WO2017110200A1 - Water-repellent base material and method for manufacturing same - Google Patents

Water-repellent base material and method for manufacturing same Download PDF

Info

Publication number
WO2017110200A1
WO2017110200A1 PCT/JP2016/079505 JP2016079505W WO2017110200A1 WO 2017110200 A1 WO2017110200 A1 WO 2017110200A1 JP 2016079505 W JP2016079505 W JP 2016079505W WO 2017110200 A1 WO2017110200 A1 WO 2017110200A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
repellent
layer
substrate
concavo
Prior art date
Application number
PCT/JP2016/079505
Other languages
French (fr)
Japanese (ja)
Inventor
康志 浅野
上仁 柴田
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2017110200A1 publication Critical patent/WO2017110200A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/12Anodising more than once, e.g. in different baths
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • C25D11/24Chemical after-treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal

Definitions

  • the present disclosure relates to a water-repellent substrate obtained by imparting water repellency to an aluminum substrate and a method for producing the same.
  • HP systems heat pump systems
  • the refrigerant is compressed to a high temperature and a high pressure by a compressor, then radiated by an evaporator, passes through an expansion valve, becomes a low temperature and a low pressure, and reaches an outdoor unit.
  • the refrigerant absorbs heat from the outside air to cool the outdoor unit, and when the outside of the vehicle becomes highly humid, condensed water is generated on the surface of the aluminum fin of the outdoor unit. If condensed water is not removed, it will eventually freeze and turn into frost.
  • Patent Document 1 discloses a water-repellent base material that is provided with water repellency by forming a concavo-convex portion made of boehmite on a surface of an aluminum base material and forming a film made of fluorinated alkylsilane or the like. It is disclosed.
  • An object of the present disclosure is to provide a highly productive water-repellent substrate capable of sustaining super-water repellency that removes condensed water generated in a low-temperature and high-humidity environment and prevents frost formation, and a method for producing the same. To do.
  • One aspect of the present disclosure includes an aluminum substrate; An alumite layer provided on the surface of the aluminum substrate; A water-repellent film provided on the surface of the anodized layer,
  • the anodized layer has a concavo-convex structure composed of a base layer integral with the aluminum base material and a large number of pin-like protrusions juxtaposed on the surface of the base layer, and the ten-point average roughness Rzjis of the concavo-convex structure is as described above.
  • the contact area rate of the pin-shaped protrusion is 0.01 or less
  • the water-repellent film is on a water-repellent substrate, which is a film made of a hydrocarbon-based water-repellent material.
  • Another aspect of the present disclosure includes an aluminum substrate; An alumite layer provided on the surface of the aluminum substrate; A water-repellent film provided on the surface of the anodized layer,
  • the anodized layer has a concavo-convex structure composed of a base layer integral with the aluminum base material and a large number of pin-like protrusions juxtaposed on the surface of the base layer, and the ten-point average roughness Rzjis of the concavo-convex structure is as described above.
  • the water-repellent film is a film made of a hydrocarbon-based water-repellent material, a method for producing a water-repellent substrate, Forming the alumite layer having the concavo-convex structure on the surface of the aluminum substrate by anodizing and etching; and Preparing a coating liquid containing the hydrocarbon-based water repellent material; Adding a hydrocarbon solvent to the coating solution to separate and remove moisture; A step of immersing the aluminum base material on which the alumite layer is formed in the coating liquid from which moisture has been removed; And baking the aluminum substrate to which the coating liquid has been applied.
  • the anodized layer that is the surface layer of the aluminum substrate has a fine uneven structure with a small contact area ratio, it is super-repellent when combined with a water-repellent film made of a hydrocarbon-based water-repellent material. Aqueous can be expressed.
  • a good water repellency can be obtained on the entire surface. Thereby, the condensed water is pushed out to the surface of the concavo-convex structure, and the generated water droplets can be easily slid down and removed by an external force or the like.
  • the hydrocarbon-based water-repellent material has the lower surface free energy next to the fluorine-based water-repellent material, contributes to the improvement of water repellency, is cheaper than the fluorine-based water-repellent material, and improves the productivity.
  • Such a water-repellent substrate is formed by forming a water-repellent film on a concavo-convex structure anodized layer formed by anodizing and etching an aluminum substrate using a coating liquid from which moisture is separated. Is further improved. Therefore, in a low temperature and high humidity environment, a water repellent base material that can be removed by making the generated condensed water into a super water repellent state, maintaining high water repellent performance for a long period of time, and preventing problems due to frost formation can be obtained. .
  • FIG. 1 is an enlarged cross-sectional view of a main part showing a schematic structure of a water-repellent substrate in Embodiment 1.
  • FIG. 2 is an enlarged perspective view of a main part schematically showing the concavo-convex structure of the alumite layer of the water-repellent substrate in Embodiment 1.
  • FIG. 3 is a schematic diagram showing the water-repellent film molecular structure of the water-repellent substrate in Embodiment 1.
  • FIG. 4 is an enlarged perspective view of a main part of an alumite layer schematically showing a method for measuring a contact area ratio in the first embodiment.
  • FIG. 5 is an enlarged perspective view showing an alumite layer forming step by an anodizing step and an etching step of an aluminum base material in Embodiment 1
  • FIG. 6 is an enlarged cross-sectional view of a main part showing a state in which water droplets adhere to the surface of the water-repellent substrate in Embodiment 1.
  • FIG. 7 is a diagram illustrating a relationship between a contact area ratio and a water contact angle in the first embodiment.
  • FIG. 8 is a model diagram showing the relationship between the uneven structure of the anodized layer and the discharge of condensed water generated in Embodiment 1.
  • FIG. 9 is a diagram showing a step of coating the alumite layer formed on the aluminum base material with a water-repellent coating in Embodiment 1.
  • FIG. 10 is a model diagram illustrating a method for calculating a dynamic ⁇ difference indicating the sliding property of water droplets attached to the surface of a water-repellent substrate in Embodiment 1.
  • FIG. 11 is a cross-sectional view of a main part showing the behavior of water droplets attached to the surface of the water-repellent substrate in Embodiment 1.
  • FIG. 12 is an enlarged cross-sectional view of a main part showing an image observation method of the uneven structure of the alumite layer of Example 1 in Experimental Example 1
  • 13 is a tilt observation image by a scanning electron microscope viewed from the XIII arrow direction of FIG. 12, showing the surface shape of the concavo-convex structure of Example 1 in Experimental Example 1.
  • 14 is a cross-sectional observation image by a transmission electron microscope of the XIV-XIV cross section of FIG. 12, showing the cross-sectional shape of the concavo-convex structure of Example 1 in Experimental Example 1.
  • FIG. 15 is an enlarged cross-sectional view of a main part showing an image observation method of the uneven structure of the boehmite layer of Comparative Example 1 in Experimental Example 1, FIG.
  • FIG. 16 is a surface observation image by a scanning electron microscope viewed from the XVI arrow direction of FIG. 15, showing the surface shape of the concavo-convex structure of Comparative Example 1 in Experimental Example 1.
  • FIG. 17 is a cross-sectional observation image by a transmission electron microscope of the XVII-XVII cross section of FIG. 15, showing the cross-sectional shape of the concavo-convex structure of Comparative Example 1 in Experimental Example 1.
  • FIG. 18 is a diagram showing the relationship between the Rzjis cut rate and the contact area rate in Experimental Example 1.
  • FIG. 19 is a diagram showing the relationship between the number of condensed water tests and the maximum condensed water droplet diameter in Experimental Example 2.
  • FIG. 20 is a cross-sectional view of the main part showing the behavior of water droplets attached to the surface of the water-repellent substrate of Comparative Example 1 in Experimental Example 2
  • FIG. 21 is a scanning electron graph showing a change in the maximum condensed water droplet diameter on the surface after performing the condensed water test 1 to 3 times for the water repellent substrates of Example 1 and Comparative Examples 1 and 2 in Experimental Example 2. It is a surface observation image by a microscope
  • FIG. 22 is a diagram showing the relationship between the carbon number of the alkyl group and the dynamic ⁇ difference in Experimental Example 3
  • FIG. 23 is a diagram showing the relationship between the C molar ratio, which is the molar ratio of the main agent constituting the water repellent film, and the dynamic ⁇ difference in Experimental Example 3.
  • the water-repellent substrate of this embodiment can be used as, for example, a fin material for a heat exchanger and is applied to an outdoor unit or the like of an in-vehicle heat pump system to prevent frost formation in a low-temperature and high-humidity environment.
  • the water-repellent substrate 1 includes a plate-like aluminum substrate 2, an alumite layer 3 formed on the surface of the aluminum substrate 2, and a water-repellent film formed on the surface of the anodized layer 3. 4.
  • the aluminum substrate 2 is made of aluminum or an aluminum alloy.
  • the anodized layer 3 forms a surface layer of the aluminum base 2 and includes a base layer 31 integrated with the aluminum base 2 and a large number of pin-like protrusions 32.
  • a large number of pin-shaped protrusions 32 protrude substantially parallel to the thickness direction X of the aluminum base 2 from the surface of the base layer 31.
  • An air layer 11 is formed between adjacent pin-shaped protrusions 32.
  • the alumite layer 3 has a predetermined concavo-convex structure 33 including a base layer 31 and a large number of pin-like protrusions 32 juxtaposed on the surface of the base layer 31.
  • the water repellent coating 4 is made of a hydrocarbon-based water repellent material and forms the outermost layer of the aluminum base 2.
  • the water-repellent coating 4 covers the entire surface of the concavo-convex structure 33 by covering the surface of the base layer 31 of the alumite layer 3 and the surfaces of many pin-like protrusions 32.
  • the water-repellent coating 4 specifically includes a hydrocarbon-based water-repellent material containing a main agent 41 made of a metal alkoxide having an alkyl group 43 and a cross-linking agent 42 made of an organic silane, and containing no fluorine. Constructed using materials.
  • Such a hydrocarbon-based water repellent material becomes an organic-inorganic hybrid film having a three-dimensional matrix structure by co-hydrolysis and dehydration condensation of metal alkoxide and organic silane.
  • the water repellent coating 4 exhibits water repellency and promotes the discharge of condensed water by arranging a large number of hydrophobic alkyl groups 43 on the outermost surface of the organic-inorganic hybrid coating.
  • the molecular length of the main agent 41 affects the molecular mobility of the alkyl group 43, and the molecular interval d is determined according to the molar ratio of the main agent 41 and the crosslinking agent 42, and the distance between the alkyl group 43 and the adjacent alkyl group 43 is determined. It corresponds to.
  • the width W of the pin-shaped protrusion 32, the height H of the pin-shaped protrusion 32, and the protrusion distance D between adjacent pin-shaped protrusions 32 determine the uneven structure 33 in the alumite layer 3.
  • the height H of each pin-like protrusion 32 represents the depth of the concavo-convex structure 33 and is controlled by the film thickness and the etching depth of the alumite layer 3.
  • the width W and the protrusion distance D represent the size of the uneven structure 33, and the protrusion distance D corresponds to the width of the air layer 11 between the pin-shaped protrusions 32.
  • the pin-shaped protrusions 32 are regularly arranged, and the air layer 11 is uniformly formed in the depth direction therebetween, so that the condensed water generated in the air layer 11 is appropriately discharged and the water repellency is maintained well. Is done.
  • the alumite layer 3 In the alumite layer 3, the smaller the width W of the pin-like protrusion 32 with respect to the repetition period of the concavo-convex structure 33, the smaller the contact area with water droplets produced by condensation of moisture, and the higher the water repellency. Therefore, the alumite layer 3 is better as the area ratio occupied by the pin-like protrusions 32 on the outermost surface of the concavo-convex structure 33 is smaller. Therefore, the contact area ratio on the surface of the alumite layer 3 is defined as follows.
  • the ten-point average roughness of the concavo-convex structure 33 is Rzjis
  • the cut rate of the height from the maximum height position that is the outermost surface of the concavo-convex structure 33 to the depth direction is the Rzjis cut rate.
  • a virtual cut surface is set from the maximum height to a height at which the Rzjis cut rate is 20%, and the contact area per unit area of the pin-like protrusion 32 on the virtual cut surface is defined as the contact area rate.
  • the ten-point average roughness Rzjis is a surface roughness measured according to JIS B0601-2001 (that is, ISO 4287 1997).
  • Contact area ratio [total area of pin-like protrusions 32 in measurement area A (unit: ⁇ m 2 )] / [area of measurement area A (unit: ⁇ m 2 )]
  • the alumite layer 3 is a layer made of porous aluminum oxide (that is, Al 2 O 3 ) formed by surface treatment of the aluminum base 2. As shown in FIG. 5, the anodized layer 3 is formed by an anodizing process S1 and an etching process S2. As shown in the left diagram of FIG. 5, the alumite produced by the alumite treatment has a hexagonal cell structure having pores 34 and grows in the thickness direction X from the surface of the aluminum base 2. As shown in the middle diagram of FIG. 5, the alumite pores 34 are etched to gradually increase the diameter, and as shown in the right diagram of FIG. 5, a layer in which a large number of pin-like protrusions 32 are arranged side by side. It becomes. At this time, a large number of pin-like protrusions 32 are positioned at the apexes of the alumite hexagonal cells, and a regular uneven structure 33 is formed.
  • porous aluminum oxide that is, Al 2 O 3
  • the surface of the aluminum substrate 2 is previously acid-washed and then anodized by applying a voltage in a phosphoric acid bath. Thereby, an alumite layer having a hexagonal cell structure is formed on the entire surface.
  • the acid cleaning agent for example, nitric acid is used.
  • an alumite film forming reaction shown in the following reaction formula proceeds, and pores 34 are formed along the axial center in many hexagonal cells.
  • the anodized layer formed in the anodizing process is etched in a phosphoric acid bath.
  • the pore 34 is etched from the inside, the pore 34 expands, and the wall part which divides the adjacent hexagonal cell becomes thin.
  • nano-order pin-shaped protrusions 32 are juxtaposed at the apex position of the hexagonal cell. It is formed.
  • the water repellent substrate 1 exhibits super water repellency due to the uneven structure 33 of the alumite layer 3 and the water repellent film 4 on the surface thereof.
  • Condensed water generated by condensation of moisture on the surface of the water-repellent substrate 1 is pushed out to the outermost surface by the outermost water-repellent film 4 to form water droplets 5.
  • the air layer 11 is formed between adjacent pin-shaped protrusions 32, and the water droplets 5 are pin-shaped protrusions 32 covered with the water-repellent coating 4 on the outermost surface of the uneven structure 33 of the alumite layer 3. Supported by point contact.
  • the water contact angle ⁇ which is an angle formed between the surface of the water-repellent substrate 1 and the surface of the water droplet 5
  • the water contact angle ⁇ is 150 ° or more.
  • the water contact angle ⁇ is obtained by the following formula 2.
  • A1 contact area of the water repellent film 4 with respect to the water droplet 5
  • A2 contact area of the air layer 11 with respect to the water drop 5
  • ⁇ 1 contact angle with water on the surface of the water repellent film 4 having no irregularities
  • ⁇ 2 air layer 11 Since the alumite layer 3 has a regular concavo-convex structure 33 with pin-like protrusions 32 arranged side by side, A1 and A2 are substantially constant, and the water repellency of the surface of the water repellent substrate 1 is uniform.
  • the coefficient of the first term of Expression 2 is the contact area ratio of the water-repellent substrate 1, and is the contact area ratio of the water-repellent coating 4 that contacts the water droplet 5 on the outermost surface. is there.
  • the contact angle ⁇ with respect to water is set to 150 by combining with the water repellent coating 4 made of a hydrocarbon-based water repellent material. Can be larger than °.
  • the conditions under which the condensed water 51 is satisfactorily drained are found by the simulation using the model diagram of the uneven structure 33 of the alumite layer 3.
  • the opposing wall corresponding to the pin-like protrusion 32 is arranged with a uniform interval in the depth direction from the surface, with respect to the concave portion 12 that forms the air layer 11 between the opposing walls,
  • the width w of the air layer 11 generated by the condensed water 51 (that is, corresponding to the protrusion interval D) affects the discharge performance.
  • the concavo-convex structure 33 of the alumite layer 3 can be formed to have a desired protrusion interval D, width W, and height H by adjusting the conditions of the anodizing process for forming the anodized layer 3 and the etching process. .
  • the material of the water-repellent coating 4 that is the outermost layer of the water-repellent substrate 1 determines ⁇ 1 in the above formula 2.
  • an organic-inorganic hybrid coating composed of a hydrocarbon-based water repellent material has a hydrophobic alkyl group 43 on the outermost surface serving as a free end surface, and undergoes molecular motion by thermal energy to cause water droplets. Move 5 and slide it down.
  • the main agent 41 of the hydrocarbon-based water repellent material is a metal alkoxide having an alkyl group 43 in the side chain, and preferably an alkylalkoxysilane having a siloxane bond (ie, Si—O—Si bond) in the main chain. It is done.
  • TEOS tetraethoxysilane
  • the water repellency of the water repellent film 4 is affected by the molecular length and molecular spacing d of the main agent 41 located on the outermost surface.
  • the alkyl group 43 is easier to move and the water droplet 5 is easier to move.
  • the water droplet 5 is likely to hydrogen bond to the hydroxyl group contained in the crosslinking agent 42.
  • the blending ratio of the carbon number of the alkyl group 43 that determines the molecular length of the main agent 41 and the crosslinking agent 42 may be set appropriately so that a desired sliding property can be obtained.
  • the alkyl group 43 contained in the main agent 41 is preferably a chain alkyl group having 3 to 18 carbon atoms (that is, C3 to C18).
  • the alkyl group 43 is a chain alkyl group having a molecular length of 5 to 11 carbon atoms (ie, C5 to C11).
  • the main agent 41 having a C3 to C18 alkyl group 43 is liquid at room temperature, and the adjustment of the coating liquid for immersing the aluminum substrate 2 becomes easy.
  • the carbon number of the alkyl group 43 is in the range of C5 to C11 because the dynamic ⁇ difference indicating the adhesion force of the water droplet 5 is as small as 0.01 or less and the sliding property of the water droplet 5 is increased.
  • main agent 41 examples include trimethoxypropylsilane (ie, C3), hexyltrimethoxysilane (ie, C6), octyltriethoxysilane (ie, C8), decyltrimethoxysilane (ie, C10). ), Dodecyltriethoxysilane (ie C12), octadecyltriethoxysilane (ie C18).
  • the water-repellent film 4 is formed by immersing the aluminum base material 2 on which the anodized layer 3 of the concavo-convex structure 33 is formed in a coating solution obtained by dissolving the main agent 41 and the crosslinking agent 42 in a solvent. Specifically, as shown in FIG. 9, a preparation step S11 for preparing a coating liquid, a dehydration step S12 for removing moisture in the coating liquid, an immersion step S13 for immersing the aluminum substrate 2 in the coating liquid, The surface of the concavo-convex structure 33 of the alumite layer 3 is covered with the water repellent coating 4 through a washing step S14 for washing the coated aluminum substrate 2 and a firing step S15 for firing the aluminum substrate 2.
  • the blending ratio of the alkyl alkoxysilane serving as the main agent 41 and the TEOS serving as the cross-linking agent 42 is set, for example, to be a desired molecular spacing d.
  • a molar ratio of main agent 41: crosslinking agent 42 5 to 15:95 to 85 is preferable because the dynamic ⁇ difference indicating the adhesive force of the water droplet 5 becomes small and the sliding property of the water droplet 5 increases.
  • the main agent 41: crosslinking agent 42 is in the range of 7 to 13:93 to 87 (that is, the molar ratio of the main agent 41 is 7 mol% to 13 mol%).
  • the dynamic ⁇ difference representing the slidability of water droplets which is an index of water repellency of the water-repellent coating 4, will be described.
  • the adhesion force F of the water droplet 5 adhered to the vertical wall W is expressed by the following formula 4.
  • Formula 4: F kw ⁇ (cos ⁇ R ⁇ cos ⁇ A)
  • k coefficient
  • w contact width
  • surface tension
  • cos ⁇ A advancing contact angle
  • cos ⁇ R receding contact angle
  • the condensed water grows to be smaller than the fin interval so as not to block the passage between the fins for the heat exchanger, for example.
  • the water droplet diameter is not more than half the fin interval (for example, 0.7 mm). For example, when the dynamic ⁇ difference is 0.01 or less, the water droplet diameter is less than 0.7 mm. Small enough.
  • the solvent for preparing the coating liquid for example, ethanol can be used. Further, the total content of the main agent 41 and the crosslinking agent 42 with respect to the solvent is preferably 40 to 60% by mass.
  • the coating solution is mixed with hydrochloric acid having a predetermined concentration as a catalyst for crosslinking and polymerizing the main agent 41 and the crosslinking agent 42. At this time, in order to avoid that a large amount of water contained in the coating liquid is taken into the water-repellent film 4, a dehydration step S12 is provided to remove water by adding a hydrocarbon solvent after the addition of hydrochloric acid. Good.
  • the aluminum substrate 2 is dipped in the dehydrated coating solution and applied to the entire surface of the concavo-convex structure 33, and then rinsed in the washing step S14 to remove excess coating solution. Then, by baking at predetermined temperature by baking process S15, the water repellent film 4 which does not contain a water
  • the water-repellent substrate 1 obtained in this way has an alumite layer 3 having a fine concavo-convex structure 33 formed on the surface layer of the aluminum substrate 2, and regularly with the base layer 31.
  • a super water-repellent film is formed by covering the entire surface of the concavo-convex structure 33 composed of the pin-like protrusions 32 arranged side by side with the water-repellent film 4 made of a hydrocarbon-based water-repellent material. Therefore, when the condensed water 51 is generated between the pin-shaped protrusions 32 arranged at a predetermined protrusion interval D in the low-temperature and high-humidity environment (for example, see FIG.
  • the water-repellent base material 1 generates the pin-shaped protrusions 32.
  • the water droplet 5 is generated by being pushed out from the air layer 11 to the outermost surface by the effect of the shape (see, for example, FIG. 11B).
  • the water droplet 5 is in a super-water-repellent state due to the effect of the contact area ratio of the concavo-convex structure 33 and the composition of the water-repellent coating 4, and the dynamic ⁇ difference indicating the sliding property of the water droplet of Formula 4 is reduced. It slides down easily (see, for example, FIG. 11C).
  • water droplets 5 are generated again in the same manner (see, for example, FIG. 11D), and the sliding is repeated.
  • the alumite layer 3 formed by anodization and etching has the water-repellent film 4 uniformly formed inside the concavo-convex structure 33, particularly the surface close to the base layer 31, so that even if condensed water is repeatedly generated, It does not remain inside. Therefore, even if a relatively inexpensive hydrocarbon-based water repellent material is used, sufficiently high water repellency can be obtained, and good drainage and sliding properties from the concavo-convex structure 33 can be maintained for a long period of time to prevent a decrease in water repellency. To do. Therefore, it becomes the water-repellent substrate 1 that is used for fins for heat exchangers and the like, has super water repellency and high productivity, prevents frost formation and improves operating efficiency.
  • the alumite treatment step S1 and the etching treatment step S2 are sequentially performed by the method shown in FIG. 5 to form the alumite layer 3 including the base layer 31 and a large number of pin-like protrusions 32 on the surface of the aluminum base 2.
  • an Al—Mg—Si based aluminum alloy for example, BA4104 used for a fin material for a heat exchanger was used.
  • the anodizing treatment step S1 the surface of the aluminum base 2 was acid cleaned.
  • nitric acid for example, concentration 67% by mass
  • an anodized layer 3 having a hexagonal cell structure was formed on the entire surface of the aluminum base 2 by applying a voltage in a phosphoric acid bath and performing anodization.
  • Anodization was performed under the following conditions. [anodization] ⁇ Drug: Phosphoric acid, concentration 2% by mass ⁇ Voltage: 50V ⁇ Time: 50 seconds
  • the surface of the anodized aluminum substrate 2 was rinsed with pure water, and then etched in a phosphoric acid bath in the etching treatment step S2 to enlarge the pores 33 of the anodized layer 3.
  • the etching process was performed under the following conditions. [etching] ⁇ Drug: Phosphoric acid, concentration 2% by mass ⁇ Temperature: 40 °C -Time: 10 minutes This anodization and etching were repeated to form the anodized layer 3 having the concavo-convex structure 33 on the surface of the aluminum base 2 (that is, Example 1).
  • the surface shape and the cross-sectional structure of the obtained uneven structure 33 were observed.
  • a structure in which a large number of pin-like protrusions 32 are arranged side by side in an image obtained by observing the uneven structure on the surface of the alumite layer 3 using a scanning electron microscope (hereinafter referred to as SEM). was confirmed.
  • SEM scanning electron microscope
  • FIG. 14 in an image obtained by observing the cross-sectional structure of the alumite layer 3 using a transmission electron microscope (hereinafter referred to as TEM), the width W, the height H, and the protrusion interval of the pin-like protrusions 32. D was measured.
  • a boehmite layer 61 made of aluminum oxide was formed on the surface of the aluminum base 2 by a conventional boehmite treatment step, and the uneven structure 63 was similarly evaluated (Comparative Example 1).
  • the boehmite treatment was performed by immersing the aluminum substrate 2 in water having a temperature in the range of 80 ° C. to 100 ° C. for about 5 minutes.
  • Comparative Example 2 irregularities having different contact area ratios are formed by forming the alumite layer 3 on the surface of the aluminum base 2 in the same manner as in Example 1 and reducing the number of times of anodizing treatment and etching treatment. Structure 33 was obtained.
  • the cross-sectional structure of the alumite layer 3 of Comparative Example 2 was observed using TEM in the same manner as in Example 1, it was confirmed that the concavo-convex structure 33 in which the pin-like protrusions 32 were juxtaposed.
  • the projection interval D of the pin-like projections 32 is around 100 nm
  • the width W is as wide as around 40 nm and the height H is lower than 400 nm.
  • Example 1 and Comparative Examples 1 and 2 the contact area rate at an Rzjis cut rate of 10% to 50% was measured by the method shown in FIG.
  • a three-dimensional concavo-convex image was obtained by scanning the surface of the concavo-convex structure 33 for the alumite layer 3 of Example 1 using a scanning probe microscope (hereinafter referred to as SPM). Based on the obtained three-dimensional concavo-convex image, the 10-point average roughness Rzjis is calculated, and the contact of the pin-like protrusion 32 in the measurement area A is measured on each virtual cut surface with an Rzjis cut rate of 10% to 50% from the maximum height. The area ratio was calculated. Similarly, for Comparative Example 1 and Comparative Example 2, the contact area ratio was measured at an Rzjis cut ratio of 10% to 50%.
  • the contact area rate of Example 1 was the smallest, and the Rzjis cut rate 20% contact area rate was 0.002. .
  • the contact area ratio is the smallest when the Rzjis cut rate is 10%, and the contact area ratio increases as the Rzjis cut rate increases.
  • the increase in area ratio is relatively gradual with respect to Comparative Examples 1 and 2. For this reason, the contact area rate is 0.01 or less in both the example 1 and the comparative examples 1 and 2 at the Rzjis cut rate of 10%, but only the example 1 is in contact at the Rzjis cut rate of 20% and 30%.
  • the area ratio is 0.01 or less.
  • the overall contact area ratio is large.
  • the uneven structure 63 of the boehmite layer 61 of Comparative Example 1 is slightly smaller than that of Comparative Example 2 at an Rzjis cut rate of 10%, but is reversed at an Rzjis cut rate of 20%. It is considered that there are variations in the heights of the concavo-convex structures 33 and 63, and there are pin-like protrusions 32 and needle-like protrusions 62 that do not appear in the measurement area A when the Rzjis cut rate is 10%.
  • the width of the needle-like protrusions 62 of the upper layer 612 is larger and irregular, it is considered that the contact area ratio increases after the Rzjis cut rate of 20%.
  • Example 2 A water-repellent coating 4 that covers the uneven structure 33 of the alumite layer 3 was further formed on the aluminum base 2 of Example 1 obtained in Experimental Example 1 by the process shown in FIG.
  • ethanol was used as a solvent
  • octylalkoxysilane having a carbon number of C8 and TEOS as a crosslinking agent 42 were added as the main agent 41 and stirred for 30 minutes (ie, S111).
  • 0.05 mol / L hydrochloric acid was added as a catalyst and stirred for 30 minutes to cause the main agent 41 and the cross-linking agent 42 to cross-link to form a gel (ie, S112).
  • Solvent Ethanol (for example, Wako Pure Chemical Industries, Ltd.)
  • Main agent 41 Octyltriethoxysilane (for example, L04407; manufactured by Johnson Matthey Japan LLC, trade name)
  • Crosslinking agent 42 TEOS (for example, KBE-04; manufactured by Shin-Etsu Chemical Co., Ltd., trade name)
  • Catalyst 0.05 mol / L hydrochloric acid (for example, manufactured by Wako Pure Chemical Industries, Ltd.)
  • the gel concentration which is the ratio of the mass of the main agent 41 and the crosslinking agent 42 to the total mass including the solvent and the catalyst was 50% by mass.
  • a hydrocarbon-based cleaning agent (trade name NS Clean, manufactured by JX Nippon Oil & Energy Corporation) was added, stirred for 30 minutes, and allowed to stand for 10 minutes (that is, S121). Thereafter, the supernatant was extracted to separate water, and the obtained extract was used as a coating solution (ie, S122).
  • the dipping step S13 the aluminum substrate 2 of Example 1 was dipped in the obtained coating solution for 30 minutes. Further, in the cleaning step S14, the aluminum substrate 2 was cleaned for 1 minute using a hydrocarbon-based cleaning agent. Then, in baking process S15, the water-repellent base material 1 by which the surface of the alumite layer 3 was coat
  • Example 1 For the water-repellent substrate 1 of Example 1 obtained in this way, the sliding property of the water droplet 5 was evaluated based on the dynamic ⁇ difference shown in FIG.
  • a contact angle measuring device using an expansion contraction method that is, DM-501, manufactured by Kyowa Interface Science Co., Ltd.
  • the dynamic ⁇ difference was 0.0003, and it was confirmed that the film had a sliding property of 0.001 or less, which is the value obtained in Comparative Example 1.
  • the water repellent substrate 1 of Example 1 was subjected to a condensed water test by repeated wet and dry, and the maximum condensed water diameter was measured.
  • the test piece of the water-repellent substrate 1 is cooled to 0 ° C. or lower (for example, ⁇ 5 ° C. or lower), placed in a high-humidity constant temperature and humidity chamber, and blown to the surface of the test piece (for example, The wind speed was 1 m / sec), and condensed water generated on the surface was observed for 60 minutes using a CCD camera. At this time, the maximum diameter of the generated condensed water was measured, and then the test piece was cooled again and the condensed water on the surface was observed repeatedly.
  • a fluorine-based water-repellent film made of a fluorine-based water-repellent material was formed on the surface of the boehmite layer 61 for the aluminum substrate 2 of Comparative Example 1.
  • Fluorine-based water-repellent coating uses a water-repellent material (OPTOOL DSX; manufactured by Daikin Industries, Ltd., trade name) mainly composed of a silane compound containing perfluoropolyether, and is immersed in a coating solution prepared in the same manner. It was formed by firing.
  • the same hydrocarbon-based water repellent coating 4 as that of Example 1 was formed on the surface of the concavo-convex structure 33 of the alumite layer 3.
  • the test piece of the obtained water-repellent base material was produced, and the condensed water test was implemented similarly.
  • the water-repellent substrate 1 of Example 1 has a maximum condensed water droplet diameter after one condensed water test of 0.4 mm, and even after three condensed water tests, Satisfied 0.7 mm or less required for the fin material.
  • the maximum condensed water droplet diameter after one dry / wet repeated test was the same as that in Example 1, but the condensed water test was repeated. As a result, the diameter of the condensed water increased, and the maximum condensed water droplet diameter after three condensed water tests increased to around 2.0 mm.
  • the boehmite layer 61 of Comparative Example 1 has a film made of a fluorine-based water repellent material because the needle-like protrusions 62 constituting the concavo-convex structure 63 have a narrowed portion in the lower layer 611. It is difficult to cover the entire surface that becomes the uneven structure 63. Therefore, when condensed water 51 is generated between the needle-like protrusions 62 in a low temperature and high humidity environment (see, for example, FIG. 20 (e)), the outermost portion is initially the outermost due to the effect of the concavo-convex structure 63 and the fluorine-based water repellent film. Water droplets 5 are generated by being pushed out onto the surface (for example, see FIG.
  • Comparative Example 2 in which the hydrocarbon-based water-repellent film 4 was formed on the alumite layer 3 having a large contact area ratio, the maximum condensed water droplet diameter after one condensed water test exceeded 1.0 mm, and three times The maximum condensed water droplet diameter later increased to about 1.5 mm.
  • the condensed water diameter generated on the surface of the water-repellent substrate 1 of Example 1 is smaller than that of Comparative Example 1, and the number of tests is one. It does not change greatly even if it is increased up to 3 times.
  • Comparative Example 1 the condensed water diameter is increased by repeating the condensed water test, and the water repellency is lowered.
  • Example 3 A water-repellent coating 4 was formed on the aluminum substrate 2 of Example 1 obtained in Experimental Example 1 in the same manner as in Experimental Example 2. At this time, in the preparation step S11, alkylalkoxysilanes having different carbon numbers were used as the main agent 41 of the water repellent coating 4 as shown below.
  • Carbon number C3 Trimethoxypropylsilane (for example, B21033; manufactured by Johnson Matthey Japan LLC, trade name)
  • C6 Hexyltrimethoxysilane (for example, KBM-3063; manufactured by Shin-Etsu Chemical Co., Ltd., trade name)
  • Carbon number C8 Octyltriethoxysilane (for example, L04407; manufactured by Johnson Matthey Japan G.K., trade name)
  • Carbon number C10 Decyltrimethoxysilane (for example, KBM-3103; manufactured by Shin-Etsu Chemical Co., Ltd., trade name)
  • Carbon number C12 dodecyltriethoxysilane (for example, D3383; manufactured by Tokyo Chemical Industry Co., Ltd., trade name)
  • Carbon number C18 Octadecyltriethoxysilane (for example, S12325; manufactured by Wako Pure Chemical Industries, Ltd., trade name)
  • the aluminum substrate 2 of Example 1 was immersed in a coating solution prepared in the same manner as in Experimental Example 2 and baked to obtain a water-repellent substrate 1 having a water-repellent film 4 having a different carbon number.
  • the dynamic (theta) difference was measured using the above-mentioned contact angle measuring apparatus, and the sliding property of the water droplet 5 was evaluated.
  • the aluminum substrate 2 of Example 1 was used in the same process (that is, the process shown on the left side in the figure) except that the dehydration process S12 and the cleaning process S14 were omitted.
  • a water-repellent film 4 was formed on the surface to obtain a water-repellent substrate of Comparative Example 3.
  • the above-described alkyl alkoxysilane having 6 to 18 carbon atoms was used as the main agent 41 of the water repellent coating 4.
  • the dynamic (theta) difference was measured using the above-mentioned contact angle measuring apparatus, and the sliding property of the water droplet 5 was evaluated.
  • the dynamic ⁇ difference of the obtained water-repellent substrate exceeded 0.01.
  • the water-repellent substrate 1 of Example 1 has a smaller dynamic ⁇ difference compared to Comparative Example 3 using the main agent 41 having the same carbon number, and has 5, 8, and 10 carbon atoms.
  • the dynamic (theta) difference became 0.01 or less.
  • the dynamic (theta) difference was measured using the above-mentioned contact angle measuring apparatus, and the sliding property of the water droplet 5 was evaluated.
  • the dynamic ⁇ difference changes depending on the molar ratio of the main agent 41 contained in the water-repellent film 4 (that is, the C molar ratio in the figure).
  • the C molar ratio is around 10%
  • the dynamic ⁇ difference is minimized, and the dynamic ⁇ difference tends to increase whether it is smaller or larger.
  • the C molar ratio of the main agent 41 is in the range of 7% to 13%
  • the dynamic ⁇ difference is 0.01 or less.
  • the water-repellent substrate 1 of the present disclosure is not limited to the contents described in the above embodiment and the above examples, and various modifications can be made without departing from the gist of the present invention.
  • the outdoor unit of the HP system for water heaters, and other heat exchanger fins Preferably used.
  • it can be used arbitrarily for applications other than heat exchanger fins.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Laminated Bodies (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

This water-repellent base material (1) includes an aluminum base material (2), an alumite layer (3) provided on a surface of the aluminum base material, and a water-repellent coating (4) provided on a surface of the alumite layer. The alumite layer has a base layer (31) integrated with the aluminum base material, and a surface relief structure (33) formed from a plurality of pin-like protrusions (32) provided side-by-side on a surface of the base layer. With respect to the ten-point average roughness Rzjis of the surface relief structure, the contact surface area ratio of the pin-like protrusions is 0.01 or less in a virtual cross section (A) at a height at which the Rzjis cut ratio is 20% from the position of the maximum height of the surface relief structure, and the water-repellent coating is formed from a hydrocarbon-based water-repellent material.

Description

撥水性基材とその製造方法Water-repellent substrate and method for producing the same 関連出願の相互参照Cross-reference of related applications
 本出願は、2015年12月25日に出願された特許出願番号2015-254043号に基づくもので、その特許出願のすべての内容が、参照により本明細書に組み入れられる。 This application is based on Patent Application No. 2015-254043 filed on December 25, 2015, the entire contents of which are incorporated herein by reference.
 本開示は、アルミニウム基材に撥水性を付与した撥水性基材とその製造方法に関する。 The present disclosure relates to a water-repellent substrate obtained by imparting water repellency to an aluminum substrate and a method for producing the same.
 電気自動車やプラグインハイブリッド車等の空調システムにおいて、空気を熱源とするヒートポンプシステム(以下、HPシステム)が用いられている。HPシステムでは、冷媒は、コンプレッサで高温高圧に圧縮された後、エバポレータにて放熱され、膨張弁を通過して低温低圧となり室外器に至る。このとき、冷媒が外気から吸熱することで、室外器が冷却され、車外が高湿度になると、室外器のアルミニウム製フィンの表面に凝縮水が発生する。凝縮水が除去されないと、やがて凍結して霜に変化する。 In air conditioning systems such as electric vehicles and plug-in hybrid vehicles, heat pump systems (hereinafter referred to as HP systems) using air as a heat source are used. In the HP system, the refrigerant is compressed to a high temperature and a high pressure by a compressor, then radiated by an evaporator, passes through an expansion valve, becomes a low temperature and a low pressure, and reaches an outdoor unit. At this time, the refrigerant absorbs heat from the outside air to cool the outdoor unit, and when the outside of the vehicle becomes highly humid, condensed water is generated on the surface of the aluminum fin of the outdoor unit. If condensed water is not removed, it will eventually freeze and turn into frost.
 室外器等の熱交換器用フィンの着霜防止技術として、基材の表面に凹凸を設けて撥水皮膜をコーティングする、皮膜方式が知られている。皮膜方式では、皮膜表面で凝縮水が超撥水状態となることで、走行風等の外力により容易に除去可能となる。例えば、特許文献1には、アルミニウム基材の表面に、ベーマイトで構成される凹凸部を形成し、フッ化アルキルシラン等からなる皮膜を形成することにより、撥水性を付与した撥水性基材が開示されている。 As a technique for preventing frost formation on heat exchanger fins such as outdoor units, a coating method is known in which a surface of a base material is provided with unevenness to coat a water-repellent coating. In the coating method, the condensed water is in a super-water-repellent state on the coating surface, so that it can be easily removed by an external force such as traveling wind. For example, Patent Document 1 discloses a water-repellent base material that is provided with water repellency by forming a concavo-convex portion made of boehmite on a surface of an aluminum base material and forming a film made of fluorinated alkylsilane or the like. It is disclosed.
特開2013-036733号公報JP 2013-036733 A
 しかしながら、皮膜方式による撥水性基材を、室外器等の熱交換器用フィンとして使用した場合に、撥水性能が徐々に低下することが判明した。その結果、発生する水滴が除去されずに凍結して霜となり、霜の量が増加すると、フィン間を通過する風量が低下する。さらに、冷媒への熱伝導性も低下するために、除霜運転が必要となり運転効率が低下する。また、所望の撥水性を得るためには、高価なフッ素系撥水材料を用いる必要があり、生産性が低下する、といった課題が見出された。 However, it has been found that when a water-repellent substrate by a film method is used as a fin for a heat exchanger such as an outdoor unit, the water-repellent performance gradually decreases. As a result, the generated water droplets are frozen without being removed and become frost, and when the amount of frost increases, the amount of air passing between the fins decreases. Furthermore, since the thermal conductivity to the refrigerant is also reduced, a defrosting operation is required and the operation efficiency is reduced. Moreover, in order to obtain a desired water repellency, it has been necessary to use an expensive fluorine-based water repellent material, and a problem has been found that productivity is lowered.
 本開示の目的は、低温高湿度環境下で生成する凝縮水を除去し、着霜を防止する超撥水性を持続可能であり、生産性の高い撥水性基材とその製造方法を提供しようとするものである。 An object of the present disclosure is to provide a highly productive water-repellent substrate capable of sustaining super-water repellency that removes condensed water generated in a low-temperature and high-humidity environment and prevents frost formation, and a method for producing the same. To do.
 本開示の一態様は、アルミニウム基材と、
 該アルミニウム基材の表面に設けられたアルマイト層と、
 該アルマイト層の表面に設けられた撥水皮膜と、を備えており、
 上記アルマイト層は、上記アルミニウム基材と一体の基層と、該基層の表面に並立する多数のピン状突起とからなる凹凸構造を有し、該凹凸構造の十点平均粗さRzjisに対し、上記凹凸構造の最大高さ位置からRzjisカット率20%となる高さの仮想切断面において、上記ピン状突起の接触面積率が0.01以下であり、
 上記撥水皮膜は、炭化水素系撥水材料からなる皮膜である、撥水性基材にある。
One aspect of the present disclosure includes an aluminum substrate;
An alumite layer provided on the surface of the aluminum substrate;
A water-repellent film provided on the surface of the anodized layer,
The anodized layer has a concavo-convex structure composed of a base layer integral with the aluminum base material and a large number of pin-like protrusions juxtaposed on the surface of the base layer, and the ten-point average roughness Rzjis of the concavo-convex structure is as described above. In the virtual cut surface having a height of 20% Rzjis cut rate from the maximum height position of the concavo-convex structure, the contact area rate of the pin-shaped protrusion is 0.01 or less,
The water-repellent film is on a water-repellent substrate, which is a film made of a hydrocarbon-based water-repellent material.
 本開示の他の態様は、アルミニウム基材と、
 該アルミニウム基材の表面に設けられたアルマイト層と、
 該アルマイト層の表面に設けられた撥水皮膜と、を備えており、
 上記アルマイト層は、上記アルミニウム基材と一体の基層と、該基層の表面に並立する多数のピン状突起とからなる凹凸構造を有し、該凹凸構造の十点平均粗さRzjisに対し、上記凹凸構造の最大高さ位置からRzjisカット率20%となる高さの仮想切断面において、上記ピン状突起の接触面積率が0.01以下であり、
 上記撥水皮膜は、炭化水素系撥水材料からなる皮膜である、撥水性基材の製造方法であって、
 上記アルミニウム基材の表面に、アルマイト化処理とエッチング処理とにより、上記凹凸構造を有する上記アルマイト層を形成する工程と、
 上記炭化水素系撥水材料を含むコーティング液を調合する工程と、
 上記コーティング液に、炭化水素系溶剤を添加して、水分を分離させて除去する工程と、
 水分を除去した上記コーティング液に、上記アルマイト層を形成した上記アルミニウム基材を浸漬する工程と、
 上記コーティング液が塗布された上記アルミニウム基材を焼成する工程と、を備える、撥水性基材の製造方法にある。
Another aspect of the present disclosure includes an aluminum substrate;
An alumite layer provided on the surface of the aluminum substrate;
A water-repellent film provided on the surface of the anodized layer,
The anodized layer has a concavo-convex structure composed of a base layer integral with the aluminum base material and a large number of pin-like protrusions juxtaposed on the surface of the base layer, and the ten-point average roughness Rzjis of the concavo-convex structure is as described above. In the virtual cut surface having a height of 20% Rzjis cut rate from the maximum height position of the concavo-convex structure, the contact area rate of the pin-shaped protrusion is 0.01 or less,
The water-repellent film is a film made of a hydrocarbon-based water-repellent material, a method for producing a water-repellent substrate,
Forming the alumite layer having the concavo-convex structure on the surface of the aluminum substrate by anodizing and etching; and
Preparing a coating liquid containing the hydrocarbon-based water repellent material;
Adding a hydrocarbon solvent to the coating solution to separate and remove moisture;
A step of immersing the aluminum base material on which the alumite layer is formed in the coating liquid from which moisture has been removed;
And baking the aluminum substrate to which the coating liquid has been applied.
 上記態様による撥水性基材は、アルミニウム基材の表層となるアルマイト層が、接触面積率が小さい微細凹凸構造を有するので、炭化水素系撥水材料からなる撥水皮膜との組合せにより、超撥水性を発現可能となる。また、ピン状突起が並立する規則的な凹凸構造であり、撥水皮膜の未形成部位が生じにくいため、全表面で良好な撥水性が得られる。これにより、凝縮水を凹凸構造の表面に押し出し、生成する水滴を、外力等により容易に滑落させて除去できる。また、凹凸構造の内部に凝縮水が残存して、撥水性が徐々に低下することが抑制される。炭化水素系撥水材料は、フッ素系撥水材料に次いで表面自由エネルギーが低く、撥水性向上に寄与すると共に、フッ素系撥水材料より安価であり、生産性を向上させる。 In the water-repellent substrate according to the above aspect, since the anodized layer that is the surface layer of the aluminum substrate has a fine uneven structure with a small contact area ratio, it is super-repellent when combined with a water-repellent film made of a hydrocarbon-based water-repellent material. Aqueous can be expressed. Moreover, since it is a regular concavo-convex structure in which pin-shaped protrusions are juxtaposed and a water-repellent film is not formed, a good water repellency can be obtained on the entire surface. Thereby, the condensed water is pushed out to the surface of the concavo-convex structure, and the generated water droplets can be easily slid down and removed by an external force or the like. Moreover, it is suppressed that condensed water remains inside the concavo-convex structure and the water repellency is gradually lowered. The hydrocarbon-based water-repellent material has the lower surface free energy next to the fluorine-based water-repellent material, contributes to the improvement of water repellency, is cheaper than the fluorine-based water-repellent material, and improves the productivity.
 このような撥水性基材は、アルミニウム基材をアルマイト化処理とエッチング処理とにより形成した凹凸構造のアルマイト層に、水分を分離したコーティング液を用いて撥水皮膜を形成することにより、撥水性がさらに向上する。したがって、低温高湿度環境下において、発生する凝縮水を超撥水状態とすることで除去し、高い撥水性能を長期間維持して、着霜による不具合を防止できる撥水性基材が得られる。 Such a water-repellent substrate is formed by forming a water-repellent film on a concavo-convex structure anodized layer formed by anodizing and etching an aluminum substrate using a coating liquid from which moisture is separated. Is further improved. Therefore, in a low temperature and high humidity environment, a water repellent base material that can be removed by making the generated condensed water into a super water repellent state, maintaining high water repellent performance for a long period of time, and preventing problems due to frost formation can be obtained. .
 本開示についての上記目的及びその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、実施形態1における、撥水性基材の概略構造を示す要部拡大断面図であり、 図2は、実施形態1における、撥水性基材のアルマイト層の凹凸構造を模式的に示す要部拡大斜視図であり、 図3は、実施形態1における、撥水性基材の撥水皮膜分子構造を示す模式的な図であり、 図4は、実施形態1における、接触面積率の測定方法を模式的に示すアルマイト層の要部拡大斜視図であり、 図5は、実施形態1における、アルミニウム基材のアルマイト化工程とエッチング工程によるアルマイト層形成工程を示す拡大斜視図であり、 図6は、実施形態1における、撥水性基材の表面に水滴が付着した状態を示す要部拡大断面図であり、 図7は、実施形態1における、接触面積率と対水接触角との関係を示す図であり、 図8は、実施形態1における、アルマイト層の凹凸構造と発生する凝縮水の排出性との関係を示すモデル図であり、 図9は、実施形態1における、アルミニウム基材に形成したアルマイト層を撥水皮膜で被覆する工程を示す図であり、 図10は、実施形態1における、撥水性基材の表面に付着した水滴の滑落性を示す動的θ差の算出方法を示すモデル図であり、 図11は、実施形態1における、撥水性基材の表面に付着した水滴の挙動を示す要部断面図であり、 図12は、実験例1における、実施例1のアルマイト層の凹凸構造の画像観察方法を示す要部拡大断面図であり、 図13は、実験例1における、実施例1の凹凸構造の表面形状を示す、図12のXIII矢視方向から見た走査型電子顕微鏡による傾斜観察画像であり、 図14は、実験例1における、実施例1の凹凸構造の断面形状を示す、図12のXIV-XIV断面の透過型電子顕微鏡による断面観察画像であり、 図15は、実験例1における、比較例1のベーマイト層の凹凸構造の画像観察方法を示す要部拡大断面図であり、 図16は、実験例1における、比較例1の凹凸構造の表面形状を示す、図15のXVI矢視方向から見た走査型電子顕微鏡による表面観察画像であり、 図17は、実験例1における、比較例1の凹凸構造の断面形状を示す、図15のXVII-XVII断面の透過型電子顕微鏡による断面観察画像であり、 図18は、実験例1における、Rzjisカット率と接触面積率との関係を示す図であり、 図19は、実験例2における、凝縮水試験回数と最大凝縮水滴直径との関係を示す図であり、 図20は、実験例2における、比較例1の撥水性基材の表面に付着した水滴の挙動を示す要部断面図であり、 図21は、実験例2における、実施例1と比較例1、2の撥水性基材について、凝縮水試験1回~3回実施後の表面の最大凝縮水滴直径の変化を示す、走査型電子顕微鏡による表面観察画像であり、 図22は、実験例3における、アルキル基の炭素数と動的θ差との関係を示す図であり、 図23は、実験例3における、撥水皮膜を構成する主剤のモル比率であるCモル比と、動的θ差との関係を示す図である。
The above and other objects, features, and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
FIG. 1 is an enlarged cross-sectional view of a main part showing a schematic structure of a water-repellent substrate in Embodiment 1. FIG. 2 is an enlarged perspective view of a main part schematically showing the concavo-convex structure of the alumite layer of the water-repellent substrate in Embodiment 1. FIG. 3 is a schematic diagram showing the water-repellent film molecular structure of the water-repellent substrate in Embodiment 1. FIG. 4 is an enlarged perspective view of a main part of an alumite layer schematically showing a method for measuring a contact area ratio in the first embodiment. FIG. 5 is an enlarged perspective view showing an alumite layer forming step by an anodizing step and an etching step of an aluminum base material in Embodiment 1, FIG. 6 is an enlarged cross-sectional view of a main part showing a state in which water droplets adhere to the surface of the water-repellent substrate in Embodiment 1. FIG. 7 is a diagram illustrating a relationship between a contact area ratio and a water contact angle in the first embodiment. FIG. 8 is a model diagram showing the relationship between the uneven structure of the anodized layer and the discharge of condensed water generated in Embodiment 1. FIG. 9 is a diagram showing a step of coating the alumite layer formed on the aluminum base material with a water-repellent coating in Embodiment 1. FIG. 10 is a model diagram illustrating a method for calculating a dynamic θ difference indicating the sliding property of water droplets attached to the surface of a water-repellent substrate in Embodiment 1. FIG. 11 is a cross-sectional view of a main part showing the behavior of water droplets attached to the surface of the water-repellent substrate in Embodiment 1. FIG. 12 is an enlarged cross-sectional view of a main part showing an image observation method of the uneven structure of the alumite layer of Example 1 in Experimental Example 1, 13 is a tilt observation image by a scanning electron microscope viewed from the XIII arrow direction of FIG. 12, showing the surface shape of the concavo-convex structure of Example 1 in Experimental Example 1. 14 is a cross-sectional observation image by a transmission electron microscope of the XIV-XIV cross section of FIG. 12, showing the cross-sectional shape of the concavo-convex structure of Example 1 in Experimental Example 1. FIG. 15 is an enlarged cross-sectional view of a main part showing an image observation method of the uneven structure of the boehmite layer of Comparative Example 1 in Experimental Example 1, FIG. 16 is a surface observation image by a scanning electron microscope viewed from the XVI arrow direction of FIG. 15, showing the surface shape of the concavo-convex structure of Comparative Example 1 in Experimental Example 1. FIG. 17 is a cross-sectional observation image by a transmission electron microscope of the XVII-XVII cross section of FIG. 15, showing the cross-sectional shape of the concavo-convex structure of Comparative Example 1 in Experimental Example 1. FIG. 18 is a diagram showing the relationship between the Rzjis cut rate and the contact area rate in Experimental Example 1. FIG. 19 is a diagram showing the relationship between the number of condensed water tests and the maximum condensed water droplet diameter in Experimental Example 2. FIG. 20 is a cross-sectional view of the main part showing the behavior of water droplets attached to the surface of the water-repellent substrate of Comparative Example 1 in Experimental Example 2, FIG. 21 is a scanning electron graph showing a change in the maximum condensed water droplet diameter on the surface after performing the condensed water test 1 to 3 times for the water repellent substrates of Example 1 and Comparative Examples 1 and 2 in Experimental Example 2. It is a surface observation image by a microscope, FIG. 22 is a diagram showing the relationship between the carbon number of the alkyl group and the dynamic θ difference in Experimental Example 3, FIG. 23 is a diagram showing the relationship between the C molar ratio, which is the molar ratio of the main agent constituting the water repellent film, and the dynamic θ difference in Experimental Example 3.
(実施形態1)
 次に、撥水性基材の実施形態について、図面を参照して説明する。本形態の撥水性基材は、例えば、熱交換器用のフィン材として使用することができ、車載用ヒートポンプシステムの室外機等に適用されて、低温高湿度の環境下における着霜を防止する。図1に示すように、撥水性基材1は、板状のアルミニウム基材2と、アルミニウム基材2の表面に形成されるアルマイト層3と、アルマイト層3の表面に形成される撥水皮膜4とから構成される。アルミニウム基材2は、アルミニウム又はアルミニウム合金からなる。
(Embodiment 1)
Next, an embodiment of a water repellent substrate will be described with reference to the drawings. The water-repellent substrate of this embodiment can be used as, for example, a fin material for a heat exchanger and is applied to an outdoor unit or the like of an in-vehicle heat pump system to prevent frost formation in a low-temperature and high-humidity environment. As shown in FIG. 1, the water-repellent substrate 1 includes a plate-like aluminum substrate 2, an alumite layer 3 formed on the surface of the aluminum substrate 2, and a water-repellent film formed on the surface of the anodized layer 3. 4. The aluminum substrate 2 is made of aluminum or an aluminum alloy.
 アルマイト層3は、アルミニウム基材2の表層を形成し、アルミニウム基材2と一体の基層31と、多数のピン状突起32とからなる。多数のピン状突起32は、基層31の表面からアルミニウム基材2の厚さ方向Xに、略平行に突出している。隣り合うピン状突起32の間には、空気層11が形成される。図2に示すように、アルマイト層3は、基層31と、この基層31の表面に並立する多数のピン状突起32とからなる、所定の凹凸構造33を有している。 The anodized layer 3 forms a surface layer of the aluminum base 2 and includes a base layer 31 integrated with the aluminum base 2 and a large number of pin-like protrusions 32. A large number of pin-shaped protrusions 32 protrude substantially parallel to the thickness direction X of the aluminum base 2 from the surface of the base layer 31. An air layer 11 is formed between adjacent pin-shaped protrusions 32. As shown in FIG. 2, the alumite layer 3 has a predetermined concavo-convex structure 33 including a base layer 31 and a large number of pin-like protrusions 32 juxtaposed on the surface of the base layer 31.
 撥水皮膜4は、炭化水素系撥水材料からなり、アルミニウム基材2の最表層を形成する。撥水皮膜4は、アルマイト層3の基層31の表面と、多数のピン状突起32の表面とを被覆して、凹凸構造33の全表面を覆っている。図3に示すように、撥水皮膜4は、具体的には、アルキル基43を有する金属アルコキシドからなる主剤41と、有機シランからなる架橋剤42を含み、フッ素を含有しない炭化水素系撥水材料を用いて構成される。このような炭化水素系撥水材料は、金属アルコキシドと有機シランとが、共加水分解・脱水縮合することにより、三次元マトリクス構造を有する、有機-無機ハイブリッド皮膜となる。 The water repellent coating 4 is made of a hydrocarbon-based water repellent material and forms the outermost layer of the aluminum base 2. The water-repellent coating 4 covers the entire surface of the concavo-convex structure 33 by covering the surface of the base layer 31 of the alumite layer 3 and the surfaces of many pin-like protrusions 32. As shown in FIG. 3, the water-repellent coating 4 specifically includes a hydrocarbon-based water-repellent material containing a main agent 41 made of a metal alkoxide having an alkyl group 43 and a cross-linking agent 42 made of an organic silane, and containing no fluorine. Constructed using materials. Such a hydrocarbon-based water repellent material becomes an organic-inorganic hybrid film having a three-dimensional matrix structure by co-hydrolysis and dehydration condensation of metal alkoxide and organic silane.
 撥水皮膜4は、有機-無機ハイブリッド皮膜の最表面に、疎水性のアルキル基43が多数配置されることで、撥水性を呈し、凝縮水の排出を促進する。主剤41の分子長は、アルキル基43の分子運動性に影響し、分子間隔dは、主剤41と架橋剤42のモル比に応じて決まり、アルキル基43の長さと隣り合うアルキル基43の間隔に相当する。例えば、図3においては、主剤41:架橋剤42=1:3であり、主剤41の比率が25モル%となる構造が例示されている。
 以下に、撥水性基材1の詳細構造について、詳述する。
The water repellent coating 4 exhibits water repellency and promotes the discharge of condensed water by arranging a large number of hydrophobic alkyl groups 43 on the outermost surface of the organic-inorganic hybrid coating. The molecular length of the main agent 41 affects the molecular mobility of the alkyl group 43, and the molecular interval d is determined according to the molar ratio of the main agent 41 and the crosslinking agent 42, and the distance between the alkyl group 43 and the adjacent alkyl group 43 is determined. It corresponds to. For example, FIG. 3 illustrates a structure in which main agent 41: crosslinking agent 42 = 1: 3, and the ratio of main agent 41 is 25 mol%.
Below, the detailed structure of the water repellent base material 1 is explained in full detail.
 図2において、ピン状突起32の幅W、ピン状突起32の高さHと、隣り合うピン状突起32間の突起間隔Dとは、アルマイト層3における凹凸構造33を決定する。このとき、個々のピン状突起32の高さHは、凹凸構造33の深さを表し、アルマイト層3の成膜厚さとエッチング深さによって制御される。幅Wと突起間隔Dは、凹凸構造33の大きさを表し、突起間隔Dは、ピン状突起32の間の空気層11の幅に相当する。ピン状突起32が規則的に配置され、その間に空気層11が深さ方向に均質に形成されることで、空気層11で発生する凝縮水の排出が適切になされ、撥水性が良好に維持される。 In FIG. 2, the width W of the pin-shaped protrusion 32, the height H of the pin-shaped protrusion 32, and the protrusion distance D between adjacent pin-shaped protrusions 32 determine the uneven structure 33 in the alumite layer 3. At this time, the height H of each pin-like protrusion 32 represents the depth of the concavo-convex structure 33 and is controlled by the film thickness and the etching depth of the alumite layer 3. The width W and the protrusion distance D represent the size of the uneven structure 33, and the protrusion distance D corresponds to the width of the air layer 11 between the pin-shaped protrusions 32. The pin-shaped protrusions 32 are regularly arranged, and the air layer 11 is uniformly formed in the depth direction therebetween, so that the condensed water generated in the air layer 11 is appropriately discharged and the water repellency is maintained well. Is done.
 アルマイト層3は、凹凸構造33の繰り返し周期に対して、ピン状突起32の幅Wが小さいほど、水分が凝縮して生成する水滴との接触面積が小さくなり、撥水性が高くなる。そのため、アルマイト層3は、凹凸構造33の最外表面においてピン状突起32が占める面積率が小さいほどよい。そこで、アルマイト層3の表面における接触面積率を、以下のように定義する。すなわち、凹凸構造33の十点平均粗さをRzjisとし、凹凸構造33の最表面となる最大高さ位置から深さ方向への高さのカット率を、Rzjisカット率とする。このとき、最大高さからRzjisカット率20%となる高さに仮想切断面を設定し、この仮想切断面におけるピン状突起32の単位面積当たりの接触面積を、接触面積率とする。なお、十点平均粗さRzjisは、JIS B0601-2001(すなわち、ISO 4287 1997)に準じて測定される表面粗さである。 In the alumite layer 3, the smaller the width W of the pin-like protrusion 32 with respect to the repetition period of the concavo-convex structure 33, the smaller the contact area with water droplets produced by condensation of moisture, and the higher the water repellency. Therefore, the alumite layer 3 is better as the area ratio occupied by the pin-like protrusions 32 on the outermost surface of the concavo-convex structure 33 is smaller. Therefore, the contact area ratio on the surface of the alumite layer 3 is defined as follows. That is, the ten-point average roughness of the concavo-convex structure 33 is Rzjis, and the cut rate of the height from the maximum height position that is the outermost surface of the concavo-convex structure 33 to the depth direction is the Rzjis cut rate. At this time, a virtual cut surface is set from the maximum height to a height at which the Rzjis cut rate is 20%, and the contact area per unit area of the pin-like protrusion 32 on the virtual cut surface is defined as the contact area rate. The ten-point average roughness Rzjis is a surface roughness measured according to JIS B0601-2001 (that is, ISO 4287 1997).
 具体的には、図4に示すように、凹凸構造33の最表面からRzjisカット率20%の高さ位置において、アルマイト層3をアルミニウム基材2の板面と平行に切断した仮想切断面内に、所定の測定エリアAを設定する。そして、測定エリアAに現れるピン状突起32の総面積から、下記式1を用いて、Rzjisカット率20%における接触面積率を算出することができる。
 式1:接触面積率=[測定エリアA内のピン状突起32の総面積(単位:μm2)]/[測定エリアAの面積(単位:μm2)]
 この接触面積率が、0.01以下、好適には、0.005以下となるように構成することで、最表層となる撥水皮膜4との組み合わせにより、超撥水性を発現することができる。
 接触面積率と超撥水性の関係については、後述する。
Specifically, as shown in FIG. 4, in a virtual cut surface obtained by cutting the alumite layer 3 in parallel with the plate surface of the aluminum base 2 at a height position where the Rzjis cut rate is 20% from the outermost surface of the concavo-convex structure 33. Then, a predetermined measurement area A is set. Then, from the total area of the pin-shaped protrusions 32 appearing in the measurement area A, the contact area ratio at an Rzjis cut ratio of 20% can be calculated using the following formula 1.
Formula 1: Contact area ratio = [total area of pin-like protrusions 32 in measurement area A (unit: μm 2 )] / [area of measurement area A (unit: μm 2 )]
By configuring the contact area ratio to be 0.01 or less, and preferably 0.005 or less, super water repellency can be exhibited by a combination with the water repellent coating 4 that is the outermost layer. .
The relationship between the contact area ratio and super water repellency will be described later.
 アルマイト層3は、アルミニウム基材2を表面処理することにより形成される、多孔質の酸化アルミニウム(すなわち、Al23)からなる層である。図5に示すように、アルマイト層3は、アルマイト化処理工程S1と、エッチング処理工程S2と、により形成される。図5の左図に示すように、アルマイト化処理により生成するアルマイトは、細孔34を有する六角形セル構造を有し、アルミニウム基材2の表面から、その厚さ方向Xに成長する。図5の中図に示すように、アルマイトの細孔34がエッチング処理されることにより、徐々に拡径されて、図5の右図に示すように、多数のピン状突起32が並立する層となる。このとき、多数のピン状突起32は、アルマイトの六角形セルの頂点に位置することになり、規則的な凹凸構造33が形成される。 The alumite layer 3 is a layer made of porous aluminum oxide (that is, Al 2 O 3 ) formed by surface treatment of the aluminum base 2. As shown in FIG. 5, the anodized layer 3 is formed by an anodizing process S1 and an etching process S2. As shown in the left diagram of FIG. 5, the alumite produced by the alumite treatment has a hexagonal cell structure having pores 34 and grows in the thickness direction X from the surface of the aluminum base 2. As shown in the middle diagram of FIG. 5, the alumite pores 34 are etched to gradually increase the diameter, and as shown in the right diagram of FIG. 5, a layer in which a large number of pin-like protrusions 32 are arranged side by side. It becomes. At this time, a large number of pin-like protrusions 32 are positioned at the apexes of the alumite hexagonal cells, and a regular uneven structure 33 is formed.
 具体的には、アルマイト化処理工程S1では、予めアルミニウム基材2の表面を酸洗浄した後、燐酸浴中で電圧を印加して陽極酸化する。これにより、該表面の全面に、六角形セル構造のアルマイト層が成膜される。酸洗浄用の薬剤としては、例えば、硝酸が用いられる。陽極酸化では、下記反応式に示すアルマイト成膜反応が進行し、多数の六角形セル内には、その軸芯に沿って細孔34が形成される。
[アルマイト成膜反応式]
・陽極:2Al+3H2O→Al23+6H+6e
・陰極:2H+2e→H2
Specifically, in the anodizing treatment step S1, the surface of the aluminum substrate 2 is previously acid-washed and then anodized by applying a voltage in a phosphoric acid bath. Thereby, an alumite layer having a hexagonal cell structure is formed on the entire surface. As the acid cleaning agent, for example, nitric acid is used. In the anodic oxidation, an alumite film forming reaction shown in the following reaction formula proceeds, and pores 34 are formed along the axial center in many hexagonal cells.
[Anodizing reaction formula]
Anode: 2Al + 3H 2 O → Al 2 O 3 + 6H + + 6e
・ Cathode: 2H + + 2e → H 2
 エッチング処理工程S2では、アルマイト化処理工程にて形成されたアルマイト層を、燐酸浴中でエッチングする。これにより、細孔34が内側からエッチングされて、細孔34が拡がり、隣接する六角形セルを区画する壁部が薄くなる。このように、アルマイト化とエッチングを繰り返すことにより、アルマイト層の薄い壁部が除去されると、六角形セルの頂点の位置に、ナノオーダーのピン状突起32が並立する、ナノピン構造の凹凸が形成される。 In the etching process S2, the anodized layer formed in the anodizing process is etched in a phosphoric acid bath. Thereby, the pore 34 is etched from the inside, the pore 34 expands, and the wall part which divides the adjacent hexagonal cell becomes thin. As described above, when the thin wall portion of the anodized layer is removed by repeating anodization and etching, nano-order pin-shaped protrusions 32 are juxtaposed at the apex position of the hexagonal cell. It is formed.
 図6に示すように、撥水性基材1は、アルマイト層3の凹凸構造33と、その表面の撥水皮膜4とにより、超撥水性を発現する。撥水性基材1の表面において、水分が凝縮して生成する凝縮水は、最表層の撥水皮膜4により、最外表面に押し出されて、水滴5となる。このとき、隣接するピン状突起32の間には、空気層11が形成され、水滴5は、アルマイト層3の凹凸構造33の最外表面において、撥水皮膜4で被覆されたピン状突起32に点接触して支持される。一般に、撥水性基材1の表面が超撥水状態にあるとき、撥水性基材1の表面と水滴5の表面とのなす角である対水接触角θは150°以上で、水滴5は、例えば自重や送風等の外力によって、表面から滑落可能となる。 As shown in FIG. 6, the water repellent substrate 1 exhibits super water repellency due to the uneven structure 33 of the alumite layer 3 and the water repellent film 4 on the surface thereof. Condensed water generated by condensation of moisture on the surface of the water-repellent substrate 1 is pushed out to the outermost surface by the outermost water-repellent film 4 to form water droplets 5. At this time, the air layer 11 is formed between adjacent pin-shaped protrusions 32, and the water droplets 5 are pin-shaped protrusions 32 covered with the water-repellent coating 4 on the outermost surface of the uneven structure 33 of the alumite layer 3. Supported by point contact. In general, when the surface of the water-repellent substrate 1 is in a super-water-repellent state, the water contact angle θ, which is an angle formed between the surface of the water-repellent substrate 1 and the surface of the water droplet 5, is 150 ° or more. For example, it is possible to slide off the surface by an external force such as its own weight or air flow.
 撥水性基材1が、表面に凹凸を有するとき、対水接触角θは、以下の式2によって求められる。
 式2:cosθ=[A1/(A1+A2)]cosθ1+[A2/(A1+A2)]cosθ2
式中、A1:撥水皮膜4の水滴5に対する接触面積、A2:空気層11の水滴5に対する接触面積、θ1:撥水皮膜4の凹凸がない表面の対水接触角、θ2:空気層11の対水接触角
 アルマイト層3は、ピン状突起32が並立する規則正しい凹凸構造33を有するので、A1、A2は略一定であり、撥水性基材1の表面の撥水性は均一となる。また、θ1、θ2は定数であり、例えば、θ2=180°(すなわち、cosθ2=-1)であるから、最表層となる撥水皮膜4に撥水性の高い材料を用い、A2に対するA1の面積比率を小さくすると、対水接触角θは大きくなる。
 このとき、式3に示すように、式2の第1項の係数は、撥水性基材1の接触面積率であり、最外表面において水滴5と接触する撥水皮膜4の接触面積率である。
 式3:撥水性基材1の接触面積率=A1/(A1+A2)
 この接触面積率は、上述したアルマイト層3の凹凸構造33の接触面積率と相関があり、Rzjisカット率20%の接触面積率が小さいほど、撥水性基材1の接触面積率も小さくなる。
When the water-repellent substrate 1 has irregularities on the surface, the water contact angle θ is obtained by the following formula 2.
Formula 2: cos θ = [A1 / (A1 + A2)] cos θ1 + [A2 / (A1 + A2)] cos θ2
In the formula, A1: contact area of the water repellent film 4 with respect to the water droplet 5, A2: contact area of the air layer 11 with respect to the water drop 5, θ1: contact angle with water on the surface of the water repellent film 4 having no irregularities, θ2: air layer 11 Since the alumite layer 3 has a regular concavo-convex structure 33 with pin-like protrusions 32 arranged side by side, A1 and A2 are substantially constant, and the water repellency of the surface of the water repellent substrate 1 is uniform. Further, θ1 and θ2 are constants, for example, θ2 = 180 ° (that is, cos θ2 = −1). Therefore, a material having high water repellency is used for the water repellent coating 4 which is the outermost layer, and the area of A1 with respect to A2 When the ratio is decreased, the contact angle θ with water is increased.
At this time, as shown in Expression 3, the coefficient of the first term of Expression 2 is the contact area ratio of the water-repellent substrate 1, and is the contact area ratio of the water-repellent coating 4 that contacts the water droplet 5 on the outermost surface. is there.
Formula 3: Contact area ratio of the water-repellent substrate 1 = A1 / (A1 + A2)
This contact area ratio correlates with the contact area ratio of the concavo-convex structure 33 of the alumite layer 3 described above, and the smaller the contact area ratio with an Rzjis cut rate of 20%, the smaller the contact area ratio of the water-repellent substrate 1.
 そこで、これら式2、式3に基づいて、超撥水性を有する条件を検討した。
 炭化水素系撥水皮膜4の凹凸がない表面に対する対水接触角をθ1=90°とすると、図7に示されるように、撥水性基材1の接触面積率が小さいほど、対水接触角θが大きくなり、理論上は、接触面積率0.13以下で、対水接触角θが150°以上となる。つまり、ピン状突起32が一定間隔で配置されるとき、水滴5に接するピン状突起32の幅Wをより小さくし、突起間隔Dをより大きくするのがよく、ピン状突起32を覆う撥水皮膜4の接触面積がより小さくなる。具体的には、上述したRzjisカット率20%の接触面積率が、0.01以下であるとき、炭化水素系撥水材料からなる撥水皮膜4との組み合わせにより、対水接触角θを150°より大きくすることができる。
Therefore, based on these formulas 2 and 3, the conditions having super water repellency were examined.
When the water contact angle with respect to the surface of the hydrocarbon-based water-repellent coating 4 having no irregularities is θ1 = 90 °, as shown in FIG. 7, the smaller the contact area ratio of the water-repellent substrate 1, the more the water contact angle. θ increases, and theoretically, the contact area ratio is 0.13 or less and the water contact angle θ is 150 ° or more. That is, when the pin-shaped protrusions 32 are arranged at regular intervals, the width W of the pin-shaped protrusions 32 in contact with the water droplets 5 should be made smaller and the protrusion interval D should be made larger. The contact area of the film 4 becomes smaller. Specifically, when the contact area ratio with the Rzjis cut rate of 20% is 0.01 or less, the contact angle θ with respect to water is set to 150 by combining with the water repellent coating 4 made of a hydrocarbon-based water repellent material. Can be larger than °.
 また、図8に示すように、アルマイト層3の凹凸構造33のモデル図を用いたシミュレーションによって、凝縮水51が良好に排水される条件が判明している。
 図8左図において、対向壁間に空気層11を形成する凹状部12について、ピン状突起32に相当する対向壁が、表面から深さ方向に均一な間隔を有して配置されるとき、凝縮水51が生成する空気層11の幅w(すなわち、突起間隔Dに相当)が排出性に影響する。例えば、高さhの凹状部12を含む立方体の一辺の長さLx、Lyが、Lx=Ly=2hの関係にあり、h:w=20:2~13の範囲で変化させたとき、図8右図に示すように、目詰まりや滞留を生じずに、凝縮水51が排出される幅w(例えば、w2=6)が存在する。幅wがこれより小さいと、凝縮水51が目詰まりし(例えば、w1=3)、幅wがこれより大きいと、凝縮水51が滞留する(例えば、w3=11)。
Further, as shown in FIG. 8, the conditions under which the condensed water 51 is satisfactorily drained are found by the simulation using the model diagram of the uneven structure 33 of the alumite layer 3.
In the left diagram of FIG. 8, when the opposing wall corresponding to the pin-like protrusion 32 is arranged with a uniform interval in the depth direction from the surface, with respect to the concave portion 12 that forms the air layer 11 between the opposing walls, The width w of the air layer 11 generated by the condensed water 51 (that is, corresponding to the protrusion interval D) affects the discharge performance. For example, when the lengths Lx and Ly of one side of the cube including the concave portion 12 having a height h are in a relationship of Lx = Ly = 2h and are changed in a range of h: w = 20: 2 to 13, 8 As shown in the right figure, there is a width w (for example, w2 = 6) through which the condensed water 51 is discharged without causing clogging or stagnation. When the width w is smaller than this, the condensed water 51 is clogged (for example, w1 = 3), and when the width w is larger than this, the condensed water 51 is retained (for example, w3 = 11).
 このシミュレーション結果に基づいて、凹凸構造33の突起間隔Dを変更した試験片により凝縮水の滑落性を調べた試験結果から、好適には、突起間隔Dが、D=75nm~100nmであるときに、高い撥水性が得られることが確認されている。また、ピン状突起32の幅Wと、高さHについては、W=20nm以下、H=200nm~600nmの範囲にあるとよい。アルマイト層3の凹凸構造33は、アルマイト層3を形成するためのアルマイト化処理と、エッチング処理の条件を調整することにより、所望の突起間隔D、幅W、高さHに形成することができる。 Based on the result of the examination of the sliding property of the condensed water using a test piece in which the projection interval D of the concavo-convex structure 33 is changed based on the simulation result, preferably, when the projection interval D is D = 75 nm to 100 nm. It has been confirmed that high water repellency can be obtained. Further, the width W and the height H of the pin-like protrusions 32 are preferably W = 20 nm or less and H = 200 nm to 600 nm. The concavo-convex structure 33 of the alumite layer 3 can be formed to have a desired protrusion interval D, width W, and height H by adjusting the conditions of the anodizing process for forming the anodized layer 3 and the etching process. .
 撥水性基材1の最表層となる撥水皮膜4の材質は、上記式2におけるθ1を決定する。具体的には、炭化水素系撥水材料を用いて構成された有機-無機ハイブリッド皮膜が、自由端面となる最表面に、疎水性のアルキル基43を有し、熱エネルギーにより分子運動して水滴5を移動、滑落させる。炭化水素系撥水材料の主剤41は、側鎖にアルキル基43を有する金属アルコキシドであり、好適には、主鎖にシロキサン結合(すなわち、Si-O-Si結合)を有するアルキルアルコキシシランが用いられる。また、架橋剤42となる有機シランとしては、テトラエトキシシラン(以下、TEOSと称する)を用いることができる。このような皮膜は、フッ素系撥水材料からなる皮膜に次いで撥水性が高く、上記式2における対水接触角θを大きくする方向に作用する。 The material of the water-repellent coating 4 that is the outermost layer of the water-repellent substrate 1 determines θ1 in the above formula 2. Specifically, an organic-inorganic hybrid coating composed of a hydrocarbon-based water repellent material has a hydrophobic alkyl group 43 on the outermost surface serving as a free end surface, and undergoes molecular motion by thermal energy to cause water droplets. Move 5 and slide it down. The main agent 41 of the hydrocarbon-based water repellent material is a metal alkoxide having an alkyl group 43 in the side chain, and preferably an alkylalkoxysilane having a siloxane bond (ie, Si—O—Si bond) in the main chain. It is done. Further, as the organic silane serving as the crosslinking agent 42, tetraethoxysilane (hereinafter referred to as TEOS) can be used. Such a film has high water repellency next to a film made of a fluorine-based water repellent material, and acts in the direction of increasing the water contact angle θ in the above formula 2.
 撥水皮膜4の撥水性には、最表面に位置する主剤41の分子長と分子間隔dが影響する。例えば、主剤41の分子長が短く、分子間隔dが広い方が、アルキル基43が動きやすく、水滴5は移動しやすい。架橋剤42に含まれる水酸基に、水滴5が水素結合しやすくなる。そのために、主剤41の分子長を決めるアルキル基43の炭素数と、架橋剤42との配合割合を、所望の滑落性が得られるように、適切に設定するとよい。 The water repellency of the water repellent film 4 is affected by the molecular length and molecular spacing d of the main agent 41 located on the outermost surface. For example, when the molecular length of the main agent 41 is shorter and the molecular interval d is wider, the alkyl group 43 is easier to move and the water droplet 5 is easier to move. The water droplet 5 is likely to hydrogen bond to the hydroxyl group contained in the crosslinking agent 42. For this purpose, the blending ratio of the carbon number of the alkyl group 43 that determines the molecular length of the main agent 41 and the crosslinking agent 42 may be set appropriately so that a desired sliding property can be obtained.
 例えば、主剤41に含まれるアルキル基43は、炭素数が3個~18個(すなわち、C3~C18)の範囲の鎖状アルキル基であることが望ましい。好適には、アルキル基43の炭素数が5個~11個(すなわち、C5~C11)の分子長を有する鎖状アルキル基であるとよい。C3~C18のアルキル基43を有する主剤41は、常温において液体であり、アルミニウム基材2を浸漬するためのコーティング液の調整が容易になる。アルキル基43の炭素数が、C5~C11の範囲であると、水滴5の付着力を示す動的θ差が0.01以下と小さくなり、水滴5の滑落性が高まるため、より望ましい。 For example, the alkyl group 43 contained in the main agent 41 is preferably a chain alkyl group having 3 to 18 carbon atoms (that is, C3 to C18). Preferably, the alkyl group 43 is a chain alkyl group having a molecular length of 5 to 11 carbon atoms (ie, C5 to C11). The main agent 41 having a C3 to C18 alkyl group 43 is liquid at room temperature, and the adjustment of the coating liquid for immersing the aluminum substrate 2 becomes easy. It is more preferable that the carbon number of the alkyl group 43 is in the range of C5 to C11 because the dynamic θ difference indicating the adhesion force of the water droplet 5 is as small as 0.01 or less and the sliding property of the water droplet 5 is increased.
 このような主剤41として、具体的には、トリメトキシプロピルシラン(すなわち、C3)、ヘキシルトリメトキシシラン(すなわち、C6)、オクチルトリエトキシシラン(すなわち、C8)、デシルトリメトキシシラン(すなわち、C10)、ドデシルトリエトキシシラン(すなわち、C12)、オクタデシルトリエトキシシラン(すなわち、C18)が挙げられる。 Specific examples of the main agent 41 include trimethoxypropylsilane (ie, C3), hexyltrimethoxysilane (ie, C6), octyltriethoxysilane (ie, C8), decyltrimethoxysilane (ie, C10). ), Dodecyltriethoxysilane (ie C12), octadecyltriethoxysilane (ie C18).
 撥水皮膜4は、これら主剤41及び架橋剤42を溶剤に溶解したコーティング液に、凹凸構造33のアルマイト層3を形成したアルミニウム基材2を浸漬することにより形成される。具体的には、図9に示すように、コーティング液を調合する調合工程S11と、コーティング液中の水分を除去する脱水工程S12と、コーティング液にアルミニウム基材2を浸漬する浸漬工程S13と、コーティングしたアルミニウム基材2を洗浄する洗浄工程S14と、アルミニウム基材2を焼成する焼成工程S15を経て、アルマイト層3の凹凸構造33の表面が、撥水皮膜4により被覆される。 The water-repellent film 4 is formed by immersing the aluminum base material 2 on which the anodized layer 3 of the concavo-convex structure 33 is formed in a coating solution obtained by dissolving the main agent 41 and the crosslinking agent 42 in a solvent. Specifically, as shown in FIG. 9, a preparation step S11 for preparing a coating liquid, a dehydration step S12 for removing moisture in the coating liquid, an immersion step S13 for immersing the aluminum substrate 2 in the coating liquid, The surface of the concavo-convex structure 33 of the alumite layer 3 is covered with the water repellent coating 4 through a washing step S14 for washing the coated aluminum substrate 2 and a firing step S15 for firing the aluminum substrate 2.
 調合工程S11において、コーティング液を調合する際には、主剤41となるアルキルアルコキシシランと、架橋剤42となるTEOSとの配合比を、例えば、所望の分子間隔dとなるように設定する。例えば、主剤41:架橋剤42=5~15:95~85のモル比とすると、水滴5の付着力を示す動的θ差が小さくなり、水滴5の滑落性が高まるので好ましい。より好適には、主剤41:架橋剤42=7~13:93~87の範囲(すなわち、主剤41のモル比率が、7モル%~13モル%)とするとよい。 In the blending step S11, when blending the coating liquid, the blending ratio of the alkyl alkoxysilane serving as the main agent 41 and the TEOS serving as the cross-linking agent 42 is set, for example, to be a desired molecular spacing d. For example, a molar ratio of main agent 41: crosslinking agent 42 = 5 to 15:95 to 85 is preferable because the dynamic θ difference indicating the adhesive force of the water droplet 5 becomes small and the sliding property of the water droplet 5 increases. More preferably, the main agent 41: crosslinking agent 42 is in the range of 7 to 13:93 to 87 (that is, the molar ratio of the main agent 41 is 7 mol% to 13 mol%).
 ここで、撥水皮膜4の撥水性の指標となる、水滴の滑落性を表す動的θ差について、説明する。図10に示すように、例えば、縦壁Wに付着した水滴5の付着力Fは、以下の式4で表され、重力mgに対する付着力Fが小さいほど、滑落しやすい。
 式4:F=kwγ(cosθR-cosθA)
式中、k:係数、w:接触幅、γ:表面張力、cosθA:前進接触角、cosθR:後退接触角
 式4から、重力mgが作用する側の前進接触角cosθAとその逆側の後退接触角cosθRとの差である、動的θ差(すなわち、cosθR-cosθA)が小さいほど、付着力Fが小さくなり、滑落しやすくなる。このとき、成長する凝縮水は、例えば、熱交換器用のフィン間の通路を閉塞しないように、フィン間隔より小さいことが望ましい。好適には、水滴直径が、フィン間隔の半分の大きさ(例えば、0.7mm)以下であればよく、例えば、動的θ差が0.01以下であるとき、水滴直径は0.7mmより十分小さくなる。
Here, the dynamic θ difference representing the slidability of water droplets, which is an index of water repellency of the water-repellent coating 4, will be described. As shown in FIG. 10, for example, the adhesion force F of the water droplet 5 adhered to the vertical wall W is expressed by the following formula 4. The smaller the adhesion force F against gravity mg, the easier it is to slide down.
Formula 4: F = kwγ (cos θR−cos θA)
In the equation, k: coefficient, w: contact width, γ: surface tension, cos θA: advancing contact angle, cos θR: receding contact angle From equation 4, the advancing contact angle cos θA on the side on which gravity mg acts and the receding contact on the opposite side. The smaller the dynamic θ difference (that is, cos θR−cos θA), which is the difference from the angle cos θR, the smaller the adhesion force F and the easier it is to slide down. At this time, it is desirable for the condensed water to grow to be smaller than the fin interval so as not to block the passage between the fins for the heat exchanger, for example. Preferably, the water droplet diameter is not more than half the fin interval (for example, 0.7 mm). For example, when the dynamic θ difference is 0.01 or less, the water droplet diameter is less than 0.7 mm. Small enough.
 コーティング液を調合するための溶剤には、例えば、エタノールを用いることができる。また、溶剤に対する主剤41と架橋剤42の合計含有量は、40~60質量%となるようにするとよい。コーティング液には、主剤41と架橋剤42とを架橋重合させるための触媒として、所定濃度の塩酸が混合される。このとき、コーティング液に含まれる多量の水分が、撥水皮膜4に取り込まれることを回避するために、塩酸の添加後に、炭化水素系溶剤を添加して、水分を除去する脱水工程S12を設けるとよい。 As the solvent for preparing the coating liquid, for example, ethanol can be used. Further, the total content of the main agent 41 and the crosslinking agent 42 with respect to the solvent is preferably 40 to 60% by mass. The coating solution is mixed with hydrochloric acid having a predetermined concentration as a catalyst for crosslinking and polymerizing the main agent 41 and the crosslinking agent 42. At this time, in order to avoid that a large amount of water contained in the coating liquid is taken into the water-repellent film 4, a dehydration step S12 is provided to remove water by adding a hydrocarbon solvent after the addition of hydrochloric acid. Good.
 浸漬工程S13において、脱水したコーティング液にアルミニウム基材2を浸漬し、凹凸構造33の表面全体に塗布した後、洗浄工程S14ですすぎを行い、余剰のコーティング液を除去する。その後、焼成工程S15で、所定温度にて焼成することで、水分を含まない撥水皮膜4が得られ、撥水性をさらに向上させる。 In the dipping step S13, the aluminum substrate 2 is dipped in the dehydrated coating solution and applied to the entire surface of the concavo-convex structure 33, and then rinsed in the washing step S14 to remove excess coating solution. Then, by baking at predetermined temperature by baking process S15, the water repellent film 4 which does not contain a water | moisture content is obtained, and water repellency is improved further.
 図11に示すように、このようにして得られる撥水性基材1は、アルミニウム基材2の表層に、微細な凹凸構造33を有するアルマイト層3が形成されており、基層31と規則的に並立するピン状突起32からなる凹凸構造33の全表面を、炭化水素系撥水材料からなる撥水皮膜4で被覆することで、超撥水性皮膜を構成している。そのため、撥水性基材1は、低温高湿度環境において、所定の突起間隔Dで並ぶピン状突起32間に、凝縮水51が生成すると(例えば、図11(a)参照)、ピン状突起32の形状による効果で空気層11から最外表面に押し出され、水滴5が生成する(例えば、図11(b)参照)。最外表面において、水滴5は、凹凸構造33の接触面積率と撥水皮膜4の組成による効果で超撥水状態となり、式4の水滴の滑落性を示す動的θ差が小さくなる効果で、容易に滑落する(例えば、図11(c)参照)。次いで、同様にして再び水滴5が生成し(例えば、図11(d)参照)、滑落することを繰り返す。 As shown in FIG. 11, the water-repellent substrate 1 obtained in this way has an alumite layer 3 having a fine concavo-convex structure 33 formed on the surface layer of the aluminum substrate 2, and regularly with the base layer 31. A super water-repellent film is formed by covering the entire surface of the concavo-convex structure 33 composed of the pin-like protrusions 32 arranged side by side with the water-repellent film 4 made of a hydrocarbon-based water-repellent material. Therefore, when the condensed water 51 is generated between the pin-shaped protrusions 32 arranged at a predetermined protrusion interval D in the low-temperature and high-humidity environment (for example, see FIG. 11A), the water-repellent base material 1 generates the pin-shaped protrusions 32. The water droplet 5 is generated by being pushed out from the air layer 11 to the outermost surface by the effect of the shape (see, for example, FIG. 11B). On the outermost surface, the water droplet 5 is in a super-water-repellent state due to the effect of the contact area ratio of the concavo-convex structure 33 and the composition of the water-repellent coating 4, and the dynamic θ difference indicating the sliding property of the water droplet of Formula 4 is reduced. It slides down easily (see, for example, FIG. 11C). Next, water droplets 5 are generated again in the same manner (see, for example, FIG. 11D), and the sliding is repeated.
 このとき、アルマイト化とエッチングにより形成されるアルマイト層3は、凹凸構造33の内部、特に基層31に近い表面まで、撥水皮膜4が均一形成されるので、繰り返し凝縮水が生成しても、内部に残留することがない。したがって、比較的安価な炭化水素系撥水材料を用いても、十分高い撥水性が得られ、凹凸構造33からの良好な排出性と滑落性を長期間維持して、撥水性の低下を防止する。よって、熱交換器用フィン等に用いられて、超撥水性と高生産性を兼ね備え、着霜を防止して運転効率を向上させる撥水性基材1となる。 At this time, the alumite layer 3 formed by anodization and etching has the water-repellent film 4 uniformly formed inside the concavo-convex structure 33, particularly the surface close to the base layer 31, so that even if condensed water is repeatedly generated, It does not remain inside. Therefore, even if a relatively inexpensive hydrocarbon-based water repellent material is used, sufficiently high water repellency can be obtained, and good drainage and sliding properties from the concavo-convex structure 33 can be maintained for a long period of time to prevent a decrease in water repellency. To do. Therefore, it becomes the water-repellent substrate 1 that is used for fins for heat exchangers and the like, has super water repellency and high productivity, prevents frost formation and improves operating efficiency.
 次に、本形態の撥水性基材1について、アルマイト層3の凹凸構造33と撥水皮膜4による撥水性能を評価した。比較のために、従来のベーマイト化処理によるベーマイト層を設けた例についても、同様の評価を行った。これら実験例について説明する。 Next, with respect to the water-repellent substrate 1 of this embodiment, the water-repellent performance by the uneven structure 33 of the alumite layer 3 and the water-repellent coating 4 was evaluated. For comparison, the same evaluation was performed for an example in which a boehmite layer formed by a conventional boehmite treatment was provided. These experimental examples will be described.
(実験例1)
 上記図5に示した方法で、アルマイト化処理工程S1とエッチング処理工程S2とを順に実施して、アルミニウム基材2の表面に、基層31と多数のピン状突起32からなるアルマイト層3を形成した。アルミニウム基材2には、熱交換器用のフィン材に用いられるAl-Mg-Si系アルミニウム合金(例えば、BA4104)を用いた。まず、アルマイト化処理工程S1において、アルミニウム基材2の表面を酸洗浄した。酸洗浄用の薬剤としては、硝酸(例えば、濃度67質量%)を用い、常温で1分間浸漬処理した。その後、燐酸浴中で電圧を印加して陽極酸化することにより、アルミニウム基材2の表面の全面に、六角形セル構造のアルマイト層3を形成した。陽極酸化は、以下に示す条件で行った。
[陽極酸化]
・薬剤:燐酸、濃度2質量%
・電圧:50V
・時間:50秒
(Experimental example 1)
The alumite treatment step S1 and the etching treatment step S2 are sequentially performed by the method shown in FIG. 5 to form the alumite layer 3 including the base layer 31 and a large number of pin-like protrusions 32 on the surface of the aluminum base 2. did. As the aluminum substrate 2, an Al—Mg—Si based aluminum alloy (for example, BA4104) used for a fin material for a heat exchanger was used. First, in the anodizing treatment step S1, the surface of the aluminum base 2 was acid cleaned. As a chemical for acid cleaning, nitric acid (for example, concentration 67% by mass) was used, and immersion treatment was performed for 1 minute at room temperature. Thereafter, an anodized layer 3 having a hexagonal cell structure was formed on the entire surface of the aluminum base 2 by applying a voltage in a phosphoric acid bath and performing anodization. Anodization was performed under the following conditions.
[anodization]
・ Drug: Phosphoric acid, concentration 2% by mass
・ Voltage: 50V
・ Time: 50 seconds
 アルマイト化処理したアルミニウム基材2の表面を、純水ですすぎ、次いで、エッチング処理工程S2において、燐酸浴中でエッチングして、アルマイト層3の細孔33を拡径した。エッチング処理は、以下の条件で行った。
[エッチング]
・薬剤:燐酸、濃度2質量%
・温度:40℃
・時間:10分
 このアルマイト化とエッチングを繰り返し行って、アルミニウム基材2の表面に、凹凸構造33を有するアルマイト層3を形成した(すなわち、実施例1)。
The surface of the anodized aluminum substrate 2 was rinsed with pure water, and then etched in a phosphoric acid bath in the etching treatment step S2 to enlarge the pores 33 of the anodized layer 3. The etching process was performed under the following conditions.
[etching]
・ Drug: Phosphoric acid, concentration 2% by mass
・ Temperature: 40 ℃
-Time: 10 minutes This anodization and etching were repeated to form the anodized layer 3 having the concavo-convex structure 33 on the surface of the aluminum base 2 (that is, Example 1).
 実施例1のアルマイト層3について、図12に示すように、得られた凹凸構造33の表面形状と断面構造の画像観察を行った。図13に示すように、アルマイト層3の表面の凹凸構造を、走査型電子顕微鏡(以下、SEMと称する)を用いて傾斜観察した画像において、多数のピン状突起32が規則的に並立する構造が確認された。また、図14に示すように、アルマイト層3の断面構造を、透過型電子顕微鏡(以下、TEMと称する)を用いて観察した画像において、ピン状突起32の幅W、高さH、突起間隔Dを測定した。その結果、W=8nm、H=600nm、D=100nmとなり、所望の高さを有し、突起間隔Dに対して幅Wが十分小さい、凹凸構造33が得られた。 For the alumite layer 3 of Example 1, as shown in FIG. 12, the surface shape and the cross-sectional structure of the obtained uneven structure 33 were observed. As shown in FIG. 13, a structure in which a large number of pin-like protrusions 32 are arranged side by side in an image obtained by observing the uneven structure on the surface of the alumite layer 3 using a scanning electron microscope (hereinafter referred to as SEM). Was confirmed. Further, as shown in FIG. 14, in an image obtained by observing the cross-sectional structure of the alumite layer 3 using a transmission electron microscope (hereinafter referred to as TEM), the width W, the height H, and the protrusion interval of the pin-like protrusions 32. D was measured. As a result, the concavo-convex structure 33 having W = 8 nm, H = 600 nm, D = 100 nm, a desired height, and a sufficiently small width W with respect to the protrusion interval D was obtained.
 比較のため、従来のベーマイト化処理工程によって、アルミニウム基材2の表面に、酸化アルミニウムからなるベーマイト層61を形成し、その凹凸構造63を同様にして評価した(比較例1)。ベーマイト化処理は、アルミニウム基材2を、80℃~100℃の範囲の温度の水に、約5分間浸漬することにより行った。 For comparison, a boehmite layer 61 made of aluminum oxide was formed on the surface of the aluminum base 2 by a conventional boehmite treatment step, and the uneven structure 63 was similarly evaluated (Comparative Example 1). The boehmite treatment was performed by immersing the aluminum substrate 2 in water having a temperature in the range of 80 ° C. to 100 ° C. for about 5 minutes.
 比較例1のベーマイト層61について、図15に示すように、得られた凹凸構造63の表面形状と断面構造の画像観察を行った。図16に示すように、ベーマイト層61の表面の凹凸構造63を、SEMを用いて観察した画像において、多数の針状突起62を有する構造が確認された。また、図17に示すように、ベーマイト層61の断面構造を、TEMを用いて観察した画像において、多数の針状突起62が、不規則な方向に延びる凹凸構造63を有し、アルミニウム基材2側の下層611において、表面側の上層612よりも、針状突起62の幅が細くなっている、狭窄構造を有することが判明した。 For the boehmite layer 61 of Comparative Example 1, as shown in FIG. 15, image observation of the surface shape and cross-sectional structure of the obtained uneven structure 63 was performed. As shown in FIG. 16, a structure having a large number of needle-like protrusions 62 was confirmed in an image obtained by observing the uneven structure 63 on the surface of the boehmite layer 61 using an SEM. Further, as shown in FIG. 17, in an image obtained by observing the cross-sectional structure of the boehmite layer 61 using a TEM, a large number of needle-like protrusions 62 have an uneven structure 63 extending in an irregular direction, It has been found that the lower layer 611 on the two side has a constricted structure in which the width of the needle-like protrusion 62 is narrower than that of the upper layer 612 on the surface side.
 また、比較例2として、実施例1と同様の方法で、アルミニウム基材2の表面にアルマイト層3を形成し、アルマイト化処理とエッチング処理の回数を低減することにより、接触面積率が異なる凹凸構造33とした。実施例1と同様にして、比較例2のアルマイト層3の断面構造を、TEMを用いて観察したところ、ピン状突起32が並立する凹凸構造33であることが確認された。ただし、ピン状突起32の突起間隔Dが100nm前後であるのに対して、幅Wは40nm前後と広く、高さHは400nmより低い。 Further, as Comparative Example 2, irregularities having different contact area ratios are formed by forming the alumite layer 3 on the surface of the aluminum base 2 in the same manner as in Example 1 and reducing the number of times of anodizing treatment and etching treatment. Structure 33 was obtained. When the cross-sectional structure of the alumite layer 3 of Comparative Example 2 was observed using TEM in the same manner as in Example 1, it was confirmed that the concavo-convex structure 33 in which the pin-like protrusions 32 were juxtaposed. However, while the projection interval D of the pin-like projections 32 is around 100 nm, the width W is as wide as around 40 nm and the height H is lower than 400 nm.
 これら実施例1、比較例1、2について、上記図4に示した方法で、Rzjisカット率10%~50%における接触面積率を測定した。まず、実施例1のアルマイト層3について、走査型プローブ顕微鏡(以下、SPMと称する)を用いて、凹凸構造33の表面を走査することにより、三次元凹凸画像を得た。得られた三次元凹凸画像に基づいて、十点平均粗さRzjisを算出し、最大高さからRzjisカット率10%~50%の各仮想切断面において、測定エリアAにおけるピン状突起32の接触面積率を算出した。同様にして、比較例1、比較例2についても、Rzjisカット率10%~50%における接触面積率を測定した。 For these Example 1 and Comparative Examples 1 and 2, the contact area rate at an Rzjis cut rate of 10% to 50% was measured by the method shown in FIG. First, a three-dimensional concavo-convex image was obtained by scanning the surface of the concavo-convex structure 33 for the alumite layer 3 of Example 1 using a scanning probe microscope (hereinafter referred to as SPM). Based on the obtained three-dimensional concavo-convex image, the 10-point average roughness Rzjis is calculated, and the contact of the pin-like protrusion 32 in the measurement area A is measured on each virtual cut surface with an Rzjis cut rate of 10% to 50% from the maximum height. The area ratio was calculated. Similarly, for Comparative Example 1 and Comparative Example 2, the contact area ratio was measured at an Rzjis cut ratio of 10% to 50%.
 図18に示すように、Rzjisカット率10%~50%の全範囲において、実施例1の接触面積率が最も小さくなっており、Rzjisカット率20%接触面積率は、0.002であった。また、実施例1、比較例1、2のいずれも、Rzjisカット率10%において接触面積率が最も小さく、Rzjisカット率の上昇に伴い接触面積率が大きくなっているが、実施例1の接触面積率の増加は、比較例1、2に対して比較的緩やかである。そのため、Rzjisカット率10%においては、実施例1、比較例1、2共に、接触面積率0.01以下であるが、Rzjisカット率20%、30%においては、実施例1のみが、接触面積率0.01以下となっている。 As shown in FIG. 18, in the entire range of the Rzjis cut rate of 10% to 50%, the contact area rate of Example 1 was the smallest, and the Rzjis cut rate 20% contact area rate was 0.002. . Further, in both Example 1 and Comparative Examples 1 and 2, the contact area ratio is the smallest when the Rzjis cut rate is 10%, and the contact area ratio increases as the Rzjis cut rate increases. The increase in area ratio is relatively gradual with respect to Comparative Examples 1 and 2. For this reason, the contact area rate is 0.01 or less in both the example 1 and the comparative examples 1 and 2 at the Rzjis cut rate of 10%, but only the example 1 is in contact at the Rzjis cut rate of 20% and 30%. The area ratio is 0.01 or less.
 このように、比較例1、2では、接触面積率が全体に大きくなっている。特に、比較例1のベーマイト層61の凹凸構造63は、Rzjisカット率10%においては、比較例2より僅かに小さいが、Rzjisカット率20%で逆転している。これは、凹凸構造33、63の高さにバラツキがあり、Rzjisカット率10%においては、測定エリアAに現れないピン状突起32、針状突起62があると考えられる。比較例1のベーマイト層61は、上層612の針状突起62の幅がより太く、不規則であるために、Rzjisカット率20%以降で、接触面積率が増大するものと思われる。 Thus, in Comparative Examples 1 and 2, the overall contact area ratio is large. In particular, the uneven structure 63 of the boehmite layer 61 of Comparative Example 1 is slightly smaller than that of Comparative Example 2 at an Rzjis cut rate of 10%, but is reversed at an Rzjis cut rate of 20%. It is considered that there are variations in the heights of the concavo- convex structures 33 and 63, and there are pin-like protrusions 32 and needle-like protrusions 62 that do not appear in the measurement area A when the Rzjis cut rate is 10%. In the boehmite layer 61 of Comparative Example 1, since the width of the needle-like protrusions 62 of the upper layer 612 is larger and irregular, it is considered that the contact area ratio increases after the Rzjis cut rate of 20%.
(実験例2)
 実験例1で得られた、実施例1のアルミニウム基材2に、さらに、上記図9に示した工程で、アルマイト層3の凹凸構造33を被覆する、撥水皮膜4を形成した。まず、調合工程S11において、以下に示すように、エタノールを溶剤として用い、主剤41として、炭素数C8のオクチルアルコキシシランと、架橋剤42であるTEOSを添加して、30分間攪拌した(すなわち、S111)。さらに、触媒として0.05mol/Lの塩酸を添加して30分間攪拌し、主剤41と架橋剤42を架橋反応させて、ゲル化した(すなわち、S112)。
 溶剤:エタノール(例えば、和光純薬工業(株)製)
 主剤41:オクチルトリエトキシシラン(例えば、L04407;ジョンソン・マッセイ・ジャパン合同会社製、商品名)
 架橋剤42:TEOS(例えば、KBE-04;信越化学工業(株)製、商品名)
 触媒:塩酸0.05mol/L(例えば、和光純薬工業(株)製)
(Experimental example 2)
A water-repellent coating 4 that covers the uneven structure 33 of the alumite layer 3 was further formed on the aluminum base 2 of Example 1 obtained in Experimental Example 1 by the process shown in FIG. First, in the preparation step S11, as shown below, ethanol was used as a solvent, octylalkoxysilane having a carbon number of C8 and TEOS as a crosslinking agent 42 were added as the main agent 41 and stirred for 30 minutes (ie, S111). Furthermore, 0.05 mol / L hydrochloric acid was added as a catalyst and stirred for 30 minutes to cause the main agent 41 and the cross-linking agent 42 to cross-link to form a gel (ie, S112).
Solvent: Ethanol (for example, Wako Pure Chemical Industries, Ltd.)
Main agent 41: Octyltriethoxysilane (for example, L04407; manufactured by Johnson Matthey Japan LLC, trade name)
Crosslinking agent 42: TEOS (for example, KBE-04; manufactured by Shin-Etsu Chemical Co., Ltd., trade name)
Catalyst: 0.05 mol / L hydrochloric acid (for example, manufactured by Wako Pure Chemical Industries, Ltd.)
 主剤41と架橋剤42のモル比は、オクチルアルコキシシラン:TEOS=10:90(すなわち、主剤41のモル比率10%)とした。溶剤と触媒を含む全体の質量に対する、主剤41と架橋剤42の質量の割合であるゲル濃度は、50質量%とした。 The molar ratio of the main agent 41 and the crosslinking agent 42 was octylalkoxysilane: TEOS = 10: 90 (that is, the molar ratio of the main agent 41 was 10%). The gel concentration which is the ratio of the mass of the main agent 41 and the crosslinking agent 42 to the total mass including the solvent and the catalyst was 50% by mass.
 次いで、脱水工程S12において、炭化水素系洗浄剤(商品名NSクリーン、JX日鉱日石エネルギー(株)製)を添加して、30分間攪拌し、10分間静置した(すなわち、S121)。その後、上澄み液を抽出して、水分を分離し、得られた抽出液をコーティング液とした(すなわち、S122)。浸漬工程S13では、得られたコーティング液に、実施例1のアルミニウム基材2を、30分間浸漬した。さらに、洗浄工程S14にて、アルミニウム基材2を、炭化水素系洗浄剤を用いて、1分間洗浄した。その後、焼成工程S15において、150℃で30分間、焼成することにより、アルマイト層3の表面が撥水皮膜4で被覆された撥水性基材1を得た。 Next, in the dehydration step S12, a hydrocarbon-based cleaning agent (trade name NS Clean, manufactured by JX Nippon Oil & Energy Corporation) was added, stirred for 30 minutes, and allowed to stand for 10 minutes (that is, S121). Thereafter, the supernatant was extracted to separate water, and the obtained extract was used as a coating solution (ie, S122). In the dipping step S13, the aluminum substrate 2 of Example 1 was dipped in the obtained coating solution for 30 minutes. Further, in the cleaning step S14, the aluminum substrate 2 was cleaned for 1 minute using a hydrocarbon-based cleaning agent. Then, in baking process S15, the water-repellent base material 1 by which the surface of the alumite layer 3 was coat | covered with the water-repellent film 4 was obtained by baking at 150 degreeC for 30 minutes.
 このようにして得られた、実施例1の撥水性基材1について、上記図10に示した動的θ差により、水滴5の滑落性を評価した。動的θ差の測定には、拡張収縮法を用いた接触角測定装置(すなわち、DM-501、協和界面科学(株)製)を用いた。その結果、動的θ差=0.0003となり、比較例1で得られた値である0.001以下の滑落性を有することが確認された。 For the water-repellent substrate 1 of Example 1 obtained in this way, the sliding property of the water droplet 5 was evaluated based on the dynamic θ difference shown in FIG. For the measurement of the dynamic θ difference, a contact angle measuring device using an expansion contraction method (that is, DM-501, manufactured by Kyowa Interface Science Co., Ltd.) was used. As a result, the dynamic θ difference was 0.0003, and it was confirmed that the film had a sliding property of 0.001 or less, which is the value obtained in Comparative Example 1.
 さらに、実施例1の撥水性基材1に、乾湿繰り返しによる凝縮水試験を実施して、最大凝縮水直径を測定した。凝縮水試験では、撥水性基材1のテストピースを0℃以下(例えば、-5℃以下)に冷却して、高湿度の恒温恒湿槽に入れ、テストピースの表面に送風しながら(例えば、風速1m/秒)、表面に発生する凝縮水を、CCDカメラを用いて60分間観察した。このとき、発生する凝縮水の最大直径を測定し、その後、テストピースを再度冷却して、表面の凝縮水を観察することを繰り返し行った。 Furthermore, the water repellent substrate 1 of Example 1 was subjected to a condensed water test by repeated wet and dry, and the maximum condensed water diameter was measured. In the condensed water test, the test piece of the water-repellent substrate 1 is cooled to 0 ° C. or lower (for example, −5 ° C. or lower), placed in a high-humidity constant temperature and humidity chamber, and blown to the surface of the test piece (for example, The wind speed was 1 m / sec), and condensed water generated on the surface was observed for 60 minutes using a CCD camera. At this time, the maximum diameter of the generated condensed water was measured, and then the test piece was cooled again and the condensed water on the surface was observed repeatedly.
 比較のため、比較例1のアルミニウム基材2について、ベーマイト層61の表面にフッ素系撥水材料からなるフッ素系撥水皮膜を形成した。フッ素系撥水皮膜は、パーフルオロポリエーテルを含むシラン化合物を主剤とする撥水材料(オプツールDSX;ダイキン工業(株)製、商品名)を用い、同様にして調合したコーティング液に浸漬して、焼成することにより形成した。また、比較例2のアルミニウム基材2について、アルマイト層3の凹凸構造33の表面に、実施例1と同様の炭化水素系撥水皮膜4を形成した。比較例1、2について、得られた撥水性基材のテストピースを作製し、同様にして、凝縮水試験を実施した。 For comparison, a fluorine-based water-repellent film made of a fluorine-based water-repellent material was formed on the surface of the boehmite layer 61 for the aluminum substrate 2 of Comparative Example 1. Fluorine-based water-repellent coating uses a water-repellent material (OPTOOL DSX; manufactured by Daikin Industries, Ltd., trade name) mainly composed of a silane compound containing perfluoropolyether, and is immersed in a coating solution prepared in the same manner. It was formed by firing. For the aluminum substrate 2 of Comparative Example 2, the same hydrocarbon-based water repellent coating 4 as that of Example 1 was formed on the surface of the concavo-convex structure 33 of the alumite layer 3. About the comparative examples 1 and 2, the test piece of the obtained water-repellent base material was produced, and the condensed water test was implemented similarly.
 図19に示すように、実施例1の撥水性基材1は、凝縮水試験1回後の最大凝縮水滴直径が、0.4mmであり、凝縮水試験3回後においても、熱交換器用のフィン材に要求される0.7mm以下を満足した。これに対して、ベーマイト層61にフッ素系撥水皮膜を形成した比較例1では、乾湿繰り返し試験1回後の最大凝縮水滴直径は、実施例1と同等であったが、凝縮水試験を繰り返しにより凝縮水直径が大きくなり、凝縮水試験3回後の最大凝縮水滴直径は、2.0mm近傍に増大した。 As shown in FIG. 19, the water-repellent substrate 1 of Example 1 has a maximum condensed water droplet diameter after one condensed water test of 0.4 mm, and even after three condensed water tests, Satisfied 0.7 mm or less required for the fin material. On the other hand, in Comparative Example 1 in which the fluorine-based water repellent film was formed on the boehmite layer 61, the maximum condensed water droplet diameter after one dry / wet repeated test was the same as that in Example 1, but the condensed water test was repeated. As a result, the diameter of the condensed water increased, and the maximum condensed water droplet diameter after three condensed water tests increased to around 2.0 mm.
 図20に示すように、比較例1のベーマイト層61は、凹凸構造63を構成する針状突起62が、下層611に狭窄部を有しているために、フッ素系撥水材料からなる皮膜が、凹凸構造63となる表面全面を覆うことは難しい。そのため、低温高湿度環境において、針状突起62間に、凝縮水51が生成すると(例えば、図20(e)参照)、当初は、凹凸構造63とフッ素系撥水皮膜による効果で、最外表面に押し出されて水滴5が生成し(例えば、図20(f)参照)し、容易に滑落する(例えば、図20(g)参照)。ところが、これを繰り返すことにより、凝縮水が凹凸構造63の内部に残留していき(例えば、図20(h)参照)、撥水性が低下すると考えられる。 As shown in FIG. 20, the boehmite layer 61 of Comparative Example 1 has a film made of a fluorine-based water repellent material because the needle-like protrusions 62 constituting the concavo-convex structure 63 have a narrowed portion in the lower layer 611. It is difficult to cover the entire surface that becomes the uneven structure 63. Therefore, when condensed water 51 is generated between the needle-like protrusions 62 in a low temperature and high humidity environment (see, for example, FIG. 20 (e)), the outermost portion is initially the outermost due to the effect of the concavo-convex structure 63 and the fluorine-based water repellent film. Water droplets 5 are generated by being pushed out onto the surface (for example, see FIG. 20 (f)), and slide down easily (for example, see FIG. 20 (g)). However, by repeating this, it is considered that the condensed water remains inside the concavo-convex structure 63 (see, for example, FIG. 20H), and the water repellency is lowered.
 また、接触面積率が大きいアルマイト層3に炭化水素系の撥水皮膜4を形成した比較例2では、凝縮水試験1回後の最大凝縮水滴直径が、1.0mmを超えており、3回後の最大凝縮水滴直径は、1.5mm程度まで大きくなった。図21に比較して示すように、凝縮水試験を3回繰り返したとき、実施例1の撥水性基材1の表面に生成する凝縮水直径は、比較例1より小さく、試験回数が1回~3回まで増えても大きく変わらない。これに対して、比較例1では、凝縮水試験の繰り返しにより凝縮水直径が大きくなって、撥水性が低下している。 Further, in Comparative Example 2 in which the hydrocarbon-based water-repellent film 4 was formed on the alumite layer 3 having a large contact area ratio, the maximum condensed water droplet diameter after one condensed water test exceeded 1.0 mm, and three times The maximum condensed water droplet diameter later increased to about 1.5 mm. As shown in FIG. 21, when the condensed water test is repeated three times, the condensed water diameter generated on the surface of the water-repellent substrate 1 of Example 1 is smaller than that of Comparative Example 1, and the number of tests is one. It does not change greatly even if it is increased up to 3 times. On the other hand, in Comparative Example 1, the condensed water diameter is increased by repeating the condensed water test, and the water repellency is lowered.
(実験例3)
 実験例1で得られた、実施例1のアルミニウム基材2に、実験例2と同様の方法で、撥水皮膜4を形成した。このとき、調合工程S11において、撥水皮膜4の主剤41として、以下に示すように、炭素数の異なるアルキルアルコキシシランを用いた。
 炭素数C3:トリメトキシプロピルシラン(例えば、B21033;ジョンソン・マッセイ・ジャパン合同会社製、商品名)
 炭素数C6:ヘキシルトリメトキシシラン(例えば、KBM-3063;信越化学工業(株)製、商品名)
 炭素数C8:オクチルトリエトキシシラン(例えば、L04407;ジョンソン・マッセイ・ジャパン合同会社製、商品名)
 炭素数C10:デシルトリメトキシシラン(例えば、KBM-3103;信越化学工業(株)製、商品名)
 炭素数C12:ドデシルトリエトキシシラン(例えば、D3383;東京化成工業(株)製、商品名)
 炭素数C18:オクタデシルトリエトキシシラン(例えば、S12325;和光純薬工業(株)製、商品名)
(Experimental example 3)
A water-repellent coating 4 was formed on the aluminum substrate 2 of Example 1 obtained in Experimental Example 1 in the same manner as in Experimental Example 2. At this time, in the preparation step S11, alkylalkoxysilanes having different carbon numbers were used as the main agent 41 of the water repellent coating 4 as shown below.
Carbon number C3: Trimethoxypropylsilane (for example, B21033; manufactured by Johnson Matthey Japan LLC, trade name)
C6: Hexyltrimethoxysilane (for example, KBM-3063; manufactured by Shin-Etsu Chemical Co., Ltd., trade name)
Carbon number C8: Octyltriethoxysilane (for example, L04407; manufactured by Johnson Matthey Japan G.K., trade name)
Carbon number C10: Decyltrimethoxysilane (for example, KBM-3103; manufactured by Shin-Etsu Chemical Co., Ltd., trade name)
Carbon number C12: dodecyltriethoxysilane (for example, D3383; manufactured by Tokyo Chemical Industry Co., Ltd., trade name)
Carbon number C18: Octadecyltriethoxysilane (for example, S12325; manufactured by Wako Pure Chemical Industries, Ltd., trade name)
 実験例2と同様にして調合したコーティング液に、実施例1のアルミニウム基材2を浸漬し、焼成して、炭素数の異なる撥水皮膜4を形成した撥水性基材1とした。得られた撥水性基材について、上記した接触角測定装置を用いて動的θ差を測定して、水滴5の滑落性を評価した。 The aluminum substrate 2 of Example 1 was immersed in a coating solution prepared in the same manner as in Experimental Example 2 and baked to obtain a water-repellent substrate 1 having a water-repellent film 4 having a different carbon number. About the obtained water repellent base material, the dynamic (theta) difference was measured using the above-mentioned contact angle measuring apparatus, and the sliding property of the water droplet 5 was evaluated.
 比較のため、上記図9に示した方法において、脱水工程S12と洗浄工程S14を省略した以外は同様の工程(すなわち、図中左側に示される工程)にて、実施例1のアルミニウム基材2に撥水皮膜4を形成し、比較例3の撥水性基材とした。このとき、撥水皮膜4の主剤41には、上記した炭素数6~18のアルキルアルコキシシランを用いた。得られた撥水性基材について、上記した接触角測定装置を用いて動的θ差を測定して、水滴5の滑落性を評価した。 For comparison, in the method shown in FIG. 9, the aluminum substrate 2 of Example 1 was used in the same process (that is, the process shown on the left side in the figure) except that the dehydration process S12 and the cleaning process S14 were omitted. A water-repellent film 4 was formed on the surface to obtain a water-repellent substrate of Comparative Example 3. At this time, the above-described alkyl alkoxysilane having 6 to 18 carbon atoms was used as the main agent 41 of the water repellent coating 4. About the obtained water repellent base material, the dynamic (theta) difference was measured using the above-mentioned contact angle measuring apparatus, and the sliding property of the water droplet 5 was evaluated.
 図22に示すように、調合したコーティング液の脱水とコーティング後の洗浄を実施しない比較例3では、得られた撥水性基材の動的θ差がいずれも0.01を超えている。これに対して、実施例1の撥水性基材1は、同じ炭素数の主剤41を用いた比較例3に比べて、動的θ差が小さくなっており、炭素数5、8、10のものは、動的θ差が0.01以下となった。 As shown in FIG. 22, in Comparative Example 3 in which the prepared coating solution was not dehydrated and washed after coating, the dynamic θ difference of the obtained water-repellent substrate exceeded 0.01. On the other hand, the water-repellent substrate 1 of Example 1 has a smaller dynamic θ difference compared to Comparative Example 3 using the main agent 41 having the same carbon number, and has 5, 8, and 10 carbon atoms. As for the thing, the dynamic (theta) difference became 0.01 or less.
 さらに、実施例1の撥水性基材1について、撥水皮膜4を構成する主剤41と架橋剤42のモル比を、オクチルアルコキシシラン:TEOS=5~30:95~70の範囲で変更し、それ以外は、同様の方法により、撥水性基材1を作製した。得られた撥水性基材について、上記した接触角測定装置を用いて動的θ差を測定して、水滴5の滑落性を評価した。 Further, for the water-repellent substrate 1 of Example 1, the molar ratio of the main agent 41 and the crosslinking agent 42 constituting the water-repellent film 4 was changed in the range of octylalkoxysilane: TEOS = 5-30: 95-70, Otherwise, the water-repellent substrate 1 was produced by the same method. About the obtained water repellent base material, the dynamic (theta) difference was measured using the above-mentioned contact angle measuring apparatus, and the sliding property of the water droplet 5 was evaluated.
 図23に示すように、撥水皮膜4に含まれる主剤41のモル比率(すなわち、図中のCモル比)によって、動的θ差が変化している。Cモル比が10%前後であるときに、動的θ差が最小となり、これより小さくても、大きくても動的θ差は増加する傾向にある。具体的には、主剤41のCモル比が7%~13%の範囲にあるときに、動的θ差が0.01以下となっている。 23, the dynamic θ difference changes depending on the molar ratio of the main agent 41 contained in the water-repellent film 4 (that is, the C molar ratio in the figure). When the C molar ratio is around 10%, the dynamic θ difference is minimized, and the dynamic θ difference tends to increase whether it is smaller or larger. Specifically, when the C molar ratio of the main agent 41 is in the range of 7% to 13%, the dynamic θ difference is 0.01 or less.
 本開示の撥水性基材1は、上記実施形態や上記実施例に記載した内容に限定されるものではなく、本発明の趣旨を超えない範囲で、種々の変更が可能である。例えば、上記実施形態では、車載用の空調システムに用いられるHPシステムへの適用例として説明したが、車載用以外の空調システムや、給湯器用のHPシステムの室外機、その他の熱交換器用フィンとして好適に使用される。また、熱交換器用フィン以外の用途にも、任意に使用することができる。 The water-repellent substrate 1 of the present disclosure is not limited to the contents described in the above embodiment and the above examples, and various modifications can be made without departing from the gist of the present invention. For example, in the said embodiment, although demonstrated as an application example to the HP system used for a vehicle-mounted air conditioning system, as an air conditioning system other than vehicle-mounted, the outdoor unit of the HP system for water heaters, and other heat exchanger fins Preferably used. Moreover, it can be used arbitrarily for applications other than heat exchanger fins.

Claims (7)

  1.  アルミニウム基材(2)と、
     該アルミニウム基材の表面に設けられたアルマイト層(3)と、
     該アルマイト層の表面に設けられた撥水皮膜(4)と、を備えており、
     上記アルマイト層は、上記アルミニウム基材と一体の基層(31)と、該基層の表面に並立する多数のピン状突起(32)とからなる凹凸構造(33)を有し、該凹凸構造の十点平均粗さRzjisに対し、上記凹凸構造の最大高さ位置からRzjisカット率20%となる高さの仮想切断面(A)において、上記ピン状突起の接触面積率が0.01以下であり、
     上記撥水皮膜は、炭化水素系撥水材料からなる皮膜である、撥水性基材(1)。
    An aluminum substrate (2);
    An alumite layer (3) provided on the surface of the aluminum substrate;
    A water repellent coating (4) provided on the surface of the anodized layer,
    The alumite layer has a concavo-convex structure (33) composed of a base layer (31) integral with the aluminum base and a large number of pin-like protrusions (32) juxtaposed on the surface of the base layer. With respect to the point average roughness Rzjis, the contact area ratio of the pin-like protrusions is 0.01 or less at the virtual cut surface (A) having a height of 20% Rzjis cut rate from the maximum height position of the concavo-convex structure. ,
    The water-repellent film is a water-repellent substrate (1) which is a film made of a hydrocarbon-based water-repellent material.
  2.  上記接触面積率が、0.005以下である、請求項1に記載の撥水性基材。 The water-repellent substrate according to claim 1, wherein the contact area ratio is 0.005 or less.
  3.  上記炭化水素系撥水材料は、アルキル基(43)を有する金属アルコキシドからなる主剤(41)と有機シランからなる架橋剤(42)を含む、請求項1又は2に記載の撥水性基材。 The water-repellent substrate according to claim 1 or 2, wherein the hydrocarbon-based water repellent material includes a main agent (41) made of a metal alkoxide having an alkyl group (43) and a cross-linking agent (42) made of an organic silane.
  4.  上記金属アルコキシドは、炭素数3~18のアルキル基を有するアルキルアルコキシシランであり、上記有機シランは、テトラアルコキシシランである、請求項3に記載の撥水性基材。 The water-repellent substrate according to claim 3, wherein the metal alkoxide is an alkylalkoxysilane having an alkyl group having 3 to 18 carbon atoms, and the organic silane is a tetraalkoxysilane.
  5.  上記主剤と上記架橋剤のモル比は、7~13:93~87である、請求項3又は4項に記載の撥水性基材。 The water-repellent substrate according to claim 3 or 4, wherein the molar ratio of the main agent to the crosslinking agent is 7 to 13:93 to 87.
  6.  アルミニウム基材(2)と、
     該アルミニウム基材の表面に設けられたアルマイト層(3)と、
     該アルマイト層の表面に設けられた撥水皮膜(4)と、を備えており、
     上記アルマイト層は、上記アルミニウム基材と一体の基層(31)と、該基層の表面に並立する多数のピン状突起(32)とからなる凹凸構造(33)を有し、該凹凸構造の十点平均粗さRzjisに対し、上記凹凸構造の最大高さ位置からRzjisカット率20%となる高さの仮想切断面(A)において、上記ピン状突起の接触面積率が0.01以下であり、
     上記撥水皮膜は、炭化水素系撥水材料からなる皮膜である、撥水性基材(1)の製造方法であって、
     上記アルミニウム基材の表面に、アルマイト化処理とエッチング処理とにより、上記凹凸構造を有する上記アルマイト層を形成する工程と(S1、S2)、
     上記炭化水素系撥水材料を含むコーティング液を調合する工程(S11)と、
     上記コーティング液に、炭化水素系溶剤を添加して、水分を分離させて除去する工程(S12)と、
     水分を除去した上記コーティング液に、上記アルマイト層を形成した上記アルミニウム基材を浸漬する工程(S13)と、
     上記コーティング液が塗布された上記アルミニウム基材を焼成する工程(S15)と、を備える、撥水性基材の製造方法。
    An aluminum substrate (2);
    An alumite layer (3) provided on the surface of the aluminum substrate;
    A water repellent coating (4) provided on the surface of the anodized layer,
    The alumite layer has a concavo-convex structure (33) composed of a base layer (31) integral with the aluminum base and a large number of pin-like protrusions (32) juxtaposed on the surface of the base layer. With respect to the point average roughness Rzjis, the contact area ratio of the pin-like protrusions is 0.01 or less at the virtual cut surface (A) having a height of 20% Rzjis cut rate from the maximum height position of the concavo-convex structure. ,
    The water-repellent film is a method for producing a water-repellent substrate (1), which is a film made of a hydrocarbon-based water-repellent material,
    Forming the alumite layer having the concavo-convex structure on the surface of the aluminum base material by anodizing and etching (S1, S2);
    Preparing a coating liquid containing the hydrocarbon-based water repellent material (S11);
    Adding a hydrocarbon solvent to the coating liquid to separate and remove moisture (S12);
    Immersing the aluminum base material on which the alumite layer has been formed in the coating liquid from which moisture has been removed (S13);
    A step (S15) of firing the aluminum substrate to which the coating liquid has been applied.
  7.  上記アルマイト層を形成する工程において、上記アルミニウム基材の表面を陽極酸化することによりアルマイト化処理する工程(S1)と、アルマイト化処理した上記アルミニウム基材をエッチング処理する工程(S2)と、を繰り返し行う、請求項6記載の撥水性基材の製造方法。 In the step of forming the alumite layer, a step (S1) of anodizing the surface of the aluminum substrate by anodizing, and a step of etching the aluminum substrate that has been anodized (S2). The method for producing a water-repellent substrate according to claim 6, which is repeated.
PCT/JP2016/079505 2015-12-25 2016-10-04 Water-repellent base material and method for manufacturing same WO2017110200A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015254043A JP6641990B2 (en) 2015-12-25 2015-12-25 Water repellent substrate and method for producing the same
JP2015-254043 2015-12-25

Publications (1)

Publication Number Publication Date
WO2017110200A1 true WO2017110200A1 (en) 2017-06-29

Family

ID=59089223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079505 WO2017110200A1 (en) 2015-12-25 2016-10-04 Water-repellent base material and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP6641990B2 (en)
WO (1) WO2017110200A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110392815A (en) * 2017-03-31 2019-10-29 大金工业株式会社 Heat exchanger and air-conditioning device
WO2020213485A1 (en) * 2019-04-18 2020-10-22 Dic株式会社 Structure body, structure body production method, heat exchanger member and heat exchanger

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108486627B (en) * 2018-04-08 2020-07-10 广东工业大学 Anti-frosting surface treatment method
KR102086933B1 (en) * 2018-12-31 2020-03-09 동의대학교 산학협력단 Method of anode oxide film of aluminum alloy having a superhydrophobic surface
CN113080683B (en) * 2019-12-23 2023-02-28 佛山市顺德区美的电热电器制造有限公司 Hydrophobic layer, application of hydrophobic layer, pot, preparation method of pot and cooking equipment
JP7365652B2 (en) * 2020-04-28 2023-10-20 Dic株式会社 Water-repellent aluminum material and its manufacturing method
CN115552192A (en) * 2020-05-22 2022-12-30 大金工业株式会社 Heat exchanger, method for manufacturing heat exchanger, and refrigerant cycle device
WO2022224915A1 (en) 2021-04-21 2022-10-27 Ricoh Company, Ltd. Contact member, drying apparatus, and printing apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007137767A (en) * 1991-01-23 2007-06-07 Matsushita Electric Ind Co Ltd Water-repellent and oil-repellent glass substrate
JP2014524984A (en) * 2011-07-21 2014-09-25 ポステック アカデミー−インダストリー ファンデーション Extremely hydrophobic surface processing method and evaporator having extremely hydrophobic surface

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5867325B2 (en) * 2011-07-12 2016-02-24 株式会社デンソー Method for producing water-repellent substrate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007137767A (en) * 1991-01-23 2007-06-07 Matsushita Electric Ind Co Ltd Water-repellent and oil-repellent glass substrate
JP2014524984A (en) * 2011-07-21 2014-09-25 ポステック アカデミー−インダストリー ファンデーション Extremely hydrophobic surface processing method and evaporator having extremely hydrophobic surface

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110392815A (en) * 2017-03-31 2019-10-29 大金工业株式会社 Heat exchanger and air-conditioning device
CN110392815B (en) * 2017-03-31 2021-06-11 大金工业株式会社 Heat exchanger and air conditioner
WO2020213485A1 (en) * 2019-04-18 2020-10-22 Dic株式会社 Structure body, structure body production method, heat exchanger member and heat exchanger
JPWO2020213485A1 (en) * 2019-04-18 2021-11-18 Dic株式会社 Structures, manufacturing methods for structures, heat exchanger members and heat exchangers
JP7031790B2 (en) 2019-04-18 2022-03-08 Dic株式会社 Structures, manufacturing methods for structures, heat exchanger members and heat exchangers

Also Published As

Publication number Publication date
JP2017115219A (en) 2017-06-29
JP6641990B2 (en) 2020-02-05

Similar Documents

Publication Publication Date Title
WO2017110200A1 (en) Water-repellent base material and method for manufacturing same
US20150368824A1 (en) Water and oil ultra-repellent structure and manufacturing method therefor
US11808531B2 (en) Droplet ejecting coatings
JP5872037B2 (en) Extremely hydrophobic surface processing method
US20140272291A1 (en) Fabrication method for hydrophilic aluminum surface and hydrophilic aluminum surface body
JP2013036733A (en) Water repellent base material, heat exchanger, and method for manufacturing water repellent base material
US20200165461A1 (en) Liquid-repellent coatings
Mokarian et al. Facile synthesis of stable superhydrophobic nanocomposite based on multi-walled carbon nanotubes
KR101528708B1 (en) Heat exchanger with superhydrophobicity and method of manufacturing the same
JPH10281690A (en) Air conditioner, heat exchanger and its production
KR20150061765A (en) Fin for evaporator with water-repellent coating layer And process for producing the same
JP5177031B2 (en) Method for forming water / oil repellent film
JP6600809B2 (en) Base material and equipment using the base material
US10870256B2 (en) Hydrophilic aluminum surface body having hybrid nanostructure and manufacturing method thereof
US20220186382A1 (en) Surface structure having function freezing delay and icing layer separation and manufacturing method thereof
WO2017199423A1 (en) Soil-resistant structure and automobile component provided with said soil-resistant structure
JP2020037239A (en) Water-repellent member, and heat exchanger
JP2007284492A (en) Article with surface having low wettability and its manufacturing method
JP7365652B2 (en) Water-repellent aluminum material and its manufacturing method
KR102512457B1 (en) Antifoulding surface treatment method and antifoulding surface treatment structure thereof
CN1170125A (en) Outdoor heat exchanger unit and air-conditioner using the unit
Yu et al. Water-repellent slippery surfaces for HVAC&R systems
JP2011122769A (en) Heat transfer material for heat exchanger and method for processing heat transfer surface
JP2012088051A (en) Heat transfer material for heat exchanger and method for processing heat transfer surface
CN113853506A (en) Member for heat exchanger, air conditioner, and refrigerator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16878098

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16878098

Country of ref document: EP

Kind code of ref document: A1