WO2017108314A1 - Particle sensor - Google Patents

Particle sensor Download PDF

Info

Publication number
WO2017108314A1
WO2017108314A1 PCT/EP2016/078521 EP2016078521W WO2017108314A1 WO 2017108314 A1 WO2017108314 A1 WO 2017108314A1 EP 2016078521 W EP2016078521 W EP 2016078521W WO 2017108314 A1 WO2017108314 A1 WO 2017108314A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrates
sensor element
ceramic
μηι
sensor
Prior art date
Application number
PCT/EP2016/078521
Other languages
German (de)
French (fr)
Inventor
Sabine Roesch
Jens Schneider
Stefan Rodewald
Christine Nagel
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2017108314A1 publication Critical patent/WO2017108314A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/0656Investigating concentration of particle suspensions using electric, e.g. electrostatic methods or magnetic methods

Definitions

  • Particle sensors are already known from the prior art, for example resistive particle sensors having the features of the preamble of the independent apparatus claim.
  • the ceramics of the substrates consists in the prior art of yttrium-stabilized zirconia (YSZ), the electrically conductive functional layers of platinum, Pt alloy or Pt cermet.
  • YSZ yttrium-stabilized zirconia
  • electrically highly insulated intermediate layers must be applied by means of screen printing between the substrates and the electrically conductive functional layers, that is to say the interdigital electrode, the heater and the temperature measuring element in order to avoid undesired shunts.
  • the structure of the sensor elements with printed insulation layer is so far consuming.
  • the structure is simplified in this respect. Moreover, both the functionality and the chemical and mechanical robustness of the sensor element over a long lifetime is ensured.
  • a structure with exactly two ceramic substrates, between which the heating element is arranged in the middle, has proven to be particularly thermomechanically stable and loadable.
  • the interdigital electrode and the temperature measuring element can be arranged on the sides of the substrates opposite the heating element.
  • specific electrically insulating materials are specified for the substrates. Adapted to these specific substrate thicknesses are given in each case, which are to be observed advantageously to ensure a sufficient breaking strength of the substrates. Furthermore, maximum heating powers are indicated in each case, which the sensor elements designed in this way can advantageously withstand. Furthermore, resistance values for the heating element are indicated, from which the stated heating power is calculated on the basis of a
  • a planar ceramic sensor element 10 comprises two ceramic substrates 1 1 a, 1 1 b, which form a planar ceramic body. They consist of an electrically insulating material.
  • the sensor element 10 may have on its upper side and on its lower side in each case a covering layer 12a, 12b of an electrically insulating material, which may have been applied by means of screen printing, for example.
  • the sensor element 10 furthermore has a heating element 40, which is designed in the form of an electrical resistance conductor track and serves for heating the sensor element 10, in particular for the early operating temperature or the burnup of the particles deposited on the large surfaces of the sensor element 10.
  • the resistance conductor track is furthermore designed in the form of a meander and has at both ends the plated-through holes 42,44 and electrical contacts 46,48. By applying a corresponding heating voltage, for example 12 V, to the contacts 46, 48 of the resistance conductor track, the heating power of the heating element 40 can be regulated accordingly.
  • an interdigital electrode 14, 16 is applied, the contacts 18, 20 are provided for contacting the interdigital electrode 14, 16 in the region of a gas mixture facing away from the end of the sensor element.
  • interdigital electrode is meant in this document and in particular always a toothed pair of electrodes with two separate contacts.
  • the sensor element 10 comprises on the opposite large surface of the sensor element 10, a temperature measuring element 30, which is designed in the form of an electrical resistance track and may have the shape of a meander.
  • a temperature measuring element 30 is designed in the form of an electrical resistance track and may have the shape of a meander.
  • One of the terminals of the resistor trace may be connected to the six and 14 contacts.
  • Another electrical connection of the temperature measuring element 30 is formed by a further contact 22.
  • the substrates 1 1 1 a, 1 1 b of alumina with a purity of at least 98% by weight have in the sintered state a total thickness of 900-1500 ⁇ .
  • This sensor element 10 can be loaded up to 1400 ° C. temperature. Taking into account the other mechanical and thermal properties results in a maximum heat output of 30 W is permitted. This corresponds to an electrical resistance of the heater 40 of about 5 ohms at room temperature.
  • the substrates 11a, 11b consist of alumina with a proportion of 3-15% by weight, in particular 10% by weight, of yttrium-stabilized zirconium oxide.
  • the two substrates 1 1 a, 1 1 b have a sintered thickness of together 800-1500 ⁇ .
  • This sensor element 10 can be loaded up to 1400 ° C. temperature. Taking into account the other mechanical and thermal properties results in a maximum heat output of 30 W is permitted. This corresponds to an electrical resistance of the heater 40 of about 5 ohms at room temperature.
  • the use of ceramic green sheets, which have a degree of filling of 65-85% by weight, has proven.
  • the substrates 1 1 1 a, 1 1 b made of cordierite
  • the two substrates 1 1 1 a, 1 1 b have a thickness of 800-2000 ⁇ together.
  • This sensor element 10 is loadable up to 1200 ° C temperature. Taking into account the further mechanical and thermal properties results in a maximum heat output of 40 W is permissible. This corresponds to an electrical resistance of the heater 40 of about 3.5 ohms at room temperature.
  • the use of ceramic green films, which have a degree of filling of 40-80% by weight, has proven.
  • the substrates 1 1 1 a, 1 1 b consist of forsterite (Mg 2 [SiO 4]).
  • the two substrates 1 1 a, 1 1 b have a thickness of 800-2000 ⁇ together.
  • This sensor element 10 is loadable up to 900 ° C temperature. Taking into account the further mechanical and thermal properties results in a maximum heat output of 40 W is permissible. This corresponds to an electrical resistance of the heater 40 of about 3.5 ohms at room temperature.
  • the use of ceramic green films, which have a degree of filling of 40-80% by weight, has proven.
  • the substrates 11a, 11b consist of mullite (65-80% Al 2 O 3, remainder SiO 2 Mg 2).
  • the two substrates 1 1 a, 1 1 b have a total thickness of 800-2000 ⁇ on.
  • This sensor element 10 is loadable up to 1200 ° C temperature. Under Considering the other mechanical and thermal properties results in a maximum heat output of 30 W is permissible. This corresponds to an electrical resistance of the heater 40 of about 5 ohms at room temperature.
  • the use of ceramic green films, which have a degree of filling of 40-80% by weight, has proven.
  • the substrates 11a, 11b consist of Mg-Al spinel (MgAl204).
  • the two substrates 1 1 a, 1 1 b have a thickness of 900 to 2000 ⁇ together.
  • This sensor element 10 is loadable up to 1000 ° C temperature. Taking into account the further mechanical and thermal properties results in a maximum heating power of 35 W is permissible. This corresponds to an electrical resistance of the heater 40 of about 4 ohms at room temperature.
  • the substrates 1 1 1 a, 1 1 b consist of ⁇ 2 ⁇ 05.
  • the two substrates 1 1 a, 1 1 b have a total thickness of 800-1800 ⁇ on.
  • This sensor element 10 can be loaded up to 1100 ° C. temperature. Taking into account the other mechanical and thermal properties results in that a maximum heating power of 25 W is permitted. This corresponds to an electrical resistance of the heater 40 of about 6 ohms at room temperature.
  • the use of ceramic green sheets, which have a degree of filling of 65- 85% by weight, has been proven.
  • the substrates 1 1 1 a, 1 1 b consist of Si 3 N 4.
  • the two substrates 1 1 a, 1 1 b have a thickness of 75-1600 ⁇ together.
  • This sensor element 10 can be loaded up to 1100 ° C. temperature. Taking into account the further mechanical and thermal properties results in a maximum heat output of 40 W is permissible. This corresponds to an electrical resistance of the heater 40 of about 3.5 ohms at room temperature.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

The invention relates to a planar ceramic sensor element for a gas sensor for detecting particles in a gas, comprising an interdigital electrode (14, 16) which can be exposed to the gas, an electric heating element (40) which is designed as a conductor path, a temperature measuring element (30) which is designed as a conductor path, and two ceramic substrates (11a, 11b). The first ceramic substrate (11a) is arranged between the interdigital electrode (14, 16) and the heating element (40), and the second ceramic substrate (11b) is arranged between the heating element (40) and the temperature measuring element (30). The ceramic substrates (11a, 11b) consist of an electrically insulating material.

Description

Beschreibung Titel  Description title
Partikelsensor Stand der Technik Particle sensor state of the art
Aus dem Stand der Technik sind bereits Partikelsensoren bekannt, beispielsweise re- sistive Partikelsensoren mit den Merkmalen des Oberbegriffs des unabhängigen Vorrichtungsanspruchs. Particle sensors are already known from the prior art, for example resistive particle sensors having the features of the preamble of the independent apparatus claim.
Die Keramik der Substrate besteht nach dem Stand der Technik aus mit Yttrium stabilisierten Zirkonoxid (YSZ), die elektrisch leitenden Funktionsschichten aus Platin, Pt- Legierung oder Pt-Cermet. Bei derartigen Sensorelementen auf YSZ Basis müssen zwischen den Substraten und den elektrisch leitenden Funktionsschichten, also der In- terdigitalelektrode, dem Heizer und dem Temperaturmesselement, elektrisch hochisolierte Zwischenschichten mittels Siebdruckverfahren aufgebracht werden um unerwünschte Nebenschlüsse zu vermeiden. Der Aufbau der Sensorelemente mit gedruckten Isolationsschicht ist insofern aufwendig. The ceramics of the substrates consists in the prior art of yttrium-stabilized zirconia (YSZ), the electrically conductive functional layers of platinum, Pt alloy or Pt cermet. In the case of such sensor elements based on YSZ, electrically highly insulated intermediate layers must be applied by means of screen printing between the substrates and the electrically conductive functional layers, that is to say the interdigital electrode, the heater and the temperature measuring element in order to avoid undesired shunts. The structure of the sensor elements with printed insulation layer is so far consuming.
Offenbarung der Erfindung Disclosure of the invention
Das erfindungsgemäße Sensorelement gemäß dem unabhängigen Anspruch 1 , dessen Substrate aus einem elektrisch isolierenden Material bestehen, können hingegen ohne hochisolierende Zwischenschichten aufgebaut werden. Der Aufbau ist insofern vereinfacht. Überdies ist sowohl die Funktionalität als auch die chemische und mechanische Robustheit des Sensorelements über Lebenszeit nachhaltig sichergestellt.  The sensor element according to the invention according to the independent claim 1, whose substrates are made of an electrically insulating material, however, can be constructed without highly insulating intermediate layers. The structure is simplified in this respect. Moreover, both the functionality and the chemical and mechanical robustness of the sensor element over a long lifetime is ensured.
Weiterbildungen der Erfindung sind in den abhängigen Ansprüchen und in den Ausfüh- rungsbeispielen angegeben. Further developments of the invention are described in the dependent claims and in the claims. specified examples.
So hat sich ein Aufbau mit genau zwei keramischen Substraten, zwischen denen das Heizelement mittig angeordnet ist, als thermomechanisch besonders stabil und belast- bar erwiesen. In Weiterbildung können auf den dem Heizelement jeweils gegenüberliegenden Seiten der Substrate jeweils die Interdigitalelektrode und das Temperaturmesselement angeordnet sein. Thus, a structure with exactly two ceramic substrates, between which the heating element is arranged in the middle, has proven to be particularly thermomechanically stable and loadable. In a further development, in each case the interdigital electrode and the temperature measuring element can be arranged on the sides of the substrates opposite the heating element.
In den verschiedenen Ausführungsbeispielen sind für die Substrate spezifische elektrisch isolierende Materialien angegeben. An diese angepasst sind jeweils spezifische Substratdicken angegeben, die zur Sicherstellung einer ausreichenden Bruchfestigkeit der Substrate vorteilhafterweise einzuhalten sind. Ferner sind jeweils maximale Heizleistungen angegeben, denen die so aufgebauten Sensorelemente vorteilhafterweise standzuhalten vermögen. Es sind ferner Widerstandswerte für das Heizelement angegeben, aus denen die angegebene Heizleistung unter Zugrundelegung einerIn the various exemplary embodiments, specific electrically insulating materials are specified for the substrates. Adapted to these specific substrate thicknesses are given in each case, which are to be observed advantageously to ensure a sufficient breaking strength of the substrates. Furthermore, maximum heating powers are indicated in each case, which the sensor elements designed in this way can advantageously withstand. Furthermore, resistance values for the heating element are indicated, from which the stated heating power is calculated on the basis of a
Heizspannung von 12 V resultiert. Heating voltage of 12 V results.
Die Erfindung wird im Folgenden anhand des in der Figur dargestellten Ausführungsbeispiels näher erläutert. The invention will be explained in more detail below with reference to the embodiment shown in the figure.
Die Figur zeigt schematisch den Aufbau einer Ausführungsform der vorliegenden Erfindung. Ein planares keramisches Sensorelement 10 umfasst zwei keramische Substrate 1 1 a, 1 1 b, die einen planaren keramischen Körper bilden. Sie bestehen aus einem elektrisch isolierenden Material. The figure shows schematically the structure of an embodiment of the present invention. A planar ceramic sensor element 10 comprises two ceramic substrates 1 1 a, 1 1 b, which form a planar ceramic body. They consist of an electrically insulating material.
Optional kann das Sensorelement 10 auf seiner Ober-und seiner Unterseite jeweils eine Abdeckschicht 12a, 12b aus einem elektrisch isolierende Material aufweisen, das beispielsweise mittels Siebdruck aufgebracht worden sein kann. Das Sensorelement 10 weist weiterhin ein Heizelement 40 auf, das in Form einer elektrischen Widerstandsleiterbahn ausgeführt ist und der Aufheizung des Sensorelements 10, insbesondere auf die baldige Betriebstemperatur oder dem Abbrand der auf den Großflächen des Sensorelements 10 abgelagerten Partikel dient. Die Widerstandsleiterbahn ist weiterhin in Form eines Mäanders ausgebildet und weist an beiden En- den Durchkontaktierungen 42,44 sowie elektrische Kontakte 46,48 auf. Durch Anlegen einer entsprechenden Heizspannung, von beispielsweise 12 V, an die Kontakte 46,48 der Widerstandsleiterbahn kann die Heizleistung des Heizelements 40 entsprechend reguliert werden. Optionally, the sensor element 10 may have on its upper side and on its lower side in each case a covering layer 12a, 12b of an electrically insulating material, which may have been applied by means of screen printing, for example. The sensor element 10 furthermore has a heating element 40, which is designed in the form of an electrical resistance conductor track and serves for heating the sensor element 10, in particular for the early operating temperature or the burnup of the particles deposited on the large surfaces of the sensor element 10. The resistance conductor track is furthermore designed in the form of a meander and has at both ends the plated-through holes 42,44 and electrical contacts 46,48. By applying a corresponding heating voltage, for example 12 V, to the contacts 46, 48 of the resistance conductor track, the heating power of the heating element 40 can be regulated accordingly.
Auf einer Großfläche des Sensorelementes 10 ist eine Interdigitalelektrode 14, 16 aufgebracht, die Zur Kontaktierung der Interdigitalelektrode 14, 16 sind im Bereich eines dem Gasgemisch abgewandten Endes des Sensorelementes Kontakte 18, 20 vorgesehen. Mit dem Begriff Interdigitalelektrode ist in dieser Schrift und insbesondere immer ein verzahntes Elektrodenpaar mit zwei separaten Kontakten gemeint. On an area of the sensor element 10, an interdigital electrode 14, 16 is applied, the contacts 18, 20 are provided for contacting the interdigital electrode 14, 16 in the region of a gas mixture facing away from the end of the sensor element. By the term interdigital electrode is meant in this document and in particular always a toothed pair of electrodes with two separate contacts.
Enthält ein das Sensorelement 10 umströmendes Gasgemisch Partikel, insbesondere Ruß, so lagern sich diese auf der Oberfläche des Sensorelementes 10 ab. Da Ruß eine bestimmte elektrische Leitfähigkeit aufweist, kommt es bei ausreichender Beladung der Oberfläche des Sensorelementes 10 bzw. der porösen Schutzschicht mit Ruß zu einem ansteigenden Stromfluss durch die Interdigitalelektrode 14,16, der mit dem Ausmaß der Beladung korreliert. If a gas mixture flowing around the sensor element 10 contains particles, in particular soot, then these deposits on the surface of the sensor element 10. Since soot has a certain electrical conductivity, with sufficient loading of the surface of the sensor element 10 or the porous protective layer with soot, an increasing current flow through the interdigital electrode 14, 16 correlates with the extent of the loading.
Darüber hinaus umfasst das Sensorelement 10 auf der gegenüberliegenden Großfläche des Sensorelements 10 ein Temperaturmesselement 30, das in Form einer elektrischen Widerstandsleiterbahn ausgeführt ist und die Form eines Mäanders aufweisen kann. Einer der Anschlüsse der Widerstandsleiterbahn kann mit dem Kontakt sechs und 14 verbunden sein. Ein weiterer elektrischer Anschluss des Temperaturmesselements 30 wird durch einen weiteren Kontakt 22 gebildet. In addition, the sensor element 10 comprises on the opposite large surface of the sensor element 10, a temperature measuring element 30, which is designed in the form of an electrical resistance track and may have the shape of a meander. One of the terminals of the resistor trace may be connected to the six and 14 contacts. Another electrical connection of the temperature measuring element 30 is formed by a further contact 22.
Nachfolgend werden 8 Beispiele für besonders geeignete Substrate angegeben. 8 examples of particularly suitable substrates are given below.
In einem ersten Beispiel bestehen die Substrate 1 1 a, 1 1 b aus Aluminiumoxid mit einer Reinheit von mindestens 98 Gew%. Die beiden Substrate 1 1 a, 1 1 b weisen im gesinterten Zustand eine Dicke von zusammen 900-1500 μηι auf. Dieses Sensorelement 10 ist bis 1400°C Temperatur belastbar. Unter Berücksichtigung der weiteren mechanischen und thermischen Eigenschaften resultiert, dass eine maximale Heizleistung von 30 W zulässig ist. Das entspricht einem elektrischen Widerstand des Heizers 40 von etwa 5 Ohm bei Zimmertemperatur. Zur Herstellung der Substrate 1 1 a, 1 1 b hat sich die Ver- wendung von keramischen Grünfolien, die einen Feststoff-Füllgrad von 65-85 Gew% aufweisen, bewährt. In a first example, the substrates 1 1 a, 1 1 b of alumina with a purity of at least 98% by weight. The two substrates 1 1 a, 1 1 b have in the sintered state a total thickness of 900-1500 μηι. This sensor element 10 can be loaded up to 1400 ° C. temperature. Taking into account the other mechanical and thermal properties results in a maximum heat output of 30 W is permitted. This corresponds to an electrical resistance of the heater 40 of about 5 ohms at room temperature. For the preparation of the substrates 1 1 a, 1 1 b, the Use of ceramic green sheets, which have a solids content of 65-85% by weight proven.
In einem zweiten Beispiel bestehen die Substrate 1 1 a, 1 1 b aus Aluminiumoxid mit einem Anteil von 3-15 Gew%, insbesondere 10 Gew% an mit Yttrium stabilisierten Zirko- noxid. Die beiden Substrate 1 1 a, 1 1 b weisen eine gesinterte Dicke von zusammen 800-1500 μηι auf. Dieses Sensorelement 10 ist bis 1400°C Temperatur belastbar. Unter Berücksichtigung der weiteren mechanischen und thermischen Eigenschaften resultiert, dass eine maximale Heizleistung von 30 W zulässig ist. Das entspricht einem elektrischen Widerstand des Heizers 40 von etwa 5 Ohm bei Zimmertemperatur. Zur Herstellung der Substrate 1 1 a, 1 1 b hat sich die Verwendung von keramischen Grünfolien, die einen Füllgrad von 65-85 Gew% aufweisen, bewährt. In a second example, the substrates 11a, 11b consist of alumina with a proportion of 3-15% by weight, in particular 10% by weight, of yttrium-stabilized zirconium oxide. The two substrates 1 1 a, 1 1 b have a sintered thickness of together 800-1500 μηι. This sensor element 10 can be loaded up to 1400 ° C. temperature. Taking into account the other mechanical and thermal properties results in a maximum heat output of 30 W is permitted. This corresponds to an electrical resistance of the heater 40 of about 5 ohms at room temperature. For the preparation of the substrates 1 1 a, 1 1 b, the use of ceramic green sheets, which have a degree of filling of 65-85% by weight, has proven.
In einem dritten Beispiel bestehen die Substrate 1 1 a, 1 1 b aus Cordierit In a third example, the substrates 1 1 a, 1 1 b made of cordierite
(Mg2AI3[AISi5018]). Die beiden Substrate 1 1 a, 1 1 b weisen eine Dicke von zusammen 800-2000 μηι auf. Dieses Sensorelement 10 ist bis 1200°C Temperatur belastbar. Unter Berücksichtigung der weiteren mechanischen und thermischen Eigenschaften resultiert, dass eine maximale Heizleistung von 40 W zulässig ist. Das entspricht einem elektrischen Widerstand des Heizers 40 von etwa 3,5 Ohm bei Zimmertemperatur. Zur Herstellung der Substrate 1 1 a, 1 1 b hat sich die Verwendung von keramischen Grünfolien, die einen Füllgrad von 40-80 Gew% aufweisen, bewährt. (Mg2AI3 [AISi5018]). The two substrates 1 1 a, 1 1 b have a thickness of 800-2000 μηι together. This sensor element 10 is loadable up to 1200 ° C temperature. Taking into account the further mechanical and thermal properties results in a maximum heat output of 40 W is permissible. This corresponds to an electrical resistance of the heater 40 of about 3.5 ohms at room temperature. For the preparation of the substrates 1 1 a, 1 1 b, the use of ceramic green films, which have a degree of filling of 40-80% by weight, has proven.
In einem vierten Beispiel bestehen die Substrate 1 1 a, 1 1 b aus Forsterit (Mg2[Si04]). Die beiden Substrate 1 1 a, 1 1 b weisen eine Dicke von zusammen 800-2000 μηι auf. Dieses Sensorelement 10 ist bis 900°C Temperatur belastbar. Unter Berücksichtigung der weiteren mechanischen und thermischen Eigenschaften resultiert, dass eine maximale Heizleistung von 40 W zulässig ist. Das entspricht einem elektrischen Widerstand des Heizers 40 von etwa 3,5 Ohm bei Zimmertemperatur. Zur Herstellung der Substrate 1 1 a, 1 1 b hat sich die Verwendung von keramischen Grünfolien, die einen Füllgrad von 40-80 Gew% aufweisen, bewährt. In a fourth example, the substrates 1 1 a, 1 1 b consist of forsterite (Mg 2 [SiO 4]). The two substrates 1 1 a, 1 1 b have a thickness of 800-2000 μηι together. This sensor element 10 is loadable up to 900 ° C temperature. Taking into account the further mechanical and thermal properties results in a maximum heat output of 40 W is permissible. This corresponds to an electrical resistance of the heater 40 of about 3.5 ohms at room temperature. For the preparation of the substrates 1 1 a, 1 1 b, the use of ceramic green films, which have a degree of filling of 40-80% by weight, has proven.
In einem fünften Beispiel bestehen die Substrate 1 1 a, 1 1 b aus Mullit (65 - 80% AI203, Rest Si02Mg2). Die beiden Substrate 1 1 a, 1 1 b weisen eine Dicke von zusammen 800- 2000 μηι auf. Dieses Sensorelement 10 ist bis 1200°C Temperatur belastbar. Unter Berücksichtigung der weiteren mechanischen und thermischen Eigenschaften resultiert, dass eine maximale Heizleistung von 30 W zulässig ist. Das entspricht einem elektrischen Widerstand des Heizers 40 von etwa 5 Ohm bei Zimmertemperatur. Zur Herstellung der Substrate 1 1 a, 1 1 b hat sich die Verwendung von keramischen Grünfolien, die einen Füllgrad von 40-80 Gew% aufweisen, bewährt. In a fifth example, the substrates 11a, 11b consist of mullite (65-80% Al 2 O 3, remainder SiO 2 Mg 2). The two substrates 1 1 a, 1 1 b have a total thickness of 800-2000 μηι on. This sensor element 10 is loadable up to 1200 ° C temperature. Under Considering the other mechanical and thermal properties results in a maximum heat output of 30 W is permissible. This corresponds to an electrical resistance of the heater 40 of about 5 ohms at room temperature. For the preparation of the substrates 1 1 a, 1 1 b, the use of ceramic green films, which have a degree of filling of 40-80% by weight, has proven.
In einem sechsten Beispiel bestehen die Substrate 1 1 a, 1 1 b aus Mg-Al Spinell (MgAI204). Die beiden Substrate 1 1 a, 1 1 b weisen eine Dicke von zusammen 900- 2000 μηι auf. Dieses Sensorelement 10 ist bis 1000°C Temperatur belastbar. Unter Berücksichtigung der weiteren mechanischen und thermischen Eigenschaften resultiert, dass eine maximale Heizleistung von 35 W zulässig ist. Das entspricht einem elektrischen Widerstand des Heizers 40 von etwa 4 Ohm bei Zimmertemperatur. In a sixth example, the substrates 11a, 11b consist of Mg-Al spinel (MgAl204). The two substrates 1 1 a, 1 1 b have a thickness of 900 to 2000 μηι together. This sensor element 10 is loadable up to 1000 ° C temperature. Taking into account the further mechanical and thermal properties results in a maximum heating power of 35 W is permissible. This corresponds to an electrical resistance of the heater 40 of about 4 ohms at room temperature.
In einem siebten Beispiel bestehen die Substrate 1 1 a, 1 1 b aus ΑΙ2ΤΊ05. Die beiden Substrate 1 1 a, 1 1 b weisen eine Dicke von zusammen 800-1800 μηι auf. Dieses Sensorelement 10 ist bis 1 100°C Temperatur belastbar. Unter Berücksichtigung der weiteren mechanischen und thermischen Eigenschaften resultiert, dass eine maximale Heizleistung von 25 W zulässig ist. Das entspricht einem elektrischen Widerstand des Heizers 40 von etwa 6 Ohm bei Zimmertemperatur. Zur Herstellung der Substrate 1 1 a, 1 1 b hat sich die Verwendung von keramischen Grünfolien, die einen Füllgrad von 65- 85 Gew% aufweisen, bewährt. In a seventh example, the substrates 1 1 a, 1 1 b consist of ΑΙ2ΤΊ05. The two substrates 1 1 a, 1 1 b have a total thickness of 800-1800 μηι on. This sensor element 10 can be loaded up to 1100 ° C. temperature. Taking into account the other mechanical and thermal properties results in that a maximum heating power of 25 W is permitted. This corresponds to an electrical resistance of the heater 40 of about 6 ohms at room temperature. For the preparation of the substrates 1 1 a, 1 1 b, the use of ceramic green sheets, which have a degree of filling of 65- 85% by weight, has been proven.
In einem achten Beispiel bestehen die Substrate 1 1 a, 1 1 b aus Si3N4. Die beiden Substrate 1 1 a, 1 1 b weisen eine Dicke von zusammen 75-1600 μηι auf. Dieses Sensorelement 10 ist bis 1 100°C Temperatur belastbar. Unter Berücksichtigung der weiteren mechanischen und thermischen Eigenschaften resultiert, dass eine maximale Heizleistung von 40 W zulässig ist. Das entspricht einem elektrischen Widerstand des Heizers 40 von etwa 3,5 Ohm bei Zimmertemperatur. Zur Herstellung der Substrate 1 1 a, 1 1 b hat sich die Verwendung von keramischen Grünfolien, die einen Füllgrad von 65-85 Gew% aufweisen, bewährt. In an eighth example, the substrates 1 1 a, 1 1 b consist of Si 3 N 4. The two substrates 1 1 a, 1 1 b have a thickness of 75-1600 μηι together. This sensor element 10 can be loaded up to 1100 ° C. temperature. Taking into account the further mechanical and thermal properties results in a maximum heat output of 40 W is permissible. This corresponds to an electrical resistance of the heater 40 of about 3.5 ohms at room temperature. For the preparation of the substrates 1 1 a, 1 1 b, the use of ceramic green sheets, which have a degree of filling of 65-85% by weight, has proven.

Claims

Ansprüche claims
1 . Planares, keramisches Sensorelement für einen Gassensor zur Bestimmung von Partikeln in einem Gas, mit einer dem Gas ausgesetzbaren Interdigitalelektrode (14, 16), mit einem als Leiterbahn ausgebildetem elektrischen Heizelement (40), mit einem als Leiterbahn ausgebildetem Temperaturmesselement (30) und mit zwei keramischen Substraten (1 1 a, 1 1 b), wobei ein erstes keramisches Substrat (1 1 a) zwischen der Interdigitalelektrode (14,16) und dem Heizelement (40) angeordnet ist und ein zweites keramisches Substrat (1 1 b) zwischen dem Heizelement (40) und dem Temperaturmesselement (30) angeordnet ist, dadurch gekennzeichnet, dass die keramischen Substrate (1 1 a, 1 1 b) aus einem elektrisch isolierenden Material bestehen. 1 . Planar, ceramic sensor element for a gas sensor for the determination of particles in a gas, with an interdigital electrode (14, 16) which can be exposed to gas, with an electrical heating element (40) formed as a conductor track, with a temperature measuring element (30) formed as a conductor track and with two ceramic substrates (1 1 a, 1 1 b), wherein a first ceramic substrate (1 1 a) between the interdigital electrode (14,16) and the heating element (40) is arranged and a second ceramic substrate (1 1 b) between the Heating element (40) and the temperature measuring element (30) is arranged, characterized in that the ceramic substrates (1 1 a, 1 1 b) consist of an electrically insulating material.
2. Sensorelement nach Anspruch 1 , dadurch gekennzeichnet, dass es genau zwei keramischen Substrate (1 1 a, 1 1 b) aufweist 2. Sensor element according to claim 1, characterized in that it has exactly two ceramic substrates (1 1 a, 1 1 b)
3. Sensorelement nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Substrate (1 1 a, 1 1 b) jeweils eine Gründicke von 400 μηι bis 1200 μηι und/oder eine Sinterdicke von 300 μηι bis 1000 μηι aufweisen. 3. Sensor element according to claim 1 or 2, characterized in that the substrates (1 1 a, 1 1 b) each have a Gründicke of 400 μηι to 1200 μηι and / or a sintered thickness of 300 μηι to 1000 μηι have.
4. Sensorelement nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Interdigitalelektrode (14,16) und/oder das elektrische Heizelement (40) und/oder das Temperaturmesselement (30) unmittelbar jeweils auf eines der Substrate (1 1 a, 1 1 b) aufgebracht ist. 4. Sensor element according to one of the preceding claims, characterized in that the interdigital electrode (14,16) and / or the electric heating element (40) and / or the temperature measuring element (30) directly on each of the substrates (1 1 a, 1 1 b) is applied.
5. Sensorelement nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Heizelement (40) bei Zimmertemperatur einen elektrischen Widerstand von 5,5 +- 3,2 Ohm aufweist. 5. Sensor element according to one of the preceding claims, characterized in that the heating element (40) at room temperature has an electrical resistance of 5.5 + - 3.2 ohms.
6. Sensorelement nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Temperaturmesselement (30) bei Zimmertemperatur einen elektrischen Widerstand von 150 +- 1 10 Ohm aufweist 6. Sensor element according to one of the preceding claims, characterized in that the temperature measuring element (30) at room temperature has an electrical resistance of 150 + - 1 10 ohms
7. Sensorelement nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das elektrisch isolierende Material eines der folgenden Materialien ist: Aluminiumoxid mit einer Reinheit von mehr als 98 Gew%, Aluminiumoxid mit einem Anteil von 3-15 Gew% Zirkonoxid oder mit Yttrium stabilisierten Zirkonoxid, Cordierit, Forsterit, Mullit, Mg-Al-Spinell, ΑΙ2ΤΊ05, Si3N4. 7. Sensor element according to one of the preceding claims, characterized in that the electrically insulating material is one of the following materials: alumina having a purity of more than 98% by weight, alumina with a proportion of 3-15% by weight of zirconium oxide or yttrium-stabilized zirconium oxide , Cordierite, forsterite, mullite, Mg-Al spinel, ΑΙ2ΤΊ05, Si3N4.
8. Verfahren zur Herstellung eines Sensorelements nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet dass die Substrate auf Basis von Folien hergestellt werden, die einen Füllgrad von 50-85 % aufweisen. 8. A method for producing a sensor element according to one of the preceding claims, characterized in that the substrates are produced on the basis of films having a degree of filling of 50-85%.
PCT/EP2016/078521 2015-12-21 2016-11-23 Particle sensor WO2017108314A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015226352.5A DE102015226352A1 (en) 2015-12-21 2015-12-21 particle sensor
DE102015226352.5 2015-12-21

Publications (1)

Publication Number Publication Date
WO2017108314A1 true WO2017108314A1 (en) 2017-06-29

Family

ID=57394558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/078521 WO2017108314A1 (en) 2015-12-21 2016-11-23 Particle sensor

Country Status (2)

Country Link
DE (1) DE102015226352A1 (en)
WO (1) WO2017108314A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017210622A1 (en) * 2017-06-23 2018-12-27 Robert Bosch Gmbh Sensor element for an exhaust gas sensor
CN108020494A (en) * 2017-12-26 2018-05-11 中国科学院合肥物质科学研究院 A kind of heat-resistance type high sensitivity condenser type carbon dust PM rapid measurement devices and method
DE102018215322A1 (en) 2018-09-10 2020-03-12 Robert Bosch Gmbh Procedure for testing the integrity of a printed circuit
DE102019219552A1 (en) 2019-12-13 2021-06-17 Robert Bosch Gmbh Method for testing a ceramic sensor element for an exhaust gas sensor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005017296A1 (en) * 2004-04-15 2006-02-02 Denso Corp., Kariya Multilayer gas sensor element
DE102005051182A1 (en) * 2005-10-24 2007-04-26 Heraeus Sensor Technology Gmbh Flow sensor unit cleaning method, involves arranging temperature measuring unit and heat unit on carrier unit, and heating temperature measuring unit with additional platinum thin-film resistor
DE102005053120A1 (en) * 2005-11-08 2007-05-10 Robert Bosch Gmbh Sensor element for gas sensors and method for operating the same
DE102008007664A1 (en) * 2008-02-06 2009-08-13 Robert Bosch Gmbh Ceramic heating element for use in electrochemical gas sensor that detects soot particle in exhaust gas of e.g. internal combustion engine, has electric resistor elements arranged parallel to each other in ceramic layer plane
DE102012202944A1 (en) * 2011-02-28 2012-08-30 Ngk Spark Plug Co., Ltd. Gas sensor element and gas sensor
DE102013212307A1 (en) * 2013-06-26 2013-09-19 Robert Bosch Gmbh Manufacture of sensor element for e.g. measuring temperature of measurement gas in measuring chamber, involves forming solid electrolyte comprising solid electrolyte layers having different content of solid, and functional element(s)
DE102013205037A1 (en) * 2013-03-21 2014-09-25 Robert Bosch Gmbh Sensor element and exhaust gas sensor comprising a sensor element
DE102013211796A1 (en) * 2013-06-21 2014-12-24 Robert Bosch Gmbh Sensor element with conductor track and feedthrough

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005017296A1 (en) * 2004-04-15 2006-02-02 Denso Corp., Kariya Multilayer gas sensor element
DE102005051182A1 (en) * 2005-10-24 2007-04-26 Heraeus Sensor Technology Gmbh Flow sensor unit cleaning method, involves arranging temperature measuring unit and heat unit on carrier unit, and heating temperature measuring unit with additional platinum thin-film resistor
DE102005053120A1 (en) * 2005-11-08 2007-05-10 Robert Bosch Gmbh Sensor element for gas sensors and method for operating the same
DE102008007664A1 (en) * 2008-02-06 2009-08-13 Robert Bosch Gmbh Ceramic heating element for use in electrochemical gas sensor that detects soot particle in exhaust gas of e.g. internal combustion engine, has electric resistor elements arranged parallel to each other in ceramic layer plane
DE102012202944A1 (en) * 2011-02-28 2012-08-30 Ngk Spark Plug Co., Ltd. Gas sensor element and gas sensor
DE102013205037A1 (en) * 2013-03-21 2014-09-25 Robert Bosch Gmbh Sensor element and exhaust gas sensor comprising a sensor element
DE102013211796A1 (en) * 2013-06-21 2014-12-24 Robert Bosch Gmbh Sensor element with conductor track and feedthrough
DE102013212307A1 (en) * 2013-06-26 2013-09-19 Robert Bosch Gmbh Manufacture of sensor element for e.g. measuring temperature of measurement gas in measuring chamber, involves forming solid electrolyte comprising solid electrolyte layers having different content of solid, and functional element(s)

Also Published As

Publication number Publication date
DE102015226352A1 (en) 2017-06-22

Similar Documents

Publication Publication Date Title
DE10308558B4 (en) A prismatic gas sensor element in multilayer structure comprising a prismatic ceramic heater
DE3538460C2 (en)
DE3538458C2 (en)
DE3907312A1 (en) CERAMIC RESISTANCE HEATING DEVICE WITH CONNECTED HEATING DEVELOPERS AND AN ELECTROCHEMICAL ELEMENT OR ANALYZER USING SUCH A HEATING DEVICE
DE19715193B4 (en) Air / fuel ratio sensor
WO2017108314A1 (en) Particle sensor
KR101813346B1 (en) Metal paste for gas sensor electrode formation
JP4014623B2 (en) Gas sensor
DE10304671A1 (en) Oxygen sensor for automotive engines
DE102012214133A1 (en) Sensor element for detecting at least one property of a gas in a sample gas space
JP2006171013A (en) Ceramic heater, layered type gas sensor element, and gas sensor provided with layered type gas sensor element
JP2007206082A (en) Ceramic heater, laminated type gas sensor element and manufacturing method therefor, and gas sensor having the laminated type gas sensor element
WO2012084343A1 (en) Heating element for a gas sensor
DE10248033A1 (en) Gas sensor element with at least two cells
DE102005017296A1 (en) Multilayer gas sensor element
EP3394605A1 (en) Sensor element for detecting at least one property of a measuring gas in a measuring gas chamber
DE102011084737A1 (en) gas sensor
DE10129258A1 (en) Multi-layer gas sensor, use e.g. for regulating air-fuel ratio of car engines, has binding interface with crystals containing silica between zirconium oxide-type electrolyte sheet and alumina-type insulating sheet
DE102019001514A1 (en) Sensor element and gas sensor
WO2018210571A1 (en) Sensor for determining gas parameters
JP2007132954A (en) Ceramic heater, multilayered-type gas sensor element, and gas sensor provided with the multilayered-type gas sensor element
DE102013205037A1 (en) Sensor element and exhaust gas sensor comprising a sensor element
DE112022001724T5 (en) OXYGEN SENSOR ELEMENT AND METHOD FOR PRODUCING IT
US20180321182A1 (en) Sensor element and method for manufacturing a sensor element
EP1509764B1 (en) Heating device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16801184

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16801184

Country of ref document: EP

Kind code of ref document: A1