WO2017109929A1 - Ultrasonic oscillator and ultrasonic medical device - Google Patents

Ultrasonic oscillator and ultrasonic medical device Download PDF

Info

Publication number
WO2017109929A1
WO2017109929A1 PCT/JP2015/086175 JP2015086175W WO2017109929A1 WO 2017109929 A1 WO2017109929 A1 WO 2017109929A1 JP 2015086175 W JP2015086175 W JP 2015086175W WO 2017109929 A1 WO2017109929 A1 WO 2017109929A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric body
metal block
block
ultrasonic transducer
bonding surface
Prior art date
Application number
PCT/JP2015/086175
Other languages
French (fr)
Japanese (ja)
Inventor
塩谷 浩一
長英 坂井
伊藤 寛
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2015/086175 priority Critical patent/WO2017109929A1/en
Publication of WO2017109929A1 publication Critical patent/WO2017109929A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers

Definitions

  • the present invention relates to an ultrasonic transducer and an ultrasonic medical device using the ultrasonic transducer.
  • an ultrasonic medical apparatus that performs various treatments on a tissue by using friction and heat generated by ultrasonic vibration.
  • Such an ultrasonic medical device includes an ultrasonic transducer that generates ultrasonic vibrations.
  • the ultrasonic transducer is disposed, for example, in an operation unit on the hand side of the ultrasonic medical apparatus.
  • the ultrasonic vibration generated in the operation unit is transmitted to the treatment unit on the distal end side through a rod-like probe or the like.
  • the ultrasonic vibrator described in Patent Document 1 has a structure in which piezoelectric elements (piezoelectric bodies) and a plurality of metal blocks are alternately stacked and integrated.
  • the piezoelectric element and the metal block are joined by, for example, a thermosetting resin adhesive.
  • the piezoelectric element may be damaged.
  • One cause of the damage is a difference in thermal expansion coefficient between the piezoelectric element and the metal block. That is, when the adhesive is cured and the piezoelectric element and the metal block are joined in a state where the piezoelectric element and the metal block are expanded at different expansion rates at the time of thermosetting, the piezoelectric element and the terminal plate are contracted by returning to room temperature. Stress is generated at the joint site. The generated stress may damage the piezoelectric element.
  • a first aspect of the present invention includes a piezoelectric body portion in which a plurality of piezoelectric bodies are arranged and bonded in the stacking direction, and a metal block bonded to an end portion in the stacking direction of the piezoelectric body portion, At least one of the bonding surface facing the metal block in the piezoelectric body closest to the metal block among the plurality of piezoelectric bodies and the block bonding surface bonded to the piezoelectric body portion in the metal block are bonded counterparts. It is an ultrasonic transducer having a non-bonding region that can move relative to the piezoelectric body or the metal block.
  • the second aspect of the present invention is an ultrasonic medical device including the ultrasonic transducer of the present invention.
  • the ultrasonic transducer of the present invention it is possible to suitably prevent damage in the manufacturing process while having a laminated structure of piezoelectric bodies. Moreover, according to the ultrasonic medical device of the present invention, the ultrasonic transducer can be efficiently manufactured by including the ultrasonic transducer.
  • FIG. 1 is a schematic diagram showing a partial cross-sectional view of the overall configuration of an ultrasonic medical device 1 including the ultrasonic transducer according to the present embodiment.
  • the ultrasonic medical device 1 includes an insertion unit 10 to be inserted into a living body, a treatment unit 20 provided at a distal end of the insertion unit 10, an operation unit 30 connected to the insertion unit 10, and an operation unit 30.
  • the vibrator unit 40 is disposed.
  • the ultrasonic transducer 50 of the present embodiment is disposed in the transducer unit 40.
  • the transducer unit 40 is connected to an ultrasonic power source (not shown) via a cable 41.
  • the treatment unit 20 includes a probe 21 inserted through the insertion unit 10. The proximal end of the probe 21 is connected to the transducer unit 40.
  • the living tissue can be grasped by the treatment unit 20.
  • the ultrasonic transducer 50 vibrates.
  • the ultrasonic vibration generated by the ultrasonic vibrator 50 is transmitted to the distal end portion of the probe 21, and the treatment section 20 vibrates. Thereby, desired treatments such as coagulation and incision can be performed on the grasped living tissue.
  • FIG. 2 is a perspective view showing the ultrasonic transducer 50.
  • the ultrasonic transducer 50 includes a piezoelectric body portion 52 in which a plurality of piezoelectric bodies 51 are arranged and joined in the stacking direction, and a metal block 55 joined to the piezoelectric body portion 52, and functions as a Langevin vibrator. To do.
  • Each piezoelectric body 51 is a rectangular parallelepiped having a square front and back, and the front and back surfaces of adjacent piezoelectric bodies are joined together and stacked in a stacking direction connecting the front and back surfaces.
  • a single crystal of lithium niobate (LiNbO 3 ) is used as the piezoelectric body 51.
  • the material of the piezoelectric body 51 is not limited to lithium niobate, but from the viewpoint of use in the ultrasonic medical device 1, lithium niobate having high resistance to high temperatures is preferable.
  • the two metal blocks 55 are respectively joined to both end portions in the stacking direction of the piezoelectric body portion 52.
  • Examples of the material of the metal block 55 include duralumin, titanium alloy, and the like, and may be appropriately selected in consideration of required strength, vibration efficiency, and the like.
  • the dimension in the stacking direction of the metal blocks 55 is appropriately set based on the vibration frequency set in the ultrasonic transducer 50.
  • the adjacent piezoelectric bodies 51, and the piezoelectric body 51 and the metal block 55 are joined together using solder 56 which is a brazing material.
  • the ultrasonic vibrator 50 has improved resistance to high temperatures by using a solder (a brazing material), which is a metal material, for bonding, and can be suitably used for the ultrasonic medical device 1.
  • a base metal layer is provided on the entire front and back surfaces of the piezoelectric body 51 excluding piezoelectric bodies 51A and 51B, which will be described later, and the bonding surface of the metal block 55 with the piezoelectric body 51. Yes.
  • FIG. 3 shows a state before joining of the piezoelectric body 51A located on the most distal end side in the piezoelectric body portion 52 among the plurality of piezoelectric bodies 51.
  • a base metal layer 53 is formed on a front surface (bonding surface) 51 a bonded to the metal block 55.
  • the base metal layer 53 is formed so as to have a single-layer or multiple-layer structure using, for example, titanium, platinum, gold, or the like.
  • the base metal layer 53 can be formed on the surface of the piezoelectric body 51 by, for example, vapor deposition or sputtering.
  • a base metal layer 53 is formed on the entire surface on the back surface 51b to be joined with another piezoelectric body.
  • the base metal layer 53 is not formed on a part of the periphery including the four corners of the square of the front surface 51a, and the piezoelectric body 51 is exposed at a portion where the base metal layer 53 is not formed. is doing.
  • the base metal layer having such a shape can be formed, for example, by vapor deposition using a mask or sputtering.
  • the front surface 51a of the piezoelectric body 51A has a non-bonded region 54 that is not bonded to the metal block 55 at a part of the periphery including the four corners.
  • the base metal layer 53 formed on the back surface (joint surface) 51b joined to the metal block 55 in the piezoelectric body 51B (see FIG. 2) located closest to the base end side in the piezoelectric body portion 52, the base metal layer 53 formed on the back surface (joint surface) 51b joined to the metal block 55.
  • the piezoelectric body 51 ⁇ / b> B also has a non-bonding region 54 on the bonding surface with the metal block 55.
  • a base metal layer 53 is formed on the entire front surface of the piezoelectric body 51B.
  • the plurality of piezoelectric bodies 51 on which the base metal layer 53 is formed are arranged in the stacking direction, and the metal blocks 55 are arranged on both sides of the plurality of piezoelectric bodies 51 in the stacking direction. Further, a sheet-like or film-like solder 56 is sandwiched between the adjacent piezoelectric bodies 51 and between the piezoelectric body 51 and the metal block 55, and the piezoelectric body 51 and the metal block 55 are brought into close contact with each other via the solder 56.
  • the piezoelectric body 51, the metal block 55, and the solder 56 are heated to a temperature equal to or higher than the melting temperature of the solder 56 while maintaining the state where the piezoelectric body 51 and the metal block 55 are in close contact with each other. Thereby, the solder 56 is melted and spreads on the base metal layer 53.
  • the temperature of the piezoelectric body 51, the metal block 55, and the solder 56 is lowered after the solder 56 is melted, the solder 56 is solidified and the adjacent piezoelectric bodies 51, and the piezoelectric body 51 and the metal block 55 are replaced with the solder 56. Are joined together.
  • the piezoelectric body melts away from the solder 56. Therefore, even if the solder 56 exists between the piezoelectric body and the metal block 55, The piezoelectric body and the metal block 55 are not joined. Through the above procedure, the ultrasonic transducer 50 in which the piezoelectric body portion 52 and the metal block 55 are joined by the solder 56 is completed.
  • the ultrasonic transducer 50 of the present embodiment has non-bonded regions 54 on the front surface 51a of the piezoelectric body 51A and the back surface 51b of the piezoelectric body 51B, which are the bonding surfaces of the piezoelectric body portion 52 and the metal block 55, respectively.
  • the non-bonded region 54 since the piezoelectric body 51 and the metal block 55 are not integrally bonded, the piezoelectric body and the metal block that is the counterpart to be bonded behave differently during expansion and contraction. It is possible to move. As a result, no stress is generated in the non-bonded region 54 due to the difference in thermal expansion coefficient.
  • the ultrasonic transducer 50 of the present embodiment it is possible to suitably suppress the breakage of the piezoelectric body during the manufacturing process while having a laminated structure of piezoelectric bodies.
  • the ultrasonic medical device 1 of the present embodiment it is possible to efficiently manufacture by using the ultrasonic transducer 50 in which breakage of the piezoelectric body in the manufacturing process is suitably suppressed.
  • the size of the non-bonding region 54 may be appropriately set depending on the shape, size, material, and the like of the piezoelectric body 51 and the metal block 55. As the area of the non-bonded region increases, the damage suppressing effect increases, but the bonding strength decreases. According to the inventor's study, the stress generated between the piezoelectric body and the metal block decreases as the proportion of the non-bonded region in the bonded surface (for example, the area of the non-bonded region 54 / the area of the front surface 51a) increases. The decrease rate rapidly decreased when the proportion of the non-bonded area in the bonding surface exceeded 8%. From this result, it is considered that the proportion of the non-bonded region in the bonding surface is preferably about 5% to 10%.
  • the position and shape of the non-bonded region 54 can be appropriately set by changing the shape of the base metal layer 53.
  • a non-joining region 54 may be formed in a region excluding four corners on the periphery of the joining surface.
  • the non-bonding region 54 may be formed on the entire periphery including the four corners.
  • the non-bonding region may be formed so as to extend only in a specific direction.
  • thermo expansion coefficient x in the direction in which one side extends is different from the thermal expansion coefficient y in the direction in which the other side perpendicular to the one side extends, as shown in FIG.
  • a non-joining region may be provided only in a portion orthogonal to the direction in which the difference in thermal expansion coefficient with the metal block becomes larger (FIG. 4C shows an example in which the thermal expansion difference in the x direction is larger).
  • region is not restricted to the periphery of a joining surface.
  • a non-joining region 54 may be formed in a frame shape inside the periphery of the joining surface.
  • the non-joining regions may be formed only in the portions close to the four corners inside the periphery of the joining surface.
  • the base metal layer does not exist in the dicing line when cutting out the piezoelectric body, there is an advantage that the piezoelectric body can be easily cut out.
  • the base metal layer 53 formed on the metal block 55 may have the same shape as the base metal layer formed on the bonding surface of the piezoelectric body.
  • the base metal layer of the piezoelectric body closest to the metal block may be provided on the entire bonding surface.
  • a second embodiment of the present invention will be described with reference to FIGS.
  • the ultrasonic transducer of this embodiment is different from the ultrasonic transducer 1 of the first embodiment in that an insulator is provided.
  • components that are the same as those already described are assigned the same reference numerals and redundant description is omitted.
  • FIG. 6 is a perspective view showing the ultrasonic transducer 150 of the present embodiment.
  • An insulator 151 is disposed between the piezoelectric body portion 52 and the metal block 55, and the piezoelectric body portion 52 and the metal block 55 are joined with the insulator 151 interposed therebetween.
  • the insulator 151 has substantially the same shape and dimensions as the piezoelectric body 51, but the thickness (dimension in the stacking direction) may be set as appropriate. Although there is no restriction
  • the piezoelectric body 51 is formed of an anisotropic material such as a lithium niobate substrate having a crystal orientation of 36 degrees Y-Cut or the like
  • the thermal expansion coefficient in one direction in the bonding surface (for example, X described above)
  • the insulator 151 is preferably made of a material having a thermal expansion coefficient that is intermediate between the thermal expansion coefficient (for example, Y described above) in a direction orthogonal to the one direction. If it does in this way, generation
  • the material of the insulator 151 that exhibits such an effect include zirconia (ZrO 2 ).
  • FIG. 7 shows the insulator 151 before being joined.
  • a base metal layer 53 is formed on each surface of the insulator 151 in the stacking direction.
  • the base metal layer 53 provided on the first surface 151a in the stacking direction has the same shape as the base metal layer formed on the bonding surface of the piezoelectric body to be bonded to the metal block 55 in the first embodiment.
  • a base metal layer 53 is formed on the entire surface of the second surface 151b in the stacking direction.
  • Each of the two insulators 151 is disposed with the first surface 151a facing the metal block 55 side.
  • a base metal layer 53 is provided on the entire surface of the bonding surface with the insulator 151. In this state, when joining by the solder 56 is performed in the same procedure as in the first embodiment, the entire joining surfaces of the piezoelectric bodies 51C and 51D and the insulator 151 are joined. However, only the region where the base metal layer 53 is formed is bonded to the metal block 55 and the insulator 151.
  • the region corresponding to the portion of the first surface 151a where the base metal layer 53 is not provided, that is, the ultrasonic transducer 150 is viewed in the stacking direction.
  • a region of the first surface 151 a that overlaps a portion where the base metal layer 53 is not provided is a non-bonded region that is not bonded to the metal block 55 integrally. Therefore, also in the ultrasonic transducer 150 of this embodiment, the non-bonded region behaves differently from the metal block during expansion / contraction due to temperature change, so that the piezoelectric body is damaged during the manufacturing process as in the first embodiment. It can suppress suitably.
  • the insulator 151 is disposed between the piezoelectric body portion 52 and the metal block 55, it is easy to ensure insulation between the metal block 55 and other surrounding members when the ultrasonic vibrator 150 is disposed. can do.
  • the first surface 151a of the insulator 151 may be directed not to the metal block 55 side but to the piezoelectric bodies 51C and 51D.
  • the metal block 55 and the insulator 151 are bonded to each other on the entire bonding surface, but the piezoelectric body 51 and the insulator 151 are bonded only to the region where the base metal layer 53 is formed.
  • a region corresponding to a portion of the first surface 151a where the base metal layer 53 is not provided is similarly a non-bonded region. Therefore, also in this case, the same effect as the above-described aspect is obtained.
  • one of the metal blocks 55 may be bonded to the first surface 151a, and the other may be bonded to the second surface 151b.
  • a third embodiment of the present invention will be described with reference to FIGS.
  • the ultrasonic transducer of this embodiment is different from the ultrasonic transducers of the above embodiments in the shape of the metal block.
  • FIG. 8 is a perspective view showing the ultrasonic transducer 250 of the present embodiment.
  • FIG. 9 is a perspective view showing the metal block 255 of the ultrasonic transducer 250.
  • the metal block 255 In the metal block 255, four corners on the side of the bonding surface (block bonding surface) 255a bonded to the piezoelectric body portion 52 are chamfered. Thereby, the joint surface 255a is octagonal.
  • the metal block 255 and the piezoelectric body 51 have different joint surfaces, and the joint surface 255a of the metal block 255 is smaller. Therefore, a part of the joint surface of the piezoelectric body 51 is part of the metal block 255. It does not come into contact with the joint surface 255a. As a result, a portion of the bonding surface of the piezoelectric body 51 that does not come into contact with the bonding surface 255a becomes a non-bonding region.
  • the ultrasonic transducer 150 of the present embodiment similarly to the ultrasonic transducers of the respective embodiments described above, it is possible to suitably suppress the breakage of the piezoelectric body during the manufacturing process.
  • a part of the bonding surface of the piezoelectric body 51 is set as a non-bonding region by making the area of the bonding surface 255a of the metal block 255 smaller than the bonding surface of the piezoelectric body 51. Therefore, in both the piezoelectric body 51 and the metal block 255, the base metal layer 53 can be provided on the entire bonding surface, so that it is not necessary to use a mask or the like to make the base metal layer into a predetermined shape. As a result, the process of forming the base metal layer can be simplified and the manufacturing cost can be reduced.
  • the shape of the block joint surface is not limited to the octagon described above.
  • the shape of the block bonding surface may be a square that is slightly smaller than the bonding surface of the piezoelectric body.
  • the shape of the block joint surface is changed.
  • the insulator may be changed so that the area of the insulator bonding surface is smaller than the bonding surface of the piezoelectric body.
  • the area of the block joint surface may be reduced by making the cross-sectional shape in the stacking direction of the metal blocks smaller than that of the piezoelectric body.
  • the area of the block joint surface is reduced by chamfering, the position of a part of the periphery in the cross-sectional shape in the stacking direction can be matched with the piezoelectric body.
  • the piezoelectric body and the metal block are arranged in the stacking direction in the manufacturing process of the ultrasonic vibrator, there is an advantage that it is easy to position the two so that their centers coincide with each other.
  • the bonding surface may be formed so that the area of the bonding surface of the piezoelectric body becomes smaller than the area of the block bonding surface, for example, by removing four corners of the piezoelectric body.
  • the non-bonding region is generated on the block bonding surface.
  • a part of the expansion / contraction generated in the metal block is absorbed by the non-bonding region of the block bonding surface or released from the non-bonding region. Therefore, substantially the same effect can be obtained.
  • non-bonding regions may be provided on both the bonding surface and the block bonding surface of the piezoelectric body.
  • the shape of the bonding surface of the piezoelectric body is not limited to the above-described square. Therefore, it may be a rectangle, a polygon other than a rectangle, or a circle having no corners.
  • the cross-sectional shape in the stacking direction of the ultrasonic transducer is preferably a shape with high rotational symmetry
  • the shape of the joint surface is more preferably a polygon such as a polygon with a high rotational symmetry or a perfect circle.
  • the metal block may be provided only on one side in the stacking direction.
  • the present invention can be applied to an ultrasonic transducer and an ultrasonic medical device.

Abstract

An ultrasonic oscillator, provided with: a piezoelectric body part in which a plurality of piezoelectric bodies is arranged in the lamination direction and bonded; and a metal block bonded to an end part of the piezoelectric body part in the lamination-direction. The metal block-facing bonded surface of the piezoelectric body nearest to the metal block from among the plurality of piezoelectric bodies and/or the block-bonded surface of the metal block, the block-bonded surface being bonded to the piezoelectric body part, has a non-bonded region capable of moving relative to the piezoelectric body or the metal block to which the bonded surface or the block-bonded surface is bonded.

Description

超音波振動子および超音波医療装置Ultrasonic vibrator and ultrasonic medical device
 本発明は、超音波振動子、および同超音波振動子を用いた超音波医療装置に関する。 The present invention relates to an ultrasonic transducer and an ultrasonic medical device using the ultrasonic transducer.
 従来、超音波振動による摩擦や発熱を利用して組織に各種処置を行う超音波医療装置が知られている。
 このような超音波医療装置は、超音波振動を発生する超音波振動子を備えている。超音波振動子は、例えば超音波医療装置の手元側にある操作部に配置される。操作部内で発生した超音波振動は、棒状のプローブ等を介して先端側の処置部へ伝達される。
2. Description of the Related Art Conventionally, an ultrasonic medical apparatus that performs various treatments on a tissue by using friction and heat generated by ultrasonic vibration is known.
Such an ultrasonic medical device includes an ultrasonic transducer that generates ultrasonic vibrations. The ultrasonic transducer is disposed, for example, in an operation unit on the hand side of the ultrasonic medical apparatus. The ultrasonic vibration generated in the operation unit is transmitted to the treatment unit on the distal end side through a rod-like probe or the like.
 超音波振動子として、特許文献1に記載のような構造を有するものが知られている。特許文献1に記載の超音波振動子は、圧電素子(圧電体)と、複数の金属ブロックとが交互に積層されて一体化した構造を有する。圧電素子と金属ブロックとは、例えば熱硬化型の樹脂接着剤により接合されている。 An ultrasonic vibrator having a structure as described in Patent Document 1 is known. The ultrasonic transducer described in Patent Document 1 has a structure in which piezoelectric elements (piezoelectric bodies) and a plurality of metal blocks are alternately stacked and integrated. The piezoelectric element and the metal block are joined by, for example, a thermosetting resin adhesive.
日本国特開2008-128875号公報Japanese Unexamined Patent Publication No. 2008-128875
 特許文献1に記載の超音波振動子では、圧電素子と金属ブロックとを接合する接着剤を硬化するために加熱した後、超音波振動子の温度が室温(環境温度)まで低下した際に、圧電素子が破損する可能性がある。破損の原因の一つとして、圧電素子と金属ブロックとの熱膨張率の違いが挙げられる。すなわち、熱硬化時に圧電素子および金属ブロックがそれぞれ異なる膨張率で膨張した状態で接着剤が硬化して圧電素子と金属ブロックとが接合されると、室温に戻る際の収縮により圧電素子と端子板との接合部位に応力が発生する。発生した応力は、圧電素子を破損する可能性がある。 In the ultrasonic vibrator described in Patent Document 1, after heating to cure the adhesive that joins the piezoelectric element and the metal block, when the temperature of the ultrasonic vibrator is lowered to room temperature (environment temperature), The piezoelectric element may be damaged. One cause of the damage is a difference in thermal expansion coefficient between the piezoelectric element and the metal block. That is, when the adhesive is cured and the piezoelectric element and the metal block are joined in a state where the piezoelectric element and the metal block are expanded at different expansion rates at the time of thermosetting, the piezoelectric element and the terminal plate are contracted by returning to room temperature. Stress is generated at the joint site. The generated stress may damage the piezoelectric element.
 上記事情を踏まえ、本発明は、圧電体の積層構造を有しつつ、製造過程において破損の起きにくい超音波振動子を提供することを目的とする。
 本発明の他の目的は、効率よく製造可能な超音波医療装置を提供することである。
In view of the above circumstances, an object of the present invention is to provide an ultrasonic transducer that has a piezoelectric laminated structure and is less likely to be damaged during the manufacturing process.
Another object of the present invention is to provide an ultrasonic medical device that can be efficiently manufactured.
 本発明の第一の態様は、複数の圧電体が積層方向に並べられて接合された圧電体部と、前記圧電体部の前記積層方向における端部に接合された金属ブロックとを備え、前記複数の圧電体のうち最も前記金属ブロックに近い圧電体において前記金属ブロックに対向する接合面、および前記金属ブロックにおいて前記圧電体部と接合されるブロック接合面の少なくとも一方は、接合された相手方である前記圧電体または前記金属ブロックに対して相対移動可能な非接合領域を有する超音波振動子である。 A first aspect of the present invention includes a piezoelectric body portion in which a plurality of piezoelectric bodies are arranged and bonded in the stacking direction, and a metal block bonded to an end portion in the stacking direction of the piezoelectric body portion, At least one of the bonding surface facing the metal block in the piezoelectric body closest to the metal block among the plurality of piezoelectric bodies and the block bonding surface bonded to the piezoelectric body portion in the metal block are bonded counterparts. It is an ultrasonic transducer having a non-bonding region that can move relative to the piezoelectric body or the metal block.
 本発明の第二の態様は、本発明の超音波振動子を備える超音波医療装置である。 The second aspect of the present invention is an ultrasonic medical device including the ultrasonic transducer of the present invention.
 本発明の超音波振動子によれば、圧電体の積層構造を有しつつ、製造過程における破損を好適に防止することができる。
 また、本発明の超音波医療装置によれば、上記超音波振動子を備えることにより、効率よく製造することができる。
According to the ultrasonic transducer of the present invention, it is possible to suitably prevent damage in the manufacturing process while having a laminated structure of piezoelectric bodies.
Moreover, according to the ultrasonic medical device of the present invention, the ultrasonic transducer can be efficiently manufactured by including the ultrasonic transducer.
本発明の第一実施形態に係る超音波医療装置を一部断面で示す図である。It is a figure showing the ultrasonic medical device concerning a first embodiment of the present invention in a partial section. 同超音波医療装置の超音波振動子を示す斜視図である。It is a perspective view which shows the ultrasonic transducer | vibrator of the ultrasonic medical device. 同超音波振動子の圧電体を示す斜視図である。It is a perspective view which shows the piezoelectric material of the ultrasonic transducer | vibrator. 非接合領域の他の例を示す図である。It is a figure which shows the other example of a non-joining area | region. 非接合領域の他の例を示す図である。It is a figure which shows the other example of a non-joining area | region. 非接合領域の他の例を示す図である。It is a figure which shows the other example of a non-joining area | region. 非接合領域の他の例を示す図である。It is a figure which shows the other example of a non-joining area | region. 非接合領域の他の例を示す図である。It is a figure which shows the other example of a non-joining area | region. 同超音波振動子の変形例における金属ブロックを示す図である。It is a figure which shows the metal block in the modification of the same ultrasonic transducer | vibrator. 本発明の第二実施形態に係る超音波振動子を示す斜視図である。It is a perspective view which shows the ultrasonic transducer | vibrator which concerns on 2nd embodiment of this invention. 同超音波振動子における絶縁体を示す斜視図である。It is a perspective view which shows the insulator in the same ultrasonic transducer | vibrator. 本発明の第三実施形態に係る超音波振動子を示す斜視図である。It is a perspective view which shows the ultrasonic transducer | vibrator which concerns on 3rd embodiment of this invention. 同超音波振動子における金属ブロックを示す斜視図である。It is a perspective view which shows the metal block in the same ultrasonic transducer | vibrator.
 本発明の第一実施形態について、図1から図5を参照して説明する。図1は、本実施形態の超音波振動子を備えた超音波医療装置1の全体構成を一部断面で示す模式図である。 A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a schematic diagram showing a partial cross-sectional view of the overall configuration of an ultrasonic medical device 1 including the ultrasonic transducer according to the present embodiment.
 超音波医療装置1は、生体内に挿入される挿入部10と、挿入部10の先端部に設けられた処置部20と、挿入部10と接続された操作部30と、操作部30内に配置された振動子ユニット40とを備えている。 The ultrasonic medical device 1 includes an insertion unit 10 to be inserted into a living body, a treatment unit 20 provided at a distal end of the insertion unit 10, an operation unit 30 connected to the insertion unit 10, and an operation unit 30. The vibrator unit 40 is disposed.
 振動子ユニット40の内部には、本実施形態の超音波振動子50が配置されている。振動子ユニット40は、ケーブル41により図示しない超音波電源と接続される。処置部20は、挿入部10に挿通されたプローブ21を有する。プローブ21の基端は振動子ユニット40に接続されている。 In the transducer unit 40, the ultrasonic transducer 50 of the present embodiment is disposed. The transducer unit 40 is connected to an ultrasonic power source (not shown) via a cable 41. The treatment unit 20 includes a probe 21 inserted through the insertion unit 10. The proximal end of the probe 21 is connected to the transducer unit 40.
 操作部30のハンドル31を操作すると、処置部20で生体組織を把持することができる。処置部20が生体組織を把持した状態で超音波電源から振動子ユニット40に電力を供給すると、超音波振動子50が振動する。超音波振動子50で発生した超音波振動は、プローブ21の先端部まで伝達され、処置部20が振動する。これにより、把持された生体組織に対して、凝固や、切開等の所望の処置を行うことができる。 When the handle 31 of the operation unit 30 is operated, the living tissue can be grasped by the treatment unit 20. When power is supplied from the ultrasonic power supply to the transducer unit 40 while the treatment unit 20 holds the living tissue, the ultrasonic transducer 50 vibrates. The ultrasonic vibration generated by the ultrasonic vibrator 50 is transmitted to the distal end portion of the probe 21, and the treatment section 20 vibrates. Thereby, desired treatments such as coagulation and incision can be performed on the grasped living tissue.
 図2は、超音波振動子50を示す斜視図である。超音波振動子50は、複数の圧電体51が積層方向に並べられて接合された圧電体部52と、圧電体部52に接合された金属ブロック55とを備えており、ランジュバン振動子として機能する。 FIG. 2 is a perspective view showing the ultrasonic transducer 50. The ultrasonic transducer 50 includes a piezoelectric body portion 52 in which a plurality of piezoelectric bodies 51 are arranged and joined in the stacking direction, and a metal block 55 joined to the piezoelectric body portion 52, and functions as a Langevin vibrator. To do.
 各圧電体51は、正面および背面が正方形の直方体であり、隣接する圧電体の正面と背面とが接合されて、正面と背面とを結ぶ積層方向に積層されている。
 本実施形態では、圧電体51として、ニオブ酸リチウム(LiNbO)の単結晶を用いている。圧電体51の材質は、ニオブ酸リチウムに限られないが、超音波医療装置1に用いる観点からは、高温への耐性が高いニオブ酸リチウムが好ましい。中でも、36度Y-Cutと呼称される結晶方位のLiNbO基板を用いて圧電体51を形成すると、圧電体51の積層方向における電気機械結合係数を大きくすることができ、好ましい。
Each piezoelectric body 51 is a rectangular parallelepiped having a square front and back, and the front and back surfaces of adjacent piezoelectric bodies are joined together and stacked in a stacking direction connecting the front and back surfaces.
In the present embodiment, a single crystal of lithium niobate (LiNbO 3 ) is used as the piezoelectric body 51. The material of the piezoelectric body 51 is not limited to lithium niobate, but from the viewpoint of use in the ultrasonic medical device 1, lithium niobate having high resistance to high temperatures is preferable. In particular, it is preferable to form the piezoelectric body 51 using a crystal orientation LiNbO 3 substrate called 36 degrees Y-Cut because the electromechanical coupling coefficient in the stacking direction of the piezoelectric bodies 51 can be increased.
 2つの金属ブロック55は、圧電体部52の積層方向における両端部にそれぞれ接合されている。金属ブロック55の材質としては、ジュラルミンや、チタン合金等が挙げられ、求められる強度や振動効率等を考慮して適宜選択されてよい。金属ブロック55の積層方向における寸法は、超音波振動子50に設定する振動周波数に基づいて適宜設定される。 The two metal blocks 55 are respectively joined to both end portions in the stacking direction of the piezoelectric body portion 52. Examples of the material of the metal block 55 include duralumin, titanium alloy, and the like, and may be appropriately selected in consideration of required strength, vibration efficiency, and the like. The dimension in the stacking direction of the metal blocks 55 is appropriately set based on the vibration frequency set in the ultrasonic transducer 50.
 超音波振動子50において、隣接する圧電体51どうし、および圧電体51と金属ブロック55とは、いずれもロウ材である半田56を用いて接合されている。超音波振動子50は、金属材料である半田(ロウ材)を接合に用いることにより、高温への耐性が向上されており、超音波医療装置1に好適に用いることができる。後述する圧電体51Aおよび51Bを除く圧電体51の正面および背面、および金属ブロック55における圧電体51との接合面には、半田の濡れ性を向上させるため、全面に下地金属層が設けられている。 In the ultrasonic vibrator 50, the adjacent piezoelectric bodies 51, and the piezoelectric body 51 and the metal block 55 are joined together using solder 56 which is a brazing material. The ultrasonic vibrator 50 has improved resistance to high temperatures by using a solder (a brazing material), which is a metal material, for bonding, and can be suitably used for the ultrasonic medical device 1. In order to improve solder wettability, a base metal layer is provided on the entire front and back surfaces of the piezoelectric body 51 excluding piezoelectric bodies 51A and 51B, which will be described later, and the bonding surface of the metal block 55 with the piezoelectric body 51. Yes.
 複数の圧電体51のうち、圧電体部52において最も先端側に位置する圧電体51Aの、接合前の状態を図3に示す。金属ブロック55と接合される正面(接合面)51aには、下地金属層53が形成されている。下地金属層53は、例えば、チタン、プラチナ、金等を用いて単層または複数層の構造を有するように形成されている。下地金属層53は、例えば蒸着やスパッタリングにより、圧電体51の面上に形成することができる。 FIG. 3 shows a state before joining of the piezoelectric body 51A located on the most distal end side in the piezoelectric body portion 52 among the plurality of piezoelectric bodies 51. A base metal layer 53 is formed on a front surface (bonding surface) 51 a bonded to the metal block 55. The base metal layer 53 is formed so as to have a single-layer or multiple-layer structure using, for example, titanium, platinum, gold, or the like. The base metal layer 53 can be formed on the surface of the piezoelectric body 51 by, for example, vapor deposition or sputtering.
 圧電体51Aにおいて、他の圧電体と接合する背面51b上には、全面に下地金属層53が形成されている。圧電体51Aの正面51aにおいては、正面51aの正方形のうち、四つの角部を含む周縁の一部に下地金属層53が形成されず、下地金属層53が形成されない部位において圧電体51が露出している。このような形状の下地金属層は、例えばマスクを用いた蒸着やスパッタリングにより形成することができる。 In the piezoelectric body 51A, a base metal layer 53 is formed on the entire surface on the back surface 51b to be joined with another piezoelectric body. In the front surface 51a of the piezoelectric body 51A, the base metal layer 53 is not formed on a part of the periphery including the four corners of the square of the front surface 51a, and the piezoelectric body 51 is exposed at a portion where the base metal layer 53 is not formed. is doing. The base metal layer having such a shape can be formed, for example, by vapor deposition using a mask or sputtering.
 下地金属層53が上述の形状に形成されることにより、圧電体51Aの正面51aは、四つの角部を含む周縁の一部に、金属ブロック55と接合されない非接合領域54を有する。
 図示を省略するが、圧電体部52において最も基端側に位置する圧電体51B(図2参照)においては、金属ブロック55と接合される背面(接合面)51bに形成された下地金属層53が、圧電体51Aの正面51aに形成された下地金属層と同一の形状を有する。これにより、圧電体51Bも、金属ブロック55との接合面に非接合領域54を有している。圧電体51Bの正面には、全面に下地金属層53が形成されている。
By forming the base metal layer 53 in the above-described shape, the front surface 51a of the piezoelectric body 51A has a non-bonded region 54 that is not bonded to the metal block 55 at a part of the periphery including the four corners.
Although not shown, in the piezoelectric body 51B (see FIG. 2) located closest to the base end side in the piezoelectric body portion 52, the base metal layer 53 formed on the back surface (joint surface) 51b joined to the metal block 55. However, it has the same shape as the base metal layer formed on the front surface 51a of the piezoelectric body 51A. Thereby, the piezoelectric body 51 </ b> B also has a non-bonding region 54 on the bonding surface with the metal block 55. A base metal layer 53 is formed on the entire front surface of the piezoelectric body 51B.
 上記の構造を備える超音波振動子50の製造手順の一例について説明する。
 まず、下地金属層53を形成した複数の圧電体51を積層方向に並べ、複数の圧電体51の積層方向両側に金属ブロック55を配置する。さらに、隣接する圧電体51間、および圧電体51と金属ブロック55との間にシート状或いはフィルム状の半田56を挟み、半田56を介して圧電体51と金属ブロック55とを密着させる。
An example of a manufacturing procedure of the ultrasonic transducer 50 having the above structure will be described.
First, the plurality of piezoelectric bodies 51 on which the base metal layer 53 is formed are arranged in the stacking direction, and the metal blocks 55 are arranged on both sides of the plurality of piezoelectric bodies 51 in the stacking direction. Further, a sheet-like or film-like solder 56 is sandwiched between the adjacent piezoelectric bodies 51 and between the piezoelectric body 51 and the metal block 55, and the piezoelectric body 51 and the metal block 55 are brought into close contact with each other via the solder 56.
 次に、圧電体51と金属ブロック55とが密着した状態を保持しつつ、圧電体51、金属ブロック55、および半田56を、半田56の溶融温度以上の温度に加熱する。これにより、半田56が溶融して下地金属層53上に濡れ広がる。半田56の溶融後、圧電体51、金属ブロック55、および半田56の温度を低下させると、半田56が固化して隣接する圧電体51どうし、および圧電体51と金属ブロック55とが、半田56により接合される。ただし、圧電体51Aおよび51Bの接合面における非接合領域54上では、圧電体が溶融した半田56をはじいてしまうため、圧電体と金属ブロック55との間に半田56が存在していても、圧電体と金属ブロック55とが接合されない。
 以上の手順により、圧電体部52と金属ブロック55とが半田56で接合された超音波振動子50が完成する。
Next, the piezoelectric body 51, the metal block 55, and the solder 56 are heated to a temperature equal to or higher than the melting temperature of the solder 56 while maintaining the state where the piezoelectric body 51 and the metal block 55 are in close contact with each other. Thereby, the solder 56 is melted and spreads on the base metal layer 53. When the temperature of the piezoelectric body 51, the metal block 55, and the solder 56 is lowered after the solder 56 is melted, the solder 56 is solidified and the adjacent piezoelectric bodies 51, and the piezoelectric body 51 and the metal block 55 are replaced with the solder 56. Are joined together. However, on the non-bonding region 54 on the bonding surfaces of the piezoelectric bodies 51A and 51B, the piezoelectric body melts away from the solder 56. Therefore, even if the solder 56 exists between the piezoelectric body and the metal block 55, The piezoelectric body and the metal block 55 are not joined.
Through the above procedure, the ultrasonic transducer 50 in which the piezoelectric body portion 52 and the metal block 55 are joined by the solder 56 is completed.
 上述した手順において、半田56を溶融させるために加熱すると、圧電体51および金属ブロック55は、それぞれの材質の熱膨張係数に基づいて膨張する。その後温度が下がると、圧電体51および金属ブロック55は加熱前と同等の状態まで収縮する。しかし、圧電体51および金属ブロック55の収縮が完了する前に半田56が固化して両者が一体に接合されるため、接合後の圧電体51と金属ブロック55との間には、両者の熱膨張係数の違いに基づく応力が発生する。発生した応力が大きい場合、金属ブロック55と接合された圧電体51Aおよび圧電体51Bに破損等が生じる可能性がある。 In the above-described procedure, when the solder 56 is heated to melt, the piezoelectric body 51 and the metal block 55 expand based on the thermal expansion coefficient of each material. Thereafter, when the temperature decreases, the piezoelectric body 51 and the metal block 55 contract to a state equivalent to that before heating. However, since the solder 56 is solidified and joined together before the contraction of the piezoelectric body 51 and the metal block 55 is completed, between the piezoelectric body 51 and the metal block 55 after joining, Stress based on the difference in expansion coefficient is generated. When the generated stress is large, the piezoelectric body 51A and the piezoelectric body 51B joined to the metal block 55 may be damaged.
 本実施形態の超音波振動子50は、圧電体部52と金属ブロック55との接合面である、圧電体51Aの正面51a、および圧電体51Bの背面51bに、それぞれ非接合領域54を有する。非接合領域54においては、圧電体51と金属ブロック55とが一体に接合されていないため、圧電体と、接合される相手方である金属ブロックとは、膨張及び収縮時にそれぞれ異なる挙動をして相対移動することが可能である。その結果、非接合領域54には熱膨張係数の違いによる応力が発生しない。さらに、接合された部位に生じた応力の一部は非接合領域54から開放され、接合部位に残留する応力も低減される。
 したがって、本実施形態の超音波振動子50によれば、圧電体の積層構造を有しつつ、製造過程における圧電体の破損を好適に抑制することができる。
The ultrasonic transducer 50 of the present embodiment has non-bonded regions 54 on the front surface 51a of the piezoelectric body 51A and the back surface 51b of the piezoelectric body 51B, which are the bonding surfaces of the piezoelectric body portion 52 and the metal block 55, respectively. In the non-bonded region 54, since the piezoelectric body 51 and the metal block 55 are not integrally bonded, the piezoelectric body and the metal block that is the counterpart to be bonded behave differently during expansion and contraction. It is possible to move. As a result, no stress is generated in the non-bonded region 54 due to the difference in thermal expansion coefficient. Further, a part of the stress generated in the joined part is released from the non-joined region 54, and the stress remaining in the joined part is also reduced.
Therefore, according to the ultrasonic transducer 50 of the present embodiment, it is possible to suitably suppress the breakage of the piezoelectric body during the manufacturing process while having a laminated structure of piezoelectric bodies.
 また、本実施形態の超音波医療装置1によれば、製造過程における圧電体の破損が好適に抑制された超音波振動子50を用いることにより、効率よく製造することができる。 Further, according to the ultrasonic medical device 1 of the present embodiment, it is possible to efficiently manufacture by using the ultrasonic transducer 50 in which breakage of the piezoelectric body in the manufacturing process is suitably suppressed.
 非接合領域54の大きさは、圧電体51および金属ブロック55の形状、寸法、材質等により適宜設定されてよい。非接合領域の面積が大きくなるほど、破損抑制効果は高くなるが、接合強度は低下する。発明者の検討では、圧電体と金属ブロックとの間に発生する応力は、接合面に占める非接合領域の割合(例えば非接合領域54の面積/正面51aの面積)が増加するにつれて減少したが、その減少率は、接合面に占める非接合領域の割合が8%を超えると急激に低下した。この結果からは、接合面に占める非接合領域の割合は、5%以上10%以下程度が好ましいと考えられる。 The size of the non-bonding region 54 may be appropriately set depending on the shape, size, material, and the like of the piezoelectric body 51 and the metal block 55. As the area of the non-bonded region increases, the damage suppressing effect increases, but the bonding strength decreases. According to the inventor's study, the stress generated between the piezoelectric body and the metal block decreases as the proportion of the non-bonded region in the bonded surface (for example, the area of the non-bonded region 54 / the area of the front surface 51a) increases. The decrease rate rapidly decreased when the proportion of the non-bonded area in the bonding surface exceeded 8%. From this result, it is considered that the proportion of the non-bonded region in the bonding surface is preferably about 5% to 10%.
 非接合領域54の位置や形状は、下地金属層53の形状を変更することにより適宜設定することができる。例えば、図4Aに示すように、接合面の周縁のうち、4つの角部を除く領域に非接合領域54が形成されてもよい。図4Bに示すように、4つの角部を含む周縁全体に非接合領域54が形成されてもよい。
 また、圧電体を形成する材料が方向により異なる熱膨張係数を有する場合は、特定の方向にのみ延びるように非接合領域が形成されてもよい。例えば、接合面が矩形の圧電体において、一辺の延びる方向における熱膨張係数xと、当該一辺と直交する他の一辺が延びる方向における熱膨張係数yとが異なる場合、図4Cに示すように、金属ブロックとの熱膨張係数差がより大きくなる方向と直交する部分にのみ非接合領域を設けてもよい(図4Cは、x方向における熱膨張差がより大きい場合の例を示す。)。
The position and shape of the non-bonded region 54 can be appropriately set by changing the shape of the base metal layer 53. For example, as shown in FIG. 4A, a non-joining region 54 may be formed in a region excluding four corners on the periphery of the joining surface. As shown in FIG. 4B, the non-bonding region 54 may be formed on the entire periphery including the four corners.
Further, when the material forming the piezoelectric body has a different thermal expansion coefficient depending on the direction, the non-bonding region may be formed so as to extend only in a specific direction. For example, in a piezoelectric body having a rectangular joint surface, when the thermal expansion coefficient x in the direction in which one side extends is different from the thermal expansion coefficient y in the direction in which the other side perpendicular to the one side extends, as shown in FIG. A non-joining region may be provided only in a portion orthogonal to the direction in which the difference in thermal expansion coefficient with the metal block becomes larger (FIG. 4C shows an example in which the thermal expansion difference in the x direction is larger).
 さらに、非接合領域を設ける部位は、接合面の周縁に限られない。例えば、図4Dに示すように、接合面の周縁より内側において、枠状に非接合領域54が形成されてもよい。図4Eに示すように、接合面の周縁より内側において、4つの角部に近い部位にのみ非接合領域が形成されてもよい。
 ただし、非接合領域を周縁に設けると、非接合領域から応力が開放されやすく、応力低減効果が大きいため好ましい。また、圧電体を切り出す際のダイシングラインに下地金属層が存在しなくなるため、圧電体の切り出しが容易になるというメリットもある。
Furthermore, the site | part which provides a non-joining area | region is not restricted to the periphery of a joining surface. For example, as shown in FIG. 4D, a non-joining region 54 may be formed in a frame shape inside the periphery of the joining surface. As shown in FIG. 4E, the non-joining regions may be formed only in the portions close to the four corners inside the periphery of the joining surface.
However, it is preferable to provide a non-joining region at the periphery because stress is easily released from the non-joining region and the stress reduction effect is large. In addition, since the base metal layer does not exist in the dicing line when cutting out the piezoelectric body, there is an advantage that the piezoelectric body can be easily cut out.
 さらに、図5に示すように、金属ブロック55に形成される下地金属層53を圧電体の接合面に形成される下地金属層と同様の形状にしてもよい。この場合、金属ブロックに最も近い圧電体の下地金属層は、接合面の全面に設けられてもよい。金属ブロックの接合面の一部に下地金属層を設けないことにより、金属ブロックと接合される圧電体の接合面のうち、下地金属層が存在しない部位に対向する部位が非接合領域となり、同様の効果を得ることができる。 Further, as shown in FIG. 5, the base metal layer 53 formed on the metal block 55 may have the same shape as the base metal layer formed on the bonding surface of the piezoelectric body. In this case, the base metal layer of the piezoelectric body closest to the metal block may be provided on the entire bonding surface. By not providing the base metal layer on a part of the joint surface of the metal block, the part of the joint surface of the piezoelectric body joined to the metal block that faces the part where the base metal layer does not exist becomes a non-joint region. The effect of can be obtained.
 本発明の第二実施形態について、図6および図7を参照して説明する。本実施形態の超音波振動子は、絶縁体を備える点で第一実施形態の超音波振動子1と異なっている。
 以降の説明において、既に説明したものと共通する構成については、同一の符号を付して重複する説明を省略する。
A second embodiment of the present invention will be described with reference to FIGS. The ultrasonic transducer of this embodiment is different from the ultrasonic transducer 1 of the first embodiment in that an insulator is provided.
In the following description, components that are the same as those already described are assigned the same reference numerals and redundant description is omitted.
 図6は、本実施形態の超音波振動子150を示す斜視図である。圧電体部52と金属ブロック55との間には、絶縁体151が配置されており、圧電体部52と金属ブロック55とは、絶縁体151を挟んだ状態で接合されている。 FIG. 6 is a perspective view showing the ultrasonic transducer 150 of the present embodiment. An insulator 151 is disposed between the piezoelectric body portion 52 and the metal block 55, and the piezoelectric body portion 52 and the metal block 55 are joined with the insulator 151 interposed therebetween.
 絶縁体151は、圧電体51と概ね同一の形状および寸法を有するが、厚み(積層方向における寸法)は、適宜設定されてよい。
 絶縁体151の材質に特に制限はないが、剛性や超音波吸収性等の観点からはセラミック材料が好ましい。特に、結晶方位36度Y-Cutのニオブ酸リチウム基板等のような異方性材料で圧電体51が形成されている場合は、接合面内の一方向における熱膨張係数(例えば上述のX)と、当該一方向と直交する方向における熱膨張係数(例えば上述のY)との中間の値の熱膨張係数を有する材料で絶縁体151を構成するのが好ましい。このようにすると、圧電体における応力の発生を好適に抑えることができる。このような効果を発揮する絶縁体151の材料としては、例えばジルコニア(ZrO)を挙げることができる。
The insulator 151 has substantially the same shape and dimensions as the piezoelectric body 51, but the thickness (dimension in the stacking direction) may be set as appropriate.
Although there is no restriction | limiting in particular in the material of the insulator 151, From viewpoints, such as rigidity and an ultrasonic absorption property, a ceramic material is preferable. In particular, when the piezoelectric body 51 is formed of an anisotropic material such as a lithium niobate substrate having a crystal orientation of 36 degrees Y-Cut or the like, the thermal expansion coefficient in one direction in the bonding surface (for example, X described above) The insulator 151 is preferably made of a material having a thermal expansion coefficient that is intermediate between the thermal expansion coefficient (for example, Y described above) in a direction orthogonal to the one direction. If it does in this way, generation | occurrence | production of the stress in a piezoelectric material can be suppressed suitably. Examples of the material of the insulator 151 that exhibits such an effect include zirconia (ZrO 2 ).
 図7に、接合される前の絶縁体151を示す。絶縁体151の積層方向における両面には、それぞれ下地金属層53が形成されている。積層方向における第一面151aに設けられた下地金属層53は、第一実施形態において金属ブロック55と接合される圧電体の接合面に形成された下地金属層と同一の形状である。積層方向における第二面151bには、全面に下地金属層53が形成されている。 FIG. 7 shows the insulator 151 before being joined. A base metal layer 53 is formed on each surface of the insulator 151 in the stacking direction. The base metal layer 53 provided on the first surface 151a in the stacking direction has the same shape as the base metal layer formed on the bonding surface of the piezoelectric body to be bonded to the metal block 55 in the first embodiment. A base metal layer 53 is formed on the entire surface of the second surface 151b in the stacking direction.
 二つの絶縁体151は、いずれも第一面151aを金属ブロック55側に向けて配置されている。また、絶縁体151に最も近い圧電体51Cおよび51Dにおいて、絶縁体151との接合面には、全面に下地金属層53が設けられている。
 この状態で、第一実施形態と同様の手順で半田56による接合を行うと、圧電体51Cおよび51Dと絶縁体151とは、接合面の全体が接合される。しかし、金属ブロック55と絶縁体151とは、下地金属層53が形成された領域のみが接合される。その結果、金属ブロック55に最も近い圧電体51Cおよび51Dにおいて、第一面151aのうち下地金属層53が設けられていない部位に対応する領域、すなわち、超音波振動子150を積層方向に見たときに、第一面151aのうち下地金属層53が設けられていない部位と重なる領域は、金属ブロック55と一体に接合されない非接合領域となる。
 したがって、本実施形態の超音波振動子150においても、温度変化に伴う膨張収縮時に非接合領域が金属ブロックと異なる挙動をすることにより、第一実施形態と同様に製造過程における圧電体の破損を好適に抑制することができる。
Each of the two insulators 151 is disposed with the first surface 151a facing the metal block 55 side. In addition, in the piezoelectric bodies 51C and 51D closest to the insulator 151, a base metal layer 53 is provided on the entire surface of the bonding surface with the insulator 151.
In this state, when joining by the solder 56 is performed in the same procedure as in the first embodiment, the entire joining surfaces of the piezoelectric bodies 51C and 51D and the insulator 151 are joined. However, only the region where the base metal layer 53 is formed is bonded to the metal block 55 and the insulator 151. As a result, in the piezoelectric bodies 51C and 51D closest to the metal block 55, the region corresponding to the portion of the first surface 151a where the base metal layer 53 is not provided, that is, the ultrasonic transducer 150 is viewed in the stacking direction. In some cases, a region of the first surface 151 a that overlaps a portion where the base metal layer 53 is not provided is a non-bonded region that is not bonded to the metal block 55 integrally.
Therefore, also in the ultrasonic transducer 150 of this embodiment, the non-bonded region behaves differently from the metal block during expansion / contraction due to temperature change, so that the piezoelectric body is damaged during the manufacturing process as in the first embodiment. It can suppress suitably.
 また、圧電体部52と金属ブロック55との間に絶縁体151が配置されているため、超音波振動子150の配置時に、金属ブロック55と周囲の他の部材等との絶縁を容易に確保することができる。 Further, since the insulator 151 is disposed between the piezoelectric body portion 52 and the metal block 55, it is easy to ensure insulation between the metal block 55 and other surrounding members when the ultrasonic vibrator 150 is disposed. can do.
 本実施形態において、絶縁体151の第一面151aは、金属ブロック55側でなく、圧電体51C、51D側に向けられてもよい。この場合、金属ブロック55と絶縁体151とは、接合面の全体が接合されるが、圧電体51と絶縁体151とは、下地金属層53が形成された領域のみが接合されるため、金属ブロック55に最も近い圧電体51C、51Dにおいて、第一面151aのうち下地金属層53が設けられていない部位に対応する領域が同様に非接合領域となる。したがって、この場合も、上述の態様と同様の効果を奏する。
 さらに、金属ブロック55の一方が第一面151aと接合され、他方が第二面151bと接合されてもよい。
In the present embodiment, the first surface 151a of the insulator 151 may be directed not to the metal block 55 side but to the piezoelectric bodies 51C and 51D. In this case, the metal block 55 and the insulator 151 are bonded to each other on the entire bonding surface, but the piezoelectric body 51 and the insulator 151 are bonded only to the region where the base metal layer 53 is formed. In the piezoelectric bodies 51C and 51D closest to the block 55, a region corresponding to a portion of the first surface 151a where the base metal layer 53 is not provided is similarly a non-bonded region. Therefore, also in this case, the same effect as the above-described aspect is obtained.
Furthermore, one of the metal blocks 55 may be bonded to the first surface 151a, and the other may be bonded to the second surface 151b.
 本発明の第三実施形態について、図8および図9を参照して説明する。本実施形態の超音波振動子は、金属ブロックの形状において上記各実施形態の超音波振動子と異なる。 A third embodiment of the present invention will be described with reference to FIGS. The ultrasonic transducer of this embodiment is different from the ultrasonic transducers of the above embodiments in the shape of the metal block.
 図8は、本実施形態の超音波振動子250を示す斜視図である。図9は、超音波振動子250の金属ブロック255を示す斜視図である。金属ブロック255において、圧電体部52と接合される接合面(ブロック接合面)255a側の4つの角部が面取りされている。これにより、接合面255aは八角形になっている。 FIG. 8 is a perspective view showing the ultrasonic transducer 250 of the present embodiment. FIG. 9 is a perspective view showing the metal block 255 of the ultrasonic transducer 250. In the metal block 255, four corners on the side of the bonding surface (block bonding surface) 255a bonded to the piezoelectric body portion 52 are chamfered. Thereby, the joint surface 255a is octagonal.
 本実施形態では、金属ブロック255と圧電体51とで接合面の形状が異なっており、金属ブロック255の接合面255aの方が小さいため、圧電体51の接合面の一部は、金属ブロック255の接合面255aと接触しない。その結果、圧電体51の接合面のうち接合面255aと接触しない部位が非接合領域となる。 In the present embodiment, the metal block 255 and the piezoelectric body 51 have different joint surfaces, and the joint surface 255a of the metal block 255 is smaller. Therefore, a part of the joint surface of the piezoelectric body 51 is part of the metal block 255. It does not come into contact with the joint surface 255a. As a result, a portion of the bonding surface of the piezoelectric body 51 that does not come into contact with the bonding surface 255a becomes a non-bonding region.
 本実施形態の超音波振動子150においても、上述した各実施形態の超音波振動子と同様に、製造過程における圧電体の破損を好適に抑制することができる。
 また、本実施形態では、金属ブロック255の接合面255aの面積を圧電体51の接合面よりも小さくすることにより、圧電体51の接合面の一部を非接合領域としている。したがって、圧電体51および金属ブロック255のいずれについても、下地金属層53を接合面全体に設けることができるため、下地金属層を所定の形状にするためにマスク等を用いる必要がない。その結果、下地金属層を形成する工程を簡便にし、製造コストを低減することができる。
Also in the ultrasonic transducer 150 of the present embodiment, similarly to the ultrasonic transducers of the respective embodiments described above, it is possible to suitably suppress the breakage of the piezoelectric body during the manufacturing process.
In the present embodiment, a part of the bonding surface of the piezoelectric body 51 is set as a non-bonding region by making the area of the bonding surface 255a of the metal block 255 smaller than the bonding surface of the piezoelectric body 51. Therefore, in both the piezoelectric body 51 and the metal block 255, the base metal layer 53 can be provided on the entire bonding surface, so that it is not necessary to use a mask or the like to make the base metal layer into a predetermined shape. As a result, the process of forming the base metal layer can be simplified and the manufacturing cost can be reduced.
 本実施形態において、ブロック接合面の形状は、上述した八角形には限定されない。例えば、ブロック接合面の周縁全体を面取りすることにより、ブロック接合面の形状を、圧電体の接合面よりも一回り小さい正方形にしてもよい。 In the present embodiment, the shape of the block joint surface is not limited to the octagon described above. For example, by chamfering the entire periphery of the block bonding surface, the shape of the block bonding surface may be a square that is slightly smaller than the bonding surface of the piezoelectric body.
 また、上述の説明では、ブロック接合面の形状が変更される例を用いたが、第二実施形態のように、金属ブロックと圧電体との間に絶縁体が配置される場合は、絶縁体の接合面(絶縁体接合面)の形状を変更して絶縁体接合面の面積を圧電体の接合面より小さくしてもよい。 In the above description, an example in which the shape of the block joint surface is changed is used. However, when an insulator is disposed between the metal block and the piezoelectric body as in the second embodiment, the insulator The shape of the bonding surface (insulator bonding surface) may be changed so that the area of the insulator bonding surface is smaller than the bonding surface of the piezoelectric body.
 さらに、面取りをするのに代えて、金属ブロックの積層方向における断面形状を圧電体よりも小さくすることによりブロック接合面の面積を小さくしてもよい。ただし、面取りによりブロック接合面の面積を小さくする場合、積層方向における断面形状において、周縁の一部の位置を圧電体と一致させることができる。その結果、超音波振動子の製造過程において圧電体と金属ブロックとを積層方向に並べる際に、治具等を用いて両者の中心が一致するように位置決めしやすいという利点がある。 Furthermore, instead of chamfering, the area of the block joint surface may be reduced by making the cross-sectional shape in the stacking direction of the metal blocks smaller than that of the piezoelectric body. However, when the area of the block joint surface is reduced by chamfering, the position of a part of the periphery in the cross-sectional shape in the stacking direction can be matched with the piezoelectric body. As a result, when the piezoelectric body and the metal block are arranged in the stacking direction in the manufacturing process of the ultrasonic vibrator, there is an advantage that it is easy to position the two so that their centers coincide with each other.
 この他、例えば圧電体の四隅を除去する等により、圧電体の接合面の面積がブロック接合面の面積よりも小さくなるように接合面を形成してもよい。この場合、非接合領域はブロック接合面に生じることになるが、この場合は、金属ブロックに生じる膨張収縮の一部がブロック接合面の非接合領域に吸収されたり、非接合領域から開放されたりするため、概ね同様の効果を得ることができる。
 さらに、圧電体の接合面およびブロック接合面の両方に非接合領域が設けられてもよい。
In addition, the bonding surface may be formed so that the area of the bonding surface of the piezoelectric body becomes smaller than the area of the block bonding surface, for example, by removing four corners of the piezoelectric body. In this case, the non-bonding region is generated on the block bonding surface. In this case, a part of the expansion / contraction generated in the metal block is absorbed by the non-bonding region of the block bonding surface or released from the non-bonding region. Therefore, substantially the same effect can be obtained.
Further, non-bonding regions may be provided on both the bonding surface and the block bonding surface of the piezoelectric body.
 以上、本発明の各実施形態について説明したが、本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において構成要素の組み合わせを変えたり、各構成要素に種々の変更を加えたり、削除したりすることが可能である。 The embodiments of the present invention have been described above. However, the technical scope of the present invention is not limited to the above-described embodiments, and combinations of components or components may be changed without departing from the spirit of the present invention. It is possible to make various changes to or delete them.
 例えば、本発明の超音波振動子において、圧電体の接合面の形状は、上述した正方形には、限られない。したがって、長方形や、四角形以外の多角形状、あるいは角部を有さない円形等であってもよい。ただし、超音波振動子の積層方向における断面形状は、回転対称性の高い形状が好ましいため、接合面の形状としては、回転対称性の高い多角形や真円等の形状がより好ましい。 For example, in the ultrasonic transducer of the present invention, the shape of the bonding surface of the piezoelectric body is not limited to the above-described square. Therefore, it may be a rectangle, a polygon other than a rectangle, or a circle having no corners. However, since the cross-sectional shape in the stacking direction of the ultrasonic transducer is preferably a shape with high rotational symmetry, the shape of the joint surface is more preferably a polygon such as a polygon with a high rotational symmetry or a perfect circle.
 また、金属ブロックは、積層方向の一方にのみ設けられてもよい。 Further, the metal block may be provided only on one side in the stacking direction.
 本発明は、超音波振動子および超音波医療装置に適用することができる。 The present invention can be applied to an ultrasonic transducer and an ultrasonic medical device.
 1 超音波医療装置
 50、150、250 超音波振動子
 51、51A、51B 圧電体
 51a 正面(接合面)
 51b 背面(接合面)
 52 圧電体部
 53 下地金属層
 54 非接合領域
 55、255 金属ブロック
 56 半田(ロウ材)
 151 絶縁体
 255a 接合面(ブロック接合面)
DESCRIPTION OF SYMBOLS 1 Ultrasonic medical device 50, 150, 250 Ultrasonic vibrator 51, 51A, 51B Piezoelectric body 51a Front (bonding surface)
51b Rear surface (joint surface)
52 Piezoelectric part 53 Underlying metal layer 54 Non-bonding region 55, 255 Metal block 56 Solder (brazing material)
151 Insulator 255a Bonding surface (Block bonding surface)

Claims (11)

  1.  複数の圧電体が積層方向に並べられて接合された圧電体部と、
     前記圧電体部の前記積層方向における端部に接合された金属ブロックと、
     を備え、
     前記複数の圧電体のうち最も前記金属ブロックに近い圧電体において前記金属ブロックに対向する接合面、および前記金属ブロックにおいて前記圧電体部と接合されるブロック接合面の少なくとも一方は、接合された相手方である前記圧電体または前記金属ブロックに対して相対移動可能な非接合領域を有する、
     超音波振動子。
    A piezoelectric body portion in which a plurality of piezoelectric bodies are aligned and joined in the stacking direction;
    A metal block joined to an end of the piezoelectric body portion in the stacking direction;
    With
    At least one of a joint surface facing the metal block in the piezoelectric body closest to the metal block among the plurality of piezoelectric bodies and a block joint surface joined to the piezoelectric body portion in the metal block are joined to each other. A non-bonding region movable relative to the piezoelectric body or the metal block,
    Ultrasonic vibrator.
  2.  前記非接合領域は、前記接合面に設けられている、請求項1に記載の超音波振動子。 The ultrasonic transducer according to claim 1, wherein the non-bonding region is provided on the bonding surface.
  3.  前記非接合領域は、前記接合面の周縁を含む部位に位置する、請求項2に記載の超音波振動子。 The ultrasonic transducer according to claim 2, wherein the non-bonded region is located at a portion including a periphery of the bonding surface.
  4.  前記接合面は多角形状を有し、前記非接合領域は前記多角形状の角部を含む部位に位置する、請求項2に記載の超音波振動子。 The ultrasonic transducer according to claim 2, wherein the joining surface has a polygonal shape, and the non-joining region is located at a portion including a corner portion of the polygonal shape.
  5.  前記接合面上に設けられた下地金属層をさらに備え、
     前記圧電体部と前記金属ブロックとはロウ材により接合され、
     前記非接合領域は、前記接合面のうち、前記下地金属層が存在しない部位に位置する、請求項2に記載の超音波振動子。
    Further comprising a base metal layer provided on the bonding surface,
    The piezoelectric body part and the metal block are joined by a brazing material,
    The ultrasonic transducer according to claim 2, wherein the non-bonding region is located in a portion of the bonding surface where the base metal layer does not exist.
  6.  前記ブロック接合面上に設けられた下地金属層をさらに備え、
     前記圧電体部と前記金属ブロックとはロウ材により接合され、
     前記非接合領域は、前記ブロック接合面において前記下地金属層が存在しない部位と対向する、請求項2に記載の超音波振動子。
    Further comprising a base metal layer provided on the block bonding surface,
    The piezoelectric body part and the metal block are joined by a brazing material,
    The ultrasonic transducer according to claim 2, wherein the non-bonding region faces a portion where the base metal layer does not exist on the block bonding surface.
  7.  前記金属ブロックにおいて、前記圧電体部と接合されるブロック接合面の面積が前記接合面の面積よりも小さい、請求項2に記載の超音波振動子。 The ultrasonic transducer according to claim 2, wherein an area of a block joint surface joined to the piezoelectric body portion in the metal block is smaller than an area of the joint surface.
  8.  前記接合面の面積が前記ブロック接合面の面積よりも小さく、前記ブロック接合面が前記非接合領域を有する、請求項1に記載の超音波振動子。 The ultrasonic transducer according to claim 1, wherein an area of the bonding surface is smaller than an area of the block bonding surface, and the block bonding surface has the non-bonding region.
  9.  前記圧電体部と前記金属ブロックとの間に配置された絶縁体をさらに備える、請求項1に記載の超音波振動子。 The ultrasonic transducer according to claim 1, further comprising an insulator disposed between the piezoelectric body portion and the metal block.
  10.  前記絶縁体において、前記圧電体部と接合される絶縁体接合面の面積が前記接合面の面積よりも小さい、請求項9に記載の超音波振動子。 10. The ultrasonic transducer according to claim 9, wherein in the insulator, an area of an insulator bonding surface bonded to the piezoelectric body portion is smaller than an area of the bonding surface.
  11.  請求項1に記載の超音波振動子を備える、超音波医療装置。 An ultrasonic medical device comprising the ultrasonic transducer according to claim 1.
PCT/JP2015/086175 2015-12-25 2015-12-25 Ultrasonic oscillator and ultrasonic medical device WO2017109929A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/086175 WO2017109929A1 (en) 2015-12-25 2015-12-25 Ultrasonic oscillator and ultrasonic medical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/086175 WO2017109929A1 (en) 2015-12-25 2015-12-25 Ultrasonic oscillator and ultrasonic medical device

Publications (1)

Publication Number Publication Date
WO2017109929A1 true WO2017109929A1 (en) 2017-06-29

Family

ID=59091035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/086175 WO2017109929A1 (en) 2015-12-25 2015-12-25 Ultrasonic oscillator and ultrasonic medical device

Country Status (1)

Country Link
WO (1) WO2017109929A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7469824B2 (en) 2017-08-17 2024-04-17 クレオ・メディカル・リミテッド Electrosurgical device for delivering RF and/or microwave energy into biological tissue - Patents.com

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11186626A (en) * 1997-12-25 1999-07-09 Kyocera Corp Laminated piezoelectric actuator
JP2008128875A (en) * 2006-11-22 2008-06-05 Nec Tokin Corp Ultrasonic vibration body
JP2015039689A (en) * 2013-08-23 2015-03-02 オリンパス株式会社 Ultrasonic vibration device, method of manufacturing ultrasonic vibration device, and ultrasonic medical device
JP2015208710A (en) * 2014-04-25 2015-11-24 オリンパス株式会社 Ultrasonic vibrator and ultrasonic medical device
JP2015211535A (en) * 2014-04-25 2015-11-24 オリンパス株式会社 Ultrasonic vibrator and ultrasonic medical device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11186626A (en) * 1997-12-25 1999-07-09 Kyocera Corp Laminated piezoelectric actuator
JP2008128875A (en) * 2006-11-22 2008-06-05 Nec Tokin Corp Ultrasonic vibration body
JP2015039689A (en) * 2013-08-23 2015-03-02 オリンパス株式会社 Ultrasonic vibration device, method of manufacturing ultrasonic vibration device, and ultrasonic medical device
JP2015208710A (en) * 2014-04-25 2015-11-24 オリンパス株式会社 Ultrasonic vibrator and ultrasonic medical device
JP2015211535A (en) * 2014-04-25 2015-11-24 オリンパス株式会社 Ultrasonic vibrator and ultrasonic medical device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7469824B2 (en) 2017-08-17 2024-04-17 クレオ・メディカル・リミテッド Electrosurgical device for delivering RF and/or microwave energy into biological tissue - Patents.com

Similar Documents

Publication Publication Date Title
JP6326275B2 (en) Ultrasonic transducer and ultrasonic medical device
JP6648205B2 (en) Micromachined ultrasonic scalpel with embedded piezoelectric actuator
TWI479716B (en) A secondary battery manufacturing method, a secondary battery, a welding apparatus
JP5963603B2 (en) Ultrasonic vibration device, method of manufacturing ultrasonic vibration device, and ultrasonic medical device
JP7128628B2 (en) Laminated piezoelectric ceramic parts and piezoelectric devices
WO2007129496A1 (en) Electronic component and method for manufacturing same
WO2017109929A1 (en) Ultrasonic oscillator and ultrasonic medical device
US10322437B2 (en) Stacked ultrasound vibration device and ultrasound medical apparatus
JP5458651B2 (en) Surface acoustic wave element substrate and surface acoustic wave element manufacturing method
JP5993330B2 (en) LAMINATED ULTRASONIC VIBRATION DEVICE, METHOD FOR PRODUCING LAMINATED ULTRASONIC VIBRATION DEVICE, AND ULTRASONIC MEDICAL DEVICE
JP2014011737A (en) Ultrasonic vibration device, ultrasonic vibration device manufacturing method, and ultrasonic medical equipment
JP6323863B2 (en) Piezoelectric element, piezoelectric actuator, and method of manufacturing piezoelectric element
JP6086742B2 (en) Ultrasonic vibration device and ultrasonic medical device
JP2008219066A (en) Piezoelectric vibration piece
JP6270505B2 (en) LAMINATED ULTRASONIC VIBRATION DEVICE, METHOD FOR PRODUCING LAMINATED ULTRASONIC VIBRATION DEVICE, AND ULTRASONIC MEDICAL DEVICE
US20170365769A1 (en) Ultrasonic transducer and ultrasonic medical device
JP6292963B2 (en) Ultrasonic transducer and ultrasonic medical device
JP5716629B2 (en) Manufacturing method of microchannel heat exchanger using magnetic refrigeration material and microchannel heat exchanger
JP2012029478A (en) Vibrator and ultrasonic motor
JP2018010963A (en) Piezoelectric actuator
WO2016051486A1 (en) Ultrasonic vibrator and ultrasonic medical apparatus
JP2012079814A (en) Piezoelectric element
JP2010093674A (en) Piezoelectric device, and method for manufacturing piezoelectric substrate
JP2015211535A (en) Ultrasonic vibrator and ultrasonic medical device
JP2008072156A (en) Composite material vibrator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15911367

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15911367

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP