WO2017107722A1 - 多旋翼载人飞行器的电源管理系统及飞行器 - Google Patents

多旋翼载人飞行器的电源管理系统及飞行器 Download PDF

Info

Publication number
WO2017107722A1
WO2017107722A1 PCT/CN2016/106633 CN2016106633W WO2017107722A1 WO 2017107722 A1 WO2017107722 A1 WO 2017107722A1 CN 2016106633 W CN2016106633 W CN 2016106633W WO 2017107722 A1 WO2017107722 A1 WO 2017107722A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
management system
unit
contact
power management
Prior art date
Application number
PCT/CN2016/106633
Other languages
English (en)
French (fr)
Inventor
杜昊
罗顺河
Original Assignee
广州亿航智能技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州亿航智能技术有限公司 filed Critical 广州亿航智能技术有限公司
Publication of WO2017107722A1 publication Critical patent/WO2017107722A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0026
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/061Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for DC powered loads

Definitions

  • the present invention relates to the field of power supply technologies, and more particularly to a power management system and a flywheel for a multi-rotor manned aircraft.
  • the present invention provides a power management system for a multi-rotor manned aircraft, which can realize output control of a multi-rotor manned aircraft power source, and avoids loss of power of the aircraft due to a battery failure.
  • An aspect of the present invention provides a power management system for a multi-rotor manned aircraft, including at least two sets of battery cells, the at least two sets of battery cells being connected in parallel; each set of battery cells including a battery, and a fuse for overcurrent protection The relay for the battery unit of the group is abnormally controlled to control the battery unit to be broken.
  • each group of battery cells further includes a Hall current sensor for detecting the current of the group of battery cells.
  • the battery negative output line passes through the middle hole of the Hall current sensor and is connected to the negative output end of the battery unit, the positive electrode of the battery is connected to one end of the fuse, and the fuse is further One end is connected to the first contact of the relay, and the second contact of the relay is connected to the positive output end of the battery unit, and the first contact and the second contact form a set of connection contacts.
  • the relay is a dynamic relay; the working ⁇ relay coil is energized, the first contact and the second contact are closed; the battery unit is abnormal, the relay coil is powered off, the first contact and the second contact Click break.
  • the relay is a dynamic breaking type relay; the working ⁇ relay coil is powered off, the first contact and the first The two contacts are closed; the battery unit is abnormal, the relay coil is energized, and the first contact and the second contact are broken.
  • each group of battery cells further includes a battery detecting unit for detecting voltage, current, and temperature of the battery of the battery unit of the group, and the battery detecting unit controls relay opening and closing of the battery unit of the group.
  • the battery management unit is further included, and the battery detecting unit of each group of battery cells is connected to the battery management unit via a CAN bus.
  • the battery management unit is further connected to the whole bus through the CAN bus.
  • the number of the battery units is eight groups.
  • Another aspect of the present invention provides a multi-rotor manned aircraft including the power management system.
  • the power management system of the multi-rotor manned aircraft of the above technical solution by increasing the redundancy of the power supply of the electric aircraft, setting a plurality of battery units to supply power in parallel, and when a certain battery unit fails, the control is broken.
  • the battery unit, the other battery unit continues to output power to the aircraft, avoiding the aircraft losing power due to a battery failure, and ensuring the flight safety of the multi-rotor manned aircraft.
  • FIG. 1 is a schematic structural view of a power management system of a multi-rotor manned aircraft according to a preferred embodiment
  • FIG. 2 is a schematic diagram of a power management system of a multi-rotor manned aircraft according to another preferred embodiment. Structure diagram
  • FIG. 1 is a schematic structural view of a power management system of a multi-rotor manned aircraft according to a preferred embodiment.
  • a power management system of the multi-rotor manned aircraft of the present invention will be described with reference to FIG.
  • the power management system of the multi-rotor manned aircraft of the present invention includes at least two sets of battery cells, the at least The two sets of battery cells are connected in parallel.
  • Each battery unit includes a battery, a fuse for overcurrent protection, and a relay for the battery unit to be abnormally controlled to break the battery unit.
  • the number of the battery units is eight groups.
  • the power management system includes eight battery units (BMU1 ⁇ BMU8), and the output ends of the eight battery units are connected to the power supply bus of the aircraft.
  • the corresponding battery can be controlled to interrupt the entire battery system by the corresponding relay, that is, the battery unit is disconnected from the power supply bus; thereafter, other battery units can be Continue to output power to power the aircraft, thus preventing the aircraft from flying properly due to a battery failure.
  • each group of battery cells may further include a current sensor for detecting the current of the group of battery cells, preferably a Hall current sensor.
  • a current sensor for detecting the current of the group of battery cells, preferably a Hall current sensor.
  • the negative output line of the battery BAT1 passes through the middle hole of the Hall current sensor HI and is connected to the negative output terminal of the battery unit, thereby the Hall current sensor HI can detect the battery current of the group; meanwhile, the positive terminal of the battery B ATI is connected to one end of the fuse F1, the other end of the fuse F1 is connected to the first contact of the relay K1, and the second contact of the relay K1 is connected to the second contact
  • the positive output of the battery unit, the first contact and the second contact form a set of connection contacts.
  • the relay may be selected as a movable type relay; the working ⁇ relay coil is energized, the first contact and the second contact are closed; the battery unit is abnormal, the relay coil is powered off, and the first contact is The second contact is broken.
  • the relay may also select a dynamic breaking type relay; the working ⁇ relay coil is powered off, the first contact and the second contact are closed; the battery unit is abnormal, the relay coil is energized, the first touch The point is broken with the second contact.
  • each battery unit further includes a battery detecting unit BMC (BATTERY)
  • the MANAGEMENT CELL also known as BCU: BATTERY CHECK UNIT
  • BCU BATTERY CHECK UNIT
  • the battery detection unit BMC detects that the voltage of the battery unit exceeds the normal voltage range (not higher than 90V), or detects that the temperature of the battery unit exceeds the normal temperature range (not higher than 60 degrees Celsius), Controlling the relay break in the battery unit of the group
  • the battery unit of the group is disconnected from the power supply bus of the aircraft, and the protection battery does not have problems such as over-discharge or over-charging.
  • the aircraft power management system of the present invention further includes a battery management unit BMU, and the battery detection unit BMC of each battery unit is connected to the battery management unit BMU through the CAN bus.
  • the battery management unit BMU is also connected to the whole bus via the CAN bus.
  • the battery management unit BMU counts the information of each group of battery units and sends them to the whole bus, so that other devices in the aircraft system can be adjusted according to the power supply.
  • the battery detecting unit BMC sends the detected voltage, temperature, current and other information of the battery to the battery management unit BMU through the CAN bus 1 software communication mode, and the battery management unit BMU collects statistics of each group of battery units. After the information, the complete battery information of all the battery units is sent to the whole bus through the CAN bus 2 software communication method, so that other devices in the system can obtain the power, voltage, temperature and other information of the current power battery.
  • the power management system includes eight battery units (BMU1 ⁇ BMU8), and eight battery units are connected to the battery management unit BMU through the CAN IV physical bus, and the battery management unit BMU is further Access to the entire bus via the CAN I physical bus. Also, assume that each battery unit has the same status in the power management system. Based on the power management system shown in Figure 1, even if four of the battery units have a battery failure, the power output from the other four battery units can ensure safe landing of the aircraft.
  • FIG. 2 is a schematic structural diagram of a power management system of a multi-rotor manned aircraft according to another preferred embodiment; the power management system shown in FIG. 2 also includes eight battery cells, respectively corresponding to battery detection.
  • Units BMC1 ⁇ BMC8 (the battery cells of each group are similar in structure, only three of which are shown in Figure 2).
  • the battery detection unit BMC1 ⁇ BMC8 reports the voltage, current and temperature information of the battery detected by the battery to the battery management unit BMU through the CAN bus.
  • the power management system of the multi-rotor manned aircraft of the above embodiment of the present invention by increasing the redundancy of the electric vehicle power supply, the plurality of battery units are set to be powered in parallel, and when a certain battery unit fails, the control is performed. The battery unit is disconnected, and the other battery units continue to output power to the aircraft, preventing the aircraft from losing power due to a battery failure, and ensuring the flight safety of the multi-rotor manned aircraft.
  • FIG. 1 and FIG. 2 do not constitute.
  • the definition may include more or fewer devices than shown, or some devices may be combined, or have different device position arrangements.
  • the power management system of the multi-rotor manned aircraft of the present invention by increasing the redundancy of the electric vehicle power supply, sets a plurality of battery units to be powered in parallel, and when a certain battery unit fails, the group is controlled to be broken.
  • the battery unit, the other battery unit continues to output power to the aircraft, avoiding the aircraft losing power due to a battery failure, and ensuring the flight safety of the multi-rotor manned aircraft. Therefore, it has industrial applicability.

Abstract

一种多旋翼载人飞行器的电源管理系统及飞行器,所述电源管理系统包括至少两组电池单元(BMU1-BMU8),所述至少两组电池单元(BMU1-BMU8)并联;每组电池单元(BMU1-BMU8)包括电池(BAT1-BAT8)、用于过流保护的熔断器(F1-F8)、用于该组电池单元(BMU1-BMU8)异常时控制该组电池单元(BMU1-BMU8)断开的继电器(k1-k8)。能够实现多旋翼载人飞行器电源的输出控制,避免飞行器因某一电池故障而失去动力。

Description

说明书 发明名称:多旋翼载人飞行器的电源管理系统及飞行器 技术领域
[0001] 本发明涉及电源技术领域, 特别是涉及多旋翼载人飞行器的电源管理系统及飞 行器。
背景技术
[0002] 现有的电动飞行器通常通过一个电池、 或者一组电池 (由几个电池通过并联和 串联构成) 提供电源, 当其中任意一个电池出现故障 (如短路) 吋, 整组电池 将停止电源输出, 使得整个飞行器因此失去动力, 无法正常飞行。 对于固定翼 飞行器来说, 可以通过滑翔实现迫降, 但对于多旋翼飞行器来说, 将意味着极 度的危险。
技术问题
[0003] 基于此, 本发明提供一种多旋翼载人飞行器的电源管理系统, 能够实现多旋翼 载人飞行器电源的输出控制, 避免飞行器因某一电池故障而失去动力。
问题的解决方案
技术解决方案
[0004] 本发明一方面提供一种多旋翼载人飞行器的电源管理系统, 包括至少两组电池 单元, 所述至少两组电池单元并联; 每组电池单元包括电池、 用于过流保护的 熔断器、 用于该组电池单元异常吋控制该组电池单元断幵的继电器。
[0005] 优选的, 每组电池单元还包括用于检测该组电池单元电流的霍尔电流传感器。
[0006] 优选的, 每组电池单元中, 电池负极输出线从霍尔电流传感器中间孔洞穿过、 并连接至该组电池单元的负极输出端, 电池正极连接熔断器的一端, 熔断器的 另一端连接继电器的第一触点, 继电器的第二触点连接该组电池单元的正极输 出端, 第一触点和第二触点构成一组连接触点。
[0007] 优选的, 所述继电器为动合型继电器; 工作吋继电器线圈通电, 第一触点与第 二触点闭合; 该电池单元异常吋继电器线圈断电, 第一触点与第二触点断幵。
[0008] 优选的, 所述继电器为动断型继电器; 工作吋继电器线圈断电, 第一触点与第 二触点闭合; 该电池单元异常吋继电器线圈通电, 第一触点与第二触点断幵。
[0009] 优选的, 每组电池单元还包括用于检测本组电池单元的电池的电压、 电流、 温 度的电池检测单元, 电池检测单元控制该组电池单元的继电器通断。
[0010] 优选的, 还包括电池管理单元, 每组电池单元的电池检测单元均通过 CAN总线 与所述电池管理单元连接。
[0011] 优选的, 所述电池管理单元还通过 CAN总线与整机总线连接。
[0012] 优选的, 所述电池单元的数量为八组。
[0013] 本发明另一方面提供一种多旋翼载人飞行器, 包括所述的电源管理系统。
发明的有益效果
有益效果
[0014] 上述技术方案的多旋翼载人飞行器的电源管理系统, 通过提高电动飞行器电源 的冗余度, 设置多组电池单元并联进行供电, 并且当某组电池单元出现故障吋 , 控制断幵该组电池单元, 此吋其它组电池单元继续为飞行器输出动力, 避免 飞行器因某一个电池故障而失去动力, 保障多旋翼载人飞行器的飞行安全。 对附图的简要说明
附图说明
[0015] 图 1为一优选实施方式的多旋翼载人飞行器的电源管理系统的示意性结构图; [0016] 图 2为另一优选实施方式的多旋翼载人飞行器的电源管理系统的示意性结构图
本发明的实施方式
[0017] 为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合附图及实施例 , 对本发明进行进一步详细说明。 应当理解, 此处所描述的具体实施例仅仅用 以解释本发明, 并不用于限定本发明。
[0018] 图 1为一优选实施方式的多旋翼载人飞行器的电源管理系统的示意性结构图, 下面结合图 1, 对本发明多旋翼载人飞行器的电源管理系统进行说明。
[0019] 本发明的多旋翼载人飞行器的电源管理系统包括至少两组电池单元, 所述至少 两组电池单元并联。 每组电池单元包括电池、 用于过流保护的熔断器、 用于该 组电池单元异常吋控制该组电池单元断幵的继电器。
[0020] 优选的, 本实施例的多旋翼载人飞行器的电源管理系统中, 所述电池单元的数 量为八组。 如图 1所示, 所述电源管理系统包括 8组电池单元 (BMU1~ BMU8) , 8组电池单元的输出端均与飞行器的动力电源母线连接。 当其中任一组电池单 元的电池出现故障吋, 可通过对应的继电器控制该组电池单元从整个电源系统 中断幵, 即该组电池单元与动力电源母线断幵; 此吋, 其它组电池单元可继续 输出电源为飞行器提供动力, 从而避免飞行器因某一个电池故障而无法正常飞 行。
[0021] 进一步的, 所述每组电池单元还可包括电流传感器, 用于检测该组电池单元电 流, 优选霍尔电流传感器。 具体如图 2所示, 在第一组电池单元中, 电池 BAT1 的负极输出线从霍尔电流传感器 HI中间孔洞穿过、 并连接至该组电池单元的负 极输出端, 由此霍尔电流传感器 HI可检测该组电池单元电流; 同吋, 所述电池 B ATI的正极连接熔断器 F1的一端, 熔断器 F1的另一端连接继电器 K1的第一触点 , 继电器 K1的第二触点连接该组电池单元的正极输出端, 第一触点和第二触点 构成一组连接触点。
[0022] 作为一优选实施方式, 上述继电器可选用动合型继电器; 工作吋继电器线圈通 电, 第一触点与第二触点闭合; 该电池单元异常吋继电器线圈断电, 第一触点 与第二触点断幵。
[0023] 作为另一优选实施方式, 上述继电器还可选用动断型继电器; 工作吋继电器线 圈断电, 第一触点与第二触点闭合; 该电池单元异常吋继电器线圈通电, 第一 触点与第二触点断幵。
[0024] 进一步的, 每组电池单元还包括电池检测单元 BMC (BATTERY
MANAGEMENT CELL, 也可称为 BCU: BATTERY CHECK UNIT) , 用于检测 本组电池单元的电池的电压、 电流和温度, 并通过电池检测单元 BMC控制该组 电池单元的继电器通断。 例如: 当电池检测单元 BMC检测到该组电池单元的电 压超出正常的电压范围 (不高于 90V) , 或者检测到该组电池单元的温度超出正 常温度范围 (不高于 60摄氏度) 吋, 可控制该组电池单元中的继电器断幵, 使 该组电池单元与飞行器的动力电源母线断幵, 保护电池不会出现过放或者过充 等问题。
[0025] 进一步的, 本发明的飞行器电源管理系统还包括一个电池管理单元 BMU, 每 组电池单元的电池检测单元 BMC均通过 CAN总线与所述电池管理单元 BMU连接 。 同吋, 所述电池管理单元 BMU还通过 CAN总线与整机总线连接。 所述电池管 理单元 BMU统计各组电池单元的信息并发到整机总线上, 便于飞行器系统中其 它设备可根据电源情况进行相应调整。 具体如: 电池检测单元 BMC通过 CAN总 线 1软件通讯方式, 将检测到的电池的电压、 温度、 电流等信息发送给所述电池 管理单元 BMU, 所述电池管理单元 BMU搜集统计各组电池单元的信息后, 通过 CAN总线 2软件通讯方式, 将全部组电池单元的完整电池信息发到整机总线上, 使系统中其他设备都能得到当前动力电池的电量、 电压、 温度等信息。
[0026] 具体的, 如图 1所示, 所述电源管理系统包括 8组电池单元 (BMU1~ BMU8) , 8组电池单元均通过 CAN IV物理总线与电池管理单元 BMU连接, 电池管理单 元 BMU还通过 CAN I物理总线接入整机总线。 并且, 假设每组电池单元在电源 管理系统中的地位相同。 基于图 1所示的电源管理系统, 即使其中 4组电池单元 出现电池故障, 其它 4组电池单元输出的动力仍可保证飞行器安全降落。
[0027] 进一步的, 图 2为另一优选实施方式的多旋翼载人飞行器的电源管理系统的示 意性结构图; 图 2所示的电源管理系统中也包括 8组电池单元, 分别对应电池检 测单元 BMC1~ BMC8 (各组电池单元结构类似, 图 2中仅示出了其中 3组) 。 电 池检测单元 BMC1~ BMC8均通过 CAN总线将各自检测到的电池的电压、 电流、 温度信息上报给电池管理单元 BMU。
[0028] 通过本发明上述实施例的多旋翼载人飞行器的电源管理系统, 通过提高电动飞 行器电源的冗余度, 设置多组电池单元并联进行供电, 并且当某组电池单元出 现故障吋, 控制断幵该组电池单元, 此吋其它组电池单元继续为飞行器输出动 力, 避免飞行器因某一个电池故障而失去动力, 保障了多旋翼载人飞行器的飞 行安全。
[0029] 需要说明的是, 在上述实施例中, 仅示出了与本发明实施例相关的部分, 本领 域技术人员可以理解, 图 1和图 2中示出的电源管理系统结构并不构成对本发明 的限定, 可以包括比图示更多或更少的器件, 或者组合某些器件, 或者有不同 的器件位置布置。
[0030] 以上所述实施例仅表达了本发明的优选实施方式, 不能理解为对本发明专利范 围的限制。 应当指出的是, 对于本领域的普通技术人员来说, 在不脱离本发明 构思的前提下, 还可以做出若干变形和改进, 这些都属于本发明的保护范围。 因此, 本发明专利的保护范围应以所附权利要求为准。
工业实用性
[0031] 本发明的多旋翼载人飞行器的电源管理系统, 通过提高电动飞行器电源的冗余 度, 设置多组电池单元并联进行供电, 并且当某组电池单元出现故障吋, 控制 断幵该组电池单元, 此吋其它组电池单元继续为飞行器输出动力, 避免飞行器 因某一个电池故障而失去动力, 保障多旋翼载人飞行器的飞行安全。 因此, 具 有工业实用性。

Claims

权利要求书
一种多旋翼载人飞行器的电源管理系统, 其中包括至少两组电池单元 , 所述至少两组电池单元并联; 每组电池单元包括电池、 用于过流保 护的熔断器、 用于该组电池单元异常吋控制该组电池单元断幵的继电 器。
根据权利要求 1所述的电源管理系统, 其中, 每组电池单元还包括用 于检测该组电池单元电流的霍尔电流传感器。
根据权利要求 2所述的电源管理系统, 其中, 每组电池单元中, 电池 负极输出线从霍尔电流传感器中间孔洞穿过、 并连接至该组电池单元 的负极输出端, 电池正极连接熔断器的一端, 熔断器的另一端连接继 电器的第一触点, 继电器的第二触点连接该组电池单元的正极输出端 , 第一触点和第二触点构成一组连接触点。
根据权利要求 3所述的电源管理系统, 其中, 所述继电器为动合型继 电器; 工作吋继电器线圈通电, 第一触点与第二触点闭合; 该电池单 元异常吋继电器线圈断电, 第一触点与第二触点断幵。 根据权利要求 3所述的电源管理系统, 其中, 所述继电器为动断型继 电器; 工作吋继电器线圈断电, 第一触点与第二触点闭合; 该电池单 元异常吋继电器线圈通电, 第一触点与第二触点断幵。 根据权利要求 1所述的电源管理系统, 其中, 每组电池单元还包括用 于检测本组电池单元的电池的电压、 电流、 温度的电池检测单元, 电 池检测单元控制该组电池单元的继电器通断。
根据权利要求 6所述的电源管理系统, 其中, 还包括电池管理单元, 每组电池单元的电池检测单元均通过 CAN总线与所述电池管理单元 连接。
根据权利要求 7所述的电源管理系统, 其中, 所述电池管理单元还通 过 CAN总线与整机总线连接。
根据权利要求 1所述的电源管理系统, 其中, 所述电池单元的数量为 八组。 [权利要求 10] —种多旋翼载人飞行器, 其中, 包括权利要求 1-9任一项所述的电源 管理系统。
PCT/CN2016/106633 2015-12-25 2016-11-21 多旋翼载人飞行器的电源管理系统及飞行器 WO2017107722A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201511003863.5A CN105576747B (zh) 2015-12-25 2015-12-25 多旋翼载人飞行器的电源管理系统及飞行器
CN201511003863.5 2015-12-25

Publications (1)

Publication Number Publication Date
WO2017107722A1 true WO2017107722A1 (zh) 2017-06-29

Family

ID=55886567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/106633 WO2017107722A1 (zh) 2015-12-25 2016-11-21 多旋翼载人飞行器的电源管理系统及飞行器

Country Status (2)

Country Link
CN (1) CN105576747B (zh)
WO (1) WO2017107722A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020060488A1 (en) 2018-09-18 2020-03-26 H3 Dynamics Holdings Pte. Ltd. Unmanned vehicle

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105576747B (zh) * 2015-12-25 2018-08-03 广州亿航智能技术有限公司 多旋翼载人飞行器的电源管理系统及飞行器
CN107416212A (zh) * 2016-09-07 2017-12-01 亿航智能设备(广州)有限公司 一种多旋翼飞行器的电机调速系统以及多旋翼飞行器
CN107800186A (zh) * 2016-09-07 2018-03-13 亿航智能设备(广州)有限公司 多旋翼载人飞行器电源的反馈控制方法及装置
CN106707192B (zh) * 2017-01-23 2023-06-16 深圳市哈威飞行科技有限公司 飞行器安全检测管理装置及安全控制系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202134929U (zh) * 2011-06-22 2012-02-01 武汉理工大学 基于三层can网络的分布式电池管理系统
CN102969756A (zh) * 2012-11-06 2013-03-13 中国科学院苏州纳米技术与纳米仿生研究所 具有自检修功能的智能蓄电池组及其连接电路
CN104009512A (zh) * 2013-02-25 2014-08-27 波音公司 电池模块系统
CN203932249U (zh) * 2014-06-26 2014-11-05 江苏奥新新能源汽车有限公司 一种基于分布式控制动力电池的电池结构
CN105576747A (zh) * 2015-12-25 2016-05-11 广州亿航智能技术有限公司 多旋翼载人飞行器的电源管理系统及飞行器
CN205377342U (zh) * 2015-12-25 2016-07-06 广州亿航智能技术有限公司 多旋翼载人飞行器的电源管理系统及飞行器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009005270A1 (de) * 2008-10-29 2010-05-12 Diehl Aerospace Gmbh Elektrisches Energieversorgungssystem, insbesondere in einem Luftfahrzeug
CN202455044U (zh) * 2011-11-25 2012-09-26 深圳市比亚迪锂电池有限公司 一种具有短路和过载保护功能的动力电池组
FR3001443B1 (fr) * 2013-01-30 2016-05-27 Microturbo Procede et systeme d'alimentation en energie electrique d'un aeronef
CN204398897U (zh) * 2014-10-31 2015-06-17 惠州市亿能电子有限公司 一种新型环保轨道机车电源系统
CN104578282A (zh) * 2014-12-25 2015-04-29 芜湖市汽车产业技术研究院有限公司 一种车载电源电路
CN104859851A (zh) * 2015-04-27 2015-08-26 刘朝阳 由带导流舵的涵道升力风扇驱动的多旋翼飞行器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202134929U (zh) * 2011-06-22 2012-02-01 武汉理工大学 基于三层can网络的分布式电池管理系统
CN102969756A (zh) * 2012-11-06 2013-03-13 中国科学院苏州纳米技术与纳米仿生研究所 具有自检修功能的智能蓄电池组及其连接电路
CN104009512A (zh) * 2013-02-25 2014-08-27 波音公司 电池模块系统
CN203932249U (zh) * 2014-06-26 2014-11-05 江苏奥新新能源汽车有限公司 一种基于分布式控制动力电池的电池结构
CN105576747A (zh) * 2015-12-25 2016-05-11 广州亿航智能技术有限公司 多旋翼载人飞行器的电源管理系统及飞行器
CN205377342U (zh) * 2015-12-25 2016-07-06 广州亿航智能技术有限公司 多旋翼载人飞行器的电源管理系统及飞行器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020060488A1 (en) 2018-09-18 2020-03-26 H3 Dynamics Holdings Pte. Ltd. Unmanned vehicle

Also Published As

Publication number Publication date
CN105576747A (zh) 2016-05-11
CN105576747B (zh) 2018-08-03

Similar Documents

Publication Publication Date Title
WO2017107722A1 (zh) 多旋翼载人飞行器的电源管理系统及飞行器
JP7432995B2 (ja) リチウムイオン電池高圧配電システムアーキテクチャ
CN205377342U (zh) 多旋翼载人飞行器的电源管理系统及飞行器
US20220115878A1 (en) Smart Battery Disconnect and Protection Architecture for Airborne High-Power Modular Multi-String Battery Pack
WO2017000238A1 (zh) 一种电池管理方法、单体电池、飞行控制系统及无人机
TR201802364T4 (tr) İzole bir doğru akım şebekesindeki yüksek performanslı bir batarya için yüksek hızda devre kesici.
US8816639B2 (en) Charge balancing topology
CN105676091A (zh) 一种电池组绝缘检测装置及其绝缘检测方法
JP2002142353A (ja) 組電池
US20220271529A1 (en) Power distribution network
EP4133544A1 (en) Modular-scalable decentralized high voltage battery system background
CN204928331U (zh) 一种单体电池、无人机以及用于组装成无人机的套件
WO2018045848A1 (zh) 多旋翼载人飞行器电源的反馈控制方法及装置
US10886578B2 (en) Battery management device
WO2024055900A1 (zh) 具有多备份通讯主机的电池管理系统及飞行器
JP6848075B2 (ja) 蓄電池装置
JP6007813B2 (ja) 車載電源装置
WO2024027043A1 (zh) 飞行汽车配电系统、方法及飞行汽车
KR102382161B1 (ko) 이중 직병렬 패스를 이용한 셀 밸런싱 회로
WO2018045806A1 (zh) 一种多旋翼飞行器的电机调速系统以及多旋翼飞行器
US9985321B2 (en) Battery system
CN206231629U (zh) 一种多旋翼飞行器的电机调速系统以及多旋翼飞行器
US11380942B2 (en) High voltage battery module with series connected cells and internal relays
CN115923586A (zh) 一种电池系统过电流保护方法及车辆
WO2019038553A1 (en) BATTERY SAFETY PROTECTION

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16877533

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16877533

Country of ref document: EP

Kind code of ref document: A1