WO2017110252A1 - Differential gear device - Google Patents

Differential gear device Download PDF

Info

Publication number
WO2017110252A1
WO2017110252A1 PCT/JP2016/082256 JP2016082256W WO2017110252A1 WO 2017110252 A1 WO2017110252 A1 WO 2017110252A1 JP 2016082256 W JP2016082256 W JP 2016082256W WO 2017110252 A1 WO2017110252 A1 WO 2017110252A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulley
rotating body
differential device
endless
transmission member
Prior art date
Application number
PCT/JP2016/082256
Other languages
French (fr)
Japanese (ja)
Inventor
ヨッヘン ダメラウ
ベンジャミン ルウクス
真崇 鈴木
Original Assignee
ボッシュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ボッシュ株式会社 filed Critical ボッシュ株式会社
Publication of WO2017110252A1 publication Critical patent/WO2017110252A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J17/00Joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H19/00Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion
    • F16H19/02Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion for interconverting rotary or oscillating motion and reciprocating motion

Definitions

  • the present invention relates to a differential device.
  • the present invention relates to a differential device that causes two movable elements to move straight forward.
  • the human body-mounted robot includes, for example, a joint portion to be worn by the user, a sensor for detecting the user's intention or state, or a surrounding situation, an actuator that applies driving torque to the joint portion, and a control device. It is prepared for.
  • an actuator includes a motor and a transmission that converts high-speed rotation of the motor into low-speed rotation suitable for human movement.
  • the transmission transmits the rotation of the motor to the joint at a gear ratio of 1/50 to 1/200, for example.
  • the actuator is configured by combining, for example, a harmonic drive (registered trademark) or a worm gear and a DC motor.
  • Another differential gear includes a sun gear, a ball gear, and a plurality of planetary gears.
  • the reduction gears using these gear mechanisms have a problem that it is necessary to use a material having high rigidity so as not to cause tooth chipping, which is relatively expensive.
  • a mechanism of a differential pulley For example, a rotating body including two pulleys having different diameters that can rotate integrally, and a load that is suspended below the rotating body to support a load 1. Two pulleys and an endless rope or an endless chain disposed across these three pulleys.
  • the differential pulley device can be configured at a relatively low cost, and even a heavy object such as a mining bucket or boat can be easily moved up and down by the operator's force.
  • Patent Document 1 there is a differential pulley actuator in which a motor is added to a conventional differential pulley device.
  • a differential pulley actuator can move the load forward and backward with a relatively small force by the driving force of the motor, not by the operator.
  • differential pulley actuators equipped with motors have a relatively short service life and are often not designed on the premise of long-term continuous use.
  • the large driving force that can be transmitted inside the apparatus shortens the life of an endless transmission member such as a cable unless various parts are enlarged.
  • Such an increase in the size of the parts makes it difficult to apply the differential pulley actuator to a relatively small system such as a human-mounted robot.
  • an object rotated by an actuator such as a joint part of a human body-mounted robot
  • two movable elements having reverse directions in each actuator are provided on one actuator. It is necessary to provide it. In this case, a larger driving force is required, and the life of an endless transmission member such as a cable is likely to be further shortened.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a new and improved differential device capable of improving the service life without increasing the size. .
  • a first rotating body, a second rotating body, a third rotating body, and a first rotating body each having a rotation axis extending in parallel along one direction.
  • the endless transmission member is disposed across the first rotating body, the second rotating body, the third rotating body, and the fourth rotating body on substantially the same plane. Is done. Therefore, as an endless transmission member, not only a cable that drives a rotating body by frictional force, but also a belt or a chain that drives the rotating body by meshing teeth can be used, without increasing the size of each component, The service life can be improved.
  • the amount of the endless transmission member delivered by the first rotating body when the drive unit is driven may be different from the amount of the endless transmission member delivered by the second rotating body.
  • the endless transmission member is wound around at least the first rotating body, the fourth rotating body, the second rotating body, and the third rotating body in this order, and is then wound around the first rotating body again and driven.
  • the first rotating body to the fourth rotating body While the length of the endless transmission member that reaches the second rotating body via the rotating body is shortened, the endless transmission member that reaches the second rotating body via the third rotating body from the first rotating body
  • the length of the endless transmission member extending from the first rotating body to the second rotating body via the fourth rotating body may be increased.
  • the first rotating body and the second rotating body may rotate at different speeds.
  • It may be provided with at least one driven rotor for changing the locus of the endless transmission member.
  • the radius of the first rotating body and the radius of the second rotating body may be different from each other.
  • a rotation transmission unit including a wound second endless transmission member may be provided, and the second rotation body may rotate by receiving the rotation of the first rotation body via the rotation transmission unit.
  • a second driving unit that rotationally drives the second rotating body may be provided.
  • the second rotating body may rotate by transmitting the rotation of the first rotating body via a gear mechanism.
  • the first rotating body is a driving pulley
  • the second rotating body is a driven pulley
  • a continuously variable transmission that changes the pitch diameter of at least one of the driving pulley and the driven pulley is provided. Good.
  • the endless transmission member may be an endless belt, an endless chain, or an endless cable.
  • the third rotating body and the fourth rotating body may be connected to cables fixed or wound around the rotation operation unit, respectively, and the differential device may rotate the rotation operation unit.
  • the rotation operation unit may be a joint part of a human-mounted robot.
  • the rotation operation part has a long diameter part and a short diameter part, and when the rotation operation part rotates, the long diameter part is tensioned to the cable connected to the third rotation body or the cable connected to the fourth rotation body. May be given.
  • the service life can be improved without increasing the size of the differential device in which the linear movement of the two movable elements is performed.
  • FIG. 1 is a schematic view of the main part of the differential device 10 as viewed along the extending direction of the rotation shaft of each pulley
  • FIG. 2 is a perspective view of the main part of the differential device 10.
  • the differential device 10 includes a first pulley 30, a second pulley 40, a third pulley 60, a fourth pulley 70, and a fifth pulley 50.
  • the pulley is an example of a rotating body in the present invention.
  • the differential device 10 includes a motor 20 as a drive unit that rotates the first pulley 30, a first pulley 30, a second pulley 40, a third pulley 60, a fourth pulley 70, and
  • the endless belt 26 is provided as an endless transmission member disposed over the fifth pulley 50.
  • the motor 20 is driven by a control device (not shown).
  • a control device for example, a servo motor or a stepping motor is used, but it is not limited to this example.
  • the motor 20 has a rotating shaft 22 that outputs rotational torque.
  • the rotating shaft 22 is connected to the axial center portion of the first pulley 30.
  • the first pulley 30, the second pulley 40, the third pulley 60, the fourth pulley 70, and the fifth pulley 50 each have a rotation axis along the axial direction of the rotation shaft 22 of the motor 20. .
  • the first pulley 30, the second pulley 40, the third pulley 60, the fourth pulley 70, and the fifth pulley 50 are each provided with an endless belt 26 on the circumferential surface.
  • the endless belt 26 is wound around the first pulley 30, the fourth pulley 70, the second pulley 40, the fifth pulley 50, and the third pulley 60 in this order and wound around the first pulley 30 again. Is done.
  • the peripheral surfaces of the first pulley 30, the second pulley 40, the third pulley 60, the fourth pulley 70, and the fifth pulley 50 are located on a plane orthogonal to the rotating shaft 22 of the motor 20.
  • the endless belt 26 is wound and disposed on the plane.
  • the endless belt 26 can be used as an endless transmission member.
  • the endless belt 26 may be, for example, a wire-made rubber belt, a high-strength woven belt, a metal belt, or the like.
  • An endless chain may be used instead of the endless belt 26.
  • the endless belt 26 or the endless chain has higher strength than the cable that drives the pulley by frictional force, improves the transmission efficiency of the driving force, and can improve the service life.
  • the differential gear 10 concerning this embodiment can be applied also when an endless transmission member is an endless cable.
  • the first pulley 30 is connected to the rotating shaft 22 of the motor 20 and rotates about the rotating shaft 22.
  • the first pulley 30 is provided with a drive gear 32 that rotates in the same manner as the shaft of the first pulley 30 rotates.
  • the second pulley 40 is provided with a driven gear 42 that rotates in the same manner as the second pulley 40 rotates.
  • the second pulley 40 and the driven gear 42 are rotatably supported with respect to a fixed portion (not shown).
  • the driven gear 42 meshes with the drive gear 32, and when the first pulley 30 is rotated by the motor 20, the rotation is transmitted to the second pulley 40 via the drive gear 32 and the driven gear 42.
  • the second pulley 40 rotates on the axis.
  • the number of teeth of the drive gear 32 is larger than the number of teeth of the driven gear 42. Therefore, the rotation speed of the second pulley 40 is faster than the rotation speed of the first pulley 30.
  • the fifth pulley 50 is rotatably supported with respect to a fixed portion (not shown).
  • the fifth pulley 50 is one of the driven rotators, and the driving force is transmitted by the endless belt 26 that moves forward and backward along the arrangement direction by the shaft rotation of the first pulley 30 and the second pulley 40. Rotate the shaft.
  • the fifth pulley 50 changes the trajectory of the endless belt 26 delivered by the second pulley 40 toward the third pulley 60.
  • the third pulley 60 and the fourth pulley 70 have the same diameter and are rotatably supported by the endless belt 26.
  • the third pulley 60 and the fourth pulley 70 are supported so as to be capable of moving forward and backward along predetermined directions.
  • the third pulley 60 and the fourth pulley 70 are urged upward by a coil spring whose one end is fixed to a fixing portion (not shown) (not shown) on the upper side in the drawing.
  • a load may be applied to the lower side in the figure.
  • the rotation angle ⁇ 1 of the first pulley 30 is equal to ⁇
  • the rotation angle ⁇ 2 of the second pulley 40 is equal to i ⁇ .
  • the length l1 of the endless belt 26 delivered by the first pulley 30 is equal to R ⁇
  • the length l2 of the endless belt 26 delivered by the second pulley 40 is equal to ir ⁇ . Therefore, if R ⁇ ir, the length l2 of the endless belt 26 sent out by the second pulley 40 is longer than the length 11 of the endless belt 26 sent out by the first pulley 30.
  • the direction of the endless belt 26 located between the pulleys does not change.
  • the third pulley 60 and the fourth pulley 70 move linearly. That is, the endless belt 26 between the second pulley 40 and the fourth pulley 70 and the endless belt 26 between the first pulley 30 and the fourth pulley 70 have a diameter of the fourth pulley 70.
  • the fourth pulley 70 linearly moves without changing the direction of the endless belts 26 while maintaining the same width as that of the endless belt 26.
  • the endless belt 26 between the first pulley 30 and the third pulley 60 and the endless belt 26 between the fifth pulley 50 and the third pulley 60 are connected to the third pulley 60.
  • the third pulley 60 moves in a straight line without changing the direction of the endless belts 26 while maintaining the same width as the diameter and arranged in parallel.
  • the third pulley 60 and the fourth pulley 70 have their linear motion directions determined by guide portions (not shown).
  • the rectilinear movement distances of the third pulley 60 and the fourth pulley 70 with respect to the rotation angle of the motor 20 change proportionally, and control of the rectilinear movement of the third pulley 60 and the fourth pulley 70 can be easily performed.
  • the third pulley 60 and the fourth pulley 70 are opposite to each other with respect to a certain rotation angle of the motor 20. , And can be moved at equal distances.
  • the differential device 10 can convert the rotational motion of the motor 20 into the linear motion of the third pulley 60 and the fourth pulley 70.
  • the diameter of the first pulley 30 and the diameter of the second pulley 40 are the same, the smaller the difference in rotational speed, the longer the length of the endless belt 26 delivered by the first pulley 30 and the second pulley 40. A difference from the length of the fed endless belt 26 is reduced. Accordingly, the smaller the difference in rotational speed between the first pulley 30 and the second pulley 40, the smaller the straight travel distance of the third pulley 60 and the fourth pulley 70.
  • the linear travel distance of the third pulley 60 and the This is equal to the straight travel distance of the four pulleys 70.
  • FIG. 3 is an explanatory diagram showing an example of the human body-mounted robot 100 that is operated by the differential device 10.
  • the third pulley 60 and the fourth pulley 70 are connected to the other ends of the coil springs 14 and 16 each having one end fixed to the fixing portion 12.
  • the other ends of the coil springs 14 and 16 are fixed to the rotation shafts of the third pulley 60 and the fourth pulley 70 and do not hinder the shaft rotation of the third pulley 60 and the fourth pulley 70.
  • the ends of the cables 132 and 134 fixed to the joint 120 of the human body-mounted robot 100 are connected to the rotation shafts of the third pulley 60 and the fourth pulley 70, and the third pulley 60 and the fourth pulley 70
  • the pulley 70 is loaded on the opposite side to the biasing direction of the coil springs 14 and 16.
  • the illustrated human-body-mounted robot 100 includes a joint portion 120, and a first arm portion 112 and a second arm portion 114 that are coupled to be rotatable about the joint portion 120.
  • the upper part of the first arm portion 112 is fixed to a mounting belt 102 that is wrapped around the waist of a human body.
  • the lower portion of the second arm portion 114 is fixed to a mounting belt 104 that is wound around the thigh of the human body.
  • the joint unit 120 is an example of a rotation operation unit that is rotationally driven by the differential device 10.
  • a control device detects that the user is trying to raise his / her foot by using a myoelectric potential sensor or a sensor for detecting the movement of the user's foot, as shown in FIG.
  • the motor 20 is driven to rotate counterclockwise.
  • the fourth pulley 70 moves in a direction approaching the fixed portion 12 side and pulls the cable 132. If it does so, the joint part 120 will rotate clockwise and the cable 134 will be pulled by the joint part 120 side.
  • the third pulley 60 moves in a direction away from the fixed portion 12 side, the cable 134 moves to the joint portion 120 side.
  • the second arm portion 114 rotates clockwise around the joint portion 120 to generate a force that assists the user in raising the foot.
  • the control device drives the motor 20 to rotate clockwise.
  • the third pulley 60 pulls the cable 134 this time, and the cable 132 also moves following the pulling of the cable 134 to rotate the joint portion 120 counterclockwise.
  • occur
  • the differential device 10 can control the straight travel distances of the third pulley 60 and the fourth pulley 70 by the rotation of the motor 20 at equal distances, the joint portion 120 is rotated in any direction. However, slack does not occur in either one of the cables 132 and 134. Further, since the differential device 10 can proportionally control the linear movement distances of the third pulley 60 and the fourth pulley 70 in accordance with the rotation angle of the motor 20, it is easy to rotate the joint 120. Can be controlled.
  • a Bowden cable can be used as the cables 132 and 134 for connecting the differential device 10 and the joint portion 120 and rotating the joint portion 120.
  • a Bowden cable can be used.
  • one end side of the protective covers 131 and 133 outside the cables 132 and 134 of the Bowden cable is fixed to the fixing unit 113 at a position different from the joint unit 120 in the human body wearing robot 100.
  • one end side of the protective covers 131 and 133 is fixed to the fixing portion 113 provided on the first arm portion 112, but may be fixed to the fixing portion of the mounting belt 102.
  • the other end sides of the protective covers 131 and 133 are fixed to the fixing portion 90 on the extension line of the linear movement of the third pulley 60 and the fourth pulley 70 of the differential device 10.
  • the Bowden cable By using the Bowden cable, the movement of the cables 132 and 134 passing through the inside of the protective covers 131 and 133 is restricted, and there is no direct contact with clothes or the body. Few.
  • the differential device 10 can be arranged at a position away from the joint portion 120.
  • the differential device 10 may be provided in the form of a backpack or the like that the user carries on the back, or may be provided in the form of a hand-held or self-propelled cart.
  • the differential device 10 according to the first embodiment can arrange the endless transmission member on substantially the same plane, the endless transmission member is hardly twisted, An endless belt 26 or an endless chain can be used as the endless transmission member. Therefore, it is possible to improve the service life of the endless transmission member without increasing the size of components such as pulleys, and to withstand continuous use.
  • the differential device 10 in addition to the motor 20, the differential device 10 according to the present embodiment can be mainly composed of five pulleys, two gears, and an endless belt 26. Therefore, the manufacturing cost can be reduced. Further, since there is only one meshing of gears, there is little backlash, responsiveness can be improved, and operating noise and impact can be reduced.
  • the differential device 10 can connect the third pulley 60 and the fourth pulley 70 to a rotation operation unit such as the joint unit 120 of the human body wearing robot 100 via a cable. Therefore, the differential device 10 can be installed or arranged at a position away from the operation target, and the degree of freedom of the arrangement position of the differential device 10 is increased.
  • the linear travel distances of the third pulley 60 and the fourth pulley 70 due to the rotation of the motor 20 are equal. Further, the differential device 10 according to the present embodiment can proportionally control the straight travel distances of the third pulley 60 and the fourth pulley 70 according to the rotation angle of the motor 20. Therefore, it is possible to easily control the rotation operation unit such as the joint unit 120 of the human body-mounted robot 100.
  • the number of teeth of the drive gear 32 and the driven gear 42 may be reversed. In this case, the relationship between the rotation direction of the motor 20 and the direction of the linear movement of the third pulley 60 and the fourth pulley 70 is reversed. Further, the motor 20 may rotate the second pulley 40 instead of the first pulley 30.
  • the radius of the third pulley 60 and the fourth pulley 70 are determined according to the ratio or the like. The radius may be different.
  • FIG. 4 is a schematic view of the main part of the differential device 150 as viewed along the extending direction of the rotation shaft of each pulley
  • FIG. 5 is a perspective view of the main part of the differential device 150.
  • the differential device 150 includes a first pulley 162, a second pulley 164, a third pulley 166, and a fourth pulley 168. Further, the differential device 150 includes a motor 20 as a drive unit that rotates the first pulley 162, a first pulley 162, a second pulley 164, a third pulley 166, and a fourth pulley 168. And an endless belt 172 as an endless transmission member disposed across. The motor 20 and the endless belt 172 may be the same as the motor 20 and the endless belt 26 according to the first embodiment.
  • the first pulley 162, the second pulley 164, the third pulley 166, and the fourth pulley 168 each have a rotation axis along the axial direction of the rotation shaft 24 of the motor 20.
  • the first pulley 162, the second pulley 164, the third pulley 166, and the fourth pulley 168 are each provided with an endless belt 172 on the circumferential surface.
  • the endless belt 172 is wound around the first pulley 162, the fourth pulley 168, the second pulley 164, and the third pulley 166 in this order, and is wound around the first pulley 162 again.
  • the peripheral surfaces of the first pulley 162, the fourth pulley 168, the second pulley 164, and the third pulley 166 are located on a plane orthogonal to the rotation shaft 24 of the motor 20, and the endless belt 172 is It is wound and arranged on a plane.
  • the first pulley 162 is connected to the rotating shaft 24 of the motor 20 and rotates about the rotating shaft 24.
  • the second pulley 164 is rotatably supported with respect to a fixed portion (not shown).
  • the radius R of the second pulley 164 is smaller than the radius r of the first pulley 162.
  • the third pulley 166 and the fourth pulley 168 have the same diameter, and are supported by the endless belt 172 so as to be rotatable.
  • the third pulley 166 and the fourth pulley 168 are each supported so as to be able to advance and retract along a predetermined direction.
  • the third pulley 166 and the fourth pulley 168 are urged upward by a coil spring whose one end is fixed to a fixing portion (not shown) on the upper side in the drawing, and a load is applied to the lower side in the drawing. It may come to be.
  • the differential device 150 includes a rotation shaft of the motor 20, that is, a fifth pulley 152 fixed to the rotation shaft of the first pulley 162 and a rotation shaft 25 of the second pulley 164. And a fixed sixth pulley 154.
  • the fifth pulley 152 can rotate about the rotation shaft 24, and the sixth pulley 154 can rotate about the rotation shaft 25.
  • An endless belt 172 as a second endless transmission member is wound around the fifth pulley 152 and the sixth pulley 154.
  • the peripheral surface of the fifth pulley 152 and the peripheral surface of the sixth pulley 154 are located on the same plane, and the endless belt 172 is disposed on the plane. Therefore, the endless belt 172 or the endless chain can be used as the second endless transmission member.
  • the second endless transmission member may be an endless cable.
  • the fifth pulley 152 and the sixth pulley 154 have the same radius. Accordingly, when the motor 20 is driven to rotate, the fifth pulley 152 and the sixth pulley 154 rotate at the same speed. Therefore, the first pulley 162 and the second pulley 164 rotate at the same speed. However, the radius r of the second pulley 164 is smaller than the radius R of the first pulley 162. As a result, when the first pulley 162 and the second pulley 164 rotate at the same speed, the length of the endless belt 172 sent out by the first pulley 162 is sent out by the second pulley 164. It becomes longer than the length of the endless belt 172.
  • the endless belt 172 between the first pulley 162 and the third pulley 166 and the endless belt 172 between the second pulley 164 and the third pulley 166 have a diameter of the third pulley 166.
  • the third pulley 166 moves in a straight line without changing the direction of the endless belts 172, while maintaining the same width as that of the endless belt 172. Therefore, the linear travel distance of the third pulley 166 with respect to the rotation angle of the motor 20 changes proportionally.
  • the third pulley 166 and the fourth pulley 168 have their linear motion directions determined by guide portions (not shown).
  • the differential device 150 can convert the rotational motion of the motor 20 into the linear motion of the third pulley 166 and the fourth pulley 168.
  • the straight travel distance of the third pulley 166 and the fourth pulley 168 can be expressed by the above equation (1).
  • the diameter of the fourth pulley 168 is matched with the sum of the diameter of the first pulley 162, the diameter of the second pulley 164, and the diameter of the third pulley 166.
  • the linear travel distances of the third pulley 166 and the fourth pulley 168 can be proportionally controlled according to the rotation angle of the motor 20.
  • the differential device 150 according to the present embodiment can also be applied as an actuator of the human body-mounted robot 100 in the same manner as the differential device 10 according to the first embodiment.
  • the differential device 150 since the differential device 150 according to the second embodiment can arrange the endless transmission member on substantially the same plane, the endless transmission member is hardly twisted, An endless belt 172 or an endless chain can be used as the endless transmission member. Further, the fifth pulley 152 and the endless transmission member wound around the sixth pulley 154 for transmitting the rotation of the motor 20 to the second pulley 164 may also be arranged on substantially the same plane. Therefore, the endless transmission member is hardly twisted, and the endless belt 172 and the endless chain can be used as the endless transmission member. Therefore, it is possible to improve the service life of the endless transmission member without increasing the size of components such as pulleys, and to withstand continuous use.
  • the differential device 150 can be mainly composed of six pulleys and endless belts 172 and 174. Therefore, a gear that requires high machining accuracy is not required, and the manufacturing cost can be reduced. Further, since the differential device 150 does not mesh with the gear, there is no backlash, the responsiveness can be improved, and the operating sound and impact can be reduced.
  • the differential device 150 can connect the third pulley 166 and the fourth pulley 168 to an operation target such as the joint 120 of the human body-mounted robot 100 via a cable. Therefore, the differential device 150 can be installed or arranged at a position away from the operation target, and the degree of freedom of the arrangement position of the differential device 150 is increased.
  • the diameter of the fourth pulley 168 is set to the sum of the diameter of the first pulley 162, the diameter of the second pulley 164, and the diameter of the third pulley 166.
  • the diameter of the fourth pulley 168 is adjusted to the sum of the diameter of the first pulley 162, the diameter of the second pulley 164, and the diameter of the third pulley 166, and the horizontal distance between the pulleys is appropriately set.
  • the direction of the endless belt 172 does not change as the fourth pulley 168 moves straight.
  • the straight travel distances of the third pulley 166 and the fourth pulley 168 can be proportionally controlled according to the rotation angle of the motor 20. Therefore, it is possible to easily control the rotation operation unit such as the joint unit 120 of the human body-mounted robot 100.
  • the first pulley 166 when it is desired to make the rectilinear travel distance of the third pulley 166 different from the rectilinear travel distance of the fourth pulley 168, the first pulley 166 varies depending on the ratio or the like.
  • the radius of the third pulley 166 and the radius of the fourth pulley 168 may be different.
  • FIG. 6 is a schematic view of the main part of the differential device 200 as viewed along the extending direction of the rotation shaft of each pulley.
  • the differential device 200 includes a first pulley 220, a second pulley 230, a third pulley 240, and a fourth pulley 245.
  • the differential device 200 includes a motor (not shown) as a drive unit that rotates the first pulley 220, a first pulley 220, a second pulley 230, a third pulley 240, and a fourth pulley.
  • an endless belt 212 as an endless transmission member disposed over 245.
  • the motor and endless belt 212 the same motor 20 and endless belt 26 according to the first embodiment can be used.
  • the first pulley 220, the second pulley 230, the third pulley 240, and the fourth pulley 245 each have a rotation axis along the axial direction of the rotation axis of the motor.
  • the first pulley 220, the second pulley 230, the third pulley 240, and the fourth pulley 245 are each provided with an endless belt 212 on the circumferential surface.
  • the endless belt 212 is wound around the first pulley 220, the third pulley 240, the second pulley 230, and the fourth pulley 245 in this order, and is wound around the first pulley 220 again.
  • the peripheral surfaces of the first pulley 220, the second pulley 230, the third pulley 240, and the fourth pulley 245 are located on a plane orthogonal to the rotation axis of the motor, and the endless belt 212 is the plane. It is wound and arranged on the top.
  • the first pulley 220 is connected to the rotating shaft of the motor and rotates about the rotating shaft.
  • the first pulley 220 is provided with a drive gear 222 that rotates in the same manner as the shaft of the first pulley 220 rotates.
  • the second pulley 230 is provided with a driven gear 232 that similarly rotates along with the shaft rotation of the second pulley 230.
  • the second pulley 230 and the driven gear 232 are rotatably supported with respect to a fixed portion (not shown).
  • the driven gear 232 meshes with the drive gear 222.
  • the rotation is transmitted to the second pulley 230 via the drive gear 222 and the driven gear 232,
  • the second pulley 230 rotates on the axis.
  • the number of teeth of the drive gear 222 is greater than the number of teeth of the driven gear 232. Therefore, the rotational speed of the second pulley 230 is faster than the rotational speed of the first pulley 220.
  • timing belt may be used instead of the drive gear 222 and the driven gear 232.
  • the third pulley 240 and the fourth pulley 245 have the same diameter and are rotatably supported by the endless belt 212.
  • the third pulley 240 and the fourth pulley 245 are each supported so as to be able to advance and retract along a predetermined direction.
  • the third pulley 240 and the fourth pulley 245 are biased upward by a coil spring whose one end is fixed to a fixing portion (not shown) on the upper side in the drawing, and a load is applied to the lower side in the drawing. It may come to be.
  • the radius R of the first pulley 220 is equal to the sum of the radius r of the second pulley 230, the radius of the third pulley 240, and the radius of the fourth pulley 245. ing.
  • the second pulley 230, the third pulley 240, and the fourth pulley 245 are arranged so as not to overlap in the illustrated vertical direction. Accordingly, the endless belt 212 disposed between the pulleys is all disposed along the vertical direction shown in the figure. Thereby, the frictional force between the endless belt 212 and each pulley is prevented from becoming excessive.
  • the third pulley 240 and the fourth pulley 245 move linearly, the position of the endless belt 212 does not change.
  • the first pulley 220 is sent by the first pulley 220 when the motor is driven to rotate.
  • the length of the endless belt 212 is longer than the length of the endless belt 212 delivered by the second pulley 230.
  • the second pulley 230 is configured to rotate faster than the first pulley 220 so that the delivery length of the endless belt 212 is not greatly different.
  • the third pulley 240 and the fourth pulley 245 move linearly, the position of the endless belt 212 does not change. Therefore, the third pulley 240 and the fourth pulley 245 with respect to the rotation angle of the motor.
  • the straight travel distance of the pulley 245 changes proportionally, and the straight motion of the third pulley 240 and the fourth pulley 245 can be easily controlled.
  • the third pulley 240 and the fourth pulley 245 are opposite to each other with respect to a certain rotation angle of the motor. It can be moved at an equal distance.
  • the third pulley 240 and the fourth pulley 245 are determined in the direction of straight movement by a guide portion (not shown).
  • the differential device 200 can convert the rotational motion of the motor into the linear motion of the third pulley 240 and the fourth pulley 245.
  • the straight travel distance of the third pulley 240 and the fourth pulley 245 can be expressed by the above equation (1). Therefore, the control device can proportionally control the straight travel distance d of the third pulley 240 and the fourth pulley 245 according to the rotation angle of the motor.
  • the differential device 200 according to the present embodiment can also be applied as an actuator of the human body-mounted robot 100, similarly to the differential device 10 according to the first embodiment.
  • the differential device 200 according to the third embodiment can dispose the endless transmission member on substantially the same plane, the endless transmission member is hardly twisted, An endless belt 212 or an endless chain can be used as the endless transmission member. Therefore, it is possible to improve the service life of the endless transmission member without increasing the size of components such as pulleys, and to withstand continuous use.
  • the differential device 200 can be mainly composed of four pulleys, two gears, and an endless belt 212. Therefore, the manufacturing cost can be reduced. Further, since the differential device 200 has only one gear meshing, it can reduce backlash, improve responsiveness, and reduce operating noise and impact.
  • the differential device 200 can connect the third pulley 240 and the fourth pulley 245 to an operation target such as the joint 120 of the human body wearing robot 100 via a cable. Therefore, the differential device 200 can be installed or arranged at a position away from the operation target, and the degree of freedom of the arrangement position of the differential device 200 is increased.
  • the straight travel distances of the third pulley 240 and the fourth pulley 245 by the rotation of the motor are equal. Further, the differential device 200 according to the present embodiment can proportionally control the straight travel distances of the third pulley 240 and the fourth pulley 245 according to the rotation angle of the motor. Therefore, it is possible to easily control the rotation operation unit such as the joint unit 120 of the human body-mounted robot 100.
  • the first pulley 240 is moved in accordance with the ratio or the like.
  • the radius of the third pulley 240 may be different from the radius of the fourth pulley 245.
  • FIG. 7 is a schematic view of the main part of the differential device 250 as viewed along the extending direction of the rotation shaft of each pulley.
  • the differential device 250 includes a first pulley 260, a second pulley 270, a third pulley 280, and a fourth pulley 290. Further, the differential device 250 according to the present embodiment includes a first motor 254 as a drive unit that rotates the first pulley 260 and a second motor as a drive unit that rotates the second pulley 270. 256, and an endless belt 252 as an endless transmission member disposed across the first pulley 260, the second pulley 270, the third pulley 280, and the fourth pulley 290. As the first motor 254, the second motor 256, and the endless belt 252, the same motors as the motor 20 and the endless belt 26 according to the first embodiment can be used.
  • the first pulley 260, the second pulley 270, the third pulley 280, and the fourth pulley 290 each have a rotation axis along the axial direction of the rotation axis of the first motor 254 and the second motor 256, respectively.
  • the first pulley 260, the second pulley 270, the third pulley 280, and the fourth pulley 290 are each provided with an endless belt 252 on the circumferential surface.
  • the endless belt 252 is wound around the first pulley 260, the fourth pulley 290, the second pulley 270, and the third pulley 280 in this order, and is wound around the first pulley 260 again.
  • the peripheral surfaces of the first pulley 260, the fourth pulley 290, the second pulley 270, and the third pulley 280 are positioned on a plane orthogonal to the rotation axes of the first motor 254 and the second motor 256.
  • the endless belt 252 is wound around the plane.
  • the first pulley 260 is connected to the rotation shaft of the first motor 254 and rotates about the rotation shaft.
  • the second pulley 270 is connected to the rotation shaft of the second motor 256 and rotates about the rotation shaft.
  • the radius R of the first pulley 260 and the radius r of the second pulley 270 are the same.
  • the third pulley 280 and the fourth pulley 290 have the same diameter, and are supported by the endless belt 252 so as to be rotatable.
  • the third pulley 280 and the fourth pulley 290 are each supported so as to be able to advance and retract along a predetermined direction.
  • the third pulley 280 and the fourth pulley 290 are urged in the direction of the rotation axis of the first pulley 260 in the figure by a coil spring having one end fixed to a fixing portion (not shown), and opposite to each other. A load may be applied in the direction.
  • the first motor 254 is driven at a higher rotational speed than the second motor 256.
  • the length of the endless belt 252 delivered by the first pulley 260 is longer than the length of the endless belt 252 delivered by the second pulley 270.
  • the differential device 250 can convert the rotational motions of the first motor 254 and the second motor 256 into the linear motions of the third pulley 280 and the fourth pulley 290.
  • the rectilinear movement distances of the third pulley 280 and the fourth pulley 290 can be expressed by the above equation (1). Therefore, the control device can proportionally control the straight travel distance d of the third pulley 280 and the fourth pulley 290 according to the rotation angles of the first motor 254 and the second motor 256.
  • the differential device 250 according to the present embodiment can also be applied as an actuator of the human body-mounted robot 100, similarly to the differential device 10 according to the first embodiment.
  • the differential device 250 according to the fourth embodiment can arrange the endless transmission member on substantially the same plane, the endless transmission member is hardly twisted, An endless belt 252 or an endless chain can be used as the endless transmission member. Therefore, it is possible to improve the service life of the endless transmission member without increasing the size of components such as pulleys, and to withstand continuous use.
  • the differential device 250 according to the present embodiment can be configured using pulleys having the same diameter.
  • the differential device 250 can be mainly configured by four pulleys and an endless belt 252 in addition to the first motor 254 and the second motor 256. Therefore, the manufacturing cost can be reduced. Further, since the differential device 250 has no gear meshing, there is no backlash, the responsiveness can be improved, and the operating noise and impact can be reduced.
  • the differential device 250 can connect the third pulley 280 and the fourth pulley 290 to an operation target such as the joint 120 of the human body-mounted robot 100 via a cable. Therefore, the differential device 250 can be installed or arranged at a position away from the operation target, and the degree of freedom of the arrangement position of the differential device 250 is increased.
  • the linear travel distances of the third pulley 280 and the fourth pulley 290 due to the rotation of the first motor 254 and the second motor 256 are equal. Further, the differential device 250 according to the present embodiment can proportionally control the straight travel distances of the third pulley 280 and the fourth pulley 290 according to the rotation angle of the motor. Therefore, it is possible to easily control the rotation operation unit such as the joint unit 120 of the human body-mounted robot 100.
  • the first pulley 290 is changed according to the ratio or the like.
  • the radius of the third pulley 280 may be different from the radius of the fourth pulley 290.
  • FIG. 8 is a perspective view of a main part of the differential device 300.
  • the differential device 300 includes a first pulley 312, a second pulley 314, a third pulley 316, and a fourth pulley 318.
  • the differential device 300 includes a motor 20 as a driving unit that rotates the first pulley 312, a first pulley 312, a second pulley 314, a third pulley 316, and a fourth pulley 318.
  • an endless belt 322 as an endless transmission member disposed across.
  • the motor 20 and the endless belt 322 may be the same as the motor 20 and the endless belt 26 according to the first embodiment.
  • the first pulley 312, the second pulley 314, the third pulley 316, and the fourth pulley 318 each have a rotation axis along the axial direction of the rotation shaft 24 of the motor 20.
  • the first pulley 312, the second pulley 314, the third pulley 316, and the fourth pulley 318 are each provided with an endless belt 322 on the circumferential surface.
  • the endless belt 322 is wound around the first pulley 312, the fourth pulley 318, the second pulley 314, and the third pulley 316 in this order, and is wound around the first pulley 312 again.
  • the first pulley 312 is a driving pulley
  • the second pulley 314 is a driven pulley
  • the differential device 300 includes the first pulley 312 and the second pulley.
  • a continuously variable transmission (not shown) that changes the pitch diameter of at least one of the pulleys 314 is provided. Accordingly, the radius of curvature of the endless belt 322 wound around the first pulley 312 and the second pulley 314 can be freely adjusted. In the example shown in FIG. 8, the radius of curvature of the endless belt 322 wound on the second pulley 314 is made smaller than the radius of curvature of the endless belt 322 wound on the first pulley 312.
  • the third pulley 316 and the fourth pulley 318 are supported by an endless belt 322 so as to be rotatable.
  • the third pulley 316 and the fourth pulley 318 are each supported so as to be able to advance and retract along a predetermined direction.
  • the third pulley 316 and the fourth pulley 318 are urged upward by a coil spring whose one end is fixed to a fixing portion (not shown) on the upper side in the drawing, and a load is applied to the lower side in the drawing. It may come to be.
  • the disposition position of the endless belt 322 on the first pulley 312 and the second pulley 314 and the peripheral surfaces of the third pulley 316 and the fourth pulley 318 are as follows.
  • the endless belt 322 is disposed on a plane perpendicular to the rotation shaft 24 of the motor 20 and is wound around the plane.
  • the differential device 300 includes a rotation shaft 24 of the motor 20, that is, a fifth pulley 332 fixed to the rotation shaft of the first pulley 312 and a rotation shaft 25 of the second pulley 314. And a sixth pulley 334 fixed to the head.
  • the fifth pulley 332 can rotate about the rotation shaft 24, and the sixth pulley 334 can rotate about the rotation shaft 25.
  • An endless belt 324 as a second endless transmission member is wound around the fifth pulley 332 and the sixth pulley 334.
  • the peripheral surface of the fifth pulley 332 and the peripheral surface of the sixth pulley 334 are located on the same plane, and an endless belt 324 is disposed on the plane.
  • the fifth pulley 332 and the sixth pulley 334 have the same radius. Therefore, when the motor 20 is driven to rotate, the fifth pulley 332 and the sixth pulley 334 rotate at the same speed. Therefore, the first pulley 312 and the second pulley 314 rotate at the same speed.
  • the pitch diameter of the first pulley 312 and the pitch diameter of the second pulley 314 are different depending on the continuously variable transmission. As a result, when the first pulley 312 and the second pulley 314 rotate at the same speed, the length of the endless belt 322 sent out by the first pulley 312 is sent out by the second pulley 314. It becomes longer than the length of the endless belt 322.
  • the third pulley 316 and the fourth pulley 318 can be linearly moved in directions opposite to each other.
  • the third pulley 316 and the fourth pulley 318 are determined in the direction of straight movement along a guide portion (not shown).
  • the differential device 300 can convert the rotational motion of the motor 20 into the linear motion of the third pulley 316 and the fourth pulley 318.
  • the straight travel distance of the third pulley 316 and the fourth pulley 318 can be expressed by the above equation (1). Therefore, the control device sets the pitch diameter and the rotation angle of the first pulley 312 and the second pulley 314 according to the straight travel distance d of the third pulley 316 and the fourth pulley 318, and sets the motor 20 Control to rotate can be executed.
  • the differential device 300 according to the present embodiment can also be applied as an actuator of the human body wearing robot 100 in the same manner as the differential device 10 according to the first embodiment.
  • the differential device 300 since the differential device 300 according to the fifth embodiment can arrange the endless transmission member on substantially the same plane, the endless transmission member is hardly twisted, An endless belt 322 or an endless chain can be used as the endless transmission member. Further, the endless transmission member wound around the fifth pulley 332 and the sixth pulley 334 for transmitting the rotation of the motor 20 to the second pulley 314 may also be disposed on substantially the same plane. Therefore, the endless transmission member is hardly twisted, and the endless belt 324 and the endless chain can be used as the endless transmission member. Therefore, it is possible to improve the service life of the endless transmission member without increasing the size of components such as pulleys, and to withstand continuous use.
  • the differential device 300 according to the present embodiment since the differential device 300 according to the present embodiment has no meshing of gears, there is no backlash, the responsiveness can be improved, and the operation sound and impact can be reduced.
  • the differential device 300 according to the present embodiment can connect the third pulley 316 and the fourth pulley 318 to an operation target such as the joint 120 of the human body wearing robot 100 via a cable. Accordingly, the differential device 300 can be installed or arranged at a position away from the operation target, and the degree of freedom of the arrangement position of the differential device 300 is increased.
  • the radius of the third pulley 316 and the radius of the fourth pulley 318 may be different.
  • FIG. 9 is a schematic view of the main part of the differential 350 as viewed along the extending direction of the rotation shaft of each pulley.
  • the differential device 350 includes a first pulley 360, a second pulley 370, a third pulley 380, and a fourth pulley 390. Further, the differential device 350 includes a motor 20 as a driving unit that rotates the first pulley 360, a first pulley 360, a second pulley 370, a third pulley 380, and a fourth pulley 390. And an endless belt 352 serving as an endless transmission member disposed across. As the motor 20 and the endless belt 352, those similar to the motor 20 and the endless belt 26 according to the first embodiment can be used.
  • the first pulley 360, the second pulley 370, the third pulley 380, and the fourth pulley 390 each have a rotation axis along the axial direction of the rotation axis of the motor 20.
  • the first pulley 360, the second pulley 370, the third pulley 380, and the fourth pulley 390 are each provided with an endless belt 352 on the circumferential surface.
  • the endless belt 352 is wound around the first pulley 360, the fourth pulley 390, the second pulley 370, and the third pulley 380 in this order, and is then wound around the first pulley 360 again.
  • the peripheral surfaces of the first pulley 360, the fourth pulley 390, the second pulley 370, and the third pulley 380 are located on a plane orthogonal to the rotation axis of the motor 20, and the endless belt 352 It is wound and arranged on the top.
  • the first pulley 360 is connected to the rotating shaft of the motor 20 and rotates about the rotating shaft.
  • the first pulley 360 is provided with a drive gear 362 that rotates in the same manner as the first pulley 360 rotates.
  • the diameter of the second pulley 370 is larger than the diameter of the first pulley 360.
  • the second pulley 370 is provided with a driven gear 372 that rotates in the same manner as the second pulley 370 rotates.
  • the second pulley 370 and the driven gear 372 are rotatably supported with respect to a fixed portion (not shown).
  • the driven gear 372 meshes with the driving gear 362, and when the first pulley 360 is rotated by the motor 20, the rotation is transmitted to the second pulley 370 via the driving gear 362 and the driven gear 372.
  • the second pulley 370 rotates on the axis.
  • the number of teeth of the drive gear 362 is equal to the number of teeth of the driven gear 372. Therefore, the rotation speed of the second pulley 370 is equal to the rotation speed of the first pulley 360.
  • timing belt may be used instead of the drive gear 362 and the driven gear 372.
  • the third pulley 380 and the fourth pulley 390 have the same diameter and are supported by an endless belt 352 so as to be rotatable.
  • the third pulley 380 and the fourth pulley 390 are each supported so as to be able to advance and retract along a predetermined direction.
  • the third pulley 380 and the fourth pulley 390 are urged upward by a coil spring whose one end is fixed to a fixing portion (not shown) on the upper side in the drawing, and a load is applied to the lower side in the drawing. It may come to be.
  • the first pulley 360 is sent out when the motor 20 is driven to rotate.
  • the length of the endless belt 352 is shorter than the length of the endless belt 352 delivered by the second pulley 370.
  • the position of the endless belt 352 changes when the third pulley 380 and the fourth pulley 390 move linearly. That is, the endless belt 352 between the second pulley 370 and the fourth pulley 390 and the endless belt 352 between the first pulley 360 and the fourth pulley 390 are not arranged in parallel. Therefore, the position of the endless belt 352 can change with the straight movement of the fourth pulley 390. Further, the endless belt 352 between the first pulley 360 and the third pulley 380 and the endless belt 352 between the second pulley 370 and the third pulley 380 are not arranged in parallel.
  • the position of the endless belt 352 can change with the straight movement of the third pulley 380. Therefore, the straight travel distances of the third pulley 380 and the fourth pulley 390 with respect to the rotation angle of the motor 20 do not change proportionally.
  • the third pulley 380 and the fourth pulley 390 are determined in the direction of straight movement along a guide portion (not shown).
  • the rotational operation unit 120A connected to the third pulley 380 and the fourth pulley 390 via the cables 132 and 134 has a long diameter portion and a short diameter portion. It is said that.
  • Rotating operation unit 120A has a major axis portion of the relatively long diameter R L, and a short diameter portion of the relatively short diameter R S, so long diameter portion is sandwiched between two cables 132, 134 Be placed.
  • the rotation operation unit 120A rotates and is connected to the descending third pulley 380 or the fourth pulley 390.
  • the long diameter portion pushes the cables 132 and 134, it is possible to prevent the cables 132 and 134 from being slackened.
  • the differential device 350 according to the present embodiment can also be applied as an actuator of the human body wearing robot 100 in the same manner as the differential device 10 according to the first embodiment.
  • the differential gear 350 according to the sixth embodiment can dispose the endless transmission member on substantially the same plane, the endless transmission member is hardly twisted, An endless belt 352 or an endless chain can be used as the endless transmission member. Therefore, it is possible to improve the service life of the endless transmission member without increasing the size of components such as pulleys, and to withstand continuous use.
  • the differential device 350 in addition to the motor 20, the differential device 350 according to the present embodiment can be mainly composed of four pulleys, two gears, and an endless belt 352. Therefore, the manufacturing cost can be reduced. Further, since the differential gear 350 has only one gear meshing, it can reduce backlash, improve responsiveness, and reduce operating noise and impact.
  • the differential device 350 can connect the third pulley 380 and the fourth pulley 390 to the rotation operation unit 120A such as a joint portion of the human body wearing robot 100 via a cable. Therefore, the differential device 350 can be installed or arranged at a position away from the operation target, and the degree of freedom of the arrangement position of the differential device 350 is increased.
  • the rotation operation unit 120A connected to the third pulley 380 and the fourth pulley 390 via the cables 132 and 134 has a shape having a long diameter portion and a short diameter portion. It has become. Therefore, even when the linear travel distances of the third pulley 380 and the fourth pulley 390 do not change proportionally with respect to the rotation angle of the motor 20, the cables 132 and 134 are prevented from being loosened, and the rotation operation is performed. The rotational operation of the unit 120A can be compensated.
  • the first pulley and the second pulley have different radii or rotational speeds, so that the feed length of the endless transmission member by the first pulley and the endless transmission by the second pulley are increased.
  • the delivery length of the member is different, the present invention is not limited to such an example. You may vary both the radius and rotational speed of a 1st pulley and a 2nd pulley. In this case, the gear ratio can be adjusted more flexibly, and the straight travel distance can be easily controlled by driving the motor.
  • the pulley is used as the rotating body, but the present invention is not limited to such an example.
  • a sprocket may be used as a rotating body instead of a pulley.
  • the differential device is applied as an actuator of a human body-mounted robot.
  • a device to which the differential device of the present invention can be applied is not limited to such an example.
  • the differential device can be applied to various mechanical devices as an actuator of an operating body that transmits forces directed in opposite directions.

Abstract

In order to enable increasing the number of years of service life while avoiding becoming bulkier, this differential gear device is provided with: a first rotating body, a second rotating body, a third rotating body and a fourth rotating body, each of which has a rotation axis that extends in parallel to one direction; a drive unit which axially drives at least the first rotating body; and an endless transmission member which, in a plane intersecting with the one direction, is arranged across the first rotating body, the second rotating body, the third rotating body and the fourth rotating body, wherein, by driving the drive unit, the third rotating body and the fourth rotating body are made to carry out linear motion.

Description

差動装置Differential
 本発明は、差動装置に関する。特に、2つの可動要素にそれぞれ直進運動をさせる差動装置に関する。 The present invention relates to a differential device. In particular, the present invention relates to a differential device that causes two movable elements to move straight forward.
 近年、人の動作を支援あるいは補助する人体装着ロボットが知られている。人体装着ロボットは、例えば、ユーザに装着される関節部と、ユーザの意図又は状態あるいは周囲の状況を検知するためのセンサと、関節部に対して駆動トルクを付与するアクチュエータと、制御装置とを備えて構成される。一般的に、アクチュエータは、モータと、モータの高速回転を人体の動作に適した低速回転に変換する変速機とを備える。変速機は、例えば、1/50~1/200の変速比で、モータの回転を関節部に伝達する。アクチュエータは、例えば、ハーモニックドライブ(登録商標)又はウォームギヤとDCモータとを組み合わせて構成される。また、別の差動ギヤとして、サンギヤ、ボールギヤ、及び、複数のプラネタリギヤにより構成されたものもある。これらのギヤ機構を用いた減速ギヤは、歯欠けが起こらないように剛性の高い材料を使用する必要があり、比較的コストがかかるという問題がある。 In recent years, human body-mounted robots that support or assist human movements are known. The human body-mounted robot includes, for example, a joint portion to be worn by the user, a sensor for detecting the user's intention or state, or a surrounding situation, an actuator that applies driving torque to the joint portion, and a control device. It is prepared for. In general, an actuator includes a motor and a transmission that converts high-speed rotation of the motor into low-speed rotation suitable for human movement. The transmission transmits the rotation of the motor to the joint at a gear ratio of 1/50 to 1/200, for example. The actuator is configured by combining, for example, a harmonic drive (registered trademark) or a worm gear and a DC motor. Another differential gear includes a sun gear, a ball gear, and a plurality of planetary gears. The reduction gears using these gear mechanisms have a problem that it is necessary to use a material having high rigidity so as not to cause tooth chipping, which is relatively expensive.
 これに対して、古くから、ギヤの代わりに、ケーブル、ベルト又はチェーン等を用いて、ギヤ機構と同等の減速比を達成し得る代替の装置も存在する。これらの装置は、差動プーリのメカニズムを利用するものであり、例えば、一体的に回転可能な直径の異なる2つのプーリを含む回転体と、当該回転体の下方に懸架されて負荷を支える1つのプーリと、これらの3つのプーリに渡って配設される無端ロープ又は無端チェーンとを備える。差動プーリ装置は、比較的低コストで構成でき、かつ、採掘用のバケットやボート等の重量物であっても、操作者の力によって容易に上下動させることができる。さらに、特許文献1に示すように、従来の差動プーリ装置に対してモータを追加し、差動プーリアクチュエータとしたものもある。かかる差動プーリアクチュエータは、操作者の力ではなく、モータの駆動力によって、比較的小さい力で負荷を進退動させることができる。 On the other hand, there is an alternative device that can achieve a reduction ratio equivalent to that of a gear mechanism by using a cable, a belt, or a chain instead of a gear. These devices use a mechanism of a differential pulley. For example, a rotating body including two pulleys having different diameters that can rotate integrally, and a load that is suspended below the rotating body to support a load 1. Two pulleys and an endless rope or an endless chain disposed across these three pulleys. The differential pulley device can be configured at a relatively low cost, and even a heavy object such as a mining bucket or boat can be easily moved up and down by the operator's force. Furthermore, as shown in Patent Document 1, there is a differential pulley actuator in which a motor is added to a conventional differential pulley device. Such a differential pulley actuator can move the load forward and backward with a relatively small force by the driving force of the motor, not by the operator.
国際公開第1989/010242号International Publication No. 1989/010242
 しかしながら、モータを備えた差動プーリアクチュエータは、耐用年数が比較的短く、また、長時間の継続使用を前提として設計されていない場合が多い。装置の内部で伝達され得る大きな駆動力は、様々な部品を大型化しない限り、ケーブル等の無端伝動部材の寿命を縮めることとなる。かかる部品の大型化は、例えば、人体装着ロボット等の比較的小型のシステムへの差動プーリアクチュエータの適用を困難にする。 However, differential pulley actuators equipped with motors have a relatively short service life and are often not designed on the premise of long-term continuous use. The large driving force that can be transmitted inside the apparatus shortens the life of an endless transmission member such as a cable unless various parts are enlarged. Such an increase in the size of the parts makes it difficult to apply the differential pulley actuator to a relatively small system such as a human-mounted robot.
 特に、人体装着ロボットの関節部のように、アクチュエータによって回動される対象が、回転方向を反転させながら使用され得る場合に、1つのアクチュエータに、それぞれ進退方向が逆となる2つの可動要素を設ける必要がある。この場合、より大きな駆動力が必要になって、ケーブル等の無端伝動部材の寿命がさらに短くなりやすい。 In particular, when an object rotated by an actuator, such as a joint part of a human body-mounted robot, can be used while reversing the direction of rotation, two movable elements having reverse directions in each actuator are provided on one actuator. It is necessary to provide it. In this case, a larger driving force is required, and the life of an endless transmission member such as a cable is likely to be further shortened.
 本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、大型化することなく耐用年数を向上可能な、新規かつ改良された差動装置を提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a new and improved differential device capable of improving the service life without increasing the size. .
 上記課題を解決するために、本発明のある観点によれば、一の方向に沿って平行に延びる回転軸をそれぞれ有する第1の回転体、第2の回転体、第3の回転体及び第4の回転体と、少なくとも第1の回転体を軸回転させる駆動部と、一の方向に交差する平面上で、第1の回転体、第2の回転体、第3の回転体及び第4の回転体に渡って配設された無端伝動部材と、を備え、駆動部を駆動することにより、第3の回転体及び第4の回転体がそれぞれ直進運動を行う、差動装置が提供される。 In order to solve the above problems, according to an aspect of the present invention, a first rotating body, a second rotating body, a third rotating body, and a first rotating body each having a rotation axis extending in parallel along one direction. 4 rotators, a drive unit for rotating the shaft of at least the first rotator, and a plane intersecting one direction, the first rotator, the second rotator, the third rotator, and the fourth And an endless transmission member disposed over the rotating body of the first and second differential members, wherein the third rotating body and the fourth rotating body each move linearly by driving the drive unit. The
 本発明の差動装置によれば、無端伝動部材が、略同一の平面上において、第1の回転体、第2の回転体、第3の回転体及び第4の回転体に渡って配設される。したがって、無端伝動部材として、摩擦力により回転体を駆動するケーブルに限らず、歯の噛み合いにより回転体を駆動するベルトやチェーンを用いることができるようになり、各部品を大型化することなく、耐用年数を向上させることができる。 According to the differential device of the present invention, the endless transmission member is disposed across the first rotating body, the second rotating body, the third rotating body, and the fourth rotating body on substantially the same plane. Is done. Therefore, as an endless transmission member, not only a cable that drives a rotating body by frictional force, but also a belt or a chain that drives the rotating body by meshing teeth can be used, without increasing the size of each component, The service life can be improved.
 駆動部を駆動させた際の第1の回転体による無端伝動部材の送出量と、第2の回転体による無端伝動部材の送出量とが異なってもよい。 The amount of the endless transmission member delivered by the first rotating body when the drive unit is driven may be different from the amount of the endless transmission member delivered by the second rotating body.
 無端伝動部材は、少なくとも第1の回転体、第4の回転体、第2の回転体、及び第3の回転体に、この順に捲回されて再び第1の回転体に捲回され、駆動部を駆動することにより、第1の回転体から第3の回転体を経由して第2の回転体に至る無端伝動部材の長さが長くなる場合には第1の回転体から第4の回転体を経由して第2の回転体に至る無端伝動部材の長さが短くなる一方、第1の回転体から第3の回転体を経由して第2の回転体に至る無端伝動部材の長さが短くなる場合には第1の回転体から第4の回転体を経由して第2の回転体に至る無端伝動部材の長さが長くなってもよい。 The endless transmission member is wound around at least the first rotating body, the fourth rotating body, the second rotating body, and the third rotating body in this order, and is then wound around the first rotating body again and driven. When the length of the endless transmission member extending from the first rotating body to the second rotating body through the third rotating body is increased by driving the unit, the first rotating body to the fourth rotating body While the length of the endless transmission member that reaches the second rotating body via the rotating body is shortened, the endless transmission member that reaches the second rotating body via the third rotating body from the first rotating body When the length is shortened, the length of the endless transmission member extending from the first rotating body to the second rotating body via the fourth rotating body may be increased.
 駆動部を駆動したときに、第1の回転体及び第2の回転体は、互いに異なる速度で回転してもよい。 When the driving unit is driven, the first rotating body and the second rotating body may rotate at different speeds.
 無端伝動部材の軌跡を変更するための、少なくとも1つの従動回転体を備えてもよい。 It may be provided with at least one driven rotor for changing the locus of the endless transmission member.
 第1の回転体の半径と第2の回転体の半径とが互いに異なってもよい。 The radius of the first rotating body and the radius of the second rotating body may be different from each other.
 第1の回転体の回転軸に固定された第5の回転体と、第2の回転体の回転軸に固定された第6の回転体と、第5の回転体及び第6の回転体に捲回された第2の無端伝動部材と、を含む回転伝達部を備え、第2の回転体は、回転伝達部を介して第1の回転体の回転が伝達されて回転してもよい。 A fifth rotating body fixed to the rotating shaft of the first rotating body, a sixth rotating body fixed to the rotating shaft of the second rotating body, a fifth rotating body, and a sixth rotating body; A rotation transmission unit including a wound second endless transmission member may be provided, and the second rotation body may rotate by receiving the rotation of the first rotation body via the rotation transmission unit.
 第2の回転体を回転駆動する第2の駆動部を備えてもよい。 A second driving unit that rotationally drives the second rotating body may be provided.
 第2の回転体は、ギヤ機構を介して第1の回転体の回転が伝達されて回転してもよい。 The second rotating body may rotate by transmitting the rotation of the first rotating body via a gear mechanism.
 第1の回転体が駆動側プーリであり、第2の回転体が従動側プーリであり、駆動側プーリ及び従動側プーリのうちの少なくとも一方のピッチ径を変更する無段変速装置を備えてもよい。 The first rotating body is a driving pulley, the second rotating body is a driven pulley, and a continuously variable transmission that changes the pitch diameter of at least one of the driving pulley and the driven pulley is provided. Good.
 無端伝動部材が、無端ベルト、無端チェーン又は無端ケーブルであってもよい。 The endless transmission member may be an endless belt, an endless chain, or an endless cable.
 第3の回転体及び第4の回転体が、それぞれ、回転動作部に固定又は捲回されたケーブルに接続され、差動装置が、回転動作部を回転駆動させてもよい。 The third rotating body and the fourth rotating body may be connected to cables fixed or wound around the rotation operation unit, respectively, and the differential device may rotate the rotation operation unit.
 回転動作部が、人体装着ロボットの関節部であってもよい。 The rotation operation unit may be a joint part of a human-mounted robot.
 回転動作部は、長径部及び短径部を有し、回転動作部が回転したときに、長径部が第3の回転体に接続されたケーブル又は第4の回転体に接続されたケーブルに張力を付与してもよい。 The rotation operation part has a long diameter part and a short diameter part, and when the rotation operation part rotates, the long diameter part is tensioned to the cable connected to the third rotation body or the cable connected to the fourth rotation body. May be given.
 以上説明したように本発明によれば、2つの可動要素の直進運動が行われる差動装置を大型化することなく耐用年数を向上させることができる。 As described above, according to the present invention, the service life can be improved without increasing the size of the differential device in which the linear movement of the two movable elements is performed.
第1の実施の形態にかかる差動装置を示す模式図である。It is a schematic diagram which shows the differential gear concerning 1st Embodiment. 同実施形態にかかる差動装置の斜視図である。It is a perspective view of the differential gear concerning the embodiment. 同実施形態にかかる差動装置を適用した人体装着ロボットを示す説明図である。It is explanatory drawing which shows the human body mounting robot to which the differential gear concerning the embodiment is applied. 第2の実施の形態にかかる差動装置を示す模式図である。It is a schematic diagram which shows the differential gear concerning 2nd Embodiment. 同実施形態にかかる差動装置の斜視図である。It is a perspective view of the differential gear concerning the embodiment. 第3の実施の形態にかかる差動装置を示す模式図である。It is a schematic diagram which shows the differential gear concerning 3rd Embodiment. 第4の実施の形態にかかる差動装置を示す模式図である。It is a schematic diagram which shows the differential gear concerning 4th Embodiment. 第5の実施の形態にかかる差動装置を示す斜視図である。It is a perspective view which shows the differential gear concerning 5th Embodiment. 第6の実施の形態にかかる差動装置を示す模式図である。It is a schematic diagram which shows the differential gear concerning 6th Embodiment.
 以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.
 <1.第1の実施の形態>
 (1-1.差動装置の構成)
 まず、図1及び図2を参照して、本発明の第1の実施の形態にかかる差動装置10の構成例について説明する。図1は、差動装置10の主要部を各プーリの回転軸の延在方向に沿って見た模式図であり、図2は、差動装置10の主要部の斜視図である。
<1. First Embodiment>
(1-1. Configuration of differential device)
First, a configuration example of the differential device 10 according to the first exemplary embodiment of the present invention will be described with reference to FIGS. 1 and 2. FIG. 1 is a schematic view of the main part of the differential device 10 as viewed along the extending direction of the rotation shaft of each pulley, and FIG. 2 is a perspective view of the main part of the differential device 10.
 差動装置10は、第1のプーリ30と、第2のプーリ40と、第3のプーリ60と、第4のプーリ70と、第5のプーリ50とを備える。プーリは、本発明における回転体の一例である。また、差動装置10は、第1のプーリ30を軸回転させる駆動部としてのモータ20と、第1のプーリ30、第2のプーリ40、第3のプーリ60、第4のプーリ70、及び、第5のプーリ50に渡って配設された無端伝動部材として無端ベルト26とを備える。 The differential device 10 includes a first pulley 30, a second pulley 40, a third pulley 60, a fourth pulley 70, and a fifth pulley 50. The pulley is an example of a rotating body in the present invention. Further, the differential device 10 includes a motor 20 as a drive unit that rotates the first pulley 30, a first pulley 30, a second pulley 40, a third pulley 60, a fourth pulley 70, and The endless belt 26 is provided as an endless transmission member disposed over the fifth pulley 50.
 モータ20は、図示しない制御装置により駆動される。モータ20としては、例えば、サーボモータやステッピングモータが用いられるが、この例に限定されない。モータ20は回転トルクを出力する回転軸22を有する。回転軸22は、第1のプーリ30の軸心部分に接続されている。 The motor 20 is driven by a control device (not shown). As the motor 20, for example, a servo motor or a stepping motor is used, but it is not limited to this example. The motor 20 has a rotating shaft 22 that outputs rotational torque. The rotating shaft 22 is connected to the axial center portion of the first pulley 30.
 第1のプーリ30、第2のプーリ40、第3のプーリ60、第4のプーリ70、及び、第5のプーリ50は、それぞれ、モータ20の回転軸22の軸方向に沿う回転軸を有する。第1のプーリ30、第2のプーリ40、第3のプーリ60、第4のプーリ70、及び、第5のプーリ50は、それぞれ周面に無端ベルト26が配設される。無端ベルト26は、第1のプーリ30、第4のプーリ70、第2のプーリ40、第5のプーリ50、第3のプーリ60にこの順に捲回されて再び第1のプーリ30に捲回される。第1のプーリ30、第2のプーリ40、第3のプーリ60、第4のプーリ70、及び、第5のプーリ50の周面は、モータ20の回転軸22に直交する平面上に位置し、無端ベルト26は、当該平面上において捲回されて配設されている。 The first pulley 30, the second pulley 40, the third pulley 60, the fourth pulley 70, and the fifth pulley 50 each have a rotation axis along the axial direction of the rotation shaft 22 of the motor 20. . The first pulley 30, the second pulley 40, the third pulley 60, the fourth pulley 70, and the fifth pulley 50 are each provided with an endless belt 26 on the circumferential surface. The endless belt 26 is wound around the first pulley 30, the fourth pulley 70, the second pulley 40, the fifth pulley 50, and the third pulley 60 in this order and wound around the first pulley 30 again. Is done. The peripheral surfaces of the first pulley 30, the second pulley 40, the third pulley 60, the fourth pulley 70, and the fifth pulley 50 are located on a plane orthogonal to the rotating shaft 22 of the motor 20. The endless belt 26 is wound and disposed on the plane.
 すなわち、第1のプーリ30、第2のプーリ40、第3のプーリ60、第4のプーリ70、及び、第5のプーリ50の周面は、モータ20の回転軸22に直交する平面上に位置するため、無端伝動部材に捻じれが生じない。このため、無端伝動部材として無端ベルト26を用いることができるようになっている。無端ベルト26は、例えば、ワイヤ入りのゴム製のベルトや、高強度の織物性のベルト、金属ベルト等であってもよい。無端ベルト26の代わりに無端チェーンが用いられてもよい。無端ベルト26又は無端チェーンは、摩擦力によりプーリを駆動するケーブルに比べて強度が高く、駆動力の伝達効率が向上し、また、耐用年数を向上させることができる。なお、本実施形態にかかる差動装置10は、無端伝動部材が無端ケーブルの場合にも適用され得る。 That is, the peripheral surfaces of the first pulley 30, the second pulley 40, the third pulley 60, the fourth pulley 70, and the fifth pulley 50 are on a plane orthogonal to the rotation shaft 22 of the motor 20. Therefore, the endless transmission member is not twisted. For this reason, the endless belt 26 can be used as an endless transmission member. The endless belt 26 may be, for example, a wire-made rubber belt, a high-strength woven belt, a metal belt, or the like. An endless chain may be used instead of the endless belt 26. The endless belt 26 or the endless chain has higher strength than the cable that drives the pulley by frictional force, improves the transmission efficiency of the driving force, and can improve the service life. In addition, the differential gear 10 concerning this embodiment can be applied also when an endless transmission member is an endless cable.
 第1のプーリ30は、モータ20の回転軸22に接続されており、当該回転軸22を中心に軸回転する。第1のプーリ30には、第1のプーリ30の軸回転に伴って同じく軸回転する駆動ギヤ32が設けられる。また、第2のプーリ40には、第2のプーリ40の軸回転に伴って同じく軸回転する従動ギヤ42が設けられる。第2のプーリ40及び従動ギヤ42は、図示しない固定部に対して回動自在に支持されている。従動ギヤ42は、駆動ギヤ32に噛合しており、第1のプーリ30がモータ20により軸回転させられると、駆動ギヤ32及び従動ギヤ42を介して第2のプーリ40にも回転が伝達され、第2のプーリ40が軸回転する。図示した例では、駆動ギヤ32の歯数は、従動ギヤ42の歯数よりも多い。したがって、第2のプーリ40の回転速度は、第1のプーリ30の回転速度よりも速くなる。 The first pulley 30 is connected to the rotating shaft 22 of the motor 20 and rotates about the rotating shaft 22. The first pulley 30 is provided with a drive gear 32 that rotates in the same manner as the shaft of the first pulley 30 rotates. In addition, the second pulley 40 is provided with a driven gear 42 that rotates in the same manner as the second pulley 40 rotates. The second pulley 40 and the driven gear 42 are rotatably supported with respect to a fixed portion (not shown). The driven gear 42 meshes with the drive gear 32, and when the first pulley 30 is rotated by the motor 20, the rotation is transmitted to the second pulley 40 via the drive gear 32 and the driven gear 42. The second pulley 40 rotates on the axis. In the illustrated example, the number of teeth of the drive gear 32 is larger than the number of teeth of the driven gear 42. Therefore, the rotation speed of the second pulley 40 is faster than the rotation speed of the first pulley 30.
 第5のプーリ50は、図示しない固定部に対して回動自在に支持されている。第5のプーリ50は、従動回転体の1つであり、第1のプーリ30及び第2のプーリ40の軸回転により、配設方向に沿って進退動する無端ベルト26によって駆動力が伝達され、軸回転する。第5のプーリ50は、第2のプーリ40により送出される無端ベルト26の軌跡を、第3のプーリ60に向けて変更する。第3のプーリ60及び第4のプーリ70は、直径が同一であり、回動可能に無端ベルト26によって支持される。第3のプーリ60及び第4のプーリ70は、それぞれ所定の方向に沿って進退動可能に支持されている。例えば、第3のプーリ60及び第4のプーリ70が、図中の上方側の図示しない固定部(図3の符号12で示す部分)に一端が固定されたコイルばねによって上方側に付勢され、図中の下方側に負荷がかけられるようになっていてもよい。 The fifth pulley 50 is rotatably supported with respect to a fixed portion (not shown). The fifth pulley 50 is one of the driven rotators, and the driving force is transmitted by the endless belt 26 that moves forward and backward along the arrangement direction by the shaft rotation of the first pulley 30 and the second pulley 40. Rotate the shaft. The fifth pulley 50 changes the trajectory of the endless belt 26 delivered by the second pulley 40 toward the third pulley 60. The third pulley 60 and the fourth pulley 70 have the same diameter and are rotatably supported by the endless belt 26. The third pulley 60 and the fourth pulley 70 are supported so as to be capable of moving forward and backward along predetermined directions. For example, the third pulley 60 and the fourth pulley 70 are urged upward by a coil spring whose one end is fixed to a fixing portion (not shown) (not shown) on the upper side in the drawing. A load may be applied to the lower side in the figure.
 (1-2.差動装置の動作)
 次に、図1を参照して、本実施形態にかかる差動装置10の動作について説明する。ここで、以下のように変数を定義する。
 ρ:モータの回転角度(ラジアン)
 R:第1のプーリ30の半径
 r:第2のプーリ40の半径
 i:駆動ギヤ32と従動ギヤ42との減速比
 θ1:第1のプーリ30の回転角度(ラジアン)
 θ2:第2のプーリ40の回転角度(ラジアン)
 l1:第1のプーリ30によって送出される無端ベルト26の長さ(送出量)
 l2:第2のプーリ30によって送出される無端ベルト26の長さ(送出量)
(1-2. Operation of differential device)
Next, the operation of the differential device 10 according to the present embodiment will be described with reference to FIG. Here, variables are defined as follows.
ρ: Motor rotation angle (radians)
R: radius of the first pulley 30 r: radius of the second pulley 40 i: reduction ratio between the drive gear 32 and the driven gear 42 θ1: rotation angle (radian) of the first pulley 30
θ2: rotation angle (radian) of the second pulley 40
l1: Length (end amount) of the endless belt 26 sent out by the first pulley 30
l2: Length of the endless belt 26 delivered by the second pulley 30 (delivery amount)
 この場合、モータ20を角度ρだけ回転駆動させると、第1のプーリ30の回転角度θ1=ρ、第2のプーリ40の回転角度θ2=iρとなる。一方、第1のプーリ30によって送出される無端ベルト26の長さl1=Rρ、第2のプーリ40によって送出される無端ベルト26の長さl2=irρとなる。そのため、R<irであれば、第1のプーリ30によって送出される無端ベルト26の長さl1よりも、第2のプーリ40によって送出される無端ベルト26の長さl2の方が長くなる。 In this case, when the motor 20 is rotationally driven by an angle ρ, the rotation angle θ1 of the first pulley 30 is equal to ρ, and the rotation angle θ2 of the second pulley 40 is equal to iρ. On the other hand, the length l1 of the endless belt 26 delivered by the first pulley 30 is equal to Rρ, and the length l2 of the endless belt 26 delivered by the second pulley 40 is equal to irρ. Therefore, if R <ir, the length l2 of the endless belt 26 sent out by the second pulley 40 is longer than the length 11 of the endless belt 26 sent out by the first pulley 30.
 図1において、第1のプーリ30を反時計回り(実線の方向)に回転させた場合、第1のプーリ30から第4のプーリ70を経由して第2のプーリ40に至る無端ベルト26の長さが短くなり、第4のプーリ70は、図中の上方(実線の方向)に移動する。また、第1のプーリ30を反時計回り(実線の方向)に回転させた場合、第2のプーリ40から第5のプーリ50及び第3のプーリ60を経由して第1のプーリ30に至る無端ベルト26の長さが長くなる。第5のプーリ50は位置が固定されたものであるため、この場合、第3のプーリ60が、図中の下方(実線の方向)に移動する。 In FIG. 1, when the first pulley 30 is rotated counterclockwise (in the direction of the solid line), the endless belt 26 that reaches the second pulley 40 from the first pulley 30 via the fourth pulley 70. The length becomes shorter, and the fourth pulley 70 moves upward (in the direction of the solid line) in the drawing. Further, when the first pulley 30 is rotated counterclockwise (in the direction of the solid line), the second pulley 40 reaches the first pulley 30 via the fifth pulley 50 and the third pulley 60. The length of the endless belt 26 is increased. Since the position of the fifth pulley 50 is fixed, in this case, the third pulley 60 moves downward (in the direction of the solid line) in the drawing.
 一方、図1において、第1のプーリ30を時計回り(破線の方向)に回転させた場合、第1のプーリ30から第4のプーリ70を経由して第2のプーリ40に至る無端ベルト26の長さが長くなり、第4のプーリ70は、図中の下方(破線の方向)に移動する。また、第1のプーリ30を時計回り(破線の方向)に回転させた場合、第2のプーリ40から第5のプーリ50及び第3のプーリ60を経由して第1のプーリ30に至る無端ベルト26の長さが短くなる。第5のプーリ50は位置が固定されたものであるため、この場合、第3のプーリ60が、図中の上方(破線の方向)に移動する。 On the other hand, in FIG. 1, when the first pulley 30 is rotated clockwise (in the direction of the broken line), the endless belt 26 reaching the second pulley 40 from the first pulley 30 via the fourth pulley 70. And the fourth pulley 70 moves downward (in the direction of the broken line) in the figure. In addition, when the first pulley 30 is rotated clockwise (in the direction of the broken line), the endless belt reaches the first pulley 30 from the second pulley 40 via the fifth pulley 50 and the third pulley 60. The length of the belt 26 is shortened. Since the position of the fifth pulley 50 is fixed, in this case, the third pulley 60 moves upward (in the direction of the broken line) in the drawing.
 このとき、本実施形態にかかる差動装置10の場合、各プーリの直径及び各プーリ間の水平距離が適切に設定されているため、各プーリ間に位置する無端ベルト26の向きが変わることなく、第3のプーリ60及び第4のプーリ70が直進運動する。すなわち、第2のプーリ40と第4のプーリ70との間の無端ベルト26、及び、第1のプーリ30と第4のプーリ70との間の無端ベルト26が、第4のプーリ70の直径と同等の幅を維持して平行に配設されており、これらの無端ベルト26の向きが変わることなく第4のプーリ70は直進運動する。同様に、第1のプーリ30と第3のプーリ60との間の無端ベルト26、及び、第5のプーリ50と第3のプーリ60との間の無端ベルト26が、第3のプーリ60の直径と同等の幅を維持して平行に配設されており、これらの無端ベルト26の向きが変わることなく第3のプーリ60は直進運動する。なお、第3のプーリ60及び第4のプーリ70は、図示しないガイド部によって、直進運動の向きが決められている。 At this time, in the case of the differential device 10 according to the present embodiment, since the diameter of each pulley and the horizontal distance between the pulleys are set appropriately, the direction of the endless belt 26 located between the pulleys does not change. The third pulley 60 and the fourth pulley 70 move linearly. That is, the endless belt 26 between the second pulley 40 and the fourth pulley 70 and the endless belt 26 between the first pulley 30 and the fourth pulley 70 have a diameter of the fourth pulley 70. The fourth pulley 70 linearly moves without changing the direction of the endless belts 26 while maintaining the same width as that of the endless belt 26. Similarly, the endless belt 26 between the first pulley 30 and the third pulley 60 and the endless belt 26 between the fifth pulley 50 and the third pulley 60 are connected to the third pulley 60. The third pulley 60 moves in a straight line without changing the direction of the endless belts 26 while maintaining the same width as the diameter and arranged in parallel. The third pulley 60 and the fourth pulley 70 have their linear motion directions determined by guide portions (not shown).
 これにより、モータ20の回転角度に対する第3のプーリ60及び第4のプーリ70の直進移動距離が比例的に変化し、第3のプーリ60及び第4のプーリ70の直進運動の制御が容易になる。特に、第3のプーリ60の直径と第4のプーリ70の直径とが等しい場合には、モータ20のある回転角度に対して、第3のプーリ60及び第4のプーリ70を互いに逆方向に、等距離で移動させることができる。 Thereby, the rectilinear movement distances of the third pulley 60 and the fourth pulley 70 with respect to the rotation angle of the motor 20 change proportionally, and control of the rectilinear movement of the third pulley 60 and the fourth pulley 70 can be easily performed. Become. In particular, when the diameter of the third pulley 60 and the diameter of the fourth pulley 70 are equal, the third pulley 60 and the fourth pulley 70 are opposite to each other with respect to a certain rotation angle of the motor 20. , And can be moved at equal distances.
 このように、差動装置10は、モータ20の回転運動を、第3のプーリ60及び第4のプーリ70の直進運動に変換することができる。第1のプーリ30の直径と第2のプーリ40の直径とが同じ場合、回転速度の差が小さいほど、第1のプーリ30によって送出される無端ベルト26の長さと、第2のプーリ40によって送出される無端ベルト26の長さとの差が小さくなる。したがって、第1のプーリ30と第2のプーリ40との回転速度の差が小さいほど、第3のプーリ60及び第4のプーリ70の直進移動距離は小さくなる。 As described above, the differential device 10 can convert the rotational motion of the motor 20 into the linear motion of the third pulley 60 and the fourth pulley 70. When the diameter of the first pulley 30 and the diameter of the second pulley 40 are the same, the smaller the difference in rotational speed, the longer the length of the endless belt 26 delivered by the first pulley 30 and the second pulley 40. A difference from the length of the fed endless belt 26 is reduced. Accordingly, the smaller the difference in rotational speed between the first pulley 30 and the second pulley 40, the smaller the straight travel distance of the third pulley 60 and the fourth pulley 70.
 図1に示した差動装置10の場合、第2のプーリ40の半径と第5のプーリ50の半径とが同じであれば、互いに逆方向に向かう第3のプーリ60の直進移動距離と第4のプーリ70の直進移動距離とは等しくなる。このとき、第3のプーリ60及び第4のプーリ70の直進移動距離は、以下の式(1)により表すことができる。
  d=ρ(R-i・r)  ・・・ (1)
 したがって、制御装置は、モータ20の回転角度ρを制御することによって、第3のプーリ60及び第4のプーリ70の直進移動距離dを比例的に制御することができる。
In the case of the differential device 10 shown in FIG. 1, if the radius of the second pulley 40 and the radius of the fifth pulley 50 are the same, the linear travel distance of the third pulley 60 and the This is equal to the straight travel distance of the four pulleys 70. At this time, the rectilinear movement distance of the third pulley 60 and the fourth pulley 70 can be expressed by the following equation (1).
d = ρ (R−i · r) (1)
Therefore, the control device can proportionally control the straight travel distance d of the third pulley 60 and the fourth pulley 70 by controlling the rotation angle ρ of the motor 20.
 (1-3.人体装着ロボットへの適用例)
 次に、図3を参照して、本実施形態にかかる差動装置10を、人体装着ロボット100のアクチュエータとして用いる例について説明する。図3は、差動装置10により動作が行われる人体装着ロボット100の一例を示す説明図である。
(1-3. Application examples to human body-mounted robots)
Next, an example in which the differential device 10 according to the present embodiment is used as an actuator of the human body wearing robot 100 will be described with reference to FIG. FIG. 3 is an explanatory diagram showing an example of the human body-mounted robot 100 that is operated by the differential device 10.
 図3に示す例において、第3のプーリ60及び第4のプーリ70は、それぞれ一端が固定部12に固定されたコイルばね14,16の他端に接続されている。コイルばね14,16の他端は、第3のプーリ60及び第4のプーリ70の回転軸に固定されており、第3のプーリ60及び第4のプーリ70の軸回転を妨げることがない。また、第3のプーリ60及び第4のプーリ70の回転軸には、人体装着ロボット100の関節部120に固定されたケーブル132,134の端部が接続され、第3のプーリ60及び第4のプーリ70は、コイルばね14,16の付勢方向とは反対側に負荷が与えられる。 3, the third pulley 60 and the fourth pulley 70 are connected to the other ends of the coil springs 14 and 16 each having one end fixed to the fixing portion 12. The other ends of the coil springs 14 and 16 are fixed to the rotation shafts of the third pulley 60 and the fourth pulley 70 and do not hinder the shaft rotation of the third pulley 60 and the fourth pulley 70. The ends of the cables 132 and 134 fixed to the joint 120 of the human body-mounted robot 100 are connected to the rotation shafts of the third pulley 60 and the fourth pulley 70, and the third pulley 60 and the fourth pulley 70 The pulley 70 is loaded on the opposite side to the biasing direction of the coil springs 14 and 16.
 図示した人体装着ロボット100は、関節部120と、関節部120を中心に回動可能に連結された第1のアーム部112及び第2のアーム部114とを有する。第1のアーム部112の上部は、人体の腰に巻き付けられる装着ベルト102に固定されている。また、第2のアーム部114の下部は、人体の大腿部に巻き付けられる装着ベルト104に固定されている。例えば、ユーザが歩行する際に、関節部120が図示の時計回りに回動することにより、第2のアーム部114が関節部120を中心に時計回りに回動し、ユーザによる足を上げる動作が補助される。関節部120は、差動装置10により回転駆動される回転操作部の一例である。 The illustrated human-body-mounted robot 100 includes a joint portion 120, and a first arm portion 112 and a second arm portion 114 that are coupled to be rotatable about the joint portion 120. The upper part of the first arm portion 112 is fixed to a mounting belt 102 that is wrapped around the waist of a human body. The lower portion of the second arm portion 114 is fixed to a mounting belt 104 that is wound around the thigh of the human body. For example, when the user walks, the joint 120 is rotated clockwise as shown in the figure, so that the second arm 114 is rotated clockwise around the joint 120 and the user raises the foot. Is assisted. The joint unit 120 is an example of a rotation operation unit that is rotationally driven by the differential device 10.
 具体的に、図示しない制御装置が、筋電位センサやユーザの足の動きを検出するセンサ等により、ユーザが足を上げようとしていることを検出すると、図3に示すように、制御装置は、モータ20を反時計回りに回転駆動する。これにより、第4のプーリ70は固定部12側に近づく方向に移動し、ケーブル132を引っ張る。そうすると、関節部120が時計回りに回転し、ケーブル134が関節部120側に引っ張られる。このとき、第3のプーリ60は固定部12側から離れる方向に移動するため、ケーブル134が関節部120側に移動する。これにより、第2のアーム部114が関節部120を中心に時計回りに回動し、ユーザによる足を上げる動作を補助する力が発生する。 Specifically, when a control device (not shown) detects that the user is trying to raise his / her foot by using a myoelectric potential sensor or a sensor for detecting the movement of the user's foot, as shown in FIG. The motor 20 is driven to rotate counterclockwise. As a result, the fourth pulley 70 moves in a direction approaching the fixed portion 12 side and pulls the cable 132. If it does so, the joint part 120 will rotate clockwise and the cable 134 will be pulled by the joint part 120 side. At this time, since the third pulley 60 moves in a direction away from the fixed portion 12 side, the cable 134 moves to the joint portion 120 side. As a result, the second arm portion 114 rotates clockwise around the joint portion 120 to generate a force that assists the user in raising the foot.
 逆に、ユーザが足を下ろそうとしている場合には、制御装置は、モータ20を時計回りに回転駆動する。これにより、今度は、第3のプーリ60がケーブル134を引っ張り、これに追従してケーブル132も移動して、関節部120が反時計回りに回動する。これにより、ユーザによる足を下ろす動作を補助する力が発生する。 On the contrary, when the user is going to step down, the control device drives the motor 20 to rotate clockwise. As a result, the third pulley 60 pulls the cable 134 this time, and the cable 132 also moves following the pulling of the cable 134 to rotate the joint portion 120 counterclockwise. Thereby, the force which assists the operation | movement which lowers a leg | foot by a user generate | occur | produces.
 本実施形態にかかる差動装置10は、モータ20の回転による第3のプーリ60及び第4のプーリ70の直進移動距離を等距離で制御できるため、関節部120をいずれの方向に回転させたとしても、ケーブル132,134のいずれか一方に弛みが生じることもない。また、差動装置10は、モータ20の回転角度に応じて、第3のプーリ60及び第4のプーリ70の直進移動距離を比例的に制御できるため、関節部120の回動操作を容易に制御することができる。 Since the differential device 10 according to the present embodiment can control the straight travel distances of the third pulley 60 and the fourth pulley 70 by the rotation of the motor 20 at equal distances, the joint portion 120 is rotated in any direction. However, slack does not occur in either one of the cables 132 and 134. Further, since the differential device 10 can proportionally control the linear movement distances of the third pulley 60 and the fourth pulley 70 in accordance with the rotation angle of the motor 20, it is easy to rotate the joint 120. Can be controlled.
 差動装置10と関節部120とを接続し、関節部120を回動させるケーブル132,134としては、例えばボーデンケーブルを使用することができる。この場合、ボーデンケーブルのうち、ケーブル132,134の外側の防護カバー131,133の一端側は、人体装着ロボット100における、関節部120とは異なる位置で固定部113に固定される。図3に示す例では、防護カバー131,133の一端側が、第1のアーム部112に設けられた固定部113に固定されているが、装着ベルト102の固定部に固定されてもよい。また、防護カバー131,133の他端側は、差動装置10の第3のプーリ60及び第4のプーリ70の直進運動の延長線上で、固定部90に固定されている。ボーデンケーブルを使用することにより、防護カバー131,133の内側を通るケーブル132,134の動きが拘束され、衣服や身体等に直接接触することがないため、ケーブル132,134の配設に対する制限が少ない。 As the cables 132 and 134 for connecting the differential device 10 and the joint portion 120 and rotating the joint portion 120, for example, a Bowden cable can be used. In this case, one end side of the protective covers 131 and 133 outside the cables 132 and 134 of the Bowden cable is fixed to the fixing unit 113 at a position different from the joint unit 120 in the human body wearing robot 100. In the example shown in FIG. 3, one end side of the protective covers 131 and 133 is fixed to the fixing portion 113 provided on the first arm portion 112, but may be fixed to the fixing portion of the mounting belt 102. Further, the other end sides of the protective covers 131 and 133 are fixed to the fixing portion 90 on the extension line of the linear movement of the third pulley 60 and the fourth pulley 70 of the differential device 10. By using the Bowden cable, the movement of the cables 132 and 134 passing through the inside of the protective covers 131 and 133 is restricted, and there is no direct contact with clothes or the body. Few.
 また、かかる人体装着ロボット100の例において、差動装置10は、関節部120から離れた位置に配置することができる。例えば、差動装置10は、ユーザが背中に背負うバックパック等の形式で備えられてもよいし、手押式あるいは自走式の荷車等の形式で備えられてもよい。 Further, in the example of the human body wearing robot 100, the differential device 10 can be arranged at a position away from the joint portion 120. For example, the differential device 10 may be provided in the form of a backpack or the like that the user carries on the back, or may be provided in the form of a hand-held or self-propelled cart.
 (1-4.まとめ)
 以上説明したように、第1の実施の形態にかかる差動装置10は、ほぼ同一の平面上に無端伝動部材を配設することができるために、無端伝動部材の捻じれが生じにくくなり、無端伝動部材として無端ベルト26や無端チェーンを用いることが可能になる。したがって、プーリ等の構成部品を大型化することなく、無端伝動部材の耐用年数を向上させることができ、継続的な使用にも耐えることができる。
(1-4. Summary)
As described above, since the differential device 10 according to the first embodiment can arrange the endless transmission member on substantially the same plane, the endless transmission member is hardly twisted, An endless belt 26 or an endless chain can be used as the endless transmission member. Therefore, it is possible to improve the service life of the endless transmission member without increasing the size of components such as pulleys, and to withstand continuous use.
 また、本実施形態にかかる差動装置10は、モータ20以外に、主として、5つのプーリと、2つのギヤと、無端ベルト26とにより構成することができる。したがって、製造コストを低減することができる。また、ギヤの噛み合わせが1箇所のみであるため、バックラッシュが少なく、応答性を向上することができ、また、動作音や衝撃を低減することができる。 In addition to the motor 20, the differential device 10 according to the present embodiment can be mainly composed of five pulleys, two gears, and an endless belt 26. Therefore, the manufacturing cost can be reduced. Further, since there is only one meshing of gears, there is little backlash, responsiveness can be improved, and operating noise and impact can be reduced.
 また、本実施形態にかかる差動装置10は、第3のプーリ60及び第4のプーリ70を、ケーブルを介して人体装着ロボット100の関節部120等の回転動作部に接続することができる。したがって、動作対象から離れた位置に差動装置10を設置又は配置することができ、差動装置10の配置位置の自由度が高められる。 In addition, the differential device 10 according to the present embodiment can connect the third pulley 60 and the fourth pulley 70 to a rotation operation unit such as the joint unit 120 of the human body wearing robot 100 via a cable. Therefore, the differential device 10 can be installed or arranged at a position away from the operation target, and the degree of freedom of the arrangement position of the differential device 10 is increased.
 また、本実施形態にかかる差動装置10では、モータ20の回転による第3のプーリ60及び第4のプーリ70の直進移動距離が等距離になっている。また、本実施形態にかかる差動装置10は、モータ20の回転角度に応じて、第3のプーリ60及び第4のプーリ70の直進移動距離を比例的に制御することができる。したがって、人体装着ロボット100の関節部120等の回転動作部の制御を容易に行うことができる。 Further, in the differential device 10 according to the present embodiment, the linear travel distances of the third pulley 60 and the fourth pulley 70 due to the rotation of the motor 20 are equal. Further, the differential device 10 according to the present embodiment can proportionally control the straight travel distances of the third pulley 60 and the fourth pulley 70 according to the rotation angle of the motor 20. Therefore, it is possible to easily control the rotation operation unit such as the joint unit 120 of the human body-mounted robot 100.
 なお、駆動ギヤ32及び従動ギヤ42の歯数の大小は、逆になっていてもよい。この場合、モータ20の回転方向と、第3のプーリ60及び第4のプーリ70の直進運動の方向との関係が逆になる。また、モータ20が、第1のプーリ30ではなく、第2のプーリ40を軸回転させてもよい。 The number of teeth of the drive gear 32 and the driven gear 42 may be reversed. In this case, the relationship between the rotation direction of the motor 20 and the direction of the linear movement of the third pulley 60 and the fourth pulley 70 is reversed. Further, the motor 20 may rotate the second pulley 40 instead of the first pulley 30.
 また、第3のプーリ60の直進移動距離と第4のプーリ70の直進移動距離とを異ならせたい場合には、その比等に応じて、第3のプーリ60の半径と第4のプーリ70の半径とを異ならせてもよい。 Further, when it is desired to make the linear movement distance of the third pulley 60 different from the linear movement distance of the fourth pulley 70, the radius of the third pulley 60 and the fourth pulley 70 are determined according to the ratio or the like. The radius may be different.
 <2.第2の実施の形態>
 次に、図4及び図5を参照して、第2の実施の形態にかかる差動装置150について説明する。図4は、差動装置150の主要部を各プーリの回転軸の延在方向に沿って見た模式図であり、図5は、差動装置150の主要部の斜視図である。
<2. Second Embodiment>
Next, a differential device 150 according to the second exemplary embodiment will be described with reference to FIGS. 4 and 5. FIG. 4 is a schematic view of the main part of the differential device 150 as viewed along the extending direction of the rotation shaft of each pulley, and FIG. 5 is a perspective view of the main part of the differential device 150.
 差動装置150は、第1のプーリ162と、第2のプーリ164と、第3のプーリ166と、第4のプーリ168とを備える。また、差動装置150は、第1のプーリ162を軸回転させる駆動部としてのモータ20と、第1のプーリ162、第2のプーリ164、第3のプーリ166、及び第4のプーリ168に渡って配設された無端伝動部材としての無端ベルト172とを備える。モータ20及び無端ベルト172は、第1の実施の形態にかかるモータ20及び無端ベルト26と同様のものを用いることができる。 The differential device 150 includes a first pulley 162, a second pulley 164, a third pulley 166, and a fourth pulley 168. Further, the differential device 150 includes a motor 20 as a drive unit that rotates the first pulley 162, a first pulley 162, a second pulley 164, a third pulley 166, and a fourth pulley 168. And an endless belt 172 as an endless transmission member disposed across. The motor 20 and the endless belt 172 may be the same as the motor 20 and the endless belt 26 according to the first embodiment.
 第1のプーリ162、第2のプーリ164、第3のプーリ166、及び第4のプーリ168は、それぞれ、モータ20の回転軸24の軸方向に沿う回転軸を有する。第1のプーリ162、第2のプーリ164、第3のプーリ166、及び、第4のプーリ168は、それぞれ周面に無端ベルト172が配設される。無端ベルト172は、第1のプーリ162、第4のプーリ168、第2のプーリ164、及び第3のプーリ166にこの順に捲回されて再び第1のプーリ162に捲回される。第1のプーリ162、第4のプーリ168、第2のプーリ164、及び第3のプーリ166の周面は、モータ20の回転軸24に直交する平面上に位置し、無端ベルト172は、当該平面上において捲回されて配設されている。 The first pulley 162, the second pulley 164, the third pulley 166, and the fourth pulley 168 each have a rotation axis along the axial direction of the rotation shaft 24 of the motor 20. The first pulley 162, the second pulley 164, the third pulley 166, and the fourth pulley 168 are each provided with an endless belt 172 on the circumferential surface. The endless belt 172 is wound around the first pulley 162, the fourth pulley 168, the second pulley 164, and the third pulley 166 in this order, and is wound around the first pulley 162 again. The peripheral surfaces of the first pulley 162, the fourth pulley 168, the second pulley 164, and the third pulley 166 are located on a plane orthogonal to the rotation shaft 24 of the motor 20, and the endless belt 172 is It is wound and arranged on a plane.
 第1のプーリ162は、モータ20の回転軸24に接続されており、当該回転軸24を中心に軸回転する。第2のプーリ164は、図示しない固定部に対して回動自在に支持されている。本実施形態にかかる差動装置150では、第2のプーリ164の半径Rが第1のプーリ162の半径rよりも小さくされている。第3のプーリ166及び第4のプーリ168は、直径が同一であり、回動可能に無端ベルト172によって支持される。第3のプーリ166及び第4のプーリ168は、それぞれ所定の方向に沿って進退動可能に支持されている。例えば、第3のプーリ166及び第4のプーリ168が、図中の上方側の図示しない固定部に一端が固定されたコイルばねによって上方側に付勢され、図中の下方側に負荷がかけられるようになっていてもよい。 The first pulley 162 is connected to the rotating shaft 24 of the motor 20 and rotates about the rotating shaft 24. The second pulley 164 is rotatably supported with respect to a fixed portion (not shown). In the differential device 150 according to the present embodiment, the radius R of the second pulley 164 is smaller than the radius r of the first pulley 162. The third pulley 166 and the fourth pulley 168 have the same diameter, and are supported by the endless belt 172 so as to be rotatable. The third pulley 166 and the fourth pulley 168 are each supported so as to be able to advance and retract along a predetermined direction. For example, the third pulley 166 and the fourth pulley 168 are urged upward by a coil spring whose one end is fixed to a fixing portion (not shown) on the upper side in the drawing, and a load is applied to the lower side in the drawing. It may come to be.
 また、本実施形態にかかる差動装置150は、モータ20の回転軸、すなわち、第1のプーリ162の回転軸に固定された第5のプーリ152と、第2のプーリ164の回転軸25に固定された第6のプーリ154とを備える。第5のプーリ152は、回転軸24を中心に軸回転可能であり、第6のプーリ154は、回転軸25を中心に軸回転可能である。第5のプーリ152及び第6のプーリ154には、第2の無端伝動部材としての無端ベルト172が捲回されている。第5のプーリ152の周面と第6のプーリ154の周面とは同一の平面上に位置し、かかる平面上に無端ベルト172が配設されている。したがって、第2の無端伝動部材としても無端ベルト172又は無端チェーン等が使用可能になっている。ただし、第2の無端伝動部材が無端ケーブルであってもよい。 Further, the differential device 150 according to the present embodiment includes a rotation shaft of the motor 20, that is, a fifth pulley 152 fixed to the rotation shaft of the first pulley 162 and a rotation shaft 25 of the second pulley 164. And a fixed sixth pulley 154. The fifth pulley 152 can rotate about the rotation shaft 24, and the sixth pulley 154 can rotate about the rotation shaft 25. An endless belt 172 as a second endless transmission member is wound around the fifth pulley 152 and the sixth pulley 154. The peripheral surface of the fifth pulley 152 and the peripheral surface of the sixth pulley 154 are located on the same plane, and the endless belt 172 is disposed on the plane. Therefore, the endless belt 172 or the endless chain can be used as the second endless transmission member. However, the second endless transmission member may be an endless cable.
 本実施形態にかかる差動装置150では、第5のプーリ152及び第6のプーリ154は、同一の半径を有する。したがって、モータ20の回転駆動時には、第5のプーリ152と第6のプーリ154とが同一の速度で回転する。そのため、第1のプーリ162と第2のプーリ164とは同一の速度で回転する。ただし、第2のプーリ164の半径rは、第1のプーリ162の半径Rよりも小さくされている。これにより、第1のプーリ162と第2のプーリ164とが同一の速度で回転する場合、第1のプーリ162によって送出される無端ベルト172の長さは、第2のプーリ164によって送出される無端ベルト172の長さよりも長くなる。 In the differential device 150 according to the present embodiment, the fifth pulley 152 and the sixth pulley 154 have the same radius. Accordingly, when the motor 20 is driven to rotate, the fifth pulley 152 and the sixth pulley 154 rotate at the same speed. Therefore, the first pulley 162 and the second pulley 164 rotate at the same speed. However, the radius r of the second pulley 164 is smaller than the radius R of the first pulley 162. As a result, when the first pulley 162 and the second pulley 164 rotate at the same speed, the length of the endless belt 172 sent out by the first pulley 162 is sent out by the second pulley 164. It becomes longer than the length of the endless belt 172.
 図4において、第1のプーリ162を時計回り(実線の方向)に回転させた場合、第1のプーリ162から第3のプーリ166を経由して第2のプーリ164に至る無端ベルト172の長さが長くなり、第3のプーリ166は、図中の下方(実線の方向)に移動する。また、第1のプーリ162を時計回り(実線の方向)に回転させた場合、第2のプーリ164から第4のプーリ168を経由して第1のプーリ162に至る無端ベルト172の長さが短くなり、第4のプーリ168が、図中の上方(実線の方向)に移動する。 In FIG. 4, when the first pulley 162 is rotated clockwise (in the direction of the solid line), the length of the endless belt 172 from the first pulley 162 to the second pulley 164 via the third pulley 166. The third pulley 166 moves downward (in the direction of the solid line) in the drawing. In addition, when the first pulley 162 is rotated clockwise (in the direction of the solid line), the length of the endless belt 172 from the second pulley 164 to the first pulley 162 via the fourth pulley 168 is increased. The fourth pulley 168 moves upward (in the direction of the solid line) in the drawing.
 一方、図4において、第1のプーリ162を反時計回り(破線の方向)に回転させた場合、第1のプーリ162から第3のプーリ166を経由して第2のプーリ164に至る無端ベルト172の長さが短くなり、第3のプーリ166は、図中の上方(破線の方向)に移動する。また、第1のプーリ162を反時計回り(破線の方向)に回転させた場合、第2のプーリ164から第4のプーリ168を経由して第1のプーリ162に至る無端ベルト172の長さが長くなり、第4のプーリ168が、図中の下方(破線の方向)に移動する。 On the other hand, in FIG. 4, when the first pulley 162 is rotated counterclockwise (in the direction of the broken line), the endless belt reaches the second pulley 164 from the first pulley 162 via the third pulley 166. The length of 172 becomes shorter, and the third pulley 166 moves upward (in the direction of the broken line) in the figure. Further, when the first pulley 162 is rotated counterclockwise (in the direction of the broken line), the length of the endless belt 172 from the second pulley 164 to the first pulley 162 via the fourth pulley 168 Becomes longer, and the fourth pulley 168 moves downward (in the direction of the broken line) in the figure.
 このとき、図4に示した例では、第4のプーリ168が直進運動する際に、無端ベルト172の位置が変化する。すなわち、第1のプーリ162と第4のプーリ168との間の無端ベルト172、及び、第2のプーリ164と第4のプーリ168との間の無端ベルト172が、平行に配設されていないために、第4のプーリ168の直進運動に伴って、無端ベルト172の向きが変わり得る。したがって、モータ20の回転角度に対する第4のプーリ168の直進移動距離は比例的に変化しない。一方、第1のプーリ162と第3のプーリ166との間の無端ベルト172、及び、第2のプーリ164と第3のプーリ166との間の無端ベルト172は、第3のプーリ166の直径と同等の幅を維持して平行に配設されており、これらの無端ベルト172の向きが変わることなく第3のプーリ166は直進運動する。したがって、モータ20の回転角度に対する第3のプーリ166の直進移動距離は比例的に変化する。なお、第3のプーリ166及び第4のプーリ168は、図示しないガイド部によって、直進運動の向きが決められている。 At this time, in the example shown in FIG. 4, when the fourth pulley 168 moves straight, the position of the endless belt 172 changes. That is, the endless belt 172 between the first pulley 162 and the fourth pulley 168 and the endless belt 172 between the second pulley 164 and the fourth pulley 168 are not arranged in parallel. Therefore, the direction of the endless belt 172 can change with the straight movement of the fourth pulley 168. Therefore, the linear travel distance of the fourth pulley 168 with respect to the rotation angle of the motor 20 does not change proportionally. On the other hand, the endless belt 172 between the first pulley 162 and the third pulley 166 and the endless belt 172 between the second pulley 164 and the third pulley 166 have a diameter of the third pulley 166. The third pulley 166 moves in a straight line without changing the direction of the endless belts 172, while maintaining the same width as that of the endless belt 172. Therefore, the linear travel distance of the third pulley 166 with respect to the rotation angle of the motor 20 changes proportionally. The third pulley 166 and the fourth pulley 168 have their linear motion directions determined by guide portions (not shown).
 このように、差動装置150は、モータ20の回転運動を、第3のプーリ166及び第4のプーリ168の直進運動に変換することができる。このとき、第3のプーリ166及び第4のプーリ168の直進移動距離は、上記式(1)により表すことができる。本実施形態にかかる差動装置10において、第4のプーリ168の直径を、第1のプーリ162の直径、第2のプーリ164の直径、及び、第3のプーリ166の直径の和に合わせることにより、第3のプーリ166及び第4のプーリ168の直進移動距離を、いずれもモータ20の回転角度に応じて比例的に制御することができる。 Thus, the differential device 150 can convert the rotational motion of the motor 20 into the linear motion of the third pulley 166 and the fourth pulley 168. At this time, the straight travel distance of the third pulley 166 and the fourth pulley 168 can be expressed by the above equation (1). In the differential device 10 according to the present embodiment, the diameter of the fourth pulley 168 is matched with the sum of the diameter of the first pulley 162, the diameter of the second pulley 164, and the diameter of the third pulley 166. As a result, the linear travel distances of the third pulley 166 and the fourth pulley 168 can be proportionally controlled according to the rotation angle of the motor 20.
 本実施形態にかかる差動装置150も、第1の実施の形態にかかる差動装置10と同様に人体装着ロボット100のアクチュエータとして適用することができる。 The differential device 150 according to the present embodiment can also be applied as an actuator of the human body-mounted robot 100 in the same manner as the differential device 10 according to the first embodiment.
 以上説明したように、第2の実施の形態にかかる差動装置150は、ほぼ同一の平面上に無端伝動部材を配設することができるために、無端伝動部材の捻じれが生じにくくなり、無端伝動部材として無端ベルト172や無端チェーンを用いることが可能になる。また、モータ20の回転を第2のプーリ164にも伝達するための第5のプーリ152及び第6のプーリ154に捲回される無端伝動部材も、ほぼ同一の平面上に配設することができるために、無端伝動部材の捻じれが生じにくくなって、無端伝動部材として無端ベルト172や無端チェーンを用いることが可能になる。したがって、プーリ等の構成部品を大型化することなく、無端伝動部材の耐用年数を向上させることができ、継続的な使用にも耐えることができる。 As described above, since the differential device 150 according to the second embodiment can arrange the endless transmission member on substantially the same plane, the endless transmission member is hardly twisted, An endless belt 172 or an endless chain can be used as the endless transmission member. Further, the fifth pulley 152 and the endless transmission member wound around the sixth pulley 154 for transmitting the rotation of the motor 20 to the second pulley 164 may also be arranged on substantially the same plane. Therefore, the endless transmission member is hardly twisted, and the endless belt 172 and the endless chain can be used as the endless transmission member. Therefore, it is possible to improve the service life of the endless transmission member without increasing the size of components such as pulleys, and to withstand continuous use.
 また、本実施形態にかかる差動装置150は、モータ20以外に、主として、6つのプーリと、無端ベルト172,174とにより構成することができる。したがって、高い加工精度が要求されるギヤを必要とせず、製造コストを低減することができる。また、差動装置150は、ギヤの噛み合わせがないため、バックラッシュがなく、応答性を向上することができ、また、動作音や衝撃を低減することができる。 In addition to the motor 20, the differential device 150 according to the present embodiment can be mainly composed of six pulleys and endless belts 172 and 174. Therefore, a gear that requires high machining accuracy is not required, and the manufacturing cost can be reduced. Further, since the differential device 150 does not mesh with the gear, there is no backlash, the responsiveness can be improved, and the operating sound and impact can be reduced.
 また、本実施形態にかかる差動装置150は、第3のプーリ166及び第4のプーリ168を、ケーブルを介して人体装着ロボット100の関節部120等の動作対象に接続することができる。したがって、動作対象から離れた位置に差動装置150を設置又は配置することができ、差動装置150の配置位置の自由度が高められる。 In addition, the differential device 150 according to the present embodiment can connect the third pulley 166 and the fourth pulley 168 to an operation target such as the joint 120 of the human body-mounted robot 100 via a cable. Therefore, the differential device 150 can be installed or arranged at a position away from the operation target, and the degree of freedom of the arrangement position of the differential device 150 is increased.
 また、本実施形態にかかる差動装置150では、第4のプーリ168の直径を、第1のプーリ162の直径、第2のプーリ164の直径、及び、第3のプーリ166の直径の和に合わせた場合、モータ20の回転による第3のプーリ166及び第4のプーリ168の直進移動距離が等距離になる。また、第4のプーリ168の直径を、第1のプーリ162の直径、第2のプーリ164の直径、及び、第3のプーリ166の直径の和に合わせ、各プーリ間の水平距離を適切に設定した場合、第4のプーリ168の直進運動に伴って、無端ベルト172の向きが変わることがない。そのため、モータ20の回転角度に応じて、第3のプーリ166及び第4のプーリ168の直進移動距離を比例的に制御することができる。したがって、人体装着ロボット100の関節部120等の回転動作部の制御を容易に行うことができる。 In the differential device 150 according to the present embodiment, the diameter of the fourth pulley 168 is set to the sum of the diameter of the first pulley 162, the diameter of the second pulley 164, and the diameter of the third pulley 166. In the case of matching, the linear travel distances of the third pulley 166 and the fourth pulley 168 due to the rotation of the motor 20 become equal distances. The diameter of the fourth pulley 168 is adjusted to the sum of the diameter of the first pulley 162, the diameter of the second pulley 164, and the diameter of the third pulley 166, and the horizontal distance between the pulleys is appropriately set. When set, the direction of the endless belt 172 does not change as the fourth pulley 168 moves straight. Therefore, the straight travel distances of the third pulley 166 and the fourth pulley 168 can be proportionally controlled according to the rotation angle of the motor 20. Therefore, it is possible to easily control the rotation operation unit such as the joint unit 120 of the human body-mounted robot 100.
 なお、本実施形態にかかる差動装置150においても、第3のプーリ166の直進移動距離と第4のプーリ168の直進移動距離とを異ならせたい場合には、その比等に応じて、第3のプーリ166の半径と第4のプーリ168の半径とを異ならせてもよい。 In the differential device 150 according to the present embodiment as well, when it is desired to make the rectilinear travel distance of the third pulley 166 different from the rectilinear travel distance of the fourth pulley 168, the first pulley 166 varies depending on the ratio or the like. The radius of the third pulley 166 and the radius of the fourth pulley 168 may be different.
 <3.第3の実施の形態>
 次に、図6を参照して、第3の実施の形態にかかる差動装置200について説明する。図6は、差動装置200の主要部を各プーリの回転軸の延在方向に沿って見た模式図である。
<3. Third Embodiment>
Next, a differential device 200 according to the third embodiment will be described with reference to FIG. FIG. 6 is a schematic view of the main part of the differential device 200 as viewed along the extending direction of the rotation shaft of each pulley.
 差動装置200は、第1のプーリ220と、第2のプーリ230と、第3のプーリ240と、第4のプーリ245とを備える。また、差動装置200は、第1のプーリ220を軸回転させる駆動部としての図示しないモータと、第1のプーリ220、第2のプーリ230、第3のプーリ240、及び、第4のプーリ245に渡って配設された無端伝動部材としての無端ベルト212とを備える。モータ及び無端ベルト212は、第1の実施の形態にかかるモータ20及び無端ベルト26と同様のものを用いることができる。 The differential device 200 includes a first pulley 220, a second pulley 230, a third pulley 240, and a fourth pulley 245. In addition, the differential device 200 includes a motor (not shown) as a drive unit that rotates the first pulley 220, a first pulley 220, a second pulley 230, a third pulley 240, and a fourth pulley. And an endless belt 212 as an endless transmission member disposed over 245. As the motor and endless belt 212, the same motor 20 and endless belt 26 according to the first embodiment can be used.
 第1のプーリ220、第2のプーリ230、第3のプーリ240、及び、第4のプーリ245は、それぞれモータの回転軸の軸方向に沿う回転軸を有する。第1のプーリ220、第2のプーリ230、第3のプーリ240、及び、第4のプーリ245は、それぞれ周面に無端ベルト212が配設される。無端ベルト212は、第1のプーリ220、第3のプーリ240、第2のプーリ230、及び、第4のプーリ245にこの順に捲回され再び第1のプーリ220に捲回される。第1のプーリ220、第2のプーリ230、第3のプーリ240、及び、第4のプーリ245の周面は、モータの回転軸に直交する平面上に位置し、無端ベルト212は、当該平面上において捲回されて配設されている。 The first pulley 220, the second pulley 230, the third pulley 240, and the fourth pulley 245 each have a rotation axis along the axial direction of the rotation axis of the motor. The first pulley 220, the second pulley 230, the third pulley 240, and the fourth pulley 245 are each provided with an endless belt 212 on the circumferential surface. The endless belt 212 is wound around the first pulley 220, the third pulley 240, the second pulley 230, and the fourth pulley 245 in this order, and is wound around the first pulley 220 again. The peripheral surfaces of the first pulley 220, the second pulley 230, the third pulley 240, and the fourth pulley 245 are located on a plane orthogonal to the rotation axis of the motor, and the endless belt 212 is the plane. It is wound and arranged on the top.
 第1のプーリ220は、モータの回転軸に接続されており、当該回転軸を中心に軸回転する。第1のプーリ220には、第1のプーリ220の軸回転に伴って同じく軸回転する駆動ギヤ222が設けられる。また、第2のプーリ230には、第2のプーリ230の軸回転に伴って同じく軸回転する従動ギヤ232が設けられる。第2のプーリ230及び従動ギヤ232は、図示しない固定部に対して回動自在に支持されている。従動ギヤ232は、駆動ギヤ222に噛合しており、第1のプーリ220がモータにより軸回転させられると、駆動ギヤ222及び従動ギヤ232を介して第2のプーリ230にも回転が伝達され、第2のプーリ230が軸回転する。図示した例では、駆動ギヤ222の歯数は、従動ギヤ232の歯数よりも多い。したがって、第2のプーリ230の回転速度は、第1のプーリ220の回転速度よりも速くなる。 The first pulley 220 is connected to the rotating shaft of the motor and rotates about the rotating shaft. The first pulley 220 is provided with a drive gear 222 that rotates in the same manner as the shaft of the first pulley 220 rotates. In addition, the second pulley 230 is provided with a driven gear 232 that similarly rotates along with the shaft rotation of the second pulley 230. The second pulley 230 and the driven gear 232 are rotatably supported with respect to a fixed portion (not shown). The driven gear 232 meshes with the drive gear 222. When the first pulley 220 is rotated by the motor, the rotation is transmitted to the second pulley 230 via the drive gear 222 and the driven gear 232, The second pulley 230 rotates on the axis. In the illustrated example, the number of teeth of the drive gear 222 is greater than the number of teeth of the driven gear 232. Therefore, the rotational speed of the second pulley 230 is faster than the rotational speed of the first pulley 220.
 なお、駆動ギヤ222及び従動ギヤ232の代わりに、タイミングベルトが用いられてもよい。 Note that a timing belt may be used instead of the drive gear 222 and the driven gear 232.
 第3のプーリ240及び第4のプーリ245は、直径が同一であり、回動可能に無端ベルト212によって支持される。第3のプーリ240及び第4のプーリ245は、それぞれ所定の方向に沿って進退動可能に支持されている。例えば、第3のプーリ240及び第4のプーリ245が、図中の上方側の図示しない固定部に一端が固定されたコイルばねによって上方側に付勢され、図中の下方側に負荷がかけられるようになっていてもよい。 The third pulley 240 and the fourth pulley 245 have the same diameter and are rotatably supported by the endless belt 212. The third pulley 240 and the fourth pulley 245 are each supported so as to be able to advance and retract along a predetermined direction. For example, the third pulley 240 and the fourth pulley 245 are biased upward by a coil spring whose one end is fixed to a fixing portion (not shown) on the upper side in the drawing, and a load is applied to the lower side in the drawing. It may come to be.
 本実施形態にかかる差動装置200では、第1のプーリ220の半径Rは、第2のプーリ230の半径r、第3のプーリ240の半径、第4のプーリ245の半径の総和に等しくされている。また、第2のプーリ230、第3のプーリ240、及び、第4のプーリ245は、図示の上下方向に重ならないように配置されている。したがって、各プーリ間に配設される無端ベルト212は、すべて図示の上下方向に沿って配設される。これにより、無端ベルト212と各プーリとの間の摩擦力が過大にならないようになっている。また、第3のプーリ240及び第4のプーリ245が直進運動する際に、無端ベルト212の位置が変化しないようになっている。 In the differential device 200 according to the present embodiment, the radius R of the first pulley 220 is equal to the sum of the radius r of the second pulley 230, the radius of the third pulley 240, and the radius of the fourth pulley 245. ing. Further, the second pulley 230, the third pulley 240, and the fourth pulley 245 are arranged so as not to overlap in the illustrated vertical direction. Accordingly, the endless belt 212 disposed between the pulleys is all disposed along the vertical direction shown in the figure. Thereby, the frictional force between the endless belt 212 and each pulley is prevented from becoming excessive. In addition, when the third pulley 240 and the fourth pulley 245 move linearly, the position of the endless belt 212 does not change.
 本実施形態にかかる差動装置200では、第1のプーリ220の半径Rが第2のプーリ230の半径rよりも著しく大きいために、モータの回転駆動時に、第1のプーリ220によって送出される無端ベルト212の長さは、第2のプーリ230によって送出される無端ベルト212の長さよりも長くなる。ただし、第2のプーリ230が、第1のプーリ220よりも速く回転するように構成され、無端ベルト212の送出長さが大きく異ならないようにされている。 In the differential device 200 according to the present embodiment, since the radius R of the first pulley 220 is significantly larger than the radius r of the second pulley 230, the first pulley 220 is sent by the first pulley 220 when the motor is driven to rotate. The length of the endless belt 212 is longer than the length of the endless belt 212 delivered by the second pulley 230. However, the second pulley 230 is configured to rotate faster than the first pulley 220 so that the delivery length of the endless belt 212 is not greatly different.
 図6において、第1のプーリ220を時計回り(実線の方向)に回転させた場合、第1のプーリ220から第3のプーリ240を経由して第2のプーリ230に至る無端ベルト212の長さが長くなり、第3のプーリ240は、図中の下方(実線の方向)に移動する。また、第1のプーリ220を時計回り(実線の方向)に回転させた場合、第2のプーリ230から第4のプーリ245を経由して第1のプーリ220に至る無端ベルト212の長さが短くなり、第4のプーリ245が、図中の上方(実線の方向)に移動する。 In FIG. 6, when the first pulley 220 is rotated clockwise (in the direction of the solid line), the length of the endless belt 212 extending from the first pulley 220 to the second pulley 230 via the third pulley 240. The third pulley 240 moves downward (in the direction of the solid line) in the drawing. Further, when the first pulley 220 is rotated clockwise (in the direction of the solid line), the length of the endless belt 212 from the second pulley 230 to the first pulley 220 via the fourth pulley 245 is the length of the endless belt 212. The fourth pulley 245 moves upward (in the direction of the solid line) in the drawing.
 一方、図6において、第1のプーリ220を反時計回り(破線の方向)に回転させた場合、第1のプーリ220から第3のプーリ240を経由して第2のプーリ230に至る無端ベルト212の長さが短くなり、第3のプーリ240は、図中の上方(破線の方向)に移動する。また、第1のプーリ220を反時計回り(破線の方向)に回転させた場合、第2のプーリ230から第4のプーリ245を経由して第1のプーリ220に至る無端ベルト212の長さが長くなり、第4のプーリ245が、図中の下方(破線の方向)に移動する。 On the other hand, in FIG. 6, when the first pulley 220 is rotated counterclockwise (in the direction of the broken line), the endless belt reaches the second pulley 230 from the first pulley 220 via the third pulley 240. The length 212 is shortened, and the third pulley 240 moves upward (in the direction of the broken line) in the figure. In addition, when the first pulley 220 is rotated counterclockwise (in the direction of the broken line), the length of the endless belt 212 from the second pulley 230 to the first pulley 220 via the fourth pulley 245. Becomes longer, and the fourth pulley 245 moves downward (in the direction of the broken line) in the figure.
 図6に示す例では、第3のプーリ240及び第4のプーリ245が直進運動する際に、無端ベルト212の位置が変化しないために、モータの回転角度に対する第3のプーリ240及び第4のプーリ245の直進移動距離が比例的に変化し、第3のプーリ240及び第4のプーリ245の直進運動の制御が容易になる。特に、第3のプーリ240の直径と第4のプーリ245の直径とが等しい場合には、モータのある回転角度に対して、第3のプーリ240及び第4のプーリ245を互いに逆方向に、等距離で移動させることができる。なお、第3のプーリ240及び第4のプーリ245は、図示しないガイド部によって、直進運動の向きが決められている。 In the example shown in FIG. 6, when the third pulley 240 and the fourth pulley 245 move linearly, the position of the endless belt 212 does not change. Therefore, the third pulley 240 and the fourth pulley 245 with respect to the rotation angle of the motor. The straight travel distance of the pulley 245 changes proportionally, and the straight motion of the third pulley 240 and the fourth pulley 245 can be easily controlled. In particular, when the diameter of the third pulley 240 and the diameter of the fourth pulley 245 are equal, the third pulley 240 and the fourth pulley 245 are opposite to each other with respect to a certain rotation angle of the motor. It can be moved at an equal distance. The third pulley 240 and the fourth pulley 245 are determined in the direction of straight movement by a guide portion (not shown).
 このように、差動装置200は、モータの回転運動を、第3のプーリ240及び第4のプーリ245の直進運動に変換することができる。このとき、第3のプーリ240及び第4のプーリ245の直進移動距離は、上記式(1)により表すことができる。したがって、制御装置は、モータの回転角度に応じて、第3のプーリ240及び第4のプーリ245の直進移動距離dを比例的に制御することができる。 Thus, the differential device 200 can convert the rotational motion of the motor into the linear motion of the third pulley 240 and the fourth pulley 245. At this time, the straight travel distance of the third pulley 240 and the fourth pulley 245 can be expressed by the above equation (1). Therefore, the control device can proportionally control the straight travel distance d of the third pulley 240 and the fourth pulley 245 according to the rotation angle of the motor.
 本実施形態にかかる差動装置200も、第1の実施の形態にかかる差動装置10と同様に人体装着ロボット100のアクチュエータとして適用することができる。 The differential device 200 according to the present embodiment can also be applied as an actuator of the human body-mounted robot 100, similarly to the differential device 10 according to the first embodiment.
 以上説明したように、第3の実施の形態にかかる差動装置200は、ほぼ同一の平面上に無端伝動部材を配設することができるために、無端伝動部材の捻じれが生じにくくなり、無端伝動部材として無端ベルト212や無端チェーンを用いることが可能になる。したがって、プーリ等の構成部品を大型化することなく、無端伝動部材の耐用年数を向上させることができ、継続的な使用にも耐えることができる。 As described above, since the differential device 200 according to the third embodiment can dispose the endless transmission member on substantially the same plane, the endless transmission member is hardly twisted, An endless belt 212 or an endless chain can be used as the endless transmission member. Therefore, it is possible to improve the service life of the endless transmission member without increasing the size of components such as pulleys, and to withstand continuous use.
 また、本実施形態にかかる差動装置200は、モータ以外に、主として、4つのプーリと、2つのギヤと、無端ベルト212とにより構成することができる。したがって、製造コストを低減することができる。また、差動装置200は、ギヤの噛み合わせが1箇所のみであるため、バックラッシュが少なく、応答性を向上することができ、また、動作音や衝撃を低減することができる。 In addition to the motor, the differential device 200 according to the present embodiment can be mainly composed of four pulleys, two gears, and an endless belt 212. Therefore, the manufacturing cost can be reduced. Further, since the differential device 200 has only one gear meshing, it can reduce backlash, improve responsiveness, and reduce operating noise and impact.
 また、本実施形態にかかる差動装置200は、第3のプーリ240及び第4のプーリ245を、ケーブルを介して人体装着ロボット100の関節部120等の動作対象に接続することができる。したがって、動作対象から離れた位置に差動装置200を設置又は配置することができ、差動装置200の配置位置の自由度が高められる。 Further, the differential device 200 according to the present embodiment can connect the third pulley 240 and the fourth pulley 245 to an operation target such as the joint 120 of the human body wearing robot 100 via a cable. Therefore, the differential device 200 can be installed or arranged at a position away from the operation target, and the degree of freedom of the arrangement position of the differential device 200 is increased.
 また、本実施形態にかかる差動装置200では、モータの回転による第3のプーリ240及び第4のプーリ245の直進移動距離が等距離になっている。また、本実施形態にかかる差動装置200は、モータの回転角度に応じて、第3のプーリ240及び第4のプーリ245の直進移動距離を比例的に制御することができる。したがって、人体装着ロボット100の関節部120等の回転動作部の制御を容易に行うことができる。 Further, in the differential device 200 according to the present embodiment, the straight travel distances of the third pulley 240 and the fourth pulley 245 by the rotation of the motor are equal. Further, the differential device 200 according to the present embodiment can proportionally control the straight travel distances of the third pulley 240 and the fourth pulley 245 according to the rotation angle of the motor. Therefore, it is possible to easily control the rotation operation unit such as the joint unit 120 of the human body-mounted robot 100.
 なお、本実施形態にかかる差動装置200においても、第3のプーリ240の直進移動距離と第4のプーリ245の直進移動距離とを異ならせたい場合には、その比等に応じて、第3のプーリ240の半径と第4のプーリ245の半径とを異ならせてもよい。 Also in the differential device 200 according to the present embodiment, when it is desired to make the rectilinear movement distance of the third pulley 240 different from the rectilinear movement distance of the fourth pulley 245, the first pulley 240 is moved in accordance with the ratio or the like. The radius of the third pulley 240 may be different from the radius of the fourth pulley 245.
 <4.第4の実施の形態>
 次に、図7を参照して、第4の実施の形態にかかる差動装置250について説明する。図7は、差動装置250の主要部を各プーリの回転軸の延在方向に沿って見た模式図である。
<4. Fourth Embodiment>
Next, a differential device 250 according to a fourth embodiment will be described with reference to FIG. FIG. 7 is a schematic view of the main part of the differential device 250 as viewed along the extending direction of the rotation shaft of each pulley.
 差動装置250は、第1のプーリ260と、第2のプーリ270と、第3のプーリ280と、第4のプーリ290とを備える。また、本実施形態にかかる差動装置250は、第1のプーリ260を軸回転させる駆動部としての第1のモータ254と、第2のプーリ270を軸回転させる駆動部としての第2のモータ256と、第1のプーリ260、第2のプーリ270、第3のプーリ280、及び第4のプーリ290に渡って配設された無端伝動部材としての無端ベルト252とを備える。第1のモータ254、第2のモータ256及び無端ベルト252は、第1の実施の形態にかかるモータ20及び無端ベルト26と同様のものを用いることができる。 The differential device 250 includes a first pulley 260, a second pulley 270, a third pulley 280, and a fourth pulley 290. Further, the differential device 250 according to the present embodiment includes a first motor 254 as a drive unit that rotates the first pulley 260 and a second motor as a drive unit that rotates the second pulley 270. 256, and an endless belt 252 as an endless transmission member disposed across the first pulley 260, the second pulley 270, the third pulley 280, and the fourth pulley 290. As the first motor 254, the second motor 256, and the endless belt 252, the same motors as the motor 20 and the endless belt 26 according to the first embodiment can be used.
 第1のプーリ260、第2のプーリ270、第3のプーリ280、及び第4のプーリ290は、それぞれ、第1のモータ254及び第2のモータ256の回転軸の軸方向に沿う回転軸を有する。第1のプーリ260、第2のプーリ270、第3のプーリ280、及び、第4のプーリ290は、それぞれ周面に無端ベルト252が配設される。無端ベルト252は、第1のプーリ260、第4のプーリ290、第2のプーリ270、及び第3のプーリ280にこの順に捲回されて再び第1のプーリ260に捲回される。第1のプーリ260、第4のプーリ290、第2のプーリ270、及び第3のプーリ280の周面は、第1のモータ254及び第2のモータ256の回転軸に直交する平面上に位置し、無端ベルト252は、当該平面上において捲回されて配設されている。 The first pulley 260, the second pulley 270, the third pulley 280, and the fourth pulley 290 each have a rotation axis along the axial direction of the rotation axis of the first motor 254 and the second motor 256, respectively. Have. The first pulley 260, the second pulley 270, the third pulley 280, and the fourth pulley 290 are each provided with an endless belt 252 on the circumferential surface. The endless belt 252 is wound around the first pulley 260, the fourth pulley 290, the second pulley 270, and the third pulley 280 in this order, and is wound around the first pulley 260 again. The peripheral surfaces of the first pulley 260, the fourth pulley 290, the second pulley 270, and the third pulley 280 are positioned on a plane orthogonal to the rotation axes of the first motor 254 and the second motor 256. The endless belt 252 is wound around the plane.
 第1のプーリ260は、第1のモータ254の回転軸に接続されており、当該回転軸を中心に軸回転する。第2のプーリ270は、第2のモータ256の回転軸に接続されており、当該回転軸を中心に軸回転する。本実施形態にかかる差動装置250では、第1のプーリ260の半径Rと第2のプーリ270の半径rとが同一とされている。第3のプーリ280及び第4のプーリ290は、直径が同一であり、回動可能に無端ベルト252によって支持される。第3のプーリ280及び第4のプーリ290は、それぞれ所定の方向に沿って進退動可能に支持されている。例えば、第3のプーリ280及び第4のプーリ290が、それぞれ図示しない固定部に一端が固定されたコイルばねによって図中の第1のプーリ260の回転軸の方向に付勢され、かつ、反対方向に負荷がかけられるようになっていてもよい。 The first pulley 260 is connected to the rotation shaft of the first motor 254 and rotates about the rotation shaft. The second pulley 270 is connected to the rotation shaft of the second motor 256 and rotates about the rotation shaft. In the differential device 250 according to the present embodiment, the radius R of the first pulley 260 and the radius r of the second pulley 270 are the same. The third pulley 280 and the fourth pulley 290 have the same diameter, and are supported by the endless belt 252 so as to be rotatable. The third pulley 280 and the fourth pulley 290 are each supported so as to be able to advance and retract along a predetermined direction. For example, the third pulley 280 and the fourth pulley 290 are urged in the direction of the rotation axis of the first pulley 260 in the figure by a coil spring having one end fixed to a fixing portion (not shown), and opposite to each other. A load may be applied in the direction.
 本実施形態にかかる差動装置250では、第1のモータ254が、第2のモータ256よりも速い回転速度で駆動される。これにより、第1のプーリ260によって送出される無端ベルト252の長さは、第2のプーリ270によって送出される無端ベルト252の長さよりも長くなる。 In the differential device 250 according to the present embodiment, the first motor 254 is driven at a higher rotational speed than the second motor 256. Thereby, the length of the endless belt 252 delivered by the first pulley 260 is longer than the length of the endless belt 252 delivered by the second pulley 270.
 図7において、第1のプーリ260を時計回り(実線の方向)に回転させた場合、第1のプーリ260から第3のプーリ280を経由して第2のプーリ270に至る無端ベルト252の長さが長くなり、第3のプーリ280は、図中の下方(実線の方向)に移動する。また、第1のプーリ260を時計回り(実線の方向)に回転させた場合、第2のプーリ270から第4のプーリ290を経由して第1のプーリ260に至る無端ベルト252の長さが短くなり、第4のプーリ290が、図中の上方(実線の方向)に移動する。 In FIG. 7, when the first pulley 260 is rotated clockwise (in the direction of the solid line), the length of the endless belt 252 from the first pulley 260 to the second pulley 270 via the third pulley 280. The third pulley 280 moves downward (in the direction of the solid line) in the figure. Further, when the first pulley 260 is rotated clockwise (in the direction of the solid line), the length of the endless belt 252 from the second pulley 270 to the first pulley 260 via the fourth pulley 290 is the length of the endless belt 252. The fourth pulley 290 is shortened and moves upward (in the direction of the solid line) in the drawing.
 一方、図7において、第1のプーリ260を反時計回り(破線の方向)に回転させた場合、第1のプーリ260から第3のプーリ280を経由して第2のプーリ270に至る無端ベルト252の長さが短くなり、第3のプーリ280は、図中の上方(破線の方向)に移動する。また、第1のプーリ260を反時計回り(破線の方向)に回転させた場合、第2のプーリ270から第4のプーリ290を経由して第1のプーリ260に至る無端ベルト252の長さが長くなり、第4のプーリ290が、図中の下方(破線の方向)に移動する。 On the other hand, in FIG. 7, when the first pulley 260 is rotated counterclockwise (in the direction of the broken line), the endless belt reaches the second pulley 270 from the first pulley 260 via the third pulley 280. The length of 252 is shortened, and the third pulley 280 moves upward (in the direction of the broken line) in the figure. Further, when the first pulley 260 is rotated counterclockwise (in the direction of the broken line), the length of the endless belt 252 from the second pulley 270 to the first pulley 260 via the fourth pulley 290. Becomes longer, and the fourth pulley 290 moves downward (in the direction of the broken line) in the figure.
 図7に示す例では、第3のプーリ280及び第4のプーリ290が直進運動する際に、無端ベルト252の位置が変化しないために、第1のモータ254及び第2のモータ256の回転角度に対する第3のプーリ280及び第4のプーリ290の直進移動距離が比例的に変化し、第3のプーリ280及び第4のプーリ290の直進運動の制御が容易になる。特に、第3のプーリ280の直径と第4のプーリ290の直径とが等しい場合には、第1のモータ254及び第2のモータ256のある回転角度に対して、第3のプーリ280及び第4のプーリ290を互いに逆方向に、等距離で移動させることができる。なお、第3のプーリ280及び第4のプーリ290は、図示しないガイド部によって、直進運動の向きが決められている。 In the example shown in FIG. 7, when the third pulley 280 and the fourth pulley 290 move linearly, the rotation angle of the first motor 254 and the second motor 256 is not changed because the position of the endless belt 252 does not change. The linear movement distances of the third pulley 280 and the fourth pulley 290 with respect to the above change proportionally, and the linear movement of the third pulley 280 and the fourth pulley 290 can be easily controlled. In particular, when the diameter of the third pulley 280 and the diameter of the fourth pulley 290 are equal, the third pulley 280 and the second pulley 280 with respect to a certain rotation angle of the first motor 254 and the second motor 256. The four pulleys 290 can be moved at equal distances in opposite directions. The third pulley 280 and the fourth pulley 290 have their linear motion directions determined by guide portions (not shown).
 このように、差動装置250は、第1のモータ254及び第2のモータ256の回転運動を、第3のプーリ280及び第4のプーリ290の直進運動に変換することができる。このとき、第3のプーリ280及び第4のプーリ290の直進移動距離は、上記式(1)により表すことができる。したがって、制御装置は、第1のモータ254及び第2のモータ256の回転角度に応じて、第3のプーリ280及び第4のプーリ290の直進移動距離dを比例的に制御することができる。 Thus, the differential device 250 can convert the rotational motions of the first motor 254 and the second motor 256 into the linear motions of the third pulley 280 and the fourth pulley 290. At this time, the rectilinear movement distances of the third pulley 280 and the fourth pulley 290 can be expressed by the above equation (1). Therefore, the control device can proportionally control the straight travel distance d of the third pulley 280 and the fourth pulley 290 according to the rotation angles of the first motor 254 and the second motor 256.
 本実施形態にかかる差動装置250も、第1の実施の形態にかかる差動装置10と同様に人体装着ロボット100のアクチュエータとして適用することができる。 The differential device 250 according to the present embodiment can also be applied as an actuator of the human body-mounted robot 100, similarly to the differential device 10 according to the first embodiment.
 以上説明したように、第4の実施の形態にかかる差動装置250は、ほぼ同一の平面上に無端伝動部材を配設することができるために、無端伝動部材の捻じれが生じにくくなり、無端伝動部材として無端ベルト252や無端チェーンを用いることが可能になる。したがって、プーリ等の構成部品を大型化することなく、無端伝動部材の耐用年数を向上させることができ、継続的な使用にも耐えることができる。特に、本実施形態にかかる差動装置250は、直径がすべて同一のプーリを用いて構成することができる。 As described above, since the differential device 250 according to the fourth embodiment can arrange the endless transmission member on substantially the same plane, the endless transmission member is hardly twisted, An endless belt 252 or an endless chain can be used as the endless transmission member. Therefore, it is possible to improve the service life of the endless transmission member without increasing the size of components such as pulleys, and to withstand continuous use. In particular, the differential device 250 according to the present embodiment can be configured using pulleys having the same diameter.
 また、本実施形態にかかる差動装置250は、第1のモータ254及び第2のモータ256以外に、主として、4つのプーリと、無端ベルト252とにより構成することができる。したがって、製造コストを低減することができる。また、差動装置250は、ギヤの噛み合わせがないため、バックラッシュがなく、応答性を向上することができ、また、動作音や衝撃を低減することができる。 Further, the differential device 250 according to the present embodiment can be mainly configured by four pulleys and an endless belt 252 in addition to the first motor 254 and the second motor 256. Therefore, the manufacturing cost can be reduced. Further, since the differential device 250 has no gear meshing, there is no backlash, the responsiveness can be improved, and the operating noise and impact can be reduced.
 また、本実施形態にかかる差動装置250は、第3のプーリ280及び第4のプーリ290を、ケーブルを介して人体装着ロボット100の関節部120等の動作対象に接続することができる。したがって、動作対象から離れた位置に差動装置250を設置又は配置することができ、差動装置250の配置位置の自由度が高められる。 In addition, the differential device 250 according to the present embodiment can connect the third pulley 280 and the fourth pulley 290 to an operation target such as the joint 120 of the human body-mounted robot 100 via a cable. Therefore, the differential device 250 can be installed or arranged at a position away from the operation target, and the degree of freedom of the arrangement position of the differential device 250 is increased.
 また、本実施形態にかかる差動装置250では、第1のモータ254及び第2のモータ256の回転による第3のプーリ280及び第4のプーリ290の直進移動距離が等距離になっている。また、本実施形態にかかる差動装置250は、モータの回転角度に応じて、第3のプーリ280及び第4のプーリ290の直進移動距離を比例的に制御することができる。したがって、人体装着ロボット100の関節部120等の回転動作部の制御を容易に行うことができる。 Further, in the differential device 250 according to the present embodiment, the linear travel distances of the third pulley 280 and the fourth pulley 290 due to the rotation of the first motor 254 and the second motor 256 are equal. Further, the differential device 250 according to the present embodiment can proportionally control the straight travel distances of the third pulley 280 and the fourth pulley 290 according to the rotation angle of the motor. Therefore, it is possible to easily control the rotation operation unit such as the joint unit 120 of the human body-mounted robot 100.
 なお、本実施形態にかかる差動装置250においても、第3のプーリ280の直進移動距離と第4のプーリ290の直進移動距離とを異ならせたい場合には、その比等に応じて、第3のプーリ280の半径と第4のプーリ290の半径とを異ならせてもよい。 In the differential device 250 according to the present embodiment as well, when it is desired to make the rectilinear movement distance of the third pulley 280 different from the rectilinear movement distance of the fourth pulley 290, the first pulley 290 is changed according to the ratio or the like. The radius of the third pulley 280 may be different from the radius of the fourth pulley 290.
 <5.第5の実施の形態>
 次に、図8を参照して、第5の実施の形態にかかる差動装置300について説明する。図8は、差動装置300の主要部の斜視図である。
<5. Fifth embodiment>
Next, with reference to FIG. 8, the differential gear 300 concerning 5th Embodiment is demonstrated. FIG. 8 is a perspective view of a main part of the differential device 300.
 差動装置300は、第1のプーリ312と、第2のプーリ314と、第3のプーリ316と、第4のプーリ318とを備える。また、差動装置300は、第1のプーリ312を軸回転させる駆動部としてのモータ20と、第1のプーリ312、第2のプーリ314、第3のプーリ316、及び第4のプーリ318に渡って配設された無端伝動部材としての無端ベルト322とを備える。モータ20及び無端ベルト322は、第1の実施の形態にかかるモータ20及び無端ベルト26と同様のものを用いることができる。 The differential device 300 includes a first pulley 312, a second pulley 314, a third pulley 316, and a fourth pulley 318. In addition, the differential device 300 includes a motor 20 as a driving unit that rotates the first pulley 312, a first pulley 312, a second pulley 314, a third pulley 316, and a fourth pulley 318. And an endless belt 322 as an endless transmission member disposed across. The motor 20 and the endless belt 322 may be the same as the motor 20 and the endless belt 26 according to the first embodiment.
 第1のプーリ312、第2のプーリ314、第3のプーリ316、及び第4のプーリ318は、それぞれ、モータ20の回転軸24の軸方向に沿う回転軸を有する。第1のプーリ312、第2のプーリ314、第3のプーリ316、及び、第4のプーリ318は、それぞれ周面に無端ベルト322が配設される。無端ベルト322は、第1のプーリ312、第4のプーリ318、第2のプーリ314、及び第3のプーリ316にこの順に捲回されて再び第1のプーリ312に捲回される。 The first pulley 312, the second pulley 314, the third pulley 316, and the fourth pulley 318 each have a rotation axis along the axial direction of the rotation shaft 24 of the motor 20. The first pulley 312, the second pulley 314, the third pulley 316, and the fourth pulley 318 are each provided with an endless belt 322 on the circumferential surface. The endless belt 322 is wound around the first pulley 312, the fourth pulley 318, the second pulley 314, and the third pulley 316 in this order, and is wound around the first pulley 312 again.
 本実施形態にかかる差動装置300では、第1のプーリ312が駆動側プーリであり、第2のプーリ314が従動側プーリであり、差動装置300は、第1のプーリ312及び第2のプーリ314のうちの少なくとも一方のピッチ径を変更する図示しない無段変速装置を備える。したがって、第1のプーリ312及び第2のプーリ314上に捲回される無端ベルト322の曲率半径を自由に調節することができる。図8に示した例では、第2のプーリ314上に捲回される無端ベルト322の曲率半径が第1のプーリ312上に捲回される無端ベルト322の曲率半径よりも小さくされている。 In the differential device 300 according to the present embodiment, the first pulley 312 is a driving pulley, the second pulley 314 is a driven pulley, and the differential device 300 includes the first pulley 312 and the second pulley. A continuously variable transmission (not shown) that changes the pitch diameter of at least one of the pulleys 314 is provided. Accordingly, the radius of curvature of the endless belt 322 wound around the first pulley 312 and the second pulley 314 can be freely adjusted. In the example shown in FIG. 8, the radius of curvature of the endless belt 322 wound on the second pulley 314 is made smaller than the radius of curvature of the endless belt 322 wound on the first pulley 312.
 第3のプーリ316及び第4のプーリ318は、回動可能に無端ベルト322によって支持される。第3のプーリ316及び第4のプーリ318は、それぞれ所定の方向に沿って進退動可能に支持されている。例えば、第3のプーリ316及び第4のプーリ318が、図中の上方側の図示しない固定部に一端が固定されたコイルばねによって上方側に付勢され、図中の下方側に負荷がかけられるようになっていてもよい。 The third pulley 316 and the fourth pulley 318 are supported by an endless belt 322 so as to be rotatable. The third pulley 316 and the fourth pulley 318 are each supported so as to be able to advance and retract along a predetermined direction. For example, the third pulley 316 and the fourth pulley 318 are urged upward by a coil spring whose one end is fixed to a fixing portion (not shown) on the upper side in the drawing, and a load is applied to the lower side in the drawing. It may come to be.
 本実施形態にかかる差動装置300においても、第1のプーリ312及び第2のプーリ314上の無端ベルト322の配設位置と、第3のプーリ316及び第4のプーリ318の周面は、モータ20の回転軸24に直交する平面上に位置し、無端ベルト322は、当該平面上において捲回されて配設されている。 Also in the differential device 300 according to the present embodiment, the disposition position of the endless belt 322 on the first pulley 312 and the second pulley 314 and the peripheral surfaces of the third pulley 316 and the fourth pulley 318 are as follows. The endless belt 322 is disposed on a plane perpendicular to the rotation shaft 24 of the motor 20 and is wound around the plane.
 また、本実施形態にかかる差動装置300は、モータ20の回転軸24、すなわち、第1のプーリ312の回転軸に固定された第5のプーリ332と、第2のプーリ314の回転軸25に固定された第6のプーリ334とを備える。第5のプーリ332は、回転軸24を中心に軸回転可能であり、第6のプーリ334は、回転軸25を中心に軸回転可能である。第5のプーリ332及び第6のプーリ334には、第2の無端伝動部材としての無端ベルト324が捲回されている。第5のプーリ332の周面と第6のプーリ334の周面とは同一の平面上に位置し、かかる平面上に無端ベルト324が配設されている。 Further, the differential device 300 according to the present embodiment includes a rotation shaft 24 of the motor 20, that is, a fifth pulley 332 fixed to the rotation shaft of the first pulley 312 and a rotation shaft 25 of the second pulley 314. And a sixth pulley 334 fixed to the head. The fifth pulley 332 can rotate about the rotation shaft 24, and the sixth pulley 334 can rotate about the rotation shaft 25. An endless belt 324 as a second endless transmission member is wound around the fifth pulley 332 and the sixth pulley 334. The peripheral surface of the fifth pulley 332 and the peripheral surface of the sixth pulley 334 are located on the same plane, and an endless belt 324 is disposed on the plane.
 本実施形態にかかる差動装置300では、第5のプーリ332及び第6のプーリ334は、同一の半径を有する。したがって、モータ20の回転駆動時には、第5のプーリ332と第6のプーリ334とが同一の速度で回転する。そのため、第1のプーリ312と第2のプーリ314とは同一の速度で回転する。ただし、無段変速装置により、第1のプーリ312のピッチ径と、第2のプーリ314のピッチ径とが異なっている。これにより、第1のプーリ312と第2のプーリ314とが同一の速度で回転する場合、第1のプーリ312によって送出される無端ベルト322の長さは、第2のプーリ314によって送出される無端ベルト322の長さよりも長くなる。したがって、モータ20をいずれかの方向に回転駆動することにより、第3のプーリ316及び第4のプーリ318を、互いに上下逆方向に直進運動させることができる。なお、第3のプーリ316及び第4のプーリ318は、図示しないガイド部に沿って、直進運動の向きが決められている。 In the differential device 300 according to the present embodiment, the fifth pulley 332 and the sixth pulley 334 have the same radius. Therefore, when the motor 20 is driven to rotate, the fifth pulley 332 and the sixth pulley 334 rotate at the same speed. Therefore, the first pulley 312 and the second pulley 314 rotate at the same speed. However, the pitch diameter of the first pulley 312 and the pitch diameter of the second pulley 314 are different depending on the continuously variable transmission. As a result, when the first pulley 312 and the second pulley 314 rotate at the same speed, the length of the endless belt 322 sent out by the first pulley 312 is sent out by the second pulley 314. It becomes longer than the length of the endless belt 322. Therefore, by rotating the motor 20 in either direction, the third pulley 316 and the fourth pulley 318 can be linearly moved in directions opposite to each other. The third pulley 316 and the fourth pulley 318 are determined in the direction of straight movement along a guide portion (not shown).
 このように、差動装置300は、モータ20の回転運動を、第3のプーリ316及び第4のプーリ318の直進運動に変換することができる。このとき、第3のプーリ316及び第4のプーリ318の直進移動距離は、上記式(1)により表すことができる。したがって、制御装置は、第3のプーリ316及び第4のプーリ318の直進移動距離dに応じて、第1のプーリ312及び第2のプーリ314のピッチ径及び回転角度を設定し、モータ20を回転させる制御を実行することができる。 As described above, the differential device 300 can convert the rotational motion of the motor 20 into the linear motion of the third pulley 316 and the fourth pulley 318. At this time, the straight travel distance of the third pulley 316 and the fourth pulley 318 can be expressed by the above equation (1). Therefore, the control device sets the pitch diameter and the rotation angle of the first pulley 312 and the second pulley 314 according to the straight travel distance d of the third pulley 316 and the fourth pulley 318, and sets the motor 20 Control to rotate can be executed.
 本実施形態にかかる差動装置300も、第1の実施の形態にかかる差動装置10と同様に人体装着ロボット100のアクチュエータとして適用することができる。 The differential device 300 according to the present embodiment can also be applied as an actuator of the human body wearing robot 100 in the same manner as the differential device 10 according to the first embodiment.
 以上説明したように、第5の実施の形態にかかる差動装置300は、ほぼ同一の平面上に無端伝動部材を配設することができるために、無端伝動部材の捻じれが生じにくくなり、無端伝動部材として無端ベルト322や無端チェーンを用いることが可能になる。また、モータ20の回転を第2のプーリ314にも伝達するための第5のプーリ332及び第6のプーリ334に捲回される無端伝動部材も、ほぼ同一の平面上に配設することができるために、無端伝動部材の捻じれが生じにくくなって、無端伝動部材として無端ベルト324や無端チェーンを用いることが可能になる。したがって、プーリ等の構成部品を大型化することなく、無端伝動部材の耐用年数を向上させることができ、継続的な使用にも耐えることができる。 As explained above, since the differential device 300 according to the fifth embodiment can arrange the endless transmission member on substantially the same plane, the endless transmission member is hardly twisted, An endless belt 322 or an endless chain can be used as the endless transmission member. Further, the endless transmission member wound around the fifth pulley 332 and the sixth pulley 334 for transmitting the rotation of the motor 20 to the second pulley 314 may also be disposed on substantially the same plane. Therefore, the endless transmission member is hardly twisted, and the endless belt 324 and the endless chain can be used as the endless transmission member. Therefore, it is possible to improve the service life of the endless transmission member without increasing the size of components such as pulleys, and to withstand continuous use.
 また、本実施形態にかかる差動装置300は、ギヤの噛み合わせがないため、バックラッシュがなく、応答性を向上することができ、また、動作音や衝撃を低減することができる。また、本実施形態にかかる差動装置300は、第3のプーリ316及び第4のプーリ318を、ケーブルを介して人体装着ロボット100の関節部120等の動作対象に接続することができる。したがって、動作対象から離れた位置に差動装置300を設置又は配置することができ、差動装置300の配置位置の自由度が高められる。 Further, since the differential device 300 according to the present embodiment has no meshing of gears, there is no backlash, the responsiveness can be improved, and the operation sound and impact can be reduced. In addition, the differential device 300 according to the present embodiment can connect the third pulley 316 and the fourth pulley 318 to an operation target such as the joint 120 of the human body wearing robot 100 via a cable. Accordingly, the differential device 300 can be installed or arranged at a position away from the operation target, and the degree of freedom of the arrangement position of the differential device 300 is increased.
 なお、本実施形態にかかる差動装置300においても、第3のプーリ316の直進移動距離と第4のプーリ318の直進移動距離とを異ならせたい場合には、その比等に応じて、第3のプーリ316の半径と第4のプーリ318の半径とを異ならせてもよい。 In the differential device 300 according to the present embodiment as well, when it is desired to make the rectilinear travel distance of the third pulley 316 and the rectilinear travel distance of the fourth pulley 318 different from each other, The radius of the third pulley 316 and the radius of the fourth pulley 318 may be different.
 <6.第6の実施の形態>
 次に、図9を参照して、第9の実施の形態にかかる差動装置350について説明する。図9は、差動装置350の主要部を各プーリの回転軸の延在方向に沿って見た模式図である。
<6. Sixth Embodiment>
Next, a differential device 350 according to a ninth embodiment will be described with reference to FIG. FIG. 9 is a schematic view of the main part of the differential 350 as viewed along the extending direction of the rotation shaft of each pulley.
 差動装置350は、第1のプーリ360と、第2のプーリ370と、第3のプーリ380と、第4のプーリ390とを備える。また、差動装置350は、第1のプーリ360を軸回転させる駆動部としてのモータ20と、第1のプーリ360、第2のプーリ370、第3のプーリ380、及び第4のプーリ390に渡って配設された無端伝動部材としての無端ベルト352とを備える。モータ20及び無端ベルト352は、第1の実施の形態にかかるモータ20及び無端ベルト26と同様のものを用いることができる。 The differential device 350 includes a first pulley 360, a second pulley 370, a third pulley 380, and a fourth pulley 390. Further, the differential device 350 includes a motor 20 as a driving unit that rotates the first pulley 360, a first pulley 360, a second pulley 370, a third pulley 380, and a fourth pulley 390. And an endless belt 352 serving as an endless transmission member disposed across. As the motor 20 and the endless belt 352, those similar to the motor 20 and the endless belt 26 according to the first embodiment can be used.
 第1のプーリ360、第2のプーリ370、第3のプーリ380、及び第4のプーリ390は、それぞれ、モータ20の回転軸の軸方向に沿う回転軸を有する。第1のプーリ360、第2のプーリ370、第3のプーリ380、及び、第4のプーリ390は、それぞれ周面に無端ベルト352が配設される。無端ベルト352は、第1のプーリ360、第4のプーリ390、第2のプーリ370、及び第3のプーリ380にこの順に捲回されて再び第1のプーリ360に捲回される。第1のプーリ360、第4のプーリ390、第2のプーリ370、及び第3のプーリ380の周面は、モータ20の回転軸に直交する平面上に位置し、無端ベルト352は、当該平面上において捲回されて配設されている。 The first pulley 360, the second pulley 370, the third pulley 380, and the fourth pulley 390 each have a rotation axis along the axial direction of the rotation axis of the motor 20. The first pulley 360, the second pulley 370, the third pulley 380, and the fourth pulley 390 are each provided with an endless belt 352 on the circumferential surface. The endless belt 352 is wound around the first pulley 360, the fourth pulley 390, the second pulley 370, and the third pulley 380 in this order, and is then wound around the first pulley 360 again. The peripheral surfaces of the first pulley 360, the fourth pulley 390, the second pulley 370, and the third pulley 380 are located on a plane orthogonal to the rotation axis of the motor 20, and the endless belt 352 It is wound and arranged on the top.
 第1のプーリ360は、モータ20の回転軸に接続されており、当該回転軸を中心に軸回転する。第1のプーリ360には、第1のプーリ360の軸回転に伴って同じく軸回転する駆動ギヤ362が設けられる。第2のプーリ370の直径は、第1のプーリ360の直径よりも大きい。第2のプーリ370には、第2のプーリ370の軸回転に伴って同じく軸回転する従動ギヤ372が設けられる。第2のプーリ370及び従動ギヤ372は、図示しない固定部に対して回動自在に支持されている。従動ギヤ372は、駆動ギヤ362に噛合しており、第1のプーリ360がモータ20により軸回転させられると、駆動ギヤ362及び従動ギヤ372を介して第2のプーリ370にも回転が伝達され、第2のプーリ370が軸回転する。図示した例では、駆動ギヤ362の歯数は、従動ギヤ372の歯数に等しい。したがって、第2のプーリ370の回転速度は、第1のプーリ360の回転速度に等しい。 The first pulley 360 is connected to the rotating shaft of the motor 20 and rotates about the rotating shaft. The first pulley 360 is provided with a drive gear 362 that rotates in the same manner as the first pulley 360 rotates. The diameter of the second pulley 370 is larger than the diameter of the first pulley 360. The second pulley 370 is provided with a driven gear 372 that rotates in the same manner as the second pulley 370 rotates. The second pulley 370 and the driven gear 372 are rotatably supported with respect to a fixed portion (not shown). The driven gear 372 meshes with the driving gear 362, and when the first pulley 360 is rotated by the motor 20, the rotation is transmitted to the second pulley 370 via the driving gear 362 and the driven gear 372. The second pulley 370 rotates on the axis. In the illustrated example, the number of teeth of the drive gear 362 is equal to the number of teeth of the driven gear 372. Therefore, the rotation speed of the second pulley 370 is equal to the rotation speed of the first pulley 360.
 なお、駆動ギヤ362及び従動ギヤ372の代わりに、タイミングベルトが用いられてもよい。 Note that a timing belt may be used instead of the drive gear 362 and the driven gear 372.
 第3のプーリ380及び第4のプーリ390は、直径が同一であり、回動可能に無端ベルト352によって支持される。第3のプーリ380及び第4のプーリ390は、それぞれ所定の方向に沿って進退動可能に支持されている。例えば、第3のプーリ380及び第4のプーリ390が、図中の上方側の図示しない固定部に一端が固定されたコイルばねによって上方側に付勢され、図中の下方側に負荷がかけられるようになっていてもよい。 The third pulley 380 and the fourth pulley 390 have the same diameter and are supported by an endless belt 352 so as to be rotatable. The third pulley 380 and the fourth pulley 390 are each supported so as to be able to advance and retract along a predetermined direction. For example, the third pulley 380 and the fourth pulley 390 are urged upward by a coil spring whose one end is fixed to a fixing portion (not shown) on the upper side in the drawing, and a load is applied to the lower side in the drawing. It may come to be.
 本実施形態にかかる差動装置350では、第1のプーリ360の半径Rが第2のプーリ370の半径rよりも小さいために、モータ20の回転駆動時に、第1のプーリ360によって送出される無端ベルト352の長さは、第2のプーリ370によって送出される無端ベルト352の長さよりも短くなる。 In the differential device 350 according to the present embodiment, since the radius R of the first pulley 360 is smaller than the radius r of the second pulley 370, the first pulley 360 is sent out when the motor 20 is driven to rotate. The length of the endless belt 352 is shorter than the length of the endless belt 352 delivered by the second pulley 370.
 図9において、第1のプーリ360を反時計回り(実線の方向)に回転させた場合、第1のプーリ360から第3のプーリ380を経由して第2のプーリ370に至る無端ベルト352の長さが長くなり、第3のプーリ380は、図中の下方(実線の方向)に移動する。また、第1のプーリ360を反時計回り(実線の方向)に回転させた場合、第1のプーリ360から第4のプーリ390を経由して第2のプーリ370に至る無端ベルト352の長さが短くなり、第4のプーリ390が、図中の上方(実線の方向)に移動する。 In FIG. 9, when the first pulley 360 is rotated counterclockwise (in the direction of the solid line), the endless belt 352 extending from the first pulley 360 via the third pulley 380 to the second pulley 370 The length is increased, and the third pulley 380 moves downward (in the direction of the solid line) in the drawing. Further, when the first pulley 360 is rotated counterclockwise (in the direction of the solid line), the length of the endless belt 352 extending from the first pulley 360 to the second pulley 370 via the fourth pulley 390. Becomes shorter, and the fourth pulley 390 moves upward (in the direction of the solid line) in the figure.
 一方、図9において、第1のプーリ360を時計回り(破線の方向)に回転させた場合、第1のプーリ360から第3のプーリ380を経由して第2のプーリ370に至る無端ベルト352の長さが短くなり、第3のプーリ380は、図中の上方(破線の方向)に移動する。また、第1のプーリ360を時計回り(破線の方向)に回転させた場合、第1のプーリ360から第4のプーリ390を経由して第2のプーリ370に至る無端ベルト352の長さが長くなり、第4のプーリ390が、図中の下方(破線の方向)に移動する。 On the other hand, in FIG. 9, when the first pulley 360 is rotated clockwise (in the direction of the broken line), the endless belt 352 from the first pulley 360 to the second pulley 370 via the third pulley 380. And the third pulley 380 moves upward (in the direction of the broken line) in the drawing. Further, when the first pulley 360 is rotated clockwise (in the direction of the broken line), the length of the endless belt 352 extending from the first pulley 360 to the second pulley 370 via the fourth pulley 390 is reduced. The length becomes longer, and the fourth pulley 390 moves downward (in the direction of the broken line) in the figure.
 このとき、図9に示した例では、第3のプーリ380及び第4のプーリ390が直進運動する際に、無端ベルト352の位置が変化する。すなわち、第2のプーリ370と第4のプーリ390との間の無端ベルト352、及び、第1のプーリ360と第4のプーリ390との間の無端ベルト352が、平行に配設されていないために、第4のプーリ390の直進運動に伴って、無端ベルト352の位置が変わり得る。また、第1のプーリ360と第3のプーリ380との間の無端ベルト352、及び、第2のプーリ370と第3のプーリ380との間の無端ベルト352が、平行に配設されていないために、第3のプーリ380の直進運動に伴って、無端ベルト352の位置が変わり得る。したがって、モータ20の回転角度に対する第3のプーリ380及び第4のプーリ390の直進移動距離は比例的に変化しない。なお、第3のプーリ380及び第4のプーリ390は、図示しないガイド部に沿って、直進運動の向きが決められている。 At this time, in the example shown in FIG. 9, the position of the endless belt 352 changes when the third pulley 380 and the fourth pulley 390 move linearly. That is, the endless belt 352 between the second pulley 370 and the fourth pulley 390 and the endless belt 352 between the first pulley 360 and the fourth pulley 390 are not arranged in parallel. Therefore, the position of the endless belt 352 can change with the straight movement of the fourth pulley 390. Further, the endless belt 352 between the first pulley 360 and the third pulley 380 and the endless belt 352 between the second pulley 370 and the third pulley 380 are not arranged in parallel. Therefore, the position of the endless belt 352 can change with the straight movement of the third pulley 380. Therefore, the straight travel distances of the third pulley 380 and the fourth pulley 390 with respect to the rotation angle of the motor 20 do not change proportionally. The third pulley 380 and the fourth pulley 390 are determined in the direction of straight movement along a guide portion (not shown).
 そこで、本実施形態にかかる差動装置350では、ケーブル132,134を介して第3のプーリ380及び第4のプーリ390に接続される回転操作部120Aが、長径部及び短径部を有する形状とされている。回転操作部120Aは、相対的に長い径Rの長径部と、相対的に短い径Rの短径部とを有し、長径部が、2本のケーブル132,134に挟まれるように配置される。これにより、第3のプーリ380及び第4のプーリ390が互いに逆方向に直進運動する際に、回転操作部120Aが回転し、下降する第3のプーリ380又は第4のプーリ390に接続されたケーブル132,134を長径部が押すことで、ケーブル132,134に弛みが生じることを防ぐことができる。 Thus, in the differential device 350 according to the present embodiment, the rotational operation unit 120A connected to the third pulley 380 and the fourth pulley 390 via the cables 132 and 134 has a long diameter portion and a short diameter portion. It is said that. Rotating operation unit 120A has a major axis portion of the relatively long diameter R L, and a short diameter portion of the relatively short diameter R S, so long diameter portion is sandwiched between two cables 132, 134 Be placed. As a result, when the third pulley 380 and the fourth pulley 390 are linearly moved in opposite directions, the rotation operation unit 120A rotates and is connected to the descending third pulley 380 or the fourth pulley 390. When the long diameter portion pushes the cables 132 and 134, it is possible to prevent the cables 132 and 134 from being slackened.
 本実施形態にかかる差動装置350も、第1の実施の形態にかかる差動装置10と同様に人体装着ロボット100のアクチュエータとして適用することができる。 The differential device 350 according to the present embodiment can also be applied as an actuator of the human body wearing robot 100 in the same manner as the differential device 10 according to the first embodiment.
 以上説明したように、第6の実施の形態にかかる差動装置350は、ほぼ同一の平面上に無端伝動部材を配設することができるために、無端伝動部材の捻じれが生じにくくなり、無端伝動部材として無端ベルト352や無端チェーンを用いることが可能になる。したがって、プーリ等の構成部品を大型化することなく、無端伝動部材の耐用年数を向上させることができ、継続的な使用にも耐えることができる。 As described above, since the differential gear 350 according to the sixth embodiment can dispose the endless transmission member on substantially the same plane, the endless transmission member is hardly twisted, An endless belt 352 or an endless chain can be used as the endless transmission member. Therefore, it is possible to improve the service life of the endless transmission member without increasing the size of components such as pulleys, and to withstand continuous use.
 また、本実施形態にかかる差動装置350は、モータ20以外に、主として、4つのプーリと、2つのギヤと、無端ベルト352とにより構成することができる。したがって、製造コストを低減することができる。また、差動装置350は、ギヤの噛み合わせが1箇所しかないため、バックラッシュが少なく、応答性を向上することができ、また、動作音や衝撃を低減することができる。 In addition to the motor 20, the differential device 350 according to the present embodiment can be mainly composed of four pulleys, two gears, and an endless belt 352. Therefore, the manufacturing cost can be reduced. Further, since the differential gear 350 has only one gear meshing, it can reduce backlash, improve responsiveness, and reduce operating noise and impact.
 また、本実施形態にかかる差動装置350は、第3のプーリ380及び第4のプーリ390を、ケーブルを介して人体装着ロボット100の関節部等の回転操作部120Aに接続することができる。したがって、動作対象から離れた位置に差動装置350を設置又は配置することができ、差動装置350の配置位置の自由度が高められる。 In addition, the differential device 350 according to the present embodiment can connect the third pulley 380 and the fourth pulley 390 to the rotation operation unit 120A such as a joint portion of the human body wearing robot 100 via a cable. Therefore, the differential device 350 can be installed or arranged at a position away from the operation target, and the degree of freedom of the arrangement position of the differential device 350 is increased.
 また、本実施形態にかかる差動装置350では、ケーブル132,134を介して第3のプーリ380及び第4のプーリ390と接続される回転操作部120Aが長径部及び短径部を有する形状となっている。そのため、モータ20の回転角度に対して、第3のプーリ380及び第4のプーリ390の直進移動距離が比例的に変化しない場合であっても、ケーブル132,134の弛みが防止され、回転操作部120Aの回転動作を補償することができる。 Further, in the differential device 350 according to the present embodiment, the rotation operation unit 120A connected to the third pulley 380 and the fourth pulley 390 via the cables 132 and 134 has a shape having a long diameter portion and a short diameter portion. It has become. Therefore, even when the linear travel distances of the third pulley 380 and the fourth pulley 390 do not change proportionally with respect to the rotation angle of the motor 20, the cables 132 and 134 are prevented from being loosened, and the rotation operation is performed. The rotational operation of the unit 120A can be compensated.
 以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。 The preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention pertains can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that these also belong to the technical scope of the present invention.
 例えば、上記の各実施の形態においては、第1のプーリ及び第2のプーリの半径又は回転速度を異ならせることによって、第1のプーリによる無端伝動部材の送出長さと第2のプーリによる無端伝動部材の送出長さとを異ならせていたが、本発明はかかる例に限定されない。第1のプーリ及び第2のプーリの半径及び回転速度の双方を異ならせてもよい。この場合には、変速比をよりフレキシブルに調整することができ、モータの駆動による直進移動距離の制御が容易になる。 For example, in the above-described embodiments, the first pulley and the second pulley have different radii or rotational speeds, so that the feed length of the endless transmission member by the first pulley and the endless transmission by the second pulley are increased. Although the delivery length of the member is different, the present invention is not limited to such an example. You may vary both the radius and rotational speed of a 1st pulley and a 2nd pulley. In this case, the gear ratio can be adjusted more flexibly, and the straight travel distance can be easily controlled by driving the motor.
 また、上記の各実施の形態においては、回転体としてプーリを使用していたが、本発明はかかる例に限定されない。例えば、無端伝動部材として無端チェーンを使用する場合には、プーリの代わりにスプロケットを回転体として使用してもよい。 In each of the above embodiments, the pulley is used as the rotating body, but the present invention is not limited to such an example. For example, when an endless chain is used as the endless transmission member, a sprocket may be used as a rotating body instead of a pulley.
 例えば、上記の各実施の形態においては、差動装置を人体装着ロボットのアクチュエータとして適用した例を説明したが、本発明の差動装置を適用可能な装置は、かかる例に限定されない。差動装置は、互いに逆方向に向かう力を伝達する操作体のアクチュエータとして、種々の機械装置に適用することができる。
 
For example, in each of the above-described embodiments, the example in which the differential device is applied as an actuator of a human body-mounted robot has been described. However, a device to which the differential device of the present invention can be applied is not limited to such an example. The differential device can be applied to various mechanical devices as an actuator of an operating body that transmits forces directed in opposite directions.

Claims (14)

  1.  一の方向に沿って平行に延びる回転軸をそれぞれ有する第1の回転体、第2の回転体、第3の回転体及び第4の回転体と、
     少なくとも前記第1の回転体を軸回転させる駆動部と、
     前記一の方向に交差する平面上で、前記第1の回転体、前記第2の回転体、前記第3の回転体及び前記第4の回転体に渡って配設された無端伝動部材と、を備え、
     前記駆動部を駆動することにより、前記第3の回転体及び前記第4の回転体がそれぞれ直進運動を行う、差動装置。
    A first rotating body, a second rotating body, a third rotating body and a fourth rotating body each having a rotation axis extending in parallel along one direction;
    A drive unit for rotating at least the first rotating body;
    An endless transmission member disposed across the first rotating body, the second rotating body, the third rotating body, and the fourth rotating body on a plane intersecting the one direction; With
    A differential device in which the third rotating body and the fourth rotating body each move linearly by driving the driving unit.
  2.  前記駆動部を駆動させた際の前記第1の回転体による前記無端伝動部材の送出量と、前記第2の回転体による前記無端伝動部材の送出量とが異なる、請求項1に記載の差動装置。 The difference according to claim 1, wherein a sending amount of the endless transmission member by the first rotating body when the driving unit is driven is different from a sending amount of the endless transmission member by the second rotating body. Moving device.
  3.  前記無端伝動部材は、少なくとも前記第1の回転体、前記第4の回転体、前記第2の回転体、及び前記第3の回転体に、この順に捲回されて再び前記第1の回転体に捲回され、
     前記駆動部を駆動することにより、前記第1の回転体から前記第3の回転体を経由して前記第2の回転体に至る前記無端伝動部材の長さが長くなる場合には前記第1の回転体から前記第4の回転体を経由して前記第2の回転体に至る前記無端伝動部材の長さが短くなる一方、
     前記第1の回転体から前記第3の回転体を経由して前記第2の回転体に至る前記無端伝動部材の長さが短くなる場合には前記第1の回転体から前記第4の回転体を経由して前記第2の回転体に至る前記無端伝動部材の長さが長くなる、請求項1又は2に記載の差動装置。
    The endless transmission member is wound around at least the first rotating body, the fourth rotating body, the second rotating body, and the third rotating body in this order, and again the first rotating body. Be wounded by
    When the length of the endless transmission member extending from the first rotating body to the second rotating body via the third rotating body is increased by driving the driving unit, the first rotating body While the length of the endless transmission member from the rotating body to the second rotating body via the fourth rotating body is shortened,
    When the length of the endless transmission member from the first rotating body to the second rotating body via the third rotating body is shortened, the first rotating body performs the fourth rotation. The differential device according to claim 1, wherein a length of the endless transmission member that reaches the second rotating body via a body is increased.
  4.  前記駆動部を駆動したときに、前記第1の回転体及び前記第2の回転体は、互いに異なる速度で回転する、請求項1~3のいずれか1項に記載の差動装置。 4. The differential device according to claim 1, wherein when the driving unit is driven, the first rotating body and the second rotating body rotate at different speeds.
  5.  前記第1の回転体の半径と前記第2の回転体の半径とが互いに異なる、請求項1~3のいずれか1項に記載の差動装置。 The differential device according to any one of claims 1 to 3, wherein a radius of the first rotating body and a radius of the second rotating body are different from each other.
  6.  前記無端伝動部材の軌跡を変更するための、少なくとも1つの従動回転体を備える、請求項1~5のいずれか1項に記載の差動装置。 The differential device according to any one of claims 1 to 5, further comprising at least one driven rotator for changing a trajectory of the endless transmission member.
  7.  前記第1の回転体の回転軸に固定された第5の回転体と、前記第2の回転体の回転軸に固定された第6の回転体と、前記第5の回転体及び前記第6の回転体に捲回された第2の無端伝動部材と、を含む回転伝達部を備え、
     前記第2の回転体は、前記回転伝達部を介して前記第1の回転体の回転が伝達されて回転する、請求項1~6のいずれか1項に記載の差動装置。
    A fifth rotating body fixed to the rotating shaft of the first rotating body, a sixth rotating body fixed to the rotating shaft of the second rotating body, the fifth rotating body, and the sixth A rotation transmission portion including a second endless transmission member wound around the rotating body of
    The differential device according to any one of claims 1 to 6, wherein the second rotating body rotates by receiving the rotation of the first rotating body via the rotation transmitting unit.
  8.  前記第2の回転体を回転駆動する第2の駆動部を備える、請求項1~6のいずれか1項に記載の差動装置。 The differential device according to any one of claims 1 to 6, further comprising a second driving unit that rotationally drives the second rotating body.
  9.  前記第2の回転体は、ギヤ機構を介して前記第1の回転体の回転が伝達されて回転する、請求項1~4のいずれか1項に記載の差動装置。 The differential device according to any one of claims 1 to 4, wherein the second rotator is rotated by transmission of rotation of the first rotator via a gear mechanism.
  10.  前記第1の回転体が駆動側プーリであり、前記第2の回転体が従動側プーリであり、前記駆動側プーリ及び前記従動側プーリのうちの少なくとも一方のピッチ径を変更する無段変速装置を備える、請求項1~4のいずれか1項に記載の差動装置。 The continuously variable transmission that changes the pitch diameter of at least one of the driving pulley and the driven pulley, wherein the first rotating body is a driving pulley and the second rotating body is a driven pulley. The differential device according to any one of claims 1 to 4, further comprising:
  11.  前記無端伝動部材が、無端ベルト、無端チェーン又は無端ケーブルである、請求項1~10のいずれか1項に記載の差動装置。 The differential device according to any one of claims 1 to 10, wherein the endless transmission member is an endless belt, an endless chain, or an endless cable.
  12.  前記第3の回転体及び前記第4の回転体が、それぞれ、回転動作部に固定又は捲回されたケーブルに接続され、前記差動装置が、前記回転動作部を回転駆動させる、請求項1~11のいずれか1項に記載の差動装置。 The third rotating body and the fourth rotating body are each connected to a cable fixed or wound around a rotation operation unit, and the differential device rotates the rotation operation unit. 12. The differential device according to any one of items 11 to 11.
  13.  前記回転動作部が、人体装着ロボットの関節部である、請求項12に記載の差動装置。 The differential device according to claim 12, wherein the rotation operation unit is a joint unit of a human body-mounted robot.
  14.  前記回転動作部は、長径部及び短径部を有し、前記回転動作部が回転したときに、前記長径部が前記第3の回転体に接続されたケーブル又は前記第4の回転体に接続されたケーブルに張力を付与する、請求項12又は13に記載の差動装置。
     
    The rotation operation part has a long diameter part and a short diameter part, and when the rotation operation part rotates, the long diameter part is connected to the cable connected to the third rotation body or the fourth rotation body. The differential according to claim 12, wherein tension is applied to the formed cable.
PCT/JP2016/082256 2015-12-22 2016-10-31 Differential gear device WO2017110252A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-250558 2015-12-22
JP2015250558 2015-12-22

Publications (1)

Publication Number Publication Date
WO2017110252A1 true WO2017110252A1 (en) 2017-06-29

Family

ID=59089255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082256 WO2017110252A1 (en) 2015-12-22 2016-10-31 Differential gear device

Country Status (1)

Country Link
WO (1) WO2017110252A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59128198A (en) * 1983-01-07 1984-07-24 新立川航空機株式会社 Lifting driving device for car cradle in car lifting gear
DE4338155A1 (en) * 1993-11-03 1995-05-04 Cybertron Gmbh x-y positioning drive with infinitely variable toothed-belt differential gear

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59128198A (en) * 1983-01-07 1984-07-24 新立川航空機株式会社 Lifting driving device for car cradle in car lifting gear
DE4338155A1 (en) * 1993-11-03 1995-05-04 Cybertron Gmbh x-y positioning drive with infinitely variable toothed-belt differential gear

Similar Documents

Publication Publication Date Title
US9568074B2 (en) Motion transmitting device with epicyclic reduction gearing, epicyclic reduction gearing and manipulating arm
JP5546826B2 (en) Joint structure for multi-axis robot and robot having such joint structure
US8986232B2 (en) Linear actuator and rehabilitation device incorporating such an actuator
KR101324502B1 (en) Wearable human power amplification device using wire rope
JP4964190B2 (en) Parallel mechanism
CN107405771B (en) Transmission, electric drive device and industrial robot
WO2012059791A1 (en) Robotic snake-like movement device
JP2008089175A (en) Motion converting device
AU2014223330A1 (en) Manipulator arm module
KR101693246B1 (en) Shoulder Joint Assembly of Robot Arm
JP5503702B2 (en) Low stroke operation for serial robots
JP2008079371A (en) Twisted string type actuator
CA3023172A1 (en) Kinematic chain for transmission of mechanical torques
JP2019119042A (en) Robot arm
JP5205504B2 (en) Parallel mechanism
CN110842968A (en) Antagonistic driving device adopting capstan and tendon transmission
CN111246982B (en) Robot joint device
WO2017110252A1 (en) Differential gear device
JP2008298165A (en) Three-dimensional cam mechanism
KR100608676B1 (en) Decoupled synchro-drive mobile robot with differeftial gear type wheels and endless rotation type turret
WO2017110251A1 (en) Differential gear device
JP2009243694A (en) Three-dimensional cam mechanism
KR101141620B1 (en) Joint structure of gripper for robot hand
JP2010214527A (en) Arm structure of industrial robot
KR101537041B1 (en) Joint driving apparatus for robot

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16878150

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16878150

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP