WO2017110246A1 - Electrode assembly and manufacturing method for power storage device - Google Patents

Electrode assembly and manufacturing method for power storage device Download PDF

Info

Publication number
WO2017110246A1
WO2017110246A1 PCT/JP2016/082108 JP2016082108W WO2017110246A1 WO 2017110246 A1 WO2017110246 A1 WO 2017110246A1 JP 2016082108 W JP2016082108 W JP 2016082108W WO 2017110246 A1 WO2017110246 A1 WO 2017110246A1
Authority
WO
WIPO (PCT)
Prior art keywords
tab
tab laminate
current collector
laminate
welded portion
Prior art date
Application number
PCT/JP2016/082108
Other languages
French (fr)
Japanese (ja)
Inventor
真也 奥田
雅巳 冨岡
雅人 小笠原
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Priority to JP2017557763A priority Critical patent/JP6753416B2/en
Publication of WO2017110246A1 publication Critical patent/WO2017110246A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/72Current collectors specially adapted for integration in multiple or stacked hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/74Terminals, e.g. extensions of current collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • One aspect of the present invention relates to an electrode assembly and a method for manufacturing a power storage device.
  • Patent Document 1 When manufacturing a lithium secondary battery, a method of welding a plurality of tabs stacked on a current collector using a laser is known (see Patent Document 1).
  • a weld is formed on the end face of a tab laminate composed of a plurality of stacked tabs.
  • the value of the current flowing through each tab of the tab laminate increases as it approaches the current collector. Therefore, it is preferable to increase the cross-sectional area of the welded portion orthogonal to the stacking direction of the tab laminate in accordance with the maximum current value flowing in the tab closest to the current collector.
  • An object of one aspect of the present invention is to provide an electrode assembly and a method of manufacturing a power storage device that can adjust the electrical resistance value of each tab in accordance with the value of current flowing through each tab of the tab laminate.
  • An electrode assembly is an electrode assembly including an electrode including a tab, and includes a current collector and a tab stacked body including the stacked tabs, and the tab stacked body includes The tab laminated body is disposed on the current collector in the laminating direction of the tab laminated body, and the tab laminated body is located on the inner side from the first end surface of the tab laminated body extending along the laminating direction of the tab laminated body.
  • the cross-sectional area of the welded portion in a plane perpendicular to the stacking direction of the tab laminate is monotonously increased as the current collector approaches the thickness of the tab laminate,
  • the outer surface of the welded portion is directed outward as it approaches the current collector. Inclined with respect to the lamination direction of the tab laminate To have.
  • the cross-sectional area of the welded portion increases monotonously as it approaches the current collector over the thickness of the tab laminate. Therefore, the electrical resistance value of each tab of the tab laminate decreases as the current collector is approached. On the other hand, the value of the current flowing through each tab of the tab laminate increases as it approaches the current collector. Therefore, in the electrode assembly, the electrical resistance value of each tab can be adjusted according to the current value flowing through each tab of the tab laminate.
  • the current collector may protrude outward from the first end face of the tab laminate.
  • the inclination angle of the outer surface of the welded portion with respect to the stacking direction of the tab laminate can be increased.
  • the rate of increase in the cross-sectional area of the welded portion in the stacking direction of the tab laminate is increased.
  • the electrode assembly includes a plurality of electrodes, each of the plurality of electrodes including a main body and the tab protruding from one end of the main body, and the electrode assembly includes a plurality of stacked main bodies.
  • the length of the tab between the electrode main body and the welded portion may become shorter as the current collector is approached.
  • the heat generated in the welded portion is easily transferred to the electrode body, so that the electrode body is easily affected by heat. Even in such a case, in this electrode assembly, since the current collector is located near the tab where the distance between the electrode body and the welded portion is short, the heat generated in the welded portion is generated by the electrode body. Before the current collector. As a result, it is difficult for heat to be transferred from the welded portion to the electrode body via the tab.
  • the tab laminated body may have a second end face that is disposed on the opposite side of the tab laminated body from the first end face.
  • the end faces arranged opposite to each other across the tab laminate.
  • the positional deviation between the tabs is often larger than that of the first and second end faces.
  • the positional deviation between the tabs is large, it is difficult to monotonously increase the cross-sectional area of the welded portion over the thickness of the tab laminate as the current collector is approached.
  • the length of each tab is adjusted in order to suppress displacement between the tabs.
  • the tab laminate is disposed between the conductive member and the current collector in the stacking direction of the tab laminate, and the thickness of the conductive member in the stacking direction of the tab laminate is the stacking direction of the tab laminate It may be smaller than the thickness of the current collector.
  • the thickness of the conductive member is relatively small, the difference between the heat capacity of the conductive member and the heat capacity of the tab can be reduced.
  • the maximum length of the welded portion in the direction orthogonal to the stacking direction of the tab laminate at the first end surface of the tab laminate is orthogonal to the stacking direction of the tab laminate and the stacking direction of the tab laminate.
  • the maximum length of a portion where the welded portion and the tab laminate overlap in the stacking direction of the tab laminate may be larger.
  • the welded portion extends in a direction intersecting the stacking direction of the tab laminate.
  • the maximum weld depth of the weld in the direction perpendicular to the lamination direction of the tab laminate in the cross section of the tab laminate perpendicular to the first end surface of the tab laminate including the lamination direction of the tab laminate May be less than 2 mm.
  • the welded portion When viewed from the normal direction of the first end face of the tab laminate, the welded portion may have an outer shape including a curve.
  • a method of manufacturing a power storage device includes a case having a main body portion in which an opening is formed and a lid portion that closes the opening of the main body portion, and the above-described electrode assembly housed in the case.
  • a method of manufacturing a power storage device comprising: a step of fixing the current collector to the lid portion; a step of arranging the tab laminate on the current collector; and the step of fixing the current collector to the lid portion. Forming the welded portion by irradiating the first end surface of the tab laminated body with an energy beam in a state where the tab laminated body is disposed on the current collector.
  • the current collector and the tab laminate are paired with a pair of electrodes. It is necessary to pinch. In that case, the position of the electrode may interfere with the position of the lid.
  • the welded portion is formed by irradiation with an energy beam, so that an electrode necessary for resistance welding is not necessary. Therefore, the problem of interference due to the position of the electrode does not occur.
  • the current collector may be an unbent flat plate.
  • a method of manufacturing a power storage device includes a case having a main body portion in which an opening is formed and a lid portion that closes the opening of the main body portion, and an electrode assembly accommodated in the case.
  • the electrode assembly includes an electrode including a tab
  • the electrode assembly includes a current collector and a tab stacked body including the stacked tabs.
  • the tab laminated body is disposed on the current collector in the lamination direction of the tab laminated body, and the tab laminated body extends along the lamination direction of the tab laminated body.
  • a method of manufacturing the power storage device comprising: a step of fixing the current collector to the lid; and a step of disposing the tab laminate on the current collector.
  • the tab laminate is disposed on the current collector fixed to the lid. State, by irradiating an energy beam to the first end face of the tab laminate, and forming the weld.
  • the current collector and the tab laminate are paired with a pair of electrodes. It is necessary to pinch. In that case, the position of the electrode may interfere with the position of the lid.
  • the welded portion is formed by irradiation with an energy beam, so that an electrode necessary for resistance welding is not necessary. Therefore, the problem of interference due to the position of the electrode does not occur.
  • an electrode assembly and a method for manufacturing a power storage device that can adjust the electrical resistance value of each tab in accordance with the value of current flowing through each tab of the tab laminate.
  • FIG. 1 is an exploded perspective view of a power storage device including the electrode assembly according to the first embodiment.
  • FIG. 2 is a cross-sectional view of the power storage device taken along line II-II in FIG.
  • FIG. 3 is a perspective view of the electrode assembly according to the first embodiment.
  • 4 is a view showing a part of the electrode assembly of FIG. 3 as viewed from the X-axis direction.
  • FIG. 5 is a view showing a part of the electrode assembly of FIG. 3 as viewed from the Y-axis direction.
  • FIG. 6 is a diagram illustrating a step of the method of manufacturing the power storage device according to the first embodiment.
  • FIG. 7 is a diagram illustrating one step in the method of manufacturing the power storage device according to the first embodiment.
  • FIG. 8 is a diagram illustrating a step of the method of manufacturing the power storage device according to the first embodiment.
  • FIG. 9 is a diagram illustrating a step of the method of manufacturing the power storage device according to the first embodiment.
  • FIG. 10 is a diagram illustrating one step in the method of manufacturing the power storage device according to the first embodiment.
  • FIG. 11 is a diagram illustrating a step of the method of manufacturing the power storage device according to the first embodiment.
  • FIG. 12 is a diagram illustrating one process of the method for manufacturing the power storage device according to the second embodiment.
  • FIG. 13 is a diagram illustrating a step of the method of manufacturing the power storage device according to the second embodiment.
  • FIG. 14 is a diagram illustrating one process of the method for manufacturing the power storage device according to the third embodiment.
  • FIG. 15 is a diagram illustrating a step of the method of manufacturing the power storage device according to the third embodiment.
  • FIG. 16 is a diagram illustrating a part of an electrode assembly having a weld according to a modification.
  • FIG. 17 is a diagram illustrating the evaluation results of the examples.
  • FIG. 1 is an exploded perspective view of a power storage device including the electrode assembly according to the first embodiment.
  • FIG. 2 is a cross-sectional view of the power storage device taken along line II-II in FIG.
  • the power storage device 1 shown in FIGS. 1 and 2 is a nonaqueous electrolyte secondary battery such as a lithium ion secondary battery or an electric double layer capacitor.
  • the power storage device 1 includes a hollow case 2 having a substantially rectangular parallelepiped shape, for example, and an electrode assembly 3 accommodated in the case 2.
  • the case 2 is made of a metal such as aluminum.
  • the case 2 has a main body 2a in which an opening is formed and a lid 2b that closes the opening of the main body 2a.
  • an insulating film (not shown) is provided on the inner wall surface of the case 2.
  • a non-aqueous (organic solvent) electrolyte is injected into the case 2.
  • the positive electrode active material layer 15 of the positive electrode 11, the negative electrode active material layer 18 of the negative electrode 12, and the separator 13 described later are porous, and the pores are impregnated with the electrolytic solution. .
  • a positive electrode terminal 5 and a negative electrode terminal 6 are spaced apart from each other on the lid 2 b of the case 2.
  • the positive electrode terminal 5 is fixed to the case 2 via an insulating ring 7, and the negative electrode terminal 6 is fixed to the case 2 via an insulating ring 8.
  • the electrode assembly 3 is a stacked electrode assembly.
  • the electrode assembly 3 includes a plurality of positive electrodes 11 (electrodes), a plurality of negative electrodes 12 (electrodes), and a bag-shaped separator 13 disposed between the positive electrodes 11 and the negative electrodes 12.
  • the positive electrode 11 is accommodated in the separator 13.
  • the plurality of positive electrodes 11 and the plurality of negative electrodes 12 are alternately stacked via the separators 13.
  • the positive electrode 11 has a metal foil 14 made of, for example, an aluminum foil, and a positive electrode active material layer 15 formed on both surfaces of the metal foil 14.
  • the metal foil 14 of the positive electrode 11 includes a rectangular main body 14a and a rectangular tab 14b protruding from one end of the main body 14a.
  • the positive electrode active material layer 15 is a porous layer formed including a positive electrode active material and a binder.
  • the positive electrode active material layer 15 is formed by supporting a positive electrode active material on at least the central portion of the main body 14a on both surfaces of the main body 14a.
  • the positive electrode active material examples include composite oxide, metallic lithium, and sulfur.
  • the composite oxide includes, for example, at least one of manganese, nickel, cobalt, and aluminum and lithium.
  • the tab 14b does not carry a positive electrode active material.
  • an active material may be carried on the base end portion of the tab 14b on the main body 14a side.
  • the tab 14b extends upward from the upper edge of the main body 14a and is connected to the positive electrode terminal 5 via a current collector plate 16 (current collector).
  • the current collector plate 16 is disposed between the tab 14 b and the positive electrode terminal 5.
  • the current collector plate 16 is formed in a rectangular flat plate shape from the same material as the metal foil 14 of the positive electrode 11.
  • the plurality of stacked tabs 14b are disposed between the current collector plate 16 and a protective plate 23 (conductive member) thinner than the current collector plate 16 (see FIG. 3).
  • the protective plate 23 is formed in a rectangular flat plate shape from the same material as the metal foil 14 of the positive electrode 11.
  • the negative electrode 12 includes a metal foil 17 made of, for example, copper foil, and a negative electrode active material layer 18 formed on both surfaces of the metal foil 17. Similar to the metal foil 14 of the positive electrode 11, the metal foil 17 of the negative electrode 12 includes a rectangular main body 17a and a rectangular tab 17b protruding from one end of the main body 17a.
  • the negative electrode active material layer 18 is formed by supporting a negative electrode active material on at least a central portion of the main body 17a on both surfaces of the main body 17a.
  • the negative electrode active material layer 18 is a porous layer formed including a negative electrode active material and a binder.
  • the negative electrode active material examples include carbon such as graphite, highly oriented graphite, mesocarbon microbeads, hard carbon, and soft carbon, alkali metals such as lithium and sodium, metal compounds, SiOx (0.5 ⁇ x ⁇ 1.5 ) And the like, and boron-added carbon.
  • the tab 17b does not carry a negative electrode active material.
  • an active material may be carried on the base end portion of the tab 17b on the main body 17a side.
  • the tab 17b extends upward from the upper edge of the main body 17a and is connected to the negative electrode terminal 6 via a current collector plate 19 (current collector).
  • the current collector plate 19 is disposed between the tab 17 b and the negative electrode terminal 6.
  • the current collector plate 19 is formed in a rectangular flat plate shape from the same material as the metal foil 17 of the negative electrode 12.
  • the plurality of stacked tabs 17b are disposed between the current collector plate 19 and a protective plate 27 (conductive member) thinner than the current collector plate 19 (see FIG. 3).
  • the protection plate 27 is formed in a rectangular flat plate shape from the same material as the metal foil 17 of the negative electrode 12.
  • the separator 13 accommodates the positive electrode 11.
  • the separator 13 has a rectangular shape when viewed from the stacking direction of the positive electrode 11 and the negative electrode 12.
  • the separator 13 is formed in a bag shape by welding a pair of long sheet-like separator members to each other.
  • the material of the separator 13 include a porous film made of a polyolefin resin such as polyethylene (PE) and polypropylene (PP), a woven fabric or a non-woven fabric made of polypropylene, polyethylene terephthalate (PET), methylcellulose, and the like.
  • FIG. 3 is a perspective view of the electrode assembly according to the first embodiment.
  • 4 is a diagram (partial sectional view) showing a part of the electrode assembly of FIG. 3 as viewed from the X-axis direction.
  • FIG. 5 is a view showing a part of the electrode assembly of FIG. 3 as viewed from the Y-axis direction.
  • the electrode assembly 3 shown in FIG. 3 includes a plurality of positive electrodes 11 and a plurality of negative electrodes 12 that are stacked on each other via a separator 13.
  • Each of the plurality of positive electrodes 11 includes a main body 14a extending in the XY plane and a tab 14b protruding from one end of the main body 14a in the X-axis direction.
  • Each of the plurality of negative electrodes 12 includes a main body 17a extending in the XY plane and a tab 17b protruding from one end of the main body 17a in the X-axis direction.
  • the main bodies 14a and 17a are laminated together to form electrode main bodies 40 and 42, respectively. That is, the electrode assembly 3 includes an electrode body 40 having a plurality of main bodies 14a stacked in the Z-axis direction, and an electrode body 42 having a plurality of main bodies 17a stacked in the Z-axis direction.
  • the tabs 14b and 17b are laminated with each other to form tab laminated bodies 21 and 25, respectively.
  • the electrode assembly 3 includes a tab laminate 21 having a plurality of tabs 14b laminated in the Z-axis direction and a tab laminate 25 having a plurality of tabs 17b laminated in the Z-axis direction.
  • the tab laminates 21 and 25 are arranged apart from each other in the Y-axis direction.
  • the tab laminated body 21 includes end surfaces 21a, 21b, and 21c of the tab laminated body 21 extending along the lamination direction (Z-axis direction) of the tab laminated body 21.
  • the end surfaces 21a and 21b are surfaces that sandwich the tab laminate 21, and the end surface 21c is a surface that connects the end surfaces 21a and 21b. That is, the end surfaces 21 a and 21 b (first and second end surfaces) are arranged on opposite sides of the tab laminate 21.
  • the end surfaces 21a and 21b are surfaces along the XZ plane.
  • the end surface 21 c is a surface that is inclined with respect to the XY plane so that the thickness of the tab laminated body 21 becomes smaller toward the tip of the tab laminated body 21.
  • the tab laminate 21 is disposed between the current collector plate 16 and the protective plate 23 in the Z-axis direction. That is, the tab laminate 21 is disposed on the current collector plate 16 in the Z-axis direction.
  • the protection plate 23 is disposed on the tab laminate 21 in the Z-axis direction.
  • the protective plate 23 is not in contact with the current collector plate 16, and the protective plate 23 and the current collector plate 16 are separated from each other with the tab laminate 21 sandwiched in the stacking direction.
  • the tab laminate 21 is thicker than the protective plate 23, and the current collector plate 16 is thicker than the tab laminate 21.
  • the thickness of the protective plate 23 is larger than the thickness of the tab 14 b and smaller than the thickness of the current collector plate 16.
  • the electrode assembly 3 may not include the protection plate 23 and the current collector plate 16.
  • the length of the current collector plate 16 in the Y-axis direction is larger than the length of the tab laminate 21 in the Y-axis direction (the distance between the end faces 21a and 21b). In the Y-axis direction, the position of the outer end portion of the current collector plate 16 in the Y-axis direction coincides with the position of the end portion of the main body 14a in the Y-axis direction.
  • the length of the protective plate 23 in the Y-axis direction is substantially the same as the length of the tab laminate 21 in the Y-axis direction.
  • the tab laminated body 21 has welded portions W located on the inner side from the end faces 21a and 21b of the tab laminated body 21, respectively.
  • the maximum length W2 of the welded portion W in the direction (eg, the X-axis direction) orthogonal to the lamination direction of the tab laminate 21 on the end faces 21a, 21b of the tab laminate 21 is the lamination direction (eg, the Z-axis direction) of the tab laminate 21.
  • a direction (for example, the Y-axis direction) orthogonal to both the direction (for example, the X-axis direction) orthogonal to the stacking direction of the tab-layered structure 21, the stacking direction (for example, the Z-axis direction) of the tab stacked body 21 ) Is larger than the maximum length W1 of the portion where the welded portion W and the tab laminate 21 overlap (see FIG. 3).
  • the maximum length W1 is smaller than the maximum length of the welded portion W in the Z-axis direction.
  • the welded portion W extends to the inside of the current collector plate 16 and the protective plate 23 adjacent to the end surfaces 21a and 21b.
  • the length of the welded portion W in the X-axis direction is preferably substantially equal to the length of the protective plate 23 in the X-axis direction or shorter than the length of the protective plate 23 in the X-axis direction.
  • the welded portion W in the X-axis direction is longer than the length of the protective plate 23 in the X-axis direction, the welded portion W protrudes outside the protective plate 23 in the X-axis direction. Even in those cases, the welded portion W can be formed.
  • the cross-sectional area of the welded portion W in a plane (for example, the XY plane) orthogonal to the stacking direction (for example, the Z-axis direction) of the tab stacked body 21 is The thickness increases monotonously as the current collector plate 16 is approached.
  • the cross-sectional area of the welded portion W is the product of the weld depth D of the welded portion W and the weld length L (see FIG. 3) in the X-axis direction.
  • the outer surface Ws of the welded portion W approaches the current collector plate 16 in the cross section (for example, the YZ cross section) of the tab laminated body 21 that includes the laminating direction of the tab laminated body 21 and is orthogonal to the end faces 21 a and 21 b of the tab laminated body 21. Accordingly, the tab laminated body 21 is inclined with respect to the stacking direction so as to go outward (in a direction away from the end faces 21a and 21b).
  • the outer surface Ws of the welded portion W may be inclined with respect to the stacking direction of the tab laminate 21 so as to go outward as it approaches the current collector plate 16 over the thickness of the tab laminate 21.
  • the current collector plate 16 may protrude outward from the end faces 21 a and 21 b of the tab laminate 21, but inside the end faces 21 a and 21 b of the tab laminate 21. May be located.
  • the boundary line Wa of the welded portion W is a direction H (perpendicular to the Z axis direction).
  • H perpendicular to the Z axis direction
  • the welded portion W has two boundary lines Wa, and the welded portion W depends on the shape of the molten pool formed around the energy beam B by irradiation with an energy beam B (see FIG. 8) described later.
  • the distance between the two boundary lines Wa becomes narrower from the outer surface Ws toward the inner side.
  • the welding pool is formed so as to taper inward from the surface of the irradiation object of the energy beam B in the irradiation direction of the energy beam B.
  • the welded portion W is also formed on the current collector plate 16, the density of the current collector plate 16 is different from the density of the tab laminate 21, so the depth of the weld pool formed on the current collector plate 16 and the tab laminate 21 The depth of the weld pool formed is different.
  • the distance between the two boundary lines Wa becomes narrower from the outer surface Ws of the welded portion W toward the inside.
  • the smaller one of the angles formed by one boundary line Wa of the weld W and the direction H is ⁇
  • the other boundary line Wa of the weld W and the direction H Is the smaller angle of ⁇
  • is the smaller angle of the angles formed by the direction J and the direction H projected from the irradiation direction of the energy beam B on the YZ plane. It becomes a value between ⁇ .
  • the smaller angle among the angles formed by the boundary line Wa in the current collector plate 16 and the direction H is ⁇
  • the boundary line Wa in the tab laminated body 21 and the direction H are Of the angles formed
  • is the smaller angle
  • is the smaller angle among the angles formed by the direction J and the direction H in which the irradiation direction of the energy beam B is projected on the YZ plane, so that ⁇ ⁇ ⁇ .
  • the boundary line Wa in the tab laminate 21 may extend in parallel to the lamination direction of the tab laminate 21.
  • the tab laminate 25 includes end surfaces 25a, 25b, and 25c of the tab laminate 25 that extend along the lamination direction (Z-axis direction) of the tab laminate 25.
  • the end surfaces 25a and 25b are surfaces that sandwich the tab laminate 25, and the end surface 25c is a surface that connects the end surfaces 25a and 25b. That is, the end surfaces 25 a and 25 b (first and second end surfaces) are arranged on opposite sides of the tab laminate 25.
  • the end surfaces 25a and 25b are surfaces along the XZ plane.
  • the end surface 25 c is a surface that is inclined with respect to the XY plane so that the thickness of the tab laminated body 25 becomes smaller toward the tip of the tab laminated body 25.
  • the tab laminate 25 is disposed between the current collector plate 19 and the protective plate 27 in the Z-axis direction. That is, the tab laminate 25 is disposed on the current collector plate 19 in the Z-axis direction.
  • the protection plate 27 is disposed on the tab laminate 25 in the Z-axis direction.
  • the protective plate 27 is not in contact with the current collector plate 19, and the protective plate 27 and the current collector plate 19 are separated with the tab laminate 25 sandwiched in the stacking direction.
  • the tab laminate 25 is thicker than the protective plate 27, and the current collector plate 19 is thicker than the tab laminate 25.
  • the thickness of the protection plate 27 is larger than the thickness of the tab 17 b and smaller than the thickness of the current collector plate 19.
  • the electrode assembly 3 may not include the protection plate 27 and the current collector plate 19.
  • the length of the current collector plate 19 in the Y-axis direction is larger than the length of the tab laminate 25 in the Y-axis direction (the distance between the end faces 25a and 25b).
  • the position of the outer end portion of the current collector plate 19 in the Y-axis direction matches the position of the end portion of the main body 17a in the Y-axis direction.
  • the length of the protection plate 27 in the Y-axis direction is substantially the same as the length of the tab laminate 25 in the Y-axis direction.
  • the tab laminated body 25 has welded portions W located on the inner sides from the end faces 25a and 25b of the tab laminated body 25, respectively.
  • the end surface 25 b of the tab laminated body 25 faces the end surface 21 b of the tab laminated body 21. Therefore, the end faces 21a, 21b, 25a, and 25b of the tab laminates 21 and 25 are arranged along the Y-axis direction.
  • the maximum length W2 of the welded portion W in the direction (eg, the X-axis direction) orthogonal to the lamination direction of the tab laminate 25 at the end faces 25a, 25b of the tab laminate 25 is the lamination direction (eg, the Z-axis direction) of the tab laminate 25 )
  • a direction (for example, the Y-axis direction) orthogonal to both the direction (for example, the X-axis direction) orthogonal to the stacking direction of the tab-layered structure 25, the stacking direction (for example, the Z-axis direction) of the tab stacked body 25 ) Is larger than the maximum length W1 of the portion where the welded portion W and the tab laminate 25 overlap (see FIG. 3).
  • the welded portion W extends to the inside of the current collector plate 19 and the protection plate 27 adjacent to the end surfaces 25a and 25b.
  • the length of the welded portion W in the X-axis direction is preferably substantially equal to the length of the protective plate 27 in the X-axis direction or shorter than the length of the protective plate 27 in the X-axis direction.
  • the welded portion W When the length of the welded portion W in the X-axis direction is substantially equal to the length of the protective plate 27 in the X-axis direction, the welded portion W may protrude outside the protective plate 27 in the X-axis direction due to positional displacement. When the length of the welded portion W in the X-axis direction is longer than the length of the protective plate 27 in the X-axis direction, the welded portion W protrudes outside the protective plate 27 in the X-axis direction. Even in those cases, the welded portion W can be formed.
  • the cross-sectional area of the welded portion W in a plane (for example, the XY plane) orthogonal to the stacking direction (for example, the Z-axis direction) of the tab stack 25 is The thickness increases monotonically as the current collector plate 19 is approached.
  • the tab laminated body 25 is inclined with respect to the lamination direction so as to go outward (in a direction away from the end faces 25a and 25b).
  • the outer surface Ws of the welded portion W may be inclined with respect to the stacking direction of the tab laminate 25 so as to go outward as it approaches the current collector plate 19 over the thickness of the tab laminate 25.
  • You may incline with respect to the lamination direction of the tab laminated body 25 so that it may face outside as it approaches the current collecting plate 19 over a part of thickness of 25.
  • the current collector plate 19 may protrude outward from the end faces 25a and 25b of the tab laminate 25, but inside the end faces 25a and 25b of the tab laminate 25. May be located.
  • the boundary line Wa of the welded portion W is a direction H (perpendicular to the Z axis direction).
  • H perpendicular to the Z axis direction
  • the welded portion W has two boundary lines Wa, and depending on the shape of the molten pool formed around the energy beam B by irradiation of the energy beam B described later, the welded portion W is inward from the outer surface.
  • the distance between the two boundary lines Wa becomes narrower as it goes.
  • the welding pool is formed so as to taper inward from the surface of the irradiation object of the energy beam B in the irradiation direction of the energy beam B.
  • the welded portion W is also formed on the current collector plate 19, the density of the current collector plate 19 is different from the density of the tab laminate 25, so the depth of the weld pool formed on the current collector plate 19 and the tab laminate 25 The depth of the weld pool formed is different.
  • the distance between the two boundary lines Wa becomes narrower from the outer surface of the welded portion W toward the inside.
  • the smaller one of the angles formed by one boundary line Wa of the welded portion W and the direction H is ⁇
  • the other boundary line Wa of the welded portion W and the direction H are Is the smaller angle of ⁇
  • is the smaller angle of the angles formed by the direction J and the direction H projected from the irradiation direction of the energy beam B on the YZ plane. It becomes a value between ⁇ .
  • the smaller one of the angles formed by the boundary line Wa in the current collector plate 19 and the direction H is ⁇
  • the boundary line Wa in the tab laminate 25 and the direction H are Of the angles formed
  • is the smaller angle
  • is the smaller angle among the angles formed by the direction J and the direction H in which the irradiation direction of the energy beam B is projected on the YZ plane, so that ⁇ ⁇ ⁇ .
  • the boundary line Wa in the tab laminate 25 may extend in parallel to the lamination direction of the tab laminate 25.
  • the cross-sectional area of the welded portion W in the XY plane increases monotonously as it approaches the current collector plates 16 and 19 over the thickness of the tab laminates 21 and 25.
  • the outer surface Ws of the welded portion W is inclined with respect to the stacking direction of the tab laminates 21 and 25 so as to go outward as the current collector plates 16 and 19 are approached.
  • the welded portion W having such a shape is formed by the molten material moving in the stacking direction of the tab laminates 21 and 25 by, for example, at least one of gravity and surface tension when the welded portion W is formed. obtain.
  • the extending direction of the boundary line Wa of the welded portion W is controlled by, for example, the irradiation direction of the energy beam B irradiated to the end faces 21a, 21b, 25a, and 25b of the tab laminates 21 and 25 as described above. .
  • the length of the tab 17 b between the electrode main body 42 and the welded portion W may be shortened as the current collector plate 19 is approached.
  • the electrode body 42 has one end 42a and the other end 42b in the Z-axis direction, and the plurality of tabs 17b are bundled on the one end 42a side in the Z-axis direction.
  • the end of the tab 17b becomes longer as it approaches the current collector plate 19, so that the end face 25c located at the end of the tab laminate 25 becomes an inclined surface.
  • the lengths of the plurality of tabs 14 b between the electrode main body 40 and the welded portion W may be shortened as the current collector plate 16 is approached.
  • the length of the plurality of tabs 14b, 17b between the electrode main bodies 40, 42 and the welded portion W may be shortened as the current collector plates 16, 19 are approached across the tab laminates 21, 25, It may be shortened as it approaches the current collector plates 16 and 19 over a part of the tab laminates 21 and 25. Further, the lengths of the plurality of tabs 14 b and 17 b between the electrode main bodies 40 and 42 and the welded portion W may be shortened as the protective plates 23 and 27 are approached. In this case, the plurality of tabs 14b and 17b are bundled on the other end 42b side in the Z-axis direction.
  • the cross-sectional area of the welded portion W increases monotonously as the current collector plates 16 and 19 are approached over the thickness of the tab laminates 21 and 25. Yes. Therefore, as the current collector plates 16 and 19 are approached, the electric resistance values of the tabs 14b and 17b of the tab laminates 21 and 25 become smaller. On the other hand, the value of the current flowing through the tabs 14 b and 17 b of the tab laminates 21 and 25 increases as the current collectors 16 and 19 are approached. Therefore, in the electrode assembly 3, the electrical resistance value of each tab 14b, 17b can be adjusted according to the value of the current flowing through each tab 14b, 17b of the tab laminate 21, 25.
  • the joint strength between the current collector plates 16 and 19 and the welded portion W is increased. Further, since the outer surface Ws of the welded portion W is inclined with respect to the stacking direction of the tab laminates 21 and 25 so as to go outward as the current collector plates 16 and 19 are approached, for example, the tab laminate 21 or Even when an external force is applied to 25, the tab laminates 21, 25 are difficult to peel from the current collector plates 16, 19.
  • the tab laminate When the current collector plates 16 and 19 protrude outward from the end surfaces 21a, 21b, 25a, and 25b of the tab laminates 21 and 25 in the cross section of the tab laminates 21 and 25 (for example, the YZ cross section), the tab laminate The inclination angle of the outer surface Ws of the welded portion W with respect to the stacking direction of 21 and 25 can be increased. As a result, the rate of increase in the cross-sectional area of the welded portion W increases in the stacking direction of the tab laminates 21 and 25.
  • the welded portion W is formed, the molten material easily moves outward from the end surfaces 21a, 21b, 25a, 25b along the surfaces of the current collector plates 16, 19 due to, for example, at least one of gravity and surface tension. Therefore, the inclination angle of the outer surface Ws of the welded portion W increases.
  • the heat generated in the welded portion W is easily transferred to the electrode bodies 40 and 42. It is easy to influence. Even in such a case, in the electrode assembly 3, the current collector plates 16 and 19 are located near the tabs 14b and 17b where the distance between the electrode main bodies 40 and 42 and the welded portion W is short. The heat generated in the weld W is transmitted to the current collector plates 16 and 19 before the electrode bodies 40 and 42. As a result, it is difficult for heat to be transmitted from the welded portion W to the electrode bodies 40 and 42 via the tabs 14b and 17b.
  • the positional deviation between the tabs 17b is often larger than the two end faces 25a and 25b arranged on the opposite sides of the tab laminated body 25 (see FIG. 3).
  • the positional deviation between the tabs 14b often increases on the end surface 21c.
  • the welded portion W in the direction orthogonal to the laminating direction of the tab laminated body 21 may be less than 2 mm, may be 1.5 mm or less, may be 1.2 mm or less, may be greater than 0.1 mm, It may be 3 mm or more.
  • the maximum welding depth Wd of the part W may be less than 2 mm, 1.5 mm or less, 1.2 mm or less, or more than 0.1 mm. 0.3 mm or more.
  • the maximum welding depth Wd is less than 2 mm, for example, the generation of sputtered particles due to the irradiation with the energy beam B can be suppressed.
  • the maximum welding depth Wd is 1.2 mm or less, the generation of sputtered particles is significantly suppressed (see FIG. 17).
  • the maximum area of the welded portion W is, for example, 4 to 40 mm 2 .
  • the maximum area of the welded portion W is, for example, 4 to 40 mm 2 .
  • the maximum length W2 of the welded portion W in the direction (eg, the X-axis direction) orthogonal to the stacking direction of the tab stacked body 21 on the end faces 21a and 21b of the tab stacked body 21 is When viewed from a direction (for example, the Y-axis direction) orthogonal to both the stacking direction (for example, the Z-axis direction) of the stacked body 21 and the direction (for example, the X-axis direction) orthogonal to the stacking direction of the tab stacked body 21 It is larger than the maximum length W1 of the portion where the welded portion W and the tab laminate 21 overlap in the lamination direction of the laminate 21 (for example, the Z-axis direction) (see FIG. 3).
  • the welded portion W spreads in a direction intersecting with the lamination direction of the tab laminated body 21.
  • the electrical resistance value between the plurality of tabs 14b can be reduced.
  • the mechanical strength of the welded portion W is increased, the welded portion W is not easily broken even if stress is generated in the electrode assembly 3 by, for example, an assembly operation or an external force.
  • the thermal diffusibility of the welded portion W is improved, the generation of sputtered particles due to the irradiation of the energy beam B can be suppressed when forming the welded portion W.
  • the maximum length W2 of the welded portion W in the direction (for example, the X-axis direction) orthogonal to the stacking direction of the tab stacked body 25 on the end surfaces 25a and 25b of the tab stacked body 25 is the stacking direction of the tab stacked body 25 (for example, When viewed from a direction (for example, the Y-axis direction) orthogonal to both the Z-axis direction) and a direction (for example, the X-axis direction) orthogonal to the stack direction of the tab stack 25, the stack direction of the tab stack 25 (for example, It is larger than the maximum length W1 of the portion where the welded portion W and the tab laminate 25 overlap in the Z-axis direction).
  • the welded portion W spreads in a direction intersecting with the lamination direction of the tab laminated body 25.
  • the electrical resistance value between the plurality of tabs 17b can be reduced.
  • the mechanical strength of the welded portion W is increased, the welded portion W is not easily broken even if stress is generated in the electrode assembly 3 by, for example, an assembly operation or an external force.
  • the thermal diffusibility of the welded portion W is improved, the generation of sputtered particles due to the irradiation of the energy beam B can be suppressed when forming the welded portion W.
  • the tab laminated body 21 is disposed between the protective plate 23 and the current collector plate 16 in the lamination direction of the tab laminated body 21, and the thickness of the protective plate 23 in the lamination direction of the tab laminated body 21 is the lamination of the tab laminated body 21. It may be smaller than the thickness of the current collector plate 16 in the direction. In this case, since the thickness of the protective plate 23 is relatively small, the difference between the heat capacity of the protective plate 23 and the heat capacity of the tab 14b can be reduced. Therefore, the quality of the welding part W in the contact location of the protection plate 23 and the tab 14b improves.
  • the thickness of the protective plate 23 in the stacking direction of the tab laminate 21 may be larger than the thickness of the tab 14 b in the stacking direction of the tab laminate 21.
  • the thickness of the protective plate 23 may be 0.1 to 0.5 mm or 0.1 to 0.2 mm. If the thickness of the protective plate 23 is less than 0.1 mm, the force with which the protective plate 23 presses the tab 14b becomes small, and thus the tab 14b tends to move during welding. If the thickness of the protective plate 23 is more than 0.5 mm, the energy for melting the protective plate 23 during welding tends to increase. When the output of the energy beam B is increased to increase the energy, sputtered particles due to the irradiation of the energy beam B are likely to be generated.
  • the thickness of the tab 14b is, for example, 5 to 30 ⁇ m.
  • the thickness of the tab laminate 21 may be, for example, 0.3 to 2.4 mm, or 0.6 to 1.0 mm.
  • the tab laminated body 25 is disposed between the protective plate 27 and the current collector plate 19 in the laminating direction of the tab laminated body 25, and the thickness of the protective plate 27 in the laminating direction of the tab laminated body 25 is determined by the tab laminated body. It may be smaller than the thickness of the current collector plate 19 in the 25 stacking direction. In this case, since the thickness of the protection plate 27 is relatively small, the difference between the heat capacity of the protection plate 27 and the heat capacity of the tab 17b can be reduced. Therefore, the quality of the welding part W in the contact location of the protection board 27 and the tab 17b improves.
  • the thickness of the protection plate 27 in the stacking direction of the tab laminate 25 may be larger than the thickness of the tab 17b in the stacking direction of the tab stack 25.
  • the thickness of the protective plate 27 may be, for example, 0.1 to 0.5 mm or 0.1 to 0.2 mm. When the thickness of the protection plate 27 is less than 0.1 mm, the force with which the protection plate 27 presses the tab 17b is reduced, and thus the tab 17b tends to move during welding. If the thickness of the protective plate 27 is more than 0.5 mm, the energy for melting the protective plate 27 during welding tends to increase. When the output of the energy beam B is increased to increase the energy, sputtered particles due to the irradiation of the energy beam B are likely to be generated. The thickness of the tab 17b is, for example, 5 to 30 ⁇ m. The thickness of the tab laminate 25 may be, for example, 0.3 to 2.4 mm, or 0.6 to 1.0 mm.
  • FIGS. 6 to 11 are views showing one process of the method for manufacturing the power storage device according to the first embodiment.
  • the power storage device 1 shown in FIGS. 1 and 2 is manufactured by, for example, the following method.
  • FIG. 6 is a diagram showing the lid 2b and the current collector plates 16 and 19 seen from the X-axis direction
  • FIG. 6B shows the lid 2b and the current collector 19 seen from the Y-axis direction.
  • An insulating member 28 having a plurality of holes for allowing the positive electrode terminal 5 and the negative electrode terminal 6 to pass through can be disposed between the lid portion 2 b and the current collector plates 16 and 19.
  • FIG. 7 the tab laminates 21 and 25 are disposed on the current collector plates 16 and 19, respectively.
  • FIG. 7A is a diagram showing the tab laminates 21 and 25 viewed from the X-axis direction
  • FIG. 7B is a diagram showing the tab laminate 25 viewed from the Y-axis direction.
  • the protective plates 23 and 27 may be placed on the tab laminates 21 and 25, respectively.
  • the tab laminates 21 and 25 are pressed through the protective plates 23 and 27 by a jig, for example, but may not be pressed.
  • the energy beam is applied to the end surface 25a of the tab laminate 25 in a state where the tab laminates 21 and 25 are respectively disposed on the current collector plates 16 and 19 fixed to the lid portion 2b.
  • B is irradiated.
  • 8A is a diagram showing the tab laminates 21 and 25 viewed from the X-axis direction
  • FIG. 8B is a diagram showing the tab laminate 25 viewed from the Y-axis direction.
  • the energy beam B is irradiated from the irradiation device 30 toward the end surface 25a of the tab laminate 25.
  • the irradiation device 30 is a scanner head including a lens and a galvanometer mirror, for example.
  • a beam generator is connected to the scanner head via a fiber.
  • the irradiating device 30 may be composed of a diffractive optical system such as a refractive type such as a prism or a diffractive optical element (DOE).
  • DOE diffractive optical element
  • a direction J in which the irradiation direction of the energy beam B is projected onto a plane (for example, YZ plane) orthogonal to the end surface 25a of the tab stack 25 and including the stacking direction of the tab stack 25 is Z in the plane (for example, YZ plane).
  • the direction J is also inclined with respect to the end face 25 a of the tab laminate 25.
  • the smaller angle ⁇ among the angles formed by the direction H and the direction J may be 5 to 85 °, 10 to 80 °, or 45 to 75 °. Good.
  • the direction J may be parallel to the direction H.
  • the energy beam B is a high energy beam that can be welded.
  • the energy beam B is, for example, a laser beam or an electron beam.
  • the irradiation with the energy beam B is performed in an atmosphere of an inert gas G supplied from the nozzle 32.
  • the energy beam B is irradiated to the end surface 25a of the tab laminated body 25 in a state where the tab laminated body 25 is pressed in the Z-axis direction via the current collector plate 19 and the protective plate 27 by a jig, for example.
  • the work including the current collecting plates 16 and 19, the tab laminates 21 and 25, and the protection plates 23 and 27 is placed on a transport stage such as a belt conveyor, and is transported in the Y-axis direction to the irradiation position of the energy beam B.
  • a transport stage such as a belt conveyor
  • the energy beam B can be scanned along the direction (X-axis direction) intersecting the Z-axis direction on the end face 25a of the tab laminate 25.
  • scanning is performed along the X-axis direction while displacing the energy beam B in the Z-axis direction.
  • the energy beam B is scanned along the X-axis direction while being reciprocally displaced (wobbled) in the Z-axis direction.
  • the amount of displacement of the irradiation spot of the energy beam B in the Z-axis direction is larger than the thickness of the tab laminate 25.
  • the irradiation spot of the energy beam B moves from the position P1 on the axis H1 along the X-axis direction to the position P2 on the end face 25a of the tab laminate 25.
  • the positions P1 and P2 are located at the center of the end face 25a of the tab laminate 25 in the Z-axis direction.
  • the energy beam B is scanned while moving the center point along the X-axis direction on the end face 25a of the tab laminate 25 and rotating the irradiation spot of the energy beam B around the center point on the XZ plane. It is preferable that the diameter of rotation is larger than the thickness of the tab laminate 25 because the end face 25a, the current collector plate 19 and the protective plate 27 of the tab laminate 25 can be welded as a whole.
  • FIG. 9A is a diagram showing the tab laminates 21 and 25 viewed from the X-axis direction
  • FIG. 9B is a diagram showing the tab laminate 25 viewed from the Y-axis direction.
  • the energy beam B is similarly applied to the end face 21 b of the tab laminated body 21.
  • the welded portion W is also formed from the end surface 21 b of the tab laminated body 21 to the inside.
  • the energy beam B is applied to the end face 21b in a state where the end face 25b of the tab laminated body 25 and the end face 21b of the tab laminated body 21 are arranged to face each other.
  • the welded portion W is formed on the inner side from the end face 25b of the tab laminated body 25 by irradiating the end surface 25b of the tab laminated body 25 with the energy beam B (FIG. 4). reference).
  • the energy beam B is applied to the end face 25b in a state where the end face 25b of the tab laminated body 25 and the end face 21b of the tab laminated body 21 are arranged to face each other.
  • the end surface 21a of the tab laminated body 21 is irradiated with the energy beam B, thereby forming a welded portion W from the end surface 21a of the tab laminated body 21 (see FIG. 4). ).
  • the workpiece including the tab stacked bodies 21 and 25 is transferred in the Y-axis direction to the irradiation position of the energy beam B by the transfer stage.
  • the end surfaces 21a and 25b of the tab laminates 21 and 25 are irradiated with the energy beam B using the first irradiation device 30, and the end surfaces 21b and 25a of the tab laminates 21 and 25 are used using the second irradiation device 30. May be irradiated with the energy beam B.
  • the end surfaces 25a, 21b, 25b, and 21a may be sequentially irradiated with the energy beam B by moving one irradiation device 30 with a driving device such as a motor to change the irradiation direction of the energy beam B.
  • a driving device such as a motor to change the irradiation direction of the energy beam B.
  • the power storage device 1 is manufactured through the above steps.
  • the current collecting plates 16 and 19 may be flat plates that are not bent. That is, current collector plates 16 and 19 may be flat plates that are not bent from the start to the end of manufacture of power storage device 1.
  • a bent current collector plate is used to separate the region fixed to the lid and the region to be resistance welded.
  • the method for manufacturing the power storage device 1 since the welded portion W is formed by irradiation with the energy beam B, welding can be performed even if flat plates that are not bent are used as the current collector plates 16 and 19. As a result, the degree of freedom in designing the power storage device 1 is increased.
  • the current collecting plates 16 and 19 are not flat plates that are not bent, but may be bent flat plates.
  • FIG. 12 to FIG. 13 are views showing one process of the manufacturing method of the electrode assembly according to the second embodiment.
  • 12A and 13A are views showing the tab laminates 21 and 25 viewed from the X-axis direction
  • FIGS. 12B and 13B are tab stacks viewed from the Y-axis direction.
  • the electrical storage apparatus 1 can be manufactured similarly to 1st Embodiment except the welding part W being formed in the end surfaces 21c and 25c (1st end surface) of the tab laminated bodies 21 and 25, respectively. it can.
  • the end surface 25c of the tab laminated body 25 is located at the tip of the tab laminated body 25 and is a surface along the YZ plane.
  • the end face 25c may be formed by cutting the tip end of the tab laminate 25, or may be formed by laminating the tab 17b using tabs 17b having different lengths.
  • the direction J in which the irradiation direction of the energy beam B is projected onto a plane (for example, XZ plane) that is orthogonal to the end surface 25c of the tab laminate 25 and includes the lamination direction of the tab laminate 25 is the plane.
  • a plane for example, XZ plane
  • the direction J is also inclined with respect to the end face 25 c of the tab laminate 25.
  • the energy beam B is scanned along the Y-axis direction while being displaced (wobbling) in the Z-axis direction on the end face 25c.
  • the irradiation spot of the energy beam B moves from the position P4 on the axis H1 along the Y-axis direction to the position P5 on the end face 25c.
  • the positions P4 and P5 are located at the center of the end face 25c in the Z-axis direction.
  • the energy beam B is scanned while moving the center point along the Y-axis direction on the end face 25c and rotating the irradiation spot of the energy beam B around the center point on the YZ plane.
  • the welded portion W is formed on the inner side from the end surface 25 c of the tab laminated body 25 by the irradiation of the energy beam B.
  • the cross-sectional area of the welded portion W in a plane (for example, the XY plane) orthogonal to the stacking direction (for example, the Z-axis direction) of the tab stack 25 extends over the thickness of the tab stack 25. As it approaches the current collector plate 19, it monotonously increases.
  • the current collector 19 may protrude outward from the end face 25c of the tab laminated body 25, but is positioned inside the end face 25c of the tab laminated body 25. Also good.
  • the welded portion W is also formed on the end surface 21c of the tab laminated body 21.
  • the same effects as those in the first embodiment can be obtained.
  • the welding part W is formed also in the end surface 25c in addition to the end surfaces 25a and 25b of the tab laminated body 25, the electrical resistance value between the tabs 17b can be reduced.
  • the electrical resistance value between the tabs 14b can also be reduced.
  • the welded portion W may not be formed on the end surfaces 21a, 21b, 25a, and 25b of the tab laminates 21 and 25, and the welded portion W may be formed only on the end surfaces 21c and 25c of the tab laminates 21 and 25.
  • FIG. 14 to FIG. 15 are diagrams showing one process of the method for manufacturing the electrode assembly according to the third embodiment.
  • 14A and 15A are views showing the tab laminate 25 viewed from the X-axis direction
  • FIGS. 14B and 15B are tab laminates 25 viewed from the Y-axis direction.
  • the electrode assembly 3 can be manufactured in the same manner as in the first embodiment, except that the wound electrode assembly 3 is manufactured instead of the stacked electrode assembly 3.
  • the wound electrode assembly 3 includes tab laminates 21 and 25, similar to the stacked electrode assembly 3.
  • the tab laminates 21 and 25 are disposed on opposite sides in the X-axis direction.
  • the tab laminate 25 is wound around the axis in the X-axis direction and then compressed in the Z-axis direction. Therefore, the tab laminate 25 includes tabs 17b that are laminated in the Z-axis direction. Specifically, a plurality of portions in the tab 17b are stacked in the Z-axis direction.
  • the welded portion W connects the stacked tabs 17b. Specifically, a plurality of portions in the tab 17b are connected by the welded portion W.
  • the tab laminate 25 does not include the end surfaces 25a and 25b, but includes only the end surface 25c located at the tip.
  • the tab laminate 21 does not include the end surfaces 21a and 21b, but includes only the end surface 21c located at the tip.
  • the energy beam B is applied to the end face 25 c of the tab laminate 25 as in the second embodiment.
  • the welded portion W is formed on the inner side from the end surface 25 c of the tab laminated body 25 by the irradiation of the energy beam B.
  • the welded portion W is also formed on the end surface 21c of the tab laminated body 21.
  • FIG. 16 is a view showing a part of an electrode assembly having a weld according to a modification.
  • FIG. 16A is a diagram showing a tab laminate 25 as viewed from the Y-axis direction, which has a welded portion W according to a first modification.
  • FIG. 16B is a view showing the tab laminate 25 having the welded portion W according to the second modified example as seen from the Y-axis direction.
  • the welded portion W when viewed from the normal direction of the end face 25a of the tab laminate 25, the welded portion W has an outer shape including a curve. For this reason, the stress is difficult to concentrate on the curved portion of the outer shape of the welded portion W, so that the welded portion W is difficult to peel off.
  • the welded portion W may have an outer shape surrounded by a curve, or may have an outer shape surrounded by a curve and a straight line.
  • the outer shape of the welded portion W does not include a corner portion (a portion where straight lines intersect) where stress is likely to concentrate.
  • the outer shape of the welded portion W according to the first modification includes, for example, a part of an ellipse.
  • the maximum length W2 of the welded portion W in the direction (X-axis direction) orthogonal to the stacking direction of the tab stacked body 25 on the end surface 25a of the tab stacked body 25 is the tab stacked body 25.
  • the outer shape of the welded portion W according to the second modification includes, for example, a part of a circle.
  • the maximum length W2 of the welded portion W in the direction (X-axis direction) orthogonal to the stacking direction of the tab stack 25 on the end surface 25a of the tab stack 25 is the tab stack 25.
  • the maximum length W2 may be equal to or less than the maximum length W1.
  • the welded portion W has the same shape as the welded portion W according to the first modified example or the second modified example. May be.
  • Example 1 The welded portion W was formed so that the maximum weld depth Wd of the welded portion W was 0.1 mm.
  • Example 2 A weld W was formed in the same manner as in Example 1 except that the maximum weld depth Wd of the weld W was 0.3 mm.
  • Example 3 A weld W was formed in the same manner as in Example 1 except that the maximum weld depth Wd of the weld W was 1.2 mm.
  • the power of the laser used for forming the weld W was 1500 W, and the scanning speed was 24.9 mm / sec.
  • Example 4 A weld W was formed in the same manner as in Example 1 except that the maximum weld depth Wd of the weld W was 1.5 mm.
  • the output of the laser used for forming the weld W was 1500 W, and the scanning speed was 8.3 mm / sec.
  • Example 5 A welded portion W was formed in the same manner as in Example 1 except that the maximum weld depth Wd of the welded portion W was 2 mm.

Abstract

This electrode assembly which includes an electrode having a tab, is provided with: a current collector; and a tab laminate which includes laminated tabs. The tab laminate is disposed on the current collector in the lamination direction of the tab laminate. The tab laminate includes a welded portion which is positioned on the inner side with respect to a first end surface, of the tab laminate, extending in the lamination direction of the tab laminate. In a plane orthogonal to the lamination direction of the tab laminate, the welded portion has a cross sectional area which monotonically increases, over the thickness of the tab laminate, toward the current collector. In a cross section, of the tab laminate, that includes the lamination direction of the tab laminate and is orthogonal to the first end surface of the tab laminate, the outer surface of the welded portion is inclined with respect to the lamination direction of the tab laminate such that the outer surface extends outwardly in approaching the current collector.

Description

電極組立体及び蓄電装置の製造方法Electrode assembly and method for manufacturing power storage device
 本発明の一側面は、電極組立体及び蓄電装置の製造方法に関する。 One aspect of the present invention relates to an electrode assembly and a method for manufacturing a power storage device.
 リチウム二次電池を製造する際に、レーザーを用いて、集電体上に積層された複数のタブ同士を溶接する方法が知られている(特許文献1参照)。 When manufacturing a lithium secondary battery, a method of welding a plurality of tabs stacked on a current collector using a laser is known (see Patent Document 1).
特開2015-74028号公報Japanese Patent Laying-Open No. 2015-74028
 上記方法では、積層された複数のタブからなるタブ積層体の端面に溶接部が形成される。一方、タブ積層体の各タブに流れる電流値は、集電体に近づくに連れて大きくなる。そのため、集電体に最も近いタブに流れる最大電流値に合わせて、タブ積層体の積層方向に直交する溶接部の断面積を大きくすることが好ましい。 In the above method, a weld is formed on the end face of a tab laminate composed of a plurality of stacked tabs. On the other hand, the value of the current flowing through each tab of the tab laminate increases as it approaches the current collector. Therefore, it is preferable to increase the cross-sectional area of the welded portion orthogonal to the stacking direction of the tab laminate in accordance with the maximum current value flowing in the tab closest to the current collector.
 本発明の一側面は、タブ積層体の各タブに流れる電流値に応じて各タブの電気抵抗値を調整できる電極組立体及び蓄電装置の製造方法を提供することを目的とする。 An object of one aspect of the present invention is to provide an electrode assembly and a method of manufacturing a power storage device that can adjust the electrical resistance value of each tab in accordance with the value of current flowing through each tab of the tab laminate.
 本発明の一側面に係る電極組立体は、タブを含む電極を備える電極組立体であって、集電体と、積層された前記タブを有するタブ積層体と、を備え、前記タブ積層体が、前記タブ積層体の積層方向において前記集電体上に配置され、前記タブ積層体が、前記タブ積層体の積層方向に沿って延在する前記タブ積層体の第1の端面から内側に位置する溶接部を有し、前記タブ積層体の積層方向に直交する平面における前記溶接部の断面積が、前記タブ積層体の厚みにわたって、前記集電体に近づくに連れて単調増加しており、前記タブ積層体の積層方向を含み前記タブ積層体の第1の端面に直交する前記タブ積層体の断面において、前記溶接部の外面が、前記集電体に近づくに連れて外側に向かうように前記タブ積層体の積層方向に対して傾斜している。 An electrode assembly according to an aspect of the present invention is an electrode assembly including an electrode including a tab, and includes a current collector and a tab stacked body including the stacked tabs, and the tab stacked body includes The tab laminated body is disposed on the current collector in the laminating direction of the tab laminated body, and the tab laminated body is located on the inner side from the first end surface of the tab laminated body extending along the laminating direction of the tab laminated body. The cross-sectional area of the welded portion in a plane perpendicular to the stacking direction of the tab laminate is monotonously increased as the current collector approaches the thickness of the tab laminate, In the cross section of the tab laminate that includes the lamination direction of the tab laminate and is orthogonal to the first end surface of the tab laminate, the outer surface of the welded portion is directed outward as it approaches the current collector. Inclined with respect to the lamination direction of the tab laminate To have.
 この電極組立体では、溶接部の断面積が、タブ積層体の厚みにわたって、集電体に近づくに連れて単調増加している。そのため、集電体に近づくに連れてタブ積層体の各タブの電気抵抗値が小さくなる。一方、タブ積層体の各タブに流れる電流値は、集電体に近づくに連れて大きくなる。そのため、上記電極組立体では、タブ積層体の各タブに流れる電流値に応じて各タブの電気抵抗値を調整できる。 In this electrode assembly, the cross-sectional area of the welded portion increases monotonously as it approaches the current collector over the thickness of the tab laminate. Therefore, the electrical resistance value of each tab of the tab laminate decreases as the current collector is approached. On the other hand, the value of the current flowing through each tab of the tab laminate increases as it approaches the current collector. Therefore, in the electrode assembly, the electrical resistance value of each tab can be adjusted according to the current value flowing through each tab of the tab laminate.
 前記タブ積層体の断面において、前記集電体が、前記タブ積層体の第1の端面よりも外側に突出してもよい。 In the cross section of the tab laminate, the current collector may protrude outward from the first end face of the tab laminate.
 この場合、タブ積層体の積層方向に対する溶接部の外面の傾斜角度を大きくできる。その結果、タブ積層体の積層方向において溶接部の断面積の増加率が大きくなる。 In this case, the inclination angle of the outer surface of the welded portion with respect to the stacking direction of the tab laminate can be increased. As a result, the rate of increase in the cross-sectional area of the welded portion in the stacking direction of the tab laminate is increased.
 前記電極組立体が複数の電極を備え、前記複数の電極のそれぞれが、本体と前記本体の一端から突出する前記タブとを含み、前記電極組立体が、積層された複数の本体を有する電極本体を更に備え、前記電極本体と前記溶接部との間における前記タブの長さが、前記集電体に近づくに連れて短くなってもよい。 The electrode assembly includes a plurality of electrodes, each of the plurality of electrodes including a main body and the tab protruding from one end of the main body, and the electrode assembly includes a plurality of stacked main bodies. The length of the tab between the electrode main body and the welded portion may become shorter as the current collector is approached.
 電極本体と溶接部との間におけるタブの長さが短いと、溶接部において発生した熱が電極本体に伝わり易いので、電極本体に熱の影響が及び易い。そのような場合であっても、この電極組立体では、電極本体と溶接部との間の距離が短いタブの近くに集電体が位置しているので、溶接部において発生した熱が電極本体よりも先に集電体に伝わる。その結果、溶接部からタブを経由して電極本体に熱が伝わり難くなる。 When the length of the tab between the electrode body and the welded portion is short, the heat generated in the welded portion is easily transferred to the electrode body, so that the electrode body is easily affected by heat. Even in such a case, in this electrode assembly, since the current collector is located near the tab where the distance between the electrode body and the welded portion is short, the heat generated in the welded portion is generated by the electrode body. Before the current collector. As a result, it is difficult for heat to be transferred from the welded portion to the electrode body via the tab.
 前記タブ積層体が、前記タブ積層体を挟んで前記タブ積層体の第1の端面とは反対側に配置される第2の端面を有してもよい。 The tab laminated body may have a second end face that is disposed on the opposite side of the tab laminated body from the first end face.
 タブ積層体の先端に位置する端面(タブ積層体を挟んで互いに反対側に配置された第1及び第2の端面を繋ぐ端面)では、タブ積層体を挟んで互いに反対側に配置された第1及び第2の端面に比べてタブ間の位置ずれが大きくなることが多い。タブ間の位置ずれが大きいと、溶接部の断面積を、タブ積層体の厚みにわたって、集電体に近づくに連れて単調増加させることが難しくなる。タブ積層体の先端に位置する端面に溶接部を形成する場合には、タブ間の位置ずれを抑制するために各タブの長さを調整している。一方、この電極組立体では、タブ積層体の先端に位置する端面に溶接部を形成する必要がないので、各タブの長さを調整する必要もない。 At the end face located at the tip of the tab laminate (the end face connecting the first and second end faces arranged opposite to each other across the tab laminate), the end faces arranged opposite to each other across the tab laminate. The positional deviation between the tabs is often larger than that of the first and second end faces. When the positional deviation between the tabs is large, it is difficult to monotonously increase the cross-sectional area of the welded portion over the thickness of the tab laminate as the current collector is approached. When forming the welded portion on the end face located at the tip of the tab laminate, the length of each tab is adjusted in order to suppress displacement between the tabs. On the other hand, in this electrode assembly, it is not necessary to form a welded portion on the end face located at the tip of the tab laminate, so that it is not necessary to adjust the length of each tab.
 前記タブ積層体が、前記タブ積層体の積層方向において導電部材と前記集電体との間に配置され、前記タブ積層体の積層方向における前記導電部材の厚みは、前記タブ積層体の積層方向における前記集電体の厚みよりも小さくてもよい。 The tab laminate is disposed between the conductive member and the current collector in the stacking direction of the tab laminate, and the thickness of the conductive member in the stacking direction of the tab laminate is the stacking direction of the tab laminate It may be smaller than the thickness of the current collector.
 この場合、導電部材の厚みが比較的小さくなるので、導電部材の熱容量とタブの熱容量との差を小さくできる。 In this case, since the thickness of the conductive member is relatively small, the difference between the heat capacity of the conductive member and the heat capacity of the tab can be reduced.
 前記タブ積層体の前記第1の端面において前記タブ積層体の積層方向に直交する方向における前記溶接部の最大長さが、前記タブ積層体の積層方向と前記タブ積層体の積層方向に直交する前記方向との両方に直交する方向から見たときに、前記タブ積層体の積層方向における前記溶接部と前記タブ積層体とが重なる部分の最大長さよりも大きくてもよい。 The maximum length of the welded portion in the direction orthogonal to the stacking direction of the tab laminate at the first end surface of the tab laminate is orthogonal to the stacking direction of the tab laminate and the stacking direction of the tab laminate. When viewed from a direction orthogonal to both the directions, the maximum length of a portion where the welded portion and the tab laminate overlap in the stacking direction of the tab laminate may be larger.
 この場合、タブ積層体の第1の端面において、タブ積層体の積層方向に交差する方向に溶接部が広がる。その結果、溶接部において電流が積層方向に流れる際に、積層されたタブ間の電気抵抗値を低減できる。 In this case, at the first end face of the tab laminate, the welded portion extends in a direction intersecting the stacking direction of the tab laminate. As a result, when current flows in the stacking direction at the welded portion, the electrical resistance value between the stacked tabs can be reduced.
 前記タブ積層体の積層方向を含み前記タブ積層体の前記第1の端面に直交する前記タブ積層体の断面において、前記タブ積層体の積層方向に直交する方向における前記溶接部の最大溶接深さが2mm未満であってもよい。 The maximum weld depth of the weld in the direction perpendicular to the lamination direction of the tab laminate in the cross section of the tab laminate perpendicular to the first end surface of the tab laminate including the lamination direction of the tab laminate May be less than 2 mm.
 前記タブ積層体の前記第1の端面の法線方向から見て、前記溶接部が、曲線を含む外形形状を有してもよい。 When viewed from the normal direction of the first end face of the tab laminate, the welded portion may have an outer shape including a curve.
 この場合、溶接部の外形形状の曲線部分において応力が集中し難いので、溶接部が剥離し難い。 In this case, since the stress is difficult to concentrate on the curved portion of the outer shape of the welded portion, the welded portion is difficult to peel off.
 本発明の一側面に係る蓄電装置の製造方法は、開口が形成された本体部と前記本体部の前記開口を塞ぐ蓋部とを有するケースと、前記ケース内に収容される上述の電極組立体とを備える蓄電装置の製造方法であって、前記蓋部に前記集電体を固定する工程と、前記集電体上に前記タブ積層体を配置する工程と、前記蓋部に固定された前記集電体上に前記タブ積層体が配置された状態で、前記タブ積層体の第1の端面にエネルギービームを照射することによって、前記溶接部を形成する工程とを含む。 A method of manufacturing a power storage device according to one aspect of the present invention includes a case having a main body portion in which an opening is formed and a lid portion that closes the opening of the main body portion, and the above-described electrode assembly housed in the case. A method of manufacturing a power storage device comprising: a step of fixing the current collector to the lid portion; a step of arranging the tab laminate on the current collector; and the step of fixing the current collector to the lid portion. Forming the welded portion by irradiating the first end surface of the tab laminated body with an energy beam in a state where the tab laminated body is disposed on the current collector.
 蓋部に固定された集電体上にタブ積層体が配置された状態でタブ積層体のタブ同士を溶接する際に、抵抗溶接を用いる場合、集電体及びタブ積層体を一対の電極で挟む必要がある。その場合、当該電極の位置が蓋部の位置と干渉してしまう可能性がある。一方、この蓄電装置の製造方法では、エネルギービームの照射により溶接部を形成しているので、抵抗溶接に必要な電極が必要ない。よって、当該電極の位置による干渉の問題が生じない。 When welding the tabs of the tab laminate in a state where the tab laminate is arranged on the current collector fixed to the lid, when using resistance welding, the current collector and the tab laminate are paired with a pair of electrodes. It is necessary to pinch. In that case, the position of the electrode may interfere with the position of the lid. On the other hand, in this method for manufacturing a power storage device, the welded portion is formed by irradiation with an energy beam, so that an electrode necessary for resistance welding is not necessary. Therefore, the problem of interference due to the position of the electrode does not occur.
 製造された前記蓄電装置において、前記集電体は折り曲げられていない平板であってもよい。 In the manufactured power storage device, the current collector may be an unbent flat plate.
 抵抗溶接では、電極の位置による干渉の問題を回避するために、折り曲げられた集電板を用いて、蓋部に固定される領域と抵抗溶接される領域とを分離している。一方、この蓄電装置の製造方法では、エネルギービームの照射により溶接部を形成しているので、折り曲げられていない平板を集電体として用いても溶接を行うことができる。 In resistance welding, in order to avoid the problem of interference due to the position of the electrode, a bent current collector plate is used to separate the region fixed to the lid and the region to be resistance welded. On the other hand, in this power storage device manufacturing method, since the welded portion is formed by irradiation with an energy beam, welding can be performed even if an unbent flat plate is used as the current collector.
 本発明の他の一側面に係る蓄電装置の製造方法は、開口が形成された本体部と前記本体部の前記開口を塞ぐ蓋部とを有するケースと、前記ケース内に収容される電極組立体とを備える蓄電装置の製造方法であって、前記電極組立体は、タブを含む電極を備え、前記電極組立体は、集電体と、積層された前記タブを有するタブ積層体とを備え、前記タブ積層体が、前記タブ積層体の積層方向において前記集電体上に配置され、前記タブ積層体が、前記タブ積層体の積層方向に沿って延在する前記タブ積層体の第1の端面から内側に位置する溶接部を有し、前記蓄電装置の製造方法は、前記蓋部に前記集電体を固定する工程と、前記集電体上に前記タブ積層体を配置する工程と、前記蓋部に固定された前記集電体上に前記タブ積層体が配置された状態で、前記タブ積層体の第1の端面にエネルギービームを照射することによって、前記溶接部を形成する工程とを含む。 A method of manufacturing a power storage device according to another aspect of the present invention includes a case having a main body portion in which an opening is formed and a lid portion that closes the opening of the main body portion, and an electrode assembly accommodated in the case. The electrode assembly includes an electrode including a tab, and the electrode assembly includes a current collector and a tab stacked body including the stacked tabs. The tab laminated body is disposed on the current collector in the lamination direction of the tab laminated body, and the tab laminated body extends along the lamination direction of the tab laminated body. A method of manufacturing the power storage device, comprising: a step of fixing the current collector to the lid; and a step of disposing the tab laminate on the current collector. The tab laminate is disposed on the current collector fixed to the lid. State, by irradiating an energy beam to the first end face of the tab laminate, and forming the weld.
 蓋部に固定された集電体上にタブ積層体が配置された状態でタブ積層体のタブ同士を溶接する際に、抵抗溶接を用いる場合、集電体及びタブ積層体を一対の電極で挟む必要がある。その場合、当該電極の位置が蓋部の位置と干渉してしまう可能性がある。一方、この蓄電装置の製造方法では、エネルギービームの照射により溶接部を形成しているので、抵抗溶接に必要な電極が必要ない。よって、当該電極の位置による干渉の問題が生じない。 When welding the tabs of the tab laminate in a state where the tab laminate is arranged on the current collector fixed to the lid, when using resistance welding, the current collector and the tab laminate are paired with a pair of electrodes. It is necessary to pinch. In that case, the position of the electrode may interfere with the position of the lid. On the other hand, in this method for manufacturing a power storage device, the welded portion is formed by irradiation with an energy beam, so that an electrode necessary for resistance welding is not necessary. Therefore, the problem of interference due to the position of the electrode does not occur.
 本発明の一側面によれば、タブ積層体の各タブに流れる電流値に応じて各タブの電気抵抗値を調整できる電極組立体及び蓄電装置の製造方法が提供され得る。 According to one aspect of the present invention, it is possible to provide an electrode assembly and a method for manufacturing a power storage device that can adjust the electrical resistance value of each tab in accordance with the value of current flowing through each tab of the tab laminate.
図1は、第1実施形態に係る電極組立体を備える蓄電装置の分解斜視図である。FIG. 1 is an exploded perspective view of a power storage device including the electrode assembly according to the first embodiment. 図2は、図1のII-II線に沿った蓄電装置の断面図である。FIG. 2 is a cross-sectional view of the power storage device taken along line II-II in FIG. 図3は、第1実施形態に係る電極組立体の斜視図である。FIG. 3 is a perspective view of the electrode assembly according to the first embodiment. 図4は、X軸方向から見た図3の電極組立体の一部を示す図である。4 is a view showing a part of the electrode assembly of FIG. 3 as viewed from the X-axis direction. 図5は、Y軸方向から見た図3の電極組立体の一部を示す図である。FIG. 5 is a view showing a part of the electrode assembly of FIG. 3 as viewed from the Y-axis direction. 図6は、第1実施形態に係る蓄電装置の製造方法の一工程を示す図である。FIG. 6 is a diagram illustrating a step of the method of manufacturing the power storage device according to the first embodiment. 図7は、第1実施形態に係る蓄電装置の製造方法の一工程を示す図である。FIG. 7 is a diagram illustrating one step in the method of manufacturing the power storage device according to the first embodiment. 図8は、第1実施形態に係る蓄電装置の製造方法の一工程を示す図である。FIG. 8 is a diagram illustrating a step of the method of manufacturing the power storage device according to the first embodiment. 図9は、第1実施形態に係る蓄電装置の製造方法の一工程を示す図である。FIG. 9 is a diagram illustrating a step of the method of manufacturing the power storage device according to the first embodiment. 図10は、第1実施形態に係る蓄電装置の製造方法の一工程を示す図である。FIG. 10 is a diagram illustrating one step in the method of manufacturing the power storage device according to the first embodiment. 図11は、第1実施形態に係る蓄電装置の製造方法の一工程を示す図である。FIG. 11 is a diagram illustrating a step of the method of manufacturing the power storage device according to the first embodiment. 図12は、第2実施形態に係る蓄電装置の製造方法の一工程を示す図である。FIG. 12 is a diagram illustrating one process of the method for manufacturing the power storage device according to the second embodiment. 図13は、第2実施形態に係る蓄電装置の製造方法の一工程を示す図である。FIG. 13 is a diagram illustrating a step of the method of manufacturing the power storage device according to the second embodiment. 図14は、第3実施形態に係る蓄電装置の製造方法の一工程を示す図である。FIG. 14 is a diagram illustrating one process of the method for manufacturing the power storage device according to the third embodiment. 図15は、第3実施形態に係る蓄電装置の製造方法の一工程を示す図である。FIG. 15 is a diagram illustrating a step of the method of manufacturing the power storage device according to the third embodiment. 図16は、変形例に係る溶接部を有する電極組立体の一部を示す図である。FIG. 16 is a diagram illustrating a part of an electrode assembly having a weld according to a modification. 図17は、実施例の評価結果を示す図である。FIG. 17 is a diagram illustrating the evaluation results of the examples.
 以下、添付図面を参照しながら本発明の実施形態が詳細に説明される。図面の説明において、同一又は同等の要素には同一符号が用いられ、重複する説明は省略される。図面には、必要に応じてXYZ直交座標系が示されている。Z軸方向は例えば鉛直方向、X軸方向及びY方向は例えば水平方向である。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same reference numerals are used for the same or equivalent elements, and redundant descriptions are omitted. In the drawing, an XYZ orthogonal coordinate system is shown as necessary. The Z axis direction is, for example, the vertical direction, and the X axis direction and the Y direction are, for example, the horizontal direction.
 図1は、第1実施形態に係る電極組立体を備える蓄電装置の分解斜視図である。図2は、図1のII-II線に沿った蓄電装置の断面図である。図1及び図2に示される蓄電装置1は、例えばリチウムイオン二次電池といった非水電解質二次電池又は電気二重層キャパシタである。 FIG. 1 is an exploded perspective view of a power storage device including the electrode assembly according to the first embodiment. FIG. 2 is a cross-sectional view of the power storage device taken along line II-II in FIG. The power storage device 1 shown in FIGS. 1 and 2 is a nonaqueous electrolyte secondary battery such as a lithium ion secondary battery or an electric double layer capacitor.
 図1及び図2に示されるように、蓄電装置1は、例えば略直方体形状をなす中空のケース2と、ケース2内に収容された電極組立体3とを備えている。ケース2は、例えばアルミニウム等の金属によって形成されている。ケース2は、開口が形成された本体部2aと、本体部2aの開口を塞ぐ蓋部2bとを有している。ケース2の内壁面上には、絶縁フィルム(図示せず)が設けられる。ケース2の内部には、例えば非水系(有機溶媒系)の電解液が注液されている。電極組立体3では、後述する正極11の正極活物質層15、負極12の負極活物質層18、及びセパレータ13が多孔質をなしており、その空孔内に、電解液が含浸されている。ケース2の蓋部2bには、正極端子5と負極端子6とが互いに離間して配置されている。正極端子5は、絶縁リング7を介してケース2に固定され、負極端子6は、絶縁リング8を介してケース2に固定されている。 1 and 2, the power storage device 1 includes a hollow case 2 having a substantially rectangular parallelepiped shape, for example, and an electrode assembly 3 accommodated in the case 2. The case 2 is made of a metal such as aluminum. The case 2 has a main body 2a in which an opening is formed and a lid 2b that closes the opening of the main body 2a. On the inner wall surface of the case 2, an insulating film (not shown) is provided. For example, a non-aqueous (organic solvent) electrolyte is injected into the case 2. In the electrode assembly 3, the positive electrode active material layer 15 of the positive electrode 11, the negative electrode active material layer 18 of the negative electrode 12, and the separator 13 described later are porous, and the pores are impregnated with the electrolytic solution. . A positive electrode terminal 5 and a negative electrode terminal 6 are spaced apart from each other on the lid 2 b of the case 2. The positive electrode terminal 5 is fixed to the case 2 via an insulating ring 7, and the negative electrode terminal 6 is fixed to the case 2 via an insulating ring 8.
 電極組立体3は、積層型の電極組立体である。電極組立体3は、複数の正極11(電極)と、複数の負極12(電極)と、正極11と負極12との間に配置された袋状のセパレータ13とによって構成されている。セパレータ13内には、例えば正極11が収容されている。セパレータ13内に正極11が収容された状態で、複数の正極11と複数の負極12とがセパレータ13を介して交互に積層されている。 The electrode assembly 3 is a stacked electrode assembly. The electrode assembly 3 includes a plurality of positive electrodes 11 (electrodes), a plurality of negative electrodes 12 (electrodes), and a bag-shaped separator 13 disposed between the positive electrodes 11 and the negative electrodes 12. For example, the positive electrode 11 is accommodated in the separator 13. In a state where the positive electrode 11 is accommodated in the separator 13, the plurality of positive electrodes 11 and the plurality of negative electrodes 12 are alternately stacked via the separators 13.
 正極11は、例えばアルミニウム箔からなる金属箔14と、金属箔14の両面に形成された正極活物質層15と、を有している。正極11の金属箔14は、矩形状の本体14aと、本体14aの一端から突出する矩形状のタブ14bと、を含む。正極活物質層15は、正極活物質とバインダとを含んで形成されている多孔質の層である。正極活物質層15は、本体14aの両面において、少なくとも本体14aの中央部分に正極活物質が担持されて形成されている。 The positive electrode 11 has a metal foil 14 made of, for example, an aluminum foil, and a positive electrode active material layer 15 formed on both surfaces of the metal foil 14. The metal foil 14 of the positive electrode 11 includes a rectangular main body 14a and a rectangular tab 14b protruding from one end of the main body 14a. The positive electrode active material layer 15 is a porous layer formed including a positive electrode active material and a binder. The positive electrode active material layer 15 is formed by supporting a positive electrode active material on at least the central portion of the main body 14a on both surfaces of the main body 14a.
 正極活物質としては、例えば複合酸化物、金属リチウム、硫黄等が挙げられる。複合酸化物には、例えばマンガン、ニッケル、コバルト及びアルミニウムの少なくとも1つと、リチウムとが含まれる。ここでは、一例として、タブ14bには、正極活物質が担持されていない。ただし、タブ14bにおける本体14a側の基端部分には、活物質が担持されている場合もある。 Examples of the positive electrode active material include composite oxide, metallic lithium, and sulfur. The composite oxide includes, for example, at least one of manganese, nickel, cobalt, and aluminum and lithium. Here, as an example, the tab 14b does not carry a positive electrode active material. However, an active material may be carried on the base end portion of the tab 14b on the main body 14a side.
 タブ14bは、本体14aの上縁部から上方に延び、集電板16(集電体)を介して正極端子5に接続されている。集電板16はタブ14bと正極端子5との間に配置されている。集電板16は、例えば、正極11の金属箔14と同一の材料から矩形平板状に構成される。積層された複数のタブ14bは、集電板16と、集電板16よりも薄い保護板23(導電部材)との間に配置される(図3参照)。保護板23は、例えば、正極11の金属箔14と同一の材料から矩形平板状に構成される。 The tab 14b extends upward from the upper edge of the main body 14a and is connected to the positive electrode terminal 5 via a current collector plate 16 (current collector). The current collector plate 16 is disposed between the tab 14 b and the positive electrode terminal 5. For example, the current collector plate 16 is formed in a rectangular flat plate shape from the same material as the metal foil 14 of the positive electrode 11. The plurality of stacked tabs 14b are disposed between the current collector plate 16 and a protective plate 23 (conductive member) thinner than the current collector plate 16 (see FIG. 3). For example, the protective plate 23 is formed in a rectangular flat plate shape from the same material as the metal foil 14 of the positive electrode 11.
 負極12は、例えば銅箔からなる金属箔17と、金属箔17の両面に形成された負極活物質層18と、を有している。負極12の金属箔17は、正極11の金属箔14と同様に、矩形状の本体17aと、本体17aの一端部から突出する矩形状のタブ17bと、を含む。負極活物質層18は、本体17aの両面において、少なくとも本体17aの中央部分に負極活物質が担持されて形成されている。負極活物質層18は、負極活物質とバインダとを含んで形成されている多孔質の層である。 The negative electrode 12 includes a metal foil 17 made of, for example, copper foil, and a negative electrode active material layer 18 formed on both surfaces of the metal foil 17. Similar to the metal foil 14 of the positive electrode 11, the metal foil 17 of the negative electrode 12 includes a rectangular main body 17a and a rectangular tab 17b protruding from one end of the main body 17a. The negative electrode active material layer 18 is formed by supporting a negative electrode active material on at least a central portion of the main body 17a on both surfaces of the main body 17a. The negative electrode active material layer 18 is a porous layer formed including a negative electrode active material and a binder.
 負極活物質としては、例えば黒鉛、高配向性グラファイト、メソカーボンマイクロビーズ、ハードカーボン、ソフトカーボン等のカーボン、リチウム、ナトリウム等のアルカリ金属、金属化合物、SiOx(0.5≦x≦1.5)等の金属酸化物、ホウ素添加炭素等が挙げられる。ここでは、一例として、タブ17bには、負極活物質が担持されていない。ただし、タブ17bにおける本体17a側の基端部分には、活物質が担持されている場合もある。 Examples of the negative electrode active material include carbon such as graphite, highly oriented graphite, mesocarbon microbeads, hard carbon, and soft carbon, alkali metals such as lithium and sodium, metal compounds, SiOx (0.5 ≦ x ≦ 1.5 ) And the like, and boron-added carbon. Here, as an example, the tab 17b does not carry a negative electrode active material. However, an active material may be carried on the base end portion of the tab 17b on the main body 17a side.
 タブ17bは、本体17aの上縁部から上方に延び、集電板19(集電体)を介して負極端子6に接続されている。集電板19はタブ17bと負極端子6との間に配置されている。集電板19は、例えば、負極12の金属箔17と同一の材料から矩形平板状に構成される。積層された複数のタブ17bは、集電板19と、集電板19よりも薄い保護板27(導電部材)との間に配置される(図3参照)。保護板27は、例えば、負極12の金属箔17と同一の材料から矩形平板状に構成される。 The tab 17b extends upward from the upper edge of the main body 17a and is connected to the negative electrode terminal 6 via a current collector plate 19 (current collector). The current collector plate 19 is disposed between the tab 17 b and the negative electrode terminal 6. For example, the current collector plate 19 is formed in a rectangular flat plate shape from the same material as the metal foil 17 of the negative electrode 12. The plurality of stacked tabs 17b are disposed between the current collector plate 19 and a protective plate 27 (conductive member) thinner than the current collector plate 19 (see FIG. 3). For example, the protection plate 27 is formed in a rectangular flat plate shape from the same material as the metal foil 17 of the negative electrode 12.
 セパレータ13は、正極11を収容している。セパレータ13は、正極11及び負極12の積層方向からみて矩形状である。セパレータ13は、例えば、一対の長尺シート状のセパレータ部材を互いに溶着して袋状に形成される。セパレータ13の材料としては、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン系樹脂からなる多孔質フィルム、ポリプロピレン、ポリエチレンテレフタレート(PET)、メチルセルロース等からなる織布又は不織布等が例示される。 The separator 13 accommodates the positive electrode 11. The separator 13 has a rectangular shape when viewed from the stacking direction of the positive electrode 11 and the negative electrode 12. For example, the separator 13 is formed in a bag shape by welding a pair of long sheet-like separator members to each other. Examples of the material of the separator 13 include a porous film made of a polyolefin resin such as polyethylene (PE) and polypropylene (PP), a woven fabric or a non-woven fabric made of polypropylene, polyethylene terephthalate (PET), methylcellulose, and the like.
 図3は、第1実施形態に係る電極組立体の斜視図である。図4は、X軸方向から見た図3の電極組立体の一部を示す図(部分断面図)である。図5は、Y軸方向から見た図3の電極組立体の一部を示す図である。図3に示される電極組立体3は、セパレータ13を介して互いに積層された複数の正極11及び複数の負極12を含む。複数の正極11のそれぞれは、XY平面に延在する本体14aと、本体14aの一端からX軸方向に突出するタブ14bとを含む。複数の負極12のそれぞれは、XY平面に延在する本体17aと、本体17aの一端からX軸方向に突出するタブ17bとを含む。本体14a,17aは、互いに積層されて電極本体40,42をそれぞれ構成する。すなわち、電極組立体3は、Z軸方向に積層された複数の本体14aを有する電極本体40と、Z軸方向に積層された複数の本体17aを有する電極本体42とを備える。タブ14b,17bは、互いに積層されてタブ積層体21,25をそれぞれ構成する。すなわち、電極組立体3は、Z軸方向に積層された複数のタブ14bを有するタブ積層体21と、Z軸方向に積層された複数のタブ17bを有するタブ積層体25とを備える。タブ積層体21,25は、Y軸方向において、互いに離間して配列される。 FIG. 3 is a perspective view of the electrode assembly according to the first embodiment. 4 is a diagram (partial sectional view) showing a part of the electrode assembly of FIG. 3 as viewed from the X-axis direction. FIG. 5 is a view showing a part of the electrode assembly of FIG. 3 as viewed from the Y-axis direction. The electrode assembly 3 shown in FIG. 3 includes a plurality of positive electrodes 11 and a plurality of negative electrodes 12 that are stacked on each other via a separator 13. Each of the plurality of positive electrodes 11 includes a main body 14a extending in the XY plane and a tab 14b protruding from one end of the main body 14a in the X-axis direction. Each of the plurality of negative electrodes 12 includes a main body 17a extending in the XY plane and a tab 17b protruding from one end of the main body 17a in the X-axis direction. The main bodies 14a and 17a are laminated together to form electrode main bodies 40 and 42, respectively. That is, the electrode assembly 3 includes an electrode body 40 having a plurality of main bodies 14a stacked in the Z-axis direction, and an electrode body 42 having a plurality of main bodies 17a stacked in the Z-axis direction. The tabs 14b and 17b are laminated with each other to form tab laminated bodies 21 and 25, respectively. That is, the electrode assembly 3 includes a tab laminate 21 having a plurality of tabs 14b laminated in the Z-axis direction and a tab laminate 25 having a plurality of tabs 17b laminated in the Z-axis direction. The tab laminates 21 and 25 are arranged apart from each other in the Y-axis direction.
 タブ積層体21は、タブ積層体21の積層方向(Z軸方向)に沿って延在するタブ積層体21の端面21a,21b,21cを備える。端面21a,21bは、タブ積層体21を挟む面であり、端面21cは端面21a,21bを繋ぐ面である。すなわち、端面21a,21b(第1及び第2の端面)は、タブ積層体21を挟んで互いに反対側に配置されている。端面21a,21bは、XZ平面に沿う面である。端面21cは、タブ積層体21の先端に向かうに連れてタブ積層体21の厚みが小さくなるようにXY平面に対して傾斜した面である。 The tab laminated body 21 includes end surfaces 21a, 21b, and 21c of the tab laminated body 21 extending along the lamination direction (Z-axis direction) of the tab laminated body 21. The end surfaces 21a and 21b are surfaces that sandwich the tab laminate 21, and the end surface 21c is a surface that connects the end surfaces 21a and 21b. That is, the end surfaces 21 a and 21 b (first and second end surfaces) are arranged on opposite sides of the tab laminate 21. The end surfaces 21a and 21b are surfaces along the XZ plane. The end surface 21 c is a surface that is inclined with respect to the XY plane so that the thickness of the tab laminated body 21 becomes smaller toward the tip of the tab laminated body 21.
 タブ積層体21は、Z軸方向において、集電板16と保護板23との間に配置される。すなわち、タブ積層体21は、Z軸方向において集電板16上に配置される。保護板23は、Z軸方向においてタブ積層体21上に配置される。保護板23は、集電板16と接触しておらず、保護板23と集電板16とは、タブ積層体21を積層方向に挟んで離間している。タブ積層体21は保護板23よりも厚く、集電板16はタブ積層体21よりも厚い。保護板23の厚みは、タブ14bの厚みよりも大きく、集電板16の厚みよりも小さい。電極組立体3は、保護板23及び集電板16を備えなくてもよい。 The tab laminate 21 is disposed between the current collector plate 16 and the protective plate 23 in the Z-axis direction. That is, the tab laminate 21 is disposed on the current collector plate 16 in the Z-axis direction. The protection plate 23 is disposed on the tab laminate 21 in the Z-axis direction. The protective plate 23 is not in contact with the current collector plate 16, and the protective plate 23 and the current collector plate 16 are separated from each other with the tab laminate 21 sandwiched in the stacking direction. The tab laminate 21 is thicker than the protective plate 23, and the current collector plate 16 is thicker than the tab laminate 21. The thickness of the protective plate 23 is larger than the thickness of the tab 14 b and smaller than the thickness of the current collector plate 16. The electrode assembly 3 may not include the protection plate 23 and the current collector plate 16.
 集電板16のY軸方向における長さは、タブ積層体21のY軸方向における長さ(端面21a,21b間の距離)よりも大きくなっている。Y軸方向において、集電板16のY軸方向における外側端部の位置は、本体14aのY軸方向における端部の位置と一致している。保護板23のY軸方向における長さは、タブ積層体21のY軸方向における長さと略同じである。 The length of the current collector plate 16 in the Y-axis direction is larger than the length of the tab laminate 21 in the Y-axis direction (the distance between the end faces 21a and 21b). In the Y-axis direction, the position of the outer end portion of the current collector plate 16 in the Y-axis direction coincides with the position of the end portion of the main body 14a in the Y-axis direction. The length of the protective plate 23 in the Y-axis direction is substantially the same as the length of the tab laminate 21 in the Y-axis direction.
 タブ積層体21は、タブ積層体21の端面21a,21bからそれぞれ内側に位置する溶接部Wを有する。タブ積層体21の端面21a,21bにおいてタブ積層体21の積層方向に直交する方向(例えばX軸方向)における溶接部Wの最大長さW2は、タブ積層体21の積層方向(例えばZ軸方向)とタブ積層体21の積層方向に直交する方向(例えばX軸方向)との両方に直交する方向(例えばY軸方向)から見たときに、タブ積層体21の積層方向(例えばZ軸方向)における溶接部Wとタブ積層体21とが重なる部分の最大長さW1よりも大きい(図3参照)。なお、最大長さW1はZ軸方向における溶接部Wの最大長さより小さい。溶接部Wは、端面21a,21bに隣接する集電板16及び保護板23の内部まで延びている。端面21a,21bにおいて、溶接部WのX軸方向における長さは、保護板23のX軸方向における長さと略等しいか、又は保護板23のX軸方向における長さよりも短いことが好ましい。これにより、タブ積層体21のタブ14bがX軸方向において位置ずれした場合(例えば公差による位置ずれがある場合)であっても安定して溶接部Wを形成することができる。なお、溶接部WのX軸方向における長さが保護板23のX軸方向における長さと略等しい場合、位置ずれにより溶接部WがX軸方向において保護板23の外側にはみ出す可能性がある。また、溶接部WのX軸方向における長さが保護板23のX軸方向における長さよりも長い場合、溶接部WがX軸方向において保護板23の外側にはみ出す。それらの場合であっても、溶接部Wを形成することは可能である。 The tab laminated body 21 has welded portions W located on the inner side from the end faces 21a and 21b of the tab laminated body 21, respectively. The maximum length W2 of the welded portion W in the direction (eg, the X-axis direction) orthogonal to the lamination direction of the tab laminate 21 on the end faces 21a, 21b of the tab laminate 21 is the lamination direction (eg, the Z-axis direction) of the tab laminate 21. ) And a direction (for example, the Y-axis direction) orthogonal to both the direction (for example, the X-axis direction) orthogonal to the stacking direction of the tab-layered structure 21, the stacking direction (for example, the Z-axis direction) of the tab stacked body 21 ) Is larger than the maximum length W1 of the portion where the welded portion W and the tab laminate 21 overlap (see FIG. 3). The maximum length W1 is smaller than the maximum length of the welded portion W in the Z-axis direction. The welded portion W extends to the inside of the current collector plate 16 and the protective plate 23 adjacent to the end surfaces 21a and 21b. In the end faces 21a and 21b, the length of the welded portion W in the X-axis direction is preferably substantially equal to the length of the protective plate 23 in the X-axis direction or shorter than the length of the protective plate 23 in the X-axis direction. Thereby, even if the tab 14b of the tab laminated body 21 is displaced in the X-axis direction (for example, when there is a displacement due to tolerance), the welded portion W can be stably formed. If the length of the welded portion W in the X-axis direction is substantially equal to the length of the protective plate 23 in the X-axis direction, the welded portion W may protrude outside the protective plate 23 in the X-axis direction due to positional displacement. Further, when the length of the welded portion W in the X-axis direction is longer than the length of the protective plate 23 in the X-axis direction, the welded portion W protrudes outside the protective plate 23 in the X-axis direction. Even in those cases, the welded portion W can be formed.
 図4に示されるように、電極組立体3では、タブ積層体21の積層方向(例えばZ軸方向)に直交する平面(例えばXY平面)における溶接部Wの断面積が、タブ積層体21の厚みにわたって、集電板16に近づくに連れて単調増加している。例えば、溶接部Wの断面積は、溶接部Wの溶接深さDとX軸方向における溶接長さL(図3参照)との積になる。また、タブ積層体21の積層方向を含みタブ積層体21の端面21a,21bに直交するタブ積層体21の断面(例えばYZ断面)において、溶接部Wの外面Wsが、集電板16に近づくに連れて外側(端面21a,21bから離れる方向)に向かうようにタブ積層体21の積層方向に対して傾斜している。溶接部Wの外面Wsは、タブ積層体21の厚みにわたって、集電板16に近づくに連れて外側に向かうようにタブ積層体21の積層方向に対して傾斜してもよいし、タブ積層体21の厚みの一部にわたって、集電板16に近づくに連れて外側に向かうようにタブ積層体21の積層方向に対して傾斜してもよい。タブ積層体21の断面(例えばYZ断面)において、集電板16は、タブ積層体21の端面21a,21bよりも外側に突出してもよいが、タブ積層体21の端面21a,21bよりも内側に位置してもよい。 As shown in FIG. 4, in the electrode assembly 3, the cross-sectional area of the welded portion W in a plane (for example, the XY plane) orthogonal to the stacking direction (for example, the Z-axis direction) of the tab stacked body 21 is The thickness increases monotonously as the current collector plate 16 is approached. For example, the cross-sectional area of the welded portion W is the product of the weld depth D of the welded portion W and the weld length L (see FIG. 3) in the X-axis direction. Further, the outer surface Ws of the welded portion W approaches the current collector plate 16 in the cross section (for example, the YZ cross section) of the tab laminated body 21 that includes the laminating direction of the tab laminated body 21 and is orthogonal to the end faces 21 a and 21 b of the tab laminated body 21. Accordingly, the tab laminated body 21 is inclined with respect to the stacking direction so as to go outward (in a direction away from the end faces 21a and 21b). The outer surface Ws of the welded portion W may be inclined with respect to the stacking direction of the tab laminate 21 so as to go outward as it approaches the current collector plate 16 over the thickness of the tab laminate 21. You may incline with respect to the lamination direction of the tab laminated body 21 so that it may go outside as it approaches the current collecting plate 16 over a part of thickness of 21. In the cross section of the tab laminate 21 (for example, the YZ cross section), the current collector plate 16 may protrude outward from the end faces 21 a and 21 b of the tab laminate 21, but inside the end faces 21 a and 21 b of the tab laminate 21. May be located.
 また、Z軸方向を含みタブ積層体21の端面21a,21bに直交するタブ積層体21の断面(例えばYZ断面)において、溶接部Wの境界線Waは、Z軸方向に直交する方向H(例えばY軸方向)及びタブ積層体21の積層方向(Z軸方向)の両方に対して傾斜した方向に延びてもよい。例えば、溶接部Wは2つの境界線Waを有しており、後述するエネルギービームB(図8参照)の照射によりエネルギービームBの周囲に形成される溶融池の形状に応じて、溶接部Wの外面Wsから内側に向かうに連れて2つの境界線Waの間隔が狭くなっている。溶接池は、エネルギービームBの照射方向において、エネルギービームBの照射対象物の表面から内側に向けて先細るように形成される。溶接部Wは集電板16にも形成されるが、集電板16の密度はタブ積層体21の密度と異なるため、集電板16に形成される溶接池の深さとタブ積層体21に形成される溶接池の深さは異なる。その結果、上述のように、溶接部Wの外面Wsから内側に向かうに連れて2つの境界線Waの間隔は狭くなる。すなわち、タブ積層体21のYZ断面において、溶接部Wの1つの境界線Waと方向Hとのなす角度のうち小さい方の角度をα、溶接部Wのもう1つの境界線Waと方向Hとのなす角度のうち小さい方の角度をβ、エネルギービームBの照射方向をYZ平面に投影した方向Jと方向Hとのなす角度のうち小さい方の角度をθとした場合に、θはαとβとの間の値となる。例えば、タブ積層体21のYZ断面において、集電板16内の境界線Waと方向Hとのなす角度のうち小さい方の角度をα、タブ積層体21内の境界線Waと方向Hとのなす角度のうち小さい方の角度をβ、エネルギービームBの照射方向をYZ平面に投影した方向Jと方向Hとのなす角度のうち小さい方の角度をθとした場合、α<θ<βとなる。タブ積層体21内の境界線Waはタブ積層体21の積層方向に平行に延びてもよい。 In addition, in the cross section (for example, the YZ cross section) of the tab laminated body 21 including the Z axis direction and orthogonal to the end faces 21a and 21b of the tab laminated body 21, the boundary line Wa of the welded portion W is a direction H (perpendicular to the Z axis direction). For example, you may extend in the direction inclined with respect to both the lamination direction (Z-axis direction) of the tab laminated body 21 and the Y-axis direction. For example, the welded portion W has two boundary lines Wa, and the welded portion W depends on the shape of the molten pool formed around the energy beam B by irradiation with an energy beam B (see FIG. 8) described later. The distance between the two boundary lines Wa becomes narrower from the outer surface Ws toward the inner side. The welding pool is formed so as to taper inward from the surface of the irradiation object of the energy beam B in the irradiation direction of the energy beam B. Although the welded portion W is also formed on the current collector plate 16, the density of the current collector plate 16 is different from the density of the tab laminate 21, so the depth of the weld pool formed on the current collector plate 16 and the tab laminate 21 The depth of the weld pool formed is different. As a result, as described above, the distance between the two boundary lines Wa becomes narrower from the outer surface Ws of the welded portion W toward the inside. That is, in the YZ cross section of the tab laminate 21, the smaller one of the angles formed by one boundary line Wa of the weld W and the direction H is α, and the other boundary line Wa of the weld W and the direction H Is the smaller angle of θ, and θ is the smaller angle of the angles formed by the direction J and the direction H projected from the irradiation direction of the energy beam B on the YZ plane. It becomes a value between β. For example, in the YZ cross section of the tab laminated body 21, the smaller angle among the angles formed by the boundary line Wa in the current collector plate 16 and the direction H is α, and the boundary line Wa in the tab laminated body 21 and the direction H are Of the angles formed, β is the smaller angle, and θ is the smaller angle among the angles formed by the direction J and the direction H in which the irradiation direction of the energy beam B is projected on the YZ plane, so that α <θ <β. Become. The boundary line Wa in the tab laminate 21 may extend in parallel to the lamination direction of the tab laminate 21.
 同様に、タブ積層体25は、タブ積層体25の積層方向(Z軸方向)に沿って延在するタブ積層体25の端面25a,25b,25cを備える。端面25a,25bは、タブ積層体25を挟む面であり、端面25cは端面25a,25bを繋ぐ面である。すなわち、端面25a,25b(第1及び第2の端面)は、タブ積層体25を挟んで互いに反対側に配置されている。端面25a,25bは、XZ平面に沿う面である。端面25cは、タブ積層体25の先端に向かうに連れてタブ積層体25の厚みが小さくなるようにXY平面に対して傾斜した面である。 Similarly, the tab laminate 25 includes end surfaces 25a, 25b, and 25c of the tab laminate 25 that extend along the lamination direction (Z-axis direction) of the tab laminate 25. The end surfaces 25a and 25b are surfaces that sandwich the tab laminate 25, and the end surface 25c is a surface that connects the end surfaces 25a and 25b. That is, the end surfaces 25 a and 25 b (first and second end surfaces) are arranged on opposite sides of the tab laminate 25. The end surfaces 25a and 25b are surfaces along the XZ plane. The end surface 25 c is a surface that is inclined with respect to the XY plane so that the thickness of the tab laminated body 25 becomes smaller toward the tip of the tab laminated body 25.
 タブ積層体25は、Z軸方向において、集電板19と保護板27との間に配置される。すなわち、タブ積層体25は、Z軸方向において集電板19上に配置される。保護板27は、Z軸方向においてタブ積層体25上に配置される。保護板27は、集電板19と接触しておらず、保護板27と集電板19とは、タブ積層体25を積層方向に挟んで離間している。タブ積層体25は保護板27よりも厚く、集電板19はタブ積層体25よりも厚い。保護板27の厚みは、タブ17bの厚みよりも大きく、集電板19の厚みよりも小さい。電極組立体3は、保護板27及び集電板19を備えなくてもよい。 The tab laminate 25 is disposed between the current collector plate 19 and the protective plate 27 in the Z-axis direction. That is, the tab laminate 25 is disposed on the current collector plate 19 in the Z-axis direction. The protection plate 27 is disposed on the tab laminate 25 in the Z-axis direction. The protective plate 27 is not in contact with the current collector plate 19, and the protective plate 27 and the current collector plate 19 are separated with the tab laminate 25 sandwiched in the stacking direction. The tab laminate 25 is thicker than the protective plate 27, and the current collector plate 19 is thicker than the tab laminate 25. The thickness of the protection plate 27 is larger than the thickness of the tab 17 b and smaller than the thickness of the current collector plate 19. The electrode assembly 3 may not include the protection plate 27 and the current collector plate 19.
 集電板19のY軸方向における長さは、タブ積層体25のY軸方向における長さ(端面25a,25b間の距離)よりも大きくなっている。Y軸方向において、集電板19のY軸方向における外側端部の位置は、本体17aのY軸方向における端部の位置と一致している。保護板27のY軸方向における長さは、タブ積層体25のY軸方向における長さと略同じである。 The length of the current collector plate 19 in the Y-axis direction is larger than the length of the tab laminate 25 in the Y-axis direction (the distance between the end faces 25a and 25b). In the Y-axis direction, the position of the outer end portion of the current collector plate 19 in the Y-axis direction matches the position of the end portion of the main body 17a in the Y-axis direction. The length of the protection plate 27 in the Y-axis direction is substantially the same as the length of the tab laminate 25 in the Y-axis direction.
 タブ積層体25は、タブ積層体25の端面25a,25bからそれぞれ内側に位置する溶接部Wを有する。タブ積層体25の端面25bは、タブ積層体21の端面21bと対向している。よって、タブ積層体21,25の端面21a,21b,25a,25bは、Y軸方向に沿って配列される。タブ積層体25の端面25a,25bにおいてタブ積層体25の積層方向に直交する方向(例えばX軸方向)における溶接部Wの最大長さW2は、タブ積層体25の積層方向(例えばZ軸方向)とタブ積層体25の積層方向に直交する方向(例えばX軸方向)との両方に直交する方向(例えばY軸方向)から見たときに、タブ積層体25の積層方向(例えばZ軸方向)における溶接部Wとタブ積層体25とが重なる部分の最大長さW1よりも大きい(図3参照)。溶接部Wは、端面25a,25bに隣接する集電板19及び保護板27の内部まで延びている。端面25a,25bにおいて、溶接部WのX軸方向における長さは、保護板27のX軸方向における長さと略等しいか、又は保護板27のX軸方向における長さよりも短いことが好ましい。これにより、タブ積層体25のタブ17bがX軸方向において位置ずれした場合(例えば公差による位置ずれがある場合)であっても安定して溶接部Wを形成することができる。なお、溶接部WのX軸方向における長さが保護板27のX軸方向における長さと略等しい場合、位置ずれにより溶接部WがX軸方向において保護板27の外側にはみ出す可能性がある。また、溶接部WのX軸方向における長さが保護板27のX軸方向における長さよりも長い場合、溶接部WがX軸方向において保護板27の外側にはみ出す。それらの場合であっても、溶接部Wを形成することは可能である。 The tab laminated body 25 has welded portions W located on the inner sides from the end faces 25a and 25b of the tab laminated body 25, respectively. The end surface 25 b of the tab laminated body 25 faces the end surface 21 b of the tab laminated body 21. Therefore, the end faces 21a, 21b, 25a, and 25b of the tab laminates 21 and 25 are arranged along the Y-axis direction. The maximum length W2 of the welded portion W in the direction (eg, the X-axis direction) orthogonal to the lamination direction of the tab laminate 25 at the end faces 25a, 25b of the tab laminate 25 is the lamination direction (eg, the Z-axis direction) of the tab laminate 25 ) And a direction (for example, the Y-axis direction) orthogonal to both the direction (for example, the X-axis direction) orthogonal to the stacking direction of the tab-layered structure 25, the stacking direction (for example, the Z-axis direction) of the tab stacked body 25 ) Is larger than the maximum length W1 of the portion where the welded portion W and the tab laminate 25 overlap (see FIG. 3). The welded portion W extends to the inside of the current collector plate 19 and the protection plate 27 adjacent to the end surfaces 25a and 25b. In the end surfaces 25a and 25b, the length of the welded portion W in the X-axis direction is preferably substantially equal to the length of the protective plate 27 in the X-axis direction or shorter than the length of the protective plate 27 in the X-axis direction. Thereby, even if the tab 17b of the tab laminated body 25 is displaced in the X-axis direction (for example, when there is a displacement due to tolerance), the welded portion W can be stably formed. When the length of the welded portion W in the X-axis direction is substantially equal to the length of the protective plate 27 in the X-axis direction, the welded portion W may protrude outside the protective plate 27 in the X-axis direction due to positional displacement. When the length of the welded portion W in the X-axis direction is longer than the length of the protective plate 27 in the X-axis direction, the welded portion W protrudes outside the protective plate 27 in the X-axis direction. Even in those cases, the welded portion W can be formed.
 図4に示されるように、電極組立体3では、タブ積層体25の積層方向(例えばZ軸方向)に直交する平面(例えばXY平面)における溶接部Wの断面積が、タブ積層体25の厚みにわたって、集電板19に近づくに連れて単調増加している。また、タブ積層体25の積層方向を含みタブ積層体25の端面25a,25bに直交するタブ積層体25の断面(例えばYZ断面)において、溶接部Wの外面Wsが、集電板19に近づくに連れて外側(端面25a,25bから離れる方向)に向かうようにタブ積層体25の積層方向に対して傾斜している。溶接部Wの外面Wsは、タブ積層体25の厚みにわたって、集電板19に近づくに連れて外側に向かうようにタブ積層体25の積層方向に対して傾斜してもよいし、タブ積層体25の厚みの一部にわたって、集電板19に近づくに連れて外側に向かうようにタブ積層体25の積層方向に対して傾斜してもよい。タブ積層体25の断面(例えばYZ断面)において、集電板19は、タブ積層体25の端面25a,25bよりも外側に突出してもよいが、タブ積層体25の端面25a,25bよりも内側に位置してもよい。 As shown in FIG. 4, in the electrode assembly 3, the cross-sectional area of the welded portion W in a plane (for example, the XY plane) orthogonal to the stacking direction (for example, the Z-axis direction) of the tab stack 25 is The thickness increases monotonically as the current collector plate 19 is approached. In addition, the outer surface Ws of the welded portion W approaches the current collector plate 19 in the cross section (for example, the YZ cross section) of the tab laminated body 25 that includes the laminating direction of the tab laminated body 25 and is orthogonal to the end faces 25 a and 25 b of the tab laminated body 25. Accordingly, the tab laminated body 25 is inclined with respect to the lamination direction so as to go outward (in a direction away from the end faces 25a and 25b). The outer surface Ws of the welded portion W may be inclined with respect to the stacking direction of the tab laminate 25 so as to go outward as it approaches the current collector plate 19 over the thickness of the tab laminate 25. You may incline with respect to the lamination direction of the tab laminated body 25 so that it may face outside as it approaches the current collecting plate 19 over a part of thickness of 25. In the cross section of the tab laminate 25 (for example, the YZ cross section), the current collector plate 19 may protrude outward from the end faces 25a and 25b of the tab laminate 25, but inside the end faces 25a and 25b of the tab laminate 25. May be located.
 また、Z軸方向を含みタブ積層体25の端面25a,25bに直交するタブ積層体25の断面(例えばYZ断面)において、溶接部Wの境界線Waは、Z軸方向に直交する方向H(例えばY軸方向)及びタブ積層体25の積層方向(Z軸方向)の両方に対して傾斜した方向に延びてもよい。例えば、溶接部Wは2つの境界線Waを有しており、後述するエネルギービームBの照射によりエネルギービームBの周囲に形成される溶融池の形状に応じて、溶接部Wの外面から内側に向かうに連れて2つの境界線Waの間隔が狭くなっている。溶接池は、エネルギービームBの照射方向において、エネルギービームBの照射対象物の表面から内側に向けて先細るように形成される。溶接部Wは集電板19にも形成されるが、集電板19の密度はタブ積層体25の密度と異なるため、集電板19に形成される溶接池の深さとタブ積層体25に形成される溶接池の深さは異なる。その結果、上述のように、溶接部Wの外面から内側に向かうに連れて2つの境界線Waの間隔は狭くなる。すなわち、タブ積層体25のYZ断面において、溶接部Wの1つの境界線Waと方向Hとのなす角度のうち小さい方の角度をα、溶接部Wのもう1つの境界線Waと方向Hとのなす角度のうち小さい方の角度をβ、エネルギービームBの照射方向をYZ平面に投影した方向Jと方向Hとのなす角度のうち小さい方の角度をθとした場合に、θはαとβとの間の値となる。例えば、タブ積層体25のYZ断面において、集電板19内の境界線Waと方向Hとのなす角度のうち小さい方の角度をα、タブ積層体25内の境界線Waと方向Hとのなす角度のうち小さい方の角度をβ、エネルギービームBの照射方向をYZ平面に投影した方向Jと方向Hとのなす角度のうち小さい方の角度をθとした場合、α<θ<βとなる。タブ積層体25内の境界線Waはタブ積層体25の積層方向に平行に延びてもよい。 In addition, in the cross section (for example, the YZ cross section) of the tab laminated body 25 that includes the Z axis direction and is orthogonal to the end faces 25a and 25b of the tab laminated body 25, the boundary line Wa of the welded portion W is a direction H (perpendicular to the Z axis direction). For example, you may extend in the direction inclined with respect to both the lamination direction (Z-axis direction) of the tab laminated body 25 and the Y-axis direction. For example, the welded portion W has two boundary lines Wa, and depending on the shape of the molten pool formed around the energy beam B by irradiation of the energy beam B described later, the welded portion W is inward from the outer surface. The distance between the two boundary lines Wa becomes narrower as it goes. The welding pool is formed so as to taper inward from the surface of the irradiation object of the energy beam B in the irradiation direction of the energy beam B. Although the welded portion W is also formed on the current collector plate 19, the density of the current collector plate 19 is different from the density of the tab laminate 25, so the depth of the weld pool formed on the current collector plate 19 and the tab laminate 25 The depth of the weld pool formed is different. As a result, as described above, the distance between the two boundary lines Wa becomes narrower from the outer surface of the welded portion W toward the inside. That is, in the YZ cross section of the tab laminate 25, the smaller one of the angles formed by one boundary line Wa of the welded portion W and the direction H is α, and the other boundary line Wa of the welded portion W and the direction H are Is the smaller angle of θ, and θ is the smaller angle of the angles formed by the direction J and the direction H projected from the irradiation direction of the energy beam B on the YZ plane. It becomes a value between β. For example, in the YZ cross section of the tab laminate 25, the smaller one of the angles formed by the boundary line Wa in the current collector plate 19 and the direction H is α, and the boundary line Wa in the tab laminate 25 and the direction H are Of the angles formed, β is the smaller angle, and θ is the smaller angle among the angles formed by the direction J and the direction H in which the irradiation direction of the energy beam B is projected on the YZ plane, so that α <θ <β. Become. The boundary line Wa in the tab laminate 25 may extend in parallel to the lamination direction of the tab laminate 25.
 第1実施形態の電極組立体3では、XY平面における溶接部Wの断面積が、タブ積層体21,25の厚みにわたって、集電板16,19に近づくに連れて単調増加している。さらに、YZ断面において、溶接部Wの外面Wsが、集電板16,19に近づくに連れて外側に向かうようにタブ積層体21,25の積層方向に対して傾斜している。このような形状の溶接部Wは、溶接部Wが形成される際に、例えば重力及び表面張力の少なくとも一方によって、溶融した材料がタブ積層体21,25の積層方向に移動することによって形成され得る。また、溶接部Wの境界線Waの延びる方向は、例えば、上述のように、タブ積層体21,25の端面21a,21b,25a,25bに照射されるエネルギービームBの照射方向によって制御される。 In the electrode assembly 3 according to the first embodiment, the cross-sectional area of the welded portion W in the XY plane increases monotonously as it approaches the current collector plates 16 and 19 over the thickness of the tab laminates 21 and 25. Further, in the YZ section, the outer surface Ws of the welded portion W is inclined with respect to the stacking direction of the tab laminates 21 and 25 so as to go outward as the current collector plates 16 and 19 are approached. The welded portion W having such a shape is formed by the molten material moving in the stacking direction of the tab laminates 21 and 25 by, for example, at least one of gravity and surface tension when the welded portion W is formed. obtain. Further, the extending direction of the boundary line Wa of the welded portion W is controlled by, for example, the irradiation direction of the energy beam B irradiated to the end faces 21a, 21b, 25a, and 25b of the tab laminates 21 and 25 as described above. .
 また、図5に示されるように、電極本体42と溶接部Wとの間におけるタブ17bの長さは、集電板19に近づくに連れて短くなってもよい。電極本体42は、Z軸方向において一端42a及び他端42bを有しており、複数のタブ17bは、Z軸方向において一端42a側に束ねられている。その結果、タブ17bの先端が集電板19に近づくに連れて長くなるので、タブ積層体25の先端に位置する端面25cが傾斜面になる。タブ積層体21においても同様に、電極本体40と溶接部Wとの間における複数のタブ14bの長さは、集電板16に近づくに連れて短くなってもよい。電極本体40,42と溶接部Wとの間における複数のタブ14b,17bの長さは、タブ積層体21,25にわたって、集電板16,19に近づくに連れて短くなってもよいし、タブ積層体21,25の一部にわたって、集電板16,19に近づくに連れて短くなってもよい。また、電極本体40,42と溶接部Wとの間における複数のタブ14b,17bの長さは、保護板23,27に近づくに連れて短くなってもよい。この場合、複数のタブ14b,17bは、Z軸方向において他端42b側に束ねられる。 Further, as shown in FIG. 5, the length of the tab 17 b between the electrode main body 42 and the welded portion W may be shortened as the current collector plate 19 is approached. The electrode body 42 has one end 42a and the other end 42b in the Z-axis direction, and the plurality of tabs 17b are bundled on the one end 42a side in the Z-axis direction. As a result, the end of the tab 17b becomes longer as it approaches the current collector plate 19, so that the end face 25c located at the end of the tab laminate 25 becomes an inclined surface. Similarly, in the tab laminate 21, the lengths of the plurality of tabs 14 b between the electrode main body 40 and the welded portion W may be shortened as the current collector plate 16 is approached. The length of the plurality of tabs 14b, 17b between the electrode main bodies 40, 42 and the welded portion W may be shortened as the current collector plates 16, 19 are approached across the tab laminates 21, 25, It may be shortened as it approaches the current collector plates 16 and 19 over a part of the tab laminates 21 and 25. Further, the lengths of the plurality of tabs 14 b and 17 b between the electrode main bodies 40 and 42 and the welded portion W may be shortened as the protective plates 23 and 27 are approached. In this case, the plurality of tabs 14b and 17b are bundled on the other end 42b side in the Z-axis direction.
 以上説明したように、第1実施形態の電極組立体3では、溶接部Wの断面積が、タブ積層体21,25の厚みにわたって、集電板16,19に近づくに連れて単調増加している。そのため、集電板16,19に近づくに連れてタブ積層体21,25の各タブ14b,17bの電気抵抗値が小さくなる。一方、タブ積層体21,25の各タブ14b,17bに流れる電流値は、集電板16,19に近づくに連れて大きくなる。そのため、電極組立体3では、タブ積層体21,25の各タブ14b,17bに流れる電流値に応じて各タブ14b,17bの電気抵抗値を調整できる。 As described above, in the electrode assembly 3 of the first embodiment, the cross-sectional area of the welded portion W increases monotonously as the current collector plates 16 and 19 are approached over the thickness of the tab laminates 21 and 25. Yes. Therefore, as the current collector plates 16 and 19 are approached, the electric resistance values of the tabs 14b and 17b of the tab laminates 21 and 25 become smaller. On the other hand, the value of the current flowing through the tabs 14 b and 17 b of the tab laminates 21 and 25 increases as the current collectors 16 and 19 are approached. Therefore, in the electrode assembly 3, the electrical resistance value of each tab 14b, 17b can be adjusted according to the value of the current flowing through each tab 14b, 17b of the tab laminate 21, 25.
 また、集電板16,19と溶接部Wとの接触面積が大きくなるので、集電板16,19と溶接部Wとの接合強度が高くなる。さらに、溶接部Wの外面Wsが、集電板16,19に近づくに連れて外側に向かうようにタブ積層体21,25の積層方向に対して傾斜しているので、例えばタブ積層体21,25に外力が加わった場合であっても、タブ積層体21,25が集電板16,19から剥離し難くなる。 Further, since the contact area between the current collector plates 16 and 19 and the welded portion W is increased, the joint strength between the current collector plates 16 and 19 and the welded portion W is increased. Further, since the outer surface Ws of the welded portion W is inclined with respect to the stacking direction of the tab laminates 21 and 25 so as to go outward as the current collector plates 16 and 19 are approached, for example, the tab laminate 21 or Even when an external force is applied to 25, the tab laminates 21, 25 are difficult to peel from the current collector plates 16, 19.
 タブ積層体21,25の断面(例えばYZ断面)において、集電板16,19が、タブ積層体21,25の端面21a,21b,25a,25bよりも外側に突出している場合、タブ積層体21,25の積層方向に対する溶接部Wの外面Wsの傾斜角度を大きくできる。その結果、タブ積層体21,25の積層方向において溶接部Wの断面積の増加率が大きくなる。溶接部Wが形成される際に、例えば重力及び表面張力の少なくとも一方によって、溶融した材料が集電板16,19の表面に沿って端面21a,21b,25a,25bから外側に移動し易くなるので、溶接部Wの外面Wsの傾斜角度が大きくなる。 When the current collector plates 16 and 19 protrude outward from the end surfaces 21a, 21b, 25a, and 25b of the tab laminates 21 and 25 in the cross section of the tab laminates 21 and 25 (for example, the YZ cross section), the tab laminate The inclination angle of the outer surface Ws of the welded portion W with respect to the stacking direction of 21 and 25 can be increased. As a result, the rate of increase in the cross-sectional area of the welded portion W increases in the stacking direction of the tab laminates 21 and 25. When the welded portion W is formed, the molten material easily moves outward from the end surfaces 21a, 21b, 25a, 25b along the surfaces of the current collector plates 16, 19 due to, for example, at least one of gravity and surface tension. Therefore, the inclination angle of the outer surface Ws of the welded portion W increases.
 電極本体40,42と溶接部Wとの間におけるタブ14b,17bの長さが短いと、溶接部Wにおいて発生した熱が電極本体40,42に伝わり易いので、電極本体40,42に熱の影響が及び易い。そのような場合であっても、電極組立体3では、電極本体40,42と溶接部Wとの間の距離が短いタブ14b,17bの近くに集電板16,19が位置しているので、溶接部Wにおいて発生した熱が電極本体40,42よりも先に集電板16,19に伝わる。その結果、溶接部Wからタブ14b,17bを経由して電極本体40,42に熱が伝わり難くなる。よって、セパレータ13の溶融及び電極本体40,42の材料の変質を抑制できる。さらに、集電板16,19は保護板23,27に比べて高い熱容量を有しているので、保護板23,27に熱を逃がす場合に比べて、より効率的に熱を逃がすことができる。 If the lengths of the tabs 14b and 17b between the electrode bodies 40 and 42 and the welded portion W are short, the heat generated in the welded portion W is easily transferred to the electrode bodies 40 and 42. It is easy to influence. Even in such a case, in the electrode assembly 3, the current collector plates 16 and 19 are located near the tabs 14b and 17b where the distance between the electrode main bodies 40 and 42 and the welded portion W is short. The heat generated in the weld W is transmitted to the current collector plates 16 and 19 before the electrode bodies 40 and 42. As a result, it is difficult for heat to be transmitted from the welded portion W to the electrode bodies 40 and 42 via the tabs 14b and 17b. Therefore, melting of the separator 13 and alteration of the material of the electrode bodies 40 and 42 can be suppressed. Furthermore, since the current collecting plates 16 and 19 have a higher heat capacity than the protective plates 23 and 27, the heat can be released more efficiently than when the heat is released to the protective plates 23 and 27. .
 タブ積層体25の先端に位置する端面25cでは、タブ積層体25を挟んで互いに反対側に配置された2つの端面25a,25bに比べてタブ17b間の位置ずれが大きくなることが多い(図3参照)。タブ積層体21についても同様に、端面21cではタブ14b間の位置ずれが大きくなることが多い。タブ14b,17b間の位置ずれが大きいと、溶接部Wの断面積を、タブ積層体21,25の厚みにわたって、集電板16,19に近づくに連れて単調増加させることが難しくなる。タブ積層体21,25の先端に位置する端面21c,25cに溶接部Wを形成する場合には、タブ14b,17b間の位置ずれを抑制するために各タブ14b,17bの長さを調整している。一方、電極組立体3では、タブ積層体21,25の先端に位置する端面21c,25cに溶接部Wを形成する必要がないので、各タブ14b,17bの長さを調整する必要もない。 In the end face 25c located at the tip of the tab laminated body 25, the positional deviation between the tabs 17b is often larger than the two end faces 25a and 25b arranged on the opposite sides of the tab laminated body 25 (see FIG. 3). Similarly, in the tab laminate 21, the positional deviation between the tabs 14b often increases on the end surface 21c. When the positional deviation between the tabs 14b and 17b is large, it becomes difficult to monotonously increase the cross-sectional area of the welded portion W over the thickness of the tab laminates 21 and 25 as the current collector plates 16 and 19 are approached. When the welded portion W is formed on the end surfaces 21c and 25c located at the tips of the tab laminates 21 and 25, the lengths of the tabs 14b and 17b are adjusted in order to suppress the displacement between the tabs 14b and 17b. ing. On the other hand, in the electrode assembly 3, since it is not necessary to form the welding part W in the end surfaces 21c and 25c located in the front-end | tip of the tab laminated bodies 21 and 25, it is not necessary to adjust the length of each tab 14b and 17b.
 タブ積層体21の積層方向を含みタブ積層体21の端面21a,21bに直交するタブ積層体21の断面(例えばYZ断面)において、タブ積層体21の積層方向に直交する方向における溶接部Wの最大溶接深さWdは、2mm未満であってもよいし、1.5mm以下であってもよいし、1.2mm以下であってもよいし、0.1mm超であってもよいし、0.3mm以上であってもよい。同様に、タブ積層体25の積層方向を含みタブ積層体25の端面25a,25bに直交するタブ積層体25の断面(例えばYZ断面)において、タブ積層体25の積層方向に直交する方向における溶接部Wの最大溶接深さWdは2mm未満であってもよいし、1.5mm以下であってもよいし、1.2mm以下であってもよいし、0.1mm超であってもよいし、0.3mm以上であってもよい。最大溶接深さWdを2mm未満とすると、例えばエネルギービームBの照射に起因するスパッタ粒子の発生を抑制できる。特に、最大溶接深さWdを1.2mm以下とすると、スパッタ粒子の発生が顕著に抑制される(図17参照)。 In the cross section (for example, YZ cross section) of the tab laminated body 21 including the laminating direction of the tab laminated body 21 and orthogonal to the end faces 21a and 21b of the tab laminated body 21, the welded portion W in the direction orthogonal to the laminating direction of the tab laminated body 21 The maximum welding depth Wd may be less than 2 mm, may be 1.5 mm or less, may be 1.2 mm or less, may be greater than 0.1 mm, It may be 3 mm or more. Similarly, in the cross section (for example, YZ cross section) of the tab laminated body 25 that includes the laminating direction of the tab laminated body 25 and is orthogonal to the end faces 25a and 25b of the tab laminated body 25, welding in the direction orthogonal to the laminating direction of the tab laminated body 25 is performed. The maximum welding depth Wd of the part W may be less than 2 mm, 1.5 mm or less, 1.2 mm or less, or more than 0.1 mm. 0.3 mm or more. When the maximum welding depth Wd is less than 2 mm, for example, the generation of sputtered particles due to the irradiation with the energy beam B can be suppressed. In particular, when the maximum welding depth Wd is 1.2 mm or less, the generation of sputtered particles is significantly suppressed (see FIG. 17).
 タブ積層体21の積層方向に直交するタブ積層体21の断面(例えばXY断面)において、溶接部Wの最大面積は、例えば4~40mmである。同様に、タブ積層体25の積層方向に直交するタブ積層体25の断面(例えばXY断面)において、溶接部Wの最大面積は、例えば4~40mmである。溶接部Wの最大面積を4mm以上とすると、溶接部Wの電気抵抗値を十分に低減できる。 In the cross section (for example, XY cross section) of the tab laminated body 21 orthogonal to the lamination direction of the tab laminated body 21, the maximum area of the welded portion W is, for example, 4 to 40 mm 2 . Similarly, in the cross section (for example, XY cross section) of the tab laminated body 25 orthogonal to the laminating direction of the tab laminated body 25, the maximum area of the welded portion W is, for example, 4 to 40 mm 2 . When the maximum area of the welded portion W is 4 mm 2 or more, the electric resistance value of the welded portion W can be sufficiently reduced.
 上述のように、電極組立体3において、タブ積層体21の端面21a,21bにおいてタブ積層体21の積層方向に直交する方向(例えばX軸方向)における溶接部Wの最大長さW2は、タブ積層体21の積層方向(例えばZ軸方向)とタブ積層体21の積層方向に直交する方向(例えばX軸方向)との両方に直交する方向(例えばY軸方向)から見たときに、タブ積層体21の積層方向(例えばZ軸方向)における溶接部Wとタブ積層体21とが重なる部分の最大長さW1よりも大きい(図3参照)。よって、タブ積層体21の端面21a,21bにおいて、タブ積層体21の積層方向に交差する方向に溶接部Wが広がる。その結果、溶接部Wにおいて電流が積層方向に流れる際に、複数のタブ14b間の電気抵抗値を低減できる。また、溶接部Wの機械的強度が高まるので、例えば組立作業又は外力により電極組立体3に応力が生じても溶接部Wが破壊され難い。さらに、溶接部Wの熱拡散性が向上するので、溶接部Wを形成する際に、エネルギービームBの照射に起因するスパッタ粒子の発生を抑制できる。同様に、タブ積層体25の端面25a,25bにおいてタブ積層体25の積層方向に直交する方向(例えばX軸方向)における溶接部Wの最大長さW2は、タブ積層体25の積層方向(例えばZ軸方向)とタブ積層体25の積層方向に直交する方向(例えばX軸方向)との両方に直交する方向(例えばY軸方向)から見たときに、タブ積層体25の積層方向(例えばZ軸方向)における溶接部Wとタブ積層体25とが重なる部分の最大長さW1よりも大きい。よって、タブ積層体25の端面25a,25bにおいて、タブ積層体25の積層方向に交差する方向に溶接部Wが広がる。その結果、溶接部Wにおいて電流が積層方向に流れる際に、複数のタブ17b間の電気抵抗値を低減できる。また、溶接部Wの機械的強度が高まるので、例えば組立作業又は外力により電極組立体3に応力が生じても溶接部Wが破壊され難い。さらに、溶接部Wの熱拡散性が向上するので、溶接部Wを形成する際に、エネルギービームBの照射に起因するスパッタ粒子の発生を抑制できる。 As described above, in the electrode assembly 3, the maximum length W2 of the welded portion W in the direction (eg, the X-axis direction) orthogonal to the stacking direction of the tab stacked body 21 on the end faces 21a and 21b of the tab stacked body 21 is When viewed from a direction (for example, the Y-axis direction) orthogonal to both the stacking direction (for example, the Z-axis direction) of the stacked body 21 and the direction (for example, the X-axis direction) orthogonal to the stacking direction of the tab stacked body 21 It is larger than the maximum length W1 of the portion where the welded portion W and the tab laminate 21 overlap in the lamination direction of the laminate 21 (for example, the Z-axis direction) (see FIG. 3). Therefore, on the end faces 21 a and 21 b of the tab laminated body 21, the welded portion W spreads in a direction intersecting with the lamination direction of the tab laminated body 21. As a result, when current flows in the welding direction at the welded portion W, the electrical resistance value between the plurality of tabs 14b can be reduced. Further, since the mechanical strength of the welded portion W is increased, the welded portion W is not easily broken even if stress is generated in the electrode assembly 3 by, for example, an assembly operation or an external force. Furthermore, since the thermal diffusibility of the welded portion W is improved, the generation of sputtered particles due to the irradiation of the energy beam B can be suppressed when forming the welded portion W. Similarly, the maximum length W2 of the welded portion W in the direction (for example, the X-axis direction) orthogonal to the stacking direction of the tab stacked body 25 on the end surfaces 25a and 25b of the tab stacked body 25 is the stacking direction of the tab stacked body 25 (for example, When viewed from a direction (for example, the Y-axis direction) orthogonal to both the Z-axis direction) and a direction (for example, the X-axis direction) orthogonal to the stack direction of the tab stack 25, the stack direction of the tab stack 25 (for example, It is larger than the maximum length W1 of the portion where the welded portion W and the tab laminate 25 overlap in the Z-axis direction). Therefore, on the end faces 25 a and 25 b of the tab laminated body 25, the welded portion W spreads in a direction intersecting with the lamination direction of the tab laminated body 25. As a result, when the current flows in the stacking direction in the welded portion W, the electrical resistance value between the plurality of tabs 17b can be reduced. Further, since the mechanical strength of the welded portion W is increased, the welded portion W is not easily broken even if stress is generated in the electrode assembly 3 by, for example, an assembly operation or an external force. Furthermore, since the thermal diffusibility of the welded portion W is improved, the generation of sputtered particles due to the irradiation of the energy beam B can be suppressed when forming the welded portion W.
 タブ積層体21が、タブ積層体21の積層方向において保護板23と集電板16との間に配置され、タブ積層体21の積層方向における保護板23の厚みは、タブ積層体21の積層方向における集電板16の厚みよりも小さくてもよい。この場合、保護板23の厚みが比較的小さくなるので、保護板23の熱容量とタブ14bの熱容量との差を小さくできる。よって、保護板23とタブ14bとの接触箇所における溶接部Wの品質が向上する。タブ積層体21の積層方向における保護板23の厚みは、タブ積層体21の積層方向におけるタブ14bの厚みよりも大きくてもよい。 The tab laminated body 21 is disposed between the protective plate 23 and the current collector plate 16 in the lamination direction of the tab laminated body 21, and the thickness of the protective plate 23 in the lamination direction of the tab laminated body 21 is the lamination of the tab laminated body 21. It may be smaller than the thickness of the current collector plate 16 in the direction. In this case, since the thickness of the protective plate 23 is relatively small, the difference between the heat capacity of the protective plate 23 and the heat capacity of the tab 14b can be reduced. Therefore, the quality of the welding part W in the contact location of the protection plate 23 and the tab 14b improves. The thickness of the protective plate 23 in the stacking direction of the tab laminate 21 may be larger than the thickness of the tab 14 b in the stacking direction of the tab laminate 21.
 保護板23の厚みは、0.1~0.5mmであってもよいし、0.1~0.2mmであってもよい。保護板23の厚みが0.1mm未満であると、保護板23がタブ14bを押圧する力が小さくなるので、溶接時にタブ14bが動き易くなる傾向にある。保護板23の厚みが0.5mm超であると、溶接時に保護板23を溶融させるためのエネルギーが大きくなる傾向にある。エネルギーを大きくするためにエネルギービームBの出力を上げると、エネルギービームBの照射に起因するスパッタ粒子が発生し易くなる。タブ14bの厚みは、例えば5~30μmである。タブ積層体21の厚みは例えば0.3~2.4mmであってもよいし、0.6~1.0mmであってもよい。 The thickness of the protective plate 23 may be 0.1 to 0.5 mm or 0.1 to 0.2 mm. If the thickness of the protective plate 23 is less than 0.1 mm, the force with which the protective plate 23 presses the tab 14b becomes small, and thus the tab 14b tends to move during welding. If the thickness of the protective plate 23 is more than 0.5 mm, the energy for melting the protective plate 23 during welding tends to increase. When the output of the energy beam B is increased to increase the energy, sputtered particles due to the irradiation of the energy beam B are likely to be generated. The thickness of the tab 14b is, for example, 5 to 30 μm. The thickness of the tab laminate 21 may be, for example, 0.3 to 2.4 mm, or 0.6 to 1.0 mm.
 同様に、タブ積層体25が、タブ積層体25の積層方向において保護板27と集電板19との間に配置され、タブ積層体25の積層方向における保護板27の厚みは、タブ積層体25の積層方向における集電板19の厚みよりも小さくてもよい。この場合、保護板27の厚みが比較的小さくなるので、保護板27の熱容量とタブ17bの熱容量との差を小さくできる。よって、保護板27とタブ17bとの接触箇所における溶接部Wの品質が向上する。タブ積層体25の積層方向における保護板27の厚みは、タブ積層体25の積層方向におけるタブ17bの厚みよりも大きくてもよい。 Similarly, the tab laminated body 25 is disposed between the protective plate 27 and the current collector plate 19 in the laminating direction of the tab laminated body 25, and the thickness of the protective plate 27 in the laminating direction of the tab laminated body 25 is determined by the tab laminated body. It may be smaller than the thickness of the current collector plate 19 in the 25 stacking direction. In this case, since the thickness of the protection plate 27 is relatively small, the difference between the heat capacity of the protection plate 27 and the heat capacity of the tab 17b can be reduced. Therefore, the quality of the welding part W in the contact location of the protection board 27 and the tab 17b improves. The thickness of the protection plate 27 in the stacking direction of the tab laminate 25 may be larger than the thickness of the tab 17b in the stacking direction of the tab stack 25.
 保護板27の厚みは、例えば0.1~0.5mmであってもよいし、0.1~0.2mmであってもよい。保護板27の厚みが0.1mm未満であると、保護板27がタブ17bを押圧する力が小さくなるので、溶接時にタブ17bが動き易くなる傾向にある。保護板27の厚みが0.5mm超であると、溶接時に保護板27を溶融させるためのエネルギーが大きくなる傾向にある。エネルギーを大きくするためにエネルギービームBの出力を上げると、エネルギービームBの照射に起因するスパッタ粒子が発生し易くなる。タブ17bの厚みは、例えば5~30μmである。タブ積層体25の厚みは例えば0.3~2.4mmであってもよいし、0.6~1.0mmであってもよい。 The thickness of the protective plate 27 may be, for example, 0.1 to 0.5 mm or 0.1 to 0.2 mm. When the thickness of the protection plate 27 is less than 0.1 mm, the force with which the protection plate 27 presses the tab 17b is reduced, and thus the tab 17b tends to move during welding. If the thickness of the protective plate 27 is more than 0.5 mm, the energy for melting the protective plate 27 during welding tends to increase. When the output of the energy beam B is increased to increase the energy, sputtered particles due to the irradiation of the energy beam B are likely to be generated. The thickness of the tab 17b is, for example, 5 to 30 μm. The thickness of the tab laminate 25 may be, for example, 0.3 to 2.4 mm, or 0.6 to 1.0 mm.
 図6~図11は、第1実施形態に係る蓄電装置の製造方法の一工程を示す図である。図1及び図2に示される蓄電装置1は、例えば以下の方法により製造される。 6 to 11 are views showing one process of the method for manufacturing the power storage device according to the first embodiment. The power storage device 1 shown in FIGS. 1 and 2 is manufactured by, for example, the following method.
(集電体の固定工程)
 まず、図6に示されるように、蓋部2bに集電板16,19を固定する。図6(A)はX軸方向から見た蓋部2b及び集電板16,19を示す図であり、図6(B)はY軸方向から見た蓋部2b及び集電板19を示す図である。蓋部2bと集電板16,19との間には、正極端子5及び負極端子6をそれぞれ貫通させるための複数の穴部を有する絶縁部材28が配置され得る。
(タブ積層体の配置工程)
 次に、図7に示されるように、集電板16,19上にタブ積層体21,25をそれぞれ配置する。集電板16,19は、タブ積層体21,25と蓋部2bとの間に位置している。図7(A)はX軸方向から見たタブ積層体21,25を示す図であり、図7(B)はY軸方向から見たタブ積層体25を示す図である。その後、タブ積層体21,25上にそれぞれ保護板23,27を載置してもよい。タブ積層体21,25は、例えば治具により保護板23,27を介して押圧されるが、押圧されなくてもよい。
(Current collector fixing process)
First, as shown in FIG. 6, the current collector plates 16 and 19 are fixed to the lid portion 2b. 6A is a diagram showing the lid 2b and the current collector plates 16 and 19 seen from the X-axis direction, and FIG. 6B shows the lid 2b and the current collector 19 seen from the Y-axis direction. FIG. An insulating member 28 having a plurality of holes for allowing the positive electrode terminal 5 and the negative electrode terminal 6 to pass through can be disposed between the lid portion 2 b and the current collector plates 16 and 19.
(Arrangement process of tab laminate)
Next, as shown in FIG. 7, the tab laminates 21 and 25 are disposed on the current collector plates 16 and 19, respectively. The current collector plates 16 and 19 are located between the tab laminates 21 and 25 and the lid portion 2b. FIG. 7A is a diagram showing the tab laminates 21 and 25 viewed from the X-axis direction, and FIG. 7B is a diagram showing the tab laminate 25 viewed from the Y-axis direction. Thereafter, the protective plates 23 and 27 may be placed on the tab laminates 21 and 25, respectively. The tab laminates 21 and 25 are pressed through the protective plates 23 and 27 by a jig, for example, but may not be pressed.
(溶接部の形成工程)
 次に、図8に示されるように、蓋部2bに固定された集電板16,19上にタブ積層体21,25がそれぞれ配置された状態で、タブ積層体25の端面25aにエネルギービームBを照射する。図8(A)はX軸方向から見たタブ積層体21,25を示す図であり、図8(B)はY軸方向から見たタブ積層体25を示す図である。エネルギービームBは、照射装置30からタブ積層体25の端面25aに向けて照射される。照射装置30は、例えばレンズ及びガルバノミラーを含むスキャナヘッドである。スキャナヘッドにはファイバを介してビーム発生装置が接続される。照射装置30は、例えばプリズム等の屈折式又は回折光学素子(DOE:diffractive optical element)等の回折系の光学系から構成されてもよい。
(Formation process of welded part)
Next, as shown in FIG. 8, the energy beam is applied to the end surface 25a of the tab laminate 25 in a state where the tab laminates 21 and 25 are respectively disposed on the current collector plates 16 and 19 fixed to the lid portion 2b. B is irradiated. 8A is a diagram showing the tab laminates 21 and 25 viewed from the X-axis direction, and FIG. 8B is a diagram showing the tab laminate 25 viewed from the Y-axis direction. The energy beam B is irradiated from the irradiation device 30 toward the end surface 25a of the tab laminate 25. The irradiation device 30 is a scanner head including a lens and a galvanometer mirror, for example. A beam generator is connected to the scanner head via a fiber. The irradiating device 30 may be composed of a diffractive optical system such as a refractive type such as a prism or a diffractive optical element (DOE).
 タブ積層体25の端面25aに直交すると共にタブ積層体25の積層方向を含む平面(例えばYZ平面)にエネルギービームBの照射方向を投影した方向Jは、当該平面(例えばYZ平面)において、Z軸方向に直交する方向H(例えばY軸方向)及びタブ積層体25の積層方向の両方に対して傾斜してもよい。方向Jはタブ積層体25の端面25aに対しても傾斜している。YZ平面において、方向Hと方向Jとのなす角度のうち小さい方の角度θは、5~85°であってもよく、10~80°であってもよく、45~75°であってもよい。方向Jは方向Hに平行であってもよい。エネルギービームBは、溶接を行うことができる高エネルギービームである。エネルギービームBは、例えばレーザービーム又は電子ビームである。エネルギービームBの照射は、ノズル32から供給される不活性ガスGの雰囲気中で行われる。 A direction J in which the irradiation direction of the energy beam B is projected onto a plane (for example, YZ plane) orthogonal to the end surface 25a of the tab stack 25 and including the stacking direction of the tab stack 25 is Z in the plane (for example, YZ plane). You may incline with respect to both the direction H (for example, Y-axis direction) orthogonal to an axial direction, and the lamination direction of the tab laminated body 25. FIG. The direction J is also inclined with respect to the end face 25 a of the tab laminate 25. In the YZ plane, the smaller angle θ among the angles formed by the direction H and the direction J may be 5 to 85 °, 10 to 80 °, or 45 to 75 °. Good. The direction J may be parallel to the direction H. The energy beam B is a high energy beam that can be welded. The energy beam B is, for example, a laser beam or an electron beam. The irradiation with the energy beam B is performed in an atmosphere of an inert gas G supplied from the nozzle 32.
 エネルギービームBは、例えば治具により集電板19及び保護板27を介してタブ積層体25をZ軸方向に押圧した状態でタブ積層体25の端面25aに照射される。 The energy beam B is irradiated to the end surface 25a of the tab laminated body 25 in a state where the tab laminated body 25 is pressed in the Z-axis direction via the current collector plate 19 and the protective plate 27 by a jig, for example.
 集電板16,19、タブ積層体21,25及び保護板23,27を含むワークは、例えばベルトコンベア等の搬送ステージ上に載置され、エネルギービームBの照射位置までY軸方向に搬送される。 The work including the current collecting plates 16 and 19, the tab laminates 21 and 25, and the protection plates 23 and 27 is placed on a transport stage such as a belt conveyor, and is transported in the Y-axis direction to the irradiation position of the energy beam B. The
 エネルギービームBは、タブ積層体25の端面25aにおいて、Z軸方向に交差する方向(X軸方向)に沿って走査され得る。第1実施形態では、エネルギービームBをZ軸方向に変位させながらX軸方向に沿って走査する。例えば、エネルギービームBをZ軸方向に往復変位(ウォブリング)させながらX軸方向に沿って走査する。エネルギービームBの照射スポットのZ軸方向における変位量は、タブ積層体25の厚みよりも大きい。エネルギービームBの照射スポットは、タブ積層体25の端面25aにおいて、X軸方向に沿った軸線H1上の位置P1から位置P2まで移動する。例えば、位置P1,P2は、Z軸方向においてタブ積層体25の端面25aの中心に位置する。エネルギービームBは、例えば、タブ積層体25の端面25aにおいてX軸方向に沿って中心点を移動させ、当該中心点を中心にXZ平面においてエネルギービームBの照射スポットを回転させながら走査される。回転の直径がタブ積層体25の厚みよりも大きいと、タブ積層体25の端面25a、集電板19及び保護板27を全体的に溶接できるため好ましい。 The energy beam B can be scanned along the direction (X-axis direction) intersecting the Z-axis direction on the end face 25a of the tab laminate 25. In the first embodiment, scanning is performed along the X-axis direction while displacing the energy beam B in the Z-axis direction. For example, the energy beam B is scanned along the X-axis direction while being reciprocally displaced (wobbled) in the Z-axis direction. The amount of displacement of the irradiation spot of the energy beam B in the Z-axis direction is larger than the thickness of the tab laminate 25. The irradiation spot of the energy beam B moves from the position P1 on the axis H1 along the X-axis direction to the position P2 on the end face 25a of the tab laminate 25. For example, the positions P1 and P2 are located at the center of the end face 25a of the tab laminate 25 in the Z-axis direction. For example, the energy beam B is scanned while moving the center point along the X-axis direction on the end face 25a of the tab laminate 25 and rotating the irradiation spot of the energy beam B around the center point on the XZ plane. It is preferable that the diameter of rotation is larger than the thickness of the tab laminate 25 because the end face 25a, the current collector plate 19 and the protective plate 27 of the tab laminate 25 can be welded as a whole.
 上述のようにエネルギービームBを照射することによって、図9に示されるように、タブ積層体25の端面25aから内側に溶接部Wが形成される。図9(A)はX軸方向から見たタブ積層体21,25を示す図であり、図9(B)はY軸方向から見たタブ積層体25を示す図である。 By irradiating the energy beam B as described above, the welded portion W is formed on the inner side from the end surface 25a of the tab laminate 25 as shown in FIG. 9A is a diagram showing the tab laminates 21 and 25 viewed from the X-axis direction, and FIG. 9B is a diagram showing the tab laminate 25 viewed from the Y-axis direction.
 続いて、図10に示されるように、タブ積層体21の端面21bにも同様にエネルギービームBを照射する。これにより、図11に示されるように、タブ積層体21の端面21bから内側にも溶接部Wが形成される。 Subsequently, as shown in FIG. 10, the energy beam B is similarly applied to the end face 21 b of the tab laminated body 21. Thereby, as shown in FIG. 11, the welded portion W is also formed from the end surface 21 b of the tab laminated body 21 to the inside.
 エネルギービームBは、タブ積層体25の端面25bとタブ積層体21の端面21bとが互いに対向配置された状態で、端面21bに照射される。 The energy beam B is applied to the end face 21b in a state where the end face 25b of the tab laminated body 25 and the end face 21b of the tab laminated body 21 are arranged to face each other.
 続いて、タブ積層体21の端面21bと同様に、タブ積層体25の端面25bにエネルギービームBを照射することにより、タブ積層体25の端面25bから内側に溶接部Wを形成する(図4参照)。エネルギービームBは、タブ積層体25の端面25bとタブ積層体21の端面21bとが互いに対向配置された状態で、端面25bに照射される。その後、タブ積層体25の端面25bと同様に、タブ積層体21の端面21aにエネルギービームBを照射することにより、タブ積層体21の端面21aから内側に溶接部Wを形成する(図4参照)。 Subsequently, similarly to the end face 21b of the tab laminated body 21, the welded portion W is formed on the inner side from the end face 25b of the tab laminated body 25 by irradiating the end surface 25b of the tab laminated body 25 with the energy beam B (FIG. 4). reference). The energy beam B is applied to the end face 25b in a state where the end face 25b of the tab laminated body 25 and the end face 21b of the tab laminated body 21 are arranged to face each other. Then, similarly to the end surface 25b of the tab laminated body 25, the end surface 21a of the tab laminated body 21 is irradiated with the energy beam B, thereby forming a welded portion W from the end surface 21a of the tab laminated body 21 (see FIG. 4). ).
 エネルギービームBの照射の際、タブ積層体21,25を含むワークは、搬送ステージによって、エネルギービームBの照射位置までY軸方向に搬送される。第1の照射装置30を用いて、タブ積層体21,25の端面21a,25bにエネルギービームBを照射し、第2の照射装置30を用いて、タブ積層体21,25の端面21b,25aにエネルギービームBを照射してもよい。また、1つの照射装置30をモータ等の駆動装置により移動させてエネルギービームBの照射方向を変えることによって、端面25a,21b,25b,21aにエネルギービームBを順に照射してもよい。
(電極組立体の収容工程)
 次に、得られた電極組立体3をケース2の本体部2a内に収容し、タブ積層体21,25を折り曲げる。その結果、本体部2aの開口が蓋部2bによって塞がれる。
When the energy beam B is irradiated, the workpiece including the tab stacked bodies 21 and 25 is transferred in the Y-axis direction to the irradiation position of the energy beam B by the transfer stage. The end surfaces 21a and 25b of the tab laminates 21 and 25 are irradiated with the energy beam B using the first irradiation device 30, and the end surfaces 21b and 25a of the tab laminates 21 and 25 are used using the second irradiation device 30. May be irradiated with the energy beam B. Further, the end surfaces 25a, 21b, 25b, and 21a may be sequentially irradiated with the energy beam B by moving one irradiation device 30 with a driving device such as a motor to change the irradiation direction of the energy beam B.
(Electrode assembly accommodation process)
Next, the obtained electrode assembly 3 is accommodated in the main body 2a of the case 2, and the tab laminates 21 and 25 are bent. As a result, the opening of the main body 2a is blocked by the lid 2b.
 上記工程を経ることによって、蓄電装置1が製造される。 The power storage device 1 is manufactured through the above steps.
 蓋部2bに固定された集電板16,19上にタブ積層体21,25がそれぞれ配置された状態でタブ積層体25のタブ17b同士を溶接する際に、抵抗溶接を用いる場合、集電板19及びタブ積層体25を一対の電極で挟む必要がある。その場合、当該電極の位置が蓋部2bの位置と干渉してしまう可能性がある。一方、本実施形態の蓄電装置1の製造方法では、エネルギービームBの照射により溶接部Wを形成しているので、抵抗溶接に必要な電極が必要ない。よって、当該電極の位置による干渉の問題が生じない。 In the case where resistance welding is used when welding the tabs 17b of the tab laminate 25 with the tab laminates 21 and 25 arranged on the current collector plates 16 and 19 fixed to the lid 2b, respectively, It is necessary to sandwich the plate 19 and the tab laminate 25 with a pair of electrodes. In that case, the position of the electrode may interfere with the position of the lid 2b. On the other hand, in the method for manufacturing the power storage device 1 of the present embodiment, since the welded portion W is formed by irradiation with the energy beam B, an electrode necessary for resistance welding is not necessary. Therefore, the problem of interference due to the position of the electrode does not occur.
 また、製造された蓄電装置1において、集電板16,19は折り曲げられていない平板であってもよい。すなわち、蓄電装置1の製造開始から終了まで集電板16,19は折り曲げられていない平板であってもよい。抵抗溶接では、電極の位置による干渉の問題を回避するために、折り曲げられた集電板を用いて、蓋部に固定される領域と抵抗溶接される領域とを分離している。一方、蓄電装置1の製造方法では、エネルギービームBの照射により溶接部Wを形成しているので、折り曲げられていない平板を集電板16,19として用いても溶接を行うことができる。そのため、蓄電装置1の設計自由度が高くなる。集電板16,19は、折り曲げられていない平板ではなく、折り曲げられた平板であってもよい。 In the manufactured power storage device 1, the current collecting plates 16 and 19 may be flat plates that are not bent. That is, current collector plates 16 and 19 may be flat plates that are not bent from the start to the end of manufacture of power storage device 1. In resistance welding, in order to avoid the problem of interference due to the position of the electrodes, a bent current collector plate is used to separate the region fixed to the lid and the region to be resistance welded. On the other hand, in the method for manufacturing the power storage device 1, since the welded portion W is formed by irradiation with the energy beam B, welding can be performed even if flat plates that are not bent are used as the current collector plates 16 and 19. As a result, the degree of freedom in designing the power storage device 1 is increased. The current collecting plates 16 and 19 are not flat plates that are not bent, but may be bent flat plates.
 図12~図13は、第2実施形態に係る電極組立体の製造方法の一工程を示す図である。図12(A)及び図13(A)はX軸方向から見たタブ積層体21,25を示す図であり、図12(B)及び図13(B)はY軸方向から見たタブ積層体25を示す図である。第2実施形態では、タブ積層体21,25の端面21c,25c(第1の端面)にそれぞれ溶接部Wが形成されること以外は第1実施形態と同様に蓄電装置1を製造することができる。 FIG. 12 to FIG. 13 are views showing one process of the manufacturing method of the electrode assembly according to the second embodiment. 12A and 13A are views showing the tab laminates 21 and 25 viewed from the X-axis direction, and FIGS. 12B and 13B are tab stacks viewed from the Y-axis direction. FIG. In 2nd Embodiment, the electrical storage apparatus 1 can be manufactured similarly to 1st Embodiment except the welding part W being formed in the end surfaces 21c and 25c (1st end surface) of the tab laminated bodies 21 and 25, respectively. it can.
 タブ積層体25の端面25cは、タブ積層体25の先端に位置しており、YZ平面に沿う面である。端面25cは、タブ積層体25の先端を切断することによって形成されてもよいし、異なる長さのタブ17bを用いてタブ17bを積層することによって形成されてもよい。 The end surface 25c of the tab laminated body 25 is located at the tip of the tab laminated body 25 and is a surface along the YZ plane. The end face 25c may be formed by cutting the tip end of the tab laminate 25, or may be formed by laminating the tab 17b using tabs 17b having different lengths.
 図12に示されるように、タブ積層体25の端面25cに直交すると共にタブ積層体25の積層方向を含む平面(例えばXZ平面)にエネルギービームBの照射方向を投影した方向Jは、当該平面(例えばXZ平面)において、Z軸方向に直交する方向H(例えばX軸方向)及びタブ積層体25の積層方向の両方に対して傾斜してもよい。方向Jはタブ積層体25の端面25cに対しても傾斜している。エネルギービームBは、端面25cにおいて、Z軸方向に変位(ウォブリング)させながらY軸方向に沿って走査される。エネルギービームBの照射スポットは、端面25cにおいて、Y軸方向に沿った軸線H1上の位置P4から位置P5まで移動する。例えば、位置P4,P5は、Z軸方向において端面25cの中心に位置する。エネルギービームBは、例えば、端面25cにおいてY軸方向に沿って中心点を移動させ、当該中心点を中心にYZ平面においてエネルギービームBの照射スポットを回転させながら走査される。 As shown in FIG. 12, the direction J in which the irradiation direction of the energy beam B is projected onto a plane (for example, XZ plane) that is orthogonal to the end surface 25c of the tab laminate 25 and includes the lamination direction of the tab laminate 25 is the plane. In (for example, XZ plane), you may incline with respect to both the direction H (for example, X-axis direction) orthogonal to a Z-axis direction, and the lamination direction of the tab laminated body 25. FIG. The direction J is also inclined with respect to the end face 25 c of the tab laminate 25. The energy beam B is scanned along the Y-axis direction while being displaced (wobbling) in the Z-axis direction on the end face 25c. The irradiation spot of the energy beam B moves from the position P4 on the axis H1 along the Y-axis direction to the position P5 on the end face 25c. For example, the positions P4 and P5 are located at the center of the end face 25c in the Z-axis direction. For example, the energy beam B is scanned while moving the center point along the Y-axis direction on the end face 25c and rotating the irradiation spot of the energy beam B around the center point on the YZ plane.
 図13に示されるように、エネルギービームBの照射により、タブ積層体25の端面25cから内側に溶接部Wが形成される。図13(B)に示されるように、タブ積層体25の積層方向(例えばZ軸方向)に直交する平面(例えばXY平面)における溶接部Wの断面積が、タブ積層体25の厚みにわたって、集電板19に近づくに連れて単調増加している。また、タブ積層体25の積層方向を含みタブ積層体25の端面25cに直交するタブ積層体25の断面(例えばXZ断面)において、溶接部Wの外面Wsが、集電板19に近づくに連れて外側(端面25cから離れる方向)に向かうようにタブ積層体25の積層方向に対して傾斜している。タブ積層体25の断面(例えばXZ断面)において、集電板19は、タブ積層体25の端面25cよりも外側に突出してもよいが、タブ積層体25の端面25cよりも内側に位置してもよい。 As shown in FIG. 13, the welded portion W is formed on the inner side from the end surface 25 c of the tab laminated body 25 by the irradiation of the energy beam B. As shown in FIG. 13B, the cross-sectional area of the welded portion W in a plane (for example, the XY plane) orthogonal to the stacking direction (for example, the Z-axis direction) of the tab stack 25 extends over the thickness of the tab stack 25. As it approaches the current collector plate 19, it monotonously increases. Further, as the outer surface Ws of the welded portion W approaches the current collector plate 19 in the cross section (for example, the XZ cross section) of the tab laminated body 25 that includes the lamination direction of the tab laminated body 25 and is orthogonal to the end face 25c of the tab laminated body 25. It is inclined with respect to the stacking direction of the tab laminate 25 so as to go outward (in a direction away from the end face 25c). In the cross section of the tab laminated body 25 (for example, the XZ cross section), the current collector 19 may protrude outward from the end face 25c of the tab laminated body 25, but is positioned inside the end face 25c of the tab laminated body 25. Also good.
 同様に、エネルギービームBをタブ積層体21の端面21cに照射することによって、タブ積層体21の端面21cにも溶接部Wが形成される。 Similarly, by irradiating the end surface 21c of the tab laminated body 21 with the energy beam B, the welded portion W is also formed on the end surface 21c of the tab laminated body 21.
 第2実施形態では、第1実施形態と同様の作用効果が得られる。また、第2実施形態では、タブ積層体25の端面25a,25bに加えて端面25cにも溶接部Wが形成されるので、タブ17b間の電気抵抗値を低減することができる。同様に、タブ14b間の電気抵抗値も低減することができる。タブ積層体21,25の端面21a,21b,25a,25bに溶接部Wが形成されず、タブ積層体21,25の端面21c,25cにのみ溶接部Wが形成されてもよい。 In the second embodiment, the same effects as those in the first embodiment can be obtained. Moreover, in 2nd Embodiment, since the welding part W is formed also in the end surface 25c in addition to the end surfaces 25a and 25b of the tab laminated body 25, the electrical resistance value between the tabs 17b can be reduced. Similarly, the electrical resistance value between the tabs 14b can also be reduced. The welded portion W may not be formed on the end surfaces 21a, 21b, 25a, and 25b of the tab laminates 21 and 25, and the welded portion W may be formed only on the end surfaces 21c and 25c of the tab laminates 21 and 25.
 図14~図15は、第3実施形態に係る電極組立体の製造方法の一工程を示す図である。図14(A)及び図15(A)はX軸方向から見たタブ積層体25を示す図であり、図14(B)及び図15(B)はY軸方向から見たタブ積層体25を示す図である。第3実施形態では、積層型の電極組立体3に代えて巻回型の電極組立体3を製造すること以外は第1実施形態と同様に電極組立体3を製造することができる。 FIG. 14 to FIG. 15 are diagrams showing one process of the method for manufacturing the electrode assembly according to the third embodiment. 14A and 15A are views showing the tab laminate 25 viewed from the X-axis direction, and FIGS. 14B and 15B are tab laminates 25 viewed from the Y-axis direction. FIG. In the third embodiment, the electrode assembly 3 can be manufactured in the same manner as in the first embodiment, except that the wound electrode assembly 3 is manufactured instead of the stacked electrode assembly 3.
 巻回型の電極組立体3は、積層型の電極組立体3と同様に、タブ積層体21,25を備える。タブ積層体21,25はX軸方向において互いに反対側に配置される。タブ積層体25では、タブ17bが、X軸方向の軸を中心に巻回された後、Z軸方向に圧縮されている。そのため、タブ積層体25は、Z軸方向に積層されたタブ17bを有する。具体的には、タブ17bにおける複数の部分がZ軸方向に積層される。溶接部Wは、積層されたタブ17b同士を接続する。具体的には、溶接部Wによって、タブ17bにおける複数の部分同士が接続される。巻回型の電極組立体3において、タブ積層体25は端面25a,25bを備えておらず、先端に位置する端面25cのみを備えている。同様に、タブ積層体21は端面21a,21bを備えておらず、先端に位置する端面21cのみを備えている。 The wound electrode assembly 3 includes tab laminates 21 and 25, similar to the stacked electrode assembly 3. The tab laminates 21 and 25 are disposed on opposite sides in the X-axis direction. In the tab laminate 25, the tab 17b is wound around the axis in the X-axis direction and then compressed in the Z-axis direction. Therefore, the tab laminate 25 includes tabs 17b that are laminated in the Z-axis direction. Specifically, a plurality of portions in the tab 17b are stacked in the Z-axis direction. The welded portion W connects the stacked tabs 17b. Specifically, a plurality of portions in the tab 17b are connected by the welded portion W. In the wound electrode assembly 3, the tab laminate 25 does not include the end surfaces 25a and 25b, but includes only the end surface 25c located at the tip. Similarly, the tab laminate 21 does not include the end surfaces 21a and 21b, but includes only the end surface 21c located at the tip.
 図14に示されるように、第2実施形態と同様に、タブ積層体25の端面25cにエネルギービームBを照射する。 As shown in FIG. 14, the energy beam B is applied to the end face 25 c of the tab laminate 25 as in the second embodiment.
 図15に示されるように、第2実施形態と同様に、エネルギービームBの照射により、タブ積層体25の端面25cから内側に溶接部Wが形成される。 As shown in FIG. 15, similarly to the second embodiment, the welded portion W is formed on the inner side from the end surface 25 c of the tab laminated body 25 by the irradiation of the energy beam B.
 同様に、エネルギービームBをタブ積層体21の端面21cに照射することによって、タブ積層体21の端面21cにも溶接部Wが形成される。 Similarly, by irradiating the end surface 21c of the tab laminated body 21 with the energy beam B, the welded portion W is also formed on the end surface 21c of the tab laminated body 21.
 第3実施形態では、第2実施形態と同様の作用効果が得られる。 In the third embodiment, the same operational effects as in the second embodiment can be obtained.
 図16は、変形例に係る溶接部を有する電極組立体の一部を示す図である。図16(A)は、第1変形例に係る溶接部Wを有する、Y軸方向から見たタブ積層体25を示す図である。図16(B)は、第2変形例に係る溶接部Wを有する、Y軸方向から見たタブ積層体25を示す図である。第1及び第2変形例では、タブ積層体25の端面25aの法線方向から見て、溶接部Wが、曲線を含む外形形状を有している。そのため、溶接部Wの外形形状の曲線部分において応力が集中し難いので、溶接部Wが剥離し難い。溶接部Wは、曲線によって囲まれる外形形状を有してもよいし、曲線及び直線によって囲まれる外形形状を有してもよい。溶接部Wの外形形状は、応力が集中し易い角部(直線同士が交差する部分)を含んでいない。 FIG. 16 is a view showing a part of an electrode assembly having a weld according to a modification. FIG. 16A is a diagram showing a tab laminate 25 as viewed from the Y-axis direction, which has a welded portion W according to a first modification. FIG. 16B is a view showing the tab laminate 25 having the welded portion W according to the second modified example as seen from the Y-axis direction. In the first and second modified examples, when viewed from the normal direction of the end face 25a of the tab laminate 25, the welded portion W has an outer shape including a curve. For this reason, the stress is difficult to concentrate on the curved portion of the outer shape of the welded portion W, so that the welded portion W is difficult to peel off. The welded portion W may have an outer shape surrounded by a curve, or may have an outer shape surrounded by a curve and a straight line. The outer shape of the welded portion W does not include a corner portion (a portion where straight lines intersect) where stress is likely to concentrate.
 第1変形例に係る溶接部Wの外形形状は例えば楕円形の一部を含む。図16(A)に示されるように、タブ積層体25の端面25aにおいてタブ積層体25の積層方向に直交する方向(X軸方向)における溶接部Wの最大長さW2は、タブ積層体25の積層方向(Z軸方向)とタブ積層体25の積層方向に直交する方向(X軸方向)との両方に直交する方向(Y軸方向)から見たときに、タブ積層体25の積層方向(Z軸方向)における溶接部Wとタブ積層体25とが重なる部分の最大長さW1よりも大きい。 The outer shape of the welded portion W according to the first modification includes, for example, a part of an ellipse. As shown in FIG. 16A, the maximum length W2 of the welded portion W in the direction (X-axis direction) orthogonal to the stacking direction of the tab stacked body 25 on the end surface 25a of the tab stacked body 25 is the tab stacked body 25. Direction of the tab laminate 25 when viewed from a direction (Y-axis direction) perpendicular to both the direction of lamination (Z-axis direction) and the direction orthogonal to the direction of lamination of the tab laminate 25 (X-axis direction). It is larger than the maximum length W1 of the portion where the welded portion W and the tab laminate 25 overlap in the (Z-axis direction).
 第2変形例に係る溶接部Wの外形形状は例えば円形の一部を含む。図16(B)に示されるように、タブ積層体25の端面25aにおいてタブ積層体25の積層方向に直交する方向(X軸方向)における溶接部Wの最大長さW2は、タブ積層体25の積層方向(Z軸方向)とタブ積層体25の積層方向に直交する方向(X軸方向)との両方に直交する方向(Y軸方向)から見たときに、タブ積層体25の積層方向(Z軸方向)における溶接部Wとタブ積層体25とが重なる部分の最大長さW1よりも大きい。最大長さW2は、最大長さW1以下であってもよい。 The outer shape of the welded portion W according to the second modification includes, for example, a part of a circle. As shown in FIG. 16B, the maximum length W2 of the welded portion W in the direction (X-axis direction) orthogonal to the stacking direction of the tab stack 25 on the end surface 25a of the tab stack 25 is the tab stack 25. Direction of the tab laminate 25 when viewed from a direction (Y-axis direction) perpendicular to both the direction of lamination (Z-axis direction) and the direction orthogonal to the direction of lamination of the tab laminate 25 (X-axis direction). It is larger than the maximum length W1 of the portion where the welded portion W and the tab laminate 25 overlap in the (Z-axis direction). The maximum length W2 may be equal to or less than the maximum length W1.
 タブ積層体25の端面25b及びタブ積層体21の端面21a,21bのうち少なくとも1つにおいても、溶接部Wが、第1変形例又は第2変形例に係る溶接部Wと同じ形状を有してもよい。 In at least one of the end face 25b of the tab laminate 25 and the end faces 21a and 21b of the tab laminate 21, the welded portion W has the same shape as the welded portion W according to the first modified example or the second modified example. May be.
 以上、本発明の好適な実施形態について詳細に説明されたが、本発明は上記実施形態に限定されない。上記各実施形態の構成要素は任意に組み合わされ得る。 The preferred embodiments of the present invention have been described in detail above, but the present invention is not limited to the above embodiments. The components of the above embodiments can be arbitrarily combined.
 以下、実施例に基づいて本発明がより具体的に説明されるが、本発明は以下の実施例に限定されない。 Hereinafter, the present invention will be described more specifically based on examples, but the present invention is not limited to the following examples.
(実施例1)
 溶接部Wの最大溶接深さWdが0.1mmとなるように溶接部Wを形成した。
Example 1
The welded portion W was formed so that the maximum weld depth Wd of the welded portion W was 0.1 mm.
(実施例2)
 溶接部Wの最大溶接深さWdを0.3mmとしたこと以外は実施例1と同様にして溶接部Wを形成した。
(Example 2)
A weld W was formed in the same manner as in Example 1 except that the maximum weld depth Wd of the weld W was 0.3 mm.
(実施例3)
 溶接部Wの最大溶接深さWdを1.2mmとしたこと以外は実施例1と同様にして溶接部Wを形成した。溶接部Wの形成に用いたレーザーの出力は1500W、走査速度は24.9mm/secであった。
(Example 3)
A weld W was formed in the same manner as in Example 1 except that the maximum weld depth Wd of the weld W was 1.2 mm. The power of the laser used for forming the weld W was 1500 W, and the scanning speed was 24.9 mm / sec.
(実施例4)
 溶接部Wの最大溶接深さWdを1.5mmとしたこと以外は実施例1と同様にして溶接部Wを形成した。溶接部Wの形成に用いたレーザーの出力は1500W、走査速度は8.3mm/secであった。
Example 4
A weld W was formed in the same manner as in Example 1 except that the maximum weld depth Wd of the weld W was 1.5 mm. The output of the laser used for forming the weld W was 1500 W, and the scanning speed was 8.3 mm / sec.
(実施例5)
 溶接部Wの最大溶接深さWdを2mmとしたこと以外は実施例1と同様にして溶接部Wを形成した。
(Example 5)
A welded portion W was formed in the same manner as in Example 1 except that the maximum weld depth Wd of the welded portion W was 2 mm.
(評価結果)
 実施例1~5の評価結果を図17に示す。レーザービームをタブ積層体の端面に照射している様子を撮像し、得られた映像からレーザービームの照射に起因するスパッタ粒子の数をカウントした。実施例4~5では、スパッタ粒子の数が、実施例1~3に比べて顕著に増えた。また、溶接部Wの電気抵抗値を測定した。図17に示される表中のAは良好な結果が得られたことを示し、BはAよりは良好でない結果が得られたことを示す。実施例2~4では、実施例1及び5に比べて良好な結果が得られた。図17の評価結果によれば、溶接部Wの最大溶接深さWdが0.3~1.5mmであると、スパッタ粒子の数が少なくなった。さらに最大溶接深さWdが0.3~1.2mmであると、スパッタ粒子の数が顕著に少なくなり、かつ、溶接部Wの電気抵抗値が良好な値となった。
(Evaluation results)
The evaluation results of Examples 1 to 5 are shown in FIG. The state of irradiating the end surface of the tab laminate with a laser beam was imaged, and the number of sputtered particles resulting from the laser beam irradiation was counted from the obtained image. In Examples 4 to 5, the number of sputtered particles was remarkably increased compared to Examples 1 to 3. Moreover, the electrical resistance value of the weld W was measured. A in the table shown in FIG. 17 indicates that good results were obtained, and B indicates that results that were not better than A were obtained. In Examples 2 to 4, good results were obtained as compared to Examples 1 and 5. According to the evaluation result of FIG. 17, when the maximum welding depth Wd of the welded portion W is 0.3 to 1.5 mm, the number of sputtered particles is reduced. Further, when the maximum welding depth Wd is 0.3 to 1.2 mm, the number of sputtered particles is remarkably reduced, and the electric resistance value of the welded portion W is a good value.
 1…蓄電装置、2…ケース、2a…本体部、2b…蓋部、3…電極組立体、11…正極(電極)、12…負極(電極)、14a,17a…本体、14b,17b…タブ、16,19…集電板(集電体)、21,25…タブ積層体、21a,21b,21c,25a,25b,25c…端面、23,27…保護板(導電部材)、40,42…電極本体、B…エネルギービーム、W…溶接部、Ws…外面。 DESCRIPTION OF SYMBOLS 1 ... Power storage device, 2 ... Case, 2a ... Main body part, 2b ... Cover part, 3 ... Electrode assembly, 11 ... Positive electrode (electrode), 12 ... Negative electrode (electrode), 14a, 17a ... Main body, 14b, 17b ... Tab , 16, 19 ... current collector plate (current collector), 21, 25 ... tab laminate, 21a, 21b, 21c, 25a, 25b, 25c ... end face, 23, 27 ... protective plate (conductive member), 40, 42 ... electrode body, B ... energy beam, W ... weld, Ws ... outer surface.

Claims (10)

  1.  タブを含む電極を備える電極組立体であって、
     集電体と、
     積層された前記タブを有するタブ積層体と、
    を備え、
     前記タブ積層体が、前記タブ積層体の積層方向において前記集電体上に配置され、
     前記タブ積層体が、前記タブ積層体の積層方向に沿って延在する前記タブ積層体の第1の端面から内側に位置する溶接部を有し、
     前記タブ積層体の積層方向に直交する平面における前記溶接部の断面積が、前記タブ積層体の厚みにわたって、前記集電体に近づくに連れて単調増加しており、
     前記タブ積層体の積層方向を含み前記タブ積層体の第1の端面に直交する前記タブ積層体の断面において、前記溶接部の外面が、前記集電体に近づくに連れて外側に向かうように前記タブ積層体の積層方向に対して傾斜している、電極組立体。
    An electrode assembly comprising an electrode including a tab,
    A current collector,
    A tab laminate having the tabs laminated;
    With
    The tab laminate is disposed on the current collector in the stacking direction of the tab laminate,
    The tab laminate has a weld portion located on the inner side from the first end surface of the tab laminate extending along the lamination direction of the tab laminate,
    The cross-sectional area of the welded portion in a plane perpendicular to the stacking direction of the tab laminate is monotonously increased as the current collector approaches the thickness of the tab laminate,
    In the cross section of the tab laminate that includes the lamination direction of the tab laminate and is orthogonal to the first end surface of the tab laminate, the outer surface of the welded portion is directed outward as it approaches the current collector. An electrode assembly that is inclined with respect to the stacking direction of the tab stack.
  2.  前記タブ積層体の断面において、前記集電体が、前記タブ積層体の第1の端面よりも外側に突出している、請求項1に記載の電極組立体。 2. The electrode assembly according to claim 1, wherein in the cross section of the tab laminate, the current collector projects outward from a first end face of the tab laminate.
  3.  前記電極組立体が複数の電極を備え、
     前記複数の電極のそれぞれが、本体と前記本体の一端から突出する前記タブとを含み、
     前記電極組立体が、積層された複数の本体を有する電極本体を更に備え、
     前記電極本体と前記溶接部との間における前記タブの長さが、前記集電体に近づくに連れて短くなっている、請求項1又は2に記載の電極組立体。
    The electrode assembly comprises a plurality of electrodes;
    Each of the plurality of electrodes includes a main body and the tab protruding from one end of the main body,
    The electrode assembly further comprises an electrode body having a plurality of stacked bodies,
    The electrode assembly according to claim 1 or 2, wherein a length of the tab between the electrode main body and the welded portion is shortened as the current collector is approached.
  4.  前記タブ積層体が、前記タブ積層体を挟んで前記タブ積層体の第1の端面とは反対側に配置される第2の端面を有する、請求項1~3のいずれか一項に記載の電極組立体。 The tab laminated body according to any one of claims 1 to 3, wherein the tab laminated body has a second end face that is disposed on a side opposite to the first end face of the tab laminated body with the tab laminated body interposed therebetween. Electrode assembly.
  5.  前記タブ積層体が、前記タブ積層体の積層方向において導電部材と前記集電体との間に配置され、
     前記タブ積層体の積層方向における前記導電部材の厚みは、前記タブ積層体の積層方向における前記集電体の厚みよりも小さい、請求項1~4のいずれか一項に記載の電極組立体。
    The tab laminate is disposed between the conductive member and the current collector in the stacking direction of the tab laminate,
    The electrode assembly according to any one of claims 1 to 4, wherein a thickness of the conductive member in the stacking direction of the tab laminate is smaller than a thickness of the current collector in the stacking direction of the tab laminate.
  6.  前記タブ積層体の前記第1の端面において前記タブ積層体の積層方向に直交する方向における前記溶接部の最大長さが、前記タブ積層体の積層方向と前記タブ積層体の積層方向に直交する前記方向との両方に直交する方向から見たときに、前記タブ積層体の積層方向における前記溶接部と前記タブ積層体とが重なる部分の最大長さよりも大きい、請求項1~5のいずれか一項に記載の電極組立体。 The maximum length of the welded portion in the direction orthogonal to the stacking direction of the tab laminate at the first end surface of the tab laminate is orthogonal to the stacking direction of the tab laminate and the stacking direction of the tab laminate. Any one of claims 1 to 5, wherein when viewed from a direction orthogonal to both of the directions, the maximum length of a portion where the welded portion and the tab laminate overlap in the stacking direction of the tab laminate is larger. The electrode assembly according to one item.
  7.  前記タブ積層体の積層方向を含み前記タブ積層体の前記第1の端面に直交する前記タブ積層体の断面において、前記タブ積層体の積層方向に直交する方向における前記溶接部の最大溶接深さが2mm未満である、請求項1~6のいずれか一項に記載の電極組立体。 The maximum weld depth of the weld in the direction perpendicular to the lamination direction of the tab laminate in the cross section of the tab laminate perpendicular to the first end surface of the tab laminate including the lamination direction of the tab laminate The electrode assembly according to any one of claims 1 to 6, wherein is less than 2 mm.
  8.  前記タブ積層体の前記第1の端面の法線方向から見て、前記溶接部が、曲線を含む外形形状を有する、請求項1~7のいずれか一項に記載の電極組立体。 The electrode assembly according to any one of claims 1 to 7, wherein the welded portion has an outer shape including a curve when viewed from the normal direction of the first end face of the tab laminate.
  9.  開口が形成された本体部と前記本体部の前記開口を塞ぐ蓋部とを有するケースと、前記ケース内に収容される請求項1~8のいずれか一項に記載の電極組立体とを備える蓄電装置の製造方法であって、
     前記蓋部に前記集電体を固定する工程と、
     前記集電体上に前記タブ積層体を配置する工程と、
     前記蓋部に固定された前記集電体上に前記タブ積層体が配置された状態で、前記タブ積層体の第1の端面にエネルギービームを照射することによって、前記溶接部を形成する工程と、
    を含む、蓄電装置の製造方法。
    9. A case having a main body portion in which an opening is formed and a lid portion that closes the opening of the main body portion, and an electrode assembly according to any one of claims 1 to 8 accommodated in the case. A method for manufacturing a power storage device, comprising:
    Fixing the current collector to the lid,
    Arranging the tab laminate on the current collector;
    Forming the welded portion by irradiating the first end face of the tab laminate with an energy beam in a state where the tab laminate is disposed on the current collector fixed to the lid portion; ,
    A method for manufacturing a power storage device, comprising:
  10.  製造された前記蓄電装置において、前記集電体は折り曲げられていない平板である、請求項9に記載の蓄電装置の製造方法。 10. The method of manufacturing a power storage device according to claim 9, wherein in the manufactured power storage device, the current collector is a flat plate that is not bent.
PCT/JP2016/082108 2015-12-21 2016-10-28 Electrode assembly and manufacturing method for power storage device WO2017110246A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017557763A JP6753416B2 (en) 2015-12-21 2016-10-28 Manufacturing method of electrode assembly and power storage device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015248744 2015-12-21
JP2015-248744 2015-12-21

Publications (1)

Publication Number Publication Date
WO2017110246A1 true WO2017110246A1 (en) 2017-06-29

Family

ID=59089259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082108 WO2017110246A1 (en) 2015-12-21 2016-10-28 Electrode assembly and manufacturing method for power storage device

Country Status (2)

Country Link
JP (1) JP6753416B2 (en)
WO (1) WO2017110246A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108123097A (en) * 2017-12-19 2018-06-05 惠州市爱博智控设备有限公司 A kind of Double-pole lug correction implementation method
JP2019175784A (en) * 2018-03-29 2019-10-10 三洋電機株式会社 Power storage device
CN113437445A (en) * 2020-03-23 2021-09-24 本田技研工业株式会社 Lithium ion secondary battery
WO2022042492A1 (en) * 2020-08-31 2022-03-03 比亚迪股份有限公司 Battery and battery pack
WO2022172619A1 (en) * 2021-02-15 2022-08-18 パナソニックIpマネジメント株式会社 Battery and method for manufacturing battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1050556A (en) * 1996-08-05 1998-02-20 Okamura Kenkyusho:Kk Electrical double-layer capacitor
JPH11185725A (en) * 1997-12-22 1999-07-09 Toyota Autom Loom Works Ltd Manufacture of cylindrical battery
JP2001283824A (en) * 2000-03-30 2001-10-12 Ngk Insulators Ltd Lithium secondary battery
JP2002313309A (en) * 2001-04-11 2002-10-25 Ngk Insulators Ltd Electrochemical device and its manufacturing method
WO2010016182A1 (en) * 2008-08-08 2010-02-11 パナソニック株式会社 Sealed secondary battery, and method for manufacturing the battery
JP2013122973A (en) * 2011-12-09 2013-06-20 Chiba Inst Of Technology Connection structure of metal foil, connection method of the same, and capacitor
JP2014049317A (en) * 2012-08-31 2014-03-17 Toyota Industries Corp Power storage device and method for manufacturing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1050556A (en) * 1996-08-05 1998-02-20 Okamura Kenkyusho:Kk Electrical double-layer capacitor
JPH11185725A (en) * 1997-12-22 1999-07-09 Toyota Autom Loom Works Ltd Manufacture of cylindrical battery
JP2001283824A (en) * 2000-03-30 2001-10-12 Ngk Insulators Ltd Lithium secondary battery
JP2002313309A (en) * 2001-04-11 2002-10-25 Ngk Insulators Ltd Electrochemical device and its manufacturing method
WO2010016182A1 (en) * 2008-08-08 2010-02-11 パナソニック株式会社 Sealed secondary battery, and method for manufacturing the battery
JP2013122973A (en) * 2011-12-09 2013-06-20 Chiba Inst Of Technology Connection structure of metal foil, connection method of the same, and capacitor
JP2014049317A (en) * 2012-08-31 2014-03-17 Toyota Industries Corp Power storage device and method for manufacturing the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108123097A (en) * 2017-12-19 2018-06-05 惠州市爱博智控设备有限公司 A kind of Double-pole lug correction implementation method
CN108123097B (en) * 2017-12-19 2020-07-14 惠州市爱博智控设备有限公司 Bipolar lug deviation rectifying implementation method
JP2019175784A (en) * 2018-03-29 2019-10-10 三洋電機株式会社 Power storage device
CN110323401A (en) * 2018-03-29 2019-10-11 三洋电机株式会社 Electrical storage device
JP7453740B2 (en) 2018-03-29 2024-03-21 三洋電機株式会社 Power storage device
CN110323401B (en) * 2018-03-29 2024-04-05 三洋电机株式会社 Power storage device
CN113437445A (en) * 2020-03-23 2021-09-24 本田技研工业株式会社 Lithium ion secondary battery
CN113437445B (en) * 2020-03-23 2023-09-22 本田技研工业株式会社 Lithium ion secondary battery
WO2022042492A1 (en) * 2020-08-31 2022-03-03 比亚迪股份有限公司 Battery and battery pack
CN114204222A (en) * 2020-08-31 2022-03-18 比亚迪股份有限公司 Battery and battery pack
CN114204222B (en) * 2020-08-31 2023-11-14 比亚迪股份有限公司 Battery and battery pack
WO2022172619A1 (en) * 2021-02-15 2022-08-18 パナソニックIpマネジメント株式会社 Battery and method for manufacturing battery

Also Published As

Publication number Publication date
JP6753416B2 (en) 2020-09-09
JPWO2017110246A1 (en) 2018-10-04

Similar Documents

Publication Publication Date Title
WO2017110246A1 (en) Electrode assembly and manufacturing method for power storage device
US20090104525A1 (en) Secondary battery and manufacturing method thereof
JP6597787B2 (en) Electrode assembly and method for manufacturing electrode assembly
JP6693419B2 (en) Electrode unit and method of manufacturing electrode unit
US11302968B2 (en) Electric storage device and method of manufacturing electrode unit
JP2012009210A (en) Battery
JP6965587B2 (en) Electrode assembly
KR20190062466A (en) Method for manufacturing film stack for battery cell
JP6834982B2 (en) Manufacturing method of electrode assembly
JP6613813B2 (en) Method for manufacturing electrode assembly and electrode assembly
JP2020013733A (en) Power storage device and manufacturing method thereof
JP6841227B2 (en) Manufacturing method of electrode assembly and electrode assembly
JP6582877B2 (en) Method for manufacturing electrode assembly and electrode assembly
JP2016018756A (en) Method for manufacturing electrode body
JP6834972B2 (en) Electrode assembly
JP6874763B2 (en) Manufacturing method of electrode assembly
JP6641978B2 (en) Method of manufacturing electrode assembly and electrode assembly
JP6834973B2 (en) Manufacturing method of electrode assembly
JP6922328B2 (en) Manufacturing method of electrode assembly
JP6601157B2 (en) Electrode assembly
JP6586868B2 (en) Method for manufacturing electrode assembly
JP6763134B2 (en) Manufacturing method of electrode assembly and electrode assembly
JP6648630B2 (en) Electrode assembly
JP6631214B2 (en) Electrode assembly
JP6683066B2 (en) Electrode welding method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16878144

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017557763

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16878144

Country of ref document: EP

Kind code of ref document: A1