WO2017110276A1 - Electric power supply system, control device for electric power supply system, and program - Google Patents

Electric power supply system, control device for electric power supply system, and program Download PDF

Info

Publication number
WO2017110276A1
WO2017110276A1 PCT/JP2016/083152 JP2016083152W WO2017110276A1 WO 2017110276 A1 WO2017110276 A1 WO 2017110276A1 JP 2016083152 W JP2016083152 W JP 2016083152W WO 2017110276 A1 WO2017110276 A1 WO 2017110276A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power supply
inertia
facility
output
Prior art date
Application number
PCT/JP2016/083152
Other languages
French (fr)
Japanese (ja)
Inventor
正利 吉村
尚弘 楠見
守 木村
日野 徳昭
コーテット アウン
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2017110276A1 publication Critical patent/WO2017110276A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • H02J3/241The oscillation concerning frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers

Definitions

  • the present invention relates to a power supply system, a control device for the power supply system, and a program.
  • a power system installed in a limited area is called a “local system”, and an existing wide-area power system is called a “upper system”.
  • the local system is linked to the upper system as necessary, and sells power to the upper system or purchases power from the upper system.
  • the abstract of Patent Document 1 states that “the electric power system 11 is a natural energy type power source 10 via a main bus 13 and an auxiliary bus 14 and a solar power generation facility 15. 16 is connected to the power load 17, and the total power of the power of the natural energy type power source 10 and the like is calculated by a total power calculation unit 19.
  • the main bus 13 is a dispersion that performs load following operation via the auxiliary bus.
  • an electric power storage device 22 comprising an engine generator 21 and a secondary battery, and the deviation between the load power detection value and the connection point received power set value is reduced by a low-pass filter 27 and a low-frequency component and a high-frequency component.
  • the engine generator 21 is controlled with a low frequency component and the power storage device 22 is controlled with a high frequency component ".
  • the power supply system of the present invention is: Power supply equipment connected to the load equipment via the power system and capable of increasing / decreasing output power based on an output command from the outside, A control device; And the control device includes: Based on system inertia related to the power system, a system inertia absorbed power calculation unit that calculates system inertia absorbed power so that a change range of the frequency of the power system falls within a predetermined range; A value obtained by subtracting the grid inertia absorption power from the shortage / surplus power that is a shortage or surplus of power in the power system, as the output command, a signal input / output unit that commands the power supply facility, It is characterized by having.
  • the power supply system can be operated at low cost.
  • FIG. It is a block diagram of the electric power system by one Embodiment of this invention. It is a block diagram of a control apparatus. It is a flowchart of the application program performed with a control apparatus.
  • FIG. It is a figure which shows the relationship of each output instruction
  • the power system A includes a host system 1 (another power system) that is a wide-area backbone power system, and an independent power supply system 20 (power supply system).
  • the independent power supply system 20 has a local system 2 (power system), and the local system 2 includes a control device 4, a power storage facility 5 (power source facility), an AC power source facility 6 (power source facility), and solar power generation.
  • a facility 7 natural energy power source facility
  • a wind power generation facility 8 natural energy power source facility
  • the interconnection device 3 includes a switch 3a for setting on / off of the grid connection between the upper grid 1 and the local grid 2, and a transformer 3b for adjusting the voltage on the local grid 2 side when grid interconnection is performed. If the switch 3a is turned off, the local system 2 becomes a system independent of the upper system 1.
  • the power storage facility 5 is a power supply facility having no inertia, and includes a storage battery, an inverter, an AC-DC converter, and the like (none of which are shown).
  • the storage battery is charged from the local system 2 via the AC-DC converter.
  • a storage battery is discharged and electric power is supplied to the local system 2 via an inverter.
  • the AC power supply facility 6 is a power supply facility having inertia, and includes, for example, a turbine generator, an engine generator, and the like.
  • the power generation output of the solar power generation facility 7 varies depending on the solar radiation conditions. Moreover, the power generation output of the wind power generation facility 8 varies depending on the wind speed situation. Equipment whose power generation output fluctuates due to these natural phenomena is sometimes called “natural energy power supply equipment”.
  • the load facility 9 includes a house that is a wide area power load, an office building that is a concentrated power load, a factory, and the like.
  • the control device 4 includes various electric quantities (power, voltage, power factor, etc.) transmitted from the local system 2 and each power supply facility, operating state signals such as state of charge (SOC) of the power storage facility 5, and interconnections. Based on the interconnection state signal of the device 3 and the system unit inertia constant which is the inertia constant of the entire independent power supply system 20, the power generation output suppression amount, the charge / discharge, etc. Supply power and other control commands.
  • SOC state of charge
  • the control device 4 includes a control arithmetic device 41, a signal input / output interface device 42 (signal input / output means, signal input / output unit), an input device 43, a display device 44, and a data storage device 45.
  • the control arithmetic unit 41 includes hardware as a general computer such as a central processing unit (CPU), a random access memory (RAM), a read only memory (ROM), and a hard disk drive (HDD). Stores an OS (Operating System), application programs, various data, and the like. The OS and application programs are expanded in the RAM and executed by the CPU.
  • the input device 43 is used by an operator to input an operation command for setting / correcting a control command or for maintenance.
  • the display device 44 is for the operator to check the driving situation and the like.
  • the data storage device 45 stores various data used for application programs to be described later.
  • the signal input / output interface device 42 mediates signal transmission inside the control device 4 and between the control device 4 and the components 3, 5 to 9.
  • the variable power output prediction calculation unit 411 calculates the predicted output power value P PV (t) of the solar power generation facility 7 and the predicted output power value P WF (t) of the wind power generation facility 8.
  • the demand power prediction calculation unit 412 calculates a demand power prediction value P LOAD (t) that is a prediction value of demand power of the independent power supply system 20.
  • the interconnection power calculation unit 413 calculates a predicted supply power value P SUP (t) that is an expected value of the supply power.
  • a power generation facility connected to the independent power supply system 20 excluding the natural energy power supply facility (7, 8) is referred to as a “distributed power supply”.
  • the power storage facility 5 and the AC power source facility 6 correspond to a distributed power source.
  • the distributed power output command calculation unit 414 in FIG. 2 calculates a distributed power output command P DP (t) that is the total value of power to be output from the distributed power.
  • System unit inertia constant calculation unit 415 calculates system unit inertia constant H.
  • the system unit inertia constant H is a value representing the “hardness of change” of the system frequency f of the local system 2 with respect to power fluctuation. That is, if the system unit inertia constant H is small, the system frequency f is likely to change with respect to power fluctuations. Conversely, if the system unit inertia constant H is large, the system frequency f is difficult to change with respect to power fluctuations.
  • system inertia absorbed power calculation unit 416 calculates system inertia absorbed power ⁇ P I (t).
  • the system inertia absorption power ⁇ P I (t) represents the power absorbed by the fluctuation of the system frequency f.
  • the distributed power supply correction output command calculation unit 417 includes a power storage facility output command P BATT (t) that is an output command to the power storage facility 5 and an AC power supply facility output command P EG (t that is an output command to the AC power supply facility 6. ) And calculate.
  • FIG. 3 is a flowchart of an application program executed in the control arithmetic device 41.
  • the weather prediction data is data that predicts the future weather, and includes predictions such as “weather”, “solar radiation”, “temperature”, “wind speed”, “wind direction”, and the like.
  • the actually measured data is various kinds of actually measured data, and “demand power”, “power supply equipment operation state”, “electrical quantities”, “interconnection power”, “system unit inertia” in the independent power supply system 20.
  • Constant H "," weather data ", etc.
  • the “meteorological data” includes measured values such as “weather”, “amount of solar radiation”, “temperature”, “wind speed”, “wind direction”, and the like.
  • the “interconnection power” is power that is received or transmitted to the higher-order system 1.
  • step S32 the fluctuation power output prediction unit 411 (see FIG. 2) performs the predicted output power value P PV (t) of the photovoltaic power generation facility 7 and the predicted output power value P WF ( tw of the wind power generation facility 8). t) is calculated. That is, since the output power of the solar power generation facility 7 and the wind power generation facility 8 depends on the weather, the past weather data, the past output power, the future weather prediction data previously obtained in step S31, Based on this relationship, the future output power can be predicted.
  • the demand power prediction calculation unit 412 calculates a demand power predicted value P LOAD (t) that is a predicted value of demand power of the independent power supply system 20.
  • P LOAD a demand power predicted value of demand power of the independent power supply system 20.
  • An example of the calculated output power predicted values P PV (t), P WF (t) and the predicted power demand P LOAD (t) is shown in FIG.
  • the interconnection power calculation unit 413 calculates a supply power expected value P SUP (t). Specifically, the predicted power supply value P SUP (t) includes the predicted output power values P PV (t) and P WF (t) obtained in steps S32 and S33 and the predicted power demand value P LOAD ( Based on t), the following equation (1) is obtained. According to the equation (1), the interconnection power calculation unit 413 supplies power from the solar power generation facility 7 and the wind power generation facility 8 which are natural energy power supply facilities to the local system 2, and the power storage facility 5 or the AC power supply facility 6. Is prioritized over the power supply to the local system 2. Thereby, the capability of a natural energy power supply facility can be used effectively.
  • the interconnection power calculation unit 413 calculates an interconnection power expected value P GC (t) that is an expected value of the interconnection power. Further, the maximum value of the interconnection power is referred to as the maximum interconnection power P GCLIM (t).
  • the maximum interconnection power P GCLIM (t) is determined based on a contract between the operator of the upper grid 1 and the operator of the independent power supply system 20, but generally varies depending on the date and time. It is a function of t.
  • the interconnected power expected value P GC (t) is determined to be within a range of ⁇ P GCLIM (t).
  • the interconnected power expected value P GC (t) is zero.
  • the predicted interconnected power value P GC (t) is the expected power supply value P SUP (t). It is desirable to determine so as to match or approximate the high frequency component.
  • interconnection power calculating section 413 in the case of interconnection Yes, distributed power output command frequency components of P DP (t) is borne on the upper line 1, the remaining frequency components system inertia absorbed power [Delta] P I ( t) and a distributed power source (the power storage facility 5 and the AC power source facility 6).
  • the distributed power output command calculation unit 414 calculates a distributed power output command P DP (t) based on the following equation (2).
  • the distributed power output command P DP (t) is a total value of the power to be output by the distributed power supply (the power storage facility 5 and the AC power facility 6).
  • step S37 it is determined whether or not a “frequency variation event” has occurred. Therefore, the “frequency fluctuation event” will be described.
  • a measured value of the difference between the actual supplied power (the sum of the power supplied from the host system 1, the power storage facility 5, and the AC power supply facility 6) and the actual demand power is referred to as “power variation measured value ⁇ P”.
  • step S37 it is determined whether or not a frequency variation event has occurred based on whether or not the measured power change amount ⁇ P exceeds a predetermined value. If it is determined “Yes” in step S37, the process proceeds to step S38. If it is determined “No”, the process proceeds to step S39.
  • step S38 the system unit inertia constant calculating unit 415 calculates and updates the system unit inertia constant H based on the following equation (3).
  • the system unit inertia constant H is included in the “actual measurement data” read from the data storage device 45 when step S31 is executed.
  • the system unit inertia constant H is updated based on the equation (3).
  • the updated value of the system unit inertia constant H is also written in the data storage device 45 and is reflected when step S31 is executed next.
  • H is the system unit inertia constant (s)
  • ⁇ P is the power change measurement value (pu)
  • f is the system frequency
  • ⁇ f is the frequency change measurement value (Hz)
  • f 0. Is the rated frequency (Hz).
  • the system unit inertia constant H can be obtained. That is, the system unit inertia constant calculation unit 415 has a function of calculating the system unit inertia constant H based on the inertia of the power storage facility 5, the AC power supply facility 6, the load facility 9, and the like.
  • the system unit inertia constant calculation unit 415 is connected to the independent power supply system 20.
  • the sum of the inertia constants of the power supply facility 6 and the load facility 9 is calculated, and thereby the initial value of the system unit inertia constant H is calculated.
  • ⁇ f LIM is a system frequency deviation command value indicating an allowable value of the frequency change amount, and the value can be appropriately determined by the operator of the independent power supply system 20.
  • System inertia absorbed power ⁇ P I (t) represents power that can be absorbed by system inertia.
  • the distributed power supply correction output command calculation unit 417 executes the process of step S40.
  • the correction output command P DP (t) * is calculated based on the following equation (5).
  • the corrected output command P DP (t) * obtained by Expression (5) is a command for the total value of the electric power output from the power storage facility 5 and the AC power supply facility 6.
  • the distributed power supply correction output command calculation unit 417 stores the power storage that is an output command for the power storage facility 5 based on the correction output command P DP (t) * obtained in step S40.
  • the facility output command P BATT (t) and the AC power facility output command P EG (t), which is an output command for the AC power facility 6, are calculated so as to satisfy the following equation (6).
  • step S42 the control arithmetic device 41 sends the above-described control commands (P BATT (t), P EG (t), P DP (t), etc.) to the signal input / output interface device 42.
  • the AC power supply facility 6 the solar power generation facility 7, the wind power generation facility 8, the interconnection device 3, and the like.
  • a process returns to step S31 and the operation
  • distributed power output command P DP (t), corrected output command P DP (t) *, system inertia absorbed power ⁇ P I (t), power storage facility output command P BATT (t), The mutual relationship between the AC power supply facility output command P EG (t) will be described.
  • the distributed power output command P DP (t) rises in a step shape at time t3.
  • the corrected output command P DP (t) * has a waveform obtained by attenuating the high frequency component of the distributed power output command P DP (t).
  • Expression (5) the difference between the two (region QA) is borne by the system inertial absorption power ⁇ P I (t).
  • the medium frequency component (region QB) is borne by the storage facility output command P BATT (t), and the lowest frequency component (region QC) is output from the AC power supply facility.
  • the directive P EG (t) is borne by the medium frequency component (region QB)
  • FIGS. 4C, 4D, and 4E are waveform diagrams of the power storage facility output command P BATT (t), the AC power supply facility output command P EG (t), and the measured frequency change ⁇ f, respectively, and are solid lines. Is the present embodiment, and the broken line is the comparative example.
  • the “comparative example” is an example in which the storage facility output command P BATT (t) and the AC power facility output command P EG (t) are set without considering the system inertia absorption power ⁇ P I (t). is there.
  • the system inertia absorption power ⁇ P I (t) is generated by changing the frequency variation measurement value ⁇ f within the range of ⁇ ⁇ f LIM , and the presence of the system inertia absorption power ⁇ P I (t) is determined.
  • output commands P BATT (t) and P EG (t) can be determined.
  • FIG. 4 (c) the as shown (d), the output command than Comparative Example P BATT (t), the output response speed of the P EG (t) Output
  • the change width can be suppressed.
  • the burden (especially the request
  • the grid connection is cut off at time t10. This is because the grid connection is suddenly cut off due to a power failure of the upper system 1 or the like. Is assumed. Even when the grid connection is suddenly cut off at time t10 and the predicted grid power value P GC (t) becomes zero, according to this embodiment, the grid unit inertia constant H and the grid frequency deviation command Based on the value ⁇ f LIM , the system inertia absorbed power ⁇ P I (t) is calculated, and the distributed power output command P DP (t) is calculated on the assumption that the system inertia absorbed power ⁇ P I (t) exists. Thereby, the fluctuation
  • the present invention is not limited to the above-described embodiments, and various modifications can be made.
  • the above-described embodiments are illustrated for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment. Further, it is possible to delete a part of the configuration of each embodiment, or to add or replace another configuration. Examples of possible modifications to the above embodiment are as follows.
  • the power supply facilities are not limited to these, and may be geothermal power generation facilities, ocean current power generation facilities, tidal power generation facilities, small hydropower generation facilities, and the like.
  • the system frequency deviation command value ⁇ f LIM may be switched according to the date and time. Generally, in homes and office buildings, even if the amount of frequency change increases, there is a tendency that no particular inconvenience occurs. On the other hand, in a factory, when the frequency change amount is large, a product may be defective. When such a factory is included in the load facility 9, the system frequency deviation command value ⁇ f LIM may be decreased during the operation period of the factory facility, and ⁇ f LIM may be increased during the stop period of the factory facility.
  • the system unit inertia constant H1 is a common value regardless of whether or not the upper system 1 and the local system 2 are connected, but the system unit inertia constant H1 in the case of connection is present. And the system unit inertia constant H2 in the case of no interconnection may be calculated separately. Further, when the system unit inertia constant H1 or H2 is calculated in step S38, the moving average value of the latest calculated value of H1 or H2 and the past calculated value is obtained, and this moving average value is replaced with H1 or H2. May be applied.
  • the corrected output command P DP (t) * was calculated by equation (5).
  • the calculation method of ⁇ P I (t) and P DP (t) * is not limited to this. For example, high-pass filter processing is performed on the distributed power output command P DP (t) to obtain the system inertia absorbed power ⁇ P I (t), and the system inertia absorbed power ⁇ P is calculated from the distributed power output command P DP (t).
  • FIG. 3 Although the process shown in FIG. 3 has been described as a software process using a program in the above embodiment, a part or all of the process is an ASIC (Application (Specific Integrated Circuit) or FPGA. It may be replaced with hardware processing using (field-programmable gate array) or the like.
  • ASIC Application (Specific Integrated Circuit) or FPGA. It may be replaced with hardware processing using (field-programmable gate array) or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

The present invention achieves an electric power supply system that can be inexpensively operated. The electric power supply system has: an electric power supply facility (5, 6) that is connected to a load facility (9) via an electric power system (2) and is capable of increasing/decreasing output power thereof on the basis of an external output command (PBATT (t), PEG (t)); and a control device (4). The control device (4) has: a system inertia-absorbed electric power calculation unit (416) for calculating system inertia-absorbed electric power (ΔPI (t)) on the basis of system inertia (H) pertaining to the electric power system (2) such that the frequency variation range of the electric power system (2) falls within a predetermined range (±ΔfLIM); and a signal input/output unit (42) for sending a value obtained by subtracting the system inertia-absorbed electric power (ΔPI (t)) from deficient/surplus electric power (PDP (t)), that is, a deficiency or surplus of electric power in the electric power system (2), to the electric power supply facility (5, 6) as the output command (PBATT (t), PEG (t)).

Description

電力供給システム、電力供給システム用の制御装置およびプログラムPower supply system, control device and program for power supply system
 本発明は、電力供給システム、電力供給システム用の制御装置およびプログラムに関する。 The present invention relates to a power supply system, a control device for the power supply system, and a program.
 ある限られた地域に設けられた電力系統を「局所系統」と呼び、既存の広域の電力系統を「上位系統」と呼ぶ。局所系統は、必要に応じて上位系統と連系し、上位系統に対して電力を売電し、あるいは上位系統から電力を買電する。このような技術分野の背景技術として、特許文献1の要約書には、「電力系統11は主母線13、補助母線14を介して自然エネルギー型電源10である風力発電設備15と太陽光発電設備16の他に電力負荷17に接続され、自然エネルギー型電源10等の電力は合計電力算出部19で合計電力が算出される。また、主母線13は補助母線を介して負荷追従運転を行う分散型電源としてエンジン発電機21や二次電池からなる電力貯蔵装置22に接続される。負荷電力検出値と連系点受電電力設定値との偏差は、ローパスフィルタ27により低周波数成分と高周波数成分に分離され、低周波数成分でエンジン発電機21を制御し、高周波数成分で電力貯蔵装置22を制御する」と記載されている。 A power system installed in a limited area is called a “local system”, and an existing wide-area power system is called a “upper system”. The local system is linked to the upper system as necessary, and sells power to the upper system or purchases power from the upper system. As a background art of such a technical field, the abstract of Patent Document 1 states that “the electric power system 11 is a natural energy type power source 10 via a main bus 13 and an auxiliary bus 14 and a solar power generation facility 15. 16 is connected to the power load 17, and the total power of the power of the natural energy type power source 10 and the like is calculated by a total power calculation unit 19. The main bus 13 is a dispersion that performs load following operation via the auxiliary bus. As a type power source, it is connected to an electric power storage device 22 comprising an engine generator 21 and a secondary battery, and the deviation between the load power detection value and the connection point received power set value is reduced by a low-pass filter 27 and a low-frequency component and a high-frequency component. The engine generator 21 is controlled with a low frequency component and the power storage device 22 is controlled with a high frequency component ".
 また、非特許文献1の第3ページには、「系統全体としての慣性定数とガバナフリー発電機の系統容量に対する比率を推定する手法を開発し、発電機負荷遮断など10ケースの事象における系統周波数の変化の実測、脱落量と系統容量にもとづき、これらの推定を行った。その結果、系統の単位慣性定数は概ね14-18秒(系統容量基準)、ガバナフリー発電機の比率は、系統容量の0.2~0.4程度と推定された。」と記載されている。 Also, on page 3 of Non-Patent Document 1, “Developing a method to estimate the ratio between the inertia constant of the entire system and the system capacity of the governor-free generator, and system frequency in 10 cases such as generator load interruption” As a result, the unit inertia constant of the system is approximately 14-18 seconds (system capacity standard), and the ratio of governor-free generator is the system capacity. Is estimated to be about 0.2 to 0.4.
特開2006-333563号公報JP 2006-333563 A
 ところで、特許文献1に開示されている技術では、局所系統内の電力品質を適正範囲に維持しようとする際に、定格周波数(例えば50Hz,60Hz)と実際の周波数との差である周波数偏差について、特に考慮していなかった。そのため、設備に要求される能力が高くなり、初期費用や維持費用等が高額になるという問題があった。
 この発明は上述した事情に鑑みてなされたものであり、安価に運用できる電力供給システム、電力供給システム用の制御装置およびプログラムを提供することを目的とする。
By the way, in the technique disclosed in Patent Document 1, when trying to maintain the power quality in the local system in an appropriate range, the frequency deviation which is the difference between the rated frequency (for example, 50 Hz and 60 Hz) and the actual frequency is used. Did not take into account. For this reason, there is a problem that the capacity required for the equipment is increased, and initial costs and maintenance costs are increased.
The present invention has been made in view of the above-described circumstances, and an object thereof is to provide a power supply system that can be operated at a low cost, a control device for the power supply system, and a program.
 上記課題を解決するため本発明の電力供給システムは、
 電力系統を介して負荷設備に接続され、外部からの出力指令に基づいて出力電力を増減可能な電源設備と、
 制御装置と、
 を有し、前記制御装置は、
 前記電力系統に係る系統慣性に基づいて、前記電力系統の周波数の変化範囲が所定範囲内に収まるように、系統慣性吸収電力を算出する系統慣性吸収電力演算部と、
 前記電力系統内の電力の不足または余剰分である不足・余剰電力から、前記系統慣性吸収電力を減算した値を、前記出力指令として、前記電源設備に対して指令する信号入出力部と、
 を有することを特徴とする。
In order to solve the above problems, the power supply system of the present invention is:
Power supply equipment connected to the load equipment via the power system and capable of increasing / decreasing output power based on an output command from the outside,
A control device;
And the control device includes:
Based on system inertia related to the power system, a system inertia absorbed power calculation unit that calculates system inertia absorbed power so that a change range of the frequency of the power system falls within a predetermined range;
A value obtained by subtracting the grid inertia absorption power from the shortage / surplus power that is a shortage or surplus of power in the power system, as the output command, a signal input / output unit that commands the power supply facility,
It is characterized by having.
 本発明の電力供給システム、電力供給システム用の制御装置およびプログラムによれば、電力供給システムを安価に運用することができる。 According to the power supply system, the control device for the power supply system, and the program of the present invention, the power supply system can be operated at low cost.
本発明の一実施形態による電力系統のブロック図である。It is a block diagram of the electric power system by one Embodiment of this invention. 制御装置のブロック図である。It is a block diagram of a control apparatus. 制御装置で実行されるアプリケーションプログラムのフローチャートである。It is a flowchart of the application program performed with a control apparatus. (a)出力電力予測値および需要電力予想値、(b)連系電力予想値、(c)蓄電設備出力指令、(d)交流電源設備出力指令、(e)周波数変化量測定値の各波形図である。(A) Output power predicted value and demand power predicted value, (b) Interconnected power predicted value, (c) Power storage facility output command, (d) AC power facility output command, (e) Frequency change amount measured value FIG. 各出力指令の関係を示す図である。It is a figure which shows the relationship of each output instruction | command.
<実施形態の構成>
 図1に示すブロック図を参照し、本発明の一実施形態による電力系統Aの構成を説明する。
 図1において、電力系統Aは、広域の基幹電力系統である上位系統1(他の電力系統)と、独立型電力供給システム20(電力供給システム)とを有している。独立型電力供給システム20は局所系統2(電力系統)を有しており、局所系統2には、制御装置4、蓄電設備5(電源設備)、交流電源設備6(電源設備)、太陽光発電設備7(自然エネルギー電源設備)、風力発電設備8(自然エネルギー電源設備)、負荷設備9等が接続されている。連系装置3は、上位系統1と局所系統2との間の系統連系のオン/オフを設定するスイッチ3aと、系統連系する際の局所系統2側の電圧を調整するトランス3bとを有しており、スイッチ3aをオフ状態にすると、局所系統2は、上位系統1から独立した系統になる。
<Configuration of Embodiment>
With reference to the block diagram shown in FIG. 1, the structure of the electric power grid | system A by one Embodiment of this invention is demonstrated.
In FIG. 1, the power system A includes a host system 1 (another power system) that is a wide-area backbone power system, and an independent power supply system 20 (power supply system). The independent power supply system 20 has a local system 2 (power system), and the local system 2 includes a control device 4, a power storage facility 5 (power source facility), an AC power source facility 6 (power source facility), and solar power generation. A facility 7 (natural energy power source facility), a wind power generation facility 8 (natural energy power source facility), a load facility 9 and the like are connected. The interconnection device 3 includes a switch 3a for setting on / off of the grid connection between the upper grid 1 and the local grid 2, and a transformer 3b for adjusting the voltage on the local grid 2 side when grid interconnection is performed. If the switch 3a is turned off, the local system 2 becomes a system independent of the upper system 1.
 また、蓄電設備5は、慣性の無い電源設備であり、蓄電池、インバータ、AC-DCコンバータ等(何れも図示せず)を有しており、局所系統2の電力に余剰が生じた場合は、局所系統2からAC-DCコンバータを介して蓄電池を充電する。また、局所系統2の電力に不足が生じた場合は、蓄電池を放電し、インバータを介して局所系統2に電力を供給する。また、交流電源設備6は、慣性を有する電源設備であり、例えば、タービン発電機、エンジン発電機等を有している。 In addition, the power storage facility 5 is a power supply facility having no inertia, and includes a storage battery, an inverter, an AC-DC converter, and the like (none of which are shown). The storage battery is charged from the local system 2 via the AC-DC converter. Moreover, when shortage arises in the electric power of the local system 2, a storage battery is discharged and electric power is supplied to the local system 2 via an inverter. The AC power supply facility 6 is a power supply facility having inertia, and includes, for example, a turbine generator, an engine generator, and the like.
 太陽光発電設備7は、日射条件に応じて発電出力が変動する。また、風力発電設備8は、風速状況に応じて発電出力が変動する。これら自然現象によって発電出力が変動する設備を「自然エネルギー電源設備」と呼ぶことがある。負荷設備9は、広域電力負荷である住宅、集中電力負荷であるオフィスビル、工場等を含む。 The power generation output of the solar power generation facility 7 varies depending on the solar radiation conditions. Moreover, the power generation output of the wind power generation facility 8 varies depending on the wind speed situation. Equipment whose power generation output fluctuates due to these natural phenomena is sometimes called “natural energy power supply equipment”. The load facility 9 includes a house that is a wide area power load, an office building that is a concentrated power load, a factory, and the like.
 制御装置4は、局所系統2と各電源設備から伝送される電気諸量(電力,電圧,力率等)、蓄電設備5の充電状態(SOC:State of Charge)等の運転状態信号、連系装置3の連系状態信号、独立型電源力供給システム20の全体の慣性定数である系統単位慣性定数等に基づいて、上述した構成要素5~8に対して、発電出力の抑制量、充放電電力等の制御指令を供給する。 The control device 4 includes various electric quantities (power, voltage, power factor, etc.) transmitted from the local system 2 and each power supply facility, operating state signals such as state of charge (SOC) of the power storage facility 5, and interconnections. Based on the interconnection state signal of the device 3 and the system unit inertia constant which is the inertia constant of the entire independent power supply system 20, the power generation output suppression amount, the charge / discharge, etc. Supply power and other control commands.
 次に、図2に示すブロック図を参照し、制御装置4の構成を説明する。
 制御装置4は、制御演算装置41と、信号入出力インターフェース装置42(信号入出力手段、信号入出力部)と、入力装置43と、表示装置44と、データ格納装置45とを有している。
 制御演算装置41は、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、HDD(Hard Disk Drive)等、一般的なコンピュータとしてのハードウエアを備えており、HDDには、OS(Operating System)、アプリケーションプログラム、各種データ等が格納されている。OSおよびアプリケーションプログラムは、RAMに展開され、CPUによって実行される。
Next, the configuration of the control device 4 will be described with reference to the block diagram shown in FIG.
The control device 4 includes a control arithmetic device 41, a signal input / output interface device 42 (signal input / output means, signal input / output unit), an input device 43, a display device 44, and a data storage device 45. .
The control arithmetic unit 41 includes hardware as a general computer such as a central processing unit (CPU), a random access memory (RAM), a read only memory (ROM), and a hard disk drive (HDD). Stores an OS (Operating System), application programs, various data, and the like. The OS and application programs are expanded in the RAM and executed by the CPU.
 入力装置43は、運用者が制御指令を設定/修正し、あるいはメンテナンスするための操作指令を入力するものである。表示装置44は、運用者が運転状況等を確認するためのものである。データ格納装置45は、後述するアプリケーションプログラムに用いられる各種データを格納する。信号入出力インターフェース装置42は、制御装置4内部および制御装置4と構成要素3,5~9との間の信号伝送を仲介する。 The input device 43 is used by an operator to input an operation command for setting / correcting a control command or for maintenance. The display device 44 is for the operator to check the driving situation and the like. The data storage device 45 stores various data used for application programs to be described later. The signal input / output interface device 42 mediates signal transmission inside the control device 4 and between the control device 4 and the components 3, 5 to 9.
 図2において制御演算装置41の内部では、RAMに展開されたアプリケーションプログラムによって実現される機能を、ブロックとして示している。
 変動電源出力予測演算部411は、太陽光発電設備7の出力電力予測値PPV(t)と、風力発電設備8の出力電力予測値PWF(t)とを計算する。需要電力予測演算部412は、独立型電力供給システム20の需要電力の予測値である需要電力予想値PLOAD(t)を計算する。
In FIG. 2, the functions realized by the application program expanded in the RAM are shown as blocks in the control arithmetic unit 41.
The variable power output prediction calculation unit 411 calculates the predicted output power value P PV (t) of the solar power generation facility 7 and the predicted output power value P WF (t) of the wind power generation facility 8. The demand power prediction calculation unit 412 calculates a demand power prediction value P LOAD (t) that is a prediction value of demand power of the independent power supply system 20.
 ここで、局所系統2が、上位系統1、蓄電設備5、交流電源設備6から供給を受ける電力の合計を「供給電力」と呼ぶ。連系電力演算部413は、供給電力の予想値である供給電力予想値PSUP(t)を計算する。また、独立型電力供給システム20に連系されている、発電設備であって、自然エネルギー電源設備(7,8)を除いたものを「分散型電源」と呼ぶ。図1の例では蓄電設備5および交流電源設備6が分散型電源に該当する。図2における分散型電源出力指令演算部414は、分散型電源が出力すべき電力の合計値である分散型電源出力指令PDP(t)を計算する。 Here, the total power that the local system 2 receives from the host system 1, the power storage facility 5, and the AC power supply facility 6 is referred to as “supplied power”. The interconnection power calculation unit 413 calculates a predicted supply power value P SUP (t) that is an expected value of the supply power. A power generation facility connected to the independent power supply system 20 excluding the natural energy power supply facility (7, 8) is referred to as a “distributed power supply”. In the example of FIG. 1, the power storage facility 5 and the AC power source facility 6 correspond to a distributed power source. The distributed power output command calculation unit 414 in FIG. 2 calculates a distributed power output command P DP (t) that is the total value of power to be output from the distributed power.
 系統単位慣性定数演算部415(系統慣性演算部)は、系統単位慣性定数Hを演算する。詳細は後述するが、系統単位慣性定数Hとは、電力変動に対する局所系統2の系統周波数fの「変化のしにくさ」を表す値である。すなわち、系統単位慣性定数Hが小さければ電力変動に対して系統周波数fが変化しやすくなり,逆に系統単位慣性定数Hが大きければ電力変動に対して系統周波数fが変化しにくくなる。 System unit inertia constant calculation unit 415 (system inertia calculation unit) calculates system unit inertia constant H. Although details will be described later, the system unit inertia constant H is a value representing the “hardness of change” of the system frequency f of the local system 2 with respect to power fluctuation. That is, if the system unit inertia constant H is small, the system frequency f is likely to change with respect to power fluctuations. Conversely, if the system unit inertia constant H is large, the system frequency f is difficult to change with respect to power fluctuations.
 また、系統慣性吸収電力演算部416(系統慣性吸収電力演算手段)は、系統慣性吸収電力ΔPI(t)を計算する。系統慣性吸収電力ΔPI(t)とは、系統周波数fの変動によって吸収される電力を表す。また、分散型電源補正出力指令演算部417は、蓄電設備5に対する出力指令である蓄電設備出力指令PBATT(t)と、交流電源設備6に対する出力指令である交流電源設備出力指令PEG(t)とを計算する。 Further, the system inertia absorbed power calculation unit 416 (system inertia absorbed power calculation means) calculates system inertia absorbed power ΔP I (t). The system inertia absorption power ΔP I (t) represents the power absorbed by the fluctuation of the system frequency f. In addition, the distributed power supply correction output command calculation unit 417 includes a power storage facility output command P BATT (t) that is an output command to the power storage facility 5 and an AC power supply facility output command P EG (t that is an output command to the AC power supply facility 6. ) And calculate.
<実施形態の動作>
 次に、図3に示すフローチャートを参照し、本実施形態の動作を説明する。なお、図3は、制御演算装置41において実行されるアプリケーションプログラムのフローチャートである。
 図3において処理がステップS31に進むと、制御演算装置41によって、データ格納装置45から、気象予測データと実測データとが読み込まれる。ここで、気象予測データとは、将来の気象を予測したデータであり、「天候」、「日射量」、「気温」、「風速」、「風向」等の予測を含む。また、実測データとは、実測された各種データであり、独立型電力供給システム20における「需要電力」、「電源設備運転状態」、「電気諸量」、「連系電力」、「系統単位慣性定数H」、「気象データ」等を含む。ここで、「気象データ」は、「天候」、「日射量」、「気温」、「風速」、「風向」等の実測値を含む。また、「連系電力」とは、上位系統1に対して受電または送電する電力である。
<Operation of Embodiment>
Next, the operation of this embodiment will be described with reference to the flowchart shown in FIG. FIG. 3 is a flowchart of an application program executed in the control arithmetic device 41.
In FIG. 3, when the process proceeds to step S <b> 31, weather control data and actual measurement data are read from the data storage device 45 by the control arithmetic device 41. Here, the weather prediction data is data that predicts the future weather, and includes predictions such as “weather”, “solar radiation”, “temperature”, “wind speed”, “wind direction”, and the like. The actually measured data is various kinds of actually measured data, and “demand power”, “power supply equipment operation state”, “electrical quantities”, “interconnection power”, “system unit inertia” in the independent power supply system 20. Constant H "," weather data ", etc. Here, the “meteorological data” includes measured values such as “weather”, “amount of solar radiation”, “temperature”, “wind speed”, “wind direction”, and the like. The “interconnection power” is power that is received or transmitted to the higher-order system 1.
 ステップS31の処理が終了すると、ステップS32~S36の処理と、ステップS37~S39の処理とが並列に実行される。まず、ステップS32~S36の処理について説明する。
 処理がステップS32においては、変動電源出力予測演算部411(図2参照)によって、太陽光発電設備7の出力電力予測値PPV(t)と、風力発電設備8の出力電力予測値PWF(t)とが計算される。すなわち、太陽光発電設備7、風力発電設備8の出力電力は、気象に左右されるため、先にステップS31によって得られた過去の気象データと、過去の出力電力と、将来の気象予測データとの関係に基づいて、将来の出力電力が予測できる。
When the process of step S31 is completed, the processes of steps S32 to S36 and the processes of steps S37 to S39 are executed in parallel. First, the processing of steps S32 to S36 will be described.
In step S32, the fluctuation power output prediction unit 411 (see FIG. 2) performs the predicted output power value P PV (t) of the photovoltaic power generation facility 7 and the predicted output power value P WF ( tw of the wind power generation facility 8). t) is calculated. That is, since the output power of the solar power generation facility 7 and the wind power generation facility 8 depends on the weather, the past weather data, the past output power, the future weather prediction data previously obtained in step S31, Based on this relationship, the future output power can be predicted.
  次に、処理がステップS33に進むと、需要電力予測演算部412(図2参照)によって、独立型電力供給システム20の需要電力の予測値である需要電力予想値PLOAD(t)が計算される。需要電力の実測データは、気温等、過去の気象データに相関関係があるため、先にステップS31によって得られた過去の気象データと、気象予測データと、過去の需要電力との関係に基づいて、将来の需要電力が予測できる。ここで、計算された出力電力予測値PPV(t),PWF(t)および需要電力予想値PLOAD(t)の波形の一例を図4(a)に示す。 Next, when the process proceeds to step S33, the demand power prediction calculation unit 412 (see FIG. 2) calculates a demand power predicted value P LOAD (t) that is a predicted value of demand power of the independent power supply system 20. The Since the measured data of demand power is correlated with past weather data such as temperature, it is based on the relationship between past weather data, weather forecast data, and past demand power previously obtained in step S31. Future power demand can be predicted. An example of the calculated output power predicted values P PV (t), P WF (t) and the predicted power demand P LOAD (t) is shown in FIG.
 図3において、次に処理がステップS34に進むと、連系電力演算部413によって、供給電力予想値PSUP(t)が計算される。具体的には、供給電力予想値PSUP(t)は、先にステップS32,S33において得られた出力電力予測値PPV(t),PWF(t)と、需要電力予想値PLOAD(t)とに基づいて、下式(1)によって得られる。
Figure JPOXMLDOC01-appb-M000001
 式(1)によれば、連系電力演算部413は、自然エネルギー電源設備である太陽光発電設備7および風力発電設備8から局所系統2への電力供給を、蓄電設備5または交流電源設備6から局所系統2への電力供給よりも優先させている。これにより、自然エネルギー電源設備の能力を有効に活用することができる。
In FIG. 3, when the process next proceeds to step S <b> 34, the interconnection power calculation unit 413 calculates a supply power expected value P SUP (t). Specifically, the predicted power supply value P SUP (t) includes the predicted output power values P PV (t) and P WF (t) obtained in steps S32 and S33 and the predicted power demand value P LOAD ( Based on t), the following equation (1) is obtained.
Figure JPOXMLDOC01-appb-M000001
According to the equation (1), the interconnection power calculation unit 413 supplies power from the solar power generation facility 7 and the wind power generation facility 8 which are natural energy power supply facilities to the local system 2, and the power storage facility 5 or the AC power supply facility 6. Is prioritized over the power supply to the local system 2. Thereby, the capability of a natural energy power supply facility can be used effectively.
 次に、処理がステップS35に進むと、連系電力演算部413によって、連系電力の予想値である連系電力予想値PGC(t)が計算される。また、連系電力の最大値を最大連系電力PGCLIM(t)と呼ぶ。最大連系電力PGCLIM(t)は、上位系統1の運営者と独立型電力供給システム20の運営者との契約に基づいて定められるが、一般的には日時に応じて変動するため、時刻tの関数になっている。連系電力予想値PGC(t)は、±PGCLIM(t)の範囲内になるように定められる。ここで、連系電力予想値PGC(t)の波形の例を図4(b)に示す。 Next, when the process proceeds to step S35, the interconnection power calculation unit 413 calculates an interconnection power expected value P GC (t) that is an expected value of the interconnection power. Further, the maximum value of the interconnection power is referred to as the maximum interconnection power P GCLIM (t). The maximum interconnection power P GCLIM (t) is determined based on a contract between the operator of the upper grid 1 and the operator of the independent power supply system 20, but generally varies depending on the date and time. It is a function of t. The interconnected power expected value P GC (t) is determined to be within a range of ± P GCLIM (t). Here, an example of the waveform of the interconnected power expected value P GC (t) is shown in FIG.
 図4(b)において、時刻t10以前は連系有(スイッチ3aがオン)、時刻t10以降は連系無(スイッチ3aがオフ)の状態である。従って、時刻t10以降は、連系電力予想値PGC(t)は零になっている。本実施形態においては、独立型電力供給システム20における蓄電設備5、交流電源設備6の負担を軽減するため、連系電力予想値PGC(t)は、供給電力予想値PSUP(t)の高周波成分に一致または近似するように定めることが望ましい。 In FIG. 4B, before time t10, there is a connection (switch 3a is on), and after time t10, there is no connection (switch 3a is off). Therefore, after time t10, the interconnected power expected value P GC (t) is zero. In the present embodiment, in order to reduce the burden on the power storage facility 5 and the AC power supply facility 6 in the independent power supply system 20, the predicted interconnected power value P GC (t) is the expected power supply value P SUP (t). It is desirable to determine so as to match or approximate the high frequency component.
 すなわち、連系電力演算部413は、連系有の場合に、分散型電源出力指令PDP(t)の高周波成分を上位系統1に負担させ、残余の周波数成分を系統慣性吸収電力ΔPI(t)と、分散型電源(蓄電設備5、交流電源設備6)とに負担させる機能を有する。 That is, interconnection power calculating section 413, in the case of interconnection Yes, distributed power output command frequency components of P DP (t) is borne on the upper line 1, the remaining frequency components system inertia absorbed power [Delta] P I ( t) and a distributed power source (the power storage facility 5 and the AC power source facility 6).
 次に、処理がステップS36に進むと、分散型電源出力指令演算部414によって、下式(2)に基づいて、分散型電源出力指令PDP(t)が計算される。上述したように、分散型電源出力指令PDP(t)は、分散型電源(蓄電設備5、交流電源設備6)が出力すべき電力の合計値である。
Figure JPOXMLDOC01-appb-M000002
Next, when the process proceeds to step S36, the distributed power output command calculation unit 414 calculates a distributed power output command P DP (t) based on the following equation (2). As described above, the distributed power output command P DP (t) is a total value of the power to be output by the distributed power supply (the power storage facility 5 and the AC power facility 6).
Figure JPOXMLDOC01-appb-M000002
 系統単位慣性定数演算部415においては、上述したステップS32~S36の処理に並行して、ステップS37,S38の処理が実行される。
 まず、ステップS37においては、「周波数変動事象」が発生しているか否かが判定される。そこで、「周波数変動事象」について説明する。実際の供給電力(上位系統1、蓄電設備5、交流電源設備6から供給を受ける電力の合計)と、実際の需要電力との差の測定値を「電力変化量測定値ΔP」と呼ぶ。
In the system unit inertia constant calculation unit 415, the processes of steps S37 and S38 are executed in parallel with the processes of steps S32 to S36 described above.
First, in step S37, it is determined whether or not a “frequency variation event” has occurred. Therefore, the “frequency fluctuation event” will be described. A measured value of the difference between the actual supplied power (the sum of the power supplied from the host system 1, the power storage facility 5, and the AC power supply facility 6) and the actual demand power is referred to as “power variation measured value ΔP”.
 電力変化量測定値ΔPの絶対値が充分に大きい場合は、局所系統2の系統周波数fが、定格周波数f0に対して増減する。従って、ステップS37においては、電力変化量測定値ΔPが所定値を超えるか否かに基づいて、周波数変動事象が発生しているか否かが判定される。そして、ステップS37において「Yes」と判定されると処理はステップS38に進み、「No」と判定されると処理はステップS39に進む。 When the absolute value of the measured power change amount ΔP is sufficiently large, the system frequency f of the local system 2 increases or decreases with respect to the rated frequency f 0 . Accordingly, in step S37, it is determined whether or not a frequency variation event has occurred based on whether or not the measured power change amount ΔP exceeds a predetermined value. If it is determined “Yes” in step S37, the process proceeds to step S38. If it is determined “No”, the process proceeds to step S39.
 ステップS38においては、系統単位慣性定数演算部415によって、下式(3)に基づいて系統単位慣性定数Hが計算され、更新される。上述したように、系統単位慣性定数Hは、ステップS31が実行された際にデータ格納装置45から読み込まれる「実測データ」の中に含まれている。しかし、ステップS38が実行されると、式(3)に基づいて系統単位慣性定数Hが更新される。更新された系統単位慣性定数Hの値は、データ格納装置45にも書き込まれ、ステップS31が次に実行された際に反映される。
Figure JPOXMLDOC01-appb-M000003
In step S38, the system unit inertia constant calculating unit 415 calculates and updates the system unit inertia constant H based on the following equation (3). As described above, the system unit inertia constant H is included in the “actual measurement data” read from the data storage device 45 when step S31 is executed. However, when step S38 is executed, the system unit inertia constant H is updated based on the equation (3). The updated value of the system unit inertia constant H is also written in the data storage device 45 and is reflected when step S31 is executed next.
Figure JPOXMLDOC01-appb-M000003
 式(3)において、Hは系統単位慣性定数(s)、ΔPは電力変化量測定値(pu),fは系統周波数、Δfはその変化量である周波数変化量測定値(Hz)、f0は定格周波数(Hz)である。式(3)に示したように、事象発生時点における電力変化量測定値ΔPと、その時点での周波数変化率(d(Δf/f0)/dt)とを実測データから算出することにより、系統単位慣性定数Hを求めることができる。すなわち、系統単位慣性定数演算部415は、蓄電設備5、交流電源設備6、負荷設備9等が有する慣性に基づいて、系統単位慣性定数Hを算出する機能を有する。 In Equation (3), H is the system unit inertia constant (s), ΔP is the power change measurement value (pu), f is the system frequency, Δf is the frequency change measurement value (Hz), f 0. Is the rated frequency (Hz). As shown in the equation (3), by calculating the power change amount measured value ΔP at the time of the event occurrence and the frequency change rate (d (Δf / f 0 ) / dt) at the time point from the measured data, The system unit inertia constant H can be obtained. That is, the system unit inertia constant calculation unit 415 has a function of calculating the system unit inertia constant H based on the inertia of the power storage facility 5, the AC power supply facility 6, the load facility 9, and the like.
 なお、最初に独立型電力供給システム20の運転を開始する際には、過去の実測データは存在しないため、系統単位慣性定数演算部415は、独立型電力供給システム20に連系されている交流電源設備6、負荷設備9等の慣性定数の合計を計算し、これによって系統単位慣性定数Hの初期値を計算する。 When the operation of the independent power supply system 20 is started for the first time, there is no past actual measurement data, so the system unit inertia constant calculation unit 415 is connected to the independent power supply system 20. The sum of the inertia constants of the power supply facility 6 and the load facility 9 is calculated, and thereby the initial value of the system unit inertia constant H is calculated.
 系統単位慣性定数演算部415におけるステップS37,S38の処理が終了すると、系統慣性吸収電力演算部416にてステップS39の処理が実行され、下式(4)に示す系統慣性吸収電力ΔPI(t)が計算される。
Figure JPOXMLDOC01-appb-M000004
 式(4)において、ΔfLIMは、周波数変化量の許容値を示す系統周波数偏差指令値であり、その値は、独立型電力供給システム20の運用者が適宜定めることができる。系統慣性吸収電力ΔPI(t)は、系統慣性によって吸収できる電力を表す。
When the processing of steps S37 and S38 in the system unit inertia constant calculation unit 415 is completed, the system inertia absorption power calculation unit 416 executes the process of step S39, and the system inertia absorption power ΔP I (t ) Is calculated.
Figure JPOXMLDOC01-appb-M000004
In Expression (4), Δf LIM is a system frequency deviation command value indicating an allowable value of the frequency change amount, and the value can be appropriately determined by the operator of the independent power supply system 20. System inertia absorbed power ΔP I (t) represents power that can be absorbed by system inertia.
 需要電力予測演算部412、連系電力演算部413、分散型電源出力指令演算部414によるステップS32~S36の処理と、系統単位慣性定数演算部415、系統慣性吸収電力演算部416によるステップS37~S39の処理とが終了すると、分散型電源補正出力指令演算部417は、ステップS40の処理を実行する。ここでは、下式(5)に基づいて、補正出力指令PDP(t)*を算出する。
Figure JPOXMLDOC01-appb-M000005
Steps S32 to S36 by the demand power prediction calculation unit 412, the grid power calculation unit 413, and the distributed power output command calculation unit 414, and the steps S37 to S36 by the system unit inertia constant calculation unit 415 and the system inertia absorbed power calculation unit 416 When the process of S39 ends, the distributed power supply correction output command calculation unit 417 executes the process of step S40. Here, the correction output command P DP (t) * is calculated based on the following equation (5).
Figure JPOXMLDOC01-appb-M000005
 式(5)で求められた補正出力指令PDP(t)*は、蓄電設備5と交流電源設備6とが出力する電力の合計値の指令になる。
 次に、処理がステップS41に進むと、分散型電源補正出力指令演算部417は、ステップS40にて求めた補正出力指令PDP(t)*に基づいて、蓄電設備5に対する出力指令である蓄電設備出力指令PBATT(t)と、交流電源設備6に対する出力指令である交流電源設備出力指令PEG(t)とを、下式(6)を満たすようにして計算する。
Figure JPOXMLDOC01-appb-M000006
The corrected output command P DP (t) * obtained by Expression (5) is a command for the total value of the electric power output from the power storage facility 5 and the AC power supply facility 6.
Next, when the process proceeds to step S41, the distributed power supply correction output command calculation unit 417 stores the power storage that is an output command for the power storage facility 5 based on the correction output command P DP (t) * obtained in step S40. The facility output command P BATT (t) and the AC power facility output command P EG (t), which is an output command for the AC power facility 6, are calculated so as to satisfy the following equation (6).
Figure JPOXMLDOC01-appb-M000006
 次に、処理がステップS42に進むと、制御演算装置41は、上述した各制御指令(PBATT(t),PEG(t),PDP(t)等)を、信号入出力インターフェース装置42を介して、蓄電設備5、交流電源設備6、太陽光発電設備7、風力発電設備8、連系装置3等に出力する。そして、処理はステップS31に戻り、上述した動作が繰り返される。 Next, when the process proceeds to step S42, the control arithmetic device 41 sends the above-described control commands (P BATT (t), P EG (t), P DP (t), etc.) to the signal input / output interface device 42. To the power storage facility 5, the AC power supply facility 6, the solar power generation facility 7, the wind power generation facility 8, the interconnection device 3, and the like. And a process returns to step S31 and the operation | movement mentioned above is repeated.
 ここで、図5を参照し、分散型電源出力指令PDP(t)、補正出力指令PDP(t)*、系統慣性吸収電力ΔPI(t)、蓄電設備出力指令PBATT(t)、および交流電源設備出力指令PEG(t)の相互関係を説明する。
 図5において、分散型電源出力指令PDP(t)は、時刻t3にステップ状に立ち上がっている。そして、補正出力指令PDP(t)*は、分散型電源出力指令PDP(t)の高周波成分を減衰させた波形を有している。式(5)に示したように、両者の差分(領域QA)は、系統慣性吸収電力ΔPI(t)によって負担される。
Here, referring to FIG. 5, distributed power output command P DP (t), corrected output command P DP (t) *, system inertia absorbed power ΔP I (t), power storage facility output command P BATT (t), The mutual relationship between the AC power supply facility output command P EG (t) will be described.
In FIG. 5, the distributed power output command P DP (t) rises in a step shape at time t3. The corrected output command P DP (t) * has a waveform obtained by attenuating the high frequency component of the distributed power output command P DP (t). As shown in Expression (5), the difference between the two (region QA) is borne by the system inertial absorption power ΔP I (t).
 また、補正出力指令PDP(t)*のうち、中程度の周波数成分(領域QB)は蓄電設備出力指令PBATT(t)によって負担され、最も低い周波数成分(領域QC)は交流電源設備出力指令PEG(t)によって負担される傾向がある。 Further, in the corrected output command P DP (t) *, the medium frequency component (region QB) is borne by the storage facility output command P BATT (t), and the lowest frequency component (region QC) is output from the AC power supply facility. There is a tendency to be borne by the directive P EG (t).
 ここで、図4(c),(d),(e)を参照し、本実施形態の効果を説明する。図4(c),(d),(e)は、それぞれ蓄電設備出力指令PBATT(t)、交流電源設備出力指令PEG(t)および周波数変化量測定値Δfの波形図であり、実線は本実施形態、破線は比較例によるものである。ここで、「比較例」とは、系統慣性吸収電力ΔPI(t)を考慮することなく、蓄電設備出力指令PBATT(t)および交流電源設備出力指令PEG(t)を設定した例である。 Here, the effect of the present embodiment will be described with reference to FIGS. 4C, 4D, and 4E are waveform diagrams of the power storage facility output command P BATT (t), the AC power supply facility output command P EG (t), and the measured frequency change Δf, respectively, and are solid lines. Is the present embodiment, and the broken line is the comparative example. Here, the “comparative example” is an example in which the storage facility output command P BATT (t) and the AC power facility output command P EG (t) are set without considering the system inertia absorption power ΔP I (t). is there.
 本実施形態によれば、±ΔfLIMの範囲内で周波数変化量測定値Δfを変動させることによって系統慣性吸収電力ΔPI(t)を発生させ、系統慣性吸収電力ΔPI(t)の存在を前提として出力指令PBATT(t),PEG(t)を定めることができる。これにより、本実施形態によれば、図4(c),(d)に示されているように、比較例よりも出力指令PBATT(t),PEG(t)の出力応答速度と出力変化幅とを抑制することができる。従って、本実施形態によれば、蓄電設備5や交流電源設備6に対する負担(特に高速応答の要求)を軽減することができ、これらの長寿命化を図ることができ、初期費用や維持費用等を低く抑えることができる。 According to the present embodiment, the system inertia absorption power ΔP I (t) is generated by changing the frequency variation measurement value Δf within the range of ± Δf LIM , and the presence of the system inertia absorption power ΔP I (t) is determined. As a premise, output commands P BATT (t) and P EG (t) can be determined. Thus, according to this embodiment, FIG. 4 (c), the as shown (d), the output command than Comparative Example P BATT (t), the output response speed of the P EG (t) Output The change width can be suppressed. Therefore, according to this embodiment, the burden (especially the request | requirement of a high-speed response) with respect to the electrical storage equipment 5 or the alternating current power supply equipment 6 can be reduced, these lifetimes can be aimed at, initial cost, maintenance cost, etc. Can be kept low.
 ところで、図4(a)~(e)においては、時刻t10に系統連系が遮断されているが、これは、上位系統1の停電等の事情により、系統連系が急に遮断された状態を想定している。時刻t10に系統連系が急に遮断され、連系電力予想値PGC(t)が零になった場合であっても、本実施形態によれば、系統単位慣性定数Hと系統周波数偏差指令値ΔfLIMとに基づいて系統慣性吸収電力ΔPI(t)が計算され、系統慣性吸収電力ΔPI(t)の存在を前提として分散型電源出力指令PDP(t)が計算される。これにより、系統連系の遮断前後において、系統周波数fの変動を抑制することができ、独立型電力供給システム20を安定して運用することができる。 By the way, in FIGS. 4A to 4E, the grid connection is cut off at time t10. This is because the grid connection is suddenly cut off due to a power failure of the upper system 1 or the like. Is assumed. Even when the grid connection is suddenly cut off at time t10 and the predicted grid power value P GC (t) becomes zero, according to this embodiment, the grid unit inertia constant H and the grid frequency deviation command Based on the value Δf LIM , the system inertia absorbed power ΔP I (t) is calculated, and the distributed power output command P DP (t) is calculated on the assumption that the system inertia absorbed power ΔP I (t) exists. Thereby, the fluctuation | variation of the system frequency f can be suppressed before and after the disconnection of the grid connection, and the independent power supply system 20 can be operated stably.
[変形例]
 本発明は上述した実施形態に限定されるものではなく、種々の変形が可能である。上述した実施形態は本発明を理解しやすく説明するために例示したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について削除し、若しくは他の構成の追加・置換をすることが可能である。上記実施形態に対して可能な変形は、例えば以下のようなものである。
[Modification]
The present invention is not limited to the above-described embodiments, and various modifications can be made. The above-described embodiments are illustrated for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment. Further, it is possible to delete a part of the configuration of each embodiment, or to add or replace another configuration. Examples of possible modifications to the above embodiment are as follows.
(1)上記実施形態においては、自然現象によって発電出力が変動する自然エネルギー電源設備の具体例として太陽光発電設備7と風力発電設備8とを適用した例を説明したが、本発明の自然エネルギー電源設備は、これらに限定されるものではなく、地熱発電設備、海流発電設備、潮力発電設備、小水力発電設備等であってもよい。 (1) In the above embodiment, an example in which the solar power generation facility 7 and the wind power generation facility 8 are applied as a specific example of the natural energy power supply facility in which the power generation output fluctuates due to a natural phenomenon has been described. The power supply facilities are not limited to these, and may be geothermal power generation facilities, ocean current power generation facilities, tidal power generation facilities, small hydropower generation facilities, and the like.
(2)系統周波数偏差指令値ΔfLIMは、日時に応じて切り替えてもよい。一般的に、家庭やオフィスビルでは、周波数変化量が大きくなったとしても、特に不都合が生じない傾向がある。一方、工場においては、周波数変化量が大きくなると、製品に不良が生じる場合がある。負荷設備9にこのような工場が含まれる場合は、工場設備の稼働期間中は系統周波数偏差指令値ΔfLIMを小さくし、工場設備の休止期間中はΔfLIMを大きくするとよい。 (2) The system frequency deviation command value Δf LIM may be switched according to the date and time. Generally, in homes and office buildings, even if the amount of frequency change increases, there is a tendency that no particular inconvenience occurs. On the other hand, in a factory, when the frequency change amount is large, a product may be defective. When such a factory is included in the load facility 9, the system frequency deviation command value Δf LIM may be decreased during the operation period of the factory facility, and Δf LIM may be increased during the stop period of the factory facility.
(3)上記実施形態において、系統単位慣性定数Hは、上位系統1と局所系統2との連系の有無にかかわらず共通の値であったが、連系有の場合の系統単位慣性定数H1と、連系無の場合の系統単位慣性定数H2とを区別して計算してもよい。また、ステップS38にて系統単位慣性定数H1またはH2を計算した際、H1またはH2の最新の計算値と、過去の計算値との移動平均値を求め、この移動平均値をH1またはH2に代えて適用してもよい。 (3) In the above embodiment, the system unit inertia constant H1 is a common value regardless of whether or not the upper system 1 and the local system 2 are connected, but the system unit inertia constant H1 in the case of connection is present. And the system unit inertia constant H2 in the case of no interconnection may be calculated separately. Further, when the system unit inertia constant H1 or H2 is calculated in step S38, the moving average value of the latest calculated value of H1 or H2 and the past calculated value is obtained, and this moving average value is replaced with H1 or H2. May be applied.
(4)上記実施形態においては、系統慣性吸収電力ΔPI(t)を式(4)によって計算し、分散型電源出力指令PDP(t)から系統慣性吸収電力ΔPI(t)を減算すること式(5)によって補正出力指令PDP(t)*を計算した。しかし、ΔPI(t),PDP(t)*の算出方法はこれに限られるものではない。
 例えば、分散型電源出力指令PDP(t)に対してハイパスフィルタ処理を施すことによって系統慣性吸収電力ΔPI(t)を求め、分散型電源出力指令PDP(t)から系統慣性吸収電力ΔPI(t)を減算して補正出力指令PDP(t)*を求めてもよい。
 また、逆に、分散型電源出力指令PDP(t)に対してローパスフィルタ処理を施すことによって補正出力指令PDP(t)*を求め、分散型電源出力指令PDP(t)から補正出力指令PDP(t)*を減算して系統慣性吸収電力ΔPI(t)を求めてもよい。
(4) In the above embodiment, the system inertia absorbed power [Delta] P I (t) calculated by Equation (4), subtracts the system inertia absorbed power [Delta] P I (t) from the distributed power supply output command P DP (t) The corrected output command P DP (t) * was calculated by equation (5). However, the calculation method of ΔP I (t) and P DP (t) * is not limited to this.
For example, high-pass filter processing is performed on the distributed power output command P DP (t) to obtain the system inertia absorbed power ΔP I (t), and the system inertia absorbed power ΔP is calculated from the distributed power output command P DP (t). I (t) may be subtracted to obtain the corrected output command P DP (t) *.
Conversely, we obtain a corrected output command P DP (t) * by performing a low-pass filter processing on the distributed power supply output command P DP (t), the corrected output from the distributed power supply output command P DP (t) The command inertia power absorption ΔP I (t) may be obtained by subtracting the command P DP (t) *.
(5)上記実施形態における制御装置4のハードウエアは一般的なコンピュータによって実現できるため、図3に示したフローチャートに対応するプログラム等を記憶媒体に格納し、または伝送路を介して頒布してもよい。 (5) Since the hardware of the control device 4 in the above embodiment can be realized by a general computer, a program or the like corresponding to the flowchart shown in FIG. 3 is stored in a storage medium or distributed via a transmission path. Also good.
(6)図3に示した処理は、上記実施形態ではプログラムを用いたソフトウエア的な処理として説明したが、その一部または全部をASIC(Application Specific Integrated Circuit;特定用途向けIC)、あるいはFPGA(field-programmable gate array)等を用いたハードウエア的な処理に置き換えてもよい。 (6) Although the process shown in FIG. 3 has been described as a software process using a program in the above embodiment, a part or all of the process is an ASIC (Application (Specific Integrated Circuit) or FPGA. It may be replaced with hardware processing using (field-programmable gate array) or the like.
1 上位系統(他の電力系統)
2 局所系統(電力系統)
3 連系装置
4 制御装置(コンピュータ)
5 蓄電設備(電源設備)
6 交流電源設備(電源設備)
7 太陽光発電設備(自然エネルギー電源設備)
8 風力発電設備(自然エネルギー電源設備)
9 負荷設備
20 独立型電力供給システム(電力供給システム)
41 制御演算装置
42 信号入出力インターフェース装置(信号入出力手段、信号入出力部)
415 系統単位慣性定数演算部(系統慣性演算部)
416 系統慣性吸収電力演算部(系統慣性吸収電力演算手段)
417 分散型電源補正出力指令演算部
PBATT(t) 蓄電設備出力指令(出力指令)
PDP(t) 分散型電源出力指令(不足・余剰電力)
PDP(t)* 補正出力指令(出力指令)
PEG(t) 交流電源設備出力指令(出力指令)
ΔPI(t) (系統慣性吸収電力)
ΔP 電力変化量測定値(電力変化量)
Δf 周波数変化量測定値(周波数変化量)
H 系統単位慣性定数(系統慣性)
1 Host system (other power system)
2 Local system (electric power system)
3 Interconnection device 4 Control device (computer)
5 Power storage equipment (power supply equipment)
6 AC power supply equipment (power supply equipment)
7 Solar power generation facilities (natural energy power supply facilities)
8 Wind power generation facilities (natural energy power supply facilities)
9 Load equipment 20 Independent power supply system (power supply system)
41 control arithmetic unit 42 signal input / output interface device (signal input / output means, signal input / output unit)
415 System unit inertia constant calculation unit (system inertia calculation unit)
416 System inertia absorbed power calculation unit (system inertia absorbed power calculation means)
417 Distributed power correction output command calculation unit
P BATT (t) Power storage facility output command (output command)
P DP (t) Distributed power output command (insufficient / surplus power)
P DP (t) * Compensation output command (output command)
P EG (t) AC power facility output command (output command)
ΔP I (t) (system inertia absorbed power)
ΔP Power change measurement (power change)
Δf Frequency change measurement (frequency change)
H System unit inertia constant (system inertia)

Claims (8)

  1.  電力系統を介して負荷設備に接続され、外部からの出力指令に基づいて出力電力を増減可能な電源設備と、
     制御装置と、
     を有し、前記制御装置は、
     前記電力系統に係る系統慣性に基づいて、前記電力系統の周波数の変化範囲が所定範囲内に収まるように、系統慣性吸収電力を算出する系統慣性吸収電力演算部と、
     前記電力系統内の電力の不足または余剰分である不足・余剰電力から、前記系統慣性吸収電力を減算した値を、前記出力指令として、前記電源設備に対して指令する信号入出力部と、
     を有することを特徴とする電力供給システム。
    Power supply equipment connected to the load equipment via the power system and capable of increasing / decreasing output power based on an output command from the outside,
    A control device;
    And the control device includes:
    Based on system inertia related to the power system, a system inertia absorbed power calculation unit that calculates system inertia absorbed power so that a change range of the frequency of the power system falls within a predetermined range;
    A value obtained by subtracting the grid inertia absorption power from the shortage / surplus power that is a shortage or surplus of power in the power system, as the output command, a signal input / output unit that commands the power supply facility,
    A power supply system comprising:
  2.  前記制御装置は、
     前記電力系統における需要電力と供給電力との差分である電力変化量と、前記電力系統における周波数変化量とに基づいて、系統慣性を算出する系統慣性演算部
     をさらに有することを特徴とする請求項1に記載の電力供給システム。
    The control device includes:
    The system further includes a system inertia calculation unit that calculates system inertia based on a power change amount that is a difference between demand power and supply power in the power system and a frequency change amount in the power system. The power supply system according to 1.
  3.  前記電力系統と他の電力系統との連系のオン/オフ状態を設定する連系装置をさらに有し、
     前記制御装置は、前記連系装置がオン状態である場合に、前記不足・余剰電力の高周波数成分を前記他の電力系統に負担させ、残余の周波数成分を前記系統慣性吸収電力と前記電源設備に負担させる機能をさらに有する
     ことを特徴とする請求項2に記載の電力供給システム。
    An interconnection device for setting an on / off state of interconnection between the power system and another power system;
    When the interconnection device is in an on state, the control device causes the other power system to bear the high frequency component of the shortage / surplus power, and the remaining frequency component is used as the system inertia absorption power and the power supply facility. The power supply system according to claim 2, further comprising a function of causing a burden on the power supply.
  4.  前記電力系統に接続され、自然現象によって発電出力が変動する自然エネルギー電源設備をさらに有し、
     前記制御装置は、前記自然エネルギー電源設備から前記電力系統に対する電力供給を、前記電源設備から前記電力系統に対する電力供給よりも優先させる機能をさらに有する
     ことを特徴とする請求項3に記載の電力供給システム。
    It further includes a natural energy power supply facility that is connected to the power system and whose power generation output varies due to a natural phenomenon,
    The power supply according to claim 3, wherein the control device further has a function of giving priority to power supply from the natural energy power supply facility to the power system over power supply from the power supply facility to the power system. system.
  5.  前記制御装置は、前記電源設備または前記負荷設備が有する慣性に基づいて、前記系統慣性を算出する機能
     をさらに有することを特徴とする請求項1に記載の電力供給システム。
    The power supply system according to claim 1, wherein the control device further has a function of calculating the system inertia based on an inertia of the power supply facility or the load facility.
  6.  前記制御装置は、前記不足・余剰電力に対してフィルタ処理を施すことにより、前記系統慣性吸収電力と前記系統慣性吸収電力とを算出する機能
     をさらに有することを特徴とする請求項1に記載の電力供給システム。
    2. The control device according to claim 1, further comprising a function of calculating the system inertia absorption power and the system inertia absorption power by performing a filtering process on the shortage / surplus power. Power supply system.
  7.  外部からの出力指令に基づいて出力電力を増減可能な電源設備と、負荷設備と、が接続された電力系統に係る系統慣性に基づいて、前記電力系統の周波数の変化範囲が所定範囲内に収まるように、系統慣性吸収電力を算出する系統慣性吸収電力演算部と、
     前記電力系統内の電力の不足または余剰分である不足・余剰電力から、前記系統慣性吸収電力を減算した値を、前記出力指令として、前記電源設備に対して指令する信号入出力部と、
     を有することを特徴とする電力供給システム用の制御装置。
    Based on the system inertia related to the power system to which the power supply equipment capable of increasing / decreasing the output power based on the output command from the outside and the load equipment is connected, the frequency change range of the power system falls within a predetermined range. As described above, a system inertia absorbed power calculation unit that calculates system inertia absorbed power,
    A value obtained by subtracting the grid inertia absorption power from the shortage / surplus power that is a shortage or surplus of power in the power system, as the output command, a signal input / output unit that commands the power supply facility,
    A control device for a power supply system, comprising:
  8.  電力系統を介して負荷設備に接続され、外部からの出力指令に基づいて出力電力を増減可能な電源設備と、
     コンピュータと、
     を有する電力供給システムに適用されるプログラムであって、前記コンピュータを、
     前記電力系統に係る系統慣性に基づいて、前記電力系統の周波数の変化範囲が所定範囲内に収まるように、系統慣性吸収電力を算出する系統慣性吸収電力演算手段、
     前記電力系統内の電力の不足または余剰分である不足・余剰電力から、前記系統慣性吸収電力を減算した値を、前記出力指令として、前記電源設備に対して指令する信号入出力手段、
     として機能させるためのプログラム。
    Power supply equipment connected to the load equipment via the power system and capable of increasing / decreasing output power based on an output command from the outside,
    A computer,
    A program applied to a power supply system having the computer,
    Based on the system inertia related to the power system, the system inertia absorbed power calculation means for calculating the system inertia absorbed power so that the change range of the frequency of the power system falls within a predetermined range,
    A signal input / output means for instructing the power supply facility as a value obtained by subtracting the grid inertia absorption power from a shortage / surplus power that is a shortage or surplus of power in the power system,
    Program to function as.
PCT/JP2016/083152 2015-12-25 2016-11-09 Electric power supply system, control device for electric power supply system, and program WO2017110276A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015252956A JP6548570B2 (en) 2015-12-25 2015-12-25 POWER SUPPLY SYSTEM, CONTROL DEVICE AND PROGRAM FOR POWER SUPPLY SYSTEM
JP2015-252956 2015-12-25

Publications (1)

Publication Number Publication Date
WO2017110276A1 true WO2017110276A1 (en) 2017-06-29

Family

ID=59089866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083152 WO2017110276A1 (en) 2015-12-25 2016-11-09 Electric power supply system, control device for electric power supply system, and program

Country Status (2)

Country Link
JP (1) JP6548570B2 (en)
WO (1) WO2017110276A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111953014A (en) * 2020-07-24 2020-11-17 天津大学 Photovoltaic power generation virtual inertia compensation system and method based on super capacitor energy storage

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7025973B2 (en) * 2018-03-28 2022-02-25 株式会社日立製作所 Distributed generation controller
JP7358837B2 (en) * 2019-08-21 2023-10-11 東京電力ホールディングス株式会社 Inertia estimation device, inertia estimation program, and inertia estimation method
JP7358836B2 (en) * 2019-08-21 2023-10-11 東京電力ホールディングス株式会社 Inertia estimation device, inertia estimation program, and inertia estimation method
KR102318452B1 (en) * 2019-08-27 2021-10-28 한국전력공사 Methods for on-line power system inertia monitoring and frequency simulation and apparatuses thereof
KR102639221B1 (en) * 2019-12-12 2024-02-22 한국전력공사 Inertial energy monitoring method and system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008022612A (en) * 2006-07-11 2008-01-31 Central Res Inst Of Electric Power Ind Emergent frequency controller and control method
JP2012034452A (en) * 2010-07-29 2012-02-16 Hitachi Ltd Smart grid monitoring control method and device
WO2015067602A2 (en) * 2013-11-06 2015-05-14 Reactive Technologies Limited Grid frequency response

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008022612A (en) * 2006-07-11 2008-01-31 Central Res Inst Of Electric Power Ind Emergent frequency controller and control method
JP2012034452A (en) * 2010-07-29 2012-02-16 Hitachi Ltd Smart grid monitoring control method and device
WO2015067602A2 (en) * 2013-11-06 2015-05-14 Reactive Technologies Limited Grid frequency response

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111953014A (en) * 2020-07-24 2020-11-17 天津大学 Photovoltaic power generation virtual inertia compensation system and method based on super capacitor energy storage

Also Published As

Publication number Publication date
JP6548570B2 (en) 2019-07-24
JP2017118722A (en) 2017-06-29

Similar Documents

Publication Publication Date Title
WO2017110276A1 (en) Electric power supply system, control device for electric power supply system, and program
US9489701B2 (en) Adaptive energy management system
JP5664889B1 (en) Inertia control method of wind power generator based on time-varying droop
JP4715624B2 (en) Power stabilization system, power stabilization control program, and power stabilization control method
US20210325922A1 (en) Method and apparatus for control of intelligent loads in microgrids
JP6007526B2 (en) CHARGE POWER CONTROL DEVICE, CHARGE POWER CONTROL METHOD, PROGRAM, AND SOLAR POWER GENERATION SYSTEM
JP6476353B2 (en) Power plant ramp rate control
JP2007129845A (en) Power quality maintaining controller
JP5383902B2 (en) Power supply system, power supply method, and control program for power supply system
KR101566296B1 (en) Frequency Control System in Power System
JP2014128184A (en) Control device and control method for wind generator system, and wind generator system
JP6903882B2 (en) Controls, control methods, and programs
WO2014112454A1 (en) Control apparatus, method, and program, and natural energy generation apparatus provided with control apparatus, method, and program
JP6338008B1 (en) Power stabilization system and control device
JP2008259357A (en) Output stabilizer
EP3159995B1 (en) Device operation setting device and device operation setting value determination program
WO2011093419A1 (en) Power supply method, computer-readable recording medium, and power generation system
JP2016167913A (en) Power supply system and power supply method
JP2008035640A (en) Device, method and program for suppressing rising of voltage
US10074984B2 (en) Electric power control system
JP2018148627A (en) Power system
JP6425749B2 (en) Power storage system
JP7019165B2 (en) Power conditioner and its transmission power control method
EP3625867B1 (en) Determining setpoint parameters for controlling an hvdc link
JP2015077022A (en) Charge/discharge control device and charge/discharge control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16878174

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16878174

Country of ref document: EP

Kind code of ref document: A1