンビス(2-カルバモイル-オキサジン)等]等が例示できる。これらのオキサジン化合物のうち、ビスオキサジン化合物が好ましい。 Examples of the compound having an oxazine group (ring) include oxazine and bisoxazine compounds. Examples of bisoxazine compounds include 2,2'-bis (5,6-dihydro-4H-1,3-oxazine), 2,2'-bis (alkyl-5,6-dihydro-4H-1,3-oxazine ) [2,2'-bis (4-methyl-5,6-dihydro-4H-1,3-oxazine), 2,2'-bis (4,4-dimethyl-5,6-dihydro-4H-1 , 3-oxazine), 2,2′-bis (4,5-dimethyl-5,6-dihydro-4H-1,3-oxazine) and the like, 2,2′-bis (C1-6 alkyl-5,6) -Dihydro-4H-1,3-oxazine)], 2,2'-alkylenebis (5,6-dihydro-4H-1,3-oxazine) [2,2'-methylenebis (5,6-dihydro- 4H-1,3-oxazine), 2,2'-ethylenebis (5,6-dihydro 4H-1,3-oxazine), 2,2′-hexanemethylenebis (5,6-dihydro-4H-1,3-oxazine) and the like 2,2′-C1-10 alkylenebis (5,6-dihydro) -4H-1,3-oxazine), etc.], 2,2'-arylenebis (5,6-dihydro-4H-1,3-oxazine) [2,2 '-(1,3-phenylene) -bis ( 5,6-dihydro-4H-1,3-oxazine), 2,2 '-(1,4-phenylene) -bis (5,6-dihydro-4H-1,3-oxazine), 2,2'- (1,2-phenylene) -bis (5,6-dihydro-4H-1,3-oxazine), 2,2'-naphthylenebis (5,6-dihydro-4H-1,3-oxazine), 2,2 '-Diphenylenebis (5,6-dihydro-4H-1,3-oxadi Etc.], N, N′-alkylenebis (2-carbamoyl-5,6-dihydro-4H-1,3-oxazine) [N, N′-ethylenebis (2-carbamoyl-5,6-dihydro-4H) -1,3-oxazine), N, N'-tetramethylenebis (2-carbamoyl-5,6-dihydro-4H-1,3-oxazine) and other N, N'-C1-10 alkylenebis (2- Carbamoyl-5,6-dihydro-4H-1,3-oxazine)], N, N′-alkylenebis (2-carbamoyl-alkyl-5,6-dihydro-4H-1,3-oxazine) [N, N'-ethylenebis (2-carbamoyl-4-methyl-5,6-dihydro-4H-1,3-oxazine), N, N'-hexamethylenebis (2-carbamoyl-4,4-dimethyl-5, 6-dihydr N, N′-C1-10 alkylenebis (2-carbamoyl-C1-6alkyl-5,6-dihydro-4H-1,3-oxazine) etc.], N , N′-arylenebis (2-carbamoyl-5,6-dihydro-4H-1,3-oxazine) [N, N′-phenylenebis (2-carbamoyl-oxazine) etc.] and the like. Of these oxazine compounds, bisoxazine compounds are preferred.
 耐加水分解性改良剤の配合量は、配合する場合、熱可塑性樹脂100重量部に対して、0.05~3重量部が好ましく、さらに好ましくは0.1~2重量部である。 The blending amount of the hydrolysis resistance improving agent is preferably 0.05 to 3 parts by weight, more preferably 0.1 to 2 parts by weight with respect to 100 parts by weight of the thermoplastic resin.
離型剤
 本発明で用いる熱可塑性樹脂組成物は、離型剤を含んでいてもよい。離型剤は、脂肪族カルボン酸、脂肪族カルボン酸エステル、数平均分子量200~15000の脂肪族炭化水素化合物およびポリオレフィン系化合物から選ばれる少なくとも1種の化合物が好ましい。中でも、ポリオレフィン系化合物、脂肪族カルボン酸、および脂肪族カルボン酸エステルから選ばれる少なくとも1種の化合物がより好ましく用いられる。
Release agent The thermoplastic resin composition used in the present invention may contain a release agent. The release agent is preferably at least one compound selected from an aliphatic carboxylic acid, an aliphatic carboxylic acid ester, an aliphatic hydrocarbon compound having a number average molecular weight of 200 to 15000, and a polyolefin compound. Among these, at least one compound selected from polyolefin compounds, aliphatic carboxylic acids, and aliphatic carboxylic acid esters is more preferably used.
 脂肪族カルボン酸としては、飽和または不飽和の脂肪族モノカルボン酸、ジカルボン酸またはトリカルボン酸を挙げることができる。本明細書では、脂肪族カルボン酸の用語は、脂環式カルボン酸も包含する意味で用いる。脂肪族カルボン酸の中でも、炭素数6~36のモノまたはジカルボン酸が好ましく、炭素数6~36の脂肪族飽和モノカルボン酸がより好ましい。このような脂肪族カルボン酸の具体例としては、パルミチン酸、ステアリン酸、吉草酸、カプロン酸、カプリン酸、ラウリン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、メリシン酸、テトラリアコンタン酸、モンタン酸、グルタル酸、アジピン酸、アゼライン酸等を挙げることができる。 Examples of the aliphatic carboxylic acid include saturated or unsaturated aliphatic monocarboxylic acid, dicarboxylic acid, and tricarboxylic acid. In the present specification, the term “aliphatic carboxylic acid” is used to include alicyclic carboxylic acids. Among the aliphatic carboxylic acids, mono- or dicarboxylic acids having 6 to 36 carbon atoms are preferable, and aliphatic saturated monocarboxylic acids having 6 to 36 carbon atoms are more preferable. Specific examples of such aliphatic carboxylic acids include palmitic acid, stearic acid, valeric acid, caproic acid, capric acid, lauric acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, mellic acid, and tetrariacontanoic acid. , Montanic acid, glutaric acid, adipic acid, azelaic acid and the like.
 脂肪族カルボン酸エステルを構成する脂肪族カルボン酸成分としては、前記脂肪族カルボン酸と同じものが使用できる。一方、脂肪族カルボン酸エステルを構成するアルコール成分としては、飽和または不飽和の1価アルコール、飽和または不飽和の多価アルコール等を挙げることができる。これらのアルコールは、フッ素原子、アリール基等の置換基を有していてもよい。これらのアルコールのうち、炭素数30以下の1価または多価の飽和アルコールが好ましく、さらに炭素数30以下の脂肪族飽和1価アルコールまたは多価アルコールが好ましい。ここで脂肪族アルコールは、脂環式アルコールも包含する。これらのアルコールの具体例としては、オクタノール、デカノール、ドデカノール、ステアリルアルコール、ベヘニルアルコール、エチレングリコール、ジエチレングリコール、グリセリン、ペンタエリスリトール、2,2-ジヒドロキシペルフルオロプロパノール、ネオペンチレングリコール、ジトリメチロールプロパン、ジペンタエリスリトール等を挙げることができる。これらの脂肪族カルボン酸エステルは、不純物として脂肪族カルボン酸および/またはアルコールを含有していてもよく、複数の化合物の混合物であってもよい。脂肪族カルボン酸エステルの具体例としては、蜜ロウ(ミリシルパルミテートを主成分とする混合物)、ステアリン酸ステアリル、ベヘン酸ベヘニル、ベヘン酸オクチルドデシル、グリセリンモノパルミテート、グリセリンモノステアレート、グリセリンジステアレート、グリセリントリステアレート、ペンタエリスリトールモノパルミテート、ペンタエリスリトールモノステアレート、ペンタエリスリトールジステアレート、ペンタエリスリトールトリステアレート、ペンタエリスリトールテトラステアレートを挙げることができる。
 ポリオレフィン系化合物としては、パラフィンワックス及びポリエチレンワックスから選ばれる化合物が挙げられ、中でも、ポリオレフィン系化合物の分散が良好であるという点から、重量平均分子量が、700~10,000、更には900~8,000のポリエチレンワックスが好ましい。
As the aliphatic carboxylic acid component constituting the aliphatic carboxylic acid ester, the same aliphatic carboxylic acid as that described above can be used. On the other hand, examples of the alcohol component constituting the aliphatic carboxylic acid ester include saturated or unsaturated monohydric alcohols and saturated or unsaturated polyhydric alcohols. These alcohols may have a substituent such as a fluorine atom or an aryl group. Of these alcohols, monovalent or polyvalent saturated alcohols having 30 or less carbon atoms are preferable, and aliphatic saturated monohydric alcohols or polyhydric alcohols having 30 or less carbon atoms are more preferable. Here, the aliphatic alcohol also includes an alicyclic alcohol. Specific examples of these alcohols include octanol, decanol, dodecanol, stearyl alcohol, behenyl alcohol, ethylene glycol, diethylene glycol, glycerin, pentaerythritol, 2,2-dihydroxyperfluoropropanol, neopentylene glycol, ditrimethylolpropane, dipentaerythritol. Etc. These aliphatic carboxylic acid esters may contain an aliphatic carboxylic acid and / or alcohol as impurities, and may be a mixture of a plurality of compounds. Specific examples of the aliphatic carboxylic acid ester include beeswax (mixture based on myricyl palmitate), stearyl stearate, behenyl behenate, octyldodecyl behenate, glycerin monopalmitate, glycerin monostearate, glycerin Examples thereof include distearate, glycerin tristearate, pentaerythritol monopalmitate, pentaerythritol monostearate, pentaerythritol distearate, pentaerythritol tristearate, and pentaerythritol tetrastearate.
Examples of the polyolefin compound include compounds selected from paraffin wax and polyethylene wax. Among them, the weight average molecular weight is 700 to 10,000, and more preferably 900 to 8 from the viewpoint of good dispersion of the polyolefin compound. 1,000 polyethylene waxes are preferred.
 本発明で用いる熱可塑性樹脂組成物が離型剤を含む場合、離型剤の配合量は、樹脂成分100重量部に対し、0.01~5重量部であり、0.05~3重量部がより好ましい。本発明で用いる熱可塑性樹脂組成物は、離型剤を1種類のみ含んでいてもよいし、2種類以上含んでいてもよい。2種類以上含む場合は、合計量が上記範囲となる。 When the thermoplastic resin composition used in the present invention contains a release agent, the compounding amount of the release agent is 0.01 to 5 parts by weight with respect to 100 parts by weight of the resin component, and 0.05 to 3 parts by weight. Is more preferable. The thermoplastic resin composition used in the present invention may contain only one type of release agent, or may contain two or more types. When two or more types are included, the total amount falls within the above range.
 本発明で用いる熱可塑性樹脂組成物は、本発明の趣旨を逸脱しない範囲で、他の成分を含んでいてもよい。他の成分としては、リン系安定剤以外の安定剤、紫外線吸収剤、上述したもの以外の無機フィラー、酸化チタン以外の白色顔料、蛍光増白剤、滴下防止剤、帯電防止剤、防曇剤、滑剤、アンチブロッキング剤、流動性改良剤、可塑剤、分散剤、防菌剤などが挙げられる。これらは2種類以上を併用してもよい。
 これらの成分については、特開2007-314766号公報、特開2008-127485号公報、特開2009-51989号公報および特開2012-72338号公報等の記載を参酌でき、これらの内容は本明細書に組み込まれる。
The thermoplastic resin composition used in the present invention may contain other components without departing from the spirit of the present invention. Other components include stabilizers other than phosphorus stabilizers, ultraviolet absorbers, inorganic fillers other than those mentioned above, white pigments other than titanium oxide, fluorescent whitening agents, anti-dripping agents, antistatic agents, antifogging agents. , Lubricants, antiblocking agents, fluidity improvers, plasticizers, dispersants, antibacterial agents and the like. Two or more of these may be used in combination.
With respect to these components, descriptions in JP 2007-314766 A, JP 2008-127485 A, JP 2009-51989 A, and JP 2012-72338 A can be referred to, and the contents thereof are described in this specification. Embedded in the book.
<熱可塑性樹脂組成物の製造方法および樹脂成形品の製造方法>
 本発明で用いる熱可塑性樹脂組成物の製造方法は、特に定めるものではなく、公知の熱可塑性樹脂組成物の製造方法を広く採用できる。具体的には、各成分を、タンブラーやヘンシェルミキサーなどの各種混合機を用い予め混合した後、バンバリーミキサー、ロール、ブラベンダー、単軸混練押出機、二軸混練押出機、ニーダーなどで溶融混練することによって樹脂組成物を製造することができる。
<Method for producing thermoplastic resin composition and method for producing resin molded product>
The method for producing the thermoplastic resin composition used in the present invention is not particularly defined, and a wide variety of known methods for producing a thermoplastic resin composition can be employed. Specifically, each component is mixed in advance using various mixers such as a tumbler or Henschel mixer, and then melt kneaded with a Banbury mixer, roll, Brabender, single-screw kneading extruder, twin-screw kneading extruder, kneader, etc. By doing so, a resin composition can be produced.
 また、例えば、各成分を予め混合せずに、または、一部の成分のみを予め混合し、フィーダーを用いて押出機に供給して溶融混練して、熱可塑性樹脂組成物を製造することもできる。
 さらに、例えば、一部の成分を予め混合し押出機に供給して溶融混練することで得られる樹脂組成物をマスターバッチとし、このマスターバッチを再度残りの成分と混合し、溶融混練することによって熱可塑性樹脂組成物を製造することもできる。
In addition, for example, it is also possible to produce a thermoplastic resin composition without mixing each component in advance or by mixing only a part of the components in advance and supplying the mixture to an extruder using a feeder and melt-kneading. it can.
Furthermore, for example, a resin composition obtained by mixing some components in advance, supplying them to an extruder and melt-kneading is used as a master batch, and this master batch is mixed with the remaining components again and melt-kneaded. A thermoplastic resin composition can also be produced.
 熱可塑性樹脂組成物から樹脂成形品を製造する方法は、特に限定されるものではなく、熱可塑性樹脂について一般に採用されている成形法、すなわち一般的な射出成形法、超高速射出成形法、射出圧縮成形法、二色成形法、ガスアシストなどの中空成形法、断熱金型を用いた成形法、急速加熱金型を用いた成形法、発泡成形(超臨界流体も含む)、インサ-ト成形、IMC(インモールドコーティング成形)成形法、押出成形法、シ-ト成形法、熱成形法、回転成形法、積層成形法、プレス成形法等を採用することができる。また、ホットランナ-方式を用いた成形法を選択することもできる。 The method for producing a resin molded product from the thermoplastic resin composition is not particularly limited, and a molding method generally employed for thermoplastic resins, that is, a general injection molding method, an ultra-high speed injection molding method, an injection Compression molding method, two-color molding method, hollow molding method such as gas assist, molding method using heat insulating mold, molding method using rapid heating mold, foam molding (including supercritical fluid), insert molding An IMC (in-mold coating molding) molding method, an extrusion molding method, a sheet molding method, a thermoforming method, a rotational molding method, a lamination molding method, a press molding method and the like can be employed. A molding method using a hot runner method can also be selected.
<メッキ層付樹脂成形品の製造方法>
 本発明のメッキ層付樹脂成形品の製造方法は、図2にも示す通り、樹脂成形品21の表面に、本発明のレーザーダイレクトストラクチャリング層形成用組成物を適用し、硬化させた後、レーザーを照射し、メッキ層24を形成する工程を含むことを特徴とする。
 このような構成とすることにより、熱可塑性樹脂組成物にLDS添加剤を配合しなくても、樹脂成形品の表面にメッキ層を形成可能になる。
<Method for producing resin molded product with plating layer>
As shown in FIG. 2, the method for producing a resin molded product with a plated layer of the present invention is applied to the surface of the resin molded product 21 with the composition for forming a laser direct structuring layer of the present invention and cured, It includes a step of forming a plating layer 24 by irradiating a laser.
By setting it as such a structure, even if it does not mix | blend an LDS additive with a thermoplastic resin composition, it becomes possible to form a plating layer on the surface of a resin molded product.
 LDS層形成用組成物を樹脂成形品の表面に適用する方法は、特に定めるものではないが、塗布が好ましい。塗布には、刷毛等を用いる方法の他、いわゆる、手塗りも含む趣旨である。本発明では、LDS層形成用組成物を樹脂成形品の表面に適用する前に、撹拌することが好ましい。撹拌することにより、LDS添加剤がより均一に分散したLDS層を形成可能となる。
 LDS層形成用組成物は、乾燥後のLDS層の平均膜厚が、0.1~1000μmとなるように適用することが好ましく、0.5~300μmとなるように適用することがより好ましい。
The method for applying the composition for forming an LDS layer to the surface of the resin molded product is not particularly defined, but is preferably applied. The application includes not only a method using a brush or the like but also so-called hand coating. In this invention, it is preferable to stir before applying the composition for LDS layer formation to the surface of a resin molded product. By stirring, an LDS layer in which the LDS additive is more uniformly dispersed can be formed.
The composition for forming an LDS layer is preferably applied so that the average film thickness of the LDS layer after drying is 0.1 to 1000 μm, and more preferably 0.5 to 300 μm.
 本発明における樹脂成形品は、平坦な基板でもよいが、一部または全部が曲面している樹脂成形品であってもよい。また、樹脂成形品のメッキが形成される部分の表面は、粗さを有していてもよいが、平滑な面であってもよい。従来から知られているメッキの形成方法では、樹脂成形品の表面を粗くしてから、メッキを形成しているが、本発明では樹脂成形品の表面が平滑であってもメッキを形成できる点で有利である。
 また、樹脂成形品は、最終製品に限らず、各種部品も含む趣旨である。本発明における樹脂成形品としては、携帯電子機器、車両および医療機器の部品や、その他の電気回路を含む電子部品に用いることが好ましい。特に、樹脂成形品は、高い耐衝撃性と剛性、優れた耐熱性を併せ持つうえ、異方性が小さく、反りが小さいものとすることができるため、電子手帳、携帯用コンピューター等のPDA、ポケットベル、携帯電話、PHSなどの内部構造物および筐体として極めて有効である。特に樹脂成形品がリブを除く平均肉厚が1.2mm以下(下限値は特に定めるものではないが、例えば、0.4mm以上)である平板形状の部品に適しており、中でも携帯電子機器の筐体として特に適している。
 さらに、樹脂成形品は、表面が粗面化処理されていてもよいが、粗面化処理されていなくてもよい。特に、公知のメッキ層形成方法とは異なり、粗面化処理していない樹脂成形品の表面にも、高い密着性を達成しつつ、メッキを形成できる点で本発明は有益である。ここでの粗面化処理とは、やすりがけ、溶剤によるプライマー処理等が例示される。
The resin molded product in the present invention may be a flat substrate, but may be a resin molded product that is partially or entirely curved. Moreover, the surface of the part where the plating of the resin molded product is formed may have roughness, but may be a smooth surface. In the conventionally known plating formation method, the surface of the resin molded product is roughened and then the plating is formed. However, in the present invention, the plating can be formed even if the surface of the resin molded product is smooth. Is advantageous.
Further, the resin molded product is not limited to the final product, and includes various parts. The resin molded product in the present invention is preferably used for parts of portable electronic devices, vehicles and medical devices, and electronic parts including other electric circuits. In particular, resin molded products have both high impact resistance, rigidity, and excellent heat resistance, as well as low anisotropy and low warpage, so PDAs and pockets for electronic notebooks, portable computers, etc. It is extremely effective as an internal structure and casing such as a bell, a mobile phone, and a PHS. In particular, the resin molded product is suitable for flat plate-like parts having an average thickness excluding ribs of 1.2 mm or less (the lower limit is not particularly defined, for example, 0.4 mm or more). Particularly suitable as a housing.
Furthermore, the surface of the resin molded product may be roughened, but may not be roughened. In particular, unlike the known plating layer forming method, the present invention is advantageous in that plating can be formed on the surface of a resin molded product that has not been roughened while achieving high adhesion. Examples of the surface roughening treatment include filing and primer treatment with a solvent.
 再び図2に戻り、LDS層形成用組成物は、樹脂成形品21の表面に塗布した後、紫外線照射または加熱等の手段により、硬化性化合物を硬化させる。硬化性化合物を硬化させることにより、LDS添加剤も固定される。
 ついで、本発明では、樹脂成形品21の表面に設けられたLDS層22にレーザーを照射する。ここでのレーザーとは、特に定めるものではなく、YAGレーザー、エキシマレーザー、電磁線等の公知のレーザーから適宜選択することができ、YGAレーザーが好ましい。また、レーザーの波長も特に定めるものではない。好ましい波長範囲は、200nm~1200nmである。特に好ましくは800~1200nmである。上記硬化性化合物として紫外線硬化性化合物を用いる場合、紫外線によってメッキが形成されてしまわない様、800~1200nmのレーザーを照射することが好ましい。
 レーザーが照射されると、レーザーが照射された部分のみ、LDS添加剤23が活性化される。この活性化された状態で、LDS層22を有する樹脂成形品21をメッキ液に適用する。メッキ液としては、特に定めるものではなく、公知のメッキ液を広く採用することができ、金属成分として銅、ニッケル、金、銀、パラジウムが混合されているものが好ましく、銅がより好ましい。
 LDS層22を有する樹脂成形品21をメッキ液に適用する方法についても、特に定めるものではないが、例えば、メッキ液を配合した液中に投入する方法が挙げられる。メッキ液を適用後の樹脂成形品は、レーザー照射した部分のみ、メッキ層24が形成される。
 本発明の方法では、1mm以下、さらには、150μm以下の幅の回路間隔(下限値は特に定めるものではないが、例えば、30μm以上)を形成することができる。かかる回路は携帯電子機器部品のアンテナとして好ましく用いられる。すなわち、樹脂成形品の好ましい実施形態の一例として、携帯電子機器部品の表面に設けられたメッキ層が、アンテナとしての性能を保有する樹脂成形品が挙げられる。
 本発明のメッキ層付樹脂成形品は、本発明のキットを用いて製造することが好ましい。
Returning again to FIG. 2, the composition for forming an LDS layer is applied to the surface of the resin molded product 21, and then the curable compound is cured by means such as ultraviolet irradiation or heating. By curing the curable compound, the LDS additive is also fixed.
Next, in the present invention, the LDS layer 22 provided on the surface of the resin molded product 21 is irradiated with a laser. The laser here is not particularly defined, and can be appropriately selected from known lasers such as a YAG laser, an excimer laser, and electromagnetic radiation, and a YGA laser is preferable. Further, the wavelength of the laser is not particularly defined. A preferred wavelength range is 200 nm to 1200 nm. Particularly preferred is 800 to 1200 nm. When an ultraviolet curable compound is used as the curable compound, it is preferable to irradiate a laser with a wavelength of 800 to 1200 nm so that plating is not formed by ultraviolet rays.
When the laser is irradiated, the LDS additive 23 is activated only in the portion irradiated with the laser. In this activated state, the resin molded product 21 having the LDS layer 22 is applied to the plating solution. The plating solution is not particularly defined, and a wide variety of known plating solutions can be used. A metal component in which copper, nickel, gold, silver, and palladium are mixed is preferable, and copper is more preferable.
The method of applying the resin molded product 21 having the LDS layer 22 to the plating solution is not particularly defined, but for example, a method of putting it in a solution containing the plating solution can be mentioned. In the resin molded product after applying the plating solution, the plating layer 24 is formed only in the portion irradiated with the laser.
In the method of the present invention, a circuit interval having a width of 1 mm or less and further 150 μm or less (the lower limit is not particularly defined, but for example, 30 μm or more) can be formed. Such a circuit is preferably used as an antenna of a portable electronic device component. That is, as an example of a preferred embodiment of the resin molded product, a resin molded product in which a plating layer provided on the surface of a portable electronic device component has performance as an antenna can be given.
The resin molded article with a plated layer of the present invention is preferably produced using the kit of the present invention.
 以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。 The present invention will be described more specifically with reference to the following examples. The materials, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention is not limited to the specific examples shown below.
<樹脂>
PAMXD6:ポリメタキシリレンアジパミド、S6007、三菱ガス化学製
アミラン(登録商標) CM3001-N:ポリアミド樹脂、東レ製
PC:ポリカーボネート樹脂、ユーピロンS-3000、三菱エンジニアリングプラスチックス製
PBT:ポリブチレンテレフタレート樹脂、5008/F、三菱化学製
<ガラス繊維>
03T-296GH:日本電気硝子製
T-571:日本電気硝子製
T-127:日本電気硝子製
<タルク>
ミクロンホワイト 5000S:林化成製
<離型剤>
ホスタモント NAV101、ヘキスト製
ヘキストワックス Eパウダー、クラリアントジャパン製
CS-8CP:日東化成製
PE520:ポリエチレンワックス、クラリアントジャパン製
<難燃剤>
PATOX-M:三酸化アンチモン、日本精鉱製
グレートレイクス PDBS-80:ポリジブロモスチレン、グレートレイクスケミカルコーポレーション製
KFBS:パーフルオロブタンスルホン酸カリウム、三菱マテリアル製
PTFE-6J:ポリテトラフルオロエチレン、デュポンフルオロケミカル製
PX-200:レゾルシノールビス-2,6-キシレニルホスフェート、大八化学工業社製
FP-110:フェノキシホスファゼン化合物、伏見製薬社製
<Resin>
PAMXD6: Polymetaxylylene adipamide, S6007, Amilan (registered trademark) CM3001-N manufactured by Mitsubishi Gas Chemical, CM3001-N: Polyamide resin, PC resin made by Toray, Iupilon S-3000, PBT manufactured by Mitsubishi Engineering Plastics: Polybutylene terephthalate resin , 5008 / F, Mitsubishi Chemical <Glass fiber>
03T-296GH: Nippon Electric Glass T-571: Nippon Electric Glass T-127: Nippon Electric Glass <talc>
Micron white 5000S: Hayashi Kasei <release agent>
Hostamont NAV101, Hoechst Hoechst wax E powder, Clariant Japan CS-8CP: Nitto Kasei PE520: Polyethylene wax, Clariant Japan <Flame Retardant>
PATOX-M: Antimony trioxide, Nippon Seiki Great Lakes PDBS-80: Polydibromostyrene, Great Lakes Chemical Corporation KFBS: Potassium perfluorobutanesulfonate, Mitsubishi Materials PTFE-6J: Polytetrafluoroethylene, DuPont fluoro Chemical PX-200: Resorcinol bis-2,6-xylenyl phosphate, Daihachi Chemical Industries FP-110: Phenoxyphosphazene compound, Fushimi Pharmaceutical
<耐加水分解性改良剤>
アデカサイザー EP-17、アデカ製
<酸化防止剤>
IRGANOX-1010、BASF社製
<顔料>
CB-1:カーボンブラック、#45、三菱化学製
ZnS:硫化亜鉛、サクトリスHD、サクトリス製
RB948G:カーボンブラック、越谷化成製
CB-2:カーボンブラック、#650B、三菱化学製
<Hydrolysis resistance improver>
Adeka Sizer EP-17, manufactured by Adeka <Antioxidant>
IRGANOX-1010, manufactured by BASF <Pigment>
CB-1: Carbon black, # 45, Mitsubishi Chemical ZnS: Zinc sulfide, Sacritus HD, Satris RB948G: Carbon black, Koshigaya Kasei CB-2: Carbon black, # 650B, Mitsubishi Chemical
<塗料>
塗料1:ウレタン系熱硬化系塗料:レタンPG80IIIクリヤー、関西ペイント製
 硬化性化合物として、ウレタン樹脂100重量部に対し、硬化剤10重量部、有機溶剤として、シンナーを100重量部配合して用いた。
塗料2:アクリルウレタン系熱硬化系塗料:naxマイティラックG-II KB型クリヤー、日本ペイント製
 硬化性化合物として、アクリルウレタン樹脂100重量部に対し、硬化剤25重量部、有機溶剤として、シンナー125重量部を配合して用いた。
塗料3:ウレタン系熱硬化系塗料:ハイメタル KD2850シルバー、カシュー製
 硬化性化合物として、ウレタン系樹脂100重量部に対し、有機溶剤として、シンナー150重量部を配合して用いた。
塗料4:ウレタン系紫外線硬化系塗料:6110クリヤー、カシュー製
硬化性化合物として、ウレタン系樹脂100重量部に対し、有機溶剤として、シンナー50重量部を配合して用いた。
塗料5:エポキシ系熱硬化系塗料:ミリオンクリヤー、関西ペイント製
 硬化性化合物として、エポキシ樹脂80重量部に対し、硬化剤20重量部、有機溶剤として、シンナー50重量部を配合して用いた。
塗料6:ポリ塩化ビニル系塗料(常温硬化型):ビニボン100クリヤー、関西ペイント製
 硬化性化合物として、ポリ塩化ビニル100重量部に対し、有機溶剤として、シンナー80重量部を配合して用いた。
<Paint>
Paint 1: Urethane-based thermosetting paint: Retan PG80III Clear, manufactured by Kansai Paint As a curable compound, 10 parts by weight of a curing agent and 100 parts by weight of thinner as an organic solvent were used for 100 parts by weight of a urethane resin. .
Paint 2: Acrylic urethane-based thermosetting paint: nax Mighty-lac G-II KB type clear, manufactured by Nippon Paint As a curable compound, 100 parts by weight of acrylic urethane resin, 25 parts by weight of curing agent, thinner 125 as an organic solvent A part by weight was blended and used.
Paint 3: Urethane-based thermosetting paint: High Metal KD2850 Silver, manufactured by Cashew As a curable compound, 100 parts by weight of urethane-based resin was blended with 150 parts by weight of thinner as an organic solvent.
Paint 4: Urethane-based UV curable paint: 6110 clear, 50% by weight of thinner as an organic solvent was mixed with 100% by weight of urethane-based resin as a curable compound made from cashew.
Paint 5: Epoxy thermosetting paint: Million Clear, manufactured by Kansai Paint As a curable compound, 20 parts by weight of a curing agent and 50 parts by weight of thinner as an organic solvent were blended with 80 parts by weight of an epoxy resin.
Paint 6: Polyvinyl chloride paint (room temperature curing type): 100% by weight of polyvinyl chloride as a curable compound, 100 parts by weight of polyvinyl chloride as a curable compound was used by blending 80 parts by weight of thinner.
<LDS添加剤>
Black1G:シェファード製
CP5C:アンチモンドープ酸化スズ(酸化スズ95重量%、酸化アンチモン5重量%、酸化鉛0.02重量%、酸化銅0.004重量%)(Keeling&Walker社製)
23K:ハクスイテック製、アルミニウムドープ酸化亜鉛、抵抗率(製品規格値)100~500Ω・cm
<LDS additive>
Black 1G: Shepherd CP5C: antimony-doped tin oxide (95% by weight of tin oxide, 5% by weight of antimony oxide, 0.02% by weight of lead oxide, 0.004% by weight of copper oxide) (manufactured by Keeling & Walker)
23K: manufactured by Hakusuitec, aluminum-doped zinc oxide, resistivity (product standard value) 100 to 500 Ω · cm
<熱可塑性樹脂組成物のコンパウンド>
 後述する表に示す組成となるように、各成分をそれぞれ秤量し、ガラス繊維を除く成分をタンブラーにてブレンドし、二軸押出機(東芝機械製、TEM26SS)の根本から投入し、溶融した後で、ガラス繊維をサイドフィードして樹脂ペレット(熱可塑性樹脂組成物)を作製した。押出機の設定温度は、実施例1~18、比較例1~8については、280℃にて実施した。実施例19~22、実施例25~31、比較例9~12、比較例14、参考例については、290℃にて実施した。実施例23、24、比較例13については260℃にて実施した。
<Compound of thermoplastic resin composition>
Each component is weighed so as to have the composition shown in the table to be described later, components other than glass fibers are blended with a tumbler, charged from the root of a twin screw extruder (manufactured by Toshiba Machine, TEM26SS), and melted. Then, glass fibers were side-fed to produce resin pellets (thermoplastic resin composition). The set temperature of the extruder was 280 ° C. for Examples 1 to 18 and Comparative Examples 1 to 8. Examples 19 to 22, Examples 25 to 31, Comparative Examples 9 to 12, Comparative Example 14, and Reference Example were performed at 290 ° C. About Example 23, 24 and the comparative example 13, it implemented at 260 degreeC.
<試験片プレート>
 金型として60×60mmで厚みの2mmのキャビティに、一辺60mmが1.5mm厚みのファンゲートから溶融した樹脂を充填して成形を行った。ゲート部分をカットし、試験片プレートを得た。得られた試験片の色は目視で観察した。
<Specimen plate>
Molding was performed by filling a cavity of 60 × 60 mm and a thickness of 2 mm as a mold with a resin melted from a fan gate having a side of 60 mm and a thickness of 1.5 mm. The gate portion was cut to obtain a test piece plate. The color of the obtained test piece was visually observed.
<曲げ強度>
 上述の製造方法で得られた樹脂ペレットを120℃で4時間乾燥させた後、住友重機械工業製、SG125-MIIを用いて、4mm厚さのISO引張り試験片を射出成形した。
 シリンダー温度および金型温度は、それぞれ、実施例1~18、比較例1~8については、280℃、130℃、実施例23、24、比較例13については260℃、80℃、実施例19~22、実施例25~31、比較例10~12、比較例14、参考例については280℃、80℃にて実施した。
 ISO178に準拠して、上記ISO引張り試験片(4mm厚)を用いて、23℃の温度で曲げ強度(単位:MPa)を測定した。
<Bending strength>
The resin pellets obtained by the above production method were dried at 120 ° C. for 4 hours, and then an ISO tensile test piece having a thickness of 4 mm was injection molded using SG125-MII manufactured by Sumitomo Heavy Industries.
Cylinder temperature and mold temperature were 280 ° C. and 130 ° C. for Examples 1 to 18, Comparative Examples 1 to 8, and 260 ° C. and 80 ° C. for Examples 23 and 24 and Comparative Example 13, respectively. -22, Examples 25-31, Comparative Examples 10-12, Comparative Example 14, and Reference Example were carried out at 280 ° C. and 80 ° C.
Based on ISO178, the bending strength (unit: MPa) was measured at a temperature of 23 ° C. using the ISO tensile test piece (4 mm thickness).
<シャルピー衝撃強度>
 上記で得られたISO引張り試験片(4mm厚)を用い、ISO179に準拠し、23℃の条件で、ノッチなしおよびノッチ付きシャルピー衝撃強度(単位:KJ/m2)を測定した。
<Charpy impact strength>
Using the ISO tensile test piece (4 mm thickness) obtained above, the notched and notched Charpy impact strength (unit: KJ / m 2 ) was measured at 23 ° C. according to ISO 179.
<LDS層形成用組成物の調製および試験片プレートへの塗布>
<<実施例1~17、比較例2>>
 後述する表に示す組成となるように、塗料とLDS添加剤を薬さじにて混合をすることでLDS層形成用組成物(LDS層形成用塗料)を調製した。上記で得られた試験片プレートの表面をイソプロピルアルコールで脱脂処理した後、LDS層形成用組成物を試験片プレートの表面にスプレー塗装した。定着のため10分間静置した後、80℃で30分間焼き付け処理を行った。
<<比較例1、3~8>>
 LDS層形成用組成物の塗装は行なわず、上記で得られた試験片プレートの表面をイソプロピルアルコールで脱脂処理したものをそのまま用いた。
<<実施例18>>
 実施例18については、実施例1等と同様に、但し、定着時間は20分間とし、予備乾燥処理として40℃で20分静置した後、70℃で50分間焼き付け処理を行った。
<Preparation of composition for forming LDS layer and application to test piece plate>
<< Examples 1 to 17, Comparative Example 2 >>
A composition for forming an LDS layer (coating material for forming an LDS layer) was prepared by mixing the coating material and an LDS additive with a spoonful so as to have a composition shown in a table to be described later. After degreasing the surface of the test piece plate obtained above with isopropyl alcohol, the composition for forming an LDS layer was spray-coated on the surface of the test piece plate. After fixing for 10 minutes for fixing, baking treatment was performed at 80 ° C. for 30 minutes.
<< Comparative Examples 1, 3 to 8 >>
The composition for forming the LDS layer was not applied, and the surface of the test piece plate obtained above was degreased with isopropyl alcohol as it was.
<< Example 18 >>
Example 18 was the same as in Example 1 except that the fixing time was 20 minutes, and pre-drying treatment was allowed to stand at 40 ° C. for 20 minutes, followed by baking at 70 ° C. for 50 minutes.
<<実施例19~21、比較例9、実施例25、実施例27~30、実施例32~39>>
 後述する表に示す組成となるように、塗料とシンナーとLDS添加剤を薬さじにて混合をすることでLDS層形成用組成物(LDS層形成用塗料)を調製した。上記で得られた試験片プレートの表面を、中性洗剤を用いて洗浄後、メタノールでさらに洗浄した。LDS層形成用組成物を、刷毛を用いて試験片に塗布した。70℃で10分間加熱して硬化させた。
<<実施例22、比較例10、実施例26、実施例31、実施例40~42>>
 後述する表に示す組成となるように、塗料とシンナーとLDS添加剤を薬さじにて混合をすることでLDS層形成用組成物(LDS層形成用塗料)を調製した。上記で得られた試験片プレートの表面を、中性洗剤を用いて洗浄後、メタノールでさらに洗浄した。LDS層形成用組成物を、刷毛を用いて試験片に塗布した。60℃で5分予備加熱した後、1000mJ/cm2の露光量で紫外線照射して硬化させた。
<<比較例11、12、参考例、比較例14>>
 LDS層形成用組成物の塗装は行なわず、上記で得られた試験片プレートの表面を、中性洗剤を用いて洗浄後、メタノールでさらに洗浄したものをそのまま用いた。
<<実施例23>>
 後述する表に示す組成となるように、塗料とLDS添加剤を薬さじにて混合をすることでLDS層形成用組成物(LDS層形成用塗料)を調製した。上記で得られた試験片プレートの表面を、イソプロピルアルコールで脱脂処理を行った後、上記で得られたLDS層形成用組成物を試験片プレートの表面に均一にスプレー塗装した。定着のため20分間静置した後、焼き付け乾燥処理を100℃で30分を行った。
<<実施例24>>
 後述する表に示す組成となるように、塗料とLDS添加剤を薬さじにて混合をすることでLDS層形成用組成物(LDS層形成用塗料)を調製した。上記で得られた試験片プレートの表面を、イソプロピルアルコールで脱脂処理を行った後、上記で得られたLDS層形成用組成物を試験片プレートの表面に均一にスプレー塗装した。23℃で48時間静置した。
<<比較例13>>
 上記で得られた試験片プレートの表面を、イソプロピルアルコールで脱脂処理を行った後、そのまま用いた。
<< Examples 19 to 21, Comparative Example 9, Example 25, Examples 27 to 30, Examples 32 to 39 >>
A composition for forming an LDS layer (coating material for forming an LDS layer) was prepared by mixing a coating material, a thinner, and an LDS additive with a spoonful so as to have a composition shown in a table to be described later. The surface of the test piece plate obtained above was washed with a neutral detergent and further washed with methanol. The composition for LDS layer formation was apply | coated to the test piece using the brush. It was cured by heating at 70 ° C. for 10 minutes.
<< Example 22, Comparative Example 10, Example 26, Example 31, Examples 40 to 42 >>
A composition for forming an LDS layer (coating material for forming an LDS layer) was prepared by mixing a coating material, a thinner, and an LDS additive with a spoonful so as to have a composition shown in a table to be described later. The surface of the test piece plate obtained above was washed with a neutral detergent and further washed with methanol. The composition for LDS layer formation was apply | coated to the test piece using the brush. After preheating at 60 ° C. for 5 minutes, it was cured by ultraviolet irradiation at an exposure amount of 1000 mJ / cm 2 .
<< Comparative Examples 11 and 12, Reference Example, Comparative Example 14 >>
The composition for forming the LDS layer was not applied, and the surface of the test piece plate obtained above was washed with a neutral detergent and further washed with methanol.
<< Example 23 >>
A composition for forming an LDS layer (coating material for forming an LDS layer) was prepared by mixing the coating material and an LDS additive with a spoonful so as to have a composition shown in a table to be described later. The surface of the test piece plate obtained above was degreased with isopropyl alcohol, and then the LDS layer forming composition obtained above was spray-coated uniformly on the surface of the test piece plate. After fixing for 20 minutes for fixing, baking and drying treatment was performed at 100 ° C. for 30 minutes.
<< Example 24 >>
A composition for forming an LDS layer (coating material for forming an LDS layer) was prepared by mixing the coating material and an LDS additive with a spoonful so as to have a composition shown in a table to be described later. The surface of the test piece plate obtained above was degreased with isopropyl alcohol, and then the LDS layer forming composition obtained above was spray-coated uniformly on the surface of the test piece plate. It left still at 23 degreeC for 48 hours.
<< Comparative Example 13 >>
The surface of the test piece plate obtained above was degreased with isopropyl alcohol and then used as it was.
<Plating外観(メッキ性)>
 得られた試験片プレートの55×40mmの範囲に、SUNX製、LP-Z SERIESのレーザー照射装置(波長1064nmのYAGレーザー最大出力13W)を用い、出力100、80、60、40%、パルス周期50マイクロ秒および20マイクロ秒、速度2m/sにて照射した。その後のメッキ層形成工程は無電解のMacDermid製、MIDCopper100XB Strikeを用い、70℃のメッキ槽にて実施した。メッキ性能は10分間にメッキ層の厚みを目視にて判断した。
 10マスのサンプルのうち、表面に凹凸が見られず、良好な外観を確認できたマスの数で評価した。
A:9~10マス(10マスのサンプル全体として表面に凹凸が見られず、良好な外観を確認)
B:7~8マス
C:4~6マス
D:2~3マス
E:0~1マス(10マスのサンプル全体として表面に凹凸が見られ、外観が悪い)
<Platting appearance (plating properties)>
Using a laser irradiation apparatus (manufactured by SUNX, LP-Z SERIES (maximum output of YAG laser with a wavelength of 1064 nm, 13 W)) in the range of 55 × 40 mm of the obtained specimen plate, output 100, 80, 60, 40%, pulse period Irradiation was at 50 and 20 microseconds at a speed of 2 m / s. The subsequent plating layer forming step was carried out in a plating bath at 70 ° C. using an electroless MacDermid product, MIDCopper100XB Strike. The plating performance was determined by visual observation of the thickness of the plating layer in 10 minutes.
Of the 10 square samples, the evaluation was based on the number of squares on which no irregularities were found on the surface and a good appearance could be confirmed.
A: 9 to 10 squares (no irregularities are observed on the surface of the 10 square samples as a whole, and a good appearance is confirmed)
B: 7 to 8 squares C: 4 to 6 squares D: 2 to 3 squares E: 0 to 1 square (the entire sample of 10 squares has irregularities on its surface, and the appearance is poor)
<難燃性>
 上述の製造方法で得られた樹脂ペレットを120℃で4時間乾燥させた後、日本製鋼所製のJ50-EP型射出成形機を用いて、射出成形し、長さ125mm、幅13mm、厚さ1.6mmのUL試験用試験片を成形した。シリンダー温度および金型温度は、それぞれ、実施例1~18、比較例1~8については、280℃、130℃、実施例23、24、比較例13については260℃、80℃、実施例19~22、実施例25~42、比較例10~12、比較例14、参考例については280℃、80℃にて実施した。
<Flame retardance>
The resin pellets obtained by the above production method were dried at 120 ° C. for 4 hours and then injection molded using a J50-EP type injection molding machine manufactured by Nippon Steel, Ltd., and the length was 125 mm, the width was 13 mm, and the thickness was A 1.6 mm UL test specimen was molded. Cylinder temperature and mold temperature were 280 ° C. and 130 ° C. for Examples 1 to 18, Comparative Examples 1 to 8, and 260 ° C. and 80 ° C. for Examples 23 and 24 and Comparative Example 13, respectively. -22, Examples 25-42, Comparative Examples 10-12, Comparative Example 14, and Reference Example were carried out at 280 ° C. and 80 ° C.
 各樹脂組成物の難燃性の評価は、上述の方法で得られたUL試験用試験片を温度23℃、湿度50%の恒温室の中で48時間調湿し、米国アンダーライターズ・ラボラトリーズ(UL)が定めているUL94試験(機器の部品用プラスチック材料の燃焼試験)に準拠して行なった。UL94Vとは、鉛直に保持した所定の大きさの試験片にバーナーの炎を10秒間接炎した後の残炎時間やドリップ性から難燃性を評価する方法であり、V-0、V-1及びV-2の難燃性を有するためには、以下の表に示す基準を満たすことが必要となる。 The flame retardancy of each resin composition was evaluated by conditioning the test piece for UL test obtained by the above-mentioned method for 48 hours in a temperature-controlled room at a temperature of 23 ° C. and a humidity of 50%, and US Underwriters Laboratories. The test was conducted in accordance with the UL94 test (combustion test of plastic materials for equipment parts) defined by (UL). UL94V is a method for evaluating flame retardancy from the afterflame time and drip properties after indirect flame of a burner for 10 seconds on a test piece of a predetermined size held vertically, V-0, V- In order to have flame retardancy of 1 and V-2, it is necessary to satisfy the criteria shown in the following table.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 ここで残炎時間とは、着火源を遠ざけた後の、試験片の有炎燃焼を続ける時間の長さである。また、ドリップによる綿着火とは、試験片の下端から約300mm下にある標識用の綿が、試験片からの滴下(ドリップ)物によって着火されるかどうかによって決定される。さらに、5試料のうち、1つでも上記基準を満たさないものがある場合、V-2を満足しないとしてNR(not rated)と評価した。 Here, the afterflame time is the length of time for which the test piece continues to burn with flame after the ignition source is moved away. The cotton ignition by the drip is determined by whether or not the labeling cotton, which is about 300 mm below the lower end of the test piece, is ignited by a drip from the test piece. Furthermore, if any one of the five samples did not satisfy the above criteria, it was evaluated as NR (not rated) as not satisfying V-2.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 上記結果から明らかなとおり、本発明のLDS層形成用組成物を用いた場合、熱可塑性樹脂組成物にLDS添加剤を配合しなくても、樹脂成形品の表面に良好なメッキを形成できた。特に、メッキは、樹脂成形品と高い密着性を有しており、簡単には外れなかった。
 これに対し、LDS層形成用組成物を用いない場合(比較例1、3~8、11~14)、ガラス繊維を配合しているにもかかわらず機械的強度が達成されなかったり、LDS添加剤を配合しているにもかかわらず、メッキ性が達成されなかったりした。
 また、LDS添加剤を用いない比較例2、9、10では、メッキが形成できなかった。
As is apparent from the above results, when the composition for forming an LDS layer of the present invention was used, good plating could be formed on the surface of the resin molded product without adding an LDS additive to the thermoplastic resin composition. . In particular, the plating has high adhesiveness with the resin molded product and cannot be easily removed.
On the other hand, when the composition for forming an LDS layer is not used (Comparative Examples 1, 3 to 8, 11 to 14), mechanical strength is not achieved even though glass fibers are blended, or LDS is added. Despite blending the agent, plating properties were not achieved.
Further, in Comparative Examples 2, 9, and 10 in which no LDS additive was used, plating could not be formed.
11 樹脂成形品
12 LDS添加剤
13 メッキ層
21 樹脂成形品
22 LDS層
23 LDS添加剤
24 メッキ層
25 未照射部のLDS層
11 Resin Molded Product 12 LDS Additive 13 Plating Layer 21 Resin Molded Product 22 LDS Layer 23 LDS Additive 24 Plating Layer 25 Unirradiated LDS Layer

Claims (24)

  1. 硬化性化合物と、有機溶剤と、レーザーダイレクトストラクチャリング添加剤を含む、レーザーダイレクトストラクチャリング層形成用組成物。 A composition for forming a laser direct structuring layer, comprising a curable compound, an organic solvent, and a laser direct structuring additive.
  2. 前記硬化性化合物が樹脂である、請求項1に記載のレーザーダイレクトストラクチャリング層形成用組成物。 The composition for forming a laser direct structuring layer according to claim 1, wherein the curable compound is a resin.
  3. 前記硬化性化合物が、紫外線硬化性化合物または熱硬化性化合物である、請求項1または2に記載のレーザーダイレクトストラクチャリング層形成用組成物。 The composition for forming a laser direct structuring layer according to claim 1, wherein the curable compound is an ultraviolet curable compound or a thermosetting compound.
  4. 前記硬化性化合物および有機溶剤の合計100重量部に対し、レーザーダイレクトストラクチャリング添加剤を0.05~70重量部含む、請求項1~3のいずれか1項に記載のレーザーダイレクトストラクチャリング層形成用組成物。 The laser direct structuring layer formation according to any one of claims 1 to 3, comprising 0.05 to 70 parts by weight of a laser direct structuring additive with respect to a total of 100 parts by weight of the curable compound and the organic solvent. Composition.
  5. 前記レーザーダイレクトストラクチャリング層形成用組成物は、前記硬化性化合物を、20~80重量%含む、請求項1~4のいずれか1項に記載のレーザーダイレクトストラクチャリング層形成用組成物。 The composition for forming a laser direct structuring layer according to any one of claims 1 to 4, wherein the composition for forming a laser direct structuring layer contains 20 to 80% by weight of the curable compound.
  6. 請求項1~5のいずれか1項に記載のレーザーダイレクトストラクチャリング層形成用組成物と、熱可塑性樹脂を含む熱可塑性樹脂組成物を有するキット。 A kit comprising the composition for forming a laser direct structuring layer according to any one of claims 1 to 5 and a thermoplastic resin composition containing a thermoplastic resin.
  7. 前記熱可塑性樹脂組成物がレーザーダイレクトストラクチャリング添加剤を実質的に含まない、請求項6に記載のキット。 The kit of claim 6, wherein the thermoplastic resin composition is substantially free of laser direct structuring additives.
  8. 前記熱可塑性樹脂が、結晶性樹脂である、請求項6または7に記載のキット。 The kit according to claim 6 or 7, wherein the thermoplastic resin is a crystalline resin.
  9. 前記結晶性樹脂が、ポリアミド樹脂である、請求項8に記載のキット。 The kit according to claim 8, wherein the crystalline resin is a polyamide resin.
  10. 前記結晶性樹脂が、熱可塑性ポリエステル樹脂である、請求項8に記載のキット。 The kit according to claim 8, wherein the crystalline resin is a thermoplastic polyester resin.
  11. 前記熱可塑性樹脂が非晶性樹脂である、請求項6または7に記載のキット。 The kit according to claim 6 or 7, wherein the thermoplastic resin is an amorphous resin.
  12. 前記非晶性樹脂が、ポリカーボネート樹脂である、請求項11に記載のキット。 The kit according to claim 11, wherein the amorphous resin is a polycarbonate resin.
  13. 前記熱可塑性樹脂組成物が、染顔料および/または難燃剤組成物を含む、請求項6~12のいずれか1項に記載のキット。 The kit according to any one of claims 6 to 12, wherein the thermoplastic resin composition comprises a dye / pigment and / or a flame retardant composition.
  14. 前記熱可塑性樹脂組成物が、顔料および/または難燃剤組成物を含む、請求項6~12のいずれか1項に記載のキット。 The kit according to any one of claims 6 to 12, wherein the thermoplastic resin composition comprises a pigment and / or a flame retardant composition.
  15. 前記熱可塑性樹脂組成物が、黒色染顔料を含む、請求項6~14のいずれか1項に記載のキット。 The kit according to any one of claims 6 to 14, wherein the thermoplastic resin composition contains a black dye / pigment.
  16. 前記熱可塑性樹脂組成物が、アンチモン系難燃剤およびアンチモン系難燃助剤の少なくとも1種を含む、請求項6~15のいずれか1項に記載のキット。 The kit according to any one of claims 6 to 15, wherein the thermoplastic resin composition contains at least one of an antimony flame retardant and an antimony flame retardant aid.
  17. 前記熱可塑性樹脂組成物が、ハロゲン系難燃剤を含む、請求項6~16のいずれか1項に記載のキット。 The kit according to any one of claims 6 to 16, wherein the thermoplastic resin composition contains a halogen-based flame retardant.
  18. 前記熱可塑性樹脂組成物が、リン系難燃剤を含む、請求項6~15のいずれか1項に記載のキット。 The kit according to any one of claims 6 to 15, wherein the thermoplastic resin composition contains a phosphorus-based flame retardant.
  19. リン系難燃剤が、縮合リン酸エステルおよびホスファゼン化合物から選択される少なくとも1種を含む、請求項18に記載のキット。 The kit according to claim 18, wherein the phosphorus-based flame retardant comprises at least one selected from a condensed phosphate ester and a phosphazene compound.
  20. 前記熱可塑性樹脂組成物が、有機金属塩系難燃剤を含む、請求項6~15のいずれか1項に記載のキット。 The kit according to any one of claims 6 to 15, wherein the thermoplastic resin composition contains an organometallic salt flame retardant.
  21. 熱可塑性樹脂成形品の表面に、請求項1~5のいずれか1項に記載のレーザーダイレクトストラクチャリング層形成用組成物を適用し、硬化させた後、レーザーを照射し、メッキ層を形成する工程を含む、メッキ層付樹脂成形品の製造方法。 A laser direct structuring layer forming composition according to any one of claims 1 to 5 is applied to the surface of a thermoplastic resin molded article, cured, and then irradiated with a laser to form a plating layer. The manufacturing method of the resin molded product with a plating layer including a process.
  22. 前記熱可塑性樹脂成形品が、結晶性樹脂を含む、請求項21に記載のメッキ層付樹脂成形品の製造方法。 The method for producing a resin molded product with a plating layer according to claim 21, wherein the thermoplastic resin molded product contains a crystalline resin.
  23. 前記熱可塑性樹脂成形品が、非晶性樹脂を含む、請求項21に記載のメッキ層付樹脂成形品の製造方法。 The method for producing a resin molded product with a plating layer according to claim 21, wherein the thermoplastic resin molded product contains an amorphous resin.
  24. 請求項6~20のいずれか1項に記載のキットを用いる、請求項21~23のいずれか1項に記載のメッキ層付樹脂成形品の製造方法。 The method for producing a resin molded product with a plating layer according to any one of claims 21 to 23, wherein the kit according to any one of claims 6 to 20 is used.
PCT/JP2016/086254 2015-12-24 2016-12-06 Composition for forming laser direct structuring layer, kit, and method for manufacturing resin molded article having plating layer WO2017110458A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/064,836 US20180363144A1 (en) 2015-12-24 2016-12-06 Laser direct structuring layer-forming composition, kit, and method for manufacturing resin molded article with plated layer
CN201680074863.0A CN108431297A (en) 2015-12-24 2016-12-06 The manufacturing method of laser direct forming layer formation composition, component and the synthetic resin with coating
EP16878351.2A EP3396019A4 (en) 2015-12-24 2016-12-06 Composition for forming laser direct structuring layer, kit, and method for manufacturing resin molded article having plating layer

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2015252126 2015-12-24
JP2015-252126 2015-12-24
JP2016152752 2016-08-03
JP2016-152752 2016-08-03
JP2016209925A JP6441874B2 (en) 2015-12-24 2016-10-26 Composition for forming laser direct structuring layer, kit, and method for producing resin molded product with plating layer
JP2016-209925 2016-10-26

Publications (1)

Publication Number Publication Date
WO2017110458A1 true WO2017110458A1 (en) 2017-06-29

Family

ID=59090173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/086254 WO2017110458A1 (en) 2015-12-24 2016-12-06 Composition for forming laser direct structuring layer, kit, and method for manufacturing resin molded article having plating layer

Country Status (1)

Country Link
WO (1) WO2017110458A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019069840A1 (en) 2017-10-03 2019-04-11 三菱エンジニアリングプラスチックス株式会社 Metal-resin composite, and method for producing metal-resin composite
WO2019069805A1 (en) * 2017-10-03 2019-04-11 三菱エンジニアリングプラスチックス株式会社 Thermoplastic resin composition, resin molded article, method for manufacturing plated resin molded article, and method for manufacturing portable electronic device component
WO2019069839A1 (en) 2017-10-03 2019-04-11 三菱エンジニアリングプラスチックス株式会社 Metal resin composite body, resin composition and method for producing metal resin composite body
CN110167979A (en) * 2017-12-15 2019-08-23 苏州聚复高分子材料有限公司 A kind of photocurable compositions of 3D printing
US20220064402A1 (en) * 2018-12-18 2022-03-03 Sumitomo Bakelite Co., Ltd. Thermosetting resin composition for lds and method for manufacturing semiconductor device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000154266A (en) * 1998-09-17 2000-06-06 Polyplastics Co Preparation of plastic molding
JP2002363416A (en) * 2001-05-31 2002-12-18 Mitsubishi Rayon Co Ltd Resin composition for plating substrate
JP2005298720A (en) * 2004-04-14 2005-10-27 Teijin Chem Ltd Molded article for exterior use of vehicles formed from light-scattering polycarbonatre resin composition
JP2006281575A (en) * 2005-03-31 2006-10-19 Daicel Polymer Ltd Plated resin composition and plating coating body
CN102242354A (en) * 2011-05-26 2011-11-16 深圳市泛友科技有限公司 Selective chemical plating process and corresponding laser coatings and preparation method thereof
WO2014063636A1 (en) * 2012-10-26 2014-05-01 Shenzhen Byd Auto R&D Company Limited Coating composition, composite prepared by using the coating composition and method for preparing the same
JP2015014044A (en) * 2013-06-03 2015-01-22 株式会社レグルス Method of forming circuit pattern on plastic molding, coating liquid used therefor, and circuit pattern formed by method
WO2015080524A1 (en) * 2013-11-29 2015-06-04 주식회사 엘지화학 Composition for forming conductive patterns, method for forming conductive patterns using same, and resin structure having conductive patterns
EP2957661A1 (en) * 2014-06-16 2015-12-23 Wistron Neweb Corporation Method of forming metallic pattern on polymer substrate

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000154266A (en) * 1998-09-17 2000-06-06 Polyplastics Co Preparation of plastic molding
JP2002363416A (en) * 2001-05-31 2002-12-18 Mitsubishi Rayon Co Ltd Resin composition for plating substrate
JP2005298720A (en) * 2004-04-14 2005-10-27 Teijin Chem Ltd Molded article for exterior use of vehicles formed from light-scattering polycarbonatre resin composition
JP2006281575A (en) * 2005-03-31 2006-10-19 Daicel Polymer Ltd Plated resin composition and plating coating body
CN102242354A (en) * 2011-05-26 2011-11-16 深圳市泛友科技有限公司 Selective chemical plating process and corresponding laser coatings and preparation method thereof
WO2014063636A1 (en) * 2012-10-26 2014-05-01 Shenzhen Byd Auto R&D Company Limited Coating composition, composite prepared by using the coating composition and method for preparing the same
JP2015014044A (en) * 2013-06-03 2015-01-22 株式会社レグルス Method of forming circuit pattern on plastic molding, coating liquid used therefor, and circuit pattern formed by method
WO2015080524A1 (en) * 2013-11-29 2015-06-04 주식회사 엘지화학 Composition for forming conductive patterns, method for forming conductive patterns using same, and resin structure having conductive patterns
EP2957661A1 (en) * 2014-06-16 2015-12-23 Wistron Neweb Corporation Method of forming metallic pattern on polymer substrate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3396019A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019069840A1 (en) 2017-10-03 2019-04-11 三菱エンジニアリングプラスチックス株式会社 Metal-resin composite, and method for producing metal-resin composite
WO2019069805A1 (en) * 2017-10-03 2019-04-11 三菱エンジニアリングプラスチックス株式会社 Thermoplastic resin composition, resin molded article, method for manufacturing plated resin molded article, and method for manufacturing portable electronic device component
WO2019069839A1 (en) 2017-10-03 2019-04-11 三菱エンジニアリングプラスチックス株式会社 Metal resin composite body, resin composition and method for producing metal resin composite body
CN111107991A (en) * 2017-10-03 2020-05-05 三菱工程塑料株式会社 Metal-resin composite and method for producing metal-resin composite
JPWO2019069839A1 (en) * 2017-10-03 2020-10-22 三菱エンジニアリングプラスチックス株式会社 Method for producing metal-resin composite, resin composition and metal-resin composite
JPWO2019069840A1 (en) * 2017-10-03 2020-11-05 三菱エンジニアリングプラスチックス株式会社 Metal-resin composite and method for manufacturing metal-resin composite
JP7177780B2 (en) 2017-10-03 2022-11-24 三菱エンジニアリングプラスチックス株式会社 METAL-RESIN COMPOSITE, RESIN COMPOSITION, AND METHOD FOR MANUFACTURING METAL-RESIN COMPOSITE
JP7202308B2 (en) 2017-10-03 2023-01-11 三菱エンジニアリングプラスチックス株式会社 METAL-RESIN COMPOSITE AND METHOD FOR MANUFACTURING METAL-RESIN COMPOSITE
CN110167979A (en) * 2017-12-15 2019-08-23 苏州聚复高分子材料有限公司 A kind of photocurable compositions of 3D printing
US20220064402A1 (en) * 2018-12-18 2022-03-03 Sumitomo Bakelite Co., Ltd. Thermosetting resin composition for lds and method for manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
JP6039864B2 (en) Composition for forming laser direct structuring layer, kit, and method for producing resin molded product with plating layer
JP6622877B2 (en) Composition for forming laser direct structuring layer, kit, and method for producing resin molded product with plating layer
JP5620035B1 (en) Resin composition for laser direct structuring, resin molded product, and method for producing resin molded product with plating layer
WO2017110458A1 (en) Composition for forming laser direct structuring layer, kit, and method for manufacturing resin molded article having plating layer
JP5579909B2 (en) Resin composition for laser direct structuring, resin molded product, and method for producing resin molded product with plating layer
JP5710826B2 (en) Resin composition, resin molded product, method for producing resin molded product, and laser direct structuring additive
JP5925912B2 (en) Resin composition for laser direct structuring, resin molded product, and method for producing resin molded product with plating layer
JP5675920B2 (en) Resin composition for laser direct structuring, resin molded product, and method for producing resin molded product with plating layer
JP5675919B2 (en) Resin composition for laser direct structuring, resin molded product, and method for producing resin molded product with plating layer
JP5579908B2 (en) Resin composition for laser direct structuring, resin molded product, and method for producing resin molded product with plating layer
JP6239960B2 (en) Thermoplastic resin composition for laser direct structuring, resin molded product, and method for producing resin molded product
JP5766864B2 (en) Resin composition, resin molded product, and method for producing resin molded product
WO2014185217A1 (en) Resin composition for laser direct structuring use, resin molded article, and method for producing resin molded article having plated layer attached thereto
JP5917742B2 (en) Resin composition, resin molded product, and method for producing resin molded product
WO2015060323A1 (en) Resin composition, resin molding, and method for producing resin molding
WO2015053159A1 (en) Resin composition, resin molded article, and method for producing resin molded article
JP6310240B2 (en) Thermoplastic resin composition for laser direct structuring, resin molded product, and method for producing resin molded product
JP5599929B1 (en) Resin composition, resin molded product, and method for producing resin molded product
JP5706033B1 (en) Resin composition, resin molded product, and method for producing resin molded product
JP5706032B1 (en) Resin composition, resin molded product, and method for producing resin molded product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16878351

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016878351

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016878351

Country of ref document: EP

Effective date: 20180724