WO2016051486A1 - Ultrasonic vibrator and ultrasonic medical apparatus - Google Patents

Ultrasonic vibrator and ultrasonic medical apparatus Download PDF

Info

Publication number
WO2016051486A1
WO2016051486A1 PCT/JP2014/076015 JP2014076015W WO2016051486A1 WO 2016051486 A1 WO2016051486 A1 WO 2016051486A1 JP 2014076015 W JP2014076015 W JP 2014076015W WO 2016051486 A1 WO2016051486 A1 WO 2016051486A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric element
element unit
ultrasonic
ultrasonic transducer
metal block
Prior art date
Application number
PCT/JP2014/076015
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤 寛
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2014/076015 priority Critical patent/WO2016051486A1/en
Publication of WO2016051486A1 publication Critical patent/WO2016051486A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • B06B1/0611Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements in a pile
    • B06B1/0618Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements in a pile of piezo- and non-piezoelectric elements, e.g. 'Tonpilz'
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • H04R17/10Resonant transducers, i.e. adapted to produce maximum output at a predetermined frequency

Definitions

  • the present invention relates to an ultrasonic transducer and an ultrasonic medical device that excite ultrasonic waves.
  • piezoelectric elements that are driven using the piezoelectric effect have been used in various applications such as ultrasonic vibrators.
  • a Langevin vibrator is disclosed in which a plurality of such piezoelectric elements are stacked between metal blocks and the metal blocks are bolted together (see Patent Document 1).
  • An embodiment according to the present invention is to provide an ultrasonic transducer and an ultrasonic medical device that can be formed in a small size while maintaining an output.
  • An ultrasonic transducer includes: A piezoelectric element unit in which a plurality of piezoelectric elements that vibrate by generating a piezoelectric effect by applying an alternating voltage are laminated; A metal block disposed in a vibration direction of the piezoelectric element unit; With Between the plurality of piezoelectric elements of the piezoelectric element unit, and the metal block are bonded with a bonding material, The metal block is disposed only on one end side with respect to the piezoelectric element.
  • An ultrasonic medical device includes the ultrasonic transducer, and a distal treatment section that transmits ultrasonic vibration generated by the ultrasonic transducer and treats living tissue.
  • an ultrasonic transducer and an ultrasonic medical device that can be formed in a small size while maintaining an output.
  • vibrator of this embodiment is shown.
  • vibrator of 1st Embodiment is shown.
  • vibrator of 2nd Embodiment is shown.
  • vibrator of 3rd Embodiment is shown.
  • 1 shows an overall configuration of an ultrasonic medical apparatus according to the present embodiment.
  • 1 shows an overall schematic configuration of a transducer unit of an ultrasonic medical apparatus according to the present embodiment. The whole structure of the ultrasonic medical device of the other aspect of the ultrasonic medical device which concerns on this embodiment is shown.
  • FIG. 1 is a perspective view of the ultrasonic transducer 1 according to the first embodiment.
  • the ultrasonic transducer 1 includes a metal block 2, a piezoelectric element unit 3 in which a plurality of driving piezoelectric elements 31 are laminated by a bonding material 4, and a metal block 2. And a buffer portion 5 bonded to the piezoelectric element unit 3 by the bonding material 4.
  • the metal block 2 has at least a function of vibrating together with the piezoelectric element unit 3 and becoming a part of a resonator. Moreover, it can also function as a connection part to an ultrasonic vibration action object, or an action part.
  • the metal block 2 in this invention has the front-end
  • the tip portion 21 is a portion where the vibration of the piezoelectric element unit 3 is transmitted and the tip position is the antinode of vibration.
  • the flange portion 23 is a portion which is joined to the buffer layer 5 by the joining material 4 and becomes a vibration node.
  • the horn part 22 has a function of amplifying the vibration of the piezoelectric element unit 3 and connects the tip part 21 and the flange part 23.
  • the metal block 2 has a flange portion 23 that becomes a node of vibration when in use and is held and fixed to another member.
  • the metal block 2 is disposed in the vibration (specifically, longitudinal vibration) direction of the piezoelectric element unit 3 and is disposed only on one end side with respect to the piezoelectric element unit 3.
  • a plurality of driving piezoelectric elements 31 are bonded to each other by a bonding material 4.
  • An electrode (not shown) is attached to each piezoelectric element.
  • the electrodes attached to each piezoelectric element are connected to the two electrodes of the AC power supply alternately in the order of lamination.
  • the cross-sectional shape in the direction perpendicular to the axis of the piezoelectric element 31 may be a circle such as a circle, a square, or a rectangle.
  • the buffer portion 5 is disposed between the metal block 2 and the piezoelectric element unit 3 and relieves thermal stress generated due to a difference in thermal expansion coefficient between the metal block 2 and the piezoelectric element unit 3 at the time of joining. If the difference in thermal expansion coefficient between the metal block 2 and the piezoelectric element unit 3 is small and the piezoelectric element 31 of the piezoelectric element unit 3 is not damaged, the buffer portion 5 may not be installed.
  • the metal block 2 is made of aluminum alloy such as duralumin, titanium alloy, pure titanium, stainless steel, mild steel, nickel chrome steel, tool steel, brass, monel metal and the like.
  • the piezoelectric element 31 of the piezoelectric element unit 3 it is preferable to use single crystal lithium niobate having a high Curie point.
  • a lithium niobate wafer having a crystal orientation called 36-degree rotated Y-cut so that the electromechanical coupling coefficient in the thickness direction of each piezoelectric element 31 is increased, and wetting between lithium niobate and non-lead solder
  • a base metal such as Ti / Pt or Cr / Ni / Au is formed on the front and back surfaces of the lithium niobate wafer and then cut into a rectangle by dicing or the like.
  • the piezoelectric element 31 using lithium niobate has a smaller piezoelectric constant than the piezoelectric element 31 using lead zirconate titanate. Therefore, in order for the piezoelectric element 31 using lithium niobate to obtain an output equivalent to the piezoelectric element 31 using lead zirconate titanate, the number of stacked piezoelectric elements 31 must be increased. Here, when the number of stacked piezoelectric elements 31 is increased, the piezoelectric element unit 3 is increased in size, and the ultrasonic vibrator 1 is also increased in size.
  • the metal block 2, the piezoelectric element unit 3, and each piezoelectric element 31 are bonded to each other by the bonding material 4.
  • the number of metal blocks 2 conventionally disposed at both ends of the piezoelectric element unit 3 can be reduced to one, and even if lithium niobate, which is a lead-free single crystal member, is used, the ultrasonic transducer 1 Can be miniaturized.
  • solder As the bonding material 4, a lead-free solder that is a metal material having a melting point lower than the Curie point, preferably less than half the Curie point is used.
  • solder when solder is used as the bonding material and the solder supply method is solder pellets, it is difficult to bond the uneven portions without bubbles. Therefore, it is preferable that the surfaces on which the metal block 2 and the bonding material 4 of each piezoelectric element 31 are applied are flat surfaces.
  • FIG. 2 shows the ultrasonic transducer 1 of the first embodiment.
  • FIG. 2A is a diagram illustrating the ultrasonic transducer 1
  • FIG. 2B is a diagram illustrating a vibration state of the ultrasonic transducer 1.
  • the ultrasonic transducer 1 of the first embodiment it is possible to stably vibrate while maintaining the output and to form a small size.
  • FIG. 3 shows an ultrasonic transducer 1 according to the second embodiment.
  • FIG. 3A is a diagram illustrating the ultrasonic transducer 1
  • FIG. 3B is a diagram illustrating a vibration state of the ultrasonic transducer 1.
  • the metal block 2 has a metal mass 24 on the flange 23 on the piezoelectric element unit 3 side.
  • the piezoelectric element unit 3 When the piezoelectric element unit 3 is activated, vibration starts. In the vibration, the flange portion 23 of the metal block 2 and a part of the piezoelectric element unit 3 become a vibration node, the position 2a of the most distal end portion 21, the joining portion of the metal mass 24 and the buffer portion 5 or the piezoelectric element 31, and An end 3a of the piezoelectric element unit 3 opposite to the metal block 2 is an antinode of vibration.
  • the ultrasonic transducer 1 of the second embodiment it is possible to form a small size while maintaining the output.
  • vibration for about one wavelength can be formed, and stable operation is possible.
  • FIG. 4 shows the ultrasonic transducer 1 of the third embodiment.
  • FIG. 4A is a diagram illustrating the ultrasonic transducer 1
  • FIG. 4B is a diagram illustrating a vibration state of the ultrasonic transducer 1.
  • the number of piezoelectric elements 31 of the piezoelectric element unit 3 is increased without using the metal mass 24 used in the second embodiment shown in FIG. To do.
  • the piezoelectric element unit 3 is activated, vibration starts.
  • the flange portion 23 of the metal block 2 and a part of the piezoelectric element unit 3 become nodes of vibration.
  • the end 3a opposite to 2 is a vibration antinode.
  • the output can be further increased, the device can be formed in a small size, and can be operated more stably.
  • FIG. 5 shows an overall configuration of the ultrasonic medical apparatus according to the present embodiment.
  • FIG. 6 shows an overall schematic configuration of the transducer unit of the ultrasonic medical apparatus according to the present embodiment.
  • An ultrasonic medical device 110 shown in FIG. 5 includes a vibrator unit 113 having an ultrasonic vibrator 1 that mainly generates ultrasonic vibrations, and a handle unit 114 that treats the affected area using the ultrasonic vibrations. Is provided.
  • the handle unit 114 includes an operation unit 115, an insertion sheath unit 118 including a long mantle tube 117, and a distal treatment unit 140.
  • a proximal end portion of the insertion sheath portion 118 is attached to the operation portion 115 so as to be rotatable about the axis.
  • the distal treatment section 140 is provided at the distal end of the insertion sheath section 118.
  • the operation unit 115 of the handle unit 114 includes an operation unit main body 119, a fixed handle 120, a movable handle 121, and a rotary knob 122.
  • the operation unit main body 119 is formed integrally with the fixed handle 120.
  • a slit 123 through which the movable handle 121 is inserted is formed on the back side of the connecting portion between the operation unit main body 119 and the fixed handle 120.
  • the upper portion of the movable handle 121 extends into the operation unit main body 119 through the slit 123.
  • a handle stopper 124 is fixed to the lower end of the slit 123.
  • the movable handle 121 is rotatably attached to the operation unit main body 119 via a handle support shaft 125.
  • the movable handle 121 is opened and closed with respect to the fixed handle 120 as the movable handle 121 rotates around the handle support shaft 125.
  • a substantially U-shaped connecting arm 126 is provided at the upper end of the movable handle 121.
  • the insertion sheath portion 118 includes a mantle tube 117 and an operation pipe 127 that is inserted into the mantle tube 117 so as to be movable in the axial direction.
  • a large-diameter portion 128 having a diameter larger than that of the distal end portion is formed at the proximal end portion of the outer tube 117.
  • the rotary knob 22 is mounted around the large diameter portion 128.
  • a ring-shaped slider 130 is provided on the outer peripheral surface of the operation pipe 127 so as to be movable along the axial direction.
  • a fixing ring 132 is disposed behind the slider 130 via a coil spring (elastic member) 131.
  • the proximal end portion of the gripping portion 133 is rotatably connected to the distal end portion of the operation pipe 127 via an action pin.
  • This grasping part 133 constitutes a treatment part of the ultrasonic medical device 110 together with the distal end part 141 of the probe 116.
  • the gripper 133 is pushed and pulled in the front-rear direction via the action pin.
  • the gripper 133 is rotated counterclockwise about the fulcrum pin via the action pin.
  • the gripper 133 rotates in a direction (closed direction) approaching the distal end portion 141 of the probe 116.
  • the living tissue can be grasped between the single-opening type grasping portion 133 and the tip portion 141 of the probe 116.
  • the transducer unit 113 integrally assembles the ultrasonic transducer 1 and a probe 116 that is a rod-shaped vibration transmitting member that transmits ultrasonic vibration generated by the ultrasonic transducer 1. It is a thing.
  • the ultrasonic vibrator 1 is provided with a horn 142 that amplifies the amplitude of the ultrasonic vibrator.
  • the horn 142 is made of duralumin, stainless steel, or a titanium alloy such as 64Ti (Ti-6Al-4V).
  • the horn 142 is formed in a conical shape whose outer diameter becomes narrower toward the distal end side, and an outward flange is formed on the base end outer peripheral portion.
  • the shape of the horn 142 is not limited to the conical shape, but may be an exponential shape in which the outer diameter decreases exponentially toward the tip side, or a step shape that gradually decreases toward the tip side. May be.
  • the probe 116 has a probe main body 144 formed of a titanium alloy such as 64Ti (Ti-6Al-4V). On the proximal end side of the probe main body 116, the ultrasonic transducer 1 connected to the horn 142 is disposed. In this way, a transducer unit 113 in which the probe 116 and the ultrasonic transducer 1 are integrated is formed. In the probe 116, the probe main body 144 and the horn 142 are screwed together, and the probe main body 144 and the horn 142 are joined.
  • the ultrasonic vibration generated by the ultrasonic vibrator 1 is amplified by the horn 142 and then transmitted to the tip portion 141 side of the probe 116.
  • the distal end portion 141 of the probe 116 is formed with a treatment portion to be described later for treating a living tissue.
  • two rubber linings 145 are attached to the outer peripheral surface of the probe main body 144 at intervals of vibration nodes located in the middle of the axial direction at intervals formed in a ring shape with an elastic member. These rubber linings 145 prevent contact between the outer peripheral surface of the probe main body 144 and an operation pipe 127 described later. That is, when assembling the insertion sheath portion 18, the probe 116 as a transducer-integrated probe is inserted into the operation pipe 127. At this time, the rubber lining 145 prevents contact between the outer peripheral surface of the probe main body 144 and the operation pipe 127.
  • the ultrasonic vibrator 1 is electrically connected via an electric cable 146 to a power supply device main body (not shown) that supplies a current for generating ultrasonic vibration.
  • the ultrasonic transducer 1 is driven by supplying power from the power supply device main body to the ultrasonic transducer 1 through the wiring in the electric cable 146.
  • the vibrator unit 113 includes an ultrasonic vibrator 1 that generates ultrasonic vibrations, a horn 142 that amplifies the generated ultrasonic vibrations, and a probe 116 that transmits the amplified ultrasonic vibrations.
  • FIG. 7 shows an overall configuration of an ultrasonic medical apparatus according to another aspect of the ultrasonic medical apparatus according to the present embodiment.
  • the ultrasonic transducer 1 and the transducer unit 113 do not necessarily have to be stored in the operation unit main body 119 as shown in FIG. 5, for example, are stored in the operation pipe 127 as shown in FIG. May be.
  • the electric cable 146 between the bending stop 162 of the ultrasonic transducer 1 and the connector 148 disposed at the base of the operation unit main body 119 is inserted into the metal pipe 147.
  • the connector 148 is not indispensable, and the electric cable 146 may be extended to the inside of the operation unit main body 119 and connected directly to the folding stop 162 of the ultrasonic transducer 1.
  • the ultrasonic medical device 110 can improve the space saving in the operation unit main body 119 with the configuration shown in FIG. Note that the functions of the ultrasonic medical device 110 in FIG. 7 are the same as those in FIG.
  • the ultrasonic transducer 1 is arranged in the vibration direction of the piezoelectric element unit 3 in which a plurality of piezoelectric elements 31 that vibrate by generating a piezoelectric effect by applying an alternating voltage are laminated, and the piezoelectric element unit 3.
  • a metal block 2, and between the plurality of piezoelectric elements 31 of the piezoelectric element unit 3, and the metal block 2 is bonded with a bonding material, and the metal block 2 is disposed only on one end side with respect to the piezoelectric element 31. Therefore, it is possible to form a small size while maintaining the output.
  • the metal block 2 has a flange portion 23 on the piezoelectric element unit 3 side. Therefore, even if the flange portion 23 is gripped, stable vibration can be achieved.
  • the position 2 a of the most distal end portion 21 of the metal block 2 and the end portion 3 a of the piezoelectric element unit 3 opposite to the metal block 2 are arranged on the piezoelectric element unit 3.
  • the abdomen is formed, so that stable vibration can be achieved.
  • the piezoelectric element unit 3 becomes a node portion when the piezoelectric element unit 3 is vibrated by the operation of the piezoelectric element unit 3, and thus can stably vibrate. It becomes.
  • the ultrasonic transducer 1 in the ultrasonic transducer 1 according to the present embodiment, at least a part of the piezoelectric element unit 3 becomes a belly part when vibrating due to the operation of the piezoelectric element unit 3, so that stable vibration is possible. It becomes.
  • the piezoelectric element 31 is made of a non-lead single crystal material, so that the use of lead can be suppressed.
  • the piezoelectric element 31 is made of lithium niobate (LiNb03), so that the use of lead can be suppressed.
  • the joint portion 4 is made of non-lead solder, it is possible to suppress the use of lead.
  • the ultrasonic transducer 1 since the ultrasonic transducer 1 according to this embodiment includes the buffer portion 5 that relieves thermal stress between the metal block 2 and the piezoelectric element unit 3, the thermal expansion coefficient of the metal block 2 and the piezoelectric element unit 3 is reduced. It becomes possible to relieve the thermal stress generated due to the difference.
  • the ultrasonic vibrator 1 and the distal treatment section that transmits the ultrasonic vibration generated by the ultrasonic vibrator 1 and treats the living tissue are provided. Therefore, the ultrasonic treatment instrument 10 capable of adjusting the resonance frequency can be obtained.

Abstract

[Problem] To provide an ultrasonic vibrator capable of being formed compact while maintaining output, and an ultrasonic medical apparatus. [Solution] This ultrasonic vibrator (1) is provided with: a piezoelectric element unit (3) in which a plurality of piezoelectric elements (31) that produce a piezoelectric effect and vibrate by application of an alternating voltage are laminated; and a metal block (2) disposed in a vibration direction of the piezoelectric element unit (3). The plurality of piezoelectric elements (31) of the piezoelectric element unit (3) and the metal block (2) are bonded using a bonding material (4), and the metal block (2) is disposed only at one end side of the piezoelectric element unit (3).

Description

超音波振動子及び超音波医療装置Ultrasonic transducer and ultrasonic medical device
 本発明は、超音波を励振する超音波振動子及び超音波医療装置に関する。 The present invention relates to an ultrasonic transducer and an ultrasonic medical device that excite ultrasonic waves.
 従来から圧電効果を用いて駆動する圧電素子が超音波振動子等の様々な用途に用いられている。例えば、このような圧電素子を金属ブロックの間に複数枚積層して金属ブロック同士をボルト締めするランジュバン振動子が開示されている(特許文献1参照)。 Conventionally, piezoelectric elements that are driven using the piezoelectric effect have been used in various applications such as ultrasonic vibrators. For example, a Langevin vibrator is disclosed in which a plurality of such piezoelectric elements are stacked between metal blocks and the metal blocks are bolted together (see Patent Document 1).
特開2009-220014号公報JP 2009-22014 A
 近年、例えば医療分野等においては、超音波振動子の小型化が望まれている。特許文献1のように金属ブロックの間に圧電素子を積層するランジュバン振動子では、圧電素子の両側の金属ブロックをボルト締めするため、超音波振動子を小型化するためには圧電素子の積層枚数を少なくすればよい。しかしながら、圧電素子の積層枚数を少なくすれば出力が低下し、所望の出力を得られなくなる可能性があった。 In recent years, for example, in the medical field, miniaturization of ultrasonic transducers is desired. In a Langevin vibrator in which piezoelectric elements are stacked between metal blocks as in Patent Document 1, the metal blocks on both sides of the piezoelectric elements are bolted, and in order to reduce the size of the ultrasonic vibrator, the number of stacked piezoelectric elements Should be reduced. However, if the number of stacked piezoelectric elements is reduced, the output is lowered, and a desired output may not be obtained.
 本発明にかかる実施形態では、出力を保持しながら小型に形成することが可能な超音波振動子及び超音波医療装置を提供することにある。 An embodiment according to the present invention is to provide an ultrasonic transducer and an ultrasonic medical device that can be formed in a small size while maintaining an output.
 本発明のある態様に係る超音波振動子は、
 交番電圧の付与によって圧電効果を生じ振動する圧電素子を複数枚積層した圧電素子ユニットと、
 前記圧電素子ユニットの振動方向に配置される金属ブロックと、
を備え、
 前記圧電素子ユニットの複数枚の圧電素子間、および、前記金属ブロックは接合材で接合され、
 前記金属ブロックは、前記圧電素子に対して一端側にのみ配置される
ことを特徴とする。
An ultrasonic transducer according to an aspect of the present invention includes:
A piezoelectric element unit in which a plurality of piezoelectric elements that vibrate by generating a piezoelectric effect by applying an alternating voltage are laminated;
A metal block disposed in a vibration direction of the piezoelectric element unit;
With
Between the plurality of piezoelectric elements of the piezoelectric element unit, and the metal block are bonded with a bonding material,
The metal block is disposed only on one end side with respect to the piezoelectric element.
 本発明のある態様に係る超音波医療装置は、前記超音波振動子と、前記超音波振動子で発生した超音波振動が伝達され生体組織を処置する先端処置部と、を具備することを特徴とする。 An ultrasonic medical device according to an aspect of the present invention includes the ultrasonic transducer, and a distal treatment section that transmits ultrasonic vibration generated by the ultrasonic transducer and treats living tissue. And
 本発明にかかる実施形態によれば、出力を保持しながら小型に形成することが可能な超音波振動子及び超音波医療装置を提供することが可能となる。 According to the embodiment of the present invention, it is possible to provide an ultrasonic transducer and an ultrasonic medical device that can be formed in a small size while maintaining an output.
本実施形態の超音波振動子の斜視図を示す。The perspective view of the ultrasonic transducer | vibrator of this embodiment is shown. 第1実施形態の超音波振動子を示す。The ultrasonic transducer | vibrator of 1st Embodiment is shown. 第2実施形態の超音波振動子を示す。The ultrasonic transducer | vibrator of 2nd Embodiment is shown. 第3実施形態の超音波振動子を示す。The ultrasonic transducer | vibrator of 3rd Embodiment is shown. 本実施形態に係る超音波医療装置の全体構成を示す。1 shows an overall configuration of an ultrasonic medical apparatus according to the present embodiment. 本実施形態に係る超音波医療装置の振動子ユニットの全体の概略構成を示す。1 shows an overall schematic configuration of a transducer unit of an ultrasonic medical apparatus according to the present embodiment. 本実施形態に係る超音波医療装置の他の態様の超音波医療装置の全体構成を示す。The whole structure of the ultrasonic medical device of the other aspect of the ultrasonic medical device which concerns on this embodiment is shown.
 以下、本実施形態の超音波振動子1について説明する。 Hereinafter, the ultrasonic transducer 1 of the present embodiment will be described.
 図1は、第1実施形態の超音波振動子1の斜視図を示す。 FIG. 1 is a perspective view of the ultrasonic transducer 1 according to the first embodiment.
 第1実施形態の超音波振動子1は、図1に示すように、金属ブロック2と、複数の駆動用の圧電素子31が接合材4によって積層される圧電素子ユニット3と、金属ブロック2と圧電素子ユニット3に接合材4によって接合される緩衝部5と、を備える。 As shown in FIG. 1, the ultrasonic transducer 1 according to the first embodiment includes a metal block 2, a piezoelectric element unit 3 in which a plurality of driving piezoelectric elements 31 are laminated by a bonding material 4, and a metal block 2. And a buffer portion 5 bonded to the piezoelectric element unit 3 by the bonding material 4.
 金属ブロック2は、少なくとも、圧電素子ユニット3と共に振動して共振体の一部となる機能を有する。また、超音波振動作用対象への接続部、若しくは作用部として機能することもできる。本発明における金属ブロック2は、例えば、先端部21と、ホーン部22と、フランジ部23と、を有する。先端部21は、圧電素子ユニット3の振動が伝わり最も先端の位置が振動の腹となる部分である。フランジ部23は、接合材4によって緩衝層5に接合され振動の節となる部分である。ホーン部22は、圧電素子ユニット3の振動を増幅させる機能を持ち、先端部21とフランジ部23を連結する。例えば、金属ブロック2は、使用時に振動の節となるフランジ部23が別の部材に保持し固定される。そして、この金属ブロック2は、圧電素子ユニット3の振動(詳しくは縦振動)方向に配置され、且つ、圧電素子ユニット3に対して一端側にのみ配置されている。 The metal block 2 has at least a function of vibrating together with the piezoelectric element unit 3 and becoming a part of a resonator. Moreover, it can also function as a connection part to an ultrasonic vibration action object, or an action part. The metal block 2 in this invention has the front-end | tip part 21, the horn part 22, and the flange part 23, for example. The tip portion 21 is a portion where the vibration of the piezoelectric element unit 3 is transmitted and the tip position is the antinode of vibration. The flange portion 23 is a portion which is joined to the buffer layer 5 by the joining material 4 and becomes a vibration node. The horn part 22 has a function of amplifying the vibration of the piezoelectric element unit 3 and connects the tip part 21 and the flange part 23. For example, the metal block 2 has a flange portion 23 that becomes a node of vibration when in use and is held and fixed to another member. The metal block 2 is disposed in the vibration (specifically, longitudinal vibration) direction of the piezoelectric element unit 3 and is disposed only on one end side with respect to the piezoelectric element unit 3.
 圧電素子ユニット3は、複数の駆動用の圧電素子31が接合材4によって互いに密着して接合される。各圧電素子には、図示しない電極が取り付けられる。各圧電素子に取り付けられる電極は、積層された順で交互に交流電源の2つの電極に対してそれぞれ接続される。圧電素子31の軸に垂直な方向の断面形状は、円形又は正方形、長方形等の矩形であってもよい。 In the piezoelectric element unit 3, a plurality of driving piezoelectric elements 31 are bonded to each other by a bonding material 4. An electrode (not shown) is attached to each piezoelectric element. The electrodes attached to each piezoelectric element are connected to the two electrodes of the AC power supply alternately in the order of lamination. The cross-sectional shape in the direction perpendicular to the axis of the piezoelectric element 31 may be a circle such as a circle, a square, or a rectangle.
 緩衝部5は、金属ブロック2と圧電素子ユニット3の間に配置され、接合時に金属ブロック2と圧電素子ユニット3の熱膨張係数の差に起因して発生する熱応力を緩和する。なお、金属ブロック2と圧電素子ユニット3の熱膨張係数の差が小さく圧電素子ユニット3の圧電素子31に損傷が生じない場合には、緩衝部5を設置しなくてもよい。 The buffer portion 5 is disposed between the metal block 2 and the piezoelectric element unit 3 and relieves thermal stress generated due to a difference in thermal expansion coefficient between the metal block 2 and the piezoelectric element unit 3 at the time of joining. If the difference in thermal expansion coefficient between the metal block 2 and the piezoelectric element unit 3 is small and the piezoelectric element 31 of the piezoelectric element unit 3 is not damaged, the buffer portion 5 may not be installed.
 ここで、本実施形態の超音波振動子1の各材料について説明する。 Here, each material of the ultrasonic transducer 1 of the present embodiment will be described.
 金属ブロック2は、ジュラルミン等のアルミニウム合金、チタン合金、純チタン、ステンレス鋼、軟鋼、ニッケルクローム鋼、工具鋼、黄銅、モネルメタル等で構成される。 The metal block 2 is made of aluminum alloy such as duralumin, titanium alloy, pure titanium, stainless steel, mild steel, nickel chrome steel, tool steel, brass, monel metal and the like.
 圧電素子ユニット3の圧電素子31には、キュリー点の高い単結晶のニオブ酸リチウムを用いることが好ましい。例えば、各圧電素子31の厚み方向の電気機械結合係数が大きくなるように、36度回転Yカットと呼ばれる結晶方位のニオブ酸リチウムウエハを用いることが好ましく、ニオブ酸リチウムと非鉛ハンダとの濡れ性、密着性がよくなるように、ニオブ酸リチウムウエハの表裏面にTi/Pt、Cr/Ni/Au等の下地金属が成膜された後、ダイシング等により矩形に切り出して作成される。 For the piezoelectric element 31 of the piezoelectric element unit 3, it is preferable to use single crystal lithium niobate having a high Curie point. For example, it is preferable to use a lithium niobate wafer having a crystal orientation called 36-degree rotated Y-cut so that the electromechanical coupling coefficient in the thickness direction of each piezoelectric element 31 is increased, and wetting between lithium niobate and non-lead solder In order to improve the property and adhesion, a base metal such as Ti / Pt or Cr / Ni / Au is formed on the front and back surfaces of the lithium niobate wafer and then cut into a rectangle by dicing or the like.
 従来の圧電素子には、チタン酸ジルコン酸鉛を用いることが一般的であった。しかしながら、近年、環境保護等の観点から鉛の使用を抑制することが促進されている。そこで、本実施形態の圧電素子31には、非鉛で圧電効果を発生するニオブ酸リチウムを使用する。 Conventional piezoelectric elements typically use lead zirconate titanate. However, in recent years, suppression of the use of lead has been promoted from the viewpoint of environmental protection and the like. Therefore, lithium niobate that generates a piezoelectric effect with lead is used for the piezoelectric element 31 of the present embodiment.
 しかしながら、ニオブ酸リチウムを用いた圧電素子31は、チタン酸ジルコン酸鉛を用いた圧電素子31と比較して、圧電定数が小さい。そのため、ニオブ酸リチウムを用いた圧電素子31がチタン酸ジルコン酸鉛を用いた圧電素子31と同等の出力を得るためには、圧電素子31の積層数を多くしなければならない。ここで、圧電素子31の積層数を多くすると、圧電素子ユニット3が大型化してしまい、超音波振動子1も大型化してしまう。 However, the piezoelectric element 31 using lithium niobate has a smaller piezoelectric constant than the piezoelectric element 31 using lead zirconate titanate. Therefore, in order for the piezoelectric element 31 using lithium niobate to obtain an output equivalent to the piezoelectric element 31 using lead zirconate titanate, the number of stacked piezoelectric elements 31 must be increased. Here, when the number of stacked piezoelectric elements 31 is increased, the piezoelectric element unit 3 is increased in size, and the ultrasonic vibrator 1 is also increased in size.
 本実施形態では、この問題を解決するために、接合材4によって金属ブロック2と圧電素子ユニット3及び各圧電素子31をそれぞれ接合することとした。その結果、従来、圧電素子ユニット3の両端に配置していた金属ブロック2を1つに減らすことができ、非鉛の単結晶部材であるニオブ酸リチウムを使用したとしても、超音波振動子1を小型化することが可能となる。 In this embodiment, in order to solve this problem, the metal block 2, the piezoelectric element unit 3, and each piezoelectric element 31 are bonded to each other by the bonding material 4. As a result, the number of metal blocks 2 conventionally disposed at both ends of the piezoelectric element unit 3 can be reduced to one, and even if lithium niobate, which is a lead-free single crystal member, is used, the ultrasonic transducer 1 Can be miniaturized.
 接合材4には、キュリー点より低い融点、好ましくはキュリー点の半分以下の融点を有する金属材料である非鉛ハンダを用いる。しかしながら、ハンダを接合材料として用いて、ハンダの供給方法をハンダペレットとする場合、凹凸形状のある部分を気泡なく接合することは困難である。そのため、金属ブロック2及び各圧電素子31の接合材4を塗布する面は、それぞれ平面で構成することが好ましい。 As the bonding material 4, a lead-free solder that is a metal material having a melting point lower than the Curie point, preferably less than half the Curie point is used. However, when solder is used as the bonding material and the solder supply method is solder pellets, it is difficult to bond the uneven portions without bubbles. Therefore, it is preferable that the surfaces on which the metal block 2 and the bonding material 4 of each piezoelectric element 31 are applied are flat surfaces.
 図2は、第1実施形態の超音波振動子1を示す。図2(a)は超音波振動子1を示す図、図2(b)は超音波振動子1の振動の様子を示す図である。 FIG. 2 shows the ultrasonic transducer 1 of the first embodiment. FIG. 2A is a diagram illustrating the ultrasonic transducer 1, and FIG. 2B is a diagram illustrating a vibration state of the ultrasonic transducer 1.
 図2に示すように、第1実施形態の超音波振動子1では、圧電素子ユニット3が作動すると、振動が始まる。振動は、金属ブロック2のフランジ部23が振動の節となり、先端部21の最も先端の位置2a及び圧電素子ユニット3の金属ブロック2とは反対側の端部3aが振動の腹となる。 As shown in FIG. 2, in the ultrasonic transducer 1 according to the first embodiment, when the piezoelectric element unit 3 operates, vibration starts. In the vibration, the flange portion 23 of the metal block 2 becomes a node of vibration, and the end portion 2a of the tip portion 21 and the end portion 3a of the piezoelectric element unit 3 opposite to the metal block 2 become antinodes of vibration.
 このように、第1実施形態の超音波振動子1によれば、出力を保持しながら安定した振動をすると共に、小型に形成することが可能となる。 As described above, according to the ultrasonic transducer 1 of the first embodiment, it is possible to stably vibrate while maintaining the output and to form a small size.
 図3は、第2実施形態の超音波振動子1を示す。図3(a)は超音波振動子1を示す図、図3(b)は超音波振動子1の振動の様子を示す図である。 FIG. 3 shows an ultrasonic transducer 1 according to the second embodiment. FIG. 3A is a diagram illustrating the ultrasonic transducer 1, and FIG. 3B is a diagram illustrating a vibration state of the ultrasonic transducer 1.
 図3に示すように、第2実施形態の超音波振動子1では、金属ブロック2が、フランジ23の圧電素子ユニット3側に金属マス24を有する。圧電素子ユニット3が作動すると、振動が始まる。振動は、金属ブロック2のフランジ部23及び圧電素子ユニット3の一部が振動の節となり、先端部21の最も先端の位置2a、金属マス24と緩衝部5又は圧電素子31の接合部分、及び圧電素子ユニット3の金属ブロック2とは反対側の端部3aが振動の腹となる。 As shown in FIG. 3, in the ultrasonic transducer 1 of the second embodiment, the metal block 2 has a metal mass 24 on the flange 23 on the piezoelectric element unit 3 side. When the piezoelectric element unit 3 is activated, vibration starts. In the vibration, the flange portion 23 of the metal block 2 and a part of the piezoelectric element unit 3 become a vibration node, the position 2a of the most distal end portion 21, the joining portion of the metal mass 24 and the buffer portion 5 or the piezoelectric element 31, and An end 3a of the piezoelectric element unit 3 opposite to the metal block 2 is an antinode of vibration.
 このように、第2実施形態の超音波振動子1によれば、出力を保持しながら小型に形成することが可能となる。また、約1波長分の振動を形成することができ、安定して作動することが可能となる。 As described above, according to the ultrasonic transducer 1 of the second embodiment, it is possible to form a small size while maintaining the output. In addition, vibration for about one wavelength can be formed, and stable operation is possible.
 図4は、第3実施形態の超音波振動子1を示す。図4(a)は超音波振動子1を示す図、図4(b)は超音波振動子1の振動の様子を示す図である。 FIG. 4 shows the ultrasonic transducer 1 of the third embodiment. FIG. 4A is a diagram illustrating the ultrasonic transducer 1, and FIG. 4B is a diagram illustrating a vibration state of the ultrasonic transducer 1.
 図4に示すように、第3実施形態の超音波振動子1では、図3に示した第2実施形態で用いた金属マス24を用いず、圧電素子ユニット3の圧電素子31の数を増加する。圧電素子ユニット3が作動すると、振動が始まる。振動は、金属ブロック2のフランジ部23及び圧電素子ユニット3の一部が振動の節となり、先端部21の最も先端の位置2a、圧電素子ユニット3の一部、及び圧電素子ユニット3の金属ブロック2とは反対側の端部3aが振動の腹となる。 As shown in FIG. 4, in the ultrasonic transducer 1 of the third embodiment, the number of piezoelectric elements 31 of the piezoelectric element unit 3 is increased without using the metal mass 24 used in the second embodiment shown in FIG. To do. When the piezoelectric element unit 3 is activated, vibration starts. In the vibration, the flange portion 23 of the metal block 2 and a part of the piezoelectric element unit 3 become nodes of vibration. The end 3a opposite to 2 is a vibration antinode.
 このように、第3実施形態の超音波振動子1によれば、出力をより強くすることができると共に、小型に形成することができ、さらに安定して作動することが可能となる。 As described above, according to the ultrasonic transducer 1 of the third embodiment, the output can be further increased, the device can be formed in a small size, and can be operated more stably.
 図5は、本実施形態に係る超音波医療装置の全体構成を示す。図6は、本実施形態に係る超音波医療装置の振動子ユニットの全体の概略構成を示す。 FIG. 5 shows an overall configuration of the ultrasonic medical apparatus according to the present embodiment. FIG. 6 shows an overall schematic configuration of the transducer unit of the ultrasonic medical apparatus according to the present embodiment.
 図5に示す、超音波医療装置110は、主に超音波振動を発生させる超音波振動子1を有する振動子ユニット113と、その超音波振動を用いて患部の治療を行うハンドルユニット114とが設けられている。 An ultrasonic medical device 110 shown in FIG. 5 includes a vibrator unit 113 having an ultrasonic vibrator 1 that mainly generates ultrasonic vibrations, and a handle unit 114 that treats the affected area using the ultrasonic vibrations. Is provided.
 ハンドルユニット114は、操作部115と、長尺な外套管117からなる挿入シース部118と、先端処置部140とを備える。挿入シース部118の基端部は、操作部115に軸回り方向に回転可能に取り付けられている。先端処置部140は、挿入シース部118の先端に設けられている。ハンドルユニット114の操作部115は、操作部本体119と、固定ハンドル120と、可動ハンドル121と、回転ノブ122とを有する。操作部本体119は、固定ハンドル120と一体に形成されている。 The handle unit 114 includes an operation unit 115, an insertion sheath unit 118 including a long mantle tube 117, and a distal treatment unit 140. A proximal end portion of the insertion sheath portion 118 is attached to the operation portion 115 so as to be rotatable about the axis. The distal treatment section 140 is provided at the distal end of the insertion sheath section 118. The operation unit 115 of the handle unit 114 includes an operation unit main body 119, a fixed handle 120, a movable handle 121, and a rotary knob 122. The operation unit main body 119 is formed integrally with the fixed handle 120.
 操作部本体119と固定ハンドル120との連結部には、背面側に可動ハンドル121を挿通するスリット123が形成されている。可動ハンドル121の上部は、スリット123を通して操作部本体119の内部に延出されている。スリット123の下側の端部には、ハンドルストッパ124が固定されている。可動ハンドル121は、ハンドル支軸125を介して操作部本体119に回動可能に取り付けられている。そして、ハンドル支軸125を中心として可動ハンドル121が回動する動作に伴い、可動ハンドル121が固定ハンドル120に対して開閉操作されるようになっている。 A slit 123 through which the movable handle 121 is inserted is formed on the back side of the connecting portion between the operation unit main body 119 and the fixed handle 120. The upper portion of the movable handle 121 extends into the operation unit main body 119 through the slit 123. A handle stopper 124 is fixed to the lower end of the slit 123. The movable handle 121 is rotatably attached to the operation unit main body 119 via a handle support shaft 125. The movable handle 121 is opened and closed with respect to the fixed handle 120 as the movable handle 121 rotates around the handle support shaft 125.
 可動ハンドル121の上端部には、略U字状の連結アーム126が設けられている。また、挿入シース部118は、外套管117と、この外套管117内に軸方向に移動可能に挿通された操作パイプ127とを有する。外套管117の基端部には、先端側部分よりも大径な大径部128が形成されている。この大径部128の周囲に回転ノブ22が装着されるようになっている。 A substantially U-shaped connecting arm 126 is provided at the upper end of the movable handle 121. The insertion sheath portion 118 includes a mantle tube 117 and an operation pipe 127 that is inserted into the mantle tube 117 so as to be movable in the axial direction. A large-diameter portion 128 having a diameter larger than that of the distal end portion is formed at the proximal end portion of the outer tube 117. The rotary knob 22 is mounted around the large diameter portion 128.
 操作パイプ127の外周面には、リング状のスライダ130が軸方向に沿って移動可能に設けられている。スライダ130の後方には、コイルばね(弾性部材)131を介して固定リング132が配設されている。 A ring-shaped slider 130 is provided on the outer peripheral surface of the operation pipe 127 so as to be movable along the axial direction. A fixing ring 132 is disposed behind the slider 130 via a coil spring (elastic member) 131.
 さらに、操作パイプ127の先端部には、把持部133の基端部が作用ピンを介して回動可能に連結されている。この把持部133は、プローブ116の先端部141と共に超音波医療装置110の処置部を構成している。そして、操作パイプ127が軸方向に移動する動作時に、把持部133は、作用ピンを介して前後方向に押し引き操作される。このとき、操作パイプ127が手元側に移動操作される動作時には作用ピンを介して把持部133が支点ピンを中心に反時計回り方向に回動される。これにより、把持部133がプローブ116の先端部141に接近する方向(閉方向)に回動する。このとき、片開き型の把持部133と、プローブ116の先端部141との間で生体組織を把持することができる。 Furthermore, the proximal end portion of the gripping portion 133 is rotatably connected to the distal end portion of the operation pipe 127 via an action pin. This grasping part 133 constitutes a treatment part of the ultrasonic medical device 110 together with the distal end part 141 of the probe 116. When the operation pipe 127 moves in the axial direction, the gripper 133 is pushed and pulled in the front-rear direction via the action pin. At this time, when the operation pipe 127 is moved to the proximal side, the gripper 133 is rotated counterclockwise about the fulcrum pin via the action pin. As a result, the gripper 133 rotates in a direction (closed direction) approaching the distal end portion 141 of the probe 116. At this time, the living tissue can be grasped between the single-opening type grasping portion 133 and the tip portion 141 of the probe 116.
 このように生体組織を把持した状態で、超音波電源から電力を超音波振動子1に供給し、超音波振動子1を振動させる。この超音波振動は、プローブ116の先端部141まで伝達される。そして、この超音波振動を用いて把持部133とプローブ116の先端部141との間で把持されている生体組織の治療を行う。 In such a state where the living tissue is gripped, electric power is supplied from the ultrasonic power source to the ultrasonic vibrator 1 to vibrate the ultrasonic vibrator 1. This ultrasonic vibration is transmitted to the tip portion 141 of the probe 116. The ultrasonic tissue is used to treat the living tissue held between the holding part 133 and the tip part 141 of the probe 116.
 振動子ユニット113は、図6に示すように、超音波振動子1と、この超音波振動子1で発生した超音波振動を伝達する棒状の振動伝達部材であるプローブ116とを一体的に組み付けたものである。 As shown in FIG. 6, the transducer unit 113 integrally assembles the ultrasonic transducer 1 and a probe 116 that is a rod-shaped vibration transmitting member that transmits ultrasonic vibration generated by the ultrasonic transducer 1. It is a thing.
 超音波振動子1は、超音波振動子の振幅を増幅するホーン142が連設されている。ホーン142は、ジュラルミン、ステンレス鋼、または例えば64Ti(Ti-6Al-4V)などのチタン合金によって形成されている。ホーン142は、先端側に向かうに従って外径が細くなる円錐形状に形成されており、基端外周部に外向フランジが形成されている。なお、ここでホーン142の形状は円錐形状に限るものではなく、先端側に向かうに従って外径が指数関数的に細くなる指数形状や、先端側に向かうに従って段階的に細くなるステップ形状などであってもよい。 The ultrasonic vibrator 1 is provided with a horn 142 that amplifies the amplitude of the ultrasonic vibrator. The horn 142 is made of duralumin, stainless steel, or a titanium alloy such as 64Ti (Ti-6Al-4V). The horn 142 is formed in a conical shape whose outer diameter becomes narrower toward the distal end side, and an outward flange is formed on the base end outer peripheral portion. Here, the shape of the horn 142 is not limited to the conical shape, but may be an exponential shape in which the outer diameter decreases exponentially toward the tip side, or a step shape that gradually decreases toward the tip side. May be.
 プローブ116は、例えば64Ti(Ti-6Al-4V)などのチタン合金によって形成されたプローブ本体144を有する。このプローブ本体116の基端部側には、上述のホーン142に連設された超音波振動子1が配設されている。このようにして、プローブ116と超音波振動子1とを一体化した振動子ユニット113が形成されている。なお、プローブ116は、プローブ本体144とホーン142とが螺着されており、プローブ本体144とホーン142が接合される。 The probe 116 has a probe main body 144 formed of a titanium alloy such as 64Ti (Ti-6Al-4V). On the proximal end side of the probe main body 116, the ultrasonic transducer 1 connected to the horn 142 is disposed. In this way, a transducer unit 113 in which the probe 116 and the ultrasonic transducer 1 are integrated is formed. In the probe 116, the probe main body 144 and the horn 142 are screwed together, and the probe main body 144 and the horn 142 are joined.
 そして、超音波振動子1で発生した超音波振動は、ホーン142で増幅されたのち、プローブ116の先端部141側に伝達するようになっている。プローブ116の先端部141には、生体組織を処置する後述する処置部が形成されている。 The ultrasonic vibration generated by the ultrasonic vibrator 1 is amplified by the horn 142 and then transmitted to the tip portion 141 side of the probe 116. The distal end portion 141 of the probe 116 is formed with a treatment portion to be described later for treating a living tissue.
 また、プローブ本体144の外周面には、軸方向の途中にある振動の節位置の数箇所に弾性部材でリング状に形成された間隔をあけて2つのゴムライニング145が取り付けられている。そして、これらのゴムライニング145によって、プローブ本体144の外周面と後述する操作パイプ127との接触を防止するようになっている。つまり、挿入シース部18の組み立て時に、振動子一体型プローブとしてのプローブ116は、操作パイプ127の内部に挿入される。このとき、ゴムライニング145によってプローブ本体144の外周面と操作パイプ127との接触を防止している。 Also, two rubber linings 145 are attached to the outer peripheral surface of the probe main body 144 at intervals of vibration nodes located in the middle of the axial direction at intervals formed in a ring shape with an elastic member. These rubber linings 145 prevent contact between the outer peripheral surface of the probe main body 144 and an operation pipe 127 described later. That is, when assembling the insertion sheath portion 18, the probe 116 as a transducer-integrated probe is inserted into the operation pipe 127. At this time, the rubber lining 145 prevents contact between the outer peripheral surface of the probe main body 144 and the operation pipe 127.
 また、超音波振動子1は、超音波振動を発生させるための電流を供給する図示しない電源装置本体に電気ケーブル146を介して電気的に接続される。この電気ケーブル146内の配線を通じて電源装置本体から電力を超音波振動子1に供給することによって、超音波振動子1が駆動される。なお、振動子ユニット113は、超音波振動を発生させる超音波振動子1、発生した超音波振動を増幅させるホーン142および増幅された超音波振動を伝達するプローブ116を備えている。 Also, the ultrasonic vibrator 1 is electrically connected via an electric cable 146 to a power supply device main body (not shown) that supplies a current for generating ultrasonic vibration. The ultrasonic transducer 1 is driven by supplying power from the power supply device main body to the ultrasonic transducer 1 through the wiring in the electric cable 146. The vibrator unit 113 includes an ultrasonic vibrator 1 that generates ultrasonic vibrations, a horn 142 that amplifies the generated ultrasonic vibrations, and a probe 116 that transmits the amplified ultrasonic vibrations.
 図7は、本実施形態に係る超音波医療装置の他の態様の超音波医療装置の全体構成を示す。 FIG. 7 shows an overall configuration of an ultrasonic medical apparatus according to another aspect of the ultrasonic medical apparatus according to the present embodiment.
 超音波振動子1と振動子ユニット113は、必ずしも図5に示したように操作部本体119内に収納されている必要はなく、例えば、図7に示すように操作パイプ127内に収納されていてもよい。この図7の超音波医療装置110において、超音波振動子1の折れ止162から操作部本体119の基部に配設されたコネクタ148までの間にある電気ケーブル146は金属パイプ147の中に挿通されて収納されている。ここで、コネクタ148は、必須ではなく、電気ケーブル146を操作部本体119内部まで延長し、直接超音波振動子1の折れ止162に接続する構成であってもよい。超音波医療装置110は、図5のような構成により、操作部本体119内を、より省スペース化を向上することができる。なお、図7の超音波医療装置110としての機能は、図5と同様であるので詳細な説明は省略する。 The ultrasonic transducer 1 and the transducer unit 113 do not necessarily have to be stored in the operation unit main body 119 as shown in FIG. 5, for example, are stored in the operation pipe 127 as shown in FIG. May be. In the ultrasonic medical device 110 of FIG. 7, the electric cable 146 between the bending stop 162 of the ultrasonic transducer 1 and the connector 148 disposed at the base of the operation unit main body 119 is inserted into the metal pipe 147. Has been stored. Here, the connector 148 is not indispensable, and the electric cable 146 may be extended to the inside of the operation unit main body 119 and connected directly to the folding stop 162 of the ultrasonic transducer 1. The ultrasonic medical device 110 can improve the space saving in the operation unit main body 119 with the configuration shown in FIG. Note that the functions of the ultrasonic medical device 110 in FIG. 7 are the same as those in FIG.
 以上、本実施態様に係る超音波振動子1は、交番電圧の付与によって圧電効果を生じ振動する圧電素子31を複数枚積層した圧電素子ユニット3と、圧電素子ユニット3の振動方向に配置される金属ブロック2と、を備え、圧電素子ユニット3の複数枚の圧電素子31間、および、金属ブロック2は接合材で接合され、金属ブロック2は、圧電素子31に対して一端側にのみ配置されるので、出力を保持しながら小型に形成することが可能となる。 As described above, the ultrasonic transducer 1 according to this embodiment is arranged in the vibration direction of the piezoelectric element unit 3 in which a plurality of piezoelectric elements 31 that vibrate by generating a piezoelectric effect by applying an alternating voltage are laminated, and the piezoelectric element unit 3. A metal block 2, and between the plurality of piezoelectric elements 31 of the piezoelectric element unit 3, and the metal block 2 is bonded with a bonding material, and the metal block 2 is disposed only on one end side with respect to the piezoelectric element 31. Therefore, it is possible to form a small size while maintaining the output.
 また、本実施態様に係る超音波振動子1では、金属ブロック2は、圧電素子ユニット3側にフランジ部23を有し、フランジ部23は、圧電素子ユニット3の作動による振動の際に節の部分となるので、フランジ部23を把持しても安定した振動をすることが可能となる。 In the ultrasonic transducer 1 according to this embodiment, the metal block 2 has a flange portion 23 on the piezoelectric element unit 3 side. Therefore, even if the flange portion 23 is gripped, stable vibration can be achieved.
 また、本実施態様に係る超音波振動子1では、金属ブロック2の先端部21の最も先端の位置2aと圧電素子ユニット3の金属ブロック2とは反対側の端部3aは、圧電素子ユニット3の作動による振動の際に腹の部分となるので、安定した振動をすることが可能となる。 Further, in the ultrasonic transducer 1 according to the present embodiment, the position 2 a of the most distal end portion 21 of the metal block 2 and the end portion 3 a of the piezoelectric element unit 3 opposite to the metal block 2 are arranged on the piezoelectric element unit 3. When the vibration is caused by the operation, the abdomen is formed, so that stable vibration can be achieved.
 また、本実施態様に係る超音波振動子1では、圧電素子ユニット3の少なくとも一部は、圧電素子ユニット3の作動による振動の際に節の部分となるので、安定した振動をすることが可能となる。 Further, in the ultrasonic transducer 1 according to the present embodiment, at least a part of the piezoelectric element unit 3 becomes a node portion when the piezoelectric element unit 3 is vibrated by the operation of the piezoelectric element unit 3, and thus can stably vibrate. It becomes.
 また、本実施態様に係る超音波振動子1では、圧電素子ユニット3の少なくとも一部は、圧電素子ユニット3の作動による振動の際に腹の部分となるので、安定した振動をすることが可能となる。 Further, in the ultrasonic transducer 1 according to the present embodiment, at least a part of the piezoelectric element unit 3 becomes a belly part when vibrating due to the operation of the piezoelectric element unit 3, so that stable vibration is possible. It becomes.
 また、本実施態様に係る超音波振動子1では、圧電素子31は、非鉛の単結晶材料からなるので、鉛の使用を抑制することが可能となる。 Moreover, in the ultrasonic transducer 1 according to the present embodiment, the piezoelectric element 31 is made of a non-lead single crystal material, so that the use of lead can be suppressed.
 また、本実施態様に係る超音波振動子1では、圧電素子31は、ニオブ酸リチウム(LiNb03)からなるので、鉛の使用を抑制することが可能となる。 Moreover, in the ultrasonic transducer 1 according to the present embodiment, the piezoelectric element 31 is made of lithium niobate (LiNb03), so that the use of lead can be suppressed.
 また、本実施態様に係る超音波振動子1では、接合部4は、非鉛ハンダからなるので、鉛の使用を抑制することが可能となる。 Moreover, in the ultrasonic transducer 1 according to this embodiment, since the joint portion 4 is made of non-lead solder, it is possible to suppress the use of lead.
 また、本実施態様に係る超音波振動子1では、金属ブロック2と圧電素子ユニット3の間に熱応力を緩和する緩衝部5を備えるので、金属ブロック2と圧電素子ユニット3の熱膨張係数の差に起因して発生する熱応力を緩和することが可能となる。 Moreover, since the ultrasonic transducer 1 according to this embodiment includes the buffer portion 5 that relieves thermal stress between the metal block 2 and the piezoelectric element unit 3, the thermal expansion coefficient of the metal block 2 and the piezoelectric element unit 3 is reduced. It becomes possible to relieve the thermal stress generated due to the difference.
 さらに、本実施形態の超音波医療装置100によれば、前記超音波振動子1と、超音波振動子1で発生した超音波振動が伝達され生体組織を処置する先端処置部と、を具備するので、共振周波数を調整可能な超音波処置具10とすることが可能となる。 Furthermore, according to the ultrasonic medical device 100 of the present embodiment, the ultrasonic vibrator 1 and the distal treatment section that transmits the ultrasonic vibration generated by the ultrasonic vibrator 1 and treats the living tissue are provided. Therefore, the ultrasonic treatment instrument 10 capable of adjusting the resonance frequency can be obtained.
 なお、この実施形態によって本発明は限定されるものではない。すなわち、実施形態の説明に当たって、例示のために特定の詳細な内容が多く含まれるが、当業者であれば、これらの詳細な内容に色々なバリエーションや変更を加えても、本発明の範囲を超えないことは理解できよう。従って、本発明の例示的な実施形態は、権利請求された発明に対して、一般性を失わせることなく、また、何ら限定をすることもなく、述べられたものである。 Note that the present invention is not limited to this embodiment. That is, in the description of the embodiments, many specific details are included for illustration, but those skilled in the art can add various variations and modifications to these details without departing from the scope of the present invention. It will be understood that this is not exceeded. Accordingly, the exemplary embodiments of the present invention have been described without loss of generality or limitation to the claimed invention.
1…超音波振動子
2…金属ブロック
3…圧電素子ユニット
31…圧電素子
4…接合部
DESCRIPTION OF SYMBOLS 1 ... Ultrasonic vibrator 2 ... Metal block 3 ... Piezoelectric element unit 31 ... Piezoelectric element 4 ... Joint part

Claims (9)

  1.  交番電圧の付与によって圧電効果を生じ振動する圧電素子を複数枚積層した圧電素子ユニットと、
     前記圧電素子ユニットの振動方向に配置される金属ブロックと、
    を備え、
     前記圧電素子ユニットの複数枚の圧電素子間、および、前記金属ブロックは接合材で接合され、
     前記金属ブロックは、前記圧電素子に対して一端側にのみ配置される
    ことを特徴とする超音波振動子。
    A piezoelectric element unit in which a plurality of piezoelectric elements that vibrate by generating a piezoelectric effect by applying an alternating voltage are laminated;
    A metal block disposed in a vibration direction of the piezoelectric element unit;
    With
    Between the plurality of piezoelectric elements of the piezoelectric element unit, and the metal block are bonded with a bonding material,
    The ultrasonic transducer according to claim 1, wherein the metal block is disposed only on one end side with respect to the piezoelectric element.
  2.  前記金属ブロックは、前記圧電素子ユニット側にフランジ部を有し、
     前記フランジ部は、前記圧電素子ユニットの作動による振動の際に節の部分となる
    請求項1に記載の超音波振動子。
    The metal block has a flange portion on the piezoelectric element unit side,
    The ultrasonic transducer according to claim 1, wherein the flange portion becomes a node portion when the piezoelectric element unit vibrates due to the operation of the piezoelectric element unit.
  3.  前記金属ブロックの先端部の最も先端の位置と前記圧電素子ユニットの前記金属ブロックとは反対側の端部は、前記圧電素子ユニットの作動による振動の際に腹の部分となる
    請求項1又は2に記載の超音波振動子。
    The position of the most distal end of the tip of the metal block and the end of the piezoelectric element unit opposite to the metal block become an antinode during vibration caused by the operation of the piezoelectric element unit. The ultrasonic vibrator described in 1.
  4.  前記圧電素子ユニットの少なくとも一部は、前記圧電素子ユニットの作動による振動の際に節の部分となる
    請求項1乃至3のいずれか1つに記載の超音波振動子。
    The ultrasonic transducer according to any one of claims 1 to 3, wherein at least a part of the piezoelectric element unit becomes a node portion when the piezoelectric element unit vibrates due to the operation of the piezoelectric element unit.
  5.  前記圧電素子ユニットの少なくとも一部は、前記圧電素子ユニットの作動による振動の際に腹の部分となる
    請求項1乃至4のいずれか1つに記載の超音波振動子。
    5. The ultrasonic transducer according to claim 1, wherein at least a part of the piezoelectric element unit becomes an antinode during vibration caused by the operation of the piezoelectric element unit.
  6.  前記圧電素子は、非鉛の単結晶材料からなる
    請求項1乃至5のいずれか1つに記載の超音波振動子。
    The ultrasonic transducer according to claim 1, wherein the piezoelectric element is made of a lead-free single crystal material.
  7.  前記圧電素子は、ニオブ酸リチウム(LiNb03)からなる
    請求項1乃至6のいずれか1つに記載の超音波振動子。
    The ultrasonic transducer according to claim 1, wherein the piezoelectric element is made of lithium niobate (LiNb03).
  8.  前記金属ブロックと前記圧電素子ユニットの間に熱応力を緩和する緩衝部
    を備える
    請求項1乃至7のいずれか1つに記載の超音波振動子。
    The ultrasonic transducer according to claim 1, further comprising a buffer portion that relaxes thermal stress between the metal block and the piezoelectric element unit.
  9.  請求項1乃至請求項8のいずれか1項に記載の超音波振動子と、
     前記超音波振動子で発生した超音波振動が伝達され生体組織を処置する先端処置部と、
    を具備する
    ことを特徴とする超音波医療装置。
    The ultrasonic transducer according to any one of claims 1 to 8,
    A tip treatment unit for treating a living tissue through transmission of ultrasonic vibration generated by the ultrasonic transducer;
    An ultrasonic medical device comprising:
PCT/JP2014/076015 2014-09-30 2014-09-30 Ultrasonic vibrator and ultrasonic medical apparatus WO2016051486A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/076015 WO2016051486A1 (en) 2014-09-30 2014-09-30 Ultrasonic vibrator and ultrasonic medical apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/076015 WO2016051486A1 (en) 2014-09-30 2014-09-30 Ultrasonic vibrator and ultrasonic medical apparatus

Publications (1)

Publication Number Publication Date
WO2016051486A1 true WO2016051486A1 (en) 2016-04-07

Family

ID=55629585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076015 WO2016051486A1 (en) 2014-09-30 2014-09-30 Ultrasonic vibrator and ultrasonic medical apparatus

Country Status (1)

Country Link
WO (1) WO2016051486A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106076793A (en) * 2016-06-28 2016-11-09 南京航空航天大学 High energy efficiency piezoelectric ultrasonic transducer and end cap thereof
WO2017163400A1 (en) * 2016-03-25 2017-09-28 オリンパス株式会社 Ultrasonic medical device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005073746A (en) * 2003-08-28 2005-03-24 Olympus Corp Ultrasonic treatment apparatus
JP2014011737A (en) * 2012-07-02 2014-01-20 Olympus Corp Ultrasonic vibration device, ultrasonic vibration device manufacturing method, and ultrasonic medical equipment
JP2014030795A (en) * 2012-08-03 2014-02-20 Olympus Corp Ultrasonic oscillation device, ultrasonic oscillation device manufacturing method, and ultrasonic medical equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005073746A (en) * 2003-08-28 2005-03-24 Olympus Corp Ultrasonic treatment apparatus
JP2014011737A (en) * 2012-07-02 2014-01-20 Olympus Corp Ultrasonic vibration device, ultrasonic vibration device manufacturing method, and ultrasonic medical equipment
JP2014030795A (en) * 2012-08-03 2014-02-20 Olympus Corp Ultrasonic oscillation device, ultrasonic oscillation device manufacturing method, and ultrasonic medical equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017163400A1 (en) * 2016-03-25 2017-09-28 オリンパス株式会社 Ultrasonic medical device
CN106076793A (en) * 2016-06-28 2016-11-09 南京航空航天大学 High energy efficiency piezoelectric ultrasonic transducer and end cap thereof

Similar Documents

Publication Publication Date Title
JP6326275B2 (en) Ultrasonic transducer and ultrasonic medical device
JP6648205B2 (en) Micromachined ultrasonic scalpel with embedded piezoelectric actuator
JP5851147B2 (en) Ultrasonic vibration device
JP5875857B2 (en) Ultrasonic vibration device and ultrasonic medical device
JP5963603B2 (en) Ultrasonic vibration device, method of manufacturing ultrasonic vibration device, and ultrasonic medical device
US10420599B2 (en) Ultrasonic vibrator and ultrasonic treatment device
WO2013084727A1 (en) Ultrasonic vibration device and ultrasonic medical device
JPWO2012081337A1 (en) Probe for treating biological tissue and method for operating ultrasonic probe
US10322437B2 (en) Stacked ultrasound vibration device and ultrasound medical apparatus
WO2016051486A1 (en) Ultrasonic vibrator and ultrasonic medical apparatus
JP2014011737A (en) Ultrasonic vibration device, ultrasonic vibration device manufacturing method, and ultrasonic medical equipment
JP6292963B2 (en) Ultrasonic transducer and ultrasonic medical device
US20170365769A1 (en) Ultrasonic transducer and ultrasonic medical device
JP2014180597A (en) Lamination type ultrasonic oscillation device, manufacturing method of lamination type ultrasonic oscillation device, and ultrasonic medical device
JP6270505B2 (en) LAMINATED ULTRASONIC VIBRATION DEVICE, METHOD FOR PRODUCING LAMINATED ULTRASONIC VIBRATION DEVICE, AND ULTRASONIC MEDICAL DEVICE
JP2015211535A (en) Ultrasonic vibrator and ultrasonic medical device
WO2013179776A1 (en) Ultrasonic vibration device, method for producing ultrasonic vibration device, and ultrasonic medical apparatus
JP6108753B2 (en) Ultrasonic treatment device
JP2015144788A (en) Ultrasonic vibration device and ultrasonic medical treatment apparatus
WO2017195265A1 (en) Ultrasonic medical device
JPWO2007126031A1 (en) Ultrasonic motor
JP2003033363A (en) Ultrasonic operation apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14903159

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14903159

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP