WO2017110249A1 - Mobile body - Google Patents

Mobile body Download PDF

Info

Publication number
WO2017110249A1
WO2017110249A1 PCT/JP2016/082137 JP2016082137W WO2017110249A1 WO 2017110249 A1 WO2017110249 A1 WO 2017110249A1 JP 2016082137 W JP2016082137 W JP 2016082137W WO 2017110249 A1 WO2017110249 A1 WO 2017110249A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
suppression
unit
area
detected
Prior art date
Application number
PCT/JP2016/082137
Other languages
French (fr)
Japanese (ja)
Inventor
安藤 充宏
盛濬 梁
博敏 落合
昇 長嶺
▲高▼柳 渉
古田 貴之
清水 正晴
秀彰 大和
戸田 健吾
崇 小太刀
Original Assignee
アイシン精機株式会社
学校法人千葉工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン精機株式会社, 学校法人千葉工業大学 filed Critical アイシン精機株式会社
Priority to EP16878147.4A priority Critical patent/EP3396650B1/en
Publication of WO2017110249A1 publication Critical patent/WO2017110249A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G5/00Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs
    • A61G5/04Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs motor-driven
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G2203/00General characteristics of devices
    • A61G2203/70General characteristics of devices with special adaptations, e.g. for safety or comfort
    • A61G2203/72General characteristics of devices with special adaptations, e.g. for safety or comfort for collision prevention

Definitions

  • the present invention relates to a moving body, and more particularly to a moving body that travels by the operation of an occupant.
  • Patent Document 1 As a type of moving body that moves when operated by an occupant, one shown in Patent Document 1 is known.
  • the moving body (for example, an electric wheelchair) of Patent Document 1 includes a peripheral object detection unit that detects a peripheral object (detected object) existing around the moving body, and an upper limit speed setting unit that sets an upper limit speed of the moving body. It has.
  • the upper limit speed setting means sets the upper limit speed to be suppressed when there is an object to be detected in an area on the path of the moving body and a side area of the area on the path. Thereby, the collision with a to-be-detected object and a moving body is suppressed.
  • the upper limit speed setting means sets the upper limit speed according to the region where the detected object is located, the relative speed between the moving body and the detected object, and the like.
  • An object of the present invention is to suppress the traveling of a moving body reflecting the occupant's intention in a moving body that suppresses the traveling of the moving body.
  • a moving body is a moving body that is driven by a driving device that is driven in accordance with an input to an operating device by an occupant, and the moving body is detected around the moving body.
  • a detection device that detects an object
  • a control device that controls the driving amount of the drive device based on input information that is information input to the operation device, and causes the moving body to travel.
  • the reference region is a suppression region in which travel of the moving body is suppressed, and a reference suppression region setting unit that sets a reference suppression region that serves as a reference;
  • the reduction suppression region setting unit sets a reduction suppression region that is reduced with respect to the reference suppression region. That is, the suppression area can be reduced. Therefore, when the moving object is suppressed because the object to be detected is located in the reference suppression area, the reference suppression area is switched (reduced) to the reduction suppression area, thereby being positioned in the reference suppression area. When the object to be detected is located outside the reduction suppression region, the suppression of the traveling of the moving body is released.
  • the reduction suppression area setting unit sets the reduction suppression area based on the type of the detection object located in the peripheral area.
  • the suppression area is set as the reduction suppression area, the detected object is unlikely to be located in the suppression area.
  • the traveling of the moving body is not suppressed, so that the traveling intended by the occupant is possible. Therefore, at this time, the gap between the travel in which the moving body is suppressed and the travel intended by the occupant is suppressed. Accordingly, the moving body can suppress the traveling of the moving body reflecting the occupant's intention.
  • FIG. 1 It is a schematic diagram which shows the structure of 1st embodiment of the moving body by this invention. It is a partial expanded sectional view which shows the operating device and cancellation request
  • shaft represents the front-back direction of the moving body, and the horizontal axis represents the left-right direction of the moving body.
  • FIG. 4 is a map which showed the relationship between desired turning speed and turning speed of a mobile body.
  • shaft of a polar coordinate is the front-back direction of a mobile body,
  • the horizontal axis of a polar coordinate is the left-right direction of a mobile body Represents.
  • FIG. 6 is a third map stored in the control device shown in FIG. 4, and the shortest distance between the moving body and the detected object when the detected object is located in the suppression region, and the limited driving amount of the driving amount of the driving device Is a map showing the relationship.
  • region setting part which are shown in FIG.
  • FIG. 14 is a schematic diagram showing a reduction suppression region set on polar coordinates by the reduction suppression region setting unit shown in FIG. 13 and a detected object grid that appears on the polar coordinates when the moving body is traveling on a relatively narrow alley. is there.
  • FIG. 14 is a fifth map stored in the control device shown in FIG. 13, showing a relationship among the acceleration, peripheral objects, occupation ratio, and execution of area expansion control of a moving object. It is a flowchart of the program run with the control apparatus shown in FIG. It is a 14th map memorized by a control device of a mobile object concerning a modification of a second embodiment of the present invention, and is a map showing a relation between an occupation rate and a control area.
  • FIG. 1 An example of the electric wheelchair 1 shown in FIG. 1 will be described as a moving body in the present embodiment.
  • the upper side and the lower side in FIG. 1 are the upper and lower sides of the electric wheelchair 1, respectively, and the lower left side and the upper right side are the front and rear sides of the electric wheelchair 1, respectively.
  • the lower right side will be described as the right side and the left side of the electric wheelchair 1, respectively.
  • FIG. 1 shows arrows indicating the respective directions.
  • the electric wheelchair 1 includes a wheelchair body 10, a drive device 20, an operation device 30, a release request detection device 40, a detection device 50, and a control device 60.
  • the electric wheelchair 1 is a moving body that travels by a drive device 20 that is driven according to an input to the operation device 30 by an occupant.
  • the drive device 20, the operation device 30, the release request detection device 40, the detection device 50, and the control device 60 are attached to the wheelchair body 10.
  • the wheelchair body 10 includes a frame 11, a seat 12 on which an occupant is seated, and wheels 13.
  • the seat 12 and the wheel 13 are attached to the frame 11.
  • the wheel 13 is configured to be rotatable around a rotation axis.
  • the wheels 13 are disposed on the left and right sides of the wheelchair body 10 and are driven by the driving device 20.
  • the driving device 20 drives the electric wheelchair 1 by driving the driving wheels 13a and 13b to rotate.
  • the drive device 20 is configured, for example, by combining an electric motor (not shown) and a speed reducer (not shown).
  • One drive device 20 is provided for each drive wheel 13a, 13b (two in total).
  • the operating device 30 is operated by the occupant to instruct the straight traveling speed v and the turning speed w of the electric wheelchair 1.
  • the straight traveling speed v is the speed of the electric wheelchair 1 in the forward direction (front direction) of the electric wheelchair 1.
  • the turning speed w is an angular speed at which the electric wheelchair 1 turns around the center of gravity of the electric wheelchair 1 at the place where the electric wheelchair 1 is located.
  • the operating device 30 is a joystick. As shown in FIG. 2, the operating device 30 includes a lever portion 31 and a pedestal portion 32 that supports the lever portion 31 so as to be tiltable.
  • the operating device 30 is positioned with the lever portion 31 standing in the vertical direction at an unoperated position (hereinafter referred to as a neutral position) indicated by a broken line in FIG.
  • the operating device 30 is operated by tilting the lever portion 31 from the neutral position to the occupant.
  • the state in which the lever portion 31 is operated can be represented by the coordinates of the tip of the operating device 30 when the operating device 30 is projected onto the XY plane parallel to the horizontal plane, as shown in FIG.
  • the X axis is the same as the front-rear direction of the electric wheelchair 1, and the positive direction of the X axis is the same direction as the front direction of the electric wheelchair 1.
  • the Y axis is the same as the left-right direction of the electric wheelchair 1, and the positive direction of the Y axis is the same direction as the right direction of the electric wheelchair 1.
  • the value of the X coordinate is a desired straight traveling speed xjs that is a straight traveling speed of the electric wheelchair 1 desired by the passenger.
  • the value of the Y coordinate is a desired turning speed yjs that is a turning speed of the electric wheelchair 1 desired by the occupant.
  • the desired straight traveling speed xjs and the desired turning speed yjs are output to the control device 60 every first predetermined time as input information that is information input to the operation device 30.
  • the first predetermined time is 1/25 seconds, for example.
  • the cancellation request detection device 40 detects the strength of the cancellation request by the occupant's operation.
  • the cancellation request is a cancellation request for suppressing travel of the electric wheelchair 1 to be described later.
  • the release request detection device 40 detects the strength of the release request based on the magnitude of the pressing load described later. That is, it is detected that the strength of the release request increases as the pressing load increases.
  • the release request detection device 40 includes a protrusion 41 and a load detection unit 42.
  • the protrusion 41 is formed at the lower end portion of the lever portion 31 so as to protrude forward.
  • the load detection part 42 is provided in the base part 32 at a position where the protrusion 41 can come into contact when the lever part 31 is tilted forward.
  • the load detection unit 42 detects the load from the projection 41 when the projection 41 comes into contact.
  • This load is an operation load (hereinafter, referred to as a pressing load) when the occupant operates the lever portion 31 to tilt forward and presses the projection 41 against the load detection portion 42.
  • the load detection unit 42 is, for example, a strain gauge type load sensor.
  • the load detection unit 42 transmits the detection result to the control device 60.
  • the detection device 50 detects an object to be detected around the electric wheelchair 1.
  • the detection device 50 is a three-dimensional range sensor (laser range scanner (3D scanner)).
  • the detection device 50 emits a laser from the detection unit 51 in the horizontal direction and the vertical direction (three-dimensionally), and receives a reflected wave from the detection object by the detection unit 51, thereby detecting the presence or absence of the detection object. And the distance from the detection part 51 to a to-be-detected object is acquired as to-be-detected object information.
  • the detection device 50 emits lasers radially in front of the electric wheelchair 1. For example, the detection device 50 acquires detected object information every first predetermined time. The detected object information acquired by the detection device 50 is output to the control device 60.
  • the control device 60 controls the drive amount of the drive device 20 based on the input information to run the electric wheelchair 1. As shown in FIG. 4, the control device 60 is connected to the drive device 20, the operation device 30, the release request detection device 40, and the detection device 50.
  • the control device 60 includes a travel control unit 61 and a collision suppression control unit 62.
  • the traveling control unit 61 performs traveling control for traveling the electric wheelchair 1.
  • the travel control unit 61 includes a straight traveling speed deriving unit 61a, a turning speed deriving unit 61b, and a drive amount control unit 61c.
  • the straight traveling speed deriving unit 61a derives the straight traveling speed v of the electric wheelchair 1.
  • the straight traveling speed deriving unit 61a obtains the desired straight traveling speed xjs that is the input information from the controller device 30 and converts it into the straight traveling speed v.
  • the straight traveling speed deriving unit 61a derives the straight traveling speed v from the acquired desired straight traveling speed xjs based on the first map M1 shown in FIG. 5A.
  • the first map M1 shows the relationship between the desired straight traveling speed xjs and the straight traveling speed v.
  • the first map M1 includes a proportional part mv1 in which the desired straight speed xjs and the straight speed v are proportional, and a dead part mv2 in which the straight speed v is a constant value regardless of the magnitude of the desired straight speed xjs.
  • the straight traveling speed deriving unit 61a outputs the derived straight traveling speed v to the drive amount control unit 61c.
  • the turning speed deriving unit 61 b is for deriving the turning speed w of the electric wheelchair 1.
  • the turning speed deriving unit 61b acquires the desired turning speed yjs that is input information from the operation device 30, and converts it to the turning speed w. Specifically, the turning speed deriving unit 61b derives the turning speed w from the acquired desired turning speed yjs based on the second map M2 shown in FIG. 5B.
  • the second map M2 shows the relationship between the desired turning speed yjs and the turning speed w.
  • the second map M2 includes a proportional part mw1 in which the desired turning speed yjs and the turning speed w are proportional, and a dead part mw2 in which the turning speed w is a constant value regardless of the magnitude of the desired turning speed yjs.
  • the turning speed deriving unit 61b outputs the derived turning speed w to the drive amount control unit 61c.
  • the driving amount control unit 61c controls the driving amount (the number of rotations) of the driving device 20 based on the straight traveling speed v acquired from the straight traveling speed deriving unit 61a and the turning speed w acquired from the turning speed deriving unit 61b.
  • the drive amount control unit 61c derives the rotation speed of the left drive wheel 13a and the rotation speed of the right drive wheel 13b based on the acquired straight traveling speed v and turning speed w.
  • the magnitude of the rotational speed of each drive wheel 13a, 13b is proportional to the magnitude of the straight traveling speed v, and the magnitude of the difference between the rotational speed of the left drive wheel 13a and the rotational speed of the right drive wheel 13b is large.
  • the rotational speeds of the drive wheels 13a and 13b are derived so as to be proportional to the magnitude of the turning speed w.
  • the relationship between the straight traveling speed v and the turning speed w and the rotational speed of each of the drive wheels 13a and 13b is derived by being measured in advance through experiments or the like. Since the drive device 20 is PWM-controlled, the control command value for the drive device 20 is calculated by the duty ratio.
  • the drive amount control unit 61c includes a drive amount suppression unit 61c1.
  • the drive amount suppression unit 61c1 suppresses the drive amount of the drive device 20 in accordance with a control command from the collision suppression control unit 62 (described later).
  • the collision suppression control unit 62 performs collision suppression control for suppressing the collision between the electric wheelchair 1 and the detected object.
  • the collision suppression control unit 62 includes a course prediction unit 62a, a reference suppression region setting unit 62b, a reduction suppression region setting unit 62c, a release request acquisition unit 62d, a region switching unit 62e, and an obstacle presence / absence determination unit 62f. It has.
  • the course prediction unit 62a predicts the course of the electric wheelchair 1 based on input information (desired straight traveling speed xjs and desired turning speed yjs) from the operation device 30.
  • the course prediction unit 62a predicts the course of the electric wheelchair 1 on the polar coordinates C as shown in FIG.
  • the polar coordinates C are arranged in parallel with the horizontal plane, and are polar coordinates in which the center position of the front end of the electric wheelchair 1 is the origin C0 and the upper side in FIG.
  • the angle range of the polar coordinates C corresponds to an angle range in which the detection device 50 can detect an object to be detected.
  • the polar coordinates C include a plurality of grids G that are partitioned at predetermined intervals in the radial direction and the circumferential direction (for example, at intervals of 1 m in the radial direction and 5 ° intervals in the circumferential direction).
  • the predicted progress area Wy that is the course of the electric wheelchair 1 predicted by the course prediction unit 62a is from the time when the control device 60 acquires the input information to the time when a second predetermined time (for example, 5 seconds) elapses. It is shown by the movement locus of the electric wheelchair 1. That is, the width of the predicted progress area Wy corresponds to the width of the electric wheelchair 1.
  • the predicted progress area Wy is generated based on a predetermined function that is obtained by actual measurement through experiments or the like from the straight traveling speed v and the turning speed w.
  • the predicted progress area Wy is generated (updated) every first predetermined time when the control device 60 acquires input information from the operation device 30.
  • the regions on both sides of the predicted progress region Wy are generated as the peripheral region Rs.
  • the reference suppression region setting unit 62b is a suppression region in which the traveling of the electric wheelchair 1 is suppressed when the detection object detected by the detection device 50 is located in the region, and sets a reference suppression region Rb that serves as a reference. To do. As shown in FIG. 7, the reference suppression region Rb is set in a fan shape that extends along the prediction progress region Wy, is larger than the width of the prediction progress region Wy, and has a reference width Bb that serves as a reference value. . The shape of the reference suppression region Rb changes according to a change in the predicted progress region Wy due to a change in input information. The shape of the reference suppression region Rb illustrated in FIG. 7 is a shape when the predicted progress region Wy extends straight forward.
  • the reference suppression region Rb set by the reference suppression region setting unit 62b is output to the region switching unit 62e.
  • the reduction suppression region setting unit 62c sets reduction suppression regions Rr1 and Rr2 that are reduced suppression regions with respect to the reference suppression region Rb set by the reference suppression region setting unit 62b.
  • the reduction suppression region setting unit 62c sets the first reduction suppression region Rr1 and the second reduction suppression region Rr2.
  • the first reduction suppression region Rr1 extends along the predicted progress region Wy and is set in a fan shape with the first width Br set.
  • the first width Br is set to a value between the width of the predicted progress area Wy and the reference width Bb. That is, the first reduction suppression region Rr1 is a region included in the reference suppression region Rb.
  • the shape of the first reduction suppression region Rr1 changes according to the change in the predicted progress region Wy due to the change in input information.
  • the shape of the first reduction suppression region Rr1 illustrated in FIG. 8 is a shape when the predicted progress region Wy extends straight forward.
  • the second reduction suppression region Rr2 is set to the same region as the predicted progress region Wy. That is, the width is set to be gradually reduced in the order of the reference suppression region Rb, the first reduction suppression region Rr1, and the second reduction suppression region Rr2.
  • the detection object detected by the detection device 50 is positioned in each of the reduction suppression regions Rr1 and Rr2, traveling of the electric wheelchair 1 is suppressed (described later).
  • the respective reduction suppression regions Rr1 and Rr2 set by the reduction suppression region setting unit 62c are output to the region switching unit 62e.
  • the three suppression areas of the reference suppression area Rb, the first reduction suppression area Rr1, and the second reduction suppression area Rr2 are set as the suppression area of the first embodiment.
  • the cancellation request acquisition unit 62d acquires the strength of the cancellation request. Specifically, the release request acquisition unit 62d acquires the pressing load of the occupant detected by the load detection unit 42. The pressing load acquired by the release request acquisition unit 62d is output to the region switching unit 62e.
  • the region switching unit 62e is set by the reference suppression region setting unit 62b based on the strength of the cancellation request detected by the cancellation request detection device 40 (the cancellation request acquisition unit 62d) and the determination result of the obstacle presence / absence determination unit 62f.
  • the reference suppression region Rb is switched to the reduction suppression regions Rr1 and Rr2 set by the reduction suppression region setting unit 62c.
  • the region switching unit 62e switches from the reference suppression region Rb to each of the reduction suppression regions Rr1 and Rr2 based on the presence or absence of an obstacle and the magnitude of the pressing load from the release request acquisition unit 62d.
  • the region switching unit 62e switches (selects) the reference suppression region Rb and the reduction suppression regions Rr1 and Rr2 by region switching control described later.
  • the respective reduction suppression regions Rr1 and Rr2 switched by the region switching unit 62e are output to the obstacle presence / absence determining unit 62f. Further, when the region switching unit 62e does not switch the reference suppression region Rb, the reference suppression region Rb is output to the obstacle presence / absence determination unit 62f.
  • the obstacle presence / absence determination unit 62f determines the presence / absence of an obstacle based on the detected object information detected by the detection device 50 and the suppression region from the region switching unit 62e.
  • the obstacle is an object to be detected that is located in the suppression region. That is, the obstacle presence / absence determination unit 62f determines that there is an obstacle when the detected object detected by the detection device 50 is located within the suppression region from the region switching unit 62e. On the other hand, the obstacle presence / absence determination unit 62f has no obstacle when the detected object detected by the detection device 50 is not located within the suppression region from the region switching unit 62e (that is, located outside the suppression region). Is determined.
  • the obstacle presence / absence determination control for determining the presence / absence of an obstacle performed by the obstacle presence / absence determination unit 62f will be described.
  • the detected object information is coordinate data of a point group PG composed of a plurality of points P representing the three-dimensional position information of the detected object.
  • a grid G in which the number of points P of the point group PG projected onto the polar coordinates C is equal to or greater than a predetermined number is a detected object grid that is a grid G in which the detected object exists.
  • the predetermined number is, for example, three.
  • the obstacle presence / absence determination unit 62f determines that there is an obstacle. Specifically, as shown in FIG. 7, there are three detected object grids Gk1, Gk2, Gk3 based on the detected information from the detection device 50, and the suppression region is set by the reference suppression region setting unit 62b. If the detected object grids Gk2 and Gk3 overlap the reference suppression area Rb in the case of the reference suppression area Rb, the obstacle presence / absence determination unit 62f determines that there is an obstacle.
  • the obstacle presence / absence determination unit 62f determines that there is no obstacle.
  • the suppression region is set by the reduction suppression region setting unit 62c.
  • the obstacle presence / absence determination unit 62f determines that there is no obstacle. judge.
  • the obstacle presence / absence determination unit 62f determines whether there is an obstacle every first predetermined time.
  • the determination result of the obstacle presence / absence determination unit 62f is output to the region switching unit 62e and the drive amount suppression unit 61c1.
  • the driving amount suppression unit 61c1 suppresses the traveling of the electric wheelchair 1 while it is determined by the obstacle presence / absence determination unit 62f that there is an obstacle. Specifically, the drive amount suppression unit 61c1 suppresses the drive amount of the drive device 20. The drive amount control unit 61c suppresses the maximum drive amount of the drive device 20 in the present embodiment. Thereby, the maximum speed of the straight traveling speed v is suppressed. The drive amount suppression unit 61c1 suppresses the maximum straight speed v to the maximum straight speed vx while the obstacle presence / absence determination unit 62f determines that there is an obstacle. The maximum straight traveling speed vx is determined from the shortest distance Dmin (see FIG.
  • the shortest distance Dmin can be derived from the detected object information.
  • the shortest distance Dmin is derived by the drive amount suppression unit 61c1 while it is determined by the obstacle presence / absence determination unit 62f that there is an obstacle.
  • the third map M3 shows the relationship between the shortest distance Dmin and the maximum straight traveling speed vx.
  • the relationship between the shortest distance Dmin and the maximum straight travel speed vx is set so that the maximum straight travel speed vx decreases as the shortest distance Dmin decreases.
  • the driving amount suppression unit 61c1 cancels the suppression when the traveling of the electric wheelchair 1 is suppressed.
  • traveling control in which the control device 60 causes the electric wheelchair 1 to travel will be described.
  • the control device 60 acquires input information from the operation device 30 when the occupant operates the operation device 30, the control device 60 starts traveling control.
  • the straight traveling speed deriving unit 61a derives the straight traveling speed v
  • the turning speed deriving unit 61b derives the turning speed w.
  • the driving amount control unit 61c controls the driving amount of the driving device 20 to cause the electric wheelchair 1 to travel.
  • the control device 60 performs the travel control and the occupant changes the position of the operation device 30 to the neutral position, the linear wheel speed v and the turning speed w become zero, and the electric wheelchair 1 stops. In this case, the travel control of the control device 60 ends.
  • the collision suppression control performed by the control device 60 will be described along the flowchart shown in FIG.
  • the collision suppression control suppresses the traveling speed of the electric wheelchair 1 so that the occupant has enough time to avoid the detected object. This is control that suppresses the collision between the electric wheelchair 1 and the object to be detected.
  • the suppression region is set to the reference suppression region Rb.
  • step S104 the control device 60 sets the reference suppression region Rb and the respective reduction suppression regions Rr1, Rr2 (reference suppression region setting unit 62b, reduction suppression region setting unit 62c). And the control apparatus 60 performs area
  • the area switching control will be described with reference to the flowchart shown in FIG.
  • step S202 the control device 60 determines whether there is an obstacle (obstacle presence determination unit 62f). If it is determined that there is no obstacle, the control device 60 determines “NO” in step S202.
  • step S204 the control device 60 sets the suppression region as the reference suppression region Rb, and ends the region switching control.
  • the control device 60 determines “YES” in step S202, and advances the program to step S206.
  • step S206 the control device 60 determines whether the strength of the cancellation request is equal to or less than the first cancellation request determination value. Specifically, the control device 60 determines whether or not the pressing load is equal to or less than the first release request determination value.
  • the first release request determination value is set to the pressing load when the traveling gap is very small.
  • the first release request determination value is, for example, 1N.
  • the control device 60 determines “YES” in step S206. Then, the control device 60 sets the suppression region as the reference suppression region Rb in step S204, and ends the region switching control.
  • the control device 60 determines “NO” in step S206, and advances the program to step S208.
  • step S208 the control device 60 determines whether or not the strength of the release request (pressing load) is equal to or less than the second release request determination value.
  • the second release request determination value is set to a value (for example, 10N) larger than the first release request determination value.
  • the control device 60 determines “YES” in step S208.
  • step S210 the control device 60 sets the suppression region to the first reduction suppression region Rr1, and ends the region switching control.
  • the control device 60 determines “NO” in step S208.
  • step S212 the control device 60 sets the suppression region to the second reduction suppression region Rr2, and ends the region switching control.
  • the control device 60 determines whether or not there is an obstacle in step S108.
  • the control device 60 determines “YES” in step S108, and suppresses the travel of the electric wheelchair 1 in step S110 (drive amount suppression unit 61c1). Then, the program returns to step S102.
  • the control device 60 determines “NO” in Step S108, and determines whether or not traveling of the electric wheelchair 1 is suppressed in Step S112. If the traveling of the electric wheelchair 1 is not suppressed, the control device 60 determines “NO” in step S112, and returns the program to step S102. On the other hand, when the driving of the electric wheelchair 1 is already suppressed, the control device 60 determines “YES” in step S112, and cancels the suppression of the driving of the electric wheelchair 1 in step S114 (drive amount). The suppressing unit 61c1) returns the program to step S102.
  • the electric wheelchair 1 operates according to the above-described flowchart. Explanation will be given on the case where the electric wheelchair 1 is traveling at the maximum speed (for example, 10 km / h) when traveling is not suppressed because the occupant tilts the lever portion 31 of the operating device 30 forward. To do. At this time, the predicted progress area Wy is formed straight forward (step S102; course prediction unit 62a). Then, based on the predicted progress region Wy, the reference suppression region Rb and the reduction suppression regions Rr1, Rr2 are set (step S104, the reference suppression region setting unit 62b, the reduction suppression region setting unit 62c), and it is determined that there is no obstacle. In this case, the suppression region is set as the reference suppression region Rb (step S106; region switching unit 62e).
  • step S110 drive amount suppression unit 61c1
  • the detected object is, for example, a stationary object, and when the occupant feels that the driver wants to travel faster than the restrained straight traveling speed v, the traveling gap is Has occurred.
  • the lever portion 31 is further inclined forward. Accordingly, when the pressing load is a load between the first release request determination value and the second release request determination value, the reference suppression region Rb is cut into the first reduction suppression region Rr1 as shown in FIG. (Step S106; area switching unit 62e).
  • step S114 drive amount suppression unit 61c1
  • the occupant can drive the electric wheelchair 1 at an uncontrolled speed. In this way, by suppressing the traveling gap, traveling of the electric wheelchair 1 reflecting the occupant's intention is suppressed.
  • step S106 region switching unit 62e
  • step S110 drive amount suppression part 61c1
  • step S110 drive amount suppression part 61c1
  • step S110 drive amount suppression part 61c1
  • step S110 drive amount suppression part 61c1
  • step S110 drive amount suppression part 61c1
  • step S110 drive amount suppression part 61c1
  • step S110 drive amount suppression part 61c1
  • step S110 drive amount suppression part 61c1
  • the traveling of the electric wheelchair 1 is suppressed when the detected object is located within the suppression region. Therefore, the collision between the detected object and the electric wheelchair 1 is suppressed.
  • the release request detection device 40, and the control device 60 break down, the strength of the release request is greater than each release request determination value. Even when it becomes larger, the traveling of the electric wheelchair 1 is suppressed when the detected object is located within the suppression region. Therefore, even in these cases, the collision between the detected object and the electric wheelchair 1 is suppressed.
  • the electric wheelchair 1 is the electric wheelchair 1 that travels by the drive device 20 that is driven according to the input to the operation device 30 by the occupant.
  • the electric wheelchair 1 controls the driving amount of the driving device 20 based on the detection device 50 that detects the objects to be detected around the electric wheelchair 1 and the input information that is the information input to the operation device 30, and the electric wheelchair.
  • the control device 60 is a suppression region in which the traveling of the electric wheelchair 1 is suppressed when the detection object detected by the detection device 50 is located in the region, and a reference for setting a reference suppression region Rb as a reference Reduction suppression that sets the reduction suppression regions Rr1 and Rr2 that are reduced suppression regions with respect to the reference suppression region Rb set by the reference suppression region setting unit 62b based on the suppression region setting unit 62b and the occupant's intention An area setting unit 62c.
  • the reduction suppression region setting unit 62c sets the reduction suppression regions Rr1 and Rr2 that are reduced with respect to the reference suppression region Rb. That is, the suppression area can be reduced. Therefore, when traveling of the electric wheelchair 1 is suppressed because the detected object is located in the reference suppression region Rb, the reference suppression region Rb is switched (reduced) to the reduction suppression regions Rr1, Rr2, When the object to be detected positioned in the reference suppression region Rb is positioned outside the reduction suppression regions Rr1, Rr2, the suppression of traveling of the electric wheelchair 1 is released.
  • the object to be detected is located in the reference suppression region Rb, when the traveling of the electric wheelchair 1 is suppressed from the traveling intended by the occupant, the suppression of the traveling of the electric wheelchair 1 is released, A gap between the traveling of the electric wheelchair 1 and the traveling intended by the occupant is suppressed. Therefore, the electric wheelchair 1 can suppress travel of the electric wheelchair 1 reflecting the occupant's intention.
  • the occupant's intention is a cancellation request for restraining the traveling of the electric wheelchair 1
  • the electric wheelchair 1 further includes a cancellation request detection device 40 that detects the strength of the cancellation request by the operation of the occupant.
  • the control device 60 reduces the reduction set by the reduction suppression region setting unit 62c from the reference suppression region Rb set by the reference suppression region setting unit 62b based on the strength of the cancellation request detected by the cancellation request detection device 40.
  • a region switching unit 62e that switches to the suppression regions Rr1 and Rr2. According to this, when the occupant operates the release request detection device 40, the release request for suppressing the traveling of the electric wheelchair 1 is reliably transmitted to the electric wheelchair 1.
  • the reduction suppression area setting unit 62c sets the reduction suppression area to be reduced as the strength of the cancellation request detected by the cancellation request detection device 40 increases. According to this, as the strength of the cancellation request detected by the cancellation request detection device 40 is increased, the reduction suppression area is set to be reduced, so that the detection object located outside the reduction suppression area can be detected. Become more. Therefore, since the gap between the travel in which the electric wheelchair 1 is suppressed and the travel intended by the occupant is further suppressed, the travel of the electric wheelchair 1 reflecting the occupant's intention can be further suppressed.
  • the suppression region is formed so that the width is gradually reduced based on the size of the occupant's release request (pressing load), but does not depart from the gist of the present invention.
  • the suppression region may be set to a shape different from the shape of the first embodiment. For example, as shown in FIG. 12, when four regions R1 to R4 whose width decreases from the origin C0 toward the front are set, the reference suppression region Rb is set to a region where all four regions R1 to R4 are combined. Is done. Further, the first reduction suppression region Rr1 is set to a region where the three regions R2 to R4 are combined. Then, the second reduction suppression region Rr2 is set to a region where the two regions R3 and R4 are combined.
  • the reduction suppression region setting unit 62c sets a third reduction suppression region that is smaller than the second reduction suppression region Rr2, the third reduction suppression region is set from one region R4.
  • the reduction suppression region is set such that the length along the front-rear direction is gradually reduced with respect to the reference suppression region Rb.
  • the reduction suppression region setting unit 62c sets the reduction suppression region in a stepwise manner so as to have a similar shape to the reference suppression region Rb, the reduction suppression region is in the front-rear direction with respect to the reference suppression region Rb. Is set such that the length along the line becomes shorter stepwise and the width becomes smaller stepwise.
  • the second embodiment of the moving body according to the present invention will be described mainly with respect to differences from the first embodiment described above.
  • the second embodiment does not include the release request detection device 40, and the configuration of the collision suppression control unit 62 is different.
  • the suppression region is switched based on the occupant's release request.
  • the collision suppression control unit 162 of the second embodiment is in the peripheral region Rs. The suppression region is switched based on the type of the object to be detected.
  • the collision suppression control unit 162 of the second embodiment performs region expansion control for deforming the suppression region so as to expand based on the type of the detected object.
  • the types of detected objects are stationary objects and moving objects.
  • the collision suppression control unit 162 of the second embodiment includes a course prediction unit 162a, a reference suppression region setting unit 162b, a reduction suppression region setting unit 162c, a peripheral object presence / absence determination unit 162g, and a peripheral object type determination.
  • Unit 162h occupation rate deriving unit 162k, region switching unit 162e, acceleration deriving unit 162m, region expansion control unit 162n, and obstacle presence / absence determining unit 162f.
  • the peripheral object type determination unit 162h and the acceleration deriving unit 162m are inputted with the straight traveling speed v from the straight traveling speed deriving unit 61a and the turning speed w from the turning speed deriving unit 61b every first predetermined time.
  • the course prediction unit 162a generates the predicted progress area Wy and the peripheral area Rs as in the first embodiment described above.
  • the prediction progress region Wy and the surrounding region Rs are output to the reference suppression region setting unit 162b, the reduction suppression region setting unit 162c, and the surrounding object presence / absence determination unit 162g.
  • the reference suppression region setting unit 162b sets the reference suppression region Rb.
  • the reference suppression region Rb of the second embodiment is formed to be parallel to the predicted progress region Wy as shown in FIG.
  • the reference width Bb of the second embodiment is formed to be about four times the width of the electric wheelchair 1.
  • the reduction suppression area setting unit 162c sets the reduction suppression area Rr.
  • the reduction suppression region Rr in the second embodiment is only one reduction suppression region Rr.
  • the reduction suppression region Rr of the second embodiment is set to the same region as the predicted progress region Wy.
  • the peripheral object presence / absence determination unit 162g determines the presence / absence of a peripheral object based on the detected object information detected by the detection device 50 and the peripheral region Rs from the course prediction unit 162a.
  • the peripheral object is a detected object located in the peripheral region Rs.
  • the peripheral object presence / absence determining unit 162g is configured such that when the peripheral area Rs and the detected object grid Gk overlap, the detected object is located in the peripheral area Rs. It is determined that there is.
  • the peripheral object presence / absence determining unit 162g determines that there is no peripheral object because the detected object is not located in the peripheral region Rs.
  • the case where the peripheral region Rs and the detected object grid Gk do not overlap is the case where the detected object grid Gk does not exist on the polar coordinates C or the case where the detected object grid Gk overlaps only the suppression region.
  • the determination result of the peripheral object presence / absence determination unit 162g is output to the peripheral object type determination unit 162h, the region switching unit 162e, and the region expansion control unit 162n.
  • the peripheral object presence / absence determining unit 162g outputs information (position and number on the polar coordinates C) of the peripheral region Rs and the detection object grid Gk to the occupation rate deriving unit 162k.
  • the peripheral object type determination unit 162h determines whether the peripheral object type is a stationary object or a moving object when the peripheral object presence / absence determination unit 162g determines that there is a peripheral object. As described above, since the coordinates of the detected object are acquired every first predetermined time, the speed of the detected object can be calculated on the polar coordinates C. The speed of the detected object is a relative speed with respect to the speed of the electric wheelchair 1. The peripheral object type determination unit 162h calculates the speed of the electric wheelchair 1 based on the straight traveling speed v from the straight traveling speed deriving unit 61a and the turning speed w from the turning speed deriving unit 61b.
  • the peripheral object type determination unit 162h outputs the detection result to the region switching unit 162e and the region expansion control unit 162n.
  • the occupancy rate deriving unit 162k derives an occupancy rate that is a ratio of the area occupied by the detected object to the peripheral area Rs.
  • the occupancy rate deriving unit 162k derives the occupancy rate based on the information on the surrounding area Rs and the detected object grid Gk from the surrounding object presence / absence determining unit 162g.
  • the occupation ratio is a ratio of the number of detected object grids Gk overlapping the peripheral region Rs to the number of grids G overlapping the peripheral region Rs.
  • a parallel point group PG appears along the front-rear direction.
  • the number of grids G overlapping the peripheral region Rs is 162.
  • the occupation rate deriving unit 162k outputs the derived occupation rate to the region switching unit 162e and the region expansion control unit 162n.
  • the occupation rate deriving unit 162k derives the occupation rate based on the information on the peripheral region Rs, the detected object grid Gk, and the occluary grid Go (see FIG. 15B) from the peripheral object presence / absence determining unit 162g. You may do it.
  • the occluary grid Go is a grid G corresponding to the occluary area on the polar coordinate C.
  • the occupancy rate deriving unit 162k calculates the ratio of the number of detected object grids Gk overlapping the peripheral region Rs to the number of grids G overlapping the peripheral region Rs minus the number of occluary grids Go overlapping the peripheral region Rs. Alternatively, it may be derived as an occupation ratio.
  • the region switching unit 162e switches the suppression region based on the determination result of the peripheral object presence / absence determination unit 162g, the determination result of the peripheral object type determination unit 162h, and the occupation rate derived by the occupation rate deriving unit 162k based on a predetermined map.
  • the predetermined map is a fourth map M4 shown in FIG.
  • the area switching unit 162e determines that the peripheral object type determination unit 162g determines that there is no peripheral object
  • the peripheral object type determination unit 162h determines that the peripheral object type is a moving object.
  • the suppression region is set as the reference suppression region Rb.
  • the suppression area is set as the reference suppression area Rb.
  • the region switching unit 162e sets the suppression region to the reduction suppression region Rr when the peripheral object type determination unit 162h determines that the type of the peripheral object is a stationary object.
  • the suppression region is set as the reduction suppression region Rr.
  • Acceleration deriving unit 162m derives the acceleration of the electric wheelchair 1.
  • the acceleration deriving unit 162m calculates the speed of the electric wheelchair 1 every first predetermined time based on the straight traveling speed v from the straight traveling speed deriving unit 61a and the turning speed w from the turning speed deriving unit 61b. Store as time series data. Thus, it is derived whether or not the electric wheelchair 1 is accelerating from the current speed in the time series data and each speed from the second predetermined time before the first predetermined time to the present.
  • the acceleration deriving unit 162m outputs the deriving result to the region expansion control unit 162n.
  • the area expansion control unit 162n executes area expansion control for extending the suppression area.
  • the area expansion control is control for extending the suppression area switched by the area switching unit 162e.
  • the area expansion control is expanded (deformed) so as to widen the width of the suppression area in the left-right direction, as shown in FIG.
  • an expansion amount for expanding the suppression area is calculated.
  • ⁇ RL which is an expansion amount that expands the left side of the suppression region
  • ⁇ RR which is the amount of expansion that expands the right side of the suppression region
  • ⁇ RL and ⁇ RR are calculated every first predetermined time, and the suppression region is expanded by the expansion amount.
  • HL is the length in the left-right direction from the left end of the current suppression region to the left end of the left peripheral region Rs.
  • A is the current acceleration of the electric wheelchair 1.
  • B is the maximum acceleration of the electric wheelchair 1.
  • HR is the length in the left-right direction from the right end of the current suppression region to the right end of the right peripheral region Rs.
  • the area expansion control unit 162n maintains the suppression area without expanding the size of the suppression area at that time. And when the to-be-detected object located in a suppression area
  • the region expansion control unit 162n derives the acceleration derivation unit 162m, the judgment result of the peripheral object presence / absence judgment unit 162g, the judgment result of the peripheral object type judgment unit 162h, and the occupation It is determined whether or not the region expansion control is to be executed from the derivation result of the rate deriving unit 162k. Specifically, when the acceleration derived by the acceleration deriving unit 162m is equal to or less than zero, the region expansion control unit 162n does not execute the region expansion control regardless of the type of the peripheral object and the occupation ratio.
  • the region expansion control unit 162n is configured to display a region when the acceleration derived by the acceleration deriving unit 162m is greater than zero and the type of the peripheral object is a stationary object and the occupation rate is equal to or greater than the occupation rate determination value. Does not execute extended control. When the electric wheelchair 1 is traveling in a relatively narrow place, the occupancy rate determination value is set so that the occupancy rate is equal to or higher than the occupancy rate determination value.
  • the occupation rate determination value is, for example, 8%.
  • the region expansion control unit 162n has no peripheral object, the peripheral object type is a moving object, and the peripheral object type is stationary.
  • the area expansion control is executed.
  • the region expansion control unit 162n outputs the suppression region expanded by the region expansion control to the obstacle presence / absence determination unit 162f.
  • the region expansion control unit 162n if the region expansion control unit 162n does not execute the region expansion control, the region expansion control unit 162n outputs the obstacle region determination unit 162f without expanding the suppression region.
  • the obstacle presence / absence determination unit 162f determines the presence / absence of an obstacle based on the detected object information detected by the detection device 50 and the suppression region from the region expansion control unit 162n.
  • step S102 the control device 60 predicts the course of the electric wheelchair 1 and generates the predicted progress area Wy (the course prediction unit 162a).
  • step S304 the control device 60 generates the peripheral region Rs (the course prediction unit 162a).
  • step S306 the control device 60 sets the reference suppression region Rb and the reduction suppression region Rr (reference suppression region setting unit 162b, reduction suppression region setting unit 162c).
  • step S308 the control device 60 determines whether there is a peripheral object (peripheral object presence determination unit 162g). If there is no object to be detected in the peripheral region Rs, there is no peripheral object, so the control device 60 determines “NO” in step S308 and advances the program to step S312. On the other hand, when there is an object to be detected in the peripheral region Rs, the control device 60 determines “YES” in step S308 because there is a peripheral object. In step S310, the control device 60 determines the type of the peripheral object (peripheral object type determination unit 162h), and advances the program to step S312. In step S312, the control device 60 derives the occupation rate (occupancy rate deriving unit 162k).
  • control device 60 derives the acceleration of the electric wheelchair 1 in step S314 (acceleration derivation unit 162m). Furthermore, the control apparatus 60 switches a suppression area
  • step S308 peripheral object presence / absence determination unit 162g
  • step S316 region switching unit 162e
  • step S314 acceleration deriving unit 162m
  • step S314 when the electric wheelchair 1 is accelerating, the acceleration is greater than zero (step S314; acceleration deriving unit 162m).
  • step S320 area expansion control unit 162n.
  • step S108 obstacle presence / absence detection unit
  • traveling is not suppressed (driving amount suppression unit 61c1).
  • step S308 when the electric wheelchair 1 goes straight in a relatively wide place, as shown in FIG. 14, there is an object to be detected in the peripheral region Rs (step S308; peripheral object presence / absence determining unit 162g), and the object to be detected
  • the object type is a moving object (step S310; peripheral object type determination unit 162h)
  • the suppression region is set as the reference suppression region Rb (step S316; region switching unit 162e).
  • step S320 region expansion control unit 162n.
  • Step S110 drive amount suppression part 61c1.
  • step S310 when the type of the detected object shown in FIG. 14 is a stationary object (step S310; peripheral object type determination unit 162h), the suppression region is reduced and suppressed.
  • the region Rr is set (step S316; region switching unit 162e).
  • step S320 area expansion control unit 162n).
  • Step S110 drive amount suppression part 61c1.
  • the detected object is present in the peripheral region Rs (step S308; peripheral object presence / absence determining unit 162g), and the type of the detected object is a stationary object (step S310; peripheral object).
  • the type determination unit 162h) sets the suppression region to the reduction suppression region Rr (step S316; region switching unit 162e).
  • the occupation rate becomes equal to or greater than the occupation rate determination rate (step S312; occupation rate deriving unit 162k). Therefore, in this case, even when the electric wheelchair 1 is accelerating (acceleration> zero), the area expansion control is not executed (step S318; area expansion control unit 162n).
  • step S318 area expansion control unit 162n. Therefore, in this case, as long as the electric wheelchair 1 goes straight, the stationary object is not positioned in the reduction suppression region Rr, and thus the traveling of the electric wheelchair 1 is not suppressed (drive amount suppression unit 61c1).
  • the electric wheelchair 1 travels by the drive device 20 driven in accordance with an input to the operation device 30 by an occupant, and the electric wheelchair 1 detects an object to be detected around the electric wheelchair 1. And a control device 60 that controls the drive amount of the drive device 20 to run the electric wheelchair 1 based on input information that is information input to the operation device 30.
  • the control device 60 is a suppression region in which the traveling of the electric wheelchair 1 is suppressed when the detection object detected by the detection device 50 is located in the region, and a reference for setting a reference suppression region Rb as a reference
  • a reduction suppression region setting unit 162c that sets a reduction suppression region Rr, which is a reduced suppression region, for Rb. According to this, the reduction suppression area setting unit 162c sets the reduction suppression area Rr based on the type of the detection object located in the peripheral area Rs.
  • the suppression area is set to the reduction suppression area Rr, the detected object is unlikely to be located in the suppression area.
  • the traveling of the electric wheelchair 1 is not suppressed, so that the traveling intended by the occupant is possible. Therefore, at this time, the gap between the travel in which the electric wheelchair 1 is suppressed and the travel intended by the occupant is suppressed. Therefore, the electric wheelchair 1 can suppress the traveling of the electric wheelchair 1 reflecting the occupant's intention.
  • the types of objects to be detected are stationary objects and moving objects.
  • the control device 60 includes a peripheral object type determining unit 162h that determines whether the type of the object to be detected located in the peripheral region Rs is a stationary object or a moving object, and the peripheral object type determining unit 162h in the peripheral region Rs.
  • a switching unit 162e According to this, when the detected object located in the peripheral region Rs is only a stationary object, the occupant may feel that he / she wants to drive the electric wheelchair 1 at a relatively high speed.
  • the region switching unit 162e switches the reference suppression region Rb to the reduction suppression region Rr. Thereby, it is possible to make it difficult to position the detected object within the suppression region.
  • the traveling of the electric wheelchair 1 is not suppressed, so that the traveling intended by the occupant is possible. Therefore, the gap between the travel in which the electric wheelchair 1 is suppressed and the travel intended by the occupant is suppressed. Therefore, the electric wheelchair 1 can suppress the traveling of the electric wheelchair 1 reflecting the occupant's intention.
  • the control device 60 performs a region expansion control unit that performs region expansion control to expand the suppression region. 162n.
  • the region expansion control unit 162n expands the size of the suppression region, so that the moving object can be easily positioned in the suppression region.
  • the traveling of the electric wheelchair 1 is suppressed. Therefore, the collision between the electric wheelchair 1 and the moving object can be further suppressed.
  • the amount of travel suppression of the electric wheelchair 1 is adjusted according to the distance between the electric wheelchair 1 and the detected object, even when the detected object is located in the expanded suppression region, it is abrupt. Suppression can be prevented.
  • the control device 60 further includes an occupancy ratio deriving unit 162k that derives an occupancy ratio that is a ratio of the area occupied by the detected object to the peripheral area Rs.
  • the area expansion control unit 162n determines that the occupation rate derived by the occupation rate deriving unit 162k is the occupation rate when the peripheral object type determination unit 162h determines that the type of the detected object in the peripheral region Rs is a stationary object. When it is smaller than the determination value, the area expansion control is executed.
  • the region expansion control unit 162n expands the size of the suppression region, so that the detected object can be easily positioned in the suppression region. Therefore, the collision between the electric wheelchair 1 and the moving object can be further suppressed.
  • the region expansion control unit 162n does not expand the size of the suppression region. Therefore, since the gap between the travel in which the electric wheelchair 1 is suppressed and the travel intended by the occupant is suppressed, the travel of the electric wheelchair 1 reflecting the occupant's intention can be suppressed.
  • the moving body is the electric wheelchair 1, but instead of this, a boarding type moving body such as a small vehicle or a mobile robot may be used.
  • the release request detection device 40 includes the load detection unit 42 that detects the pressing load, but may include a plurality of switches instead.
  • the region switching unit 62e may switch the reduction suppression regions Rr1 and Rr2 in accordance with the turned on switch.
  • the release request detection device 40 may include a microphone or the like that can input the passenger's voice.
  • the region switching unit 62e may switch the reduction suppression regions Rr1 and Rr2 according to, for example, the volume of the passenger's voice.
  • the region switching unit 62e switches the suppression region in consideration of the determination result of the obstacle presence / absence determination unit 62f, but instead of this, the obstacle presence / absence determination unit
  • the suppression region may be switched based only on the detection result of the release request detection device 40 without considering the determination result of 62f.
  • region switching part 162e is switching the suppression area
  • the suppression area may be switched based on M14.
  • the area switching unit 162e switches from the reference suppression area Rb to the reduction suppression area Rr when the occupation ratio is equal to or greater than the occupation ratio determination value.
  • the control device 60 determines the occupancy rate by using the occupancy rate deriving unit 162k for deriving the occupancy rate that is the ratio of the area occupied by the detected object to the surrounding region Rs, and the occupancy rate derived by the occupancy rate deriving unit 162k.
  • a region switching unit 162e that switches from the reference suppression region Rb set by the reference suppression region setting unit 162b to the reduction suppression region Rr set by the reduction suppression region setting unit 162c is further provided.
  • the occupancy rate is larger than the occupancy rate determination value, that is, when the space in which the electric wheelchair 1 is traveling is relatively narrow, the detected object is in the suppression region as compared with the case where the space in which the electric wheelchair 1 is traveling is wide. Easy to locate. Therefore, when the occupancy rate is larger than the occupancy rate determination value, a gap between the travel in which the electric wheelchair 1 is suppressed and the travel intended by the occupant is likely to occur, so the region switching unit 162e suppresses the reduction of the reference suppression region Rb.
  • region switching part 162e is switching the suppression area
  • the suppression area may be switched based on the map M24.
  • the suppression area is set as the reduction suppression area Rr.
  • the region expansion control unit 162n determines whether or not to perform region expansion control based on the fifth map M5 illustrated in FIG. At this time, the area expansion control unit 162n determines whether or not to execute the area expansion control from the acceleration. Instead, when the electric wheelchair 1 is at the maximum speed, the acceleration of the electric wheelchair 1 is determined. Regardless, the area expansion control may be executed based on the surrounding objects and the occupation ratio based on the contents shown in “when acceleration> zero” in the fifth map M5. Further, the area expansion control unit 162n may determine whether or not to execute the area expansion control based on the fifteenth map M15 shown in FIG. 22 instead of the fifth map M5 shown in FIG. good. In this case, the area expansion control unit 162n determines whether or not to execute the area expansion control based only on the occupation ratio regardless of whether or not the electric wheelchair 1 is accelerating.
  • the region expansion control unit 162n calculates the expansion amount based on the acceleration of the electric wheelchair 1, but instead of this, the region expansion control unit 162n is constant regardless of the acceleration of the electric wheelchair 1.
  • the area may be expanded by the expansion amount.
  • the operating device 30 is a joystick. Instead, the operating device 30 is operated by an accelerator that indicates the straight traveling speed v of the electric wheelchair 1 and a handle that indicates the turning direction of the electric wheelchair 1. You may make it comprise.
  • region Rr, Rr1, Rr2 is preset by the reduction suppression area
  • the reduction suppression regions Rr, Rr1, and Rr2 may be set.
  • the detection apparatus 50 is a three-dimensional range sensor which detects the three-dimensional position information of a to-be-detected object, it replaces with this and detects the two-dimensional position information of a to-be-detected object.
  • a two-dimensional range sensor may be used.
  • the electric wheelchair 1 is provided with one detection apparatus 50, it may replace with this and may be provided with multiple detection apparatuses 50. According to this, compared with the case where there is one detection device 50, the range in which the detection object of the detection device 50 can be detected can be expanded.
  • the suppression area is generated in a planar shape on the polar coordinates C.
  • the suppression area may be generated three-dimensionally.
  • the suppression area instead of the polar coordinates C, the suppression area may be set on the spherical coordinates centered on the electric wheelchair 1. Accordingly, the height of the reference suppression region Rb and the height of the reduction suppression region Rr can be set differently within a range in which the detection device 50 can detect the detection target.
  • the maximum speed of the straight traveling speed v limited by the drive amount suppression unit 61c1 changes according to the shortest distance Dmin.
  • it may be changed according to the relative speed between the electric wheelchair 1 and the detected object and the density of the detected object in the grid G (density of the point group PG).
  • the drive amount suppression unit 61c1 may limit the maximum speed of the straight traveling speed v to a constant speed regardless of the shortest distance Dmin.
  • the maximum drive speed v is limited by setting the drive amount of the drive device 20 to the limited drive amount by the drive amount suppressing unit 61c1, but instead, the straight drive The speed v may be reduced uniformly at a predetermined rate. Further, the time change rate (acceleration) of the straight traveling speed v may be limited.
  • SYMBOLS 1 Electric wheelchair (moving body), 10 ... Wheelchair main body, 20 ... Drive apparatus, 30 ... Operation apparatus, 40 ... Release request detection apparatus, 50 ... Detection apparatus, 60 ... Control apparatus, 61 ... Travel control part, 61c ... Drive Amount control unit, 61c1... Drive amount suppression unit, 62... Collision suppression control unit, 62a... Course prediction unit, 62b... Reference suppression region setting unit, 62c... Reduction suppression region setting unit, 62d.
  • Switching unit, 62f ... Obstacle presence / absence determination unit, 162g ... Peripheral object presence / absence determination unit, 162h ... Peripheral object type determination unit, 162k ... Occupancy rate deriving unit, 162n ... Area expansion control unit, C ... Polar coordinates, Rb ... Reference suppression region , Rr ... reduction reduction region, Rs ... peripheral region, Wy ... prediction progress region.

Abstract

The purpose of the present invention is to suppress travel of a mobile body, reflective of the intentions of a passenger, in a mobile body for which travel is suppressed on the basis of a detected object around the mobile body, in order to reduce collisions between the mobile body and a detected object around the mobile body. In the present invention, a control device of an electric wheelchair is provided with: a standard suppression region setting unit that sets a standard suppression region to serve as a standard, the standard suppression region being a suppression region in which travel of the electric wheelchair is suppressed when a detected object detected by a detecting device is positioned within the region; and a reduced suppression region setting unit that sets, on the basis of an intention of the passenger or the type of a detected object located in a peripheral region, which is a region on both sides of a predicted travel region of the electric wheelchair 1, a reduced suppression region, which is a suppression region that has been reduced in size, in respect to the standard suppression region set by the standard suppression region setting unit.

Description

移動体Moving body
 本発明は、移動体、特に、乗員の操作によって走行する移動体に関する。 The present invention relates to a moving body, and more particularly to a moving body that travels by the operation of an occupant.
 乗員に操作されることにより移動する移動体の一形式として、特許文献1に示されているものが知られている。特許文献1の移動体(例えば、電動車椅子)は、移動体の周辺に存在する周辺物体(被検知物)を検知する周辺物体検知手段、および、移動体の上限速度を設定する上限速度設定手段を備えている。上限速度設定手段は、移動体の進路上の領域および進路上の領域の側方領域に被検知物が存在する場合、上限速度を抑制するように設定する。これにより、被検知物と移動体との衝突が抑制される。また、上限速度設定手段は、被検知物が位置する領域や、移動体と被検知物との相対速度等に応じて上限速度を設定している。 As a type of moving body that moves when operated by an occupant, one shown in Patent Document 1 is known. The moving body (for example, an electric wheelchair) of Patent Document 1 includes a peripheral object detection unit that detects a peripheral object (detected object) existing around the moving body, and an upper limit speed setting unit that sets an upper limit speed of the moving body. It has. The upper limit speed setting means sets the upper limit speed to be suppressed when there is an object to be detected in an area on the path of the moving body and a side area of the area on the path. Thereby, the collision with a to-be-detected object and a moving body is suppressed. The upper limit speed setting means sets the upper limit speed according to the region where the detected object is located, the relative speed between the moving body and the detected object, and the like.
特許5338398号Japanese Patent No. 5338398
 特許文献1の移動体においては、例えば、幅が比較的狭い道路を移動体が走行している時に、植木等の静止物が側方領域に位置する被検知物として検知された場合、上限速度設定手段によって、移動体の上限速度が抑制される。この場合、被検知物が静止物のみであることにより、抑制された速度よりも速く走行したいと感じるときがある。このとき、移動体の抑制された走行と、乗員の意図する走行との間にギャップが生じる。 In the moving object of Patent Document 1, for example, when a moving object is traveling on a relatively narrow road, if a stationary object such as a plant is detected as an object to be detected located in a side area, the upper limit speed The upper limit speed of the moving body is suppressed by the setting means. In this case, since the object to be detected is only a stationary object, it may be desired to travel faster than the suppressed speed. At this time, a gap is generated between the travel in which the moving body is suppressed and the travel intended by the occupant.
 そこで、本発明は、上述した課題を解消するためになされたもので、移動体と移動体の周辺の被検知物との衝突を抑制するために、移動体の周辺の被検知物に基づいて移動体の走行の抑制をする移動体において、乗員の意図を反映した移動体の走行の抑制を行うことを目的とする。 Therefore, the present invention has been made to solve the above-described problems, and based on the detected objects around the moving body in order to suppress the collision between the moving body and the detected objects around the moving body. An object of the present invention is to suppress the traveling of a moving body reflecting the occupant's intention in a moving body that suppresses the traveling of the moving body.
 上記の課題を解決するため、請求項1に係る移動体は、乗員による操作装置への入力に従って駆動される駆動装置によって走行する移動体であって、移動体は、移動体の周辺の被検知物を検知する検知装置と、操作装置に入力された情報である入力情報に基づいて、駆動装置の駆動量を制御して移動体を走行させる制御装置と、を備え、制御装置は、検知装置によって検知された被検知物が領域内に位置する時に、移動体の走行が抑制をされる抑制領域であって、基準となる基準抑制領域を設定する基準抑制領域設定部と、乗員の意思、または、移動体の予測進行領域の両側の領域である周辺領域内に位置する被検知物の種類に基づいて、基準抑制領域設定部によって設定された基準抑制領域に対して、縮小された抑制領域である縮小抑制領域を設定する縮小抑制領域設定部と、を備えている。 In order to solve the above-mentioned problem, a moving body according to claim 1 is a moving body that is driven by a driving device that is driven in accordance with an input to an operating device by an occupant, and the moving body is detected around the moving body. A detection device that detects an object, and a control device that controls the driving amount of the drive device based on input information that is information input to the operation device, and causes the moving body to travel. When the detected object detected by the vehicle is located within the region, the reference region is a suppression region in which travel of the moving body is suppressed, and a reference suppression region setting unit that sets a reference suppression region that serves as a reference; Alternatively, the suppression region reduced with respect to the reference suppression region set by the reference suppression region setting unit based on the type of the detection object located in the peripheral region that is the region on both sides of the predicted progress region of the moving object Reduction suppression that is It includes a reduction suppression area setting unit for setting a frequency, a.
 これによれば、乗員の意思に基づいて、縮小抑制領域設定部が基準抑制領域に対して縮小された縮小抑制領域を設定する。すなわち、抑制領域は、縮小されることが可能となる。よって、基準抑制領域内に被検知物が位置するために移動体の走行が抑制されている時に、基準抑制領域が縮小抑制領域に切替わる(縮小される)ことにより、基準抑制領域内に位置する被検知物が縮小抑制領域外に位置した場合、移動体の走行の抑制が解除される。この場合、基準抑制領域内に被検知物が位置するために、乗員の意図する走行より移動体の走行が抑制されていたときには、移動体の走行の抑制が解除されることにより、移動体の抑制された走行と乗員の意図する走行との間のギャップが抑制される。
 また、周辺領域に位置する被検知物の種類に基づいて、縮小抑制領域設定部が縮小抑制領域を設定する。抑制領域が縮小抑制領域に設定されている場合は、被検知物が抑制領域内に位置しにくい。これにより、被検知物が抑制領域内に位置しないとき、移動体の走行が抑制されないため、乗員の意図する走行が可能となる。よって、このとき、移動体の抑制された走行と、乗員の意図する走行との間のギャップが抑制される。これらによって、移動体は、乗員の意図を反映した移動体の走行の抑制を行うことができる。
According to this, based on the passenger's intention, the reduction suppression region setting unit sets a reduction suppression region that is reduced with respect to the reference suppression region. That is, the suppression area can be reduced. Therefore, when the moving object is suppressed because the object to be detected is located in the reference suppression area, the reference suppression area is switched (reduced) to the reduction suppression area, thereby being positioned in the reference suppression area. When the object to be detected is located outside the reduction suppression region, the suppression of the traveling of the moving body is released. In this case, since the object to be detected is located in the reference suppression region, when the traveling of the moving body is suppressed from the traveling intended by the occupant, the suppression of the traveling of the moving body is canceled, A gap between the suppressed traveling and the traveling intended by the occupant is suppressed.
Further, the reduction suppression area setting unit sets the reduction suppression area based on the type of the detection object located in the peripheral area. When the suppression area is set as the reduction suppression area, the detected object is unlikely to be located in the suppression area. As a result, when the object to be detected is not located within the suppression region, the traveling of the moving body is not suppressed, so that the traveling intended by the occupant is possible. Therefore, at this time, the gap between the travel in which the moving body is suppressed and the travel intended by the occupant is suppressed. Accordingly, the moving body can suppress the traveling of the moving body reflecting the occupant's intention.
本発明による移動体の第一実施形態の構成を示す概要図である。It is a schematic diagram which shows the structure of 1st embodiment of the moving body by this invention. 図1に示す操作装置および解除要求検出装置を示す部分拡大断面図である。It is a partial expanded sectional view which shows the operating device and cancellation request | requirement detection apparatus which are shown in FIG. 図1の操作装置に入力された入力情報を示す模式図であり、縦軸は、移動体の前後方向を、横軸は移動体の左右方向を表している。It is a schematic diagram which shows the input information input into the operating device of FIG. 1, The vertical axis | shaft represents the front-back direction of the moving body, and the horizontal axis represents the left-right direction of the moving body. 図1に示す移動体のブロック図である。It is a block diagram of the moving body shown in FIG. 図4に示す制御装置に記憶されている第一マップであり、所望直進速度と移動体の直進速度との関係を示したマップである。It is the 1st map memorize | stored in the control apparatus shown in FIG. 4, and is a map which showed the relationship between desired linear advance speed and the linear advance speed of a mobile body. 図4に示す制御装置に記憶されている第二マップであり、所望旋回速度と移動体の旋回速度との関係を示したマップである。It is the 2nd map memorize | stored in the control apparatus shown in FIG. 4, and is a map which showed the relationship between desired turning speed and turning speed of a mobile body. 図4に示す進路予測部によって極座標上に生成される予測進行領域および周辺領域を示す模式図であり、極座標の縦軸は、移動体の前後方向を、極座標の横軸は移動体の左右方向を表している。It is a schematic diagram which shows the prediction progress area | region and periphery area | region which are produced | generated on a polar coordinate by the course prediction part shown in FIG. 4, The vertical axis | shaft of a polar coordinate is the front-back direction of a mobile body, The horizontal axis of a polar coordinate is the left-right direction of a mobile body Represents. 図4に示す基準抑制領域設定部によって極座標上に設定される基準抑制領域を示す模式図である。It is a schematic diagram which shows the reference | standard suppression area | region set on a polar coordinate by the reference | standard suppression area | region setting part shown in FIG. 図4に示す縮小抑制領域設定部によって極座標上に設定される縮小抑制領域を示す模式図である。It is a schematic diagram which shows the reduction suppression area | region set on a polar coordinate by the reduction suppression area | region setting part shown in FIG. 図4に示す制御装置に記憶されている第三マップであり、被検知物が抑制領域内に位置する場合における移動体と被検知物との最短距離と、駆動装置の駆動量の制限駆動量との関係を示したマップである。FIG. 6 is a third map stored in the control device shown in FIG. 4, and the shortest distance between the moving body and the detected object when the detected object is located in the suppression region, and the limited driving amount of the driving amount of the driving device Is a map showing the relationship. 図4に示す制御装置で実行されるプログラムのフローチャートである。It is a flowchart of the program run with the control apparatus shown in FIG. 図4に示す制御装置で実行されるプログラムのフローチャートである。It is a flowchart of the program run with the control apparatus shown in FIG. 図4に示す基準抑制領域設定部および縮小抑制領域設定部によって極座標上に設定される抑制領域の変形例を示す模式図である。It is a schematic diagram which shows the modification of the suppression area | region set on a polar coordinate by the reference | standard suppression area | region setting part and reduction suppression area | region setting part which are shown in FIG. 本発明の第二実施形態に係る移動体のブロック図である。It is a block diagram of the mobile concerning a second embodiment of the present invention. 図13に示す基準抑制領域設定部によって極座標上に設定される基準抑制領域を示す模式図である。It is a schematic diagram which shows the reference | standard suppression area | region set on a polar coordinate by the reference | standard suppression area | region setting part shown in FIG. 図13に示す縮小抑制領域設定部によって極座標上に設定される縮小抑制領域、および、幅が比較的狭い路地を移動体が走行している時に極座標上に現れる被検知物グリッドを示す模式図である。FIG. 14 is a schematic diagram showing a reduction suppression region set on polar coordinates by the reduction suppression region setting unit shown in FIG. 13 and a detected object grid that appears on the polar coordinates when the moving body is traveling on a relatively narrow alley. is there. 図13に示す占有率導出部による占有率の導出方法の変形例に使用されるオクルジョーングリッドを示す模式図である。It is a schematic diagram which shows the occluary grid used for the modification of the derivation method of the occupation rate by the occupation rate derivation | leading-out part shown in FIG. 図13に示す制御装置に記憶されている第四マップであり、周辺物と抑制領域との関係を示したマップである。It is the 4th map memorized by the control device shown in Drawing 13, and is a map which showed the relation between a peripheral thing and a control field. 図13に示す領域拡張制御部が実行する領域拡張制御を示す模式図である。It is a schematic diagram which shows the area | region expansion control which the area | region expansion control part shown in FIG. 13 performs. 図13に示す制御装置に記憶されている第五マップであり、移動体の加速度、周辺物および占有率と、領域拡張制御の実行との関係を示したマップである。FIG. 14 is a fifth map stored in the control device shown in FIG. 13, showing a relationship among the acceleration, peripheral objects, occupation ratio, and execution of area expansion control of a moving object. 図13に示す制御装置で実行されるプログラムのフローチャートである。It is a flowchart of the program run with the control apparatus shown in FIG. 本発明の第二実施形態の変形例に係る移動体の制御装置に記憶された第十四マップであり、占有率と抑制領域との関係を示したマップである。It is a 14th map memorized by a control device of a mobile object concerning a modification of a second embodiment of the present invention, and is a map showing a relation between an occupation rate and a control area. 本発明の第二実施形態の変形例に係る移動体の制御装置に記憶された第二十四マップであり、周辺物および占有率と、抑制領域との関係を示したマップである。It is the 24th map memorized by the control device of the mobile object concerning the modification of the second embodiment of the present invention, and is the map which showed the relation between a peripheral thing, an occupation rate, and a control field. 本発明の第二実施形態の変形例に係る移動体の制御装置に記憶された第十五マップであり、周辺物および占有率と、領域拡張制御の実行との関係を示したマップである。It is the 15th map memorized by the control device of the mobile object concerning the modification of the second embodiment of the present invention, and is the map which showed the relation between a peripheral thing and an occupation rate, and execution of field expansion control.
 <第一実施形態>
 以下、本発明による移動体の第一実施形態について図面を参照して説明する。本実施形態における移動体として、図1に示す電動車椅子1を例に挙げて説明する。なお、本明細書においては説明の便宜上、図1における上側および下側をそれぞれ電動車椅子1の上方および下方とし、同じく左下側および右上側をそれぞれ電動車椅子1の前方および後方とし、同じく左上側および右下側を、それぞれ電動車椅子1の右方および左方として説明する。また、図1には、各方向を示す矢印を示している。
<First embodiment>
Hereinafter, a first embodiment of a moving body according to the present invention will be described with reference to the drawings. An example of the electric wheelchair 1 shown in FIG. 1 will be described as a moving body in the present embodiment. In this specification, for convenience of explanation, the upper side and the lower side in FIG. 1 are the upper and lower sides of the electric wheelchair 1, respectively, and the lower left side and the upper right side are the front and rear sides of the electric wheelchair 1, respectively. The lower right side will be described as the right side and the left side of the electric wheelchair 1, respectively. Further, FIG. 1 shows arrows indicating the respective directions.
 電動車椅子1は、図1および図2に示すように、車椅子本体10、駆動装置20、操作装置30、解除要求検出装置40、検知装置50および制御装置60を備えている。電動車椅子1は、乗員による操作装置30への入力に従って駆動される駆動装置20によって走行する移動体である。駆動装置20、操作装置30、解除要求検出装置40、検知装置50および制御装置60は、車椅子本体10に取り付けられている。 1 and 2, the electric wheelchair 1 includes a wheelchair body 10, a drive device 20, an operation device 30, a release request detection device 40, a detection device 50, and a control device 60. The electric wheelchair 1 is a moving body that travels by a drive device 20 that is driven according to an input to the operation device 30 by an occupant. The drive device 20, the operation device 30, the release request detection device 40, the detection device 50, and the control device 60 are attached to the wheelchair body 10.
 車椅子本体10は、フレーム11、乗員が着座する座席12および車輪13を備えている。座席12および車輪13は、フレーム11に取り付けられている。車輪13は、回転軸回りに回転可能に構成されている。車輪13は、車椅子本体10の左右両側に配設され、駆動装置20によって駆動される左駆動輪13aおよび右駆動輪13b、並びに、電動車椅子1の走行を補助する左補助輪13cおよび右補助輪13dを備えている。 The wheelchair body 10 includes a frame 11, a seat 12 on which an occupant is seated, and wheels 13. The seat 12 and the wheel 13 are attached to the frame 11. The wheel 13 is configured to be rotatable around a rotation axis. The wheels 13 are disposed on the left and right sides of the wheelchair body 10 and are driven by the driving device 20. The left driving wheel 13 a and the right driving wheel 13 b, and the left auxiliary wheel 13 c and the right auxiliary wheel that assist the traveling of the electric wheelchair 1. 13d.
 駆動装置20は、各駆動輪13a,13bをそれぞれ回転駆動させて、電動車椅子1を走行させるものである。駆動装置20は、例えば、電動モータ(図示なし)と減速機(図示なし)とを組み合わせることにより構成されている。駆動装置20は、各駆動輪13a,13bにそれぞれ1つずつ(合計2つ)設けられている。 The driving device 20 drives the electric wheelchair 1 by driving the driving wheels 13a and 13b to rotate. The drive device 20 is configured, for example, by combining an electric motor (not shown) and a speed reducer (not shown). One drive device 20 is provided for each drive wheel 13a, 13b (two in total).
 操作装置30は、電動車椅子1の直進速度vおよび旋回速度wを指示するために乗員によって操作されるものである。直進速度vは、電動車椅子1の前方向(正面方向)における電動車椅子1の速度である。旋回速度wは、電動車椅子1の位置する場所において、電動車椅子1が電動車椅子1の重心を中心に旋回する角速度である。本実施形態において、操作装置30は、ジョイスティックである。操作装置30は、図2に示すように、レバー部31およびレバー部31を傾斜可能に支持する台座部32を備えている。 The operating device 30 is operated by the occupant to instruct the straight traveling speed v and the turning speed w of the electric wheelchair 1. The straight traveling speed v is the speed of the electric wheelchair 1 in the forward direction (front direction) of the electric wheelchair 1. The turning speed w is an angular speed at which the electric wheelchair 1 turns around the center of gravity of the electric wheelchair 1 at the place where the electric wheelchair 1 is located. In the present embodiment, the operating device 30 is a joystick. As shown in FIG. 2, the operating device 30 includes a lever portion 31 and a pedestal portion 32 that supports the lever portion 31 so as to be tiltable.
 操作装置30は、図2に破線にて示す操作されていない位置(以下、ニュートラル位置とする。)において、レバー部31が鉛直方向に起立した状態で位置決めされている。操作装置30は、レバー部31がニュートラル位置から乗員に傾けられることにより操作される。レバー部31が操作された状態は、図3に示すように、操作装置30を水平面と平行なXY平面に投影したときにおける操作装置30の先端の座標によって表すことができる。X軸は、電動車椅子1の前後方向と同じであり、X軸の正の方向は、電動車椅子1の前方向と同じ方向である。Y軸は、電動車椅子1の左右方向と同じであり、Y軸の正の方向は、電動車椅子1の右方向と同じ方向である。X座標の値は、乗員が所望する電動車椅子1の直進速度である所望直進速度xjsである。Y座標の値は、乗員が所望する電動車椅子1の旋回速度である所望旋回速度yjsである。所望直進速度xjsおよび所望旋回速度yjsは、操作装置30に入力された情報である入力情報として、制御装置60に第一所定時間毎に出力される。第一所定時間は、例えば、1/25秒である。 The operating device 30 is positioned with the lever portion 31 standing in the vertical direction at an unoperated position (hereinafter referred to as a neutral position) indicated by a broken line in FIG. The operating device 30 is operated by tilting the lever portion 31 from the neutral position to the occupant. The state in which the lever portion 31 is operated can be represented by the coordinates of the tip of the operating device 30 when the operating device 30 is projected onto the XY plane parallel to the horizontal plane, as shown in FIG. The X axis is the same as the front-rear direction of the electric wheelchair 1, and the positive direction of the X axis is the same direction as the front direction of the electric wheelchair 1. The Y axis is the same as the left-right direction of the electric wheelchair 1, and the positive direction of the Y axis is the same direction as the right direction of the electric wheelchair 1. The value of the X coordinate is a desired straight traveling speed xjs that is a straight traveling speed of the electric wheelchair 1 desired by the passenger. The value of the Y coordinate is a desired turning speed yjs that is a turning speed of the electric wheelchair 1 desired by the occupant. The desired straight traveling speed xjs and the desired turning speed yjs are output to the control device 60 every first predetermined time as input information that is information input to the operation device 30. The first predetermined time is 1/25 seconds, for example.
 解除要求検出装置40は、乗員の操作により、解除要求の強さを検出するものである。解除要求は、後述する電動車椅子1の走行の抑制に対する解除の要求である。解除要求検出装置40は、解除要求の強さを、後述する押付荷重の大きさによって検出する。すなわち、押付荷重が大きくなるにしたがって、解除要求の強さが大きいと検出される。解除要求検出装置40は、突起部41および荷重検出部42を備えている。 The cancellation request detection device 40 detects the strength of the cancellation request by the occupant's operation. The cancellation request is a cancellation request for suppressing travel of the electric wheelchair 1 to be described later. The release request detection device 40 detects the strength of the release request based on the magnitude of the pressing load described later. That is, it is detected that the strength of the release request increases as the pressing load increases. The release request detection device 40 includes a protrusion 41 and a load detection unit 42.
 突起部41は、図2に示すように、レバー部31の下端部に前方に向けて突出するように形成されている。
 荷重検出部42は、台座部32において、レバー部31が前方に向けて傾けられたときに、突起部41が接触可能な位置に設けられている。荷重検出部42は、突起部41が接触した時、突起部41からの荷重を検出する。この荷重は、乗員がレバー部31を前方に傾斜させて、突起部41を荷重検出部42に押し付けるように操作した時の操作荷重(以下、押付荷重とする。)である。荷重検出部42は、例えばひずみゲージ式荷重センサである。荷重検出部42は、検出結果を制御装置60に送信する。
As shown in FIG. 2, the protrusion 41 is formed at the lower end portion of the lever portion 31 so as to protrude forward.
The load detection part 42 is provided in the base part 32 at a position where the protrusion 41 can come into contact when the lever part 31 is tilted forward. The load detection unit 42 detects the load from the projection 41 when the projection 41 comes into contact. This load is an operation load (hereinafter, referred to as a pressing load) when the occupant operates the lever portion 31 to tilt forward and presses the projection 41 against the load detection portion 42. The load detection unit 42 is, for example, a strain gauge type load sensor. The load detection unit 42 transmits the detection result to the control device 60.
 検知装置50は、電動車椅子1周辺の被検知物を検知するものである。検知装置50は、3次元測域センサ(レーザーレンジスキャナー(3Dスキャナー))である。検知装置50は、検知部51からレーザーを水平方向および上下方向に(三次元的に)発射して、被検知物からの反射波を検知部51にて受信することにより、被検知物の有無および検知部51から被検知物までの距離を被検知物情報として取得する。検知装置50は、レーザーを電動車椅子1の前方に放射状に発射する。検知装置50は、例えば、第一所定時間毎に被検知物情報を取得する。検知装置50が取得した被検知物情報は、制御装置60に出力される。 The detection device 50 detects an object to be detected around the electric wheelchair 1. The detection device 50 is a three-dimensional range sensor (laser range scanner (3D scanner)). The detection device 50 emits a laser from the detection unit 51 in the horizontal direction and the vertical direction (three-dimensionally), and receives a reflected wave from the detection object by the detection unit 51, thereby detecting the presence or absence of the detection object. And the distance from the detection part 51 to a to-be-detected object is acquired as to-be-detected object information. The detection device 50 emits lasers radially in front of the electric wheelchair 1. For example, the detection device 50 acquires detected object information every first predetermined time. The detected object information acquired by the detection device 50 is output to the control device 60.
 制御装置60は、入力情報に基づいて、駆動装置20の駆動量を制御して電動車椅子1を走行させるものである。制御装置60は、図4に示すように、駆動装置20、操作装置30、解除要求検出装置40および検知装置50が接続されている。制御装置60は、走行制御部61および衝突抑制制御部62を備えている。 The control device 60 controls the drive amount of the drive device 20 based on the input information to run the electric wheelchair 1. As shown in FIG. 4, the control device 60 is connected to the drive device 20, the operation device 30, the release request detection device 40, and the detection device 50. The control device 60 includes a travel control unit 61 and a collision suppression control unit 62.
 走行制御部61は、電動車椅子1を走行させる走行制御を行うものである。走行制御部61は、直進速度導出部61a、旋回速度導出部61bおよび駆動量制御部61cを備えている。 The traveling control unit 61 performs traveling control for traveling the electric wheelchair 1. The travel control unit 61 includes a straight traveling speed deriving unit 61a, a turning speed deriving unit 61b, and a drive amount control unit 61c.
 直進速度導出部61aは、電動車椅子1の直進速度vを導出するものである。直進速度導出部61aには、操作装置30から入力情報である所望直進速度xjsを取得して、直進速度vに変換する。直進速度導出部61aは、具体的には、取得した所望直進速度xjsから、図5Aに示す第一マップM1に基づいて、直進速度vを導出する。第一マップM1は、所望直進速度xjsと直進速度vとの関係を示したものである。第一マップM1は、所望直進速度xjsと直進速度vとが、比例する比例部mv1と、所望直進速度xjsの大きさにかかわらず直進速度vが一定の値である不感部mv2備えている。直進速度vが正である場合、電動車椅子1が前進する。一方、直進速度vが負である場合、電動車椅子1が後退する。直進速度導出部61aは、導出した直進速度vを駆動量制御部61cに出力する。 The straight traveling speed deriving unit 61a derives the straight traveling speed v of the electric wheelchair 1. The straight traveling speed deriving unit 61a obtains the desired straight traveling speed xjs that is the input information from the controller device 30 and converts it into the straight traveling speed v. Specifically, the straight traveling speed deriving unit 61a derives the straight traveling speed v from the acquired desired straight traveling speed xjs based on the first map M1 shown in FIG. 5A. The first map M1 shows the relationship between the desired straight traveling speed xjs and the straight traveling speed v. The first map M1 includes a proportional part mv1 in which the desired straight speed xjs and the straight speed v are proportional, and a dead part mv2 in which the straight speed v is a constant value regardless of the magnitude of the desired straight speed xjs. When the straight traveling speed v is positive, the electric wheelchair 1 moves forward. On the other hand, when the straight traveling speed v is negative, the electric wheelchair 1 moves backward. The straight traveling speed deriving unit 61a outputs the derived straight traveling speed v to the drive amount control unit 61c.
 旋回速度導出部61bは、電動車椅子1の旋回速度wを導出するものである。旋回速度導出部61bは、操作装置30から入力情報である所望旋回速度yjsを取得して、旋回速度wに変換する。旋回速度導出部61bは、具体的には、取得した所望旋回速度yjsから、図5Bに示す第二マップM2に基づいて、旋回速度wを導出する。第二マップM2は、所望旋回速度yjsと旋回速度wとの関係を示したものである。第二マップM2は、所望旋回速度yjsと旋回速度wとが比例する比例部mw1と、所望旋回速度yjsの大きさにかかわらず旋回速度wが一定の値である不感部mw2を備えている。旋回速度wが正である場合、電動車椅子1が右旋回する。一方、旋回速度wが負である場合、電動車椅子1が左旋回する。旋回速度導出部61bは、導出した旋回速度wを駆動量制御部61cに出力する。 The turning speed deriving unit 61 b is for deriving the turning speed w of the electric wheelchair 1. The turning speed deriving unit 61b acquires the desired turning speed yjs that is input information from the operation device 30, and converts it to the turning speed w. Specifically, the turning speed deriving unit 61b derives the turning speed w from the acquired desired turning speed yjs based on the second map M2 shown in FIG. 5B. The second map M2 shows the relationship between the desired turning speed yjs and the turning speed w. The second map M2 includes a proportional part mw1 in which the desired turning speed yjs and the turning speed w are proportional, and a dead part mw2 in which the turning speed w is a constant value regardless of the magnitude of the desired turning speed yjs. When the turning speed w is positive, the electric wheelchair 1 turns right. On the other hand, when the turning speed w is negative, the electric wheelchair 1 turns left. The turning speed deriving unit 61b outputs the derived turning speed w to the drive amount control unit 61c.
 駆動量制御部61cは、直進速度導出部61aから取得した直進速度vおよび旋回速度導出部61bから取得した旋回速度wに基づいて、駆動装置20の駆動量(回転数)を制御する。駆動量制御部61cは、取得した直進速度vおよび旋回速度wに基づいて、左駆動輪13aの回転速度および右駆動輪13bの回転速度を導出する。各駆動輪13a,13bの回転速度の大きさが、直進速度vの大きさに比例するように、かつ、左駆動輪13aの回転速度と右駆動輪13bとの回転速度の差の大きさが、旋回速度wの大きさに比例するように、各駆動輪13a,13bの回転速度が導出される。直進速度vおよび旋回速度wと各駆動輪13a,13bの回転速度との関係は、予め実験等により実測されて導出されている。なお、駆動装置20がPWM制御されているため、駆動装置20の制御指令値は、デューティ比にて算出される。また、駆動量制御部61cは、駆動量抑制部61c1を備えている。駆動量抑制部61c1は、衝突抑制制御部62からの制御指令によって、駆動装置20の駆動量を抑制する(後述する)。 The driving amount control unit 61c controls the driving amount (the number of rotations) of the driving device 20 based on the straight traveling speed v acquired from the straight traveling speed deriving unit 61a and the turning speed w acquired from the turning speed deriving unit 61b. The drive amount control unit 61c derives the rotation speed of the left drive wheel 13a and the rotation speed of the right drive wheel 13b based on the acquired straight traveling speed v and turning speed w. The magnitude of the rotational speed of each drive wheel 13a, 13b is proportional to the magnitude of the straight traveling speed v, and the magnitude of the difference between the rotational speed of the left drive wheel 13a and the rotational speed of the right drive wheel 13b is large. The rotational speeds of the drive wheels 13a and 13b are derived so as to be proportional to the magnitude of the turning speed w. The relationship between the straight traveling speed v and the turning speed w and the rotational speed of each of the drive wheels 13a and 13b is derived by being measured in advance through experiments or the like. Since the drive device 20 is PWM-controlled, the control command value for the drive device 20 is calculated by the duty ratio. The drive amount control unit 61c includes a drive amount suppression unit 61c1. The drive amount suppression unit 61c1 suppresses the drive amount of the drive device 20 in accordance with a control command from the collision suppression control unit 62 (described later).
 衝突抑制制御部62は、電動車椅子1と被検知物との衝突を抑制する衝突抑制制御を行うものである。衝突抑制制御部62は、図4に示すように、進路予測部62a、基準抑制領域設定部62b、縮小抑制領域設定部62c、解除要求取得部62d、領域切替部62eおよび障害物有無判定部62fを備えている。 The collision suppression control unit 62 performs collision suppression control for suppressing the collision between the electric wheelchair 1 and the detected object. As shown in FIG. 4, the collision suppression control unit 62 includes a course prediction unit 62a, a reference suppression region setting unit 62b, a reduction suppression region setting unit 62c, a release request acquisition unit 62d, a region switching unit 62e, and an obstacle presence / absence determination unit 62f. It has.
 進路予測部62aは、操作装置30からの入力情報(所望直進速度xjsおよび所望旋回速度yjs)に基づいて、電動車椅子1の進路を予測するものである。進路予測部62aは、図6に示すように、極座標C上にて、電動車椅子1の進路を予測する。極座標Cは、水平面と平行に配設され、電動車椅子1の前端中央位置を原点C0とするとともに、図6の上側を電動車椅子1の前方とした極座標である。極座標Cの角度範囲は、検知装置50が被検知物を検知可能な角度範囲に相当する。極座標Cは、径方向および周方向に所定間隔(例えば、径方向に1m間隔および周方向に5°間隔)に区画された複数のグリッドGを有している。 The course prediction unit 62a predicts the course of the electric wheelchair 1 based on input information (desired straight traveling speed xjs and desired turning speed yjs) from the operation device 30. The course prediction unit 62a predicts the course of the electric wheelchair 1 on the polar coordinates C as shown in FIG. The polar coordinates C are arranged in parallel with the horizontal plane, and are polar coordinates in which the center position of the front end of the electric wheelchair 1 is the origin C0 and the upper side in FIG. The angle range of the polar coordinates C corresponds to an angle range in which the detection device 50 can detect an object to be detected. The polar coordinates C include a plurality of grids G that are partitioned at predetermined intervals in the radial direction and the circumferential direction (for example, at intervals of 1 m in the radial direction and 5 ° intervals in the circumferential direction).
 進路予測部62aが予測する電動車椅子1の進路である予測進行領域Wyは、具体的には、制御装置60が入力情報を取得した時点から第二所定時間(例えば5秒)経過した時点までの電動車椅子1の移動軌跡にて示される。すなわち、予測進行領域Wyの幅は、電動車椅子1の幅に相当する。予測進行領域Wyは、直進速度vおよび旋回速度wから、予め実験等により実測されて導出された所定の関数に基づいて生成される。予測進行領域Wyは、制御装置60が操作装置30からの入力情報を取得する第一所定時間毎に生成(更新)される。
 また、極座標Cの領域のうち、予測進行領域Wyの両側の領域は、周辺領域Rsとして生成される。
Specifically, the predicted progress area Wy that is the course of the electric wheelchair 1 predicted by the course prediction unit 62a is from the time when the control device 60 acquires the input information to the time when a second predetermined time (for example, 5 seconds) elapses. It is shown by the movement locus of the electric wheelchair 1. That is, the width of the predicted progress area Wy corresponds to the width of the electric wheelchair 1. The predicted progress area Wy is generated based on a predetermined function that is obtained by actual measurement through experiments or the like from the straight traveling speed v and the turning speed w. The predicted progress area Wy is generated (updated) every first predetermined time when the control device 60 acquires input information from the operation device 30.
In addition, among the regions of polar coordinates C, the regions on both sides of the predicted progress region Wy are generated as the peripheral region Rs.
 基準抑制領域設定部62bは、検知装置50によって検知された被検知物が領域内に位置する時に、電動車椅子1の走行が抑制される抑制領域であって、基準となる基準抑制領域Rbを設定するものである。基準抑制領域Rbは、図7に示すように、予測進行領域Wyに沿って延び、かつ、予測進行領域Wyの幅より大きくかつ、基準値となる基準幅Bbが設定された扇状に設定される。基準抑制領域Rbの形状は、入力情報の変化による予測進行領域Wyの変化に応じて変化する。図7に示す基準抑制領域Rbの形状は、予測進行領域Wyが前方に向けて真直ぐに延びているときの形状である。検知装置50によって検知された被検知物が基準抑制領域Rb内に位置した時に、電動車椅子1の走行が抑制される(後述する)。基準抑制領域設定部62bによって設定された基準抑制領域Rbは、領域切替部62eに出力される。 The reference suppression region setting unit 62b is a suppression region in which the traveling of the electric wheelchair 1 is suppressed when the detection object detected by the detection device 50 is located in the region, and sets a reference suppression region Rb that serves as a reference. To do. As shown in FIG. 7, the reference suppression region Rb is set in a fan shape that extends along the prediction progress region Wy, is larger than the width of the prediction progress region Wy, and has a reference width Bb that serves as a reference value. . The shape of the reference suppression region Rb changes according to a change in the predicted progress region Wy due to a change in input information. The shape of the reference suppression region Rb illustrated in FIG. 7 is a shape when the predicted progress region Wy extends straight forward. When the detection object detected by the detection device 50 is positioned in the reference suppression region Rb, the traveling of the electric wheelchair 1 is suppressed (described later). The reference suppression region Rb set by the reference suppression region setting unit 62b is output to the region switching unit 62e.
 縮小抑制領域設定部62cは、基準抑制領域設定部62bによって設定された基準抑制領域Rbに対して、縮小された抑制領域である縮小抑制領域Rr1,Rr2を設定するものである。縮小抑制領域設定部62cは、第一縮小抑制領域Rr1および第二縮小抑制領域Rr2を設定する。第一縮小抑制領域Rr1は、図8に示すように、予測進行領域Wyに沿って延び、かつ、第一幅Brが設定された扇状に設定される。第一幅Brは、予測進行領域Wyの幅と基準幅Bbとの間の値に設定されている。すなわち、第一縮小抑制領域Rr1は、基準抑制領域Rb内に含まれる領域である。第一縮小抑制領域Rr1の形状は、入力情報の変化による予測進行領域Wyの変化に応じて変化する。図8に示す第一縮小抑制領域Rr1の形状は、予測進行領域Wyが前方に向けて真直ぐに延びているときの形状である。 The reduction suppression region setting unit 62c sets reduction suppression regions Rr1 and Rr2 that are reduced suppression regions with respect to the reference suppression region Rb set by the reference suppression region setting unit 62b. The reduction suppression region setting unit 62c sets the first reduction suppression region Rr1 and the second reduction suppression region Rr2. As shown in FIG. 8, the first reduction suppression region Rr1 extends along the predicted progress region Wy and is set in a fan shape with the first width Br set. The first width Br is set to a value between the width of the predicted progress area Wy and the reference width Bb. That is, the first reduction suppression region Rr1 is a region included in the reference suppression region Rb. The shape of the first reduction suppression region Rr1 changes according to the change in the predicted progress region Wy due to the change in input information. The shape of the first reduction suppression region Rr1 illustrated in FIG. 8 is a shape when the predicted progress region Wy extends straight forward.
 また、第二縮小抑制領域Rr2は、予測進行領域Wyと同じ領域に設定される。すなわち、基準抑制領域Rb、第一縮小抑制領域Rr1、第二縮小抑制領域Rr2の順に、幅が段階的に狭くなるように設定されている。検知装置50によって検知された被検知物が各縮小抑制領域Rr1,Rr2内に位置した時に、電動車椅子1の走行が抑制される(後述する)。縮小抑制領域設定部62cによって設定された各縮小抑制領域Rr1,Rr2は、領域切替部62eに出力される。このように、本第一実施形態の抑制領域は、基準抑制領域Rb、第一縮小抑制領域Rr1および第二縮小抑制領域Rr2の三つの抑制領域が設定されている。 Also, the second reduction suppression region Rr2 is set to the same region as the predicted progress region Wy. That is, the width is set to be gradually reduced in the order of the reference suppression region Rb, the first reduction suppression region Rr1, and the second reduction suppression region Rr2. When the detection object detected by the detection device 50 is positioned in each of the reduction suppression regions Rr1 and Rr2, traveling of the electric wheelchair 1 is suppressed (described later). The respective reduction suppression regions Rr1 and Rr2 set by the reduction suppression region setting unit 62c are output to the region switching unit 62e. Thus, the three suppression areas of the reference suppression area Rb, the first reduction suppression area Rr1, and the second reduction suppression area Rr2 are set as the suppression area of the first embodiment.
 解除要求取得部62dは、解除要求の強さを取得するものである。解除要求取得部62dは、具体的には、荷重検出部42によって検出された乗員の押付荷重を取得する。解除要求取得部62dによって取得された押付荷重は、領域切替部62eに出力される。 The cancellation request acquisition unit 62d acquires the strength of the cancellation request. Specifically, the release request acquisition unit 62d acquires the pressing load of the occupant detected by the load detection unit 42. The pressing load acquired by the release request acquisition unit 62d is output to the region switching unit 62e.
 領域切替部62eは、解除要求検出装置40(解除要求取得部62d)によって検出された解除要求の強さおよび障害物有無判定部62fの判定結果に基づいて、基準抑制領域設定部62bによって設定された基準抑制領域Rbから、縮小抑制領域設定部62cによって設定された縮小抑制領域Rr1,Rr2に切替えるものである。領域切替部62eは、具体的には、障害物の有無、および、解除要求取得部62dからの押付荷重の大きさに基づいて、基準抑制領域Rbから、各縮小抑制領域Rr1,Rr2に切替える。領域切替部62eは、本実施形態においては、後述する領域切替制御によって基準抑制領域Rbと各縮小抑制領域Rr1,Rr2とを切替える(選択する)。領域切替部62eによって切替えられた各縮小抑制領域Rr1,Rr2は、障害物有無判定部62fに出力される。また、領域切替部62eが基準抑制領域Rbを切替えない場合、基準抑制領域Rbが障害物有無判定部62fに出力される。 The region switching unit 62e is set by the reference suppression region setting unit 62b based on the strength of the cancellation request detected by the cancellation request detection device 40 (the cancellation request acquisition unit 62d) and the determination result of the obstacle presence / absence determination unit 62f. The reference suppression region Rb is switched to the reduction suppression regions Rr1 and Rr2 set by the reduction suppression region setting unit 62c. Specifically, the region switching unit 62e switches from the reference suppression region Rb to each of the reduction suppression regions Rr1 and Rr2 based on the presence or absence of an obstacle and the magnitude of the pressing load from the release request acquisition unit 62d. In the present embodiment, the region switching unit 62e switches (selects) the reference suppression region Rb and the reduction suppression regions Rr1 and Rr2 by region switching control described later. The respective reduction suppression regions Rr1 and Rr2 switched by the region switching unit 62e are output to the obstacle presence / absence determining unit 62f. Further, when the region switching unit 62e does not switch the reference suppression region Rb, the reference suppression region Rb is output to the obstacle presence / absence determination unit 62f.
 障害物有無判定部62fは、検知装置50によって検知された被検知物情報および領域切替部62eからの抑制領域に基づいて、障害物の有無を判定するものである。障害物は、抑制領域内に位置する被検知物である。すなわち、障害物有無判定部62fは、検知装置50によって検知された被検知物が、領域切替部62eからの抑制領域内に位置する場合、障害物が有ると判定する。一方、障害物有無判定部62fは、検知装置50によって検知された被検知物が、領域切替部62eからの抑制領域内に位置しない(すなわち、抑制領域外に位置する)場合、障害物が無いと判定する。 The obstacle presence / absence determination unit 62f determines the presence / absence of an obstacle based on the detected object information detected by the detection device 50 and the suppression region from the region switching unit 62e. The obstacle is an object to be detected that is located in the suppression region. That is, the obstacle presence / absence determination unit 62f determines that there is an obstacle when the detected object detected by the detection device 50 is located within the suppression region from the region switching unit 62e. On the other hand, the obstacle presence / absence determination unit 62f has no obstacle when the detected object detected by the detection device 50 is not located within the suppression region from the region switching unit 62e (that is, located outside the suppression region). Is determined.
 障害物有無判定部62fが行う障害物の有無を判定する障害物有無判定制御について説明する。はじめに、検知装置50からの被検知物情報が、極座標Cに投影される。被検知物情報は、被検知物の三次元位置情報を表す複数の点Pから構成された点群PGの座標データである。図7および図8に示すように、極座標Cに投影された点群PGの点Pの個数が所定個数以上であるグリッドGが、被検知物が存在するグリッドGである被検知物グリッドとされる。所定個数は、例えば3個である。被検知物グリッドと抑制領域とが重なる場合、障害物有無判定部62fは、障害物が有ると判定する。具体的には、図7に示すように、検知装置50からの被検知情報に基づいて三つの被検知物グリッドGk1,Gk2,Gk3があり、かつ、抑制領域が基準抑制領域設定部62bによって設定された基準抑制領域Rbである場合において、二つの被検知物グリッドGk2,Gk3が基準抑制領域Rbと重なっているとき、障害物有無判定部62fは、障害物が有ると判定する。 The obstacle presence / absence determination control for determining the presence / absence of an obstacle performed by the obstacle presence / absence determination unit 62f will be described. First, the detected object information from the detection device 50 is projected onto the polar coordinates C. The detected object information is coordinate data of a point group PG composed of a plurality of points P representing the three-dimensional position information of the detected object. As shown in FIGS. 7 and 8, a grid G in which the number of points P of the point group PG projected onto the polar coordinates C is equal to or greater than a predetermined number is a detected object grid that is a grid G in which the detected object exists. The The predetermined number is, for example, three. When the detected object grid and the suppression region overlap, the obstacle presence / absence determination unit 62f determines that there is an obstacle. Specifically, as shown in FIG. 7, there are three detected object grids Gk1, Gk2, Gk3 based on the detected information from the detection device 50, and the suppression region is set by the reference suppression region setting unit 62b. If the detected object grids Gk2 and Gk3 overlap the reference suppression area Rb in the case of the reference suppression area Rb, the obstacle presence / absence determination unit 62f determines that there is an obstacle.
 一方、被検知物グリッドと抑制領域とが重なっていない場合、障害物有無判定部62fは、障害物が無いと判定する。具体的には、図8に示すように、検知装置50からの被検知情報に基づいて三つの被検知物グリッドGk1,Gk2,Gk3があり、かつ、抑制領域が縮小抑制領域設定部62cによって設定された第一縮小抑制領域Rr1である場合において、三つの被検知物グリッドGk1,Gk2,Gk3が第一縮小抑制領域Rr1と重なっていないとき、障害物有無判定部62fは、障害物が無いと判定する。なお、被検知物情報が第一所定時間毎に取得されるため、障害物有無判定部62fによる障害物の有無の判定は、第一所定時間毎に行われる。障害物有無判定部62fの判定結果は、領域切替部62eおよび駆動量抑制部61c1に出力される。 On the other hand, if the detected object grid and the suppression region do not overlap, the obstacle presence / absence determination unit 62f determines that there is no obstacle. Specifically, as shown in FIG. 8, there are three detected object grids Gk1, Gk2, and Gk3 based on the detected information from the detecting device 50, and the suppression region is set by the reduction suppression region setting unit 62c. In the case where the first reduction suppression region Rr1 is performed, when the three detected object grids Gk1, Gk2, and Gk3 do not overlap the first reduction suppression region Rr1, the obstacle presence / absence determination unit 62f determines that there is no obstacle. judge. Since the detected object information is acquired every first predetermined time, the obstacle presence / absence determination unit 62f determines whether there is an obstacle every first predetermined time. The determination result of the obstacle presence / absence determination unit 62f is output to the region switching unit 62e and the drive amount suppression unit 61c1.
 駆動量抑制部61c1は、障害物有無判定部62fによって障害物が有ると判定されている間、電動車椅子1の走行を抑制するものである。駆動量抑制部61c1は、具体的には、駆動装置20の駆動量を抑制するものである。駆動量制御部61cは、本実施形態においては、駆動装置20の最大駆動量を抑制する。これにより、直進速度vの最高速度が抑制される。駆動量抑制部61c1は、障害物有無判定部62fによって障害物が有ると判定されている間、直進速度vの最高速度を最高直進速度vxに抑制する。最高直進速度vxは、電動車椅子1(電動車椅子1の前端中央(原点C0))から抑制領域内に位置する被検知物までの最短距離Dmin(図7参照)から、図9に示す第三マップM3に基づいて導出される。最短距離Dminは、被検知物情報から導出することができる。最短距離Dminは、障害物有無判定部62fにより障害物が有ると判定されている間、駆動量抑制部61c1によって導出される。第三マップM3は、最短距離Dminと最高直進速度vxとの関係を示したものである。最短距離Dminと最高直進速度vxとの関係は、最短距離Dminが短くなるに従って、最高直進速度vxが小さくなるように設定されている。一方、駆動量抑制部61c1は、障害物有無判定部62fによって障害物が無いと判定された場合において、電動車椅子1の走行が抑制されているときは、その抑制を解除する。 The driving amount suppression unit 61c1 suppresses the traveling of the electric wheelchair 1 while it is determined by the obstacle presence / absence determination unit 62f that there is an obstacle. Specifically, the drive amount suppression unit 61c1 suppresses the drive amount of the drive device 20. The drive amount control unit 61c suppresses the maximum drive amount of the drive device 20 in the present embodiment. Thereby, the maximum speed of the straight traveling speed v is suppressed. The drive amount suppression unit 61c1 suppresses the maximum straight speed v to the maximum straight speed vx while the obstacle presence / absence determination unit 62f determines that there is an obstacle. The maximum straight traveling speed vx is determined from the shortest distance Dmin (see FIG. 7) from the electric wheelchair 1 (the center of the front end of the electric wheelchair 1 (origin C0)) to the detected object located in the suppression region, as shown in FIG. Derived based on M3. The shortest distance Dmin can be derived from the detected object information. The shortest distance Dmin is derived by the drive amount suppression unit 61c1 while it is determined by the obstacle presence / absence determination unit 62f that there is an obstacle. The third map M3 shows the relationship between the shortest distance Dmin and the maximum straight traveling speed vx. The relationship between the shortest distance Dmin and the maximum straight travel speed vx is set so that the maximum straight travel speed vx decreases as the shortest distance Dmin decreases. On the other hand, when it is determined by the obstacle presence / absence determination unit 62f that there is no obstacle, the driving amount suppression unit 61c1 cancels the suppression when the traveling of the electric wheelchair 1 is suppressed.
 次に、制御装置60が電動車椅子1を走行させる走行制御について説明する。乗員が操作装置30を操作することにより、操作装置30からの入力情報を制御装置60が取得した時点から、制御装置60は、走行制御を開始する。上述したように、操作装置30からの入力情報に基づいて、直進速度導出部61aが直進速度vを導出するとともに、旋回速度導出部61bが旋回速度wを導出する。直進速度導出部61aおよび旋回速度導出部61bの導出結果に基づいて、駆動量制御部61cが駆動装置20の駆動量を制御して、電動車椅子1を走行させる。制御装置60が走行制御を行っている際に、乗員が操作装置30の位置をニュートラル位置にした場合、直進速度vおよび旋回速度wがゼロとなることで、電動車椅子1が停止する。この場合、制御装置60の走行制御が終了する。 Next, traveling control in which the control device 60 causes the electric wheelchair 1 to travel will be described. When the control device 60 acquires input information from the operation device 30 when the occupant operates the operation device 30, the control device 60 starts traveling control. As described above, based on the input information from the controller device 30, the straight traveling speed deriving unit 61a derives the straight traveling speed v, and the turning speed deriving unit 61b derives the turning speed w. Based on the derivation results of the straight traveling speed deriving unit 61a and the turning speed deriving unit 61b, the driving amount control unit 61c controls the driving amount of the driving device 20 to cause the electric wheelchair 1 to travel. When the control device 60 performs the travel control and the occupant changes the position of the operation device 30 to the neutral position, the linear wheel speed v and the turning speed w become zero, and the electric wheelchair 1 stops. In this case, the travel control of the control device 60 ends.
 次に、制御装置60が行う衝突抑制制御について、図10に示すフローチャートに沿って説明する。衝突抑制制御は、電動車椅子1の走行制御中において、抑制領域内に被検知物が有る場合、電動車椅子1の走行速度を抑制して、乗員が被検知物を回避するための操作時間に余裕を持たせることで、電動車椅子1と被検知物との衝突を抑制する制御である。なお、走行開始時において、抑制領域は、基準抑制領域Rbに設定されている。 Next, the collision suppression control performed by the control device 60 will be described along the flowchart shown in FIG. In the collision control of the electric wheelchair 1, when there is a detected object in the suppression region, the collision suppression control suppresses the traveling speed of the electric wheelchair 1 so that the occupant has enough time to avoid the detected object. This is control that suppresses the collision between the electric wheelchair 1 and the object to be detected. At the start of traveling, the suppression region is set to the reference suppression region Rb.
 走行制御が開始された場合、制御装置60は、ステップS102にて、電動車椅子1の進路を予測する(進路予測部62a)。制御装置60は、ステップS104にて、基準抑制領域Rbおよび各縮小抑制領域Rr1,Rr2を設定する(基準抑制領域設定部62b,縮小抑制領域設定部62c)。そして、制御装置60は、ステップS106にて、領域切替制御を実行する(領域切替部62e)。領域切替制御について、図11に示すフローチャートを用いて説明する。 When the travel control is started, the control device 60 predicts the course of the electric wheelchair 1 in step S102 (course prediction unit 62a). In step S104, the control device 60 sets the reference suppression region Rb and the respective reduction suppression regions Rr1, Rr2 (reference suppression region setting unit 62b, reduction suppression region setting unit 62c). And the control apparatus 60 performs area | region switching control in step S106 (area | region switching part 62e). The area switching control will be described with reference to the flowchart shown in FIG.
 制御装置60は、ステップS202にて、障害物があるか否かを判定する(障害物有無判定部62f)。障害物が無いと判定されている場合、制御装置60は、ステップS202にて「NO」と判定する。そして、制御装置60は、ステップS204にて、抑制領域を基準抑制領域Rbにして、領域切替制御を終了する。障害物が無いと判定されている場合、電動車椅子1の走行の抑制が行われないため(駆動量抑制部61c1)、電動車椅子1の走行と、乗員が意図する走行との間のギャップ(以下、走行ギャップとする。)が生じていない。よって、抑制領域は、最も領域が大きい基準抑制領域Rbにされる。一方、障害物が有ると判定されている場合(障害物有無判定部62f)、制御装置60は、ステップS202にて「YES」と判定し、プログラムをステップS206に進める。 In step S202, the control device 60 determines whether there is an obstacle (obstacle presence determination unit 62f). If it is determined that there is no obstacle, the control device 60 determines “NO” in step S202. In step S204, the control device 60 sets the suppression region as the reference suppression region Rb, and ends the region switching control. When it is determined that there is no obstacle, since the travel of the electric wheelchair 1 is not suppressed (driving amount suppression unit 61c1), the gap between the travel of the electric wheelchair 1 and the travel intended by the occupant (hereinafter referred to as the “travel”). , The running gap) does not occur. Therefore, the suppression region is set to the reference suppression region Rb having the largest region. On the other hand, when it is determined that there is an obstacle (obstacle presence / absence determination unit 62f), the control device 60 determines “YES” in step S202, and advances the program to step S206.
 制御装置60は、ステップS206にて、解除要求の強さが第一解除要求判定値以下であるか否かを判定する。制御装置60は、具体的には、押付荷重が第一解除要求判定値以下であるか否かを判定する。第一解除要求判定値は、走行ギャップが非常に小さい場合の押付荷重に設定されている。第一解除要求判定値は、例えば、1Nである。走行ギャップが非常に小さいか、走行ギャップが無い場合、押付荷重が非常に小さい。この場合、押付荷重が第一解除要求判定値以下であるとき、制御装置60は、ステップS206にて「YES」と判定する。そして、制御装置60は、ステップS204にて抑制領域を基準抑制領域Rbにして、領域切替制御を終了する。 In step S206, the control device 60 determines whether the strength of the cancellation request is equal to or less than the first cancellation request determination value. Specifically, the control device 60 determines whether or not the pressing load is equal to or less than the first release request determination value. The first release request determination value is set to the pressing load when the traveling gap is very small. The first release request determination value is, for example, 1N. When the traveling gap is very small or there is no traveling gap, the pressing load is very small. In this case, when the pressing load is equal to or less than the first release request determination value, the control device 60 determines “YES” in step S206. Then, the control device 60 sets the suppression region as the reference suppression region Rb in step S204, and ends the region switching control.
 一方、走行ギャップが比較的大きい場合、押付荷重が比較的大きくなる。この場合、押付荷重が第一解除要求判定値より大きいとき、制御装置60は、ステップS206にて「NO」と判定し、プログラムをステップS208に進める。 On the other hand, when the traveling gap is relatively large, the pressing load becomes relatively large. In this case, when the pressing load is larger than the first release request determination value, the control device 60 determines “NO” in step S206, and advances the program to step S208.
 制御装置60は、ステップS208にて、解除要求の強さ(押付荷重)が第二解除要求判定値以下であるか否かを判定する。第二解除要求判定値は、第一解除要求判定値より大きい値(例えば10N)に設定されている。走行ギャップが比較的大きい場合において、押付荷重が第二解除要求判定値以下であるとき、制御装置60は、ステップS208にて「YES」と判定する。そして、制御装置60は、ステップS210にて、抑制領域を第一縮小抑制領域Rr1にして、領域切替制御を終了する。一方、走行ギャップが比較的大きい場合において、押付荷重が第二解除要求判定値より大きいとき、制御装置60は、ステップS208にて「NO」と判定する。そして、制御装置60は、ステップS212にて、抑制領域を第二縮小抑制領域Rr2にして、領域切替制御を終了する。 In step S208, the control device 60 determines whether or not the strength of the release request (pressing load) is equal to or less than the second release request determination value. The second release request determination value is set to a value (for example, 10N) larger than the first release request determination value. When the traveling gap is relatively large, when the pressing load is equal to or smaller than the second release request determination value, the control device 60 determines “YES” in step S208. In step S210, the control device 60 sets the suppression region to the first reduction suppression region Rr1, and ends the region switching control. On the other hand, when the traveling gap is relatively large and the pressing load is larger than the second release request determination value, the control device 60 determines “NO” in step S208. In step S212, the control device 60 sets the suppression region to the second reduction suppression region Rr2, and ends the region switching control.
 図10のフローチャートに戻って説明を続ける。
 制御装置60は、ステップS108にて障害物があるか否かを判定する。領域切替制御によって切替えられた抑制領域内に被検知物が位置する場合、障害物が有ると判定される(障害物有無判定部62f)。この場合、制御装置60は、ステップS108にて「YES」と判定し、ステップS110にて電動車椅子1の走行を抑制する(駆動量抑制部61c1)。そして、プログラムをステップS102に戻す。
Returning to the flowchart of FIG.
The control device 60 determines whether or not there is an obstacle in step S108. When the detected object is located within the suppression region switched by the region switching control, it is determined that there is an obstacle (obstacle presence determination unit 62f). In this case, the control device 60 determines “YES” in step S108, and suppresses the travel of the electric wheelchair 1 in step S110 (drive amount suppression unit 61c1). Then, the program returns to step S102.
 一方、領域切替制御によって切替えられた抑制領域外に被検知物が位置する(抑制領域内に被検知物が位置していない)場合、障害物が無いと判定される(障害物有無判定部62f)。この場合、制御装置60は、ステップS108にて「NO」と判定し、ステップS112にて電動車椅子1の走行が抑制されているか否かを判定する。電動車椅子1の走行の抑制がされていない場合、制御装置60は、ステップS112にて「NO」と判定し、プログラムをステップS102に戻す。一方、電動車椅子1の走行の抑制が既にされている場合、制御装置60は、ステップS112にて「YES」と判定し、ステップS114にて電動車椅子1の走行の抑制を解除して(駆動量抑制部61c1)、プログラムをステップS102に戻す。 On the other hand, when the detected object is located outside the suppression region switched by the region switching control (the detected object is not positioned within the suppression region), it is determined that there is no obstacle (obstacle presence determination unit 62f). ). In this case, the control device 60 determines “NO” in Step S108, and determines whether or not traveling of the electric wheelchair 1 is suppressed in Step S112. If the traveling of the electric wheelchair 1 is not suppressed, the control device 60 determines “NO” in step S112, and returns the program to step S102. On the other hand, when the driving of the electric wheelchair 1 is already suppressed, the control device 60 determines “YES” in step S112, and cancels the suppression of the driving of the electric wheelchair 1 in step S114 (drive amount). The suppressing unit 61c1) returns the program to step S102.
 次に、上述したフローチャートに沿って電動車椅子1が動作した場合について説明する。乗員が操作装置30のレバー部31を前方に向けて傾斜させていることにより、電動車椅子1が、走行を抑制されていないときの最高速度(例えば時速10km)にて走行している場合について説明する。このとき、予測進行領域Wyが前方に向けて真直ぐに形成される(ステップS102;進路予測部62a)。そして、予測進行領域Wyに基づいて、基準抑制領域Rbおよび縮小抑制領域Rr1,Rr2が設定され(ステップS104、基準抑制領域設定部62b,縮小抑制領域設定部62c)、障害物が無いと判定されている時には、抑制領域が基準抑制領域Rbとされる(ステップS106;領域切替部62e)。 Next, a case where the electric wheelchair 1 operates according to the above-described flowchart will be described. Explanation will be given on the case where the electric wheelchair 1 is traveling at the maximum speed (for example, 10 km / h) when traveling is not suppressed because the occupant tilts the lever portion 31 of the operating device 30 forward. To do. At this time, the predicted progress area Wy is formed straight forward (step S102; course prediction unit 62a). Then, based on the predicted progress region Wy, the reference suppression region Rb and the reduction suppression regions Rr1, Rr2 are set (step S104, the reference suppression region setting unit 62b, the reduction suppression region setting unit 62c), and it is determined that there is no obstacle. In this case, the suppression region is set as the reference suppression region Rb (step S106; region switching unit 62e).
 このとき、検知装置50によって被検知物が検知され、図7に示すように、被検知物が基準抑制領域Rbに位置した場合、電動車椅子1と被検知物との最短距離Dminに応じて、直進速度vの最高速度が抑制される(ステップS110;駆動量抑制部61c1)。抑制された直進速度vにて電動車椅子1が走行している場合において、被検知物が例えば静止物であり、乗員が、抑制された直進速度vより速く走りたいと感じたとき、走行ギャップが生じている。このとき、乗員が、電動車椅子1の走行の抑制に対して解除要求するため、レバー部31を前方にさらに傾斜させる。これによって、押圧荷重が、第一解除要求判定値と第二解除要求判定値との間の荷重となった場合、図8に示すように、基準抑制領域Rbが第一縮小抑制領域Rr1に切替わる(ステップS106;領域切替部62e)。 At this time, when the detection object is detected by the detection device 50 and the detection object is located in the reference suppression region Rb as shown in FIG. 7, according to the shortest distance Dmin between the electric wheelchair 1 and the detection object, The maximum speed of the straight traveling speed v is suppressed (step S110; drive amount suppression unit 61c1). When the electric wheelchair 1 is traveling at the suppressed straight traveling speed v, the detected object is, for example, a stationary object, and when the occupant feels that the driver wants to travel faster than the restrained straight traveling speed v, the traveling gap is Has occurred. At this time, since the occupant makes a release request for suppressing the traveling of the electric wheelchair 1, the lever portion 31 is further inclined forward. Accordingly, when the pressing load is a load between the first release request determination value and the second release request determination value, the reference suppression region Rb is cut into the first reduction suppression region Rr1 as shown in FIG. (Step S106; area switching unit 62e).
 これにより、被検知物が第一縮小抑制領域Rr1外に位置するため、電動車椅子1の走行の抑制が解除される(ステップS114;駆動量抑制部61c1)。よって、乗員は、電動車椅子1を、抑制されていない速度にて走行させることができる。このように、走行ギャップを抑制することにより、乗員の意図を反映した電動車椅子1の走行の抑制が行われる。 Thereby, since the object to be detected is located outside the first reduction suppression region Rr1, the suppression of the traveling of the electric wheelchair 1 is released (step S114; drive amount suppression unit 61c1). Therefore, the occupant can drive the electric wheelchair 1 at an uncontrolled speed. In this way, by suppressing the traveling gap, traveling of the electric wheelchair 1 reflecting the occupant's intention is suppressed.
 なお、基準抑制領域Rbが第一縮小抑制領域Rr1に切替わった場合においても(ステップS106;領域切替部62e)、被検知物が第一縮小抑制領域Rr1内に位置するとき、電動車椅子1の走行が抑制される(ステップS110;駆動量抑制部61c1)。また、乗員の解除要求の強さが比較的大きくなり、抑制領域が第二縮小抑制領域Rr2となった場合においても、被検知物が第二縮小抑制領域Rr2内に位置するとき、電動車椅子1の走行が抑制される。このように、乗員による解除要求がある場合においても、被検知物が抑制領域内に位置するときには、電動車椅子1の走行が抑制される。よって、被検知物と電動車椅子1との衝突が抑制される。さらに、乗員の意図に反して押圧荷重が比較的大きくなった場合や、操作装置30、解除要求検出装置40および制御装置60が故障した際において、解除要求の強さが各解除要求判定値より大きくなった場合においても、被検知物が抑制領域内に位置するときには、電動車椅子1の走行が抑制される。したがって、これらのような場合においても、被検知物と電動車椅子1との衝突が抑制される。 Even when the reference suppression region Rb is switched to the first reduction suppression region Rr1 (step S106; region switching unit 62e), when the detected object is located in the first reduction suppression region Rr1, the electric wheelchair 1 Travel is suppressed (step S110; drive amount suppression part 61c1). In addition, even when the strength of the occupant's release request becomes relatively large and the suppression region becomes the second reduction suppression region Rr2, the electric wheelchair 1 is detected when the detected object is located in the second reduction suppression region Rr2. Traveling is suppressed. Thus, even when there is a release request from the occupant, the traveling of the electric wheelchair 1 is suppressed when the detected object is located within the suppression region. Therefore, the collision between the detected object and the electric wheelchair 1 is suppressed. Furthermore, when the pressing load becomes relatively large against the occupant's intention or when the operation device 30, the release request detection device 40, and the control device 60 break down, the strength of the release request is greater than each release request determination value. Even when it becomes larger, the traveling of the electric wheelchair 1 is suppressed when the detected object is located within the suppression region. Therefore, even in these cases, the collision between the detected object and the electric wheelchair 1 is suppressed.
 本第一実施形態によれば、電動車椅子1は、乗員による操作装置30への入力に従って駆動される駆動装置20によって走行する電動車椅子1である。電動車椅子1は、電動車椅子1の周辺の被検知物を検知する検知装置50と、操作装置30に入力された情報である入力情報に基づいて、駆動装置20の駆動量を制御して電動車椅子1を走行させる制御装置60と、を備えている。制御装置60は、検知装置50によって検知された被検知物が領域内に位置する時に、電動車椅子1の走行が抑制をされる抑制領域であって、基準となる基準抑制領域Rbを設定する基準抑制領域設定部62bと、乗員の意思に基づいて、基準抑制領域設定部62bによって設定された基準抑制領域Rbに対して、縮小された抑制領域である縮小抑制領域Rr1,Rr2を設定する縮小抑制領域設定部62cと、を備えている。 According to the first embodiment, the electric wheelchair 1 is the electric wheelchair 1 that travels by the drive device 20 that is driven according to the input to the operation device 30 by the occupant. The electric wheelchair 1 controls the driving amount of the driving device 20 based on the detection device 50 that detects the objects to be detected around the electric wheelchair 1 and the input information that is the information input to the operation device 30, and the electric wheelchair. And a control device 60 for running 1. The control device 60 is a suppression region in which the traveling of the electric wheelchair 1 is suppressed when the detection object detected by the detection device 50 is located in the region, and a reference for setting a reference suppression region Rb as a reference Reduction suppression that sets the reduction suppression regions Rr1 and Rr2 that are reduced suppression regions with respect to the reference suppression region Rb set by the reference suppression region setting unit 62b based on the suppression region setting unit 62b and the occupant's intention An area setting unit 62c.
 これによれば、乗員の意思に基づいて、縮小抑制領域設定部62cが基準抑制領域Rbに対して縮小された縮小抑制領域Rr1,Rr2を設定する。すなわち、抑制領域は、縮小されることが可能となる。よって、基準抑制領域Rb内に被検知物が位置するために電動車椅子1の走行が抑制されている時に、基準抑制領域Rbが縮小抑制領域Rr1,Rr2に切替わる(縮小される)ことにより、基準抑制領域Rb内に位置する被検知物が縮小抑制領域Rr1,Rr2外に位置した場合、電動車椅子1の走行の抑制が解除される。この場合、基準抑制領域Rb内に被検知物が位置するために、乗員の意図する走行より電動車椅子1の走行が抑制されていたときには、電動車椅子1の走行の抑制が解除されることにより、電動車椅子1の抑制された走行と乗員の意図する走行との間のギャップが抑制される。よって、電動車椅子1は、乗員の意図を反映した電動車椅子1の走行の抑制を行うことができる。 According to this, based on the occupant's intention, the reduction suppression region setting unit 62c sets the reduction suppression regions Rr1 and Rr2 that are reduced with respect to the reference suppression region Rb. That is, the suppression area can be reduced. Therefore, when traveling of the electric wheelchair 1 is suppressed because the detected object is located in the reference suppression region Rb, the reference suppression region Rb is switched (reduced) to the reduction suppression regions Rr1, Rr2, When the object to be detected positioned in the reference suppression region Rb is positioned outside the reduction suppression regions Rr1, Rr2, the suppression of traveling of the electric wheelchair 1 is released. In this case, since the object to be detected is located in the reference suppression region Rb, when the traveling of the electric wheelchair 1 is suppressed from the traveling intended by the occupant, the suppression of the traveling of the electric wheelchair 1 is released, A gap between the traveling of the electric wheelchair 1 and the traveling intended by the occupant is suppressed. Therefore, the electric wheelchair 1 can suppress travel of the electric wheelchair 1 reflecting the occupant's intention.
 また、乗員の意思は、電動車椅子1の走行の抑制に対する解除要求であり、電動車椅子1は、乗員の操作により、解除要求の強さを検出する解除要求検出装置40をさらに備えている。制御装置60は、解除要求検出装置40によって検出された解除要求の強さに基づいて、基準抑制領域設定部62bによって設定された基準抑制領域Rbから、縮小抑制領域設定部62cによって設定された縮小抑制領域Rr1,Rr2に切替える領域切替部62eと、をさらに備えている。
 これによれば、乗員が解除要求検出装置40を操作することにより、電動車椅子1の走行の抑制に対する解除要求が、電動車椅子1に確実に伝達される。よって、領域切替部62eによる基準抑制領域Rbから縮小抑制領域Rr1,Rr2への切換えが確実に行われる。したがって、電動車椅子1の抑制された走行と、乗員の意図する走行との間のギャップが確実に抑制されるため、乗員の意図を反映した電動車椅子1の走行の抑制を、確実に行うことができる。
In addition, the occupant's intention is a cancellation request for restraining the traveling of the electric wheelchair 1, and the electric wheelchair 1 further includes a cancellation request detection device 40 that detects the strength of the cancellation request by the operation of the occupant. The control device 60 reduces the reduction set by the reduction suppression region setting unit 62c from the reference suppression region Rb set by the reference suppression region setting unit 62b based on the strength of the cancellation request detected by the cancellation request detection device 40. A region switching unit 62e that switches to the suppression regions Rr1 and Rr2.
According to this, when the occupant operates the release request detection device 40, the release request for suppressing the traveling of the electric wheelchair 1 is reliably transmitted to the electric wheelchair 1. Therefore, switching from the reference suppression region Rb to the reduction suppression regions Rr1 and Rr2 is reliably performed by the region switching unit 62e. Therefore, since the gap between the traveling in which the electric wheelchair 1 is suppressed and the traveling intended by the occupant is reliably suppressed, the traveling of the electric wheelchair 1 reflecting the occupant's intention can be reliably performed. it can.
 また、縮小抑制領域設定部62cは、解除要求検出装置40によって検出された解除要求の強さが大きくなるにしたがって、縮小抑制領域を縮小するように設定する。
 これによれば、解除要求検出装置40によって検出される解除要求の強さが大きくなるにしたがって、縮小抑制領域が縮小するように設定されることにより、縮小抑制領域外に位置する被検知物が多くなる。よって、電動車椅子1の抑制された走行と、乗員の意図する走行との間のギャップがさらに抑制されるため、乗員の意図を反映した電動車椅子1の走行の抑制を、さらに行うことができる。
Further, the reduction suppression area setting unit 62c sets the reduction suppression area to be reduced as the strength of the cancellation request detected by the cancellation request detection device 40 increases.
According to this, as the strength of the cancellation request detected by the cancellation request detection device 40 is increased, the reduction suppression area is set to be reduced, so that the detection object located outside the reduction suppression area can be detected. Become more. Therefore, since the gap between the travel in which the electric wheelchair 1 is suppressed and the travel intended by the occupant is further suppressed, the travel of the electric wheelchair 1 reflecting the occupant's intention can be further suppressed.
 なお、本第一実施形態において、抑制領域は、乗員の解除要求(押付荷重)の大きさに基づいて、幅が段階的に狭くなるように形成されるが、本発明の要旨を逸脱しないように、抑制領域が、本第一実施形態の形状と異なる形状に設定されるようにしても良い。例えば、図12に示すように、原点C0から前方に向かうにしたがって幅が狭くなる四つの領域R1~R4を設定した場合、基準抑制領域Rbが四つの領域R1~R4を全て合わせた領域に設定される。また、第一縮小抑制領域Rr1が三つの領域R2~R4を合わせた領域に設定される。そして、第二縮小抑制領域Rr2が二つの領域R3,R4を合わせた領域に設定される。さらに、縮小抑制領域設定部62cが、第二縮小抑制領域Rr2より領域を小さくする第三縮小抑制領域を設定する場合、第三縮小抑制領域が、一つの領域R4から設定される。このように、縮小抑制領域は、基準抑制領域Rbに対して、前後方向に沿った長さが段階的に短くなるように設定される。
 また、縮小抑制領域設定部62cが縮小抑制領域を、基準抑制領域Rbと相似形状となるように段階的に縮小して設定する場合、縮小抑制領域は、基準抑制領域Rbに対して、前後方向に沿った長さが段階的に短くなるように、かつ、幅が段階的に狭くなるように設定される。
In the first embodiment, the suppression region is formed so that the width is gradually reduced based on the size of the occupant's release request (pressing load), but does not depart from the gist of the present invention. In addition, the suppression region may be set to a shape different from the shape of the first embodiment. For example, as shown in FIG. 12, when four regions R1 to R4 whose width decreases from the origin C0 toward the front are set, the reference suppression region Rb is set to a region where all four regions R1 to R4 are combined. Is done. Further, the first reduction suppression region Rr1 is set to a region where the three regions R2 to R4 are combined. Then, the second reduction suppression region Rr2 is set to a region where the two regions R3 and R4 are combined. Furthermore, when the reduction suppression region setting unit 62c sets a third reduction suppression region that is smaller than the second reduction suppression region Rr2, the third reduction suppression region is set from one region R4. As described above, the reduction suppression region is set such that the length along the front-rear direction is gradually reduced with respect to the reference suppression region Rb.
When the reduction suppression region setting unit 62c sets the reduction suppression region in a stepwise manner so as to have a similar shape to the reference suppression region Rb, the reduction suppression region is in the front-rear direction with respect to the reference suppression region Rb. Is set such that the length along the line becomes shorter stepwise and the width becomes smaller stepwise.
 (第二実施形態)
 次に、本発明による移動体の第二実施形態について、主として上述した第一実施形態と異なる部分について説明する。上述した第一実施形態と比べて、本第二実施形態は、解除要求検出装置40を備えておらず、さらに、衝突抑制制御部62の構成が異なっている。上述した第一実施形態の衝突抑制制御部62においては、乗員の解除要求に基づいて、抑制領域の切替を行っているが、本第二実施形態の衝突抑制制御部162は、周辺領域Rsに位置する被検知物の種類に基づいて、抑制領域の切替を行っている。また、本第二実施形態の衝突抑制制御部162においては、被検知物の種類等に基づいて、抑制領域を拡張するように変形させる領域拡張制御を行う。被検知物の種類は、静止物および運動物である。
(Second embodiment)
Next, the second embodiment of the moving body according to the present invention will be described mainly with respect to differences from the first embodiment described above. Compared with the first embodiment described above, the second embodiment does not include the release request detection device 40, and the configuration of the collision suppression control unit 62 is different. In the collision suppression control unit 62 of the first embodiment described above, the suppression region is switched based on the occupant's release request. However, the collision suppression control unit 162 of the second embodiment is in the peripheral region Rs. The suppression region is switched based on the type of the object to be detected. In addition, the collision suppression control unit 162 of the second embodiment performs region expansion control for deforming the suppression region so as to expand based on the type of the detected object. The types of detected objects are stationary objects and moving objects.
 本第二実施形態の衝突抑制制御部162は、図13に示すように、進路予測部162a、基準抑制領域設定部162b、縮小抑制領域設定部162c、周辺物有無判定部162g、周辺物種類判定部162h、占有率導出部162k、領域切替部162e、加速度導出部162m、領域拡張制御部162nおよび障害物有無判定部162fを備えている。周辺物種類判定部162hおよび加速度導出部162mには、直進速度導出部61aから直進速度v、および旋回速度導出部61bから旋回速度wが、第一所定時間毎に入力される。 As shown in FIG. 13, the collision suppression control unit 162 of the second embodiment includes a course prediction unit 162a, a reference suppression region setting unit 162b, a reduction suppression region setting unit 162c, a peripheral object presence / absence determination unit 162g, and a peripheral object type determination. Unit 162h, occupation rate deriving unit 162k, region switching unit 162e, acceleration deriving unit 162m, region expansion control unit 162n, and obstacle presence / absence determining unit 162f. The peripheral object type determination unit 162h and the acceleration deriving unit 162m are inputted with the straight traveling speed v from the straight traveling speed deriving unit 61a and the turning speed w from the turning speed deriving unit 61b every first predetermined time.
 進路予測部162aは、上述した第一実施形態と同様に、予測進行領域Wyおよび周辺領域Rsを生成する。予測進行領域Wyおよび周辺領域Rsは、基準抑制領域設定部162b、縮小抑制領域設定部162cおよび周辺物有無判定部162gに出力される。 The course prediction unit 162a generates the predicted progress area Wy and the peripheral area Rs as in the first embodiment described above. The prediction progress region Wy and the surrounding region Rs are output to the reference suppression region setting unit 162b, the reduction suppression region setting unit 162c, and the surrounding object presence / absence determination unit 162g.
 基準抑制領域設定部162bは、基準抑制領域Rbを設定する。本第二実施形態の基準抑制領域Rbは、図14に示すように、予測進行領域Wyに対して平行になるように形成されている。本第二実施形態の基準幅Bbは、電動車椅子1の幅のおよそ4倍となるように形成されている。
 縮小抑制領域設定部162cは、縮小抑制領域Rrを設定する。本第二実施形態における縮小抑制領域Rrは、一つの縮小抑制領域Rrのみとする。本第二実施形態の縮小抑制領域Rrは、予測進行領域Wyと同じ領域に設定されている。
The reference suppression region setting unit 162b sets the reference suppression region Rb. The reference suppression region Rb of the second embodiment is formed to be parallel to the predicted progress region Wy as shown in FIG. The reference width Bb of the second embodiment is formed to be about four times the width of the electric wheelchair 1.
The reduction suppression area setting unit 162c sets the reduction suppression area Rr. The reduction suppression region Rr in the second embodiment is only one reduction suppression region Rr. The reduction suppression region Rr of the second embodiment is set to the same region as the predicted progress region Wy.
 周辺物有無判定部162gは、検知装置50によって検知された被検知物情報および進路予測部162aからの周辺領域Rsに基づいて、周辺物の有無を判定するものである。周辺物は、周辺領域Rsに位置する被検知物である。周辺物有無判定部162gは、具体的には、図14に示すように、周辺領域Rsと被検知物グリッドGkとが重なる場合、周辺領域Rs内に被検知物が位置するため、周辺物が有ると判定する。 The peripheral object presence / absence determination unit 162g determines the presence / absence of a peripheral object based on the detected object information detected by the detection device 50 and the peripheral region Rs from the course prediction unit 162a. The peripheral object is a detected object located in the peripheral region Rs. Specifically, as illustrated in FIG. 14, the peripheral object presence / absence determining unit 162g is configured such that when the peripheral area Rs and the detected object grid Gk overlap, the detected object is located in the peripheral area Rs. It is determined that there is.
 一方、周辺物有無判定部162gは、周辺領域Rsと被検知物グリッドGkとが重ならない場合、周辺領域Rs内に被検知物が位置しないため、周辺物が無いと判定する。周辺領域Rsと被検知物グリッドGkとが重ならない場合とは、極座標C上に被検知物グリッドGkが存在しない場合、または、被検知物グリッドGkが抑制領域のみと重なっている場合である。周辺物有無判定部162gの判定結果は、周辺物種類判定部162h、領域切替部162eおよび領域拡張制御部162nに出力される。また、周辺物有無判定部162gは、周辺領域Rsおよび被検知物グリッドGkの情報(極座標C上の位置および個数)を占有率導出部162kに出力する。 On the other hand, if the peripheral region Rs and the detected object grid Gk do not overlap, the peripheral object presence / absence determining unit 162g determines that there is no peripheral object because the detected object is not located in the peripheral region Rs. The case where the peripheral region Rs and the detected object grid Gk do not overlap is the case where the detected object grid Gk does not exist on the polar coordinates C or the case where the detected object grid Gk overlaps only the suppression region. The determination result of the peripheral object presence / absence determination unit 162g is output to the peripheral object type determination unit 162h, the region switching unit 162e, and the region expansion control unit 162n. The peripheral object presence / absence determining unit 162g outputs information (position and number on the polar coordinates C) of the peripheral region Rs and the detection object grid Gk to the occupation rate deriving unit 162k.
 周辺物種類判定部162hは、周辺物有無判定部162gによって周辺物が有ると判定された場合、周辺物の種類が静止物であるか、運動物であるかを判定するものである。被検知物は、上述したように、第一所定時間毎にその座標が取得されるため、極座標C上において被検知物の速度を算出することができる。この被検知物の速度は、電動車椅子1の速度に対する相対速度である。また、周辺物種類判定部162hは、直進速度導出部61aからの直進速度vおよび旋回速度導出部61bからの旋回速度wに基づいて、電動車椅子1の速度を算出する。そして、被検知物の速度が電動車椅子1の速度と同じである場合、被検知物の種類が静止物であると判定する。一方、被検知物の速度が電動車椅子1の速度と異なる場合、被検知物の種類が運動物であると判定する。周辺物種類判定部162hは、検知結果を領域切替部162eおよび領域拡張制御部162nに出力する。 The peripheral object type determination unit 162h determines whether the peripheral object type is a stationary object or a moving object when the peripheral object presence / absence determination unit 162g determines that there is a peripheral object. As described above, since the coordinates of the detected object are acquired every first predetermined time, the speed of the detected object can be calculated on the polar coordinates C. The speed of the detected object is a relative speed with respect to the speed of the electric wheelchair 1. The peripheral object type determination unit 162h calculates the speed of the electric wheelchair 1 based on the straight traveling speed v from the straight traveling speed deriving unit 61a and the turning speed w from the turning speed deriving unit 61b. And when the speed of a to-be-detected object is the same as the speed of the electric wheelchair 1, it determines with the kind of to-be-detected object being a stationary object. On the other hand, when the speed of the detected object is different from the speed of the electric wheelchair 1, it is determined that the type of the detected object is a moving object. The peripheral object type determination unit 162h outputs the detection result to the region switching unit 162e and the region expansion control unit 162n.
 占有率導出部162kは、周辺領域Rsに対する被検知物が占める領域の割合である占有率を導出するものである。占有率導出部162kは、周辺物有無判定部162gからの周辺領域Rsおよび被検知物グリッドGkの情報に基づいて、占有率を導出する。占有率は、具体的には、周辺領域Rsと重なるグリッドGの個数に対する周辺領域Rsと重なる被検知物グリッドGkの個数の割合である。例えば、電動車椅子1が、幅の比較的狭い真直ぐな路地を直進している場合において、路地の両側に沿って平行に並べられた植木等の静止物があるとき、図15Aに示すように、極座標C上に前後方向に沿って平行な点群PGが現れる。この場合、周辺領域Rsと重なるグリッドGの個数は、162個である。また、周辺領域Rsと重なる被検知物グリッドGkの個数は、18個である。よって、この場合の占有率は、11.1(=18/162)%である。また、例えば、周辺領域Rs内に被検知物が無い場合、周辺領域Rsと重なる被検知物グリッドGkの個数は、ゼロ個であるため、占有率がゼロ%となる。占有率導出部162kは、導出した占有率を領域切替部162eおよび領域拡張制御部162nに出力する。 The occupancy rate deriving unit 162k derives an occupancy rate that is a ratio of the area occupied by the detected object to the peripheral area Rs. The occupancy rate deriving unit 162k derives the occupancy rate based on the information on the surrounding area Rs and the detected object grid Gk from the surrounding object presence / absence determining unit 162g. Specifically, the occupation ratio is a ratio of the number of detected object grids Gk overlapping the peripheral region Rs to the number of grids G overlapping the peripheral region Rs. For example, in the case where the electric wheelchair 1 is traveling straight through a straight alley with a relatively small width, when there is a stationary object such as a plant lined in parallel along both sides of the alley, as shown in FIG. On the polar coordinate C, a parallel point group PG appears along the front-rear direction. In this case, the number of grids G overlapping the peripheral region Rs is 162. Further, the number of detected object grids Gk overlapping the peripheral region Rs is 18. Therefore, the occupation ratio in this case is 11.1 (= 18/162)%. For example, when there is no detected object in the peripheral region Rs, the number of detected object grids Gk overlapping the peripheral region Rs is zero, so the occupation ratio is zero%. The occupation rate deriving unit 162k outputs the derived occupation rate to the region switching unit 162e and the region expansion control unit 162n.
 なお、占有率導出部162kは、周辺物有無判定部162gからの周辺領域Rs、被検知物グリッドGkの情報、およびオクルジョーングリッドGo(図15B参照)の情報に基づいて、占有率を導出するようにしても良い。オクルジョーングリッドGoは、極座標C上において、オクルジョーン領域に相当するグリッドGである。検知装置50が被検知物を検知した場合、上述した検知装置50の特性により、その検知された被検知物の後方(電動車椅子1から離れる方向)に位置する他の被検知物を検知できない。この他の被検知物を検知できない領域がオクルジョーン領域である。極座標C上においては、図15Bに示すように、図15Aと同じ被検知物グリッドGkが有る場合、被検知物グリッドGkより前方に位置するグリッドGがオクルジョーングリッドGoとなる。占有率導出部162kは、周辺領域Rsと重なるグリッドGの個数から、周辺領域Rsと重なるオクルジョーングリッドGoの個数を差し引いた個数に対する、周辺領域Rsと重なる被検知物グリッドGkの個数の割合を、占有率として導出するようにしても良い。 The occupation rate deriving unit 162k derives the occupation rate based on the information on the peripheral region Rs, the detected object grid Gk, and the occluary grid Go (see FIG. 15B) from the peripheral object presence / absence determining unit 162g. You may do it. The occluary grid Go is a grid G corresponding to the occluary area on the polar coordinate C. When the detection device 50 detects an object to be detected, due to the characteristics of the detection device 50 described above, other objects to be detected located behind the detected object to be detected (in a direction away from the electric wheelchair 1) cannot be detected. An area where other objects to be detected cannot be detected is an occluary area. On the polar coordinates C, as shown in FIG. 15B, when the same object grid Gk as that in FIG. 15A is present, the grid G positioned in front of the object grid Gk is the occluary grid Go. The occupancy rate deriving unit 162k calculates the ratio of the number of detected object grids Gk overlapping the peripheral region Rs to the number of grids G overlapping the peripheral region Rs minus the number of occluary grids Go overlapping the peripheral region Rs. Alternatively, it may be derived as an occupation ratio.
 領域切替部162eは、所定のマップに基づいて、周辺物有無判定部162gの判定結果、周辺物種類判定部162hの判定結果および占有率導出部162kによって導出された占有率から、抑制領域を切替えるものである。本第二実施形態においては、所定のマップは、図16に示す第四マップM4である。領域切替部162eは、具体的には、周辺物有無判定部162gによって、周辺物が無いと判定された場合、および、周辺物種類判定部162hによって周辺物の種類が運動物であると判定された場合、抑制領域を基準抑制領域Rbにする。なお、周辺物が複数有る場合、周辺物のうち一つでも周辺物の種類が運動物であると判定されたとき、抑制領域が基準抑制領域Rbにされる。
 また、領域切替部162eは、周辺物種類判定部162hによって周辺物の種類が静止物であると判定された場合、抑制領域を縮小抑制領域Rrにする。なお、周辺物が複数有る場合、全ての周辺物の種類が静止物であると判定されたとき、抑制領域が縮小抑制領域Rrにされる。
The region switching unit 162e switches the suppression region based on the determination result of the peripheral object presence / absence determination unit 162g, the determination result of the peripheral object type determination unit 162h, and the occupation rate derived by the occupation rate deriving unit 162k based on a predetermined map. Is. In the second embodiment, the predetermined map is a fourth map M4 shown in FIG. Specifically, the area switching unit 162e determines that the peripheral object type determination unit 162g determines that there is no peripheral object, and the peripheral object type determination unit 162h determines that the peripheral object type is a moving object. In this case, the suppression region is set as the reference suppression region Rb. In addition, when there are a plurality of peripheral objects, when it is determined that the type of the peripheral object is a moving object, the suppression area is set as the reference suppression area Rb.
In addition, the region switching unit 162e sets the suppression region to the reduction suppression region Rr when the peripheral object type determination unit 162h determines that the type of the peripheral object is a stationary object. When there are a plurality of peripheral objects, when it is determined that the types of all the peripheral objects are stationary objects, the suppression region is set as the reduction suppression region Rr.
 加速度導出部162mは、電動車椅子1の加速度を導出するものである。加速度導出部162mには、直進速度導出部61aからの直進速度vおよび旋回速度導出部61bからの旋回速度wに基づいて、電動車椅子1の速度を第一所定時間毎に算出し、その速度を時系列データとして記憶する。これにより、この時系列データにおける現在の速度と、第一所定時間より長い第二所定時間前から現在までの各速度から電動車椅子1が加速しているか否かを導出する。加速度導出部162mは、導出結果を領域拡張制御部162nに出力する。 Acceleration deriving unit 162m derives the acceleration of the electric wheelchair 1. The acceleration deriving unit 162m calculates the speed of the electric wheelchair 1 every first predetermined time based on the straight traveling speed v from the straight traveling speed deriving unit 61a and the turning speed w from the turning speed deriving unit 61b. Store as time series data. Thus, it is derived whether or not the electric wheelchair 1 is accelerating from the current speed in the time series data and each speed from the second predetermined time before the first predetermined time to the present. The acceleration deriving unit 162m outputs the deriving result to the region expansion control unit 162n.
 領域拡張制御部162nは、抑制領域を拡張する領域拡張制御を実行するものである。領域拡張制御は、領域切替部162eによって切替えられた抑制領域を拡張する制御である。本実施形態において、領域拡張制御は、図17に示すように、抑制領域の幅を左右方向に広げるように拡張(変形)させる。領域拡張制御においては、抑制領域を拡張させる拡張量が算出される。具体的には、抑制領域の左側を拡張させる拡張量であるΔRLは、式(1)のように示される。また、抑制領域の右側を拡張させる拡張量であるΔRRは、式(2)のように示される。ΔRL,ΔRRは、第一所定時間毎に算出されて、その拡張量だけ抑制領域が拡張される The area expansion control unit 162n executes area expansion control for extending the suppression area. The area expansion control is control for extending the suppression area switched by the area switching unit 162e. In the present embodiment, the area expansion control is expanded (deformed) so as to widen the width of the suppression area in the left-right direction, as shown in FIG. In the area expansion control, an expansion amount for expanding the suppression area is calculated. Specifically, ΔRL, which is an expansion amount that expands the left side of the suppression region, is expressed as in Expression (1). Further, ΔRR, which is the amount of expansion that expands the right side of the suppression region, is expressed as in Expression (2). ΔRL and ΔRR are calculated every first predetermined time, and the suppression region is expanded by the expansion amount.
 [数1]
 ΔRL=HL×((A/B)+C)   ・・・(1)
 [数2]
 ΔRR=HR×((A/B)+C)   ・・・(2)
[Equation 1]
ΔRL = HL × ((A / B) + C) (1)
[Equation 2]
ΔRR = HR × ((A / B) + C) (2)
 HLは、現在の抑制領域の左端から左側の周辺領域Rsの左端までの左右方向長さである。Aは、電動車椅子1の現在の加速度である。Bは、電動車椅子1の最大加速度である。
 HRは、現在の抑制領域の右端から右側の周辺領域Rsの右端までの左右方向長さである。なお、電動車椅子1の速度が最高速度である場合、Cは、所定値に設定されている。所定値は、電動車椅子1の速度が最高速度である場合に、ΔRLが周辺領域Rsの左端まで拡張されていないとき、ΔRLを周辺領域Rsの左端まで拡張させ、かつ、ΔRRが周辺領域Rsの右端まで拡張されていないとき、ΔRRを周辺領域Rsの右端まで拡張させる値に設定されている。一方、電動車椅子1の速度が最高速度でない場合、Cはゼロに設定されている。
HL is the length in the left-right direction from the left end of the current suppression region to the left end of the left peripheral region Rs. A is the current acceleration of the electric wheelchair 1. B is the maximum acceleration of the electric wheelchair 1.
HR is the length in the left-right direction from the right end of the current suppression region to the right end of the right peripheral region Rs. When the speed of the electric wheelchair 1 is the maximum speed, C is set to a predetermined value. When the speed of the electric wheelchair 1 is the maximum speed and the ΔRL is not expanded to the left end of the peripheral region Rs, the predetermined value expands ΔRL to the left end of the peripheral region Rs, and ΔRR is equal to that of the peripheral region Rs. When it is not expanded to the right end, ΔRR is set to a value that extends ΔRR to the right end of the peripheral region Rs. On the other hand, when the speed of the electric wheelchair 1 is not the maximum speed, C is set to zero.
 また、抑制領域が拡張されている場合、抑制領域内に被検知物が位置した時、領域拡張制御部162nは、抑制領域をその時の抑制領域の大きさを拡張せずに維持する。そして、抑制領域内に位置する被検知物が抑制領域内から外れた場合、領域拡張制御部162nは、上述したように抑制領域を拡張させる。抑制領域が拡張されて、抑制領域の左右端の両方が、周辺領域Rsの左右端の両方に到達した場合、領域拡張制御部162nは、抑制領域が設定された時の初期形状に戻すとともに、抑制領域の拡張を繰り返し継続する。 Also, when the suppression area is expanded, when the detected object is located in the suppression area, the area expansion control unit 162n maintains the suppression area without expanding the size of the suppression area at that time. And when the to-be-detected object located in a suppression area | region remove | deviates from the suppression area | region, the area | region expansion control part 162n expands a suppression area | region as mentioned above. When the suppression region is expanded and both the left and right ends of the suppression region reach both the left and right ends of the peripheral region Rs, the region expansion control unit 162n returns to the initial shape when the suppression region is set, Continue to extend the suppression area repeatedly.
 また、領域拡張制御部162nは、図18に示す第五マップM5に基づいて、加速度導出部162mの導出結果、周辺物有無判定部162gの判定結果、周辺物種類判定部162hの判定結果および占有率導出部162kの導出結果から、領域拡張制御を実行するか否かを決定する。領域拡張制御部162nは、具体的には、加速度導出部162mによって導出された加速度がゼロ以下である場合、周辺物の種類および占有率に関わらず、領域拡張制御を実行しない。また、領域拡張制御部162nは、加速度導出部162mによって導出された加速度がゼロより大きい場合において、周辺物の種類が静止物であり、かつ、占有率が占有率判定値以上であるとき、領域拡張制御を実行しない。電動車椅子1が比較的狭い場所を走行している場合、占有率が占有率判定値以上となるように、占有率判定値が設定されている。占有率判定値は、例えば8%である。 Further, the region expansion control unit 162n, based on the fifth map M5 shown in FIG. 18, derives the acceleration derivation unit 162m, the judgment result of the peripheral object presence / absence judgment unit 162g, the judgment result of the peripheral object type judgment unit 162h, and the occupation It is determined whether or not the region expansion control is to be executed from the derivation result of the rate deriving unit 162k. Specifically, when the acceleration derived by the acceleration deriving unit 162m is equal to or less than zero, the region expansion control unit 162n does not execute the region expansion control regardless of the type of the peripheral object and the occupation ratio. Further, the region expansion control unit 162n is configured to display a region when the acceleration derived by the acceleration deriving unit 162m is greater than zero and the type of the peripheral object is a stationary object and the occupation rate is equal to or greater than the occupation rate determination value. Does not execute extended control. When the electric wheelchair 1 is traveling in a relatively narrow place, the occupancy rate determination value is set so that the occupancy rate is equal to or higher than the occupancy rate determination value. The occupation rate determination value is, for example, 8%.
 一方、領域拡張制御部162nは、加速度導出部162mによって導出された加速度がゼロより大きい場合において、周辺物が無いとき、周辺物の種類が運動物であるとき、および、周辺物の種類が静止物であり、かつ、占有率が占有率判定値より小さいとき、領域拡張制御を実行する。領域拡張制御部162nは、領域拡張制御を実行する場合、領域拡張制御によって拡張された抑制領域を障害物有無判定部162fに出力する。一方、領域拡張制御部162nは、領域拡張制御を実行しない場合、抑制領域を拡張せずに障害物有無判定部162fに出力する。
 障害物有無判定部162fは、検知装置50によって検知された被検知物情報および領域拡張制御部162nからの抑制領域に基づいて、障害物の有無を判定する。
On the other hand, in the case where the acceleration derived by the acceleration deriving unit 162m is greater than zero, the region expansion control unit 162n has no peripheral object, the peripheral object type is a moving object, and the peripheral object type is stationary. When the object is an object and the occupation ratio is smaller than the occupation ratio determination value, the area expansion control is executed. When the region expansion control is executed, the region expansion control unit 162n outputs the suppression region expanded by the region expansion control to the obstacle presence / absence determination unit 162f. On the other hand, if the region expansion control unit 162n does not execute the region expansion control, the region expansion control unit 162n outputs the obstacle region determination unit 162f without expanding the suppression region.
The obstacle presence / absence determination unit 162f determines the presence / absence of an obstacle based on the detected object information detected by the detection device 50 and the suppression region from the region expansion control unit 162n.
 次に、本第二実施形態における制御装置60が行う衝突抑制制御について、図19に示すフローチャートに沿って説明する。図19に示すフローチャートは、ステップS102、および、ステップS320より後のステップS108以降は、図10に示すフローチャートと同じである。
 制御装置60は、ステップS102にて、電動車椅子1の進路を予測し、予測進行領域Wyを生成する(進路予測部162a)。制御装置60は、ステップS304にて、周辺領域Rsを生成する(進路予測部162a)。そして、制御装置60は、ステップS306にて基準抑制領域Rbおよび縮小抑制領域Rrを設定する(基準抑制領域設定部162b,縮小抑制領域設定部162c)。
Next, the collision suppression control performed by the control device 60 in the second embodiment will be described along the flowchart shown in FIG. The flowchart shown in FIG. 19 is the same as the flowchart shown in FIG. 10 after Step S102 and Step S108 after Step S320.
In step S102, the control device 60 predicts the course of the electric wheelchair 1 and generates the predicted progress area Wy (the course prediction unit 162a). In step S304, the control device 60 generates the peripheral region Rs (the course prediction unit 162a). In step S306, the control device 60 sets the reference suppression region Rb and the reduction suppression region Rr (reference suppression region setting unit 162b, reduction suppression region setting unit 162c).
 制御装置60は、ステップS308にて、周辺物が有るか否かを判定する(周辺物有無判定部162g)。周辺領域Rsに被検知物が存在しない場合、周辺物が無いため、制御装置60は、ステップS308にて「NO」と判定し、プログラムをステップS312に進める。一方、周辺領域Rsに被検知物が存在する場合、周辺物が有るため、制御装置60は、ステップS308にて「YES」と判定する。そして、制御装置60は、ステップS310にて、周辺物の種類を判定し(周辺物種類判定部162h)、プログラムをステップS312に進める。制御装置60は、ステップS312にて、占有率を導出する(占有率導出部162k)。 In step S308, the control device 60 determines whether there is a peripheral object (peripheral object presence determination unit 162g). If there is no object to be detected in the peripheral region Rs, there is no peripheral object, so the control device 60 determines “NO” in step S308 and advances the program to step S312. On the other hand, when there is an object to be detected in the peripheral region Rs, the control device 60 determines “YES” in step S308 because there is a peripheral object. In step S310, the control device 60 determines the type of the peripheral object (peripheral object type determination unit 162h), and advances the program to step S312. In step S312, the control device 60 derives the occupation rate (occupancy rate deriving unit 162k).
 続けて、制御装置60は、ステップS314にて、電動車椅子1の加速度を導出する(加速度導出部162m)。さらに、制御装置60は、ステップS316にて、抑制領域を切替える(領域切替部162e)。そして、制御装置60は、領域拡張制御を実行するか否かを決定する(領域拡張制御部162n)。領域拡張制御を実行する場合、制御装置60は、ステップS318にて「YES」と判定し、ステップS320にて領域拡張制御を実行して、プログラムをステップS108に進める。一方、領域拡張制御が実行されない場合、制御装置60は、ステップS318にて「NO」と判定し、領域拡張制御を実行せずに、プログラムをステップS108に進める。制御装置60は、ステップS110の処理、ステップS112にて「NO」と判定した場合、および、ステップS114の処理をした後、プログラムをステップS102に戻す。 Subsequently, the control device 60 derives the acceleration of the electric wheelchair 1 in step S314 (acceleration derivation unit 162m). Furthermore, the control apparatus 60 switches a suppression area | region (area | region switching part 162e) in step S316. Then, the control device 60 determines whether or not to perform area expansion control (area expansion control unit 162n). When executing region expansion control, control device 60 determines “YES” in step S318, executes region expansion control in step S320, and advances the program to step S108. On the other hand, when the area expansion control is not executed, the control device 60 determines “NO” in step S318, and advances the program to step S108 without executing the area expansion control. The control device 60 returns the program to step S102 after performing the process of step S110, if “NO” is determined in step S112, and after performing the process of step S114.
 次に、上述した図19のフローチャートに沿って、電動車椅子1が動作した場合について説明する。はじめに、電動車椅子1が比較的広い場所を直進している場合について説明する。この場合において、検知装置50によって被検知物が検知されないとき、周辺物が無いため(ステップS308;周辺物有無判定部162g)、抑制領域が基準抑制領域Rbにされる(ステップS316;領域切替部162e)。さらに、このとき、電動車椅子1が加速していない時、加速度がゼロ以下であるため(ステップS314;加速度導出部162m)、領域拡張制御が実行されない(ステップS318;領域拡張制御部162n)。一方、電動車椅子1が加速している時、加速度がゼロより大きくなる(ステップS314;加速度導出部162m)。この時においては、被検知物が無いことにより、領域拡張制御が実行される(ステップS320;領域拡張制御部162n)。そして、被検知物が無いときにおいては、基準抑制領域Rb内に被検知物が位置しない。よって、障害部が無い(ステップS108;障害物有無検知部)ため、走行の抑制がされない(駆動量抑制部61c1)。 Next, the case where the electric wheelchair 1 is operated will be described along the flowchart of FIG. 19 described above. First, the case where the electric wheelchair 1 goes straight in a relatively wide place will be described. In this case, when the object to be detected is not detected by the detection device 50, there is no peripheral object (step S308; peripheral object presence / absence determination unit 162g), so that the suppression region is set as the reference suppression region Rb (step S316; region switching unit) 162e). Furthermore, at this time, when the electric wheelchair 1 is not accelerating, the acceleration is not more than zero (step S314; acceleration deriving unit 162m), and therefore the region expansion control is not executed (step S318; region expansion control unit 162n). On the other hand, when the electric wheelchair 1 is accelerating, the acceleration is greater than zero (step S314; acceleration deriving unit 162m). At this time, the area expansion control is executed because there is no object to be detected (step S320; area expansion control unit 162n). When there is no detected object, the detected object is not located in the reference suppression region Rb. Therefore, since there is no obstacle (step S108; obstacle presence / absence detection unit), traveling is not suppressed (driving amount suppression unit 61c1).
 そして、電動車椅子1が比較的広い場所を直進している場合において、図14に示すように、周辺領域Rs内に被検知物が有り(ステップS308;周辺物有無判定部162g)、その被検知物の種類が運動物であるとき(ステップS310;周辺物種類判定部162h)、抑制領域が基準抑制領域Rbにされる(ステップS316;領域切替部162e)。このとき、電動車椅子1が加速している時(加速度>ゼロの時)には、領域拡張制御が行われる(ステップS320;領域拡張制御部162n)。そして、運動物が基準抑制領域Rb内に位置した場合、運動物が基準抑制領域Rb内に位置した時の基準抑制領域Rbの大きさが維持されるとともに、電動車椅子1の走行が抑制される(ステップS110;駆動量抑制部61c1)。 Then, when the electric wheelchair 1 goes straight in a relatively wide place, as shown in FIG. 14, there is an object to be detected in the peripheral region Rs (step S308; peripheral object presence / absence determining unit 162g), and the object to be detected When the object type is a moving object (step S310; peripheral object type determination unit 162h), the suppression region is set as the reference suppression region Rb (step S316; region switching unit 162e). At this time, when the electric wheelchair 1 is accelerating (acceleration> zero), region expansion control is performed (step S320; region expansion control unit 162n). When the moving object is positioned in the reference suppression area Rb, the size of the reference suppression area Rb when the moving object is positioned in the reference suppression area Rb is maintained, and the traveling of the electric wheelchair 1 is suppressed. (Step S110; drive amount suppression part 61c1).
 また、電動車椅子1が比較的広い場所を直進している場合において、図14に示す被検知物の種類が静止物であるとき(ステップS310;周辺物種類判定部162h)、抑制領域が縮小抑制領域Rrにされる(ステップS316;領域切替部162e)。また、その静止物によって生成される被検知物グリッドGkが二個である場合、占有率が占有率判定値より小さい。よって、電動車椅子1が加速している時(加速度>ゼロの時)には、領域拡張制御が実行される(ステップS320;領域拡張制御部162n)。そして、静止物が縮小抑制領域Rr内に位置した場合、静止物が縮小抑制領域Rr内に位置した時の縮小抑制領域Rrの大きさが維持されるとともに、電動車椅子1の走行が抑制される(ステップS110;駆動量抑制部61c1)。 Further, when the electric wheelchair 1 is traveling straight ahead in a relatively wide place, when the type of the detected object shown in FIG. 14 is a stationary object (step S310; peripheral object type determination unit 162h), the suppression region is reduced and suppressed. The region Rr is set (step S316; region switching unit 162e). Further, when there are two detected object grids Gk generated by the stationary object, the occupation ratio is smaller than the occupation ratio determination value. Therefore, when the electric wheelchair 1 is accelerating (acceleration> zero), the area expansion control is executed (step S320; area expansion control unit 162n). And when a stationary object is located in the reduction suppression area | region Rr, while the magnitude | size of the reduction suppression area | region Rr when a stationary object is located in the reduction suppression area | region Rr is maintained, driving | running | working of the electric wheelchair 1 is suppressed. (Step S110; drive amount suppression part 61c1).
 次に、電動車椅子1が、幅の比較的狭い真直ぐな路地を直進している場合において、路地の両側に沿って並べられた植木等の静止物があるときについて説明する。この場合、図15Aに示すように、周辺領域Rs内に被検知物が有り(ステップS308;周辺物有無判定部162g)、その被検知物の種類が静止物であるため(ステップS310;周辺物種類判定部162h)、抑制領域が縮小抑制領域Rrにされる(ステップS316;領域切替部162e)。さらに、この場合、占有率が占有率判定率以上となる(ステップS312;占有率導出部162k)。よって、この場合において、電動車椅子1が加速している時(加速度>ゼロの時)においても、領域拡張制御が実行されない(ステップS318;領域拡張制御部162n)。 Next, when the electric wheelchair 1 goes straight through a relatively narrow straight alley, there will be described a case where there are stationary objects such as plants arranged along both sides of the alley. In this case, as shown in FIG. 15A, the detected object is present in the peripheral region Rs (step S308; peripheral object presence / absence determining unit 162g), and the type of the detected object is a stationary object (step S310; peripheral object). The type determination unit 162h) sets the suppression region to the reduction suppression region Rr (step S316; region switching unit 162e). Furthermore, in this case, the occupation rate becomes equal to or greater than the occupation rate determination rate (step S312; occupation rate deriving unit 162k). Therefore, in this case, even when the electric wheelchair 1 is accelerating (acceleration> zero), the area expansion control is not executed (step S318; area expansion control unit 162n).
 また、この場合において、電動車椅子1が加速していない時(加速度≦ゼロのとき)においても、領域拡張制御が実行されない(ステップS318;領域拡張制御部162n)。よって、この場合、電動車椅子1が直進している限りにおいては、この静止物が縮小抑制領域Rr内に位置しないため、電動車椅子1の走行が抑制されない(駆動量抑制部61c1)。 In this case, the area expansion control is not executed even when the electric wheelchair 1 is not accelerating (acceleration ≦ zero) (step S318; area expansion control unit 162n). Therefore, in this case, as long as the electric wheelchair 1 goes straight, the stationary object is not positioned in the reduction suppression region Rr, and thus the traveling of the electric wheelchair 1 is not suppressed (drive amount suppression unit 61c1).
 本第二実施形態によれば、乗員による操作装置30への入力に従って駆動される駆動装置20によって走行する電動車椅子1であって、電動車椅子1は、電動車椅子1の周辺の被検知物を検知する検知装置50と、操作装置30に入力された情報である入力情報に基づいて、駆動装置20の駆動量を制御して電動車椅子1を走行させる制御装置60と、を備えている。制御装置60は、検知装置50によって検知された被検知物が領域内に位置する時に、電動車椅子1の走行が抑制をされる抑制領域であって、基準となる基準抑制領域Rbを設定する基準抑制領域設定部162bと、電動車椅子1の予測進行領域Wyの両側の領域である周辺領域Rs内に位置する被検知物の種類に基づいて、基準抑制領域設定部162bによって設定された基準抑制領域Rbに対して、縮小された抑制領域である縮小抑制領域Rrを設定する縮小抑制領域設定部162cと、を備えている。
 これによれば、周辺領域Rsに位置する被検知物の種類に基づいて、縮小抑制領域設定部162cが縮小抑制領域Rrを設定する。抑制領域が縮小抑制領域Rrに設定されている場合は、被検知物が抑制領域内に位置しにくい。これにより、被検知物が抑制領域内に位置しないとき、電動車椅子1の走行が抑制されないため、乗員の意図する走行が可能となる。よって、このとき、電動車椅子1の抑制された走行と、乗員の意図する走行との間のギャップが抑制される。したがって、電動車椅子1は、乗員の意図を反映した電動車椅子1の走行の抑制を行うことができる。
According to the second embodiment, the electric wheelchair 1 travels by the drive device 20 driven in accordance with an input to the operation device 30 by an occupant, and the electric wheelchair 1 detects an object to be detected around the electric wheelchair 1. And a control device 60 that controls the drive amount of the drive device 20 to run the electric wheelchair 1 based on input information that is information input to the operation device 30. The control device 60 is a suppression region in which the traveling of the electric wheelchair 1 is suppressed when the detection object detected by the detection device 50 is located in the region, and a reference for setting a reference suppression region Rb as a reference The reference suppression region set by the reference suppression region setting unit 162b based on the type of the detection object located in the peripheral region Rs that is the region on both sides of the predicted progress region Wy of the electric wheelchair 1 and the suppression region setting unit 162b A reduction suppression region setting unit 162c that sets a reduction suppression region Rr, which is a reduced suppression region, for Rb.
According to this, the reduction suppression area setting unit 162c sets the reduction suppression area Rr based on the type of the detection object located in the peripheral area Rs. When the suppression area is set to the reduction suppression area Rr, the detected object is unlikely to be located in the suppression area. As a result, when the object to be detected is not located within the suppression region, the traveling of the electric wheelchair 1 is not suppressed, so that the traveling intended by the occupant is possible. Therefore, at this time, the gap between the travel in which the electric wheelchair 1 is suppressed and the travel intended by the occupant is suppressed. Therefore, the electric wheelchair 1 can suppress the traveling of the electric wheelchair 1 reflecting the occupant's intention.
 また、被検知物の種類は、静止物および運動物である。制御装置60は、周辺領域Rs内に位置する被検知物の種類が静止物であるか運動物であるかを判定する周辺物種類判定部162hと、周辺物種類判定部162hによって周辺領域Rs内の被検知物の種類が静止物であると判定された場合、基準抑制領域設定部162bによって設定された基準抑制領域Rbから、縮小抑制領域設定部162cによって設定された縮小抑制領域Rrに切替える領域切替部162eと、をさらに備えている。
 これによれば、周辺領域Rs内に位置する被検知物が静止物のみである場合、乗員は、比較的速い速度で電動車椅子1を走行させたいと感じるときがある。このとき、周辺領域Rs内に位置する被検知物が運動物を含むときに比べて、電動車椅子1の抑制された走行と、乗員の意図する走行との間のギャップが生じやすい。これに対して、周辺領域Rs内の被検知物の種類が静止物であると判定された場合、領域切替部162eが基準抑制領域Rbを縮小抑制領域Rrに切替える。これにより、被検知物を抑制領域内に位置させにくくすることができる。被検知物が抑制領域内に位置しないとき、電動車椅子1の走行が抑制されないため、乗員の意図する走行が可能となる。よって、電動車椅子1の抑制された走行と、乗員の意図する走行との間のギャップが抑制される。したがって、電動車椅子1は、乗員の意図を反映した電動車椅子1の走行の抑制を行うことができる。
The types of objects to be detected are stationary objects and moving objects. The control device 60 includes a peripheral object type determining unit 162h that determines whether the type of the object to be detected located in the peripheral region Rs is a stationary object or a moving object, and the peripheral object type determining unit 162h in the peripheral region Rs. The area to be switched from the reference suppression area Rb set by the reference suppression area setting section 162b to the reduction suppression area Rr set by the reduction suppression area setting section 162c when it is determined that the type of the detected object is a stationary object And a switching unit 162e.
According to this, when the detected object located in the peripheral region Rs is only a stationary object, the occupant may feel that he / she wants to drive the electric wheelchair 1 at a relatively high speed. At this time, a gap between the travel in which the electric wheelchair 1 is suppressed and the travel intended by the occupant is more likely to occur than when the detected object located in the peripheral region Rs includes a moving object. On the other hand, when it is determined that the type of the detected object in the peripheral region Rs is a stationary object, the region switching unit 162e switches the reference suppression region Rb to the reduction suppression region Rr. Thereby, it is possible to make it difficult to position the detected object within the suppression region. When the object to be detected is not located within the suppression region, the traveling of the electric wheelchair 1 is not suppressed, so that the traveling intended by the occupant is possible. Therefore, the gap between the travel in which the electric wheelchair 1 is suppressed and the travel intended by the occupant is suppressed. Therefore, the electric wheelchair 1 can suppress the traveling of the electric wheelchair 1 reflecting the occupant's intention.
 また、制御装置60は、周辺物種類判定部162hによって周辺領域Rs内の被検知物の種類が運動物であると判定された場合、抑制領域を拡張する領域拡張制御を実行する領域拡張制御部162nと、をさらに備えている。
 周辺領域Rs内に位置する被検知物の種類が運動物である場合、被検知物の種類が静止物である場合に比べて、被検知物の動きの予測がつき難い。この場合、領域拡張制御部162nが抑制領域の大きさを拡張することにより、運動物を抑制領域内に位置させ易くすることができる。運動物が抑制領域内に位置した場合、電動車椅子1の走行が抑制される。よって、電動車椅子1と運動物との衝突をさらに抑制することができる。
 また、電動車椅子1と被検知物との距離に応じて、電動車椅子1の走行の抑制量を調節しているため、拡張された抑制領域内に被検知物が位置した時においても、急な抑制が行われないようにすることができる。
In addition, when the peripheral object type determination unit 162h determines that the type of the detected object in the peripheral region Rs is a moving object, the control device 60 performs a region expansion control unit that performs region expansion control to expand the suppression region. 162n.
When the type of the detected object located in the peripheral region Rs is a moving object, it is difficult to predict the movement of the detected object compared to the case where the type of the detected object is a stationary object. In this case, the region expansion control unit 162n expands the size of the suppression region, so that the moving object can be easily positioned in the suppression region. When the moving object is located in the suppression region, the traveling of the electric wheelchair 1 is suppressed. Therefore, the collision between the electric wheelchair 1 and the moving object can be further suppressed.
In addition, since the amount of travel suppression of the electric wheelchair 1 is adjusted according to the distance between the electric wheelchair 1 and the detected object, even when the detected object is located in the expanded suppression region, it is abrupt. Suppression can be prevented.
 制御装置60は、周辺領域Rsに対する被検知物が占める領域の割合である占有率を導出する占有率導出部162kをさらに備えている。領域拡張制御部162nは、周辺物種類判定部162hによって周辺領域Rs内の被検知物の種類が静止物であると判定された場合において、占有率導出部162kによって導出された占有率が占有率判定値より小さいとき、領域拡張制御を実行する。
 周辺領域Rs内に位置する被検知物の種類が静止物である場合においても、占有率が占有率判定値より小さいとき、すなわち、電動車椅子1が走行している空間が比較的広いとき、運動物の急な出現等により、電動車椅子1と運動物とが衝突することが考えられる。このとき、領域拡張制御部162nが抑制領域の大きさを拡張することにより、被検知物を抑制領域内に位置させ易くすることができる。よって、電動車椅子1と運動物との衝突をさらに抑制することができる。
 一方、周辺領域Rs内に位置する被検知物の種類が静止物である場合において、占有率が占有率判定値以上であるとき、すなわち、電動車椅子1が走行している空間が比較的狭い(例えば、細い路地等)とき、被検知物の急な出現等による被検知物と電動車椅子1との衝突の可能性が比較的低いと考えられる。よって、領域拡張制御部162nが抑制領域の大きさを拡張しない。したがって、電動車椅子1の抑制された走行と、乗員の意図する走行との間のギャップが抑制されるため、乗員の意図を反映した電動車椅子1の走行の抑制を行うことができる。
The control device 60 further includes an occupancy ratio deriving unit 162k that derives an occupancy ratio that is a ratio of the area occupied by the detected object to the peripheral area Rs. The area expansion control unit 162n determines that the occupation rate derived by the occupation rate deriving unit 162k is the occupation rate when the peripheral object type determination unit 162h determines that the type of the detected object in the peripheral region Rs is a stationary object. When it is smaller than the determination value, the area expansion control is executed.
Even when the type of the object to be detected located in the peripheral region Rs is a stationary object, when the occupation ratio is smaller than the occupation ratio determination value, that is, when the space in which the electric wheelchair 1 is traveling is relatively wide, It is conceivable that the electric wheelchair 1 and the moving object collide due to a sudden appearance of the object. At this time, the region expansion control unit 162n expands the size of the suppression region, so that the detected object can be easily positioned in the suppression region. Therefore, the collision between the electric wheelchair 1 and the moving object can be further suppressed.
On the other hand, when the type of the object to be detected located in the peripheral region Rs is a stationary object, when the occupation ratio is equal to or greater than the occupation ratio determination value, that is, the space in which the electric wheelchair 1 is traveling is relatively narrow ( For example, it is considered that the possibility of a collision between the detected object and the electric wheelchair 1 due to a sudden appearance of the detected object is relatively low. Therefore, the region expansion control unit 162n does not expand the size of the suppression region. Therefore, since the gap between the travel in which the electric wheelchair 1 is suppressed and the travel intended by the occupant is suppressed, the travel of the electric wheelchair 1 reflecting the occupant's intention can be suppressed.
 なお、上述した各実施形態において、移動体の一例を示したが、本発明はこれに限定されず、他の構成を採用することもできる。例えば、上述した各実施形態において、移動体は、電動車椅子1であるが、これに代えて、小型車両や移動ロボット等の搭乗型の移動体としても良い。 In addition, in each embodiment mentioned above, although an example of the mobile body was shown, this invention is not limited to this, Other structures can also be employ | adopted. For example, in each embodiment described above, the moving body is the electric wheelchair 1, but instead of this, a boarding type moving body such as a small vehicle or a mobile robot may be used.
 また、上述した第一実施形態において、解除要求検出装置40は、押圧荷重を検出する荷重検出部42を備えているが、これに代えて、複数のスイッチを備えるようにしても良い。この場合、領域切替部62eは、例えば、オンされたスイッチに応じて縮小抑制領域Rr1,Rr2を切替えるようにして良い。さらに、解除要求検出装置40が、乗員の音声を入力可能なマイクロフォン等を備えるようにしても良い。この場合、領域切替部62eは、例えば、乗員の声の大きさに応じて、縮小抑制領域Rr1,Rr2を切替えるようにして良い。 In addition, in the first embodiment described above, the release request detection device 40 includes the load detection unit 42 that detects the pressing load, but may include a plurality of switches instead. In this case, for example, the region switching unit 62e may switch the reduction suppression regions Rr1 and Rr2 in accordance with the turned on switch. Furthermore, the release request detection device 40 may include a microphone or the like that can input the passenger's voice. In this case, the region switching unit 62e may switch the reduction suppression regions Rr1 and Rr2 according to, for example, the volume of the passenger's voice.
 また、上述した第一実施形態において、領域切替部62eは、障害物有無判定部62fの判定結果を考慮して、抑制領域の切替を行っているが、これに代えて、障害物有無判定部62fの判定結果を考慮せずに、解除要求検出装置40の検出結果のみに基づいて、抑制領域の切替を行うようにしても良い。 In the first embodiment described above, the region switching unit 62e switches the suppression region in consideration of the determination result of the obstacle presence / absence determination unit 62f, but instead of this, the obstacle presence / absence determination unit The suppression region may be switched based only on the detection result of the release request detection device 40 without considering the determination result of 62f.
 また、上述した第二実施形態において、領域切替部162eは、図16に示す第四マップM4に基づいて抑制領域の切替を行っているが、これに代えて、図20に示す第十四マップM14に基づいて、抑制領域の切替を行うようにしても良い。この場合、領域切替部162eは、占有率が占有率判定値以上である場合、基準抑制領域Rbから、縮小抑制領域Rrに切替える。このように、制御装置60は、周辺領域Rsに対する被検知物が占める領域の割合である占有率を導出する占有率導出部162kと、占有率導出部162kによって導出された占有率が占有率判定値以上である場合、基準抑制領域設定部162bによって設定された基準抑制領域Rbから、縮小抑制領域設定部162cによって設定された縮小抑制領域Rrに切替える領域切替部162eと、をさらに備えている。
 占有率が占有率判定値より大きい場合、すなわち、電動車椅子1が走行している空間が比較的狭い場合、電動車椅子1が走行している空間が広い場合に比べて被検知物が抑制領域に位置し易い。よって、占有率が占有率判定値より大きい場合、電動車椅子1の抑制された走行と、乗員の意図する走行との間のギャップが生じやすいため、領域切替部162eが基準抑制領域Rbを縮小抑制領域Rrに切替える。これにより、被検知物が抑制領域内に位置しないとき、電動車椅子1の走行が抑制されないため、乗員の意図する走行が可能となる。よって、電動車椅子1の抑制された走行と、乗員の意図する走行との間のギャップが抑制される。したがって、電動車椅子1は、乗員の意図を反映した電動車椅子1の走行の抑制を行うことができる。
Moreover, in 2nd embodiment mentioned above, although the area | region switching part 162e is switching the suppression area | region based on the 4th map M4 shown in FIG. 16, it replaces with this and the 14th map shown in FIG. The suppression area may be switched based on M14. In this case, the area switching unit 162e switches from the reference suppression area Rb to the reduction suppression area Rr when the occupation ratio is equal to or greater than the occupation ratio determination value. As described above, the control device 60 determines the occupancy rate by using the occupancy rate deriving unit 162k for deriving the occupancy rate that is the ratio of the area occupied by the detected object to the surrounding region Rs, and the occupancy rate derived by the occupancy rate deriving unit 162k. When the value is equal to or greater than the value, a region switching unit 162e that switches from the reference suppression region Rb set by the reference suppression region setting unit 162b to the reduction suppression region Rr set by the reduction suppression region setting unit 162c is further provided.
When the occupancy rate is larger than the occupancy rate determination value, that is, when the space in which the electric wheelchair 1 is traveling is relatively narrow, the detected object is in the suppression region as compared with the case where the space in which the electric wheelchair 1 is traveling is wide. Easy to locate. Therefore, when the occupancy rate is larger than the occupancy rate determination value, a gap between the travel in which the electric wheelchair 1 is suppressed and the travel intended by the occupant is likely to occur, so the region switching unit 162e suppresses the reduction of the reference suppression region Rb. Switch to region Rr. As a result, when the object to be detected is not located within the suppression region, the traveling of the electric wheelchair 1 is not suppressed, so that the traveling intended by the occupant is possible. Therefore, the gap between the travel in which the electric wheelchair 1 is suppressed and the travel intended by the occupant is suppressed. Therefore, the electric wheelchair 1 can suppress the traveling of the electric wheelchair 1 reflecting the occupant's intention.
 また、上述した第二実施形態において、領域切替部162eは、図16に示す第四マップM4に基づいて抑制領域の切替を行っているが、これに代えて、図21に示す第二十四マップM24に基づいて、抑制領域の切替を行うようにしても良い。この場合、上述した第二実施形態と比べて、周辺物の種類が運動物である場合においても、占有率が占有率判定値以上であるとき、抑制領域が縮小抑制領域Rrとされる。 Moreover, in 2nd embodiment mentioned above, although the area | region switching part 162e is switching the suppression area | region based on the 4th map M4 shown in FIG. 16, it replaces with this and the 24th shown in FIG. The suppression area may be switched based on the map M24. In this case, as compared with the second embodiment described above, even when the type of the peripheral object is a moving object, when the occupation ratio is equal to or greater than the occupation ratio determination value, the suppression area is set as the reduction suppression area Rr.
 また、上述した第二実施形態において、領域拡張制御部162nは、図18に示す第五マップM5に基づいて領域拡張制御を実行するか否かを判定している。このとき、領域拡張制御部162nは、加速度から領域拡張制御を実行するか否かを判定しているが、これに代えて、電動車椅子1が最高速度である場合においては、電動車椅子1の加速度に関わらず、第五マップM5の「加速度>ゼロである場合」に示す内容に基づいて、周辺物および占有率から領域拡張制御を実行するようにしても良い。
 また、領域拡張制御部162nは、図18に示す第五マップM5に代えて、図22に示す第十五マップM15に基づいて、領域拡張制御を実行するか否かを判定するようにしても良い。この場合、領域拡張制御部162nは、電動車椅子1が加速しているか否かに関わらず、占有率のみに基づいて、領域拡張制御を実行するか否かを判定する。
In the second embodiment described above, the region expansion control unit 162n determines whether or not to perform region expansion control based on the fifth map M5 illustrated in FIG. At this time, the area expansion control unit 162n determines whether or not to execute the area expansion control from the acceleration. Instead, when the electric wheelchair 1 is at the maximum speed, the acceleration of the electric wheelchair 1 is determined. Regardless, the area expansion control may be executed based on the surrounding objects and the occupation ratio based on the contents shown in “when acceleration> zero” in the fifth map M5.
Further, the area expansion control unit 162n may determine whether or not to execute the area expansion control based on the fifteenth map M15 shown in FIG. 22 instead of the fifth map M5 shown in FIG. good. In this case, the area expansion control unit 162n determines whether or not to execute the area expansion control based only on the occupation ratio regardless of whether or not the electric wheelchair 1 is accelerating.
 また、上述した第二実施形態において、領域拡張制御部162nは、拡張量を電動車椅子1の加速度に基づいて算出しているが、これに代えて、電動車椅子1の加速度に関わらず、一定の拡張量にて領域を拡張するようにしても良い。 In the second embodiment described above, the region expansion control unit 162n calculates the expansion amount based on the acceleration of the electric wheelchair 1, but instead of this, the region expansion control unit 162n is constant regardless of the acceleration of the electric wheelchair 1. The area may be expanded by the expansion amount.
 また、上述した実施形態において、操作装置30はジョイスティックであるが、これに代えて、操作装置30を、電動車椅子1の直進速度vを指示するアクセルおよび電動車椅子1の旋回方向を指示するハンドルによって構成するようにしても良い。 In the above-described embodiment, the operating device 30 is a joystick. Instead, the operating device 30 is operated by an accelerator that indicates the straight traveling speed v of the electric wheelchair 1 and a handle that indicates the turning direction of the electric wheelchair 1. You may make it comprise.
 また、上述した各実施形態において、縮小抑制領域Rr,Rr1,Rr2は、予め縮小抑制領域設定部62c,162cによって設定されているが、これに代えて、基準抑制領域Rbを変形させることにより、縮小抑制領域Rr,Rr1,Rr2を設定するようにしても良い。 Moreover, in each embodiment mentioned above, although the reduction suppression area | region Rr, Rr1, Rr2 is preset by the reduction suppression area | region setting part 62c, 162c, it replaces with this, and deform | transforms the reference | standard suppression area | region Rb, The reduction suppression regions Rr, Rr1, and Rr2 may be set.
 また、上述した各実施形態において、検知装置50は、被検知物の三次元位置情報を検出する三次元測域センサであるが、これに代えて、被検知物の二次元位置情報を検出する二次元測域センサとしても良い。
 また、上述した実施形態において、電動車椅子1は、検知装置50を一つ備えているが、これに代えて、検知装置50を複数備えるようにしても良い。これによれば、検知装置50が一つである場合に比べて、検知装置50の被検知物を検出可能な範囲を広げることができる。
Moreover, in each embodiment mentioned above, although the detection apparatus 50 is a three-dimensional range sensor which detects the three-dimensional position information of a to-be-detected object, it replaces with this and detects the two-dimensional position information of a to-be-detected object. A two-dimensional range sensor may be used.
Moreover, in the embodiment mentioned above, although the electric wheelchair 1 is provided with one detection apparatus 50, it may replace with this and may be provided with multiple detection apparatuses 50. According to this, compared with the case where there is one detection device 50, the range in which the detection object of the detection device 50 can be detected can be expanded.
 また、上述した各実施形態において、抑制領域は、極座標C上に平面状に生成されているが、これ代えて、抑制領域を立体的に生成するようにしても良い。この場合、極座標Cに代えて、電動車椅子1を中心とする球座標上に抑制領域を設定するようにすると良い。これによれば、検知装置50が被検知物を検知可能な範囲内において、基準抑制領域Rbの高さと縮小抑制領域Rrの高さを異なるように設定することができる。 In each of the above-described embodiments, the suppression area is generated in a planar shape on the polar coordinates C. Alternatively, the suppression area may be generated three-dimensionally. In this case, instead of the polar coordinates C, the suppression area may be set on the spherical coordinates centered on the electric wheelchair 1. Accordingly, the height of the reference suppression region Rb and the height of the reduction suppression region Rr can be set differently within a range in which the detection device 50 can detect the detection target.
 また、上述した各実施形態において、抑制領域内に被検知物が有る場合、駆動量抑制部61c1により制限される直進速度vの最高速度は、最短距離Dminに応じて変化するが、これに代えて、電動車椅子1と被検知物との相対速度やグリッドG内の被検知物の密度(点群PGの密度)に応じて変化するようにしても良い。また、抑制領域内に被検知物が有る場合、駆動量抑制部61c1は、最短距離Dminにかかわらず、直進速度vの最高速度を一定の速度に制限するようにしても良い。
 また、上述した各実施形態において、駆動量抑制部61c1によって、駆動装置20の駆動量を制限駆動量にすることで、直進速度vの最高速度が制限されているが、これに代えて、直進速度vを所定の割合にて一律に低減するようにしても良い。また、直進速度vの時間変化率(加速度)を制限するようにしても良い。
In each embodiment described above, when there is an object to be detected in the suppression region, the maximum speed of the straight traveling speed v limited by the drive amount suppression unit 61c1 changes according to the shortest distance Dmin. Thus, it may be changed according to the relative speed between the electric wheelchair 1 and the detected object and the density of the detected object in the grid G (density of the point group PG). Further, when there is an object to be detected in the suppression region, the drive amount suppression unit 61c1 may limit the maximum speed of the straight traveling speed v to a constant speed regardless of the shortest distance Dmin.
Further, in each of the above-described embodiments, the maximum drive speed v is limited by setting the drive amount of the drive device 20 to the limited drive amount by the drive amount suppressing unit 61c1, but instead, the straight drive The speed v may be reduced uniformly at a predetermined rate. Further, the time change rate (acceleration) of the straight traveling speed v may be limited.
 1…電動車椅子(移動体)、10…車椅子本体、20…駆動装置、30…操作装置、40…解除要求検出装置、50…検知装置、60…制御装置、61…走行制御部、61c…駆動量制御部、61c1…駆動量抑制部、62…衝突抑制制御部、62a…進路予測部、62b…基準抑制領域設定部、62c…縮小抑制領域設定部、62d…解除要求取得部、62e…領域切替部、62f…障害物有無判定部、162g…周辺物有無判定部、162h…周辺物種類判定部、162k…占有率導出部、162n…領域拡張制御部、C…極座標、Rb…基準抑制領域、Rr…縮小抑制領域、Rs…周辺領域、Wy…予測進行領域。 DESCRIPTION OF SYMBOLS 1 ... Electric wheelchair (moving body), 10 ... Wheelchair main body, 20 ... Drive apparatus, 30 ... Operation apparatus, 40 ... Release request detection apparatus, 50 ... Detection apparatus, 60 ... Control apparatus, 61 ... Travel control part, 61c ... Drive Amount control unit, 61c1... Drive amount suppression unit, 62... Collision suppression control unit, 62a... Course prediction unit, 62b... Reference suppression region setting unit, 62c... Reduction suppression region setting unit, 62d. Switching unit, 62f ... Obstacle presence / absence determination unit, 162g ... Peripheral object presence / absence determination unit, 162h ... Peripheral object type determination unit, 162k ... Occupancy rate deriving unit, 162n ... Area expansion control unit, C ... Polar coordinates, Rb ... Reference suppression region , Rr ... reduction reduction region, Rs ... peripheral region, Wy ... prediction progress region.

Claims (7)

  1.  乗員による操作装置への入力に従って駆動される駆動装置によって走行する移動体であって、
     前記移動体は、
     前記移動体の周辺の被検知物を検知する検知装置と、
     前記操作装置に入力された情報である入力情報に基づいて、前記駆動装置の駆動量を制御して前記移動体を走行させる制御装置と、を備え、
     前記制御装置は、
     前記検知装置によって検知された前記被検知物が領域内に位置する時に、前記移動体の走行が抑制をされる抑制領域であって、基準となる基準抑制領域を設定する基準抑制領域設定部と、
     乗員の意思、または、前記移動体の予測進行領域の両側の領域である周辺領域内に位置する前記被検知物の種類に基づいて、前記基準抑制領域設定部によって設定された前記基準抑制領域に対して、縮小された前記抑制領域である縮小抑制領域を設定する縮小抑制領域設定部と、を備えている移動体。
    A moving body that is driven by a drive device that is driven in accordance with an input to the operation device by an occupant,
    The moving body is
    A detection device for detecting an object to be detected around the moving body;
    A control device that controls the driving amount of the driving device based on input information that is information input to the operating device to cause the moving body to travel, and
    The controller is
    A reference suppression region setting unit that sets a reference suppression region that is a suppression region in which travel of the moving body is suppressed when the detected object detected by the detection device is located within the region; ,
    Based on the intention of the occupant or the type of the detected object located in the peripheral area that is the area on both sides of the predicted progress area of the moving object, the reference suppression area set by the reference suppression area setting unit On the other hand, a mobile body comprising: a reduction suppression area setting unit that sets a reduction suppression area that is the reduced suppression area.
  2.  前記乗員の意思は、前記抑制に対する解除要求であり、
     前記移動体は、前記乗員の操作により、前記解除要求の強さを検出する解除要求検出装置をさらに備え、
     前記制御装置は、
     前記解除要求検出装置によって検出された前記解除要求の強さに基づいて、前記基準抑制領域設定部によって設定された前記基準抑制領域から、前記縮小抑制領域設定部によって設定された前記縮小抑制領域に切替える領域切替部と、をさらに備えている請求項1記載の移動体。
    The occupant's intention is a release request for the suppression,
    The mobile body further includes a release request detection device that detects the strength of the release request by an operation of the occupant,
    The controller is
    Based on the strength of the release request detected by the release request detection device, from the reference suppression region set by the reference suppression region setting unit to the reduction suppression region set by the reduction suppression region setting unit The moving body according to claim 1, further comprising an area switching unit for switching.
  3.  前記縮小抑制領域設定部は、前記解除要求検出装置によって検出された前記解除要求の強さが大きくなるにしたがって、前記縮小抑制領域を縮小するように設定する請求項2記載の移動体。 The mobile body according to claim 2, wherein the reduction suppression area setting unit sets the reduction suppression area to be reduced as the strength of the cancellation request detected by the cancellation request detection device increases.
  4.  前記被検知物の種類は、静止物および運動物であり、
     前記制御装置は、
     前記周辺領域内に位置する前記被検知物の種類が前記静止物であるか前記運動物であるかを判定する周辺物種類判定部と、
     前記周辺物種類判定部によって前記周辺領域内の前記被検知物の種類が前記静止物であると判定された場合、前記基準抑制領域設定部によって設定された前記基準抑制領域から、前記縮小抑制領域設定部によって設定された前記縮小抑制領域に切替える領域切替部と、をさらに備えている請求項1記載の移動体。
    The types of detected objects are stationary objects and moving objects,
    The controller is
    A peripheral object type determination unit that determines whether the type of the detected object located in the peripheral region is the stationary object or the moving object;
    When the peripheral object type determination unit determines that the type of the detected object in the peripheral region is the stationary object, the reduction suppression region from the reference suppression region set by the reference suppression region setting unit The moving body according to claim 1, further comprising: a region switching unit that switches to the reduction suppression region set by the setting unit.
  5.  前記制御装置は、
     前記周辺物種類判定部によって前記周辺領域内の前記被検知物の種類が前記運動物であると判定された場合、前記抑制領域を拡張する領域拡張制御を実行する領域拡張制御部と、をさらに備えている請求項4記載の移動体。
    The controller is
    A region expansion control unit that executes region expansion control to expand the suppression region when the peripheral object type determination unit determines that the type of the detected object in the peripheral region is the moving object; The moving body according to claim 4 provided.
  6.  前記制御装置は、
     前記周辺領域に対する前記被検知物が占める領域の割合である占有率を導出する占有率導出部をさらに備え、
     前記領域拡張制御部は、前記周辺物種類判定部によって前記周辺領域内の前記被検知物の種類が前記静止物であると判定された場合において、前記占有率導出部によって導出された前記占有率が占有率判定値より小さいとき、前記領域拡張制御を実行する請求項5記載の移動体。
    The controller is
    An occupancy ratio deriving unit for deriving an occupancy ratio that is a ratio of an area occupied by the detected object with respect to the peripheral area;
    The region expansion control unit, when the peripheral object type determination unit determines that the type of the detected object in the peripheral region is the stationary object, the occupancy rate derived by the occupancy rate deriving unit The mobile object according to claim 5, wherein the area expansion control is executed when the occupancy rate is smaller than the occupation rate determination value.
  7.  前記制御装置は、
     前記周辺領域に対する前記被検知物が占める領域の割合である占有率を導出する占有率導出部と、
     前記占有率導出部によって導出された前記占有率が占有率判定値以上である場合、前記基準抑制領域設定部によって設定された前記基準抑制領域から、前記縮小抑制領域設定部によって設定された前記縮小抑制領域に切替える領域切替部と、をさらに備えている請求項1記載の移動体。
    The controller is
    An occupancy ratio deriving unit for deriving an occupancy ratio that is a ratio of an area occupied by the detected object to the peripheral area;
    When the occupation rate derived by the occupation rate deriving unit is greater than or equal to an occupation rate determination value, the reduction set by the reduction suppression region setting unit from the reference suppression region set by the reference suppression region setting unit The moving body according to claim 1, further comprising: a region switching unit that switches to a suppression region.
PCT/JP2016/082137 2015-12-24 2016-10-28 Mobile body WO2017110249A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP16878147.4A EP3396650B1 (en) 2015-12-24 2016-10-28 Mobile body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-251947 2015-12-24
JP2015251947A JP6538546B2 (en) 2015-12-24 2015-12-24 Moving body

Publications (1)

Publication Number Publication Date
WO2017110249A1 true WO2017110249A1 (en) 2017-06-29

Family

ID=59089240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082137 WO2017110249A1 (en) 2015-12-24 2016-10-28 Mobile body

Country Status (3)

Country Link
EP (1) EP3396650B1 (en)
JP (1) JP6538546B2 (en)
WO (1) WO2017110249A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020013043A1 (en) * 2018-07-13 2020-01-16 Whill株式会社 Electric mobility apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7259356B2 (en) * 2019-01-28 2023-04-18 スズキ株式会社 Control device and electric vehicle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010208583A (en) * 2009-03-12 2010-09-24 Toyota Motor Corp Traveling support device
JP2012106722A (en) * 2010-10-19 2012-06-07 Panasonic Corp Electric vehicle and method for controlling the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010208583A (en) * 2009-03-12 2010-09-24 Toyota Motor Corp Traveling support device
JP2012106722A (en) * 2010-10-19 2012-06-07 Panasonic Corp Electric vehicle and method for controlling the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020013043A1 (en) * 2018-07-13 2020-01-16 Whill株式会社 Electric mobility apparatus

Also Published As

Publication number Publication date
JP6538546B2 (en) 2019-07-03
EP3396650A4 (en) 2018-12-26
EP3396650A1 (en) 2018-10-31
EP3396650B1 (en) 2019-11-20
JP2017113292A (en) 2017-06-29

Similar Documents

Publication Publication Date Title
JP6521803B2 (en) Automatic operation control device, footrest, automatic operation control method, and operation information output method
JP5309582B2 (en) Vehicle traveling control method and traveling control device
JP4020089B2 (en) VEHICLE DRIVE OPERATION ASSISTANCE DEVICE AND VEHICLE WITH VEHICLE DRIVE OPERATION ASSISTANCE DEVICE
JP6221569B2 (en) Driving assistance device
US20030139883A1 (en) Collision damage reduction system
US11505179B2 (en) Parking assistance device and parking assistance method
JP4572752B2 (en) Driving support device
JP4055792B2 (en) VEHICLE DRIVE OPERATION ASSISTANCE DEVICE AND VEHICLE HAVING VEHICLE DRIVE OPERATION ASSISTANCE DEVICE
JP5316640B2 (en) Driving support device
WO2016084910A1 (en) Moving body
JP5532684B2 (en) Vehicle travel control device and vehicle travel control method
JP5598119B2 (en) Motor vehicle
US10919542B2 (en) Apparatus and method for providing a kinesthetic cue in a driving automation equipped vehicle
JP5299756B2 (en) vehicle
WO2017110249A1 (en) Mobile body
CN112937585A (en) Vehicle control system
JP2023174836A (en) Working machine and control method of working machine
JP2012131460A (en) Target path calculation device
JP5811576B2 (en) Vehicle with collision prevention function
JP2005149200A (en) Risk notification apparatus, and vehicle and driver&#39;s seat equipped with risk notification apparatus
JP2017099068A (en) Movable body
US20230322214A1 (en) Driver assistance system
JP2018184148A (en) Parking support device
JP5348309B2 (en) Vehicle traveling control method and traveling control device
JP2007237966A (en) Vehicular traveling control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16878147

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE