WO2017110359A1 - Plant monitoring system and plant monitoring method - Google Patents

Plant monitoring system and plant monitoring method Download PDF

Info

Publication number
WO2017110359A1
WO2017110359A1 PCT/JP2016/084882 JP2016084882W WO2017110359A1 WO 2017110359 A1 WO2017110359 A1 WO 2017110359A1 JP 2016084882 W JP2016084882 W JP 2016084882W WO 2017110359 A1 WO2017110359 A1 WO 2017110359A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
plant
coal
unit price
monitoring system
Prior art date
Application number
PCT/JP2016/084882
Other languages
French (fr)
Japanese (ja)
Inventor
林 喜治
孝朗 関合
正博 村上
博充 今野
和貴 定江
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to CN201680074981.1A priority Critical patent/CN108475398A/en
Publication of WO2017110359A1 publication Critical patent/WO2017110359A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/06Electricity, gas or water supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Definitions

  • the present invention calculates the unit price of the fuel supplied to the plant by managing the received weight, the used weight, and the purchase unit price for each arriving fuel in the plant, and further, the constituent device based on the data acquired from the plant
  • the present invention relates to a plant monitoring system and a plant monitoring method for evaluating a loss cost due to an increase in fuel caused by a decrease in efficiency by calculating an efficiency decrease amount.
  • a soot blower is installed in the boiler as a device for removing dirt on the pipe surface.
  • a soot blower is a device that removes ash by jetting high-temperature steam, and operates during boiler operation.
  • it is difficult to completely remove dirt with a soot blower, and when a plant is stopped during periodic inspection or the like, an operator enters the boiler and removes dirt manually.
  • this cleaning work requires a work cost because it is necessary to build a scaffold for cleaning heat transfer pipes at high places.
  • the operating cost that is, the fuel cost
  • the deviation from the normal value of the equipment efficiency is calculated, and this is converted into the fuel increase amount.
  • the increase amount of the fuel cost due to the efficiency reduction can be obtained.
  • plant efficiency and fuel consumption also change from moment to moment depending on plant load, atmospheric conditions, and fuel characteristics (calorific value, composition).
  • the calculation of the cost increase amount needs to be processed in time series.
  • Patent Document 1 describes a fuel business processing system. This system obtains the total amount of fuel received by the power generation site and the total amount of fuel used at a frequency of about once a month, and grasps the storage amount from the difference between the two. Using this information and the purchase unit price, the asset amount is calculated for the stored fuel. The purpose of grasping the amount of assets is to support the accounting business of the power generation company.
  • the amount of fuel stored in the power generation site can be grasped by the system described in Patent Document 1.
  • this system it is impossible to grasp the unit price of fuel supplied to the boiler, which changes every moment, that is, the time-series change in the fuel unit price.
  • a plant monitoring system includes a fuel information registration unit that registers unit price information for each fuel type, and a stored fuel management that manages the amount of fuel supplied to the plant for each fuel type. And a supply fuel calculation unit for calculating a unit price of fuel supplied to the plant based on the unit price information and the supply amount.
  • an efficiency calculation unit that calculates the amount of change in efficiency of the plant or the component equipment of the plant, and calculates the amount of change in fuel caused by the change in efficiency.
  • a loss cost calculation unit that calculates a loss cost based on the amount of change in fuel.
  • the unit price of the fuel supplied to the plant can be evaluated as time series data.
  • the change amount of the fuel cost due to the efficiency change can be obtained as the time-series data.
  • FIG. 1 It is a figure which shows the structure of the operating cost monitoring system of the power plant which is an Example of this invention. It is a figure which shows the structure of the storage coal database. It is a figure which shows the structure of a supply coal database. It is a figure which shows the structure of a plant database. It is a figure which shows the structure of an efficiency database. It is a figure which shows the structure of a loss cost database. It is a figure which shows the example of a display screen of a system.
  • FIG. 1 is a diagram showing an operating cost monitoring system for a power plant according to an embodiment of the present invention.
  • Reference numeral 1 denotes an operating cost monitoring system.
  • Reference numeral 2 denotes a display device that displays a calculation result of the system.
  • 3 is a power plant.
  • a coal boiler plant is the object of cost monitoring.
  • 31 is a coal boiler constituting the power plant, and 32 is a steam turbine.
  • Reference numeral 33 denotes a sensor for measuring the flow rate of the fuel supplied to the coal boiler.
  • 4 is a control device for controlling the power plant.
  • 5 is coal stored in the coal yard of the power generation site.
  • 63 is a coal bunker that temporarily stores coal before supplying it to the coal boiler.
  • 62 is a blender that mixes a plurality of types of coal before conveying the coal to a coal bunker.
  • 61 is a sensor for measuring the flow rate of coal conveyed from the coal storage to the blender for each coal type.
  • Reference numeral 7 denotes a purchase system that manages purchase information when purchasing coal
  • reference numeral 71 denotes a purchase information database that stores purchase information.
  • the fuel manager acquires the purchase information of the corresponding coal from the purchase information database 71 through the coal information registration unit 11.
  • the fuel manager is notified in advance of the purchase number and the purchase contract date, and the purchase information corresponding to this is searched from the purchase information database.
  • the purchase information acquired by the search process is stored in the stored coal database 16.
  • FIG. 2 shows the structure of data stored in the stored coal database.
  • FIG. 2A shows information acquired from the purchase information database.
  • the data of the coal type code, the coal type name, and the unit price corresponding to the purchase number are stored.
  • a code number is attached
  • the fuel manager will analyze the calorific value and composition of coal when it arrives.
  • the fuel manager also inputs analysis data through the coal information registration unit 11.
  • the input data is stored in the stored coal database 16.
  • FIG. 2B shows data on the calorific value and composition (moisture ratio, ash ratio, etc.) of coal registered by the fuel manager.
  • coal When coal arrives at the power generation site, various data are registered through the coal information registration unit 11 as described above, and then stored in a coal yard installed in the power generation site. As shown in FIG. 1, coal is stored for each coal type in the coal storage. Coal stored in the coal storage is conveyed to the blender 62 through the belt conveyor according to the coal consumption in the coal boiler. A flow meter 61 is installed on the belt conveyor, and the flow rate of coal conveyed to the blender can be measured for each coal type.
  • the fuel manager registers the accepted weight of coal and the number of the belt conveyor to be conveyed from the coal storage to the blender through the coal information registration unit 11.
  • the registered data is stored in the stored coal database 16.
  • FIG. 2C shows the belt conveyor number and acceptance weight data registered by the fuel manager. Stored in association with the purchase number described above.
  • the stored coal management unit 12 constituting the operating cost monitoring system 1 takes in the flow rate data for each coal type, calculates the remaining weight of the coal stored in the coal storage, and stores it in the stored coal database 16. As shown in FIG. 2C, the remaining weight is stored.
  • the stored coal management unit 12 performs a process of updating the value by subtracting the measured value by the flow meter 61 installed for each belt conveyor from the received weight stored in the database at regular time intervals. Thereby, the remaining weight of the coal stored in the coal storage can be obtained in real time. When the remaining weight reaches 0, it indicates that another coal corresponding to the same belt conveyor number has started to be conveyed.
  • the supplied coal calculation unit 13 constituting the operating cost monitoring system 1 takes in the purchase number and flow rate of coal supplied from the stored coal management unit 12 to the blender 62 by each belt conveyor. Using these data and the data stored in the stored coal database 16, the coal blending rate is calculated according to Equation 1.
  • the unit price of the coal supplied to the boiler is calculated by Equation 2.
  • the unit price data for each coal type is stored in the stored coal database 16 for each purchase number, as shown in FIG.
  • the supplied coal calculation unit 13 calculates the calorific value of the coal supplied to the boiler by Equation 3.
  • the calorific value data for each coal type is stored in the stored coal database 16 for each purchase number, as shown in FIG.
  • a value corresponding to the coal supplied to the boiler is calculated by a weighted average based on the coal mixture ratio. Since the calculation formula is the same as that in Equation 3, the description is omitted.
  • FIG. 3 shows the configuration of the database.
  • the code number which shows the mixed charcoal type, and its coal mixture rate are stored. This data is stored as time-series data together with a time stamp with values that change from moment to moment.
  • the coal unit price is stored as time series data.
  • the calorific value and composition of coal are stored as time series data.
  • the control device 4 aggregates the measurement data of the sensors installed in the power plant and the control signals calculated based on the measurement data.
  • the control device 4 stores sensor and control signal data in the plant database 18.
  • FIG. 4 shows the configuration of the plant database 18. As shown in the figure, each data is stored as time series data.
  • the efficiency calculation unit 14 calculates the efficiency of the power plant components.
  • the efficiency calculated by the system according to the present embodiment is the power generation efficiency of the plant, the boiler room efficiency, and the turbine room efficiency.
  • the respective calculation formulas are shown in equations 4, 5, and 6.
  • the power generation efficiency is determined by the product of boiler room efficiency and turbine room efficiency as shown in Equation 4. Moreover, boiler room efficiency is calculated
  • the turbine chamber efficiency is obtained from the generator output with respect to the steam heat quantity at the turbine inlet. All the data necessary for the efficiency calculation is stored in the plant database 18, and the efficiency calculation unit 14 takes in the data from the database and performs a calculation process. The result of the efficiency calculation is stored in the efficiency database 19.
  • FIG. 5 shows the configuration of the efficiency database 19. As shown in the figure, each efficiency value is stored as time series data.
  • the loss cost calculation unit 15 calculates the loss cost with respect to the amount of change in efficiency.
  • the loss cost here is an increase in fuel cost caused by a change in efficiency.
  • the amount of increase in fuel is obtained by Equation 7.
  • Equation 7 shows the amount of fuel increase caused by the decrease in boiler room efficiency.
  • a reference value for boiler room efficiency is set in advance, and a deviation from the reference value is obtained by converting the fuel flow rate. Data necessary for the calculation is stored in the plant database 18 or the efficiency database 19.
  • the loss cost is calculated by multiplying the fuel increase obtained in Equation 7 above by the unit price of coal.
  • Coal unit price data is stored in the supplied coal database 17.
  • the loss cost here is an increase in fuel cost per hour. It corresponds to an instantaneous value that changes according to changes in operating conditions and efficiency.
  • the accumulated loss cost value is a value obtained by accumulating the loss cost per time obtained by Equation 8.
  • the standard for accumulation that is, the accumulation start point is set after maintenance work such as cleaning. That is, the loss cost accumulated value indicates the total amount of loss cost that has occurred due to the decrease in efficiency over time after the maintenance work is performed.
  • FIG. 6 shows the configuration of the loss cost database 20. As shown in the figure, the fuel increase amount due to the efficiency decrease, the loss cost, and the loss cost accumulated value are stored as time series data.
  • the above numbers 7 to 9 indicate the loss costs caused by the decrease in boiler room efficiency.
  • the loss cost caused by the decrease in turbine chamber efficiency can be calculated. That is, since the loss cost for each device constituting the power plant can be calculated, it can be determined which device has greatly increased the fuel cost.
  • FIG. 7 is an example of a display screen.
  • Various parameters stored as time series data in the database are displayed as trends.
  • a parameter related to the loss cost caused by the change in the boiler room efficiency is displayed, and it is possible to grasp the trend related to the operating cost such as the increase amount of the loss cost and the accumulated value of the loss cost so far.
  • the unit price is managed by making it correspond to the purchase information.
  • the remaining weight for each coal type is grasped, and even when a plurality of types of coal types are mixed and supplied to the boiler, the unit price of coal is calculated.
  • This makes it possible to evaluate the unit price of coal as time series data. By combining this unit price data and time series data of efficiency analysis, it is possible to grasp the loss cost caused by the efficiency reduction as a trend.
  • the system according to the present invention can be used for all plants that require fuel management, such as power plants and chemical plants.

Abstract

The purpose of the present invention is to evaluate the unit price of a fuel supplied to a plant as time-series data or real-time data. This makes it possible to grasp the increment of fuel cost in time series or real time by combination with data pertaining to fuel increment that accompanies a decline in the efficiency of the constituent apparatuses of the plant. In order to achieve the aforementioned purpose, a plant monitoring system according to the present invention is characterized by being provided with: a fuel information registration unit for registering unit price information for each type of fuel; a reserve fuel management unit for managing, for each type of fuel, the supply amount of fuel supplied to the plant; and a supplied fuel calculation unit for calculating the unit price of fuel supplied to the plant on the basis of the unit price information and the supply amount.

Description

プラント監視システム及びプラント監視方法Plant monitoring system and plant monitoring method
 本発明は、プラントにおいて、到着燃料ごとに受入重量、使用重量、購入単価を管理することにより、プラントに供給されている燃料の単価を計算し、さらに、プラントから取得したデータを基に構成機器の効率低下量を計算することにより、効率低下に伴い生じた燃料増加による損失コストを評価するプラント監視システム及びプラント監視方法に関する。 The present invention calculates the unit price of the fuel supplied to the plant by managing the received weight, the used weight, and the purchase unit price for each arriving fuel in the plant, and further, the constituent device based on the data acquired from the plant The present invention relates to a plant monitoring system and a plant monitoring method for evaluating a loss cost due to an increase in fuel caused by a decrease in efficiency by calculating an efficiency decrease amount.
 発電プラント、例えば、石炭ボイラプラントは、伝熱配管への灰などの付着により経時的に効率が低下していく。効率が低下すると、過剰に燃料が消費され、運転コストが上昇する。ボイラには、配管表面の汚れを除去する装置としてスートブロワが設置されている。スートブロワは高温蒸気の噴射により灰を除去する装置であり、ボイラ運転中に動作する。しかし、スートブロワでは汚れを完全に除去することは困難であり、定期検査などのプラント停止時に、作業員がボイラ内に入り、手作業で汚れを落とす。この洗浄作業は、作業員の人件費がかかるのに加え、高所にある伝熱配管を洗浄するために足場を組む必要があり、作業コストがかかる。 The efficiency of power plants, such as coal boiler plants, decreases with time due to adhesion of ash or the like to heat transfer pipes. When the efficiency decreases, the fuel is excessively consumed and the operation cost increases. A soot blower is installed in the boiler as a device for removing dirt on the pipe surface. A soot blower is a device that removes ash by jetting high-temperature steam, and operates during boiler operation. However, it is difficult to completely remove dirt with a soot blower, and when a plant is stopped during periodic inspection or the like, an operator enters the boiler and removes dirt manually. In addition to the labor cost of workers, this cleaning work requires a work cost because it is necessary to build a scaffold for cleaning heat transfer pipes at high places.
 以上のような背景から、洗浄などの保守作業を頻繁に実施するのは得策ではなく、効率低下に伴う運転コストの増加量と、効率改善のための保守コストの両者を鑑みて、トータルコストが最小となるように、保守作業を実施する頻度を調整するのが有効である。 In view of the above background, it is not a good idea to frequently perform maintenance work such as cleaning, and the total cost is reduced in view of both the increase in operating cost due to the decrease in efficiency and the maintenance cost for improving efficiency. It is effective to adjust the frequency of performing maintenance work so as to minimize the maintenance work.
 運転コスト、すなわち、燃料コストを算出するには、機器効率の通常値からの偏差を算出し、これを燃料の増加量に換算する。燃料増加量に対し、燃料単価を乗じることで、効率低下による燃料コストの増加量を求めることができる。このとき、プラントの負荷、大気条件、燃料特性(発熱量、組成)によって、プラントの効率や燃料の消費量も時々刻々と変わるため、機器の効率、効率低下に伴う燃料増加量、及び、燃料コスト増加量の計算は、時系列に処理する必要がある。 ∙ To calculate the operating cost, that is, the fuel cost, the deviation from the normal value of the equipment efficiency is calculated, and this is converted into the fuel increase amount. By multiplying the fuel increase amount by the fuel unit price, the increase amount of the fuel cost due to the efficiency reduction can be obtained. At this time, plant efficiency and fuel consumption also change from moment to moment depending on plant load, atmospheric conditions, and fuel characteristics (calorific value, composition). The calculation of the cost increase amount needs to be processed in time series.
 しかしながら、発電プラント、特に石炭ボイラプラントで使用される燃料の単価をリアルタイムで時系列に把握するのは困難である。これは、発電プラントの燃料が、購入契約を締結した後、現地鉱山からの搬送と発電サイトでの貯蔵によるタイムラグが生じるためである。さらに、燃料種類が同じでも、購入時期によって単価が異なることが管理を困難にしている。つまり、単価が異なる同種の燃料が同時に発電サイトに貯蔵される場合がある。以上の点から、現時点でプラントに供給されている燃料と、燃料の購入情報、すなわち単価との対応関係を取るのが困難である。さらに、石炭ボイラの場合、異なる炭種を混合して使用する場合があり、このときの混炭率も変わる。このため、ボイラに供給される石炭の単価が一定ではなく、連続的に変わるという特徴がある。 However, it is difficult to grasp the unit price of fuel used in a power plant, particularly a coal boiler plant, in real time in a time series. This is because the fuel in the power plant has a time lag due to transportation from the local mine and storage at the power generation site after the purchase contract is concluded. Furthermore, even if the fuel type is the same, the unit price varies depending on the purchase time, making management difficult. That is, the same type of fuel with different unit prices may be stored at the power generation site at the same time. From the above points, it is difficult to take a correspondence relationship between the fuel currently supplied to the plant and the purchase information of the fuel, that is, the unit price. Furthermore, in the case of a coal boiler, different coal types may be used in combination, and the coal mixing rate at this time also changes. For this reason, the unit price of the coal supplied to the boiler is not constant but has a feature that it changes continuously.
 燃料の単価を管理するためのシステムとしては、特許文献1に、燃料業務処理システムとして記載されている。このシステムは、発電サイトが受け入れた燃料の総量と使用した燃料の総量を月1回程度の頻度で求め、両者の差分から貯蔵量を把握する。この情報と購入単価を用いて、貯蔵燃料に対して資産額を算出する。資産額を把握する目的は、発電会社の経理業務の支援である。 As a system for managing the unit price of fuel, Patent Document 1 describes a fuel business processing system. This system obtains the total amount of fuel received by the power generation site and the total amount of fuel used at a frequency of about once a month, and grasps the storage amount from the difference between the two. Using this information and the purchase unit price, the asset amount is calculated for the stored fuel. The purpose of grasping the amount of assets is to support the accounting business of the power generation company.
特開2005-301397JP 2005-301397
 前述しように、特許文献1に記載のシステムにより、発電サイトに貯蔵された燃料の資産額を把握することができる。しかしながら、このシステムでは、時々刻々と変わるボイラへの供給燃料の単価、すなわち、燃料単価の時系列変化を把握できない。 As described above, the amount of fuel stored in the power generation site can be grasped by the system described in Patent Document 1. However, with this system, it is impossible to grasp the unit price of fuel supplied to the boiler, which changes every moment, that is, the time-series change in the fuel unit price.
 また、ボイラの運転条件によって変化する機器効率、効率低下に伴う燃料増加量の時系列データに対して、燃料単価の時系列データと組み合わせて、燃料コストの増加量を把握することが不可能である。 In addition, it is impossible to grasp the amount of increase in fuel cost by combining the time series data of the fuel increase amount due to the equipment efficiency changing due to the operating condition of the boiler and the fuel efficiency reduction with the time series data of the fuel unit price. is there.
 上記課題を解決する為に、本発明に係るプラント監視システムは、燃料種類ごとの単価情報を登録する燃料情報登録部と、燃料種類ごとにプラントに供給する燃料の供給量を管理する貯蔵燃料管理部と、前記単価情報及び前記供給量に基づいて、前記プラントに供給されている燃料単価を計算する供給燃料計算部とを備えることを特徴とする。 In order to solve the above problems, a plant monitoring system according to the present invention includes a fuel information registration unit that registers unit price information for each fuel type, and a stored fuel management that manages the amount of fuel supplied to the plant for each fuel type. And a supply fuel calculation unit for calculating a unit price of fuel supplied to the plant based on the unit price information and the supply amount.
 また、上記の構成に加えて、前記プラント又は前記プラントの構成機器の効率の変化量を計算する効率計算部と、前記効率の変化によって生じた燃料の変化量を計算し、前記燃料単価及び前記燃料の変化量に基づいて損失コストを計算する損失コスト計算部とを更に備えることを特徴とする。 In addition to the above-described configuration, an efficiency calculation unit that calculates the amount of change in efficiency of the plant or the component equipment of the plant, and calculates the amount of change in fuel caused by the change in efficiency. And a loss cost calculation unit that calculates a loss cost based on the amount of change in fuel.
 本発明によれば、プラントに供給している燃料の単価を時系列データとして評価することが可能になる。 According to the present invention, the unit price of the fuel supplied to the plant can be evaluated as time series data.
 また、このデータと、プラントの効率分析による燃料変化量の時系列データを組み合わせることで、効率変化による燃料コストの変化量を時系列データとして得ることができる。これにより、時々刻々と変わるプラントの運転条件と効率変化に応じた、燃料コストの変化を把握することが可能になり、効率変化による燃料コストへの影響を高精度で評価することができる。 Also, by combining this data with the time-series data of the fuel change amount based on the efficiency analysis of the plant, the change amount of the fuel cost due to the efficiency change can be obtained as the time-series data. Thereby, it becomes possible to grasp the change of the fuel cost according to the operation condition and the efficiency change of the plant which changes every moment, and the influence on the fuel cost by the change of the efficiency can be evaluated with high accuracy.
本発明の実施例である発電プラントの運転コスト監視システムの構成を示す図である。It is a figure which shows the structure of the operating cost monitoring system of the power plant which is an Example of this invention. 貯蔵石炭データベースの構成を示す図である。It is a figure which shows the structure of the storage coal database. 供給石炭データベースの構成を示す図である。It is a figure which shows the structure of a supply coal database. プラントデータベースの構成を示す図である。It is a figure which shows the structure of a plant database. 効率データベースの構成を示す図である。It is a figure which shows the structure of an efficiency database. 損失コストデータベースの構成を示す図である。It is a figure which shows the structure of a loss cost database. システムの表示画面例を示す図である。It is a figure which shows the example of a display screen of a system.
 本発明による発電プラントの運転コスト監視システムの構成について図面を参照して以下に説明する。 The configuration of a power plant operating cost monitoring system according to the present invention will be described below with reference to the drawings.
 図1は、本発明の実施例になる発電プラントの運転コスト監視システムを示す図である。1は運転コスト監視システムである。2はシステムの計算結果を表示する表示装置である。3は発電プラントである。本実施例になるシステムでは石炭ボイラプラントをコスト監視の対象としている。31は発電プラントを構成する石炭ボイラ、32は蒸気タービンである。33は石炭ボイラへ供給される燃料の流量を計測するセンサである。4は発電プラントを制御する制御装置である。5は発電サイトの貯炭場に貯蔵される石炭である。63は石炭を石炭ボイラへ供給する前に一時的に貯蔵する石炭バンカーである。62は石炭バンカーへ石炭を搬送する前に、複数種類の石炭を混合するブレンダーである。61は貯炭場からブレンダーに搬送される石炭の流量を炭種ごとに計測するセンサである。7は石炭を購入したときの購入情報を管理する購買システム、71は購買情報を格納する購買情報データベースである。 FIG. 1 is a diagram showing an operating cost monitoring system for a power plant according to an embodiment of the present invention. Reference numeral 1 denotes an operating cost monitoring system. Reference numeral 2 denotes a display device that displays a calculation result of the system. 3 is a power plant. In the system according to the present embodiment, a coal boiler plant is the object of cost monitoring. 31 is a coal boiler constituting the power plant, and 32 is a steam turbine. Reference numeral 33 denotes a sensor for measuring the flow rate of the fuel supplied to the coal boiler. 4 is a control device for controlling the power plant. 5 is coal stored in the coal yard of the power generation site. 63 is a coal bunker that temporarily stores coal before supplying it to the coal boiler. 62 is a blender that mixes a plurality of types of coal before conveying the coal to a coal bunker. 61 is a sensor for measuring the flow rate of coal conveyed from the coal storage to the blender for each coal type. Reference numeral 7 denotes a purchase system that manages purchase information when purchasing coal, and reference numeral 71 denotes a purchase information database that stores purchase information.
 図1を参照して、運転コスト監視システム1での処理を説明する。 Referring to FIG. 1, processing in the operating cost monitoring system 1 will be described.
 購入した石炭が発電サイトに到着すると、燃料管理者は、石炭情報登録部11を通して、購買情報データベース71から該当する石炭の購入情報を取得する。燃料管理者には、事前に購入番号、購入契約日が通知されており、これと一致する購買情報を購買情報データベースから検索する。検索処理によって取得した購買情報は、貯蔵石炭データベース16に格納される。 When the purchased coal arrives at the power generation site, the fuel manager acquires the purchase information of the corresponding coal from the purchase information database 71 through the coal information registration unit 11. The fuel manager is notified in advance of the purchase number and the purchase contract date, and the purchase information corresponding to this is searched from the purchase information database. The purchase information acquired by the search process is stored in the stored coal database 16.
 図2は貯蔵石炭データベースに格納されるデータの構成を示している。図2(a)が、購買情報データベースから取得した情報を示している。前記したように、データ検索のキーとなる購入番号と購入契約日に加えて、購入番号に対応する炭種コード、炭種名、単価のデータが格納される。本実施例になる装置では、各炭種にコード番号を付けて管理する。 Fig. 2 shows the structure of data stored in the stored coal database. FIG. 2A shows information acquired from the purchase information database. As described above, in addition to the purchase number and purchase contract date, which are keys for data search, the data of the coal type code, the coal type name, and the unit price corresponding to the purchase number are stored. In the apparatus which becomes a present Example, a code number is attached | subjected and managed to each charcoal type.
 また、燃料管理者は、石炭到着時に石炭発熱量と組成の分析作業を行う。燃料管理者は、分析データも石炭情報登録部11を通して入力する。入力されたデータは、貯蔵石炭データベース16に格納される。図2(b)が、燃料管理者が登録した石炭の発熱量、及び、組成(水分比率、灰分比率など)のデータである。 In addition, the fuel manager will analyze the calorific value and composition of coal when it arrives. The fuel manager also inputs analysis data through the coal information registration unit 11. The input data is stored in the stored coal database 16. FIG. 2B shows data on the calorific value and composition (moisture ratio, ash ratio, etc.) of coal registered by the fuel manager.
 発電サイトに石炭が到着すると、前記したように石炭情報登録部11を通して各種データを登録した後、発電サイト内に設置された貯炭場に保管される。図1に示すように、貯炭場では石炭が炭種ごとに保管される。貯炭場に保管された石炭は、石炭ボイラでの石炭消費量に応じて、ベルトコンベアを通してブレンダー62に搬送される。ベルトコンベアには流量計61が設置されており、ブレンダーに搬送される石炭流量を炭種ごとに計測できる。 When coal arrives at the power generation site, various data are registered through the coal information registration unit 11 as described above, and then stored in a coal yard installed in the power generation site. As shown in FIG. 1, coal is stored for each coal type in the coal storage. Coal stored in the coal storage is conveyed to the blender 62 through the belt conveyor according to the coal consumption in the coal boiler. A flow meter 61 is installed on the belt conveyor, and the flow rate of coal conveyed to the blender can be measured for each coal type.
 燃料管理者は、石炭情報登録部11を通して、石炭の受入重量、及び貯炭場からブレンダーへ搬送するベルトコンベアの番号を登録する。登録されたデータは、貯蔵石炭データベース16に格納される。図2(c)が、燃料管理者が登録したベルトコンベアの番号、及び受入重量のデータである。前記した購入番号と対応させて格納される。 The fuel manager registers the accepted weight of coal and the number of the belt conveyor to be conveyed from the coal storage to the blender through the coal information registration unit 11. The registered data is stored in the stored coal database 16. FIG. 2C shows the belt conveyor number and acceptance weight data registered by the fuel manager. Stored in association with the purchase number described above.
 次に、運転コスト監視システム1を構成する貯蔵石炭管理部12は、炭種ごとの流量データを取り込み、貯炭場に保管された石炭の残重量を計算し、貯蔵石炭データベース16に格納する。図2(c)に示したように、残重量が格納される。貯蔵石炭管理部12は、データベースに格納された受入重量から、ベルトコンベアごとに設置された流量計61による計測値を差し引いて値を更新する処理を一定時間間隔で行う。これにより、貯炭場に保管された石炭の残重量をリアルタイムで求めることができる。残重量が0まで達したら、同じベルトコンベアの番号に該当する別の石炭の搬送が始まったことを示す。 Next, the stored coal management unit 12 constituting the operating cost monitoring system 1 takes in the flow rate data for each coal type, calculates the remaining weight of the coal stored in the coal storage, and stores it in the stored coal database 16. As shown in FIG. 2C, the remaining weight is stored. The stored coal management unit 12 performs a process of updating the value by subtracting the measured value by the flow meter 61 installed for each belt conveyor from the received weight stored in the database at regular time intervals. Thereby, the remaining weight of the coal stored in the coal storage can be obtained in real time. When the remaining weight reaches 0, it indicates that another coal corresponding to the same belt conveyor number has started to be conveyed.
 次に、運転コスト監視システム1を構成する供給石炭計算部13は、貯蔵石炭管理部12から、各ベルトコンベアでブレンダー62に供給されている石炭の購入番号、及び、流量を取り込む。これらのデータと貯蔵石炭データベース16に格納されているデータを用いて、数1により混炭率を計算する。 Next, the supplied coal calculation unit 13 constituting the operating cost monitoring system 1 takes in the purchase number and flow rate of coal supplied from the stored coal management unit 12 to the blender 62 by each belt conveyor. Using these data and the data stored in the stored coal database 16, the coal blending rate is calculated according to Equation 1.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 また、混炭率を基に、ボイラに供給されている石炭の単価を数2により計算する。ここで、炭種ごとの単価データは、図2(a)に示したように、購入番号ごとに貯蔵石炭データベース16に格納されている。 Also, based on the coal mixture rate, the unit price of the coal supplied to the boiler is calculated by Equation 2. Here, the unit price data for each coal type is stored in the stored coal database 16 for each purchase number, as shown in FIG.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 同様に、供給石炭計算部13は、ボイラに供給されている石炭の発熱量を数3により計算する。ここで、炭種ごとの発熱量データは、図2(b)に示したように、購入番号ごとに貯蔵石炭データベース16に格納されている。 Similarly, the supplied coal calculation unit 13 calculates the calorific value of the coal supplied to the boiler by Equation 3. Here, the calorific value data for each coal type is stored in the stored coal database 16 for each purchase number, as shown in FIG.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 他の組成データも同様に、石炭の混炭率による加重平均により、ボイラに供給されている石炭に応じた値を計算する。計算式は数3と同様であるので省略する。 Similarly, for other composition data, a value corresponding to the coal supplied to the boiler is calculated by a weighted average based on the coal mixture ratio. Since the calculation formula is the same as that in Equation 3, the description is omitted.
 供給石炭計算部13での計算結果は、供給石炭データベース17に格納される。図3に、データベースの構成を示す。図3(a)では、混ぜた炭種を示すコード番号と、その混炭率を格納している。このデータは、時々刻々と変わる値をタイムスタンプと共に時系列データとして格納される。図3(b)では、石炭単価を時系列データとして格納している。同様に、図3(c)では、石炭発熱量と組成を時系列データとして格納している。 The calculation result in the supply coal calculation unit 13 is stored in the supply coal database 17. FIG. 3 shows the configuration of the database. In Fig.3 (a), the code number which shows the mixed charcoal type, and its coal mixture rate are stored. This data is stored as time-series data together with a time stamp with values that change from moment to moment. In FIG.3 (b), the coal unit price is stored as time series data. Similarly, in FIG.3 (c), the calorific value and composition of coal are stored as time series data.
 次に、発電プラント3のプラントデータを格納する方法を説明する。本実施例になるシステムでは、制御装置4が、発電プラントに設置されたセンサの計測データ、及び、計測データを基に演算した制御信号を集約している。制御装置4は、センサと制御信号のデータをプラントデータベース18に格納する。図4は、プラントデータベース18の構成を示している。図に示すように、各データが時系列データとして格納される。 Next, a method for storing the plant data of the power plant 3 will be described. In the system according to the present embodiment, the control device 4 aggregates the measurement data of the sensors installed in the power plant and the control signals calculated based on the measurement data. The control device 4 stores sensor and control signal data in the plant database 18. FIG. 4 shows the configuration of the plant database 18. As shown in the figure, each data is stored as time series data.
 次に、効率計算部14が発電プラントの構成機器の効率を計算する。本実施になるシステムで計算する効率としては、プラントの発電効率、ボイラ室効率、及び、タービン室効率である。それぞれの計算式を数4、5、6に示す。 Next, the efficiency calculation unit 14 calculates the efficiency of the power plant components. The efficiency calculated by the system according to the present embodiment is the power generation efficiency of the plant, the boiler room efficiency, and the turbine room efficiency. The respective calculation formulas are shown in equations 4, 5, and 6.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 発電効率は、数4に示すようにボイラ室効率とタービン室効率の積によって求める。また、ボイラ室効率は、ボイラに供給される石炭の総熱量に対するボイラ出口蒸気の熱量によって求める。また、タービン室効率は、タービン入口の蒸気熱量に対する発電機出力によって求める。これらの効率計算に必要なデータは、全てプラントデータベース18に格納されており、効率計算部14がデータベースからデータを取り込み、計算処理を行う。効率計算の結果は、効率データベース19に格納される。図5は、効率データベース19の構成を示している。図に示すように、各効率の値が時系列データとして格納される。 The power generation efficiency is determined by the product of boiler room efficiency and turbine room efficiency as shown in Equation 4. Moreover, boiler room efficiency is calculated | required by the calorie | heat amount of boiler exit steam with respect to the total calorie | heat amount of coal supplied to a boiler. The turbine chamber efficiency is obtained from the generator output with respect to the steam heat quantity at the turbine inlet. All the data necessary for the efficiency calculation is stored in the plant database 18, and the efficiency calculation unit 14 takes in the data from the database and performs a calculation process. The result of the efficiency calculation is stored in the efficiency database 19. FIG. 5 shows the configuration of the efficiency database 19. As shown in the figure, each efficiency value is stored as time series data.
 次に、損失コスト計算部15が効率の変化量に対する損失コストを計算する。ここでの損失コストは、効率の変化によって生じた燃料コストの増加量である。燃料増加量は、数7によって求める。 Next, the loss cost calculation unit 15 calculates the loss cost with respect to the amount of change in efficiency. The loss cost here is an increase in fuel cost caused by a change in efficiency. The amount of increase in fuel is obtained by Equation 7.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 数7は、ボイラ室効率の低下によって生じた燃料増加量を示す。あらかじめ、ボイラ室効率の基準値を設定しておき、基準値からの偏差を燃料流量に換算して求める。計算に必要なデータは、プラントデータベース18または効率データベース19に格納されている。 Equation 7 shows the amount of fuel increase caused by the decrease in boiler room efficiency. A reference value for boiler room efficiency is set in advance, and a deviation from the reference value is obtained by converting the fuel flow rate. Data necessary for the calculation is stored in the plant database 18 or the efficiency database 19.
 次に、数8により損失コストを求める。 Next, the loss cost is calculated by Equation 8.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 損失コストは、前記の数7で求めた燃料増加量に対し、石炭の単価を乗じることで計算する。石炭単価のデータは、供給石炭データベース17に格納されている。ここでの損失コストは、時間当たりの燃料コストの増加量である。運転条件や効率の変化によって変わる瞬時値に相当する。 The loss cost is calculated by multiplying the fuel increase obtained in Equation 7 above by the unit price of coal. Coal unit price data is stored in the supplied coal database 17. The loss cost here is an increase in fuel cost per hour. It corresponds to an instantaneous value that changes according to changes in operating conditions and efficiency.
 次に、数9により損失コストの累積値を求める。 Next, the cumulative value of the loss cost is obtained by Equation 9.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 損失コスト累積値は、数8で求めた時間当たりの損失コストを累積した値である。累積する際の基準、すなわち、累積の開始点は、洗浄などの保守作業後を設定する。つまり、損失コスト累積値は、保守作業を実施してから、経時的な効率低下によって生じた損失コストの現在までのトータルの金額を示す。 The accumulated loss cost value is a value obtained by accumulating the loss cost per time obtained by Equation 8. The standard for accumulation, that is, the accumulation start point is set after maintenance work such as cleaning. That is, the loss cost accumulated value indicates the total amount of loss cost that has occurred due to the decrease in efficiency over time after the maintenance work is performed.
 損失コストの計算結果は、損失コストデータベース20に格納される。図6は、損失コストデータベース20の構成を示している。図に示すように、効率低下による燃料増加量、損失コスト、損失コスト累積値が時系列データとして格納される。 The calculation result of the loss cost is stored in the loss cost database 20. FIG. 6 shows the configuration of the loss cost database 20. As shown in the figure, the fuel increase amount due to the efficiency decrease, the loss cost, and the loss cost accumulated value are stored as time series data.
 前記の数7~9は、ボイラ室効率の低下によって生じた損失コストを示す。同様の処理で、タービン室効率の低下によって生じた損失コストも計算できる。つまり、発電プラントを構成する機器ごとの損失コストを計算できるため、どの機器が燃料コストを大きく上昇させているかが判断できる。 The above numbers 7 to 9 indicate the loss costs caused by the decrease in boiler room efficiency. In the same process, the loss cost caused by the decrease in turbine chamber efficiency can be calculated. That is, since the loss cost for each device constituting the power plant can be calculated, it can be determined which device has greatly increased the fuel cost.
 運転コスト監視システム1が計算した各種パラメータは、図1の表示制御部21によって表示装置2へ表示できる。図7は、表示画面例である。データベースに時系列データとして格納された各種パラメータをトレンド表示している。この例では、ボイラ室効率の変化によって生じた損失コストに関するパラメータを表示しており、損失コストの上昇幅や、これまでの損失コストの累積値などの運転コストに関する傾向を把握することができる。 Various parameters calculated by the operating cost monitoring system 1 can be displayed on the display device 2 by the display control unit 21 in FIG. FIG. 7 is an example of a display screen. Various parameters stored as time series data in the database are displayed as trends. In this example, a parameter related to the loss cost caused by the change in the boiler room efficiency is displayed, and it is possible to grasp the trend related to the operating cost such as the increase amount of the loss cost and the accumulated value of the loss cost so far.
 本発明になるシステムによれば、発電サイトに石炭が到着した際に、購入情報と対応させることで単価を管理する。また、炭種ごとの流量データを利用することで、炭種ごとの残重量を把握し、さらに、複数種類の炭種を混炭してボイラに供給する場合でも石炭の単価を計算する。これにより、石炭の単価を時系列データとして評価することが可能になる。この単価データと、効率分析の時系列データを組み合わせることで、効率低下によって生じた損失コストをトレンドとして把握することができる。 According to the system of the present invention, when coal arrives at the power generation site, the unit price is managed by making it correspond to the purchase information. In addition, by using flow rate data for each coal type, the remaining weight for each coal type is grasped, and even when a plurality of types of coal types are mixed and supplied to the boiler, the unit price of coal is calculated. This makes it possible to evaluate the unit price of coal as time series data. By combining this unit price data and time series data of efficiency analysis, it is possible to grasp the loss cost caused by the efficiency reduction as a trend.
 本発明になるシステムによれば、発電プラント、化学プラントを始めとした燃料管理が必要なプラント全般に利用できる。 The system according to the present invention can be used for all plants that require fuel management, such as power plants and chemical plants.
1 運転コスト監視システム
2 表示装置
3 発電プラント
4 制御装置
5 貯炭場に貯蔵されている石炭
7 購買システム
11 石炭情報登録部
12 貯蔵石炭管理部 
13 供給石炭計算部
14 効率計算部
15 損失コスト計算部
16 貯蔵石炭データベース
17 供給石炭データベース
18 プラントデータベース
19 効率データベース
20 損失コストデータベース
21 表示制御部
31 石炭ボイラ
32 蒸気タービン
33 ボイラに供給する石炭の流量計
61 石炭バンカーに搬送する石炭の流量計
62 ブレンダー
63 石炭バンカー
71 購買情報データベース
DESCRIPTION OF SYMBOLS 1 Operating cost monitoring system 2 Display apparatus 3 Power plant 4 Control apparatus 5 Coal stored in coal storage 7 Purchasing system 11 Coal information registration part 12 Coal storage management part
13 Supply coal calculation unit 14 Efficiency calculation unit 15 Loss cost calculation unit 16 Storage coal database 17 Supply coal database 18 Plant database 19 Efficiency database 20 Loss cost database 21 Display control unit 31 Coal boiler 32 Steam turbine 33 Flow rate of coal supplied to the boiler Total 61 Flow meter of coal transported to coal bunker 62 Blender 63 Coal bunker 71 Purchasing information database

Claims (10)

  1.  燃料種類ごとの単価情報を登録する燃料情報登録部と、
     燃料種類ごとにプラントに供給する燃料の供給量を管理する貯蔵燃料管理部と、
     前記単価情報及び前記供給量に基づいて、前記プラントに供給されている燃料単価を計算する供給燃料計算部とを備えること
     を特徴とするプラント監視システム。
    A fuel information registration unit for registering unit price information for each fuel type;
    A stored fuel management unit that manages the amount of fuel supplied to the plant for each fuel type;
    A plant monitoring system, comprising: a fuel supply calculation unit that calculates a unit price of fuel supplied to the plant based on the unit price information and the supply amount.
  2.  請求項1に記載のプラント監視システムは、
     前記プラント又は前記プラントの構成機器の効率の変化量を計算する効率計算部と、
     前記効率の変化によって生じた燃料の変化量を計算し、前記燃料単価及び前記燃料の変化量に基づいて損失コストを計算する損失コスト計算部とを更に備えること
     を特徴とするプラント監視システム。
    The plant monitoring system according to claim 1,
    An efficiency calculation unit for calculating an amount of change in efficiency of the plant or a component device of the plant;
    A plant monitoring system, further comprising: a loss cost calculation unit that calculates a fuel change amount caused by the change in efficiency and calculates a loss cost based on the fuel unit price and the fuel change amount.
  3.  請求項1に記載のプラント監視システムにおいて、
     前記燃料情報登録部は、燃料種類ごとの受入重量を登録しており、
     前記貯蔵燃料管理部は、前記受入重量と前記供給量の差分から残重量を更新すること
     を特徴とするプラント監視システム。
    The plant monitoring system according to claim 1,
    The fuel information registration unit registers the accepted weight for each fuel type,
    The stored fuel management unit updates a remaining weight based on a difference between the received weight and the supply amount.
  4.  請求項1に記載のプラント監視システムにおいて、
     燃料の単価情報は購買システムから取得すること
     を特徴とするプラント監視システム。
    The plant monitoring system according to claim 1,
    The plant monitoring system is characterized in that fuel unit price information is obtained from a purchasing system.
  5.  請求項1に記載のプラント監視システムにおいて、
     前記プラントは石炭ボイラ発電プラントを含み、かつ前記燃料は石炭を含むことを特徴とするプラント監視システム。
    The plant monitoring system according to claim 1,
    The plant monitoring system characterized in that the plant includes a coal boiler power plant and the fuel includes coal.
  6.  請求項1に記載のプラント監視システムにおいて、
     前記供給燃料計算部は、前記燃料種類ごとの前記供給量の計測情報に基づいて前記プラントに供給される燃料の混合率の変化を計算すること
     を特徴とするプラント監視システム。
    The plant monitoring system according to claim 1,
    The supply fuel calculation unit calculates a change in a mixing ratio of fuel supplied to the plant based on measurement information of the supply amount for each fuel type.
  7.  請求項2に記載のプラント監視システムは、
     前記燃料単価、前記効率の変化量、前記燃料の変化量又は前記損失コストの内少なくとも一つについて、トレンドデータとして表示する表示装置を備えること
     を特徴とするプラント監視システム。
    The plant monitoring system according to claim 2 is:
    A plant monitoring system comprising: a display device that displays at least one of the fuel unit price, the change in efficiency, the change in the fuel, or the loss cost as trend data.
  8.  燃料種類ごとの単価情報を登録するステップと、
     燃料種類ごとにプラントに供給する燃料の供給量を管理するステップと、
     前記単価情報及び前記供給量に基づいて、前記プラントに供給されている燃料単価を計算するステップとを備えること
     を特徴とするプラント監視方法。
    Registering unit price information for each fuel type;
    Managing the amount of fuel supplied to the plant for each fuel type;
    And a step of calculating a unit price of fuel supplied to the plant based on the unit price information and the supply amount.
  9.  請求項8に記載のプラント監視方法は、
     前記プラント又は前記プラントの構成機器の効率の変化量を計算するステップと、
     前記効率の変化によって生じた燃料の変化量を計算し、前記燃料単価及び前記燃料の変化量に基づいて損失コストを計算するステップとを更に備えること
     を特徴とするプラント監視方法。
    The plant monitoring method according to claim 8 comprises:
    Calculating the amount of change in efficiency of the plant or the component equipment of the plant;
    The plant monitoring method further comprising: calculating a fuel change amount caused by the change in efficiency, and calculating a loss cost based on the fuel unit price and the fuel change amount.
  10.  請求項8に記載のプラント監視方法において、
     前記燃料種類ごとの受入重量を登録し、前記受入重量と前記供給量の差分から残重量を更新すること
     を特徴とするプラント監視方法。
    The plant monitoring method according to claim 8, wherein
    A plant monitoring method, wherein the received weight for each fuel type is registered, and the remaining weight is updated from a difference between the received weight and the supply amount.
PCT/JP2016/084882 2015-12-22 2016-11-25 Plant monitoring system and plant monitoring method WO2017110359A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680074981.1A CN108475398A (en) 2015-12-22 2016-11-25 Equipment monitoring system and apparatus monitoring method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-249218 2015-12-22
JP2015249218A JP2017117033A (en) 2015-12-22 2015-12-22 Plant monitoring system and plant monitoring method

Publications (1)

Publication Number Publication Date
WO2017110359A1 true WO2017110359A1 (en) 2017-06-29

Family

ID=59089327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084882 WO2017110359A1 (en) 2015-12-22 2016-11-25 Plant monitoring system and plant monitoring method

Country Status (3)

Country Link
JP (1) JP2017117033A (en)
CN (1) CN108475398A (en)
WO (1) WO2017110359A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101952792B1 (en) * 2018-08-08 2019-02-27 주식회사 블루이코노미전략연구원 Fault diagnosis method and apparatus for energy system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09179604A (en) * 1995-09-13 1997-07-11 Toshiba Corp System and method for controlling operation of plant
JP2003193863A (en) * 2001-12-21 2003-07-09 Mitsubishi Heavy Ind Ltd Evaluation system for gas turbine economic property
JP2004211999A (en) * 2003-01-07 2004-07-29 Hitachi Ltd Control system of thermal power plant, system of fuel order and payment of thermal power plant
JP2005133583A (en) * 2003-10-29 2005-05-26 Hitachi Ltd Gas turbine cleaning time determining device and method
JP2006185340A (en) * 2004-12-28 2006-07-13 Hitachi Ltd Method and system for supporting procurement of fuel

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5873251A (en) * 1995-09-13 1999-02-23 Kabushiki Kaisha Toshiba Plant operation control system
JP2004211587A (en) * 2002-12-27 2004-07-29 Toshiba Corp Operational support system for power generation plant
CN101697179A (en) * 2009-11-05 2010-04-21 东南大学 Method for measuring and calculating trend of heat value of fuel coal of power station boiler based on positive and negative heat balance relationship
CN102592249A (en) * 2012-02-10 2012-07-18 华北电力大学 Fire coal blending method of thermal power plants
CN103345213B (en) * 2013-06-09 2015-09-02 华电电力科学研究院 Fire coal management under the changeable condition of fossil-fired unit ature of coal and combustion strategies optimization method
CN103942732A (en) * 2014-04-24 2014-07-23 国家电网公司 Economic evaluation method of modification effects of heat supply technology of pure condensing steam turbine unit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09179604A (en) * 1995-09-13 1997-07-11 Toshiba Corp System and method for controlling operation of plant
JP2003193863A (en) * 2001-12-21 2003-07-09 Mitsubishi Heavy Ind Ltd Evaluation system for gas turbine economic property
JP2004211999A (en) * 2003-01-07 2004-07-29 Hitachi Ltd Control system of thermal power plant, system of fuel order and payment of thermal power plant
JP2005133583A (en) * 2003-10-29 2005-05-26 Hitachi Ltd Gas turbine cleaning time determining device and method
JP2006185340A (en) * 2004-12-28 2006-07-13 Hitachi Ltd Method and system for supporting procurement of fuel

Also Published As

Publication number Publication date
JP2017117033A (en) 2017-06-29
CN108475398A (en) 2018-08-31

Similar Documents

Publication Publication Date Title
US20020133270A1 (en) System and methods for remote management of steam generating systems
CN107766457A (en) A kind of thermal power plant's operation management system and its task executing method
DE112018001684T5 (en) Indicator detection system and indicator detection method
CN106917742B (en) A kind of air compressor energy-saving amount monitoring system and amount of energy saving remote upload method
CN108717499B (en) Method and system for analyzing fuel consumption of steel rolling heating furnace
CN107192414A (en) A kind of method of industrial park waste water discharge intelligent monitoring and alarm
CN112198854A (en) Data transformation system based on ceramic production line
US8744864B2 (en) Methods and systems for generating a financial report
JP3742310B2 (en) Power generation equipment maintenance support system
WO2017110359A1 (en) Plant monitoring system and plant monitoring method
CN111290357B (en) Intelligent fuel management and control system based on Internet of things and big data
JP2013145478A (en) High pressure gas facility inspection and management support system and inspection and management method of the same
JPH08178172A (en) Calculation and evaluation of thickness reduction caused by erosion and corrosion of equipment and piping device
JP6909425B2 (en) Air preheater differential pressure rise predictor
CN206723024U (en) A kind of air compressor energy-saving amount monitoring system
CN102999028B (en) Gas medium continuous data early warning system digital-to-analogue constructing method
JP2006195916A (en) Unit requirement production method, unit requirement production device and process evaluation method
JP2002133093A (en) Production facility ranking service system
CN110118589B (en) Device and method for calibrating metering device
JP2002117103A (en) Method and system for calculating environmental load of product
KR101807975B1 (en) The Energy Management System including the product's energy cost calculating module measured by the distribution rate of the instrument data according to the percentage of the facility-specific distribution.
CN104731065B (en) A kind of pollution permission system and Emission trading management system
JP7157102B2 (en) Management device for biomass power generation equipment, biomass power generation equipment, method for calculating moisture content when wood chips are used as fuel
JP5695779B1 (en) Monitoring tool providing service method and apparatus
KR101068420B1 (en) A fuel consume measurement device by work time measuring of the oil consume machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16878253

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16878253

Country of ref document: EP

Kind code of ref document: A1