WO2017110136A1 - Electronic component mounting structure, electronic component, and method for forming electronic component mounting structure - Google Patents

Electronic component mounting structure, electronic component, and method for forming electronic component mounting structure Download PDF

Info

Publication number
WO2017110136A1
WO2017110136A1 PCT/JP2016/074515 JP2016074515W WO2017110136A1 WO 2017110136 A1 WO2017110136 A1 WO 2017110136A1 JP 2016074515 W JP2016074515 W JP 2016074515W WO 2017110136 A1 WO2017110136 A1 WO 2017110136A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic component
coating resin
resin layer
pair
end faces
Prior art date
Application number
PCT/JP2016/074515
Other languages
French (fr)
Japanese (ja)
Inventor
慶次郎 小島
光典 井上
広 池田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2017110136A1 publication Critical patent/WO2017110136A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering

Definitions

  • the present invention relates to an electronic component mounting structure, and more particularly, to an electronic component mounting structure having high migration resistance and high mounting strength to a substrate.
  • the present invention also relates to an electronic component suitable for forming the electronic component mounting structure of the present invention described above.
  • the present invention relates to a method for forming an electronic component mounting structure suitable for forming the electronic component mounting structure of the present invention described above.
  • Measures against ion migration are an important issue in electronic component mounting structures in which electronic components are mounted on a substrate.
  • Ion migration means that the metal component of one electrode is ionized between the electrodes having a potential difference, moves toward the other electrode, and is deposited between the electrodes by the deposited metal. This is a phenomenon in which the insulation property of the electrode decreases or the electrodes are short-circuited. It is likely to occur under high humidity conditions.
  • Patent Document 1 Japanese Patent Laid-Open No. 2014-157951
  • an external electrode of an electronic component is joined to a land electrode (substrate electrode) of the substrate by soldering, and then the entire substrate together with the electronic component is coated with a coating resin layer (protective layer).
  • a technique for coating with a coating is disclosed. Specifically, a coating resin layer is formed by supplying a resin with a dispenser onto a substrate on which electronic components are mounted. It is considered that the occurrence of migration is suppressed because the moisture resistance is improved by the coating resin layer.
  • Patent Document 2 Japanese Patent Laid-Open No. 9-167890
  • a resin component is contained in a solder paste used for reflow soldering, and the resin is deposited on the surface of a solder fillet formed after reflowing.
  • a technique for forming a layer (protective coating) is disclosed.
  • the coating resin layer is considered to suppress the occurrence of migration starting from the solder fret.
  • Patent Document 3 Japanese Patent Laid-Open No. 2013-26392
  • An electronic component is disclosed in which a coating resin layer (insulating layer) made of a heat resistant resin is formed in advance on a pair of formed end surfaces and three side surfaces.
  • the electronic component is disposed on the land electrode of the substrate on which the solder paste is applied with the side surface on which the coating resin layer is not formed facing down, and is mounted by reflow soldering.
  • the coating resin layer prevents a short circuit between the external electrodes of adjacent electronic components mounted at high density, but at the same time, it is considered that migration between the external electrodes of each electronic component is also suppressed.
  • Patent Document 1 has the following problems because the entire substrate is covered with the coating resin layer together with the electronic components.
  • the coating resin layer is formed, it is difficult to confirm whether or not the electronic component has been successfully mounted on the substrate, and it is difficult to measure the electrical characteristics of the electronic circuit formed on the substrate. There was a problem.
  • a coating resin layer it is difficult to replace electronic components, and even when one electronic component fails, the entire substrate must be discarded along with other electronic components. It was.
  • Patent Document 2 has the following problems because the solder paste used for the reflow solder contains a resin component in advance.
  • a special solder paste containing a resin component must be prepared.
  • the coating resin layer can suppress migration from the solder fillet to the starting point and end point, but it still has the problem that migration from the external electrode of the electronic component, land electrode, etc. to the starting point and end point cannot be suppressed. It was.
  • the electronic component mounting structure of the present invention has a pair of end faces and four side faces connecting the pair of end faces.
  • An electronic component having an external electrode formed at an end including the end surface; a substrate having a land electrode formed on a main surface; and a solder that joins the land electrode and the external electrode.
  • a solder fillet connecting the land electrode and the external electrode is formed, and further includes a coating resin layer having a migration suppressing function, and the coating resin layer is formed on the main surface of the substrate among the four side surfaces of the electronic component.
  • the coating resin layer further covers a side surface of the four side surfaces of the electronic component that faces the main surface of the substrate. In this case, the effect of suppressing migration starting from the external electrode or solder fillet of the electronic component by the coating resin layer as the starting point or the ending point becomes higher.
  • another electronic component mounting structure includes a pair of end faces and four side faces connecting the pair of end faces, and external electrodes are provided at the ends including the end faces.
  • the coating resin layer covers the four side surfaces of the electronic component and is not in contact with the main surface of the substrate, or is in contact only with the main surface of the substrate in the vicinity of the electronic component. Note that the land electrode and the external electrode are firmly bonded with a conductive adhesive.
  • the coating resin layer further covers the land electrode. In this case, the migration that makes the land electrode the starting point and the ending point can also be suppressed by the coating resin layer.
  • the coating resin layer does not have an opening, and the coating resin layer can completely cover a necessary portion. In this case, the effect of suppressing migration by the coating resin layer is further ensured.
  • an opening may be present in the coating resin layer. Even if there are partial cracks or holes in the coating resin layer, the effect of suppressing migration is exhibited. That is, the distance between the electrodes is greatly involved in the deterioration of the insulating property and the occurrence of a short circuit due to migration, and the distance is more likely to occur and the distance is less likely to occur. Even if there are partial cracks or holes in the coating resin layer, the substantial distance between the electrodes increases through the cracks or holes, so that the occurrence of migration can be suppressed.
  • the pigment may be contained in the coating resin layer. In this case, deterioration of the resin forming the coating resin layer over time can be prevented, and the occurrence of migration can be suppressed over a long period of time.
  • the coating resin layer can be formed on the surface of the electronic component in advance, for example.
  • the electronic component of the present invention is suitable for forming the electronic component mounting structure described above.
  • the electronic component of the present invention comprises a pair of end faces and four side faces connecting the pair of end faces, and an external electrode is formed at the end including the end faces.
  • a coating resin layer having a suppression function is provided.
  • the coating resin layer covers three of the four side surfaces and covers a pair of end surfaces together with external electrodes.
  • the coating resin layer has a softening point of 90 ° C. As mentioned above, it shall be formed with resin which is 230 degrees C or less.
  • the softening point of the coating resin layer was measured by a penetration method using a TMA apparatus (Thermomechanical Analysis Apparatus). Details of the measurement method will be described in the “Experiment” column of the “Mode for Carrying Out the Invention”.
  • another electronic component of the present invention includes a pair of end faces and four side faces connecting the pair of end faces, and an external electrode is formed on an end including the end faces.
  • a coating resin layer having a migration suppressing function is provided.
  • the coating resin layer covers four side surfaces and a pair of end surfaces together with external electrodes.
  • the coating resin layer has a softening point of 90 ° C. or higher and 150 ° C. or lower. It is assumed that it is formed of a resin that is. This is because if the softening point of the coating resin layer is lower than 90 ° C., there is a problem that the softened resin flows excessively during mounting and the coating resin layer on the top surface of the electronic component becomes thin. This is because if the softening point of the coating resin layer exceeds 150 ° C., there is a problem that the coating resin layer is not broken or takes time to break due to heat applied during mounting.
  • another electronic component of the present invention is an electronic component comprising a pair of end faces and four side faces connecting the pair of end faces, and an external electrode is formed on the end including the end faces,
  • the external electrode is formed such that a part thereof extends to four side surfaces, and further includes a coating resin layer having a migration suppressing function, and the coating resin layer covers three of the four side surfaces together with the external electrode.
  • the remaining one side surface of the four side surfaces is covered except for the portion where the external electrode is formed, and further, a pair of end surfaces are covered together with the external electrode, and the coating resin layer has a softening point of 90 ° C. or higher, It was assumed to be formed of a resin that is 230 ° C. or lower.
  • a method for forming a mounting structure for an electronic component according to the present invention includes a pair of end faces and four side faces connecting the pair of end faces, and an external electrode is formed at an end including the end faces.
  • a step of preparing an electronic component including a coating resin layer having a migration suppressing function that covers three of the side surfaces and covers a pair of end surfaces together with external electrodes, and a substrate on which a land electrode is formed on the main surface A step of applying a solder paste on the land electrode, and a step of placing electronic parts on the land electrode coated with the solder paste with the side surface not covered with the coating resin facing down.
  • solder paste By heating, the solder paste is melted and the molten solder is supplied, and the coating resin layer is softened, and the molten solder is removed from the gap between the external electrode and the coating resin layer.
  • a step of infiltrating, by cooling, solidifying the molten solder is penetrated into the gap between the external electrode and the coating resin layer, it was those with, and forming a solder fillet.
  • another electronic component mounting structure forming method of the present invention includes a pair of end faces and four side faces connecting the pair of end faces, and external electrodes are formed on end portions including the end faces.
  • the coating resin layer covers the three side surfaces of the electronic component and the pair of end surfaces of the electronic component together with the external electrode and the solder fillet. In addition, the occurrence of migration with the solder fillet as a starting point or an end point is suppressed.
  • the solder fillet for joining the external electrode and the land electrode of the electronic component is formed between the external electrode of the electronic component and the coating resin layer. The bonding strength between the external electrode and the land electrode is high.
  • the coating resin layer covers the four side surfaces of the electronic component, the occurrence of migration using the external electrode of the electronic component or the solder fillet as the starting point or the ending point occurs. Is suppressed. Note that the land electrode and the external electrode are firmly bonded by a conductive adhesive.
  • the mounting structure of the electronic component of the present invention can be easily formed.
  • the electronic component mounting structure of the present invention can be easily formed.
  • FIGS. 2D to 2F are continuations of FIG. 1C, and are perspective views showing steps performed in the method for forming the mounting structure 100, respectively.
  • 2D to 2F are used in the method for forming the electronic component mounting structure 200 according to the second embodiment.
  • 2 is a perspective view showing an example of a method for applying a coating resin to the electronic component 1.
  • FIG. 4A and 4B are SEM photographs showing a cross section of the mounting structure 100.
  • FIG. 4A shows a 90 ⁇ magnification
  • FIG. 4B shows a 800 ⁇ magnification.
  • FIG. 5A is a cross-sectional view showing an electronic component mounting structure 300 according to the third embodiment.
  • FIG. 5B is a cross-sectional view showing an electronic component mounting structure 400 according to the fourth embodiment.
  • FIGS. 6A to 6C show steps performed in the method of forming the electronic component mounting structure 500 according to the fifth embodiment.
  • FIG. 6A is a perspective view
  • FIG. , (C) is a sectional view.
  • FIGS. 7A to 7C are cross-sectional views showing steps performed in the method of forming the electronic component mounting structure 600 according to the sixth embodiment.
  • FIGS. 8A to 8C are cross-sectional views showing steps performed in the method of forming the electronic component mounting structure 700 according to the seventh embodiment.
  • each embodiment shows an embodiment of the present invention by way of example, and the present invention is not limited to the content of the embodiment. Moreover, it is also possible to implement combining the content described in different embodiment, and the implementation content in that case is also included in this invention. Further, the drawings are for helping understanding of the embodiment, and may not be drawn strictly. For example, a drawn component or a dimensional ratio between the components may not match the dimensional ratio described in the specification. In addition, the constituent elements described in the specification may be omitted in the drawings or may be drawn with the number omitted.
  • FIGS. 1A to 1C and FIGS. 2D to 2F show a method of forming an electronic component mounting structure 100 according to the first embodiment.
  • FIGS. 1A to 1C are perspective views showing steps performed in the forming method.
  • FIGS. 2D to 2F are continuations of FIG. 1C, and are cross-sectional views showing steps performed in the formation method. 2D to 2F, the external appearance is shown instead of a cross section of a component main body 2 and external electrodes 3a and 3b of the electronic component 1 described later for the sake of clarity.
  • an electronic component 1 is prepared.
  • an NTC thermistor widely distributed as a general-purpose product was prepared as the electronic component 1.
  • the electronic component (NTC thermistor) 1 includes a component body 2.
  • the component body 2 includes a pair of end surfaces 2a and 2b and four side surfaces 2c, 2d, 2e, and 2f that connect the end surfaces 2a and 2b.
  • the component body 2 is made of a semiconductor ceramic that exhibits negative resistance temperature characteristics.
  • the component main body 2 has a laminated structure composed of a plurality of layers, and internal electrodes are formed between specific layers.
  • the internal electrode contains, for example, Ag—Pd as a main component.
  • External electrodes 3 a and 3 b are formed at the end of the component body 2.
  • the external electrode 3a is formed in a cap shape on the end surface 2a of the component body 2 and the four side surfaces 2c to 2f surrounding the end surface 2a.
  • the external electrode 3b is formed in a cap shape on the end surface 2b of the component body 2 and the four side surfaces 2c to 2f surrounding the end surface 2b.
  • the external electrode 3a is not necessarily formed in a cap shape, and may be formed at least on the end surface 2a of the component main body 2.
  • the external electrode 3b is not necessarily formed in a cap shape, and may be formed at least on the end surface 2b of the component main body 2.
  • the external electrodes 3a and 3b are each formed in a multilayer structure of three layers (not shown).
  • the first layer is composed of a baked electrode layer mainly composed of Ag.
  • the second layer is composed of a plating electrode layer containing Ni as a main component.
  • the third layer is composed of a plating electrode layer containing Sn as a main component.
  • the structure of the external electrodes 3a and 3b is arbitrary and is not limited to the above.
  • a baked electrode layer mainly composed of Pd or a baked electrode layer mainly composed of Ag—Pd may be used instead of the baked electrode layer mainly composed of Ag.
  • the plating electrode layer mainly containing Ni in the second layer and the plating electrode layer mainly containing Sn in the third layer may be omitted.
  • a coating resin is attached to the end surfaces 2a and 2b of the component body 2 and three side surfaces 2c, 2d and 2e among the four side surfaces 2c to 2f, as indicated by arrows in FIG.
  • a coating resin layer 4 is formed as shown in FIG.
  • the coating resin layer 4 is formed on the external electrodes 3a and 3b.
  • the coating resin layer 4 is for suppressing the microphones having the external electrodes 3a and 3b, a solder fillet 17 (to be described later) and the like as starting points and ending points. Since the microphone is easily generated under a high humidity condition, it can be said that the coating resin layer 4 has a migration suppressing function as long as at least the moisture resistance is improved.
  • improving the moisture resistance refers to a state in which the coating resin layer 4 suppresses the generation of water droplets on the migration starting and ending electrodes and fillets.
  • the coating resin layer 4 needs to be softened by heat during reflow soldering. That is, the coating resin layer 4 is softened by heat during reflow soldering, and a solder fillet 17 is formed between the external electrodes 3a and 3b and the coating resin layer 4 to improve the bonding strength. There is a need.
  • the coating resin layer 4 is softened by heat during reflow soldering and a good solder fillet 17 is formed at the joint and the good coating resin layer 4 can be maintained, mainly, It depends on the softening point of the resin constituting the coating resin layer 4 and the amount of solder supplied.
  • the softening point of the coating resin can be adjusted by the type of the resin as the main component, the ratio of the resin as the main component to the total amount including the solvent to be dispersed (concentration of the resin as the main component), etc. it can. *
  • an epoxy resin having a softening point of 230 ° C. is used as the resin that is the main component of the coating resin.
  • the softening point was measured by a penetration method using a TMA apparatus (Thermomechanical analysis apparatus). Details of the measurement method will be described in the “Experiment” section described later.
  • As the solvent thinner mainly composed of MEK (methyl ethyl ketone) was used, and the concentration of the epoxy resin was set to 10%. However, the concentration of the epoxy resin can be adjusted as appropriate.
  • an acrylic melamine resin instead of the epoxy resin, an acrylic melamine resin, a polyester resin, an acrylic urethane resin, an acrylate resin, a silicon acrylate resin, an epoxy acrylate resin, a phenol resin, an acrylic silicon resin, or the like may be used.
  • the kind of solvent can also be changed suitably.
  • a small amount of pigment is added to the coating resin for the purpose of suppressing deterioration of the resin over time.
  • the formation of the coating resin layer 4 is performed, for example, by arranging a plurality of electronic components 1 on a base 50 and spraying the above-described coating resin using a spray device 60 as shown in FIG. Note that an adhesive layer 51 is formed on the surface of the base 50 and is in close contact with the bottom surface (side surface 2 f) of the component body 2, so that the coating resin layer 4 is not formed on the side surface 2 f of the component body 2.
  • the coating resin layer 4 has a thickness of 5 to 15 ⁇ m.
  • the substrate 5 is prepared as shown in FIG.
  • the substrate 5 is made of resin or ceramics.
  • a pair of land electrodes 6 a and 6 b are formed on the main surface of the substrate 5.
  • the land electrodes 6a and 6b are formed in a multilayer structure in which a plating electrode layer mainly composed of Sn is formed on a main electrode layer mainly composed of Cu, although not shown.
  • the thickness of the main electrode layer is 18 ⁇ m, and the thickness of the plating electrode layer is about 1 ⁇ m.
  • the solder paste 7 is applied (printed) to the land electrodes 6a and 6b.
  • the solder paste 7 is composed mainly of SnAgCu solder.
  • the application thickness of the solder paste 7 is 150 ⁇ m.
  • the electronic component 1 is arranged on the land electrodes 6a and 6b to which the solder paste 7 is applied.
  • the electronic component 1 is arranged with the side surface 2f of the component main body 2 on which the coating resin layer 4 is not formed facing down.
  • the external electrode 3a of the electronic component 1 contacts the solder paste 7 applied on the land electrode 6a
  • the external electrode 3b contacts the solder paste 7 applied on the land electrode 6b.
  • the substrate 5 on which the electronic component 1 is arranged is heated at 265 ° C. for 20 seconds.
  • the solder paste 7 is melted, molten solder (not shown) is supplied onto the land electrodes 6a and 6b, and the coating resin layer 4 formed on the electronic component 1 is softened. Then, the molten solder penetrates into the gap between the external electrodes 3a and 3b and the coating resin layer 4 due to surface tension.
  • the substrate 5 on which the electronic component 1 is arranged is naturally cooled to solidify the molten solder, thereby forming a solder fillet 17 as shown in FIG.
  • the coating resin layer 4 that has been softened by natural cooling also recovers its original hardness.
  • the solder fillet 17 firmly joins the external electrodes 3a and 3b to the land electrodes 6a and 6b.
  • the solder fillet 17 is covered with the coating resin layer 4.
  • FIG. 4A and 4B show SEM photographs of a cross section of the mounting structure 100.
  • FIG. 4A shows a 90 ⁇ magnification
  • FIG. 4B shows a 800 ⁇ magnification.
  • the external electrodes 3a, 3b and the solder fillet 17 are covered with the coating resin layer 4, the occurrence of migration with the external electrodes 3a, 3b and the solder fillet 17 as starting points and ending points is generated. Is suppressed.
  • the external electrodes 3a and 3b are firmly joined to the land electrodes 6a and 6b by the solder fillet 17.
  • the mounting structure 100 is formed using an NTC thermistor as the electronic component 1.
  • the type of electronic component is changed, and the mounting structure 200 is formed by the same method as in the first embodiment.
  • description will be made with reference to FIGS. 1A to 1C and FIGS. 2D to 2F of the first embodiment.
  • a multilayer ceramic capacitor that is widely distributed as a general-purpose product is prepared as the electronic component 11.
  • the electronic component 11 made of a multilayer ceramic capacitor has the same external shape as the electronic component 1 made of the NTC thermistor of the first embodiment. That is, the electronic component 11 has a component body 2 having a pair of end surfaces 2a and 2b and four side surfaces 2c, 2d, 2e, and 2f that connect the end surfaces 2a and 2b.
  • the component body 2 is made of dielectric ceramics whose main component is barium titanate or the like.
  • the component main body 2 has a laminated structure composed of a plurality of layers, and internal electrodes are formed between the layers.
  • the internal electrode contains, for example, Cu, Ni, Ag, Pd or the like as a main component.
  • External electrodes 3 a and 3 b are formed at the end of the component body 2.
  • the external electrodes 3a and 3b are each formed in a multilayer structure of three layers.
  • the first layer is composed of a baked electrode layer mainly composed of Cu.
  • the second layer is composed of a plating electrode layer containing Ni as a main component.
  • the third layer is composed of a plating electrode layer containing Sn as a main component.
  • a coating resin is attached to the end surfaces 2a and 2b of the component body 2 and three side surfaces 2c, 2d and 2e among the four side surfaces 2c to 2f, as indicated by arrows in FIG.
  • a coating resin layer 4 is formed as shown in FIG.
  • an acrylic melamine resin having a softening point of 120 ° C. is used as the resin that is the main component of the coating resin.
  • the solvent used was thinner mainly composed of xylene, and the concentration of the acrylic melamine resin was 10%.
  • a small amount of pigment is added to the coating resin for the purpose of suppressing deterioration of the resin over time.
  • the coating resin layer 4 has a thickness of 5 to 15 ⁇ m.
  • the solder paste 7 is applied (printed) to the land electrodes 6a and 6b.
  • the solder paste 7 is composed mainly of SnAgCu solder.
  • the application thickness of the solder paste 7 is 100 ⁇ m.
  • the electronic component 11 is placed on the land electrodes 6a and 6b to which the solder paste 7 is applied.
  • the substrate 5 on which the electronic component 1 is arranged is heated at 265 ° C. for 20 seconds.
  • the solder paste 7 is melted, molten solder (not shown) is supplied onto the land electrodes 6a and 6b, and the coating resin layer 4 formed on the electronic component 11 is softened.
  • the molten solder penetrates into the gap between the external electrodes 3a and 3b and the coating resin layer 4 due to surface tension.
  • solder fillet 17 As shown in FIG. 2 (F), and the mounting structure according to the second embodiment Complete 200.
  • the external electrodes 3a, 3b and the solder fillet 17 are covered with the coating resin layer 4, migration using the external electrodes 3a, 3b and the solder fillet 17 as starting points and end points is performed. Occurrence is suppressed.
  • the external electrodes 3a and 3b are firmly joined to the land electrodes 6a and 6b by the solder fillet 17.
  • coating resin is applied to the end surfaces 2a and 2b of the component body 2 and the three side surfaces 2c, 2d and 2e of the four side surfaces 2c to 2f.
  • the samples according to Examples 1 to 8 were prepared by attaching them. Each sample differs in at least one of the material of the resin used as the main component of the coating resin layer 4 and the softening point. For comparison, a sample according to Comparative Example 1 in which the coating resin layer 4 was not formed was prepared. Table 1 shows the material and softening point of the resin as the main component of the coating resin layer 4 of each sample.
  • any one of acrylic melamine resin, polyester resin, acrylic silicon resin, and acrylic urethane resin was used as the main component of the coating resin layer 4.
  • the softening point of the resin as the main component of the coating resin layer 4 was set to 70 ° C. or higher and 330 ° C. or lower.
  • the softening point can be adjusted by the type of the resin as the main component, the concentration of the resin as the main component, and the like.
  • the softening point was measured by a penetration method using a TMA apparatus (Thermomechanical-Analysis apparatus) after forming the coating resin layer 4 on the component body 2. More specifically, using a TMA device manufactured by Rigaku Corporation, product number: TP-8, a probe probe is brought into contact with the coating resin layer 4 of each sample with a load of 1 gf, and the measurement environment temperature is changed from room temperature to 350. The temperature was raised to 10 ° C. at a rate of 10 ° C./min, and the temperature at which the coating resin layer 4 was deflected by 15% with respect to the film thickness by the needle probe was defined as the softening point of the resin constituting the coating resin layer 4.
  • TMA apparatus Thermomechanical-Analysis apparatus
  • the mounting structure 200 was formed by the method according to the second embodiment. That is, the solder paste 7 was applied (printed) to the land electrodes 6a and 6b, each sample was placed thereon, and heated at 265 ° C. for 20 seconds. Moreover, the mounting structure was formed with the same method using the sample concerning a comparative example.
  • solder fillets 17 were formed. However, the height of the solder fillet 17 was different for each sample. Table 1 shows the height of the solder fillet 17 of each sample as a percentage of the height of the solder fillet of Comparative Example 1 (without the coating resin layer 4). There are some exceptions, but the lower the softening point of the resin as the main component, the higher the height of the solder fillet 17 tends to be.
  • the adhesion strength of the samples according to Examples 1 to 8 was measured.
  • the measurement of the fixing strength is performed by shearing the component main body 2 of the mounted electronic component 11 from the lateral direction with a pressing jig at a height less than 1 ⁇ 4 of the thickness of the component main body 2, and required for breaking.
  • the load was defined as the fixing strength.
  • the fixing strength (N) of the sample according to Comparative Example 1 was measured. Table 1 shows the fixing strength of each sample.
  • the occurrence rate of migration was examined. Specifically, first, the sample was placed on a variable temperature stage and then housed in a tank having a temperature of 25 ° C. and a humidity of 50%. With the voltage of 50 V applied to the sample, first, the temperature of the variable stage was raised to 35 ° C., and the sample was dried. Subsequently, while the voltage of 50 V was applied to the sample, the temperature of the variable temperature stage was lowered to 0 ° C., and the sample was cooled for 1 hour. As a result, minute condensation occurred on the outer periphery of the sample.
  • Table 1 shows the migration rate of each sample.
  • the number of parameters of each sample was 50.
  • the migration occurrence rate of Comparative Example 1 without the coating resin layer 4 was 96%.
  • the migration occurrence rate in Examples 1 to 8 was 4% to 44%.
  • the softening point of the resin as the main component was in the range of 90 ° C. or higher and 230 ° C. or lower.
  • the softening point of the resin as the main component was outside the range of 90 ° C. or higher and 230 ° C. or lower. From the above, if the softening point of the resin as the main component is in the range of 90 ° C. or higher and 230 ° C. or lower, a good solder fillet 17 is formed at the joint, and the occurrence of migration can be suppressed. It was found that a good coating resin layer 4 can be maintained.
  • FIG. 5A shows a mounting structure 300 for an electronic component (NTC thermistor / multilayer ceramic capacitor) according to the third embodiment.
  • FIG. 5A is a cross-sectional view of the mounting structure 300.
  • an external appearance is shown instead of a cross section of a component main body 2 and external electrodes 3a and 3b of an electronic component 1 (11) described later.
  • the mounting structure 300 is formed by both the electronic component 1 made of an NTC thermistor and the electronic component 11 made of a multilayer ceramic capacitor.
  • the coating resin layer 4 is formed on the side surface 2f (side surface opposite to the substrate 5) of the component body 2 of the electronic component 1 (11). Not formed.
  • the coating resin layer 14 is also formed on the side surface 2f of the component main body 2 as indicated by an arrow in FIG.
  • the mounting structure 300 according to the third embodiment is formed by a method similar to that of the electronic component mounting structures 100 and 200 according to the first and second embodiments. That is, also in the third embodiment, the coating resin is previously attached to the end surfaces 2a, 2b of the component body 2 of the electronic component 1 (11) and the three side surfaces 2c, 2d, 2e except the side surface 2f. Layer 14 was formed.
  • the type of resin that is the main component of the coating resin, the type of solvent in which the resin is dispersed, the concentration of the resin, the thickness of the coating resin layer 14, the temperature at which reflow soldering is performed, and the like are adjusted.
  • the coating resin layer 14 formed on the side surfaces 2c and 2e of the component main body 2 is melted by heat at the time of performing reflow soldering, flows to the side surface 2f of the component main body 2, and covers the side surface 2f. I did it.
  • the coating resin layer 14 also covers the side surface 2 f facing the main surface of the substrate 5 of the component body 2, the external electrodes 3 a and 3 b and the solder fillet 17 by the coating resin layer 14 are used as starting points and end points. The effect of suppressing migration is higher.
  • FIG. 5B shows a mounting structure 400 of the electronic component (NTC thermistor / multilayer ceramic capacitor) according to the fourth embodiment.
  • FIG. 5B is a cross-sectional view of the mounting structure 300.
  • an external appearance is shown instead of a cross section of a component main body 2 and external electrodes 3a and 3b of an electronic component 1 (11) described later.
  • the mounting structure 400 is formed by both the electronic component 1 made of an NTC thermistor and the electronic component 11 made of a multilayer ceramic capacitor.
  • the coating resin layer 4 did not cover the land electrodes 6a and 6b.
  • the coating resin layer 24 covers the land electrodes 6a and 6b as shown by arrows in FIG. 5B.
  • the mounting structure 400 according to the fourth embodiment is formed by a method similar to that of the electronic component mounting structures 100 and 200 according to the first and second embodiments. That is, also in the fourth embodiment, the coating resin layer 24 is formed in advance by attaching the coating resin to the end surfaces 2a and 2b and the three side surfaces 2c, 2d and 2e of the component body 2 of the electronic component 1 (11). did.
  • the type of resin that is the main component of the coating resin, the type of solvent in which the resin is dispersed, the concentration of the resin, the thickness of the coating resin layer 24, the temperature at which reflow soldering is performed, and the like are adjusted. By doing so, the coating resin layer 24 melted by the heat during the reflow soldering flowed to the land electrodes 6a and 6b so as to cover the land electrodes 6a and 6b.
  • the coating resin layer 24 covers the land electrodes 6a and 6b, in addition to the migration starting from the external electrodes 3a and 3b and the solder fillet 17 as the starting point and ending point, the land electrodes 6a and 6b are used as starting points and Migration to the end point is suppressed by the coating resin layer 24.
  • FIGS. 6A to 6C show a method for forming a mounting structure 500 for an electronic component (NTC thermistor / multilayer ceramic capacitor) according to the fifth embodiment.
  • FIGS. 6A to 6C show steps performed in the forming method
  • FIG. 6A is a perspective view
  • FIGS. 6B and 6C are cross-sectional views. 6B and 6C, the external appearance is shown in place of the cross section of the component main body 2 and the external electrodes 3a and 3b of the electronic component 1 (11) for easy viewing.
  • the mounting structure 500 is formed by both the electronic component 1 made of an NTC thermistor and the electronic component 11 made of a multilayer ceramic capacitor.
  • the method for forming the mounting structure 500 according to the fifth embodiment the method for forming the electronic component mounting structures 100 and 200 according to the first and second embodiments is changed.
  • a method for forming the mounting structure 400 will be described with emphasis on the changed part.
  • an electronic component 1 (11) is prepared.
  • the electronic component 1 (11) includes a component main body 2, and the component main body 2 includes a pair of end surfaces 2a and 2b and four side surfaces 2c, 2d, 2e, and 2f that connect the end surfaces 2a and 2b.
  • External electrodes 3 a and 3 b are formed at the end of the component body 2.
  • a coating resin is adhered to the entire surface of the component body 2 on which the external electrodes 3a and 3b are formed, as indicated by arrows in FIG. That is, in the first embodiment and the second embodiment, the coating resin is attached to the end faces 2a, 2b of the component body 2 and the three side faces 2c, 2d, 2e of the four side faces 2c to 2f. In the fifth embodiment, the coating resin is adhered to the entire surface of the component main body 2 including the side surface 2f (side surface facing the substrate 5).
  • the adhesion of the coating resin to the entire surface of the component body 2 is performed by immersing the component body 2 on which the external electrodes 3a and 3b are formed in the coating resin.
  • the base 50 and the spray device 60 shown in FIG. 3 are used, the component body 2 is turned upside down in the middle, and the coating resin is attached to the entire surface of the component body 2. Also good.
  • the coating resin may be attached to the entire surface of the component body 2 by putting a plurality of component bodies 2 in a rotary barrel and spraying the coating resin on the component body 2 while rotating the barrel. .
  • the coating resin used in the fifth embodiment is not the same as the coating resin used in the first embodiment and the second embodiment, and lowers the softening point of the coating resin and reduces the thickness of the coating resin. Such changes have been made.
  • the electronic component 1 (11) having the coating resin layer 34 formed on the entire surface of the component body 2 is replaced with the land electrode 6a to which the solder paste 7 of the substrate 5 is applied. 6b.
  • the substrate 5 on which the electronic component 1 (11) is arranged is heated at 265 ° C. for 20 seconds.
  • the solder paste 7 is melted and molten solder is supplied, the coating resin layer 34 is softened, and the contact surface of the coating resin layer 34 with the solder paste 7 is broken. Then, from the broken portion of the coating resin layer 34, the molten solder penetrates into the gap between the external electrodes 3 a and 3 b and the coating resin layer 4 due to surface tension.
  • the substrate 5 on which the electronic component 1 (11) is placed is naturally cooled to solidify the molten solder, thereby forming a solder fillet 17 as shown in FIG. 6 (C).
  • the coating resin layer 34 that has been softened by natural cooling also recovers its original hardness.
  • the mounting structure 500 according to the fifth embodiment is completed.
  • FIGS. 7A to 7C show a method for forming a mounting structure 600 for an electronic component (NTC thermistor / multilayer ceramic capacitor) according to the sixth embodiment.
  • FIGS. 7A to 7C are cross-sectional views showing steps performed in the forming method. 7A to 7C, the external appearance is shown instead of the cross-sections of the component main body 2 and the external electrodes 3a and 3b of the electronic component 1 for easy viewing.
  • the mounting structure 600 is formed by both the electronic component 1 made of an NTC thermistor and the electronic component 11 made of a multilayer ceramic capacitor.
  • the sixth embodiment is modified from the fifth embodiment.
  • the coating resin layer 34 is adhered to the entire surface of the component body 2 of the electronic component 1 (11).
  • the coating resin layer 34 on the external electrodes 3a and 3b is formed only on the side surface 2f of the component body 2 (side surface facing the substrate 5). Peel off by polishing or laser irradiation.
  • the electronic component 1 is disposed on the land electrodes 6a and 6b to which the solder paste 7 is applied, with the side surface 2f opposed to the substrate 5.
  • the electronic component 1 is bonded to the substrate 5 as shown in FIG.
  • the solder paste 7 forms a solder fillet 17.
  • the mounting structure 600 according to the fifth embodiment is completed.
  • the coating resin layer 34 on the external electrodes 3a and 3b on the side surface 2f of the component body 2 is peeled in advance, the coating resin layer 34 is removed by heating at the time of soldering. There is no need to break, and it can be implemented smoothly. Note that the softening temperature of the coating resin 34 layer may be higher than that in the fifth embodiment.
  • the migration suppressing function is also good.
  • FIGS. 8A to 8C show a method for forming a mounting structure 700 for an electronic component (NTC thermistor / multilayer ceramic capacitor) according to the seventh embodiment.
  • FIGS. 8A to 8C are cross-sectional views showing steps performed in the formation method. 8A to 8C, the external appearance is shown instead of the cross-sections of the component main body 2 and the external electrodes 3a and 3b of the electronic component 1 for easy viewing.
  • the mounting structure 700 is formed by both the electronic component 1 made of an NTC thermistor and the electronic component 11 made of a multilayer ceramic capacitor.
  • the sixth embodiment is further modified. Specifically, in the sixth embodiment, solder is used to join the electronic component 1 (11) to the substrate 5, but in the seventh embodiment, a conductive adhesive is used instead of the solder.
  • the coating resin layer 34 is adhered to the entire surface of the component body 2 of the electronic component 1 (11).
  • the coating resin layer 34 on the external electrodes 3a and 3b is peeled off by polishing or laser irradiation only on the side surface 2f of the component body 2 (side surface opposite to the substrate 5).
  • the electronic component 1 is placed on the land electrodes 6a and 6b coated with the conductive adhesive 57 with the side surface 2f facing the substrate 5.
  • heating is performed at a predetermined temperature, and the electronic component 1 is bonded to the substrate 5 with the conductive adhesive 57 as shown in FIG.
  • the mounting structure 700 according to the seventh embodiment is completed. In the seventh embodiment, no fillet is formed, but the electronic component 1 (11) is firmly bonded to the substrate 5 by the conductive adhesive 57.
  • the mounting structures 100 to 700 according to the first to seventh embodiments and the forming methods thereof have been described above.
  • the present invention is not limited to the above-described contents, and various modifications can be made in accordance with the gist of the invention.
  • the NTC thermistor is used as the electronic component 1 and the multilayer ceramic capacitor is used as the electronic component 11.
  • the types of the electronic components 1 and 11 are limited to the NTC thermistor and the multilayer ceramic capacitor. Absent.
  • a resistor, an inductor, a PTC thermistor, another type of capacitor, or the like may be used.
  • an internal electrode (not shown) is formed inside the component body 2, but the internal electrode is not essential in the present invention.
  • the components of the coating resin that form the coating resin layers 4, 14, 24, and 34 are also arbitrary, and are not limited to the above-described contents.
  • the coating resin layers 4, 14, 24, 34 completely covered the necessary portions and there were no cracks or holes, but the coating resin layers 4, 14, 24, Even if there is a partial crack or hole in 34, the occurrence of migration can be suppressed.
  • the materials and structures of the external electrodes 3a and 3b and the land electrodes 6a and 6b are arbitrary, and are not limited to the above-described contents.
  • the material and applied film thickness of the solder paste 7 and the conductive adhesive 57 are arbitrary, and are not limited to those described above.

Abstract

To provide an electronic component mounting structure having high migration resistance, and high mounting strength with respect to a substrate. Disclosed is an electronic component mounting structure wherein solder fillets 17 connecting land electrodes 6a, 6b and external electrodes 3a, 3b to each other are formed, and furthermore, a coating resin layer 4 having migration suppressing functions is provided. The coating resin layer 4 covers , out of the four side surfaces of an electronic component 1, three side surfaces excluding a side surface facing a main surface of a substrate, and covers a pair of end surfaces of the electronic component 1 together with the external electrodes and the solder fillets 17 , and the coating resin layer 4 is not in contact with a main surface of a substrate 5, or in contact with, merely in the vicinity of the electronic component 1, the main surface of the substrate 5.

Description

電子部品の実装構造、電子部品および電子部品の実装構造の形成方法Electronic component mounting structure, electronic component and method of forming electronic component mounting structure
 本発明は、電子部品の実装構造に関し、さらに詳しくは、耐マイグレーション性が高く、かつ、基板に対する実装強度の高い電子部品の実装構造に関する。 The present invention relates to an electronic component mounting structure, and more particularly, to an electronic component mounting structure having high migration resistance and high mounting strength to a substrate.
 また、本発明は、上述した本発明の電子部品の実装構造を形成するのに適した電子部品に関する。 The present invention also relates to an electronic component suitable for forming the electronic component mounting structure of the present invention described above.
 更に、本発明は、上述した本発明の電子部品の実装構造を形成するのに適した電子部品の実装構造の形成方法に関する。 Furthermore, the present invention relates to a method for forming an electronic component mounting structure suitable for forming the electronic component mounting structure of the present invention described above.
 基板に電子部品を実装した電子部品の実装構造においては、イオンマイグレーション対策が重要な課題になる。 Measures against ion migration are an important issue in electronic component mounting structures in which electronic components are mounted on a substrate.
 イオンマイグレーション(以下においては「マイグレーション」と略して記す)とは、電位差のある電極間において、一方の電極の金属成分がイオン化し、他方の電極に向かって移動し、析出した金属により、電極間の絶縁性が低下したり、電極間が短絡したりする現象である。高湿条件下において発生しやすい。 Ion migration (hereinafter abbreviated as “migration”) means that the metal component of one electrode is ionized between the electrodes having a potential difference, moves toward the other electrode, and is deposited between the electrodes by the deposited metal. This is a phenomenon in which the insulation property of the electrode decreases or the electrodes are short-circuited. It is likely to occur under high humidity conditions.
 マイグレーションを抑制する技術については、種々の検討がなされている。 ) Various studies have been made on technology for suppressing migration.
 たとえば、特許文献1(特開2014-157951号公報)には、基板のランド電極(基板電極)に電子部品の外部電極をはんだにより接合した後に、電子部品ごと基板全体を、コーティング樹脂層(保護被膜)で被覆する技術が開示されている。具体的には、電子部品を実装した基板上に、ディスペンサにより樹脂を供給し、コーティング樹脂層を形成している。コーティング樹脂層により耐湿性が向上するため、マイグレーションの発生が抑制されるものと考えられる。 For example, in Patent Document 1 (Japanese Patent Laid-Open No. 2014-157951), an external electrode of an electronic component is joined to a land electrode (substrate electrode) of the substrate by soldering, and then the entire substrate together with the electronic component is coated with a coating resin layer (protective layer). A technique for coating with a coating) is disclosed. Specifically, a coating resin layer is formed by supplying a resin with a dispenser onto a substrate on which electronic components are mounted. It is considered that the occurrence of migration is suppressed because the moisture resistance is improved by the coating resin layer.
 また、特許文献2(特開平9-167890号公報)には、リフローはんだに使用するはんだペーストに樹脂成分を含有させておき、リフロー後に形成されるはんだフィレットの表面に樹脂を析出させてコーティング樹脂層(保護被膜)を形成する技術が開示されている。コーティング樹脂層により、はんだフレットを起点または終点とするマイグレーションの発生が抑制されるものと考えられる。 In Patent Document 2 (Japanese Patent Laid-Open No. 9-167890), a resin component is contained in a solder paste used for reflow soldering, and the resin is deposited on the surface of a solder fillet formed after reflowing. A technique for forming a layer (protective coating) is disclosed. The coating resin layer is considered to suppress the occurrence of migration starting from the solder fret.
 更に、特許文献3(特開2013-26392号公報)には、マイグレーションの抑制を目的としたものではないが、基板上の狭い領域に複数の電子部品を高密度実装するために、外部電極が形成された1対の端面、および3つの側面に、予め、耐熱性樹脂からなるコーティング樹脂層(絶縁層)を形成した電子部品が開示されている。電子部品は、コーティング樹脂層が形成されていない側面を下にして、はんだペーストが塗布された基板のランド電極上に配置され、リフローはんだにより実装される。コーティング樹脂層により、高密度実装された隣接する電子部品の外部電極間の短絡が防止されるが、同時に、各電子部品の外部電極間のマイグレーションも抑制されるものと考えられる。 Furthermore, Patent Document 3 (Japanese Patent Laid-Open No. 2013-26392) is not intended to suppress migration, but in order to mount a plurality of electronic components in a narrow area on a substrate, external electrodes are not provided. An electronic component is disclosed in which a coating resin layer (insulating layer) made of a heat resistant resin is formed in advance on a pair of formed end surfaces and three side surfaces. The electronic component is disposed on the land electrode of the substrate on which the solder paste is applied with the side surface on which the coating resin layer is not formed facing down, and is mounted by reflow soldering. The coating resin layer prevents a short circuit between the external electrodes of adjacent electronic components mounted at high density, but at the same time, it is considered that migration between the external electrodes of each electronic component is also suppressed.
特開2014-157951号公報JP 2014-157951 A 特開平9-167890号公報JP-A-9-167890 特開2013-26392号公報JP 2013-26392 A
 特許文献1に開示された技術は、電子部品ごと基板全体を、コーティング樹脂層で被覆するものであるため、次のような問題があった。まず、電子部品ごと基板全体をコーティング樹脂層で被覆するという工程を1つ追加しなければならないため、電子部品の実装作業が煩雑化し、コストが上昇するという問題があった。また、いったんコーティング樹脂層が形成されてしまうと、基板に電子部品が良好に実装できたか否かを確認しにくいという問題や、基板に形成された電子回路の電気的特性を測定するのが難しいという問題があった。更に、いったんコーティング樹脂層が形成されてしまうと、電子部品の交換が難しく、1つの電子部品に不良が発生した場合においても、他の電子部品とともに基板全体を廃棄しなければならないという問題があった。 The technique disclosed in Patent Document 1 has the following problems because the entire substrate is covered with the coating resin layer together with the electronic components. First, since it is necessary to add one step of coating the entire substrate with the coating resin layer together with the electronic component, there is a problem that the mounting operation of the electronic component becomes complicated and the cost increases. In addition, once the coating resin layer is formed, it is difficult to confirm whether or not the electronic component has been successfully mounted on the substrate, and it is difficult to measure the electrical characteristics of the electronic circuit formed on the substrate. There was a problem. Furthermore, once a coating resin layer is formed, it is difficult to replace electronic components, and even when one electronic component fails, the entire substrate must be discarded along with other electronic components. It was.
 また、特許文献2に開示された技術は、リフローはんだに使用するはんだペーストに予め樹脂成分を含有させておくものであるため、次のような問題があった。まず、樹脂成分を含有した特殊なはんだペーストを作製しなければならず、そのために工程を1つ追加する必要があり、また作製したはんだペーストの管理が必要であり、コストが上昇するという問題があった。また、コーティング樹脂層により、はんだフィレットを起点や終点にするマイグレーションは抑制できるが、電子部品の外部電極や、ランド電極などを起点や終点にするマイグレーションは、依然として抑制することができないという問題があった。 Further, the technique disclosed in Patent Document 2 has the following problems because the solder paste used for the reflow solder contains a resin component in advance. First of all, a special solder paste containing a resin component must be prepared. For this purpose, it is necessary to add one process, and it is necessary to manage the produced solder paste, which increases the cost. there were. In addition, the coating resin layer can suppress migration from the solder fillet to the starting point and end point, but it still has the problem that migration from the external electrode of the electronic component, land electrode, etc. to the starting point and end point cannot be suppressed. It was.
 更に、特許文献3に開示された技術は、リフローはんだ時において、電子部品の外部電極を耐熱性樹脂からなるコーティング樹脂層により覆ってしまっているため、はんだフィレットが形成されず、基板と電子部品との接合強度が弱いという問題があった。すなわち、はんだフィレットが形成されないため、電子部品の外部電極は、ランド電極との当接面のみにおいて電極と接合されており、僅かな横方向の力が加わっただけで、電子部品が基板から外れてしまうという問題があった。 Furthermore, in the technique disclosed in Patent Document 3, since the external electrode of the electronic component is covered with a coating resin layer made of a heat-resistant resin during reflow soldering, a solder fillet is not formed, and the substrate and the electronic component There was a problem that the bonding strength with was weak. That is, since no solder fillet is formed, the external electrode of the electronic component is joined to the electrode only on the contact surface with the land electrode, and the electronic component is detached from the substrate only by applying a slight lateral force. There was a problem that.
 本発明は、上述した従来の問題を解決するためになされたものであり、その手段として、本発明の電子部品の実装構造は、1対の端面と、1対の端面を繋ぐ4つの側面を備え、端面を含む端部に外部電極が形成された電子部品と、主面にランド電極が形成された基板と、ランド電極と外部電極を接合する、はんだと、を備え、はんだにより、少なくとも、ランド電極と外部電極を繋ぐはんだフィレットが形成されたものであって、更に、マイグレーション抑制機能を有するコーティング樹脂層を備え、コーティング樹脂層は、電子部品の4つの側面のうちの基板の主面に相対する側面を除く3つの側面を覆い、かつ、電子部品の1対の端面を外部電極およびはんだフィレットとともに覆い、コーティング樹脂層は、基板の主面と接していない、または、基板の主面と電子部品の近傍においてのみ接しているものとした。 The present invention has been made in order to solve the above-described conventional problems. As a means for this, the electronic component mounting structure of the present invention has a pair of end faces and four side faces connecting the pair of end faces. An electronic component having an external electrode formed at an end including the end surface; a substrate having a land electrode formed on a main surface; and a solder that joins the land electrode and the external electrode. A solder fillet connecting the land electrode and the external electrode is formed, and further includes a coating resin layer having a migration suppressing function, and the coating resin layer is formed on the main surface of the substrate among the four side surfaces of the electronic component. Covers three side surfaces excluding the opposite side surfaces and covers a pair of end faces of the electronic component together with external electrodes and solder fillets, and the coating resin layer is not in contact with the main surface of the substrate. Or it was assumed to be in contact only in the vicinity of the main surface and the electronic components of the substrate.
 コーティング樹脂層が、更に、電子部品の4つの側面のうちの基板の主面に相対する側面も覆っていることが好ましい。この場合には、コーティング樹脂層による電子部品の外部電極やはんだフィレットを起点や終点にするマイグレーションの抑制効果がより高くなる。 It is preferable that the coating resin layer further covers a side surface of the four side surfaces of the electronic component that faces the main surface of the substrate. In this case, the effect of suppressing migration starting from the external electrode or solder fillet of the electronic component by the coating resin layer as the starting point or the ending point becomes higher.
 また、上述した問題を解決するために、別の本発明の電子部品の実装構造は、1対の端面と、1対の端面を繋ぐ4つの側面を備え、端面を含む端部に外部電極が形成された電子部品と、主面にランド電極が形成された基板と、ランド電極と外部電極を接合する、導電性接着剤と、を備え、更に、マイグレーション抑制機能を有するコーティング樹脂層を備え、コーティング樹脂層は、電子部品の前記4つの側面を覆い、かつ、基板の前記主面と接していない、または、基板の前記主面と電子部品の近傍においてのみ接しているものとした。なお、ランド電極と外部電極は、導電性接着剤により強固に接合される。 In order to solve the above-described problem, another electronic component mounting structure according to the present invention includes a pair of end faces and four side faces connecting the pair of end faces, and external electrodes are provided at the ends including the end faces. Comprising a formed electronic component, a substrate having a land electrode formed on the main surface, and a conductive adhesive that joins the land electrode and the external electrode, and further comprising a coating resin layer having a migration suppressing function, The coating resin layer covers the four side surfaces of the electronic component and is not in contact with the main surface of the substrate, or is in contact only with the main surface of the substrate in the vicinity of the electronic component. Note that the land electrode and the external electrode are firmly bonded with a conductive adhesive.
 また、本発明の上記両実装構造において、コーティング樹脂層は、更に、ランド電極を覆っていることが好ましい。この場合には、コーティング樹脂層により、ランド電極を起点や終点にするマイグレーションも抑制することができる。 Further, in both the above-described mounting structures of the present invention, it is preferable that the coating resin layer further covers the land electrode. In this case, the migration that makes the land electrode the starting point and the ending point can also be suppressed by the coating resin layer.
 また、コーティング樹脂層に開口部分が存在せず、コーティング樹脂層が必要な部分を完全に覆ったものとすることができる。この場合には、コーティング樹脂層によるマイグレーションの抑制効果がより確実になる。 In addition, the coating resin layer does not have an opening, and the coating resin layer can completely cover a necessary portion. In this case, the effect of suppressing migration by the coating resin layer is further ensured.
 ただし、コーティング樹脂層に開口部分が存在していても良い。たとえ、コーティング樹脂層に部分的な亀裂や穴などがあっても、マイグレーションの抑制効果は発現される。すなわち、マイグレーションによる絶縁性の低下や短絡の発生には、電極間の距離が大きくかかわっており、距離が小さいほど発生しやすく、距離が大きいほど発生しにくい。たとえ、コーティング樹脂層に部分的な亀裂や穴などがあっても、実質的な電極間の距離がそれらの亀裂や穴を経由することにより大きくなるため、マイグレーションの発生を抑制することができる。 However, an opening may be present in the coating resin layer. Even if there are partial cracks or holes in the coating resin layer, the effect of suppressing migration is exhibited. That is, the distance between the electrodes is greatly involved in the deterioration of the insulating property and the occurrence of a short circuit due to migration, and the distance is more likely to occur and the distance is less likely to occur. Even if there are partial cracks or holes in the coating resin layer, the substantial distance between the electrodes increases through the cracks or holes, so that the occurrence of migration can be suppressed.
 コーティング樹脂層に顔料が含有されていても良い。この場合には、コーティング樹脂層を形成する樹脂の経時的な劣化を防ぐことができ、長期間にわたってマイグレーションの発生を抑制することができる。 The pigment may be contained in the coating resin layer. In this case, deterioration of the resin forming the coating resin layer over time can be prevented, and the occurrence of migration can be suppressed over a long period of time.
 コーティング樹脂層は、たとえば、予め電子部品の表面に形成しておくことができる。 The coating resin layer can be formed on the surface of the electronic component in advance, for example.
 また、本発明の電子部品は、上述した電子部品の実装構造を形成するのに適したものである。その手段として、本発明の電子部品は、1対の端面と、1対の端面を繋ぐ4つの側面とを備え、端面を含む端部に外部電極が形成されたものであって、更に、マイグレーション抑制機能を有するコーティング樹脂層を備え、コーティング樹脂層は、4つの側面のうちの3つの側面を覆い、かつ、1対の端面を外部電極とともに覆い、コーティング樹脂層が、軟化点が、90℃以上、230℃以下である樹脂により形成されているものとした。コーティング樹脂層の軟化点が90℃より低いと、実装の際に、軟化した樹脂が流れ過ぎて、電子部品の天面のコーティング樹脂層が薄くなるなどの問題があるからである。コーティング樹脂層の軟化点が230℃を超えると、実装の際に、コーティング樹脂層が軟化せず、良好な、はんだによるフィレット形成ができないなどの問題があるからである。 Also, the electronic component of the present invention is suitable for forming the electronic component mounting structure described above. As a means therefor, the electronic component of the present invention comprises a pair of end faces and four side faces connecting the pair of end faces, and an external electrode is formed at the end including the end faces. A coating resin layer having a suppression function is provided. The coating resin layer covers three of the four side surfaces and covers a pair of end surfaces together with external electrodes. The coating resin layer has a softening point of 90 ° C. As mentioned above, it shall be formed with resin which is 230 degrees C or less. This is because if the softening point of the coating resin layer is lower than 90 ° C., there is a problem that the softened resin flows excessively during mounting and the coating resin layer on the top surface of the electronic component becomes thin. This is because if the softening point of the coating resin layer exceeds 230 ° C., the coating resin layer is not softened at the time of mounting, and there is a problem that good fillet formation by solder cannot be performed.
 なお、本出願書類において、コーティング樹脂層の軟化点は、TMA装置(Thermomechanical Analysis 装置)を使用したペネトレーション法により測定した。測定方法の詳細については、「発明を実施するための形態」の「実験」の欄において説明する。 In the application documents, the softening point of the coating resin layer was measured by a penetration method using a TMA apparatus (Thermomechanical Analysis Apparatus). Details of the measurement method will be described in the “Experiment” column of the “Mode for Carrying Out the Invention”.
 また、本発明のもう1つの電子部品は、1対の端面と、1対の端面を繋ぐ4つの側面とを備え、端面を含む端部に外部電極が形成されたものであって、更に、マイグレーション抑制機能を有するコーティング樹脂層を備え、コーティング樹脂層は、4つの側面を覆い、かつ、1対の端面を外部電極とともに覆い、コーティング樹脂層が、軟化点が、90℃以上、150℃以下であるである樹脂により形成されているものとした。コーティング樹脂層の軟化点が90℃より低いと、実装の際に、軟化した樹脂が流れ過ぎて、電子部品の天面のコーティング樹脂層が薄くなるなどの問題があるからである。コーティング樹脂層の軟化点が150℃を超えると、実装の際に加えられる熱により、コーティング樹脂層が破れない、あるいは破れるのに時間がかかるという問題があるからである。 Further, another electronic component of the present invention includes a pair of end faces and four side faces connecting the pair of end faces, and an external electrode is formed on an end including the end faces. A coating resin layer having a migration suppressing function is provided. The coating resin layer covers four side surfaces and a pair of end surfaces together with external electrodes. The coating resin layer has a softening point of 90 ° C. or higher and 150 ° C. or lower. It is assumed that it is formed of a resin that is. This is because if the softening point of the coating resin layer is lower than 90 ° C., there is a problem that the softened resin flows excessively during mounting and the coating resin layer on the top surface of the electronic component becomes thin. This is because if the softening point of the coating resin layer exceeds 150 ° C., there is a problem that the coating resin layer is not broken or takes time to break due to heat applied during mounting.
 また、本発明の更にもう1つの電子部品は、1対の端面と、1対の端面を繋ぐ4つの側面とを備え、端面を含む端部に外部電極が形成された電子部品であって、外部電極は、その一部が4つの側面に延出して形成され、更に、マイグレーション抑制機能を有するコーティング樹脂層を備え、コーティング樹脂層は、4つの側面のうちの3つの側面を外部電極とともに覆い、4つの側面のうちの残りの1つの側面を外部電極が形成された部分を除いて覆い、更に、1対の端面を外部電極とともに覆い、コーティング樹脂層が、軟化点が、90℃以上、230℃以下であるである樹脂により形成されているものとした。コーティング樹脂層の軟化点が90℃より低いと、実装の際に、軟化した樹脂が流れ過ぎて、電子部品の天面のコーティング樹脂層が薄くなるなどの問題があるからである。コーティング樹脂層の軟化点が230℃を超えると、実装の際に、コーティング樹脂層が軟化せず、良好な、はんだによるフィレット形成ができないなどの問題があるからである。 Further, another electronic component of the present invention is an electronic component comprising a pair of end faces and four side faces connecting the pair of end faces, and an external electrode is formed on the end including the end faces, The external electrode is formed such that a part thereof extends to four side surfaces, and further includes a coating resin layer having a migration suppressing function, and the coating resin layer covers three of the four side surfaces together with the external electrode. The remaining one side surface of the four side surfaces is covered except for the portion where the external electrode is formed, and further, a pair of end surfaces are covered together with the external electrode, and the coating resin layer has a softening point of 90 ° C. or higher, It was assumed to be formed of a resin that is 230 ° C. or lower. This is because if the softening point of the coating resin layer is lower than 90 ° C., there is a problem that the softened resin flows excessively during mounting and the coating resin layer on the top surface of the electronic component becomes thin. This is because if the softening point of the coating resin layer exceeds 230 ° C., the coating resin layer is not softened at the time of mounting, and there is a problem that good fillet formation by solder cannot be performed.
 また、本発明の電子部品の実装構造の形成方法は、上述した電子部品の実装構造を形成するのに適したものである。その手段として、本発明の電子部品の実装構造の形成方法は、1対の端面と、1対の端面を繋ぐ4つの側面とを備え、端面を含む端部に外部電極が形成され、4つの側面のうちの3つの側面を覆い、かつ、1対の端面を外部電極とともに覆うマイグレーション抑制機能を有するコーティング樹脂層を備えた電子部品を準備する工程と、主面にランド電極が形成された基板を準備する工程と、ランド電極上にはんだペーストを塗布する工程と、はんだペーストが塗布されたランド電極上に、電子部品を、コーティング樹脂で覆われていない側面を下側にして配置する工程と、加熱することにより、はんだペーストを溶融させて溶融はんだを供給するとともに、コーティング樹脂層を軟化させ、溶融はんだを外部電極とコーティング樹脂層との隙間に浸透させる工程と、冷却することにより、外部電極とコーティング樹脂層との隙間に浸透された溶融はんだを固化させ、はんだフィレットを形成する工程と、を備えたものとした。 Also, the electronic component mounting structure forming method of the present invention is suitable for forming the electronic component mounting structure described above. As a means therefor, a method for forming a mounting structure for an electronic component according to the present invention includes a pair of end faces and four side faces connecting the pair of end faces, and an external electrode is formed at an end including the end faces. A step of preparing an electronic component including a coating resin layer having a migration suppressing function that covers three of the side surfaces and covers a pair of end surfaces together with external electrodes, and a substrate on which a land electrode is formed on the main surface A step of applying a solder paste on the land electrode, and a step of placing electronic parts on the land electrode coated with the solder paste with the side surface not covered with the coating resin facing down. By heating, the solder paste is melted and the molten solder is supplied, and the coating resin layer is softened, and the molten solder is removed from the gap between the external electrode and the coating resin layer. A step of infiltrating, by cooling, solidifying the molten solder is penetrated into the gap between the external electrode and the coating resin layer, it was those with, and forming a solder fillet.
 また、本発明のもう1つの電子部品の実装構造の形成方法は、1対の端面と、1対の端面を繋ぐ4つの側面とを備え、端面を含む端部に外部電極が形成され、4つの側面を覆い、かつ、1対の端面を外部電極とともに覆うマイグレーション抑制機能を有するコーティング樹脂層を備えた電子部品を準備する工程と、主面にランド電極が形成された基板を準備する工程と、ランド電極上にはんだペーストを塗布する工程と、はんだペーストが塗布されたランド電極上に電子部品を配置する工程と、加熱することにより、はんだペーストを溶融させて溶融はんだを供給するとともに、コーティング樹脂層を軟化させ、かつランド電極と外部電極との間のコーティング樹脂層を破り、溶融はんだを外部電極とコーティング樹脂層との隙間に浸透させる工程と、冷却することにより、外部電極とコーティング樹脂層との隙間に浸透された溶融はんだを固化させ、はんだフィレットを形成する工程と、を備えたものとした。 In addition, another electronic component mounting structure forming method of the present invention includes a pair of end faces and four side faces connecting the pair of end faces, and external electrodes are formed on end portions including the end faces. A step of preparing an electronic component including a coating resin layer having a migration suppressing function that covers one side surface and covers a pair of end surfaces together with an external electrode; and a step of preparing a substrate on which a land electrode is formed on the main surface; , A step of applying a solder paste on the land electrode, a step of placing an electronic component on the land electrode on which the solder paste has been applied, and heating to supply the molten solder by melting the solder paste and coating Softens the resin layer, breaks the coating resin layer between the land electrode and the external electrode, and penetrates the molten solder into the gap between the external electrode and the coating resin layer. And that step, by cooling, solidifying the molten solder is penetrated into the gap between the external electrode and the coating resin layer, was those with, and forming a solder fillet.
 本発明の電子部品の実装構造は、コーティング樹脂層が、電子部品の3つの側面を覆い、かつ、電子部品の1対の端面を外部電極およびはんだフィレットとともに覆っているため、電子部品の外部電極や、はんだフィレットを起点や終点にしたマイグレーションの発生が抑制されている。また、本発明の電子部品の実装構造は、電子部品の外部電極とコーティング樹脂層との間に、電子部品の外部電極とランド電極とを接合するはんだフィレットが形成されているため、電子部品の外部電極とランド電極との接合強度が高い。 In the electronic component mounting structure of the present invention, the coating resin layer covers the three side surfaces of the electronic component and the pair of end surfaces of the electronic component together with the external electrode and the solder fillet. In addition, the occurrence of migration with the solder fillet as a starting point or an end point is suppressed. In the electronic component mounting structure of the present invention, the solder fillet for joining the external electrode and the land electrode of the electronic component is formed between the external electrode of the electronic component and the coating resin layer. The bonding strength between the external electrode and the land electrode is high.
 また、本発明のもう1つの電子部品の実装構造は、コーティング樹脂層が、電子部品の4つの側面を覆っているため、電子部品の外部電極や、はんだフィレットを起点や終点にしたマイグレーションの発生が抑制されている。なお、ランド電極と外部電極は、導電性接着剤により強固に接合されている。 Further, in the mounting structure of another electronic component of the present invention, since the coating resin layer covers the four side surfaces of the electronic component, the occurrence of migration using the external electrode of the electronic component or the solder fillet as the starting point or the ending point occurs. Is suppressed. Note that the land electrode and the external electrode are firmly bonded by a conductive adhesive.
 また、本発明の電子部品によれば、本発明の電子部品の実装構造を容易に形成することができる。 Moreover, according to the electronic component of the present invention, the mounting structure of the electronic component of the present invention can be easily formed.
 また、本発明の電子部品の実装構造の形成方法によれば、本発明の電子部品の実装構造を容易に形成することができる。 Further, according to the method for forming an electronic component mounting structure of the present invention, the electronic component mounting structure of the present invention can be easily formed.
図1(A)~(C)は、それぞれ、第1実施形態にかかる電子部品の実装構造100の形成方法において実施される工程を示す斜視図である。なお、第2実施形態にかかる電子部品の実装構造200の形成方法において、図1(A)~(C)を援用している。1A to 1C are perspective views showing steps performed in the method for forming the electronic component mounting structure 100 according to the first embodiment. 1A to 1C are used in the method for forming the electronic component mounting structure 200 according to the second embodiment. 図2(D)~(F)は、図1(C)の続きであり、それぞれ、実装構造100の形成方法において実施される工程を示す斜視図である。なお、第2実施形態にかかる電子部品の実装構造200の形成方法において、図2(D)~(F)を援用している。FIGS. 2D to 2F are continuations of FIG. 1C, and are perspective views showing steps performed in the method for forming the mounting structure 100, respectively. 2D to 2F are used in the method for forming the electronic component mounting structure 200 according to the second embodiment. 電子部品1へのコーティング樹脂の塗布方法の一例を示す斜視図である。2 is a perspective view showing an example of a method for applying a coating resin to the electronic component 1. FIG. 図4(A)、(B)は、実装構造100の断面を示すSEM写真である。ただし、図4(A)は90倍の倍率、図4(B)は800倍の倍率である。4A and 4B are SEM photographs showing a cross section of the mounting structure 100. FIG. However, FIG. 4A shows a 90 × magnification, and FIG. 4B shows a 800 × magnification. 図5(A)は、第3実施形態にかかる電子部品の実装構造300を示す断面図である。図5(B)は、第4実施形態にかかる電子部品の実装構造400を示す断面図である。FIG. 5A is a cross-sectional view showing an electronic component mounting structure 300 according to the third embodiment. FIG. 5B is a cross-sectional view showing an electronic component mounting structure 400 according to the fourth embodiment. 図6(A)~(C)は、それぞれ、第5実施形態にかかる電子部品の実装構造500の形成方法において実施される工程を示し、図6(A)は斜視図、図6(B)、(C)は断面図である。FIGS. 6A to 6C show steps performed in the method of forming the electronic component mounting structure 500 according to the fifth embodiment. FIG. 6A is a perspective view, and FIG. , (C) is a sectional view. 図7(A)~(C)は、それぞれ、第6実施形態にかかる電子部品の実装構造600の形成方法において実施される工程を示す断面図である。FIGS. 7A to 7C are cross-sectional views showing steps performed in the method of forming the electronic component mounting structure 600 according to the sixth embodiment. 図8(A)~(C)は、それぞれ、第7実施形態にかかる電子部品の実装構造700の形成方法において実施される工程を示す断面図である。FIGS. 8A to 8C are cross-sectional views showing steps performed in the method of forming the electronic component mounting structure 700 according to the seventh embodiment.
 以下、図面とともに、本発明を実施するための形態について説明する。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
 なお、各実施形態は、本発明の実施の形態を例示的に示したものであり、本発明が実施形態の内容に限定されることはない。また、異なる実施形態に記載された内容を組合せて実施することも可能であり、その場合の実施内容も本発明に含まれる。また、図面は、実施形態の理解を助けるためのものであり、必ずしも厳密に描画されていない場合がある。たとえば、描画された構成要素ないし構成要素間の寸法の比率が、明細書に記載されたそれらの寸法の比率と一致していない場合がある。また、明細書に記載されている構成要素が、図面において省略されている場合や、個数を省略して描画されている場合などがある。 Each embodiment shows an embodiment of the present invention by way of example, and the present invention is not limited to the content of the embodiment. Moreover, it is also possible to implement combining the content described in different embodiment, and the implementation content in that case is also included in this invention. Further, the drawings are for helping understanding of the embodiment, and may not be drawn strictly. For example, a drawn component or a dimensional ratio between the components may not match the dimensional ratio described in the specification. In addition, the constituent elements described in the specification may be omitted in the drawings or may be drawn with the number omitted.
 [第1実施形態]
 図1(A)~(C)、図2(D)~(F)に、第1実施形態にかかる電子部品の実装構造100の形成方法を示す。ただし、図1(A)~(C)は、それぞれ、当該形成方法において実施される工程を示す斜視図である。また、図2(D)~(F)は、図1(C)の続きであり、それぞれ、当該形成方法において実施される工程を示す断面図である。なお、図2(D)~(F)では、見やすくするため、後述する電子部品1の部品本体2および外部電極3a、3bの断面に代えて、外観を示している。
[First Embodiment]
1A to 1C and FIGS. 2D to 2F show a method of forming an electronic component mounting structure 100 according to the first embodiment. However, FIGS. 1A to 1C are perspective views showing steps performed in the forming method. FIGS. 2D to 2F are continuations of FIG. 1C, and are cross-sectional views showing steps performed in the formation method. 2D to 2F, the external appearance is shown instead of a cross section of a component main body 2 and external electrodes 3a and 3b of the electronic component 1 described later for the sake of clarity.
 まず、図1(A)に示すように、電子部品1を準備する。本実施形態においては、電子部品1として、汎用品として広く流通しているNTCサーミスタを準備した。 First, as shown in FIG. 1A, an electronic component 1 is prepared. In the present embodiment, an NTC thermistor widely distributed as a general-purpose product was prepared as the electronic component 1.
 電子部品(NTCサーミスタ)1は、部品本体2を備える。部品本体2は、1対の端面2a、2bと、端面2a、2bを繋ぐ4つの側面2c、2d、2e、2fを備える。部品本体2は、負の抵抗温度特性を示す半導体セラミックスからなる。部品本体2は、図示しないが、複数の層からなる積層構造を有していて、特定の層間に内部電極が形成されている。内部電極は、たとえば、Ag-Pdを主成分としている。 The electronic component (NTC thermistor) 1 includes a component body 2. The component body 2 includes a pair of end surfaces 2a and 2b and four side surfaces 2c, 2d, 2e, and 2f that connect the end surfaces 2a and 2b. The component body 2 is made of a semiconductor ceramic that exhibits negative resistance temperature characteristics. Although not shown, the component main body 2 has a laminated structure composed of a plurality of layers, and internal electrodes are formed between specific layers. The internal electrode contains, for example, Ag—Pd as a main component.
 部品本体2の端部には、外部電極3a、3bが形成されている。本実施形態においては、外部電極3aは、部品本体2の端面2aと、端面2aを囲む4つの側面2c~2fにキャップ形状に形成されている。同様に、外部電極3bは、部品本体2の端面2bと、端面2bを囲む4つの側面2c~2fにキャップ形状に形成されている。ただし、外部電極3aは、必ずしもキャップ形状に形成される必要はなく、少なくとも部品本体2の端面2aに形成されていれば良い。同様に、外部電極3bは、必ずしもキャップ形状に形成される必要はなく、少なくとも部品本体2の端面2bに形成されていれば良い。 External electrodes 3 a and 3 b are formed at the end of the component body 2. In the present embodiment, the external electrode 3a is formed in a cap shape on the end surface 2a of the component body 2 and the four side surfaces 2c to 2f surrounding the end surface 2a. Similarly, the external electrode 3b is formed in a cap shape on the end surface 2b of the component body 2 and the four side surfaces 2c to 2f surrounding the end surface 2b. However, the external electrode 3a is not necessarily formed in a cap shape, and may be formed at least on the end surface 2a of the component main body 2. Similarly, the external electrode 3b is not necessarily formed in a cap shape, and may be formed at least on the end surface 2b of the component main body 2.
 本実施形態においては、外部電極3a、3bは、図示しないが、それぞれ、3層の多層構造に形成されている。第1層は、Agを主成分とする焼付け電極層からなる。第2層は、Niを主成分とするめっき電極層からなる。第3層は、Snを主成分とするめっき電極層からなる。ただし、外部電極3a、3bの構造は任意であり、上記の内容には限られない。たとえば、第1層のAgを主成分とする焼付け電極層に代えて、Pdを主成分とする焼付け電極層やAg-Pdを主成分とする焼付け電極層を用いても良い。あるいは、第2層のNiを主成分とするめっき電極層や第3層のSnを主成分とするめっき電極層を省略しても良い。 In the present embodiment, the external electrodes 3a and 3b are each formed in a multilayer structure of three layers (not shown). The first layer is composed of a baked electrode layer mainly composed of Ag. The second layer is composed of a plating electrode layer containing Ni as a main component. The third layer is composed of a plating electrode layer containing Sn as a main component. However, the structure of the external electrodes 3a and 3b is arbitrary and is not limited to the above. For example, a baked electrode layer mainly composed of Pd or a baked electrode layer mainly composed of Ag—Pd may be used instead of the baked electrode layer mainly composed of Ag. Alternatively, the plating electrode layer mainly containing Ni in the second layer and the plating electrode layer mainly containing Sn in the third layer may be omitted.
 次に、図1(B)に矢印で示す、部品本体2の端面2a、2bと、4つの側面2c~2fのうちの3つの側面2c、2d、2eにコーティング樹脂を付着させ、図1(C)に示すようにコーティング樹脂層4を形成する。なお、コーティング樹脂層4は、外部電極3a、3bの上に形成する。 Next, a coating resin is attached to the end surfaces 2a and 2b of the component body 2 and three side surfaces 2c, 2d and 2e among the four side surfaces 2c to 2f, as indicated by arrows in FIG. A coating resin layer 4 is formed as shown in FIG. The coating resin layer 4 is formed on the external electrodes 3a and 3b.
 コーティング樹脂層4は、外部電極3a、3bや、後述するはんだフィレット17などを、起点や終点とするマイクレーションを抑制するためのものである。マイクレーションは高湿条件下において発生しやすいため、少なくとも耐湿性を高めるものであれば、コーティング樹脂層4はマイグレーション抑制機能を有しているものということができる。 The coating resin layer 4 is for suppressing the microphones having the external electrodes 3a and 3b, a solder fillet 17 (to be described later) and the like as starting points and ending points. Since the microphone is easily generated under a high humidity condition, it can be said that the coating resin layer 4 has a migration suppressing function as long as at least the moisture resistance is improved.
 なお、耐湿性を高めるとは、たとえば、コーティング樹脂層4が、マイグレーションの起点や終点となる電極やフィレッツトなどに水滴が発生するのを抑制している状態をいう。 In addition, improving the moisture resistance refers to a state in which the coating resin layer 4 suppresses the generation of water droplets on the migration starting and ending electrodes and fillets.
 コーティング樹脂層4は、リフローはんだを実施する際の熱により軟化するものである必要がある。すなわち、コーティング樹脂層4は、リフローはんだを実施する際の熱により軟化し、外部電極3a、3bと、コーティング樹脂層4との間に、接合強度を向上させるためのはんだフィレット17が形成される必要がある。 The coating resin layer 4 needs to be softened by heat during reflow soldering. That is, the coating resin layer 4 is softened by heat during reflow soldering, and a solder fillet 17 is formed between the external electrodes 3a and 3b and the coating resin layer 4 to improve the bonding strength. There is a need.
 コーティング樹脂層4がリフローはんだを実施する際の熱により軟化し、接合部に、良好な、はんだフィレット17が形成され、かつ、良好なコーティング樹脂層4を維持できるか否かは、主に、コーティング樹脂層4を構成する樹脂の軟化点と、はんだの供給量に依存する。なお、コーティング樹脂の軟化点は、主成分である樹脂の種類、分散させる溶剤などを含めた全体量に対する主成分である樹脂の比率(主成分である樹脂の濃度)などによって、調整することができる。   Whether or not the coating resin layer 4 is softened by heat during reflow soldering and a good solder fillet 17 is formed at the joint and the good coating resin layer 4 can be maintained, mainly, It depends on the softening point of the resin constituting the coating resin layer 4 and the amount of solder supplied. The softening point of the coating resin can be adjusted by the type of the resin as the main component, the ratio of the resin as the main component to the total amount including the solvent to be dispersed (concentration of the resin as the main component), etc. it can. *
 良好な、はんだフィレット17が形成され、かつ、良好なコーティング樹脂層4を維持できる条件については、後に記載する「実験」の欄において説明する。 The conditions under which a good solder fillet 17 is formed and the good coating resin layer 4 can be maintained will be described in the “Experiment” section described later.
 本実施形態においては、コーティング樹脂の主成分となる樹脂に、軟化点が230℃のエポキシ樹脂を用いた。なお、軟化点は、TMA装置(Thermomechanical Analysis 装置)を使用したペネトレーション法により測定した。測定方法の詳細については、後に記載する「実験」の欄において説明する。溶剤にはMEK(メチルエチルケトン)主成分とするシンナーを用い、エポキシ樹脂の濃度は10%とした。ただし、エポキシ樹脂の濃度は、適宜、調整することができる。また、エポキシ樹脂に代えて、アクリルメラミン樹脂、ポリエステル樹脂、アクリルウレタン樹脂、アクリレート樹脂、シリコンアクリレート樹脂、エポキシアクリレート樹脂、フェノール樹脂、アクリルシリコン樹脂などを用いても良い。また、溶剤の種類も、適宜、変更することができる。また、本実施形態においては、樹脂の経時的な劣化を抑制させるなどの目的で、コーティング樹脂に微量の顔料を添加した。 In this embodiment, an epoxy resin having a softening point of 230 ° C. is used as the resin that is the main component of the coating resin. The softening point was measured by a penetration method using a TMA apparatus (Thermomechanical analysis apparatus). Details of the measurement method will be described in the “Experiment” section described later. As the solvent, thinner mainly composed of MEK (methyl ethyl ketone) was used, and the concentration of the epoxy resin was set to 10%. However, the concentration of the epoxy resin can be adjusted as appropriate. Instead of the epoxy resin, an acrylic melamine resin, a polyester resin, an acrylic urethane resin, an acrylate resin, a silicon acrylate resin, an epoxy acrylate resin, a phenol resin, an acrylic silicon resin, or the like may be used. Moreover, the kind of solvent can also be changed suitably. In this embodiment, a small amount of pigment is added to the coating resin for the purpose of suppressing deterioration of the resin over time.
 コーティング樹脂層4の形成は、たとえば、図3に示すように、基台50に複数の電子部品1を配置し、スプレー装置60を使用して、上述したコーティング樹脂を噴霧することによりおこなう。なお、基台50の表面には、粘着層51が形成されており、部品本体2の底面(側面2f)と密着するため、部品本体2の側面2fにはコーティング樹脂層4は形成されない。 The formation of the coating resin layer 4 is performed, for example, by arranging a plurality of electronic components 1 on a base 50 and spraying the above-described coating resin using a spray device 60 as shown in FIG. Note that an adhesive layer 51 is formed on the surface of the base 50 and is in close contact with the bottom surface (side surface 2 f) of the component body 2, so that the coating resin layer 4 is not formed on the side surface 2 f of the component body 2.
 本実施形態においては、コーティング樹脂層4の膜厚を5~15μmとした。 In this embodiment, the coating resin layer 4 has a thickness of 5 to 15 μm.
 また、電子部品1の準備と並行して、図2(D)に示すように、基板5を準備する。基板5は、樹脂やセラミックスなどからなる。 In parallel with the preparation of the electronic component 1, the substrate 5 is prepared as shown in FIG. The substrate 5 is made of resin or ceramics.
 基板5の主面には、1対のランド電極6a、6bが形成されている。ランド電極6a、6bは、本実施形態においては、図示しないが、Cuを主成分とする主電極層上に、Snを主成分とするめっき電極層が形成された多層構造に形成されている。本実施形態においては、主電極層の厚みを18μm、めっき電極層の厚みを約1μmとした。次に、同じく図2(D)に示すように、ランド電極6a、6bに、はんだペースト7を塗布(印刷)する。本実施形態においては、はんだペースト7に、SnAgCu系はんだを主成分とするもの使用した。また、本実施形態においては、はんだペースト7の塗布厚みを150μmとした。 A pair of land electrodes 6 a and 6 b are formed on the main surface of the substrate 5. In the present embodiment, the land electrodes 6a and 6b are formed in a multilayer structure in which a plating electrode layer mainly composed of Sn is formed on a main electrode layer mainly composed of Cu, although not shown. In the present embodiment, the thickness of the main electrode layer is 18 μm, and the thickness of the plating electrode layer is about 1 μm. Next, as shown in FIG. 2D, the solder paste 7 is applied (printed) to the land electrodes 6a and 6b. In this embodiment, the solder paste 7 is composed mainly of SnAgCu solder. In this embodiment, the application thickness of the solder paste 7 is 150 μm.
 次に、図2(E)に示すように、はんだペースト7が塗布されたランド電極6a、6b上に、電子部品1を配置する。電子部品1は、コーティング樹脂層4が形成されていない部品本体2の側面2fを下側にして配置する。この結果、電子部品1の外部電極3aがランド電極6a上に塗布されたはんだペースト7に当接し、外部電極3bがランド電極6b上に塗布されたはんだペースト7に当接する。 Next, as shown in FIG. 2E, the electronic component 1 is arranged on the land electrodes 6a and 6b to which the solder paste 7 is applied. The electronic component 1 is arranged with the side surface 2f of the component main body 2 on which the coating resin layer 4 is not formed facing down. As a result, the external electrode 3a of the electronic component 1 contacts the solder paste 7 applied on the land electrode 6a, and the external electrode 3b contacts the solder paste 7 applied on the land electrode 6b.
 次に、電子部品1が配置された基板5を、265℃で、20秒間加熱する。 Next, the substrate 5 on which the electronic component 1 is arranged is heated at 265 ° C. for 20 seconds.
 この結果、はんだペースト7が溶融して、ランド電極6a、6b上に溶融はんだ(図示せず)が供給されるとともに、電子部品1に形成されたコーティング樹脂層4が軟化する。そして、溶融はんだが、外部電極3a、3bとコーティング樹脂層4との隙間に、表面張力により浸透する。 As a result, the solder paste 7 is melted, molten solder (not shown) is supplied onto the land electrodes 6a and 6b, and the coating resin layer 4 formed on the electronic component 1 is softened. Then, the molten solder penetrates into the gap between the external electrodes 3a and 3b and the coating resin layer 4 due to surface tension.
 次に、電子部品1が配置された基板5を自然冷却させることにより、溶融はんだを固化させ、図2(F)に示すように、はんだフィレット17を形成する。自然冷却により、軟化していたコーティング樹脂層4も、本来の硬さを回復する。 Next, the substrate 5 on which the electronic component 1 is arranged is naturally cooled to solidify the molten solder, thereby forming a solder fillet 17 as shown in FIG. The coating resin layer 4 that has been softened by natural cooling also recovers its original hardness.
 はんだフィレット17は、外部電極3a、3bを、ランド電極6a、6bに強固に接合する。はんだフィレット17は、コーティング樹脂層4により被覆されている。 The solder fillet 17 firmly joins the external electrodes 3a and 3b to the land electrodes 6a and 6b. The solder fillet 17 is covered with the coating resin layer 4.
 以上により、第1実施形態にかかる実装構造100が完成する。図4(A)、(B)に、実装構造100の断面のSEM写真を示す。ただし、図4(A)は90倍の倍率、図4(B)は800倍の倍率である。 Thus, the mounting structure 100 according to the first embodiment is completed. 4A and 4B show SEM photographs of a cross section of the mounting structure 100. FIG. However, FIG. 4A shows a 90 × magnification, and FIG. 4B shows a 800 × magnification.
 本実施形態の電子部品の実装構造100を50個作成したところ、50個においてはんだフィレット17が形成され、高い再現率であることが確認できた。 When 50 electronic component mounting structures 100 of the present embodiment were created, it was confirmed that 50 solder fillets 17 were formed, and the reproducibility was high.
 本実施形態の実装構造100においては、コーティング樹脂層4により、外部電極3a、3bおよびはんだフィレット17が被覆されているため、外部電極3a、3bやはんだフィレット17を起点や終点にしたマイグレーションの発生が抑制されている。 In the mounting structure 100 of the present embodiment, since the external electrodes 3a, 3b and the solder fillet 17 are covered with the coating resin layer 4, the occurrence of migration with the external electrodes 3a, 3b and the solder fillet 17 as starting points and ending points is generated. Is suppressed.
 また、本実施形態の実装構造100においては、はんだフィレット17により、外部電極3a、3bがランド電極6a、6bに強固に接合されている。 In the mounting structure 100 of the present embodiment, the external electrodes 3a and 3b are firmly joined to the land electrodes 6a and 6b by the solder fillet 17.
 [第2実施形態]
 第1実施形態においては、電子部品1としてNTCサーミスタを使用し、実装構造100を形成した。第2実施形態は、電子部品の種類を変更して、第1実施形態と同じ方法で、実装構造200を形成した。なお、第2実施形態の説明においては、第1実施形態の図1(A)~(C)、図2(D)~(F)を援用して説明をおこなう。
[Second Embodiment]
In the first embodiment, the mounting structure 100 is formed using an NTC thermistor as the electronic component 1. In the second embodiment, the type of electronic component is changed, and the mounting structure 200 is formed by the same method as in the first embodiment. In the description of the second embodiment, description will be made with reference to FIGS. 1A to 1C and FIGS. 2D to 2F of the first embodiment.
 第2実施形態においては、図1(A)に示すように、電子部品11として、汎用品として広く流通している積層セラミックコンデンサを準備する。 In the second embodiment, as shown in FIG. 1A, a multilayer ceramic capacitor that is widely distributed as a general-purpose product is prepared as the electronic component 11.
 積層セラミックコンデンサからなる電子部品11は、第1実施形態のNTCサーミスタからなる電子部品1と同様の外観形状を有している。すなわち、電子部品11は、1対の端面2a、2bと、端面2a、2bを繋ぐ4つの側面2c、2d、2e、2fを備えた部品本体2を有している。部品本体2は、チタン酸バリウムなどを主成分とする誘電体セラミックスからなる。部品本体2は、図示しないが、複数の層からなる積層構造を有していて、層間に内部電極が形成されている。内部電極は、たとえば、Cu、Ni、Ag、Pdなどを主成分としている。 The electronic component 11 made of a multilayer ceramic capacitor has the same external shape as the electronic component 1 made of the NTC thermistor of the first embodiment. That is, the electronic component 11 has a component body 2 having a pair of end surfaces 2a and 2b and four side surfaces 2c, 2d, 2e, and 2f that connect the end surfaces 2a and 2b. The component body 2 is made of dielectric ceramics whose main component is barium titanate or the like. Although not shown, the component main body 2 has a laminated structure composed of a plurality of layers, and internal electrodes are formed between the layers. The internal electrode contains, for example, Cu, Ni, Ag, Pd or the like as a main component.
 部品本体2の端部には、外部電極3a、3bが形成されている。外部電極3a、3bは、図示しないが、それぞれ、3層の多層構造に形成されている。第1層は、Cuを主成分とする焼付け電極層からなる。第2層は、Niを主成分とするめっき電極層からなる。第3層は、Snを主成分とするめっき電極層からなる。 External electrodes 3 a and 3 b are formed at the end of the component body 2. Although not shown, the external electrodes 3a and 3b are each formed in a multilayer structure of three layers. The first layer is composed of a baked electrode layer mainly composed of Cu. The second layer is composed of a plating electrode layer containing Ni as a main component. The third layer is composed of a plating electrode layer containing Sn as a main component.
 次に、図1(B)に矢印で示す、部品本体2の端面2a、2bと、4つの側面2c~2fのうちの3つの側面2c、2d、2eにコーティング樹脂を付着させ、図1(C)に示すようにコーティング樹脂層4を形成する。 Next, a coating resin is attached to the end surfaces 2a and 2b of the component body 2 and three side surfaces 2c, 2d and 2e among the four side surfaces 2c to 2f, as indicated by arrows in FIG. A coating resin layer 4 is formed as shown in FIG.
 本実施形態においては、コーティング樹脂の主成分となる樹脂に、軟化点が120℃のアクリルメラミン樹脂を用いた。溶剤にはキシレンを主成分とするシンナーを用い、アクリルメラミン樹脂の濃度は10%とした。本実施形態においては、樹脂の経時的な劣化を抑制させるなどの目的で、コーティング樹脂に微量の顔料を添加した。 In this embodiment, an acrylic melamine resin having a softening point of 120 ° C. is used as the resin that is the main component of the coating resin. The solvent used was thinner mainly composed of xylene, and the concentration of the acrylic melamine resin was 10%. In the present embodiment, a small amount of pigment is added to the coating resin for the purpose of suppressing deterioration of the resin over time.
 本実施形態においては、コーティング樹脂層4の膜厚を5~15μmとした。 In this embodiment, the coating resin layer 4 has a thickness of 5 to 15 μm.
 次に、図2(D)に示すように、ランド電極6a、6bに、はんだペースト7を塗布(印刷)する。本実施形態においては、はんだペースト7に、SnAgCu系はんだを主成分とするもの使用した。また、本実施形態においては、はんだペースト7の塗布厚みを100μmとした。 Next, as shown in FIG. 2D, the solder paste 7 is applied (printed) to the land electrodes 6a and 6b. In this embodiment, the solder paste 7 is composed mainly of SnAgCu solder. In the present embodiment, the application thickness of the solder paste 7 is 100 μm.
 次に、図2(E)に示すように、はんだペースト7が塗布されたランド電極6a、6b上に、電子部品11を配置する。 Next, as shown in FIG. 2E, the electronic component 11 is placed on the land electrodes 6a and 6b to which the solder paste 7 is applied.
 次に、電子部品1が配置された基板5を、265℃で、20秒間加熱する。この結果、はんだペースト7が溶融して、ランド電極6a、6b上に溶融はんだ(図示せず)が供給されるとともに、電子部品11に形成されたコーティング樹脂層4が軟化する。そして、溶融はんだが、外部電極3a、3bとコーティング樹脂層4との隙間に、表面張力により浸透する。 Next, the substrate 5 on which the electronic component 1 is arranged is heated at 265 ° C. for 20 seconds. As a result, the solder paste 7 is melted, molten solder (not shown) is supplied onto the land electrodes 6a and 6b, and the coating resin layer 4 formed on the electronic component 11 is softened. Then, the molten solder penetrates into the gap between the external electrodes 3a and 3b and the coating resin layer 4 due to surface tension.
 次に、電子部品11が配置された基板5を自然冷却させることにより、溶融はんだを固化させ、図2(F)に示すように、はんだフィレット17を形成し、第2実施形態にかかる実装構造200を完成させる。 Next, by naturally cooling the substrate 5 on which the electronic component 11 is arranged, the molten solder is solidified to form a solder fillet 17 as shown in FIG. 2 (F), and the mounting structure according to the second embodiment Complete 200.
 第2実施形態の実装構造200においても、コーティング樹脂層4により、外部電極3a、3bおよびはんだフィレット17が被覆されているため、外部電極3a、3bやはんだフィレット17を起点や終点にしたマイグレーションの発生が抑制されている。 Also in the mounting structure 200 of the second embodiment, since the external electrodes 3a, 3b and the solder fillet 17 are covered with the coating resin layer 4, migration using the external electrodes 3a, 3b and the solder fillet 17 as starting points and end points is performed. Occurrence is suppressed.
 また、本実施形態の実装構造200においても、はんだフィレット17により、外部電極3a、3bがランド電極6a、6bに強固に接合されている。 Also in the mounting structure 200 of the present embodiment, the external electrodes 3a and 3b are firmly joined to the land electrodes 6a and 6b by the solder fillet 17.
 [実験]
 第1実施形態、第2実施形態にかかる実装構造100、200において、接合部に、良好な、はんだフィレット17が形成され、かつ、マイグレーションの発生を抑制できる、良好なコーティング樹脂層4を維持できる条件を明らかにするために、以下の実験を実施した。
[Experiment]
In the mounting structures 100 and 200 according to the first embodiment and the second embodiment, it is possible to maintain a good coating resin layer 4 in which a good solder fillet 17 is formed at the joint and migration can be suppressed. In order to clarify the conditions, the following experiment was performed.
 第2実施形態において使用した積層セラミックコンデンサからなる電子部品11を使用し、部品本体2の端面2a、2bと、4つの側面2c~2fのうちの3つの側面2c、2d、2eにコーティング樹脂を付着させて、実施例1~8にかかる試料を作製した。各試料は、コーティング樹脂層4の主成分となる樹脂の材質と、軟化点との少なくとも一方が異なっている。また、比較のために、コーティング樹脂層4が形成されていない、比較例1にかかる試料を作製した。各試料の、コーティング樹脂層4の主成分となる樹脂の材質と、軟化点とを、表1に示す。
Figure JPOXMLDOC01-appb-T000001
Using the electronic component 11 made of the multilayer ceramic capacitor used in the second embodiment, coating resin is applied to the end surfaces 2a and 2b of the component body 2 and the three side surfaces 2c, 2d and 2e of the four side surfaces 2c to 2f. The samples according to Examples 1 to 8 were prepared by attaching them. Each sample differs in at least one of the material of the resin used as the main component of the coating resin layer 4 and the softening point. For comparison, a sample according to Comparative Example 1 in which the coating resin layer 4 was not formed was prepared. Table 1 shows the material and softening point of the resin as the main component of the coating resin layer 4 of each sample.
Figure JPOXMLDOC01-appb-T000001
 実施例1~8において、コーティング樹脂層4の主成分となる樹脂には、アクリルメラミン樹脂、ポリエステル樹脂、アクリルシリコン樹脂、アクリルウレタン樹脂のいずれか1つを使用した。 In Examples 1 to 8, any one of acrylic melamine resin, polyester resin, acrylic silicon resin, and acrylic urethane resin was used as the main component of the coating resin layer 4.
 また、実施例1~8において、コーティング樹脂層4の主成分となる樹脂の軟化点は、70℃以上、330℃以下とした。軟化点は、主成分である樹脂の種類、主成分である樹脂の濃度などによって、調整することができる。   In Examples 1 to 8, the softening point of the resin as the main component of the coating resin layer 4 was set to 70 ° C. or higher and 330 ° C. or lower. The softening point can be adjusted by the type of the resin as the main component, the concentration of the resin as the main component, and the like. *
 なお、軟化点は、部品本体2にコーティング樹脂層4を形成した後に、TMA装置(Thermomechanical Analysis 装置)を使用したペネトレーション法により測定した。より具体的には、リガク社製、品番:TP-8のTMA装置を使用し、各試料のコーティング樹脂層4に対し、1gfの荷重で針入プローブを当接し、測定環境温度を常温から350℃まで10℃/分で昇温させ、針入プローブにより、コーティング樹脂層4が膜厚に対して15%たわんだ温度を、コーティング樹脂層4を構成する樹脂の軟化点とした。 The softening point was measured by a penetration method using a TMA apparatus (Thermomechanical-Analysis apparatus) after forming the coating resin layer 4 on the component body 2. More specifically, using a TMA device manufactured by Rigaku Corporation, product number: TP-8, a probe probe is brought into contact with the coating resin layer 4 of each sample with a load of 1 gf, and the measurement environment temperature is changed from room temperature to 350. The temperature was raised to 10 ° C. at a rate of 10 ° C./min, and the temperature at which the coating resin layer 4 was deflected by 15% with respect to the film thickness by the needle probe was defined as the softening point of the resin constituting the coating resin layer 4.
 実施例1~8にかかる試料を使い、それぞれ、第2実施形態による方法で、実装構造200を形成した。すなわち、ランド電極6a、6bに、はんだペースト7を塗布(印刷)し、その上に各試料を配置し、265℃で、20秒間加熱した。また、比較例にかかる試料を使い、同様の方法で、実装構造を形成した。 Using the samples according to Examples 1 to 8, the mounting structure 200 was formed by the method according to the second embodiment. That is, the solder paste 7 was applied (printed) to the land electrodes 6a and 6b, each sample was placed thereon, and heated at 265 ° C. for 20 seconds. Moreover, the mounting structure was formed with the same method using the sample concerning a comparative example.
 実施例1~8にかかる試料の全てにおいて、はんだフィレット17が形成された。ただし、試料ごとに、はんだフィレット17の高さが異なった。表1に、各試料のはんだフィレット17の高さを、比較例1(コーティング樹脂層4なし)のはんだフィレットの高さに対するパーセンテージで示す。一部において例外があるが、主成分である樹脂の軟化点が低いほど、はんだフィレット17の高さが大きくなる傾向にある。 In all the samples according to Examples 1 to 8, solder fillets 17 were formed. However, the height of the solder fillet 17 was different for each sample. Table 1 shows the height of the solder fillet 17 of each sample as a percentage of the height of the solder fillet of Comparative Example 1 (without the coating resin layer 4). There are some exceptions, but the lower the softening point of the resin as the main component, the higher the height of the solder fillet 17 tends to be.
 また、実施例1~8にかかる試料の固着強度を測定した。固着強度の測定は、実装された電子部品11の部品本体2を、部品本体2の厚さの1/4未満の高さにおいて、押し治具によって、横方向からせん断し、破壊に要した最大荷重を固着強度とした。同様に、比較例1にかかる試料の固着強度(N)を測定した。表1に、各試料の固着強度を示す。 Also, the adhesion strength of the samples according to Examples 1 to 8 was measured. The measurement of the fixing strength is performed by shearing the component main body 2 of the mounted electronic component 11 from the lateral direction with a pressing jig at a height less than ¼ of the thickness of the component main body 2, and required for breaking. The load was defined as the fixing strength. Similarly, the fixing strength (N) of the sample according to Comparative Example 1 was measured. Table 1 shows the fixing strength of each sample.
 さらに、実施例1~8および比較例1にかかる試料について、微小結露が発生する条件下に置いた後に、マイグレーションの発生率を調べた。具体的には、まず、試料を、可変温度ステージに置いたうえで、温度25℃、湿度50%の槽内に収容した。試料に50Vの電圧を印加した状態で、まず、可変ステージの温度を35℃に上昇させ、試料の乾燥をおこなった。続いて、試料に50Vの電圧を印加した状態のまま、可変温度ステージの温度を0℃に降下させ、1時間、試料を冷却した。この結果、試料の外周に微小結露が発生した。1時間経過後、試料を槽内から取り出し、マイグレーションの発生の有無を調べた。各試料のマイグレーション発生率を、表1に示す。なお、各試料の母数は50個とした。コーティング樹脂層4を備えない比較例1のマイグレーション発生率は96%であった。これに対し、実施例1~8のマイグレーション発生率は、4%~44%であった。 Furthermore, after the samples according to Examples 1 to 8 and Comparative Example 1 were placed under conditions where minute condensation occurred, the occurrence rate of migration was examined. Specifically, first, the sample was placed on a variable temperature stage and then housed in a tank having a temperature of 25 ° C. and a humidity of 50%. With the voltage of 50 V applied to the sample, first, the temperature of the variable stage was raised to 35 ° C., and the sample was dried. Subsequently, while the voltage of 50 V was applied to the sample, the temperature of the variable temperature stage was lowered to 0 ° C., and the sample was cooled for 1 hour. As a result, minute condensation occurred on the outer periphery of the sample. After 1 hour, the sample was taken out from the tank and examined for the occurrence of migration. Table 1 shows the migration rate of each sample. The number of parameters of each sample was 50. The migration occurrence rate of Comparative Example 1 without the coating resin layer 4 was 96%. On the other hand, the migration occurrence rate in Examples 1 to 8 was 4% to 44%.
 各試料に対する評価をおこなった。固着強度が10N以上あり、かつ、マイグレーション発生率が12%以下に改善されたものを、良好(○)とした。この結果、実施例1、2、3、5、8が良好であった。一方、実施例4、6、7は、マイグレーション発生率は改善されたが、改善の程度が不十分であり、良好にはならなかった。また、実施例6、7は、固着強度も不十分であった。 .Evaluation for each sample was performed. A case where the fixing strength was 10 N or more and the migration rate was improved to 12% or less was evaluated as good (◯). As a result, Examples 1, 2, 3, 5, and 8 were good. On the other hand, in Examples 4, 6, and 7, the migration occurrence rate was improved, but the degree of improvement was insufficient and did not become good. In Examples 6 and 7, the fixing strength was insufficient.
 良好となった実施例1、2、3、5、8は、いずれも、主成分である樹脂の軟化点が、90℃以上、230℃以下の範囲内にあった。一方、良好とならなかった実施例4、6、7は、いずれも、主成分である樹脂の軟化点が、90℃以上、230℃以下の範囲外であった。以上より、主成分である樹脂の軟化点が、90℃以上、230℃以下の範囲内にあれば、接合部に、良好な、はんだフィレット17が形成され、かつ、マイグレーションの発生を抑制できる、良好なコーティング樹脂層4を維持できることが分かった。 In Examples 1, 2, 3, 5, and 8, which were all good, the softening point of the resin as the main component was in the range of 90 ° C. or higher and 230 ° C. or lower. On the other hand, in Examples 4, 6, and 7, which were not good, the softening point of the resin as the main component was outside the range of 90 ° C. or higher and 230 ° C. or lower. From the above, if the softening point of the resin as the main component is in the range of 90 ° C. or higher and 230 ° C. or lower, a good solder fillet 17 is formed at the joint, and the occurrence of migration can be suppressed. It was found that a good coating resin layer 4 can be maintained.
 [第3実施形態]
 図5(A)に、第3実施形態にかかる電子部品(NTCサーミスタ/積層セラミックコンデンサ)の実装構造300を示す。ただし、図5(A)は、実装構造300の断面図である。なお、図5(A)では、見やすくするため、後述する電子部品1(11)の部品本体2および外部電極3a、3bの断面に代えて、外観を示している。
[Third Embodiment]
FIG. 5A shows a mounting structure 300 for an electronic component (NTC thermistor / multilayer ceramic capacitor) according to the third embodiment. However, FIG. 5A is a cross-sectional view of the mounting structure 300. In FIG. 5A, for the sake of clarity, an external appearance is shown instead of a cross section of a component main body 2 and external electrodes 3a and 3b of an electronic component 1 (11) described later.
 なお、第3実施形態においては、NTCサーミスタからなる電子部品1と、積層セラミックコンデンサからなる電子部品11との両方で、それぞれ、実装構造300を形成した。 In the third embodiment, the mounting structure 300 is formed by both the electronic component 1 made of an NTC thermistor and the electronic component 11 made of a multilayer ceramic capacitor.
 第1実施形態、第2実施形態にかかる電子部品の実装構造100、200では、電子部品1(11)の部品本体2の側面2f(基板5と相対する側面)には、コーティング樹脂層4は形成されなかった。これに対し、第3実施形態にかかる電子部品の実装構造300では、図5(A)において矢印で示すように、コーティング樹脂層14が部品本体2の側面2fにも形成されている。 In the electronic component mounting structures 100 and 200 according to the first embodiment and the second embodiment, the coating resin layer 4 is formed on the side surface 2f (side surface opposite to the substrate 5) of the component body 2 of the electronic component 1 (11). Not formed. On the other hand, in the electronic component mounting structure 300 according to the third embodiment, the coating resin layer 14 is also formed on the side surface 2f of the component main body 2 as indicated by an arrow in FIG.
 第3実施形態にかかる実装構造300は、第1実施形態、第2実施形態にかかる電子部品の実装構造100、200と類似した形成方法により形成されたものである。すなわち、第3実施形態においても、予め、電子部品1(11)の部品本体2の端面2a、2bと、側面2fを除く3つの側面2c、2d、2eに、コーティング樹脂を付着させてコーティング樹脂層14を形成した。 The mounting structure 300 according to the third embodiment is formed by a method similar to that of the electronic component mounting structures 100 and 200 according to the first and second embodiments. That is, also in the third embodiment, the coating resin is previously attached to the end surfaces 2a, 2b of the component body 2 of the electronic component 1 (11) and the three side surfaces 2c, 2d, 2e except the side surface 2f. Layer 14 was formed.
 ただし、第3実施形態においては、コーティング樹脂の主成分である樹脂の種類、樹脂を分散させる溶剤の種類、樹脂の濃度、コーティング樹脂層14の膜厚、リフローはんだを実施する際の温度など調整することにより、部品本体2の側面2cや2eなどに形成されたコーティング樹脂層14が、リフローはんだを実施する際の熱により溶融し、部品本体2の側面2fにまで流動して側面2fを覆うようにした。 However, in the third embodiment, the type of resin that is the main component of the coating resin, the type of solvent in which the resin is dispersed, the concentration of the resin, the thickness of the coating resin layer 14, the temperature at which reflow soldering is performed, and the like are adjusted. By doing so, the coating resin layer 14 formed on the side surfaces 2c and 2e of the component main body 2 is melted by heat at the time of performing reflow soldering, flows to the side surface 2f of the component main body 2, and covers the side surface 2f. I did it.
 実装構造300においては、コーティング樹脂層14が、部品本体2の基板5の主面に相対する側面2fも覆っているため、コーティング樹脂層14による外部電極3a、3bやはんだフィレット17を起点や終点にするマイグレーションの抑制効果がより高くなっている。 In the mounting structure 300, since the coating resin layer 14 also covers the side surface 2 f facing the main surface of the substrate 5 of the component body 2, the external electrodes 3 a and 3 b and the solder fillet 17 by the coating resin layer 14 are used as starting points and end points. The effect of suppressing migration is higher.
 [第4実施形態]
 図5(B)に、第4実施形態にかかる電子部品(NTCサーミスタ/積層セラミックコンデンサ)の実装構造400を示す。ただし、図5(B)は、実装構造300の断面図である。なお、図5(B)では、見やすくするため、後述する電子部品1(11)の部品本体2および外部電極3a、3bの断面に代えて、外観を示している。
[Fourth Embodiment]
FIG. 5B shows a mounting structure 400 of the electronic component (NTC thermistor / multilayer ceramic capacitor) according to the fourth embodiment. However, FIG. 5B is a cross-sectional view of the mounting structure 300. In FIG. 5B, for the sake of clarity, an external appearance is shown instead of a cross section of a component main body 2 and external electrodes 3a and 3b of an electronic component 1 (11) described later.
 なお、第4実施形態においては、NTCサーミスタからなる電子部品1と、積層セラミックコンデンサからなる電子部品11との両方で、それぞれ、実装構造400を形成した。 In the fourth embodiment, the mounting structure 400 is formed by both the electronic component 1 made of an NTC thermistor and the electronic component 11 made of a multilayer ceramic capacitor.
 第1実施形態、第2実施形態にかかる電子部品の実装構造100、200では、コーティング樹脂層4は、ランド電極6a、6bを覆っていなかった。これに対し、第4実施形態にかかる電子部品の実装構造400では、図5(B)において矢印で示すように、コーティング樹脂層24が、ランド電極6a、6bを覆っている。 In the electronic component mounting structures 100 and 200 according to the first and second embodiments, the coating resin layer 4 did not cover the land electrodes 6a and 6b. In contrast, in the electronic component mounting structure 400 according to the fourth embodiment, the coating resin layer 24 covers the land electrodes 6a and 6b as shown by arrows in FIG. 5B.
 第4実施形態にかかる実装構造400は、第1実施形態、第2実施形態にかかる電子部品の実装構造100、200と類似した形成方法により形成されたものである。すなわち、第4実施形態においても、予め、電子部品1(11)の部品本体2の端面2a、2bと、3つの側面2c、2d、2eに、コーティング樹脂を付着させてコーティング樹脂層24を形成した。 The mounting structure 400 according to the fourth embodiment is formed by a method similar to that of the electronic component mounting structures 100 and 200 according to the first and second embodiments. That is, also in the fourth embodiment, the coating resin layer 24 is formed in advance by attaching the coating resin to the end surfaces 2a and 2b and the three side surfaces 2c, 2d and 2e of the component body 2 of the electronic component 1 (11). did.
 ただし、第4実施形態においては、コーティング樹脂の主成分である樹脂の種類、樹脂を分散させる溶剤の種類、樹脂の濃度、コーティング樹脂層24の膜厚、リフローはんだを実施する際の温度など調整することにより、リフローはんだを実施する際の熱により溶融したコーティング樹脂層24が、ランド電極6a、6bまで流動し、ランド電極6a、6bを覆うようにした。 However, in the fourth embodiment, the type of resin that is the main component of the coating resin, the type of solvent in which the resin is dispersed, the concentration of the resin, the thickness of the coating resin layer 24, the temperature at which reflow soldering is performed, and the like are adjusted. By doing so, the coating resin layer 24 melted by the heat during the reflow soldering flowed to the land electrodes 6a and 6b so as to cover the land electrodes 6a and 6b.
 実装構造400においては、コーティング樹脂層24がランド電極6a、6bを覆っているため、外部電極3a、3bやはんだフィレット17を起点や終点にするマイグレーションに加えて、ランド電極6a、6bを起点や終点にするマイグレーションが、コーティング樹脂層24により抑制されている。 In the mounting structure 400, since the coating resin layer 24 covers the land electrodes 6a and 6b, in addition to the migration starting from the external electrodes 3a and 3b and the solder fillet 17 as the starting point and ending point, the land electrodes 6a and 6b are used as starting points and Migration to the end point is suppressed by the coating resin layer 24.
 [第5実施形態]
 図6(A)~(C)に、第5実施形態にかかる電子部品(NTCサーミスタ/積層セラミックコンデンサ)の実装構造500の形成方法を示す。ただし、図6(A)~(C)は、それぞれ、当該形成方法において実施される工程を示し、図6(A)は斜視図、図6(B)、(C)は断面図である。なお、図6(B)、(C)では、見やすくするため、電子部品1(11)の部品本体2および外部電極3a、3bの断面に代えて、外観を示している。
[Fifth Embodiment]
6A to 6C show a method for forming a mounting structure 500 for an electronic component (NTC thermistor / multilayer ceramic capacitor) according to the fifth embodiment. However, FIGS. 6A to 6C show steps performed in the forming method, FIG. 6A is a perspective view, and FIGS. 6B and 6C are cross-sectional views. 6B and 6C, the external appearance is shown in place of the cross section of the component main body 2 and the external electrodes 3a and 3b of the electronic component 1 (11) for easy viewing.
 なお、第5実施形態においては、NTCサーミスタからなる電子部品1と、積層セラミックコンデンサからなる電子部品11との両方で、それぞれ、実装構造500を形成した。 In the fifth embodiment, the mounting structure 500 is formed by both the electronic component 1 made of an NTC thermistor and the electronic component 11 made of a multilayer ceramic capacitor.
 第5実施形態にかかる実装構造500の形成方法においては、第1実施形態、第2実施形態にかかる電子部品の実装構造100、200の形成方法に変更を加えた。以下に、変更を加えた部分に重点をおいて、実装構造400の形成方法について説明する。 In the method for forming the mounting structure 500 according to the fifth embodiment, the method for forming the electronic component mounting structures 100 and 200 according to the first and second embodiments is changed. Hereinafter, a method for forming the mounting structure 400 will be described with emphasis on the changed part.
 まず、図6(A)に示すように、電子部品1(11)を準備する。電子部品1(11)は部品本体2を備え、部品本体2は、1対の端面2a、2bと、端面2a、2bを繋ぐ4つの側面2c、2d、2e、2fを備える。部品本体2の端部には、外部電極3a、3bが形成されている。 First, as shown in FIG. 6A, an electronic component 1 (11) is prepared. The electronic component 1 (11) includes a component main body 2, and the component main body 2 includes a pair of end surfaces 2a and 2b and four side surfaces 2c, 2d, 2e, and 2f that connect the end surfaces 2a and 2b. External electrodes 3 a and 3 b are formed at the end of the component body 2.
 次に、図6(A)に矢印で示す、外部電極3a、3bが形成された部品本体2の表面全体に、コーティング樹脂を付着させる。すなわち、第1実施形態、第2実施形態においては、部品本体2の端面2a、2bと、4つの側面2c~2fのうちの3つの側面2c、2d、2eにコーティング樹脂を付着させたが、第5実施形態においては、側面2f(基板5と相対する側面)を含めた部品本体2の表面全体にコーティング樹脂を付着させる。 Next, a coating resin is adhered to the entire surface of the component body 2 on which the external electrodes 3a and 3b are formed, as indicated by arrows in FIG. That is, in the first embodiment and the second embodiment, the coating resin is attached to the end faces 2a, 2b of the component body 2 and the three side faces 2c, 2d, 2e of the four side faces 2c to 2f. In the fifth embodiment, the coating resin is adhered to the entire surface of the component main body 2 including the side surface 2f (side surface facing the substrate 5).
 部品本体2の表面全体へのコーティング樹脂の付着は、外部電極3a、3bが形成された部品本体2を、コーティング樹脂に浸漬させることによりおこなう。ただし、第1実施形態と同様に、図3に示す基台50とスプレー装置60を使用し、部品本体2を途中で上下裏返して、部品本体2の表面全体へコーティング樹脂を付着させるようにしても良い。 The adhesion of the coating resin to the entire surface of the component body 2 is performed by immersing the component body 2 on which the external electrodes 3a and 3b are formed in the coating resin. However, as in the first embodiment, the base 50 and the spray device 60 shown in FIG. 3 are used, the component body 2 is turned upside down in the middle, and the coating resin is attached to the entire surface of the component body 2. Also good.
 あるいは、部品本体2の表面全体へのコーティング樹脂の付着は、回転式のバレルに複数の部品本体2を入れ、バレルを回転させながら、部品本体2にコーティング樹脂をスプレーさせることによっておこなっても良い。 Alternatively, the coating resin may be attached to the entire surface of the component body 2 by putting a plurality of component bodies 2 in a rotary barrel and spraying the coating resin on the component body 2 while rotating the barrel. .
 なお、第5実施形態において使用したコーティング樹脂は、第1実施形態や第2実施形態において使用したコーティング樹脂と同一のものではなく、コーティング樹脂の軟化点を下げる、コーティング樹脂の膜厚を小さくするなどの変更が加えられている。 Note that the coating resin used in the fifth embodiment is not the same as the coating resin used in the first embodiment and the second embodiment, and lowers the softening point of the coating resin and reduces the thickness of the coating resin. Such changes have been made.
 次に、図6(B)に示すように、部品本体2の表面全体にコーティング樹脂層34が形成された電子部品1(11)を、基板5のはんだペースト7が塗布されたランド電極6a、6b上に配置する。 Next, as shown in FIG. 6B, the electronic component 1 (11) having the coating resin layer 34 formed on the entire surface of the component body 2 is replaced with the land electrode 6a to which the solder paste 7 of the substrate 5 is applied. 6b.
 次に、電子部品1(11)が配置された基板5を、265℃で、20秒間加熱する。 Next, the substrate 5 on which the electronic component 1 (11) is arranged is heated at 265 ° C. for 20 seconds.
 この結果、はんだペースト7が溶融して溶融はんだが供給されるとともに、コーティング樹脂層34が軟化し、更にコーティング樹脂層34のはんだペースト7との当接面が破れる。そして、コーティング樹脂層34の破れた部分から、溶融はんだが、外部電極3a、3bとコーティング樹脂層4との隙間に表面張力により浸透する。 As a result, the solder paste 7 is melted and molten solder is supplied, the coating resin layer 34 is softened, and the contact surface of the coating resin layer 34 with the solder paste 7 is broken. Then, from the broken portion of the coating resin layer 34, the molten solder penetrates into the gap between the external electrodes 3 a and 3 b and the coating resin layer 4 due to surface tension.
 次に、電子部品1(11)が配置された基板5を自然冷却させることにより、溶融はんだを固化させ、図6(C)に示すように、はんだフィレット17を形成する。自然冷却により、軟化していたコーティング樹脂層34も、本来の硬さを回復する。 Next, the substrate 5 on which the electronic component 1 (11) is placed is naturally cooled to solidify the molten solder, thereby forming a solder fillet 17 as shown in FIG. 6 (C). The coating resin layer 34 that has been softened by natural cooling also recovers its original hardness.
 以上により、第5実施形態にかかる実装構造500が完成する。 As described above, the mounting structure 500 according to the fifth embodiment is completed.
 [第6実施形態]
 図7(A)~(C)に、第6実施形態にかかる電子部品(NTCサーミスタ/積層セラミックコンデンサ)の実装構造600の形成方法を示す。ただし、図7(A)~(C)は、それぞれ、当該形成方法において実施される工程を示す断面図である。なお、図7(A)~(C)では、見やすくするため、電子部品1の部品本体2および外部電極3a、3bの断面に代えて、外観を示している。
[Sixth Embodiment]
7A to 7C show a method for forming a mounting structure 600 for an electronic component (NTC thermistor / multilayer ceramic capacitor) according to the sixth embodiment. However, FIGS. 7A to 7C are cross-sectional views showing steps performed in the forming method. 7A to 7C, the external appearance is shown instead of the cross-sections of the component main body 2 and the external electrodes 3a and 3b of the electronic component 1 for easy viewing.
 なお、第6実施形態においては、NTCサーミスタからなる電子部品1と、積層セラミックコンデンサからなる電子部品11との両方で、それぞれ、実装構造600を形成した。 In the sixth embodiment, the mounting structure 600 is formed by both the electronic component 1 made of an NTC thermistor and the electronic component 11 made of a multilayer ceramic capacitor.
 第6実施形態は、第5実施形態に変更を加えた。 The sixth embodiment is modified from the fifth embodiment.
 第6実施形態においても、第5実施形態と同様に、まず、電子部品1(11)の部品本体2の表面全体にコーティング樹脂層34を付着させる。 Also in the sixth embodiment, as in the fifth embodiment, first, the coating resin layer 34 is adhered to the entire surface of the component body 2 of the electronic component 1 (11).
 次に、第6実施形態においては、図7(A)に示すように、部品本体2の側面2f(基板5と相対する側面)についてのみ、外部電極3a、3b上のコーティング樹脂層34を、研磨あるいはレーザー照射により剥離する。 Next, in the sixth embodiment, as shown in FIG. 7A, the coating resin layer 34 on the external electrodes 3a and 3b is formed only on the side surface 2f of the component body 2 (side surface facing the substrate 5). Peel off by polishing or laser irradiation.
 次に、図7(B)に示すように、電子部品1を、側面2fを基板5に相対させて、はんだペースト7が塗布されたランド電極6a、6b上に配置する。 Next, as shown in FIG. 7B, the electronic component 1 is disposed on the land electrodes 6a and 6b to which the solder paste 7 is applied, with the side surface 2f opposed to the substrate 5.
 次に、265℃で、20秒間加熱して、図7(C)に示すように、電子部品1を基板5に接合する。はんだペースト7は、はんだフィレット17を形成する。以上により、第5実施形態にかかる実装構造600が完成する。 Next, by heating at 265 ° C. for 20 seconds, the electronic component 1 is bonded to the substrate 5 as shown in FIG. The solder paste 7 forms a solder fillet 17. As described above, the mounting structure 600 according to the fifth embodiment is completed.
 第6実施形態にかかる実装構造600は、予め、部品本体2の側面2fの外部電極3a、3b上のコーティング樹脂層34が剥離されているため、はんだ付けの際の加熱によりコーティング樹脂層34を破る必要がなく、スムースに実装をおこなうことができる。なお、コーティング樹脂34層の軟化温度は、第5実施形態の場合に比べて高くても良い。 In the mounting structure 600 according to the sixth embodiment, since the coating resin layer 34 on the external electrodes 3a and 3b on the side surface 2f of the component body 2 is peeled in advance, the coating resin layer 34 is removed by heating at the time of soldering. There is no need to break, and it can be implemented smoothly. Note that the softening temperature of the coating resin 34 layer may be higher than that in the fifth embodiment.
 第6実施形態にかかる実装構造600は、部品本体2の側面2fがコーティング樹脂層34により覆われているため、マイグレーション抑制機能も良好である。 In the mounting structure 600 according to the sixth embodiment, since the side surface 2f of the component main body 2 is covered with the coating resin layer 34, the migration suppressing function is also good.
 [第7実施形態]
 図8(A)~(C)に、第7実施形態にかかる電子部品(NTCサーミスタ/積層セラミックコンデンサ)の実装構造700の形成方法を示す。ただし、図8(A)~(C)は、それぞれ、当該形成方法において実施される工程を示す断面図である。なお、図8(A)~(C)では、見やすくするため、電子部品1の部品本体2および外部電極3a、3bの断面に代えて、外観を示している。
[Seventh Embodiment]
8A to 8C show a method for forming a mounting structure 700 for an electronic component (NTC thermistor / multilayer ceramic capacitor) according to the seventh embodiment. However, FIGS. 8A to 8C are cross-sectional views showing steps performed in the formation method. 8A to 8C, the external appearance is shown instead of the cross-sections of the component main body 2 and the external electrodes 3a and 3b of the electronic component 1 for easy viewing.
 なお、第7実施形態においては、NTCサーミスタからなる電子部品1と、積層セラミックコンデンサからなる電子部品11との両方で、それぞれ、実装構造700を形成した。 In the seventh embodiment, the mounting structure 700 is formed by both the electronic component 1 made of an NTC thermistor and the electronic component 11 made of a multilayer ceramic capacitor.
 第7実施形態は、第6実施形態に更に変更を加えた。具体的には、第6実施形態では、電子部品1(11)の基板5への接合にはんだを使用したが、第7実施形態では、はんだに代えて導電性接着剤を使用した。 In the seventh embodiment, the sixth embodiment is further modified. Specifically, in the sixth embodiment, solder is used to join the electronic component 1 (11) to the substrate 5, but in the seventh embodiment, a conductive adhesive is used instead of the solder.
 まず、電子部品1(11)の部品本体2の表面全体にコーティング樹脂層34を付着させる。 First, the coating resin layer 34 is adhered to the entire surface of the component body 2 of the electronic component 1 (11).
 次に、図8(A)に示すように、部品本体2の側面2f(基板5と相対する側面)についてのみ、外部電極3a、3b上のコーティング樹脂層34を、研磨あるいはレーザー照射により剥離する。次に、図8(B)に示すように、電子部品1を、側面2fを基板5に相対させて、導電性接着剤57が塗布されたランド電極6a、6b上に配置する。次に、所定の温度で加熱して、図8(C)に示すように、導電性接着剤57により電子部品1を基板5に接合する。以上により、第7実施形態にかかる実装構造700が完成する。第7実施形態では、フィレットは形成されないが、導電性接着剤57により電子部品1(11)が基板5に強固に接合される。 Next, as shown in FIG. 8A, the coating resin layer 34 on the external electrodes 3a and 3b is peeled off by polishing or laser irradiation only on the side surface 2f of the component body 2 (side surface opposite to the substrate 5). . Next, as shown in FIG. 8B, the electronic component 1 is placed on the land electrodes 6a and 6b coated with the conductive adhesive 57 with the side surface 2f facing the substrate 5. Next, heating is performed at a predetermined temperature, and the electronic component 1 is bonded to the substrate 5 with the conductive adhesive 57 as shown in FIG. As described above, the mounting structure 700 according to the seventh embodiment is completed. In the seventh embodiment, no fillet is formed, but the electronic component 1 (11) is firmly bonded to the substrate 5 by the conductive adhesive 57.
 以上、第1実施形態~第7実施形態にかかる実装構造100~700、およびこれらの形成方法について説明した。しかしながら、本発明が上述した内容に限定されることはなく、発明の主旨に沿って、種々の変更をなすことができる。 The mounting structures 100 to 700 according to the first to seventh embodiments and the forming methods thereof have been described above. However, the present invention is not limited to the above-described contents, and various modifications can be made in accordance with the gist of the invention.
 たとえば、第1実施形態~第7実施形態では、電子部品1としてNTCサーミスタ、電子部品11として積層セラミックコンデンサを使用したが、電子部品1、11の種類はNTCサーミスタ、積層セラミックコンデンサには限られない。たとえば、抵抗、インダクタ、PTCサーミスタ、他の種類のコンデンサなどであっても良い。 For example, in the first to seventh embodiments, the NTC thermistor is used as the electronic component 1 and the multilayer ceramic capacitor is used as the electronic component 11. However, the types of the electronic components 1 and 11 are limited to the NTC thermistor and the multilayer ceramic capacitor. Absent. For example, a resistor, an inductor, a PTC thermistor, another type of capacitor, or the like may be used.
 また、電子部品1、11は、それぞれ、部品本体2の内部に内部電極(図示せず)が形成されていたが、本発明において内部電極は必須ではない。 In the electronic components 1 and 11, an internal electrode (not shown) is formed inside the component body 2, but the internal electrode is not essential in the present invention.
 また、コーティング樹脂層4、14、24、34を形成するコーティング樹脂の成分なども任意であり、上述した内容には限定されない。 The components of the coating resin that form the coating resin layers 4, 14, 24, and 34 are also arbitrary, and are not limited to the above-described contents.
 また、第1実施形態~第7実施形態では、コーティング樹脂層4、14、24、34が必要な部分を完全に覆い、亀裂や穴などがなかったが、コーティング樹脂層4、14、24、34に部分的な亀裂や穴などがあっても、マイグレーションの発生を抑制することができる。 Further, in the first to seventh embodiments, the coating resin layers 4, 14, 24, 34 completely covered the necessary portions and there were no cracks or holes, but the coating resin layers 4, 14, 24, Even if there is a partial crack or hole in 34, the occurrence of migration can be suppressed.
 また、外部電極3a、3bやランド電極6a、6bの材質や構造なども任意であり、上述した内容には限定されない。 Further, the materials and structures of the external electrodes 3a and 3b and the land electrodes 6a and 6b are arbitrary, and are not limited to the above-described contents.
 更に、はんだペースト7や導電性接着剤57の材質や塗布膜厚なども任意であり、上述した内容には限定されない。 Furthermore, the material and applied film thickness of the solder paste 7 and the conductive adhesive 57 are arbitrary, and are not limited to those described above.
1・・・電子部品(NTCサーミスタ)
11・・・電子部品(積層セラミックコンデンサ)
2・・・部品本体
2a、2b・・・端面
2c、2d、2e、2f・・・側面
3a、3b・・・外部電極
4、14、24、34・・・コーティング樹脂層
5・・・基板
6a、6b・・・ランド電極
7・・・はんだペースト
17・・・はんだフィレット
57・・・導電性接着剤
50・・・基台
51・・・粘着層
60・・・スプレー装置
100、200、300、400、500、600、700・・・電子部品の実装構造
1 ... Electronic component (NTC thermistor)
11 ... Electronic components (multilayer ceramic capacitors)
2 ... Component body 2a, 2b ... End face 2c, 2d, 2e, 2f ... Side face 3a, 3b ... External electrode 4, 14, 24, 34 ... Coating resin layer 5 ... Substrate 6a, 6b ... land electrode 7 ... solder paste 17 ... solder fillet 57 ... conductive adhesive 50 ... base 51 ... adhesive layer 60 ... spray device 100, 200, 300, 400, 500, 600, 700... Electronic component mounting structure

Claims (13)

  1.  1対の端面と、前記1対の端面を繋ぐ4つの側面を備え、前記端面を含む端部に外部電極が形成された電子部品と、
     主面にランド電極が形成された基板と、
     前記ランド電極と前記外部電極を接合する、はんだと、を備え、
     前記はんだにより、少なくとも、前記ランド電極と前記外部電極を繋ぐはんだフィレットが形成された電子部品の実装構造であって、
     更に、マイグレーション抑制機能を有するコーティング樹脂層を備え、
     前記コーティング樹脂層は、前記電子部品の前記4つの側面のうちの前記基板の前記主面に相対する側面を除く3つの側面を覆い、かつ、前記電子部品の前記1対の端面を前記外部電極および前記はんだフィレットとともに覆い、
     前記コーティング樹脂層は、前記基板の前記主面と接していない、または、前記基板の前記主面と前記電子部品の近傍においてのみ接している電子部品の実装構造。
    An electronic component comprising a pair of end faces and four side faces connecting the pair of end faces, and an external electrode formed on an end including the end faces;
    A substrate having land electrodes formed on the main surface;
    A solder for joining the land electrode and the external electrode;
    The electronic component mounting structure in which a solder fillet connecting at least the land electrode and the external electrode is formed by the solder,
    Furthermore, a coating resin layer having a migration suppression function is provided,
    The coating resin layer covers three side surfaces of the four side surfaces of the electronic component other than the side surface facing the main surface of the substrate, and the pair of end surfaces of the electronic component are connected to the external electrode. And covering with the solder fillet,
    The electronic component mounting structure, wherein the coating resin layer is not in contact with the main surface of the substrate, or is in contact with the main surface of the substrate only in the vicinity of the electronic component.
  2.  前記コーティング樹脂層が、更に、前記電子部品の前記4つの側面のうちの前記基板の前記主面に相対する側面を覆っている、請求項1に記載された電子部品の実装構造。 2. The electronic component mounting structure according to claim 1, wherein the coating resin layer further covers a side surface of the four side surfaces of the electronic component that faces the main surface of the substrate.
  3.  1対の端面と、前記1対の端面を繋ぐ4つの側面を備え、前記端面を含む端部に外部電極が形成された電子部品と、
     主面にランド電極が形成された基板と、
     前記ランド電極と前記外部電極を接合する、導電性接着剤と、を備えた実装構造であって、
     更に、マイグレーション抑制機能を有するコーティング樹脂層を備え、
     前記コーティング樹脂層は、前記電子部品の前記4つの側面を覆い、かつ、前記基板の前記主面と接していない、または、前記基板の前記主面と前記電子部品の近傍においてのみ接している電子部品の実装構造。
    An electronic component comprising a pair of end faces and four side faces connecting the pair of end faces, and an external electrode formed on an end including the end faces;
    A substrate having land electrodes formed on the main surface;
    A mounting structure comprising a conductive adhesive for joining the land electrode and the external electrode,
    Furthermore, a coating resin layer having a migration suppression function is provided,
    The coating resin layer covers the four side surfaces of the electronic component and is not in contact with the main surface of the substrate, or is in contact with the main surface of the substrate only in the vicinity of the electronic component. Component mounting structure.
  4.  前記コーティング樹脂層が、更に、前記ランド電極を覆っている、請求項1ないし3のいずれか1項に記載された電子部品の実装構造。 The electronic component mounting structure according to any one of claims 1 to 3, wherein the coating resin layer further covers the land electrode.
  5.  前記コーティング樹脂層に開口部分が存在しない、請求項1ないし4のいずれか1項に記載された電子部品の実装構造。 The mounting structure for an electronic component according to any one of claims 1 to 4, wherein there is no opening in the coating resin layer.
  6.  前記コーティング樹脂層に開口部分が存在する、請求項1ないし4のいずれか1項に記載された電子部品の実装構造。 The mounting structure for an electronic component according to any one of claims 1 to 4, wherein an opening is present in the coating resin layer.
  7.  前記コーティング樹脂層に顔料が含有されている、請求項1ないし6のいずれか1項に記載された電子部品の実装構造。 The electronic component mounting structure according to any one of claims 1 to 6, wherein a pigment is contained in the coating resin layer.
  8.  前記コーティング樹脂層が予め前記電子部品の表面に形成されたものである、請求項1ないし7のいずれか1項に記載された電子部品の実装構造。 The electronic component mounting structure according to any one of claims 1 to 7, wherein the coating resin layer is formed in advance on a surface of the electronic component.
  9.  1対の端面と、前記1対の端面を繋ぐ4つの側面とを備え、前記端面を含む端部に外部電極が形成された電子部品であって、
     更に、マイグレーション抑制機能を有するコーティング樹脂層を備え、
     前記コーティング樹脂層は、前記4つの側面のうちの3つの側面を覆い、かつ、前記1対の端面を前記外部電極とともに覆い、
     前記コーティング樹脂層が、軟化点が、90℃以上、230℃以下である樹脂により形成されている電子部品。
    An electronic component comprising a pair of end faces and four side faces connecting the pair of end faces, wherein an external electrode is formed at an end including the end faces,
    Furthermore, a coating resin layer having a migration suppression function is provided,
    The coating resin layer covers three side surfaces of the four side surfaces, and covers the pair of end surfaces together with the external electrodes,
    An electronic component in which the coating resin layer is formed of a resin having a softening point of 90 ° C or higher and 230 ° C or lower.
  10.  1対の端面と、前記1対の端面を繋ぐ4つの側面とを備え、前記端面を含む端部に外部電極が形成された電子部品であって、
     更に、マイグレーション抑制機能を有するコーティング樹脂層を備え、
     前記コーティング樹脂層は、前記4つの側面を覆い、かつ、前記1対の端面を前記外部電極とともに覆い、
     前記コーティング樹脂層が、軟化点が、90℃以上、150℃以下であるである樹脂により形成されている電子部品。
    An electronic component comprising a pair of end faces and four side faces connecting the pair of end faces, wherein an external electrode is formed at an end including the end faces,
    Furthermore, a coating resin layer having a migration suppression function is provided,
    The coating resin layer covers the four side surfaces, and covers the pair of end surfaces together with the external electrodes,
    An electronic component in which the coating resin layer is formed of a resin having a softening point of 90 ° C or higher and 150 ° C or lower.
  11.  1対の端面と、前記1対の端面を繋ぐ4つの側面とを備え、前記端面を含む端部に外部電極が形成された電子部品であって、
     前記外部電極は、その一部が前記4つの側面に延出して形成され、
     更に、マイグレーション抑制機能を有するコーティング樹脂層を備え、
     前記コーティング樹脂層は、前記4つの側面のうちの3つの側面を前記外部電極とともに覆い、前記4つの側面のうちの残りの1つの側面を前記外部電極が形成された部分を除いて覆い、更に、前記1対の端面を前記外部電極とともに覆い、
     前記コーティング樹脂層が、軟化点が、90℃以上、230℃以下であるである樹脂により形成されている電子部品。
    An electronic component comprising a pair of end faces and four side faces connecting the pair of end faces, wherein an external electrode is formed at an end including the end faces,
    The external electrode is formed such that a part thereof extends to the four side surfaces,
    Furthermore, a coating resin layer having a migration suppression function is provided,
    The coating resin layer covers three side surfaces of the four side surfaces together with the external electrode, covers the remaining one side surface of the four side surfaces except for a portion where the external electrode is formed, Covering the pair of end faces together with the external electrodes;
    An electronic component in which the coating resin layer is formed of a resin having a softening point of 90 ° C or higher and 230 ° C or lower.
  12.  1対の端面と、前記1対の端面を繋ぐ4つの側面とを備え、前記端面を含む端部に外部電極が形成され、前記4つの側面のうちの3つの側面を覆い、かつ、前記1対の端面を前記外部電極とともに覆うマイグレーション抑制機能を有するコーティング樹脂層を備えた電子部品を準備する工程と、
     主面にランド電極が形成された基板を準備する工程と、
     前記ランド電極上にはんだペーストを塗布する工程と、
     前記はんだペーストが塗布されたランド電極上に、前記電子部品を、前記コーティング樹脂で覆われていない前記側面を下側にして配置する工程と、
     加熱することにより、前記はんだペーストを溶融させて溶融はんだを供給するとともに、前記コーティング樹脂層を軟化させ、前記溶融はんだを前記外部電極と前記コーティング樹脂層との隙間に浸透させる工程と、
     冷却することにより、前記外部電極と前記コーティング樹脂層との隙間に浸透された前記溶融はんだを固化させ、はんだフィレットを形成する工程と、を備えた、電子部品の実装構造の形成方法。
    A pair of end faces and four side faces connecting the pair of end faces; an external electrode is formed at an end including the end faces; covers three of the four side faces; and Preparing an electronic component including a coating resin layer having a migration suppressing function that covers a pair of end faces together with the external electrode;
    Preparing a substrate having a land electrode formed on the main surface;
    Applying a solder paste on the land electrode;
    Placing the electronic component on the land electrode to which the solder paste is applied, with the side surface not covered with the coating resin facing down;
    Heating and supplying the molten solder by melting the solder paste, softening the coating resin layer, and infiltrating the molten solder into the gap between the external electrode and the coating resin layer;
    And a step of solidifying the molten solder that has penetrated into the gap between the external electrode and the coating resin layer to form a solder fillet by cooling.
  13.  1対の端面と、前記1対の端面を繋ぐ4つの側面とを備え、前記端面を含む端部に外部電極が形成され、前記4つの側面を覆い、かつ、前記1対の端面を前記外部電極とともに覆うマイグレーション抑制機能を有するコーティング樹脂層を備えた電子部品を準備する工程と、
     主面にランド電極が形成された基板を準備する工程と、
     前記ランド電極上にはんだペーストを塗布する工程と、
     前記はんだペーストが塗布されたランド電極上に前記電子部品を配置する工程と、
     加熱することにより、前記はんだペーストを溶融させて溶融はんだを供給するとともに、前記コーティング樹脂層を軟化させ、かつ前記ランド電極と前記外部電極との間の前記コーティング樹脂層を破り、前記溶融はんだを前記外部電極と前記コーティング樹脂層との隙間に浸透させる工程と、
     冷却することにより、前記外部電極と前記コーティング樹脂層との隙間に浸透された前記溶融はんだを固化させ、はんだフィレットを形成する工程と、を備えた、電子部品の実装構造の形成方法。
    A pair of end faces and four side faces connecting the pair of end faces, an external electrode is formed at an end including the end faces, covers the four side faces, and the pair of end faces are connected to the external side. A step of preparing an electronic component including a coating resin layer having a migration suppression function that covers the electrode,
    Preparing a substrate having a land electrode formed on the main surface;
    Applying a solder paste on the land electrode;
    Placing the electronic component on the land electrode coated with the solder paste;
    By heating, the solder paste is melted to supply molten solder, the coating resin layer is softened, and the coating resin layer between the land electrode and the external electrode is broken, and the molten solder is Infiltrating the gap between the external electrode and the coating resin layer;
    And a step of solidifying the molten solder that has penetrated into the gap between the external electrode and the coating resin layer to form a solder fillet by cooling.
PCT/JP2016/074515 2015-12-25 2016-08-23 Electronic component mounting structure, electronic component, and method for forming electronic component mounting structure WO2017110136A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015255444 2015-12-25
JP2015-255444 2015-12-25

Publications (1)

Publication Number Publication Date
WO2017110136A1 true WO2017110136A1 (en) 2017-06-29

Family

ID=59089993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074515 WO2017110136A1 (en) 2015-12-25 2016-08-23 Electronic component mounting structure, electronic component, and method for forming electronic component mounting structure

Country Status (1)

Country Link
WO (1) WO2017110136A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017147409A (en) * 2016-02-19 2017-08-24 Tdk株式会社 Mounting structure of electronic component

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63115206U (en) * 1987-01-22 1988-07-25
JPS63262895A (en) * 1987-04-21 1988-10-31 オムロン株式会社 Method of mounting electronic component
JP2014157951A (en) * 2013-02-18 2014-08-28 Panasonic Corp Method for forming protective coating and mounting structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63115206U (en) * 1987-01-22 1988-07-25
JPS63262895A (en) * 1987-04-21 1988-10-31 オムロン株式会社 Method of mounting electronic component
JP2014157951A (en) * 2013-02-18 2014-08-28 Panasonic Corp Method for forming protective coating and mounting structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017147409A (en) * 2016-02-19 2017-08-24 Tdk株式会社 Mounting structure of electronic component

Similar Documents

Publication Publication Date Title
US20150054388A1 (en) Ceramic electronic component
KR102408016B1 (en) Chip electronic component
CN107484408B (en) Electronic device and method for manufacturing electronic device
TW201628470A (en) Method for producing electronic component, and electronic component
JP2011054642A (en) Ceramic electronic component, and method of manufacturing the same
JP2019004080A (en) Electronic component, electronic device, and manufacturing method of electronic component
JP2016048728A (en) Conductive post and manufacturing method of multilayer substrate using conductive post
TW200913805A (en) Ceramic electronic component
JPH11219849A (en) Laminated ceramic capacitor
CN110402491B (en) Circuit module and method for manufacturing the same
JP5353839B2 (en) Electronic components
WO2017110136A1 (en) Electronic component mounting structure, electronic component, and method for forming electronic component mounting structure
TW201205731A (en) Substrate with built-in electronic component, and composite module
TWI538581B (en) Metal conducting structure and wiring structure
JP4991624B2 (en) Printed circuit board and manufacturing method thereof
JPH06151183A (en) Ceramic electronic part
JP3118509B2 (en) Chip resistor
JP2007123674A (en) Wiring substrate and electronic apparatus
JP2003109838A (en) Ceramic electronic part
JP2012104785A (en) Mounting structure of chip type electronic component, mounting method of chip type electronic component, chip type electronic component, and method for manufacturing chip type electronic component
JP2011086717A (en) Circuit device and method of manufacturing the same
JP4295202B2 (en) Chip component and chip component manufacturing method
JP2007095926A (en) Chip resistor
KR20140013289A (en) Ceramic electronic component and manufacturing method thereof
JP3627745B2 (en) Electronic component with wire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16878039

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16878039

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP