WO2017107717A1 - 一种用于多传输时间间隔tti系统的数据传输方法、装置及设备 - Google Patents

一种用于多传输时间间隔tti系统的数据传输方法、装置及设备 Download PDF

Info

Publication number
WO2017107717A1
WO2017107717A1 PCT/CN2016/106459 CN2016106459W WO2017107717A1 WO 2017107717 A1 WO2017107717 A1 WO 2017107717A1 CN 2016106459 W CN2016106459 W CN 2016106459W WO 2017107717 A1 WO2017107717 A1 WO 2017107717A1
Authority
WO
WIPO (PCT)
Prior art keywords
self
contained
contained feedback
feedback
sub
Prior art date
Application number
PCT/CN2016/106459
Other languages
English (en)
French (fr)
Inventor
刘亚林
陈磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP16877528.6A priority Critical patent/EP3364588A4/en
Publication of WO2017107717A1 publication Critical patent/WO2017107717A1/zh
Priority to US15/992,988 priority patent/US20180278291A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0008Wavelet-division
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/66Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission for reducing bandwidth of signals; for improving efficiency of transmission
    • H04B1/667Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission for reducing bandwidth of signals; for improving efficiency of transmission using a division in frequency subbands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a data transmission method, apparatus, and device for a multi-transmission time interval TTI system.
  • the future 5G demand mainly includes three aspects: one is enhanced mobile broadband (English: enhanced Mobile Broadband; referred to as: eMBB), and the second is The communication requirements of the MTC class and the third are ultra-reliable and extremely low-latency communication.
  • eMBB enhanced mobile broadband
  • the peak rate will be 10-100 times that of Long Term Evolution (English: Long Term Evolution; LTE for short).
  • LTE Long Term Evolution
  • the current discussion in the industry is to meet the air interface transmission feedback delay of 1ms.
  • the time from the receipt of the scheduling signaling by the terminal to the hybrid automatic repeat request (Hybrid Automatic Repeat Request, HARQ) feedback transmission, or the time when the terminal transmits the HARQ feedback to the receiving base station is not More than 0.5ms.
  • 5G can adapt to a variety of business needs, and the diversity of business requirements requires that 5G be technically flexible to support different services, and can adapt to future potential business needs. Therefore, 5G technology is required to have great flexibility. For example, mobile services with high-speed motion (500km/h) are also relatively static. Business. Different services require 5G air interface waveforms to adapt to their changes. Therefore, in the future, 5G must be able to support different transmission time intervals (English: Transmission Time Interval; TTI) on one carrier to meet different service requirements. That is, different waveforms can be used on one carrier to accommodate different traffic transmissions.
  • TTI Transmission Time Interval
  • the prior art discloses a method for adaptive TTI, that is, in order to be able to adapt to various different service requirements in the future, some services have a relatively low transmission delay, and some services have a relatively long TTI transmission due to high-speed motion.
  • a typical multi-TTI frame structure is shown in FIG. 1.
  • one frequency band is divided into a plurality of sub-bands or carriers, and each sub-band transmits a frame structure of a length TTI, and three different TTIs are supported as shown in FIG. 1.
  • the information of the TTI supported by the system is notified to the terminal through a system broadcast message.
  • the notification message will only be notified in one sub-band, so there will be a sub-band to send the downlink broadcast message.
  • This subband is referred to as a common subband, and is mainly used to transmit downlink broadcast messages and the like, such as MIB, SIB, and the like.
  • random access resources are not defined in each subband, and random access resources can be defined in common subbands.
  • the service that the user may actually transmit needs to be transmitted using different TTIs, the user needs to be scheduled from the common sub-band to the sub-band of the specific TTI. Therefore, it is necessary to consider how the user can take a common sub-band to a specific TTI sub-band during the random access procedure.
  • Embodiments of the present invention provide a data transmission method, apparatus, and device for a multi-transmission time interval TTI system.
  • TTI time interval
  • By configuring self-contained feedback across sub-bands it is possible to solve the self-contained feedback of each sub-band due to different TTIs.
  • the parameters are difficult to configure and the overhead is too large, so that you can make full use of system resources.
  • embodiments of the present invention adopt the following technical solutions:
  • an embodiment of the present invention provides a data transmission method for a multi-transmission time interval TTI system, including:
  • At least two of the plurality of sub-bands have different TTIs
  • the parameters of the self-contained feedback of at least two of the plurality of sub-bands are the same, and the self-contained feedback of the plurality of sub-bands has the same length of time.
  • the data transmission method further includes:
  • the parameters of the self-contained feedback are configured according to the parameter configuration signaling.
  • an embodiment of the present invention provides a data transmission apparatus for a multi-transmission time interval TTI system, including:
  • a transmission module configured to transmit the data frame on multiple sub-bands into which one carrier is divided;
  • At least two of the plurality of sub-bands have different TTIs
  • the parameters of the self-contained feedback of at least two of the plurality of sub-bands are the same, and the self-contained feedback of the plurality of sub-bands has the same length of time.
  • the data transmission device further includes:
  • the transmission module is further configured to transmit parameter configuration signaling of the self-contained feedback
  • a configuration module configured to configure, according to the parameter configuration signaling, a parameter of the self-contained feedback.
  • an embodiment of the present invention provides a data transmission device for a multi-transmission time interval TTI system, including: a processor, a memory, a transceiver, and a bus, wherein the processor, the memory, and the transceiver Data transmission through the bus connection, the memory being used to store data processed by the processor;
  • the processor is configured to generate a data frame including self-contained feedback
  • the transceiver is configured to transmit the data frame on multiple sub-bands into which one carrier is divided;
  • At least two of the plurality of sub-bands have different TTIs
  • the parameters of the self-contained feedback of at least two of the plurality of sub-bands are the same, and the self-contained feedback of the plurality of sub-bands has the same length of time.
  • the transceiver is further configured to transmit parameter configuration signaling of the self-contained feedback
  • the processor is further configured to configure parameters of the self-contained feedback according to the parameter configuration signaling.
  • the embodiment of the present invention provides a further description as follows:
  • the data frame can represent a data resource having a certain transmission time length in the full frequency band.
  • the transmission time length of the data frame is not limited in the embodiment of the present invention, and may be, for example, 1 ms or 10 ms, which needs to be determined according to actual conditions.
  • each data frame may contain an even number of symbols.
  • the data frame and the self-contained feedback in the data frame may refer to a data resource used for feedback in the data resource. For example, the part of the data frame except the self-contained feedback is used to send downlink data, then the self-contained feedback can be used for uplink feedback (the uplink control signal can be fed back); otherwise, the self-contained feedback can be used for Downstream feedback.
  • the data frame may contain one or more self-contained feedback. That is, multiple self-contained feedbacks can be set in the data frame.
  • the parameter configuration signaling carries an index indicating a parameter of the self-contained feedback, wherein different indexes indicate different self-contained feedback parameters.
  • the parameter configuration signaling of the self-contained feedback is delivered by using system broadcast or dedicated configuration signaling or dynamic configuration signaling.
  • the dedicated configuration signaling may be RRC signaling or MAC layer signaling.
  • the dynamic configuration signaling may be physical layer control signaling.
  • the dynamic configuration signaling is control signaling of each of the multiple subbands; a parameter of self-contained feedback of each of the multiple subbands passes each of the multiple subbands Individually configured with separate control signaling.
  • parameters of the self-contained feedback can be flexibly configured.
  • the parameter of the self-contained feedback includes at least one of: a starting position, a bandwidth, a configuration interval indication, a reference waveform parameter of the self-contained feedback, and a symbol that is greater than a reference symbol length.
  • the waveform parameters of the portion occupied by the self-contained feedback are configured.
  • At least two of the at least two sub-bands are adjacent sub-bands. That is to say, at least two of the subbands having the same parameters of the self-contained feedback are adjacent subbands.
  • the remaining portion of the symbol may be scheduled for transmitting data. Further, said The remainder of the symbol can take the waveform parameters of the sub-band with a smaller TTI.
  • the embodiment of the present invention provides a method for using self-contained feedback, that is, the user equipment UE receives time-frequency resource information used by the self-contained feedback sent by the network side, and the sub-band occupied by the time-frequency resource
  • the subbands of the data frame sent by the UE may be different;
  • the UE performs self-contained feedback on the time-frequency resource.
  • the using method before the UE receives the time-frequency resource information used by the self-contained feedback sent by the network side, the using method further includes: the UE receiving the The parameter configuration signaling of the self-contained feedback; the UE configures the parameters of the self-contained feedback according to the parameter configuration signaling.
  • a frame structure including self-contained feedback across sub-bands is designed in the case of multiple TTI sub-bands, which can solve the problem that the parameters of self-contained feedback due to different TTIs are difficult to configure and overhead. Big problem.
  • the self-contained feedback across the sub-bands By configuring the self-contained feedback across the sub-bands, the problem that the resource utilization of the self-contained feedback is too low due to different TTI and waveform parameter configurations can be solved, and the self-contained feedback can be improved by the embodiment of the present invention. Resource utilization.
  • Figure 1 shows a typical multi-TTI frame structure
  • FIG. 2 is a schematic diagram of two frame structures carrying self-contained feedback
  • FIG. 3 is a schematic structural diagram of a multi-TTI frame according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of a frame structure based on F-OFDM
  • FIG. 5 is a schematic diagram of self-contained feedback configured with reference to a symbol corresponding to a short TTI
  • FIG. 6 is a schematic diagram of self-contained feedback configured with reference to a symbol corresponding to a long TTI;
  • FIG. 7 is a schematic diagram of a frame structure of self-contained feedback based on F-OFDM according to an embodiment of the present disclosure
  • Figure 8 is a schematic diagram of various self-contained parameter configurations
  • Figure 9 is a schematic diagram of two self-contained time slots per millisecond.
  • FIG. 10 is a schematic diagram of self-contained feedback configured with subbands having the largest subcarrier spacing as a reference;
  • 11 is a schematic diagram of a self-contained feedback configuration based on a symbol with a subcarrier spacing of 16.875 kHz;
  • FIG. 12 is a schematic diagram of a frame structure of a self-contained feedback that does not include a GP according to an embodiment of the present disclosure
  • Figure 13 is a schematic diagram of self-contained feedback using a conventional carrier spacing configuration
  • FIG. 14 is a schematic diagram of a configuration reference of a waveform of eMBB as a self-contained feedback
  • FIG. 15 is a schematic flowchart of a configuration of self-contained feedback according to an embodiment of the present disclosure.
  • FIG. 16 is a schematic flowchart of another configuration of self-contained feedback according to an embodiment of the present disclosure.
  • FIG. 17 is a flowchart of a data transmission apparatus for a multi-transmission time interval TTI system according to an embodiment of the present invention.
  • FIG. 18 provides a data transmission device for a multi-transmission time interval TTI system according to an embodiment of the present invention.
  • Self-contained feedback refers to each sub-frame or several consecutive sub-frames of downlink or uplink in Time Division Duplexing (TDD) Configure an upstream or downstream feedback resource for the tail of the whole.
  • the feedback resource refers to a time-frequency resource, that is, one or several symbols occupying a certain bandwidth.
  • This feedback resource can be mainly used for feedback of ACK/NACK of HARQ. Considering the TDD system, this feedback resource may be needed for upstream and downstream.
  • the self-contained feedback may also be referred to as a self-contained time slot or a time slot or a self-contained time slot.
  • the self-contained feedback in the embodiment of the present invention refers to one or more symbols configured at the end of each sub-frame or several consecutive sub-frames of the downlink or uplink of the TDD, where one or more The symbol belongs to a part of the last subframe of the current or several consecutive subframes.
  • Figure 2 is a schematic diagram of two frame structures carrying self-contained feedback.
  • self-contained feedback there are two main ways to implement self-contained feedback: one is to include one or more uplink ACKs after each subframe.
  • the NACK symbol the second is to set the self-contained feedback to be configurable, and may be that multiple subframes contain one or more symbols for self-contained feedback transmission.
  • a guard interval is set between the self-contained feedback and the downlink data (shaded portion as shown in FIG. 2).
  • the self-contained feedback may be an uplink feedback (for example, an uplink control part in FIG. 2), or may be a downlink feedback (for example, a downlink control part in FIG. 2), which is not limited by the embodiment of the present invention unless otherwise specified.
  • the above implementation mainly considers adding a feedback resource at the end of a unified frame structure.
  • the case of supporting multiple different TTIs on one carrier is not considered, especially in the case of applying Filtered Orthogonal Frequency Division Multiplexing (F-OFDM). Need to consider how to make self-contained feedback.
  • F-OFDM Filtered Orthogonal Frequency Division Multiplexing
  • different TTIs refer to dividing a carrier into multiple sub-bands for each service (each sub-subband occupies a part of the frequency band of the carrier), so that each sub-band adopts different waveform parameters (for example: sub-carrier spacing, cyclic prefix ( English: Cyclic Prefix; abbreviation: CP) length, TTI length, etc.), so the transmission time interval of each sub-band is different, so as to meet the transmission time interval requirements of different services.
  • waveform parameters for example: sub-carrier spacing, cyclic prefix ( English: Cyclic Prefix; abbreviation: CP) length, TTI length, etc.
  • the carrier can be divided into multiple sub-bands, and the TTI length of each sub-band may be different.
  • the TTI lengths of different lengths are adapted to different types of service requirements.
  • FIG. 3 is a schematic diagram of a multi-TTI frame structure, as shown in FIG. , the carrier or channel is divided into multiple sub-bands (for example: including sub-bands 1-4 and The common subbands, wherein the TTIs of the respective subbands may be different, and the initiation of the random access is mainly performed on the common subband.
  • self-contained feedback can keep the waveform parameters of each sub-band (all sub-bands) or several sub-bands to maintain self-contained feedback to simplify the system and improve spectrum utilization.
  • each subband corresponding to TTI 1, TTI 2, and TTI 3 may be composed of multiple subcarriers, and the subcarrier spacing of the three subbands may be 30 KHz, respectively. , 15KHz, 7.5KHz. Different subcarrier spacings result in different numbers of symbols in each TTI.
  • the length of each TTI is only an example, and other lengths.
  • the above figure uses TTIs of 0.25ms, 0.5ms, and 1ms. It should be noted that, in FIG. 4, it is only an example. In practice, more or fewer sub-bands may be included, and the sub-carrier spacing may also be other values. The difference of these parameters does not affect the implementation of the method of the embodiment of the present invention.
  • FIG. 4 is a self-contained feedback diagram configured with reference to the symbol corresponding to the short TTI. As shown in FIG. 4
  • self-contained feedback is configured based on the symbol corresponding to TTI1, that is, Said, the time slot of the TTI1 length is configured as self-contained feedback.
  • the portion of the last symbol of the tail is occupied, and the symbol cannot be used, and the last symbol may be wasted. Especially for TTI 3, it will cause serious waste.
  • One of the 7 symbols in 1 ms cannot be utilized; for TTI 2, one of the 14 symbols cannot be utilized. If you need to configure two self-contained time slots in 1ms, the resource waste will be even greater.
  • FIG. 6 is a self-contained feedback diagram with reference to the symbol of the corresponding long TTI. As shown in Figure 6, the TTI of 0.25ms contains 4 symbols. Used for self-contained feedback, if the uplink feedback is not so much, it will also cause waste of resources. Therefore, it is very important to properly configure self-contained to improve spectrum utilization.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the embodiment of the present invention provides a frame structure, which can better support fast self-contained feedback based on F-OFDM.
  • the self-contained feedback in the embodiment of the present invention may be included in an uplink subframe or may be included in a downlink subframe. In the frame.
  • one carrier is divided into different sub-bands, and each sub-band adopts different TTIs, that is, waveform parameters of different sub-bands are different, where Waveform parameters include subcarrier spacing, CP length, symbol length, number of symbols, and the like.
  • waveform parameters include subcarrier spacing, CP length, symbol length, number of symbols, and the like.
  • FIG. 7 is a schematic diagram of a frame structure of self-contained feedback based on F-OFDM.
  • a guard interval (English: Guard Period; GP) is used for downlink-to-uplink protection to prevent uplink transmission from causing downlink.
  • the interference from uplink to downlink is controlled by the base station (or network node) and may not require a GP.
  • the size of the GP depends on the cell radius. When the cell radius is small, the GP can be set relatively small.
  • the self-contained feedback is uniformly configured on all subbands. For a subband, the self-contained feedback can contain one or more symbols, depending on the waveform parameters and the length of time configured by the self-contained feedback.
  • the minimum length of the GP is approximately 59.4 ⁇ s, and the length of the symbol (including the CP) with a subcarrier spacing of 15 KHz is 71.43 ⁇ s. Therefore, a GP basically occupies the length of a symbol with a subcarrier spacing of 15 kHz. If it is considered that the future communication system supports a cell radius equivalent to LTE, configuring a self-contained time slot requires at least two symbols having a subcarrier spacing of 15 kHz. Considering that a carrier in a 5G communication system may have a large bandwidth, the above method may lead to a complicated system implementation. It should be noted that the carrier in the embodiment of the present invention refers to a continuous spectrum, wherein a part of the frequency band of one carrier is called a sub-band, for example, the frequency band indicated by f3 is a sub-band.
  • FIG. 8 is a schematic diagram of various self-contained parameter configurations. As shown in Figure 8, the self-contained parameter can be configured as multiple different parameters, but multiple different parameter configurations are self-contained. The length of time is aligned.
  • the self-contained parameters of the sub-bands corresponding to f3 and f2 are configured the same, the self-contained parameters of the sub-bands corresponding to f1 and f4 are configured the same, and the self-contained parameters of the sub-bands corresponding to f1 and f2 are configured differently.
  • the sub-bands can be configured with self-contained parameters to reduce implementation complexity, such as system scheduling complexity and reduced terminal implementation complexity. Reducing the implementation complexity is mainly due to the reduction of hardware implementation complexity, because to achieve a large bandwidth, the current hardware level can not support such as 100M, let alone 200M bandwidth. After dividing the subband, the bandwidth is reduced, and the hardware is easy to implement. On the other hand, from the perspective of the scheduling algorithm, the complexity of the algorithm is also reduced, because scheduling a large bandwidth algorithm will be more complicated and performance will be worse.
  • FIG. 9 is a schematic diagram of two self-contained time slots per millisecond, as shown in FIG. 9, when the subcarrier spacing is 15 kHz as a self-contained configuration.
  • the subband with the subcarrier spacing of 7.5 kHz in FIG. 9 contains an odd number of symbols per millisecond (as shown in FIG. 9 as 7 symbols). Therefore, the third and fourth symbols are respectively cut by the self-contained time slot, resulting in two symbols not being usable in the middle.
  • the subcarrier spacing is 7.5 kHz subband
  • the self-contained slot occupies the tail of the third symbol and the head of the fourth symbol. Therefore, the rest of these two symbols cannot be used for data transmission.
  • the symbol with the subcarrier spacing of 15KHz is used as the reference for configuring the self-contained time slot. If the communication system mainly supports three waveform parameter configurations with subcarrier spacing of 7.5KHz, 15KHz, and 30KHz, the three waveform parameters are configured as shown in Table 1. Shown as follows:
  • Table 1 three waveform parameter configuration table
  • the length of the self-contained time slot is the length of one symbol with a subcarrier spacing of 7.5 KHz, then 15 KHz and 30 KHz respectively have 2 and 4 symbol lengths for self-contained transmission. And if there are 2 self-contained time slots per millisecond, then 3/7 (about 42.86%) of the resources will be used for self-contained feedback, which will cause the entire system to transmit. low efficiency.
  • the subcarrier spacing of 7.5KHz is mainly used for transmitting MBMS or Coordinated Multi Point (CoMP) services, it does not require self-contained feedback in every subframe.
  • CoMP Coordinated Multi Point
  • a symbol with a subcarrier spacing of 15 kHz generally transmits a mobile data service. Therefore, one possible way is to perform self-contained feedback based on two symbols with a carrier spacing of 15 kHz.
  • a typical configuration containing one self-contained time slot per millisecond is shown in Figure 7 or Figure 8; two self-contained time slots are included per millisecond, as shown in Figure 9.
  • the sub-band of the 7.5KHz subcarrier spacing, the first self-contained time slot occupies the tail of the third symbol and the head of the fourth symbol, respectively, resulting in the third and fourth The symbols cannot be fully used.
  • Method 1 Taking the symbol with a subcarrier spacing of 7.5 kHz in Fig. 9(b) as an example, if the self-contained time slot just occupies a part of a certain symbol, a blank symbol (English: Blank symbol) method may be used, that is, The currently truncated symbol is destroyed (that is, the subcarrier on which the truncated subband is located does not transmit any data). This means that the symbol cannot be used, and therefore, transmission resources are wasted. In order to make full use of the transmission resources, different parts of the symbol that are not covered by the self-contained time slot may be transmitted by using different waveforms, for example, a waveform corresponding to a subcarrier spacing of 15 kHz.
  • the change waveform may not satisfy the service transmission requirement (because the CP becomes shorter). Therefore, it may be considered to use this part of the resources for other sub-bands (for example, sub-bands with larger sub-carrier spacing or adjacent sub-bands) for data transmission. As shown in FIG. 9, it can be used for sub-band transmission with a subcarrier spacing of 15 kHz.
  • Method 2 The self-contained time slot is configured based on the subband with the largest subcarrier spacing of the current carrier, which can minimize the overhead occupied by the self-contained feedback.
  • 10 is a self-contained feedback configuration with reference to a subband with the largest subcarrier spacing as a reference. As shown in FIG. 10, the self-contained feedback is configured based on the subcarrier spacing, and the self-contained feedback is caused by the self-contained feedback. The overhead is minimal.
  • the data packets of this transmission type are generally short, so it is possible to solve the packet at the end of the current subframe GP, and The current subframe is fed back. Based on this assumption, configuring a self-contained time slot every millisecond can meet the requirements. Of course, if the current subframe cannot complete the decoding, then two self-contained time slots need to be configured every millisecond, as shown in FIG.
  • the general self-contained time slot includes three parts: GP, CP, and symbol (English: symbol).
  • a GP is required when considering a downlink to uplink transition, and a GP is not required if going up to down.
  • the user equipment (English: User Equipment; UE) is not the same distance from the base station. If the UE that is closer to the base station receives the downlink, the uplink transmission starts. If the remote UE has not received the transmission, the interference will be formed. So GP is needed to reduce this interference.
  • Uplink to downlink is base station control, and all UEs are controlled by the base station, so it is not required.
  • the last unsigned portion of TTI3 is transmitted using the waveform of TTI 1 (or the waveform of the shortest TTI).
  • the last symbol of a certain sub-band in the embodiment of the present invention is only the last one of the symbols within 1 ms or a certain consideration range (a certain unit time) in the figure, when considering the range When multiplied (for example, 10ms), there is a last symbol per unit time.
  • the self-contained feedback configuration is based on the symbol of the shortest TTI (ie, the maximum subcarrier spacing), 1/14 (about 7.14%) of the transmission resources are occupied when one self-contained time slot is configured every millisecond. If the decoding is not completed before the end of the GP, at least two self-contained time slots need to be configured per millisecond.
  • Table 2 shows three waveform parameter configuration tables, as shown in Table 2. :
  • FIG. 11 is a schematic diagram of a self-contained feedback configuration based on a symbol with a subcarrier spacing of 16.875 kHz.
  • a self-contained time slot is included in 1 ms as an example, in FIG.
  • the self-contained time slot contains 2 symbol intervals (including GP, CP, and symbol length) with a subcarrier spacing of 33.75 kHz.
  • the symbol time of a TTI1 is 31.25 ⁇ s, the range of cells that can be supported is limited (approximately 9.3 km radius).
  • the 4.2km cell radius can basically meet the requirements.
  • the overhead of the self-contained time slot is 2/32 (about 6.25%), and the overhead is relatively small.
  • FIG. 12 is a schematic diagram of a frame structure of a self-contained feedback that does not include a GP according to an embodiment of the present invention. As shown in FIG. 12, only the CP and the symbol part are included in the self-contained feedback, and there is no GP.
  • the self-contained feedback configuration is based on the shortest symbol length (for example, the symbol corresponding to TTI1)
  • the last symbol of TTI2 and TTI3 will be truncated, and the blank symbol or the waveform with the shortest TTI can be used to utilize the last. A portion of an unoccupied symbol.
  • FIG. 13 is a schematic diagram of self-contained feedback using a normal carrier spacing configuration.
  • the configuration of the self-contained time slot may also adopt a waveform configuration corresponding to a normal carrier spacing, such as a subcarrier spacing of 15 kHz or 16.875 kHz.
  • a normal carrier spacing such as a subcarrier spacing of 15 kHz or 16.875 kHz.
  • the advantage of using such a waveform configuration is that it can make full use of resources on a large bandwidth for information transmission, while the shortest TTI (such as TTI1) can keep the waveform of the self-contained time slot unchanged.
  • the usual carrier spacing is the existing subcarrier spacing mainly used for data transmission, generally around 15 kHz, such as 15 kHz in LTE, or 16.875 kHz. Subcarriers with such subcarrier spacing are mainly used for eMBB transmission.
  • the embodiment of the invention proposes a frame structure based on F-OFDM self-contained feedback, and gives a method for how to utilize the truncated symbol transmission resource when self-contained is configured.
  • the self-contained time slot is configured to span multiple sub-bands or the entire carrier.
  • the frequency domain resource location needs to be considered.
  • the capability of a certain UE is limited, and data transmission can only be performed in a certain sub-band. Therefore, the location of the corresponding self-contained feedback needs to be maintained on the same frequency domain resource as the sub-band.
  • self-contained feedback is mainly used for feedback of ultra-low delay services (such as MTC services), such services generally transmit small packets, and the bandwidth of such UEs may be limited.
  • the resources may not be sufficient, and the truncated symbol resources of the subbands with larger symbol lengths cannot be utilized.
  • the shortest TTI waveform for transmission which will result in uplink transmission on other sub-bands.
  • the UE needs to use different waveforms for uplink transmission, which also makes the system implementation more complicated.
  • FIG. 14 is a schematic diagram of a configuration of a eMBB waveform as a self-contained feedback.
  • a general eMBB service has a large bandwidth requirement, and such a UE has a general capability
  • the frequency domain is adapted. The ability is relatively strong, so scheduling can be performed in a larger frequency domain.
  • the waveform of the eMBB (such as the waveform corresponding to TTI2 in FIG.
  • TTI2 can keep the waveform parameters unchanged, but the time domain resources that TTI 3 can not use can also adopt the waveform of TTI 2, and utilize the capability of eMBB user equipment to utilize its resources through scheduling.
  • the UE may be configured with a larger bandwidth on the self-contained time slot.
  • the implementation manner is as follows:
  • Method 1 The self-contained feedback resource is notified by using downlink scheduling control signaling (for example, PDCCH signaling), which is similar to the traditional LTE in physical downlink control channel (English: Physical Downlink Control Channel; PDCCH). Controlling the allocation of uplink resources is the same.
  • PDCCH signaling results in relatively high energy consumption.
  • resource scheduling using the PDCCH also brings a large signaling overhead. Feedback to the uplink data transmission (eg, feedback of ACK/NACK information for uplink data) needs to be indicated by control signaling in self-contained feedback.
  • the uplink scheduling resource information is carried in the downlink data, and the uplink scheduling resource information may be included in a MAC layer control element (English: Control Element; referred to as CE).
  • CE Control Element
  • the feedback to the downlink data may be included in the uplink self-contained feedback, and the uplink self-contained feedback resource is indicated by adding a MAC layer CE in the downlink data.
  • the downlink feedback for uplink data transmission can be indicated by control signaling in self-contained feedback.
  • Method 3 semi-statically configure the self-contained feedback resource by radio resource configuration (English: Radio Resource Configuration; RRC for short). That is to say, once the RRC configuration is completed, the self-contained feedback resource location is relatively fixed, and generally does not change unless reconfigured. Therefore, this configuration is relatively inflexible, but the signaling overhead is small.
  • RRC Radio Resource Configuration
  • the configuration method of the self-contained feedback resource may also be a combination of the foregoing methods.
  • a semi-static configuration is adopted for some UEs, and a second method is configured for another UE.
  • Embodiments of the present invention provide a method for configuring waveform parameters of self-contained feedback.
  • Method 1 Configuring self-contained feedback through broadcast or RRC dedicated configuration message, where the configuration parameters include at least one of the following: starting position, bandwidth (can have multiple different bandwidth configurations, that is, one carrier can be used)
  • the self-contained feedback is divided into several different parts, that is, the self-contained feedback of one or more sub-bands is combined.), the configuration interval indication (such as once or twice per millisecond, etc.), the reference waveform parameter of self-contained feedback (CP length, subcarrier spacing, number of symbols) and waveform parameter configuration (CP length, subcarrier spacing, number of symbols) for symbols larger than the length of the reference symbol (or portions in which the self-contained feedback is not occupied).
  • the configuration interval indication such as once or twice per millisecond, etc.
  • the reference waveform parameter of self-contained feedback CP length, subcarrier spacing, number of symbols
  • waveform parameter configuration CP length, subcarrier spacing, number of symbols
  • FIG. 15 is a schematic diagram of a configuration process of self-contained feedback according to an embodiment of the present invention. As shown in FIG. 15, after receiving configuration information, the UE configures a self-contained feedback waveform. Self-contained in the figure The configuration information can be configured through broadcast or RRC dedicated configuration messages.
  • Method 2 configuring self-contained feedback by using control signaling of each sub-band.
  • the configuration parameter includes at least one of the following: Start position, bandwidth (multiple different configurations), configuration interval indication (such as a self-contained feedback for several symbols), self-contained feedback reference waveform parameters (CP length, subcarrier spacing, number of symbols). If the symbol of the current subband is cut, to utilize the transmission resources of the unoccupied portion of the symbol, it is also necessary to indicate its waveform configuration parameters (CP length, subcarrier spacing, number of symbols).
  • FIG. 16 is a schematic diagram of a configuration process of another self-contained feedback according to an embodiment of the present invention. As shown in FIG.
  • each sub-band can be freely configured.
  • Flexible configuration That is to say, the configuration method is dynamically configured in the sub-band. Since the configuration is dynamic, the advantage is flexible. When there is a resource that needs to be fed back, the resource configuration is performed, but the disadvantage is that the required signaling overhead is relatively large.
  • the self-contained feedback configuration is defined by a standard form, including defining waveform parameters of self-contained feedback, for example, several waveform parameters, configuration intervals, and the like can be configured. However, since the configured subbands may be variable, if multiple self-contained parameters are configured, the start position and bandwidth of the self-contained feedback and the corresponding waveform parameters need to be notified.
  • the notification method may be a broadcast, or may be configured on an as-needed basis for each UE, or may be a dynamic configuration method by the foregoing method 2.
  • the waveform parameter configuration of the self-contained feedback is as shown in Table 3:
  • Subcarrier spacing CP Number of symbols 1 15KHz 4.7 ⁇ s 2 2 30KHz 3.8 ⁇ s 4 3 16.875KHz 3.2 ⁇ s 2 4 33.75KHz 1.6 ⁇ s 4
  • the parameter configuration signaling that the network side sends the self-contained feedback to the UE may carry an index in the parameter configuration signaling, where the index indicates a parameter configuration of the self-contained feedback.
  • the index configuration (1, 2, 3, 4) is used to represent the parameter configuration of the four different self-contained feedbacks.
  • the parameter configuration signaling of the self-contained feedback delivered by the network side can carry only the index. . This way Can save costs and improve system efficiency.
  • the index may be binary, and the number of indexes is not limited in the embodiment of the present invention.
  • the index example given by the present invention is only an example, and the waveform parameter corresponding to each index may be any other reasonable waveform parameter configuration, and does not affect the essence of the present invention.
  • the number of symbols in the above waveform parameters indicates how many symbols are used for self-contained feedback.
  • the parameters in the table are only an example, and any configuration using a similar method can be considered as an infringement of the present invention.
  • the table indexing method can also be used, and only the starting position of each configuration is required (the physical resource block (English: Physical Resource Block; abbreviation: PRB) ), bandwidth (several PRBs) and index configuration can simplify configuration and reduce resource requirements.
  • PRB Physical Resource Block
  • bandwidth severe PRBs
  • the method provided by the embodiment of the present invention solves the problem that the self-contained parameter of the multi-TTI sub-band is difficult to be configured due to different TTIs, which may cause excessive overhead.
  • the UE can implement a method of scheduling across sub-bands so that transmission resources can be fully utilized.
  • the embodiment of the present invention also provides a configuration method of self-contained feedback in the case of multiple TTI configurations.
  • the method provided by the embodiment of the present invention may be applicable to a scenario that spans carriers and has multiple different TTIs. That is, in the embodiment of the present invention, the self-contained feedback may be cross-carrier.
  • the embodiment of the present invention provides a data transmission apparatus for a multi-transmission time interval TTI system, as shown in FIG.
  • a generating module 1701 configured to generate a data frame including self-contained self-contained feedback
  • the transmitting module 1702 is configured to transmit the data frame on multiple sub-bands into which one carrier is divided;
  • At least two of the plurality of sub-bands have different TTIs
  • the parameters of the self-contained feedback of at least two of the plurality of subbands are the same, and The self-contained feedback of the plurality of sub-bands has the same length of time.
  • the data transmission device further includes:
  • the transmission module 1702 is further configured to transmit parameter configuration signaling of the self-contained feedback
  • the configuration module 1703 is configured to configure parameters of the self-contained feedback according to the parameter configuration signaling.
  • Some technical features involved in the foregoing device embodiments such as TTI, self-contained feedback, subcarrier spacing, CP, GP, etc., are similar or corresponding to some technical features involved in the foregoing method embodiments, and are no longer Repeat the instructions.
  • an embodiment of the present invention provides a data transmission device for a multi-transmission time interval TTI system, which includes: a processor 1801, a memory 1802, a transceiver 1804, and a bus 1803, wherein the processor 1801, the memory 1802, and the transceiver 1804 are connected by the bus 1803 for data transmission, and the memory 1802 is configured to store data processed by the processor 1801;
  • the processor 1801 is configured to generate a data frame that includes self-contained feedback.
  • the transceiver 1804 is configured to transmit the data frame on multiple sub-bands into which one carrier is divided;
  • At least two of the plurality of sub-bands have different TTIs
  • the parameters of the self-contained feedback of at least two of the plurality of sub-bands are the same, and the self-contained feedback of the plurality of sub-bands has the same length of time.
  • the transceiver is further configured to transmit parameter configuration signaling of the self-contained feedback
  • the processor 1801 is further configured to configure parameters of the self-contained feedback according to the parameter configuration signaling.
  • Some technical features involved in the foregoing device embodiments such as TTI, self-contained feedback, subcarrier spacing, CP, GP, etc., are similar or corresponding to some technical features involved in the foregoing method embodiments, and are no longer Repeat the instructions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种用于多传输时间间隔TTI系统的数据传输方法,包括:生成包括自包含self-contained反馈的数据帧;在一个载波划分成的多个子带上传输所述数据帧;其中,所述多个子带中至少有两个子带具体不同的TTI;所述多个子带中的至少两个子带的self-contained反馈的参数相同,且所述多个子带的self-contained反馈的时间长度相同。通过跨子带配置self-contained反馈,可以解决各个子带由于TTI及波形参数配置的不同而导致self-contained反馈的资源利用率过低的问题,通过本发明实施例,可以提高self-contained反馈的资源利用率。

Description

一种用于多传输时间间隔TTI系统的数据传输方法、装置及设备 技术领域
本发明涉及通信技术领域,尤其涉及一种用于多传输时间间隔TTI系统的数据传输方法、装置及设备。
背景技术
移动通信技术的发展,尤其是智能终端的使用,极大地推动了移动网络的发展,使得移动网络宽带化的需求日益增长,而且,这种增长还在继续。根据预测,未来会有500亿或更多的的机器类型通信(英文:Machine Type Communication;简称:MTC)设备会进行网络连接。目前,智能硬件的发展正在兴起,比如智能手环、智能手表、智能电表等正在逐渐被大家接受和使用,可以预期,未来这种机器类型的通信或机器到机器的通信(英文:Machine to Machine;简称:M2M)将会更加普遍,并对未来的移动网络提出更高的通信要求。
考虑到MTC或M2M的种类千差万别,以及未来对移动带宽的进一步增长的需求,未来5G的需求主要包括三个方面:一是增强的移动宽带(英文:enhanced Mobile Broadband;简称:eMBB),二是MTC类的通信需求,三是超高可靠和极低延迟的通信。对eMBB而言,峰值速率将会是长期演进技术(英文:Long Term Evolution;简称:LTE)的10-100倍。要满足高带宽需求,增加频谱带宽是一个必然的要求,因此,未来5G将会有更大的频谱带宽。而对极低延迟的需求,目前业界讨论的目标是满足空口传输反馈时延为1ms的要求。也就是说,终端从接收到调度信令,到进行混合自动重传请求(英文:Hybrid Automatic Repeat Request,简称:HARQ)反馈传输的时间,或者终端进行传输到接收到基站的HARQ反馈的时间不大于0.5ms。
未来5G能适应多种业务需求,业务需求的多样性要求5G在技术上要能灵活支持不同的业务,并且能适应未来潜在的业务需求,因此,要求5G技术上要有很大的灵活性。例如有高速运动(500km/h)的移动业务,也有相对静止 的业务。不同的业务要求5G空口波形能适应其变化。因此,未来5G要能在一个载波上支持不同的传输时间间隔(英文:Transmission Time Interval;简称:TTI)以满足不同的业务需求。也就是说,在一个载波上能采用不同的波形以适配不同的业务传输。
现有技术公开了一种自适应TTI的方法,就是为了在未来能够适应各种不同的业务需求,有的业务对传输时延比较低,而有的业务由于高速运动则传输的TTI比较长。其中,一种典型的多TTI帧结构如图1所示。
在图1所示帧结构中,一个频带被划分为多个子带或载波,每个子带传输一种长度TTI的帧结构,如图1所示支持三种不同TTI。通常,系统支持的TTI的信息会通过系统广播消息通知给终端。而一般而言,通知消息只会在一个子带进行通知,因此,会有一个子带用来发送下行广播消息。将该子带称为公共子带,其主要用来发送下行广播消息等,如MIB,SIB等。同样地,为了节省随机接入资源,不会在每个子带都定义随机接入资源,可以将随机接入资源定义在公共子带。但是,由于用户可能实际传输的业务需要采用不同的TTI进行传输,就需要将用户从公共子带调度到特定TTI的子带。因此,需要考虑用户在随机接入过程中如何从公共子带到特定TTI子带。
发明内容
本发明的实施例提供一种用于多传输时间间隔TTI系统的数据传输方法、装置及设备,通过跨子带配置self-contained反馈,可以解决各个子带由于TTI不同而导致self-contained反馈的参数难以配置以及开销过大的问题,从而可以充分利用系统资源。为达到上述目的,本发明的实施例采用如下技术方案:
第一方面,本发明实施例提供一种用于多传输时间间隔TTI系统的数据传输方法,包括:
生成包括自包含self-contained反馈的数据帧;
在一个载波划分成的多个子带上传输所述数据帧;
其中,所述多个子带中至少有两个子带具体不同的TTI;
所述多个子带中的至少两个子带的self-contained反馈的参数相同,且所述多个子带的self-contained反馈的时间长度相同。
结合第一方面,在第一方面的第一种可能的实现方式中,所述数据传输方法还包括:
传输所述self-contained反馈的参数配置信令;
根据所述参数配置信令配置所述self-contained反馈的参数。
第二方面,本发明实施例提供一种用于多传输时间间隔TTI系统的数据传输装置,包括:
生成模块,用于生成包括自包含self-contained反馈的数据帧;
传输模块,用于在一个载波划分成的多个子带上传输所述数据帧;
其中,所述多个子带中至少有两个子带具体不同的TTI;
所述多个子带中的至少两个子带的self-contained反馈的参数相同,且所述多个子带的self-contained反馈的时间长度相同。
结合第二方面,在第二方面的第一种可能的实现方式中,所述数据传输装置还包括:
所述传输模块,还用于传输所述self-contained反馈的参数配置信令;
配置模块,用于根据所述参数配置信令配置所述self-contained反馈的参数。
第三方面,本发明实施例提供一种用于多传输时间间隔TTI系统的数据传输设备,其特征在于,包括:处理器、存储器、收发机及总线,其中所述处理器、存储器及收发机通过所述总线连接进行数据传输,所述存储器用于存储所述处理器处理的数据;
所述处理器用于生成包括自包含self-contained反馈的数据帧;
所述收发机用于在一个载波划分成的多个子带上传输所述数据帧;
其中,所述多个子带中至少有两个子带具体不同的TTI;
所述多个子带中的至少两个子带的self-contained反馈的参数相同,且所述多个子带的self-contained反馈的时间长度相同。
结合第三方面,在第三方面的第一种可能的实现方式中,所述收发机还用于传输所述self-contained反馈的参数配置信令;
所述处理器还用于根据所述参数配置信令配置所述self-contained反馈的参数。
结合第一方面、第二方面或第三方面,本发明实施例给出了进一步的描述如下:
其中,数据帧可以表示在全频带具有一定传输时间长度的数据资源。需要说明的是,该数据帧的传输时间长度本发明实施例不作限定,例如可以是1ms,也可以是10ms,这需要根据实际情况确定。进一步地,每个数据帧可以包含偶数个符号。另外,该数据帧而数据帧中包含self-contained反馈可以是指在该数据资源中用来进行反馈的数据资源。例如:该数据帧中除了self-contained反馈之外的部分用于发送下行数据,则self-contained反馈可以用来进行上行反馈(可以反馈上行控制信号);反之,self-contained反馈可以用来进行下行反馈。
可选地,所述数据帧可以包含一个或多个self-contained反馈。也就是说,可以在所述数据帧中设置多个self-contained反馈。
可选地,所述参数配置信令携带指示所述self-contained反馈的参数的索引,其中,不同的索引指示不同的self-contained反馈的参数。
可选地,所述self-contained反馈的参数配置信令通过系统广播或专用配置信令或动态配置信令下发。其中,所述专用配置信令可以是RRC信令或MAC层信令等。其中,所述动态配置信令可以是为物理层控制信令。
可选地,所述动态配置信令为所述多个子带中每个子带的控制信令;所述多个子带中每个子带的self-contained反馈的参数通过所述多个子带中每个子带各自的控制信令单独配置。通过所述动态配置信令,可以灵活配置self-contained反馈的参数。
可选地,所述self-contained反馈的参数至少包括下列中的一种:起始位置、带宽、配置间隔指示、所述self-contained反馈的基准波形参数以及对大于基准符号长度的符号中未被所述self-contained反馈占用部分的波形参数配置。
可选地,所述至少两个子带中至少两个子带是相邻的子带。也就是说,self-contained反馈的参数相同的子带中至少两个子带是相邻的子带。
可选地,若所述多个子带中的某个子带的一个符号未全部被self-contained反馈占用,则所述符号的剩余部分可以被调度用于传输数据。进一步地,所述 符号的剩余部分可以采用TTI较小的子带的波形参数。
第四方面,本发明实施例提供一种self-contained反馈的使用方法,包括:用户设备UE接收网络侧发送的self-contained反馈所使用的时频资源信息,所述时频资源占用的子带和所述UE发送数据帧的子带可以不同;
UE在所述时频资源上进行self-contained反馈。
结合第四方面,在第四方面的第一种可能的实现方式中,在UE接收网络侧发送的self-contained反馈所使用的时频资源信息之前,所述使用方法还包括:UE接收所述self-contained反馈的参数配置信令;UE根据所述参数配置信令配置所述self-contained反馈的参数。
本发明实施例通过在多TTI子带情况下,设计了跨子带的包含self-contained反馈的帧结构,可以解决解决各个子带由于TTI不同而导致self-contained反馈的参数难以配置以及开销过大的问题。通过跨子带配置self-contained反馈,可以解决各个子带由于TTI及波形参数配置的不同而导致self-contained反馈的资源利用率过低的问题,通过本发明实施例,可以提高self-contained反馈的资源利用率。
在阅读了以下各附图中图示的实施例的详细说明后,本领域的普通技术人员将明白本发明的各种实施例的这些及其它目的和优点。
附图说明
附图包含在并且构成本说明书的一部分,其中相同的数字描绘相同的元件,附图说明本发明的实施例,并且与描述内容一起用于解释本发明的原理。
图1为一种典型的多TTI帧结构;
图2为两种携带self-contained反馈的帧结构示意图;
图3为本发明实施例提供的一种多TTI的帧结构示意图;
图4为基于F-OFDM的帧结构示意图;
图5为以对应短TTI的符号为基准配置的self-contained反馈示意图;
图6为以对应长TTI的符号为基准配置的self-contained反馈示意图;
图7为本发明实施例提供的一种基于F-OFDM的self-contained反馈的帧结构示意图;
图8为多种self-contained参数配置的示意图;
图9为每毫秒包含两个self-contained时隙的示意图;
图10为以子载波间隔最大的子带为基准配置的self-contained反馈示意图;
图11为以子载波间隔为16.875KHz的符号为基准的self-contained反馈配置示意图;
图12为本发明实施例提供的不包含GP的self-contained反馈的帧结构示意图;
图13为采用通常的载波间隔配置的self-contained反馈示意图;
图14为以eMBB的波形作为self-contained反馈的配置基准的示意图;
图15为本发明实施例提供的一种self-contained反馈的配置流程示意图;
图16为本发明实施例提供的另一种self-contained反馈的配置流程示意图;
图17为本发明实施例提供一种用于多传输时间间隔TTI系统的数据传输装置;
图18为本发明实施例提供一种用于多传输时间间隔TTI系统的数据传输设备。
具体实施方式
现在详细参考本发明的各种实施例,其示例在附图中示出。虽然会结合这些实施例进行描述,但可以理解的是它们并不用于将本发明限制于这些实施例。相反,本发明公开旨在覆盖可能包括在所附权利要求书中限定的本发明的精神和范围内的替代技术、修改和等同技术。另外,在以下本发明的详细描述中,阐述了许多特定细节以便提供对本发明的透彻理解。然而,可以理解的是,实际应用中,可以不包括本发明的这些特定细节。在其它实例中没有详细描述众所周知的方法、流程、部件和电路,以免对本发明的各方面造成不必要地模糊。
自包含(英文:self-contained)反馈是指在时分复用时分双工(英文:Time Division Duplexing;简称:TDD)的下行或上行的每个子帧或几个连续子帧(作 为一个整体)的尾部配置一个上行或下行反馈资源。其中,该反馈资源是指时频资源,也就是占用一定带宽的一个或几个符号。该反馈资源可以主要用于HARQ的ACK/NACK的反馈。考虑的是TDD系统,上行和下行可能需要该反馈资源。在本发明实施例中,也可将self-contained反馈称为self-contained或时隙或self-contained时隙。如无特别说明,本发明实施例中的self-contained反馈是指在TDD的下行或上行的每个子帧或几个连续子帧的末尾所配置的一个或多个符号,其中,一个或多个符号属于当前或几个连续子帧的最后一个子帧的一部分。
图2为两种携带self-contained反馈的帧结构示意图,如图2所示,self-contained反馈的实现方式主要有两种思路:一是在每个子帧后面包含一个或多个上行的ACK/NACK符号;二是将self-contained反馈设置为可配,可以是多个子帧包含一个或多个符号用于self-contained反馈的传输。在self-contained反馈和下行数据之间设置有保护间隔(如图2所示的阴影部分)。另外,self-contained反馈可以是上行反馈(例如图2中的上行控制部分),也可以是下行反馈(例如图2中的下行控制部分),对此如无特别说明本发明实施例不作限定。
上述实现方式主要是考虑一个统一的帧结构的末尾增加一个反馈资源。但是,并未考虑在一个载波上支持多个不同TTI的情况,尤其是在应用基于滤波器的正交频分复用(英文:Filtered Orthogonal Frequency Division Multiplexing;简称:F-OFDM)的场景下,需要考虑该如何进行self-contained反馈。其中,不同TTI是指为适配业务而将一个载波划分为多个子带(每个子子带占用载波的一部分频带),使得每个子带采用不同的波形参数(例如:子载波间隔,循环前缀(英文:Cyclic Prefix;简称:CP)长度,TTI长度等),因而每个子带的传输时间间隔不同,从而满足不同业务的传输时间间隔的要求。一般而言,长TTI用于多媒体广播多播服务(英文:Multimedia Broadcast Multicast Service;简称:MBMS)类业务的传输,而短TTI则用于超低延迟及高速传输业务。
未来通信系统中载波可以被分成多个子带,每个子带的TTI长度可能不一样,不同长度的TTI长度适配不同类型的业务需求,图3为多TTI的帧结构示意图,如图3所示,载波或者信道被分成多个子带(例如:包括子带1-4和公 共子带),其中,各个子带的TTI可以各不相同,而随机接入的发起主要在公共子带上进行。
为了适应基于F-OFDM的灵活TTI,self-contained反馈可以让各个子带(所有子带)或几个子带保持self-contained反馈的波形参数保持一致,以简化系统,提高频谱利用率。
图4为基于F-OFDM的帧结构示意图,如图4所示,对应TTI 1、TTI 2、TTI 3的每个子带可以由多个子载波组成,该三个子带的子载波间隔可以分别是30KHz、15KHz、7.5KHz。采用不同的子载波间隔,会导致每个TTI里包含的符号数不同,各个TTI的长度仅是一个示例,也可以是其他的长度,上图采用的是0.25ms、0.5ms和1ms的TTI。需要说明的是,图4中仅是一个示例,在实际中可能包含更多或更少子带,子载波间隔也可以是其他值,这些参数的不同并不影响本发明实施例的方法实施。
在基于F-OFDM的帧结构上,要实现self-contained反馈,需要考虑不同TTI预留给self-contained的符号,以尽量利用各个不同TTI上的符号。以图4所示的帧结构为例,并假定每毫秒配置一个self-contained时隙,需要考虑以对应哪个TTI的符号配置为基准(例如:需要考虑以对应TTI1的符号为基准,还是以对应TTI2或TTI3的符号为基准)。假如以对应TTI 1的符号为基准,图5为以对应短TTI的符号为基准配置的self-contained反馈示意图,如图5所示,以对应TTI1的符号为基准配置self-contained反馈,也就是说,将TTI1长度的时隙配置为self-contained反馈。对于对应TTI 2或TTI 3的符号而言,其尾部的最后一个符号的部分被占用了,该符号就不能用了,则最后一个符号可能被浪费掉了。尤其对TTI 3而言,会导致严重浪费,在1ms的7个符号中,就有一个符号不能得到利用;对TTI 2而言,则14个符号中有一个符号不能得到利用。如果1ms需要配置两个self-contained时隙,那么造成的资源浪费会更大。
如果以对应长TTI的符号为基准进行配置,并考虑TTI长度之间可以为倍数关系,则每个子带的某个或某几个符号全部包含在self-contained时隙中,对短TTI而言,包含的符号数比较多。图6为以对应长TTI的符号为基准配置的self-contained反馈示意图,如图6所示,0.25ms的TTI就包含了4个符号 用于self-contained反馈,如果上行反馈没有那么多,则也会造成资源浪费。因此,合理配置self-contained是非常重要的,可以提高频谱利用率。
实施例一:
本发明实施例提供一种帧结构,能更好地支持基于F-OFDM的快速self-contained反馈,本发明实施例中的self-contained反馈可能包含在上行子帧中,也可能包含在下行子帧中。
作为本发明实施例提供的一种方法,在F-OFDM的基础上,一个载波被划分为不同的子带,每个子带采用不同的TTI,也即各不同子带的波形参数不同,其中,波形参数包括子载波间隔、CP长度、符号长度、符号数等。为更好支持基于F-OFDM的self-contained反馈,将所有子带的self-contained反馈进行统一配置,而不是保持所有子带的self-contained反馈相互独立。
图7为基于F-OFDM的self-contained反馈的帧结构示意图,如图7所示,保护间隔(英文:Guard Period;简称:GP)用于下行到上行的保护,以防止上行传输对下行造成的干扰,上行到下行的转换由基站(或网络节点)控制,可以不需要GP。GP的大小取决于小区半径,当小区半径比较小时,GP可以设置的相对较小。self-contained反馈在所有子带上进行统一配置。对于某一个子带而言,self-contained反馈可以包含一个或多个符号,这取决于self-contained反馈所配置的波形参数以及时间长度。在LTE系统中,GP的最小长度大约为59.4μs,而一个子载波间隔为15KHz的符号的长度(包含CP)为71.43μs。因此,一个GP基本上就占了将近子载波间隔为15KHz的一个符号的长度。如果考虑未来的通信系统支持同LTE相当的小区半径,配置一个self-contained时隙至少要占用两个子载波间隔为15KHz的两个符号的长度。考虑到5G通信系统中一个载波可能带宽很大,因此,上述方法可能导致系统实现上较为复杂。需要说明的是,本发明实施例中的的载波指的是连续的频谱,其中,一个载波的一部分频带称为子带,例如f3所指示的频带是一个子带。
本发明实施例提供一种可以将几个子带组合在一起配置一个相同的self-contained参数,而其他子带的self-contained参数可能与之相同,也可能不同。图8为多种self-contained参数配置的示意图,如图8所示,self-contained参数可以配置为多个不同的参数,但是多个不同参数配置的self-contained的 时间长度是对齐的。例如,图8中f3和f2对应的子带的self-contained参数配置相同,f1和f4对应的子带的self-contained参数配置相同,而f1和f2对应的子带的self-contained参数配置不同。划分子带来配置self-contained参数可以为降低实现复杂度,比如系统调度复杂度、降低终端实现复杂度等。降低实现复杂度主要表现在降低硬件实现复杂度,因为要实现一个大带宽,现在的硬件水平无法支持比如100M,更不用说200M的带宽。划分子带后带宽减小,硬件就容易实现。另一方面,从调度算法来看,也会降低算法复杂度,因为调度一个大带宽算法会更复杂,性能会更差。
以上是每毫秒包含一个self-contained时隙的情况,图9为每毫秒包含两个self-contained时隙的示意图,如图9所示,以子载波间隔为15KHz的符号作为配置self-contained时隙的基准,则图9中子载波间隔为7.5KHz的子带每毫秒包含的符号数为奇数(如图9中为7个符号)。因此,第三和第四个符号分别被self-contained时隙切割,导致中间有两个符号不能使用。从图9中可以看出,子载波间隔为7.5KHz的子带,self-contained时隙占据了第三个符号的尾部和第四个符号的头部。因此,这两个符号剩下部分不能用于数据传输。
以子载波间隔为15KHz的符号作为配置self-contained时隙的基准,若通信系统主要支持子载波间隔为7.5KHz、15KHz、30KHz的三种波形参数配置,其中,三种波形参数配置如表1所示:
表1三种波形参数配置表
Figure PCTCN2016106459-appb-000001
从表1中可以看出,如果self-contained时隙的长度为子载波间隔为7.5KHz的一个符号的长度,那么15KHz及30KHz分别有2个和4个符号长度被用于self-contained传输。而如果每毫秒包含2个self-contained时隙,那么将会有3/7(约42.86%)的资源被用于self-contained反馈,这将会造成整个系统的传输 效率很低。考虑到子载波间隔为7.5KHz的符号主要用于传输MBMS或者协作多点(英文:Coordinated Multi Point;简称:CoMP)业务,因而不是在每个子帧都需要self-contained反馈。如果某个符号被用于self-contained反馈,那么这个符号对应的子帧就不用于数据传输,也就是在时域上进行控制数据传输,以进行self-contained反馈。而子载波间隔为15KHz的符号一般传输移动数据业务,所以,一种可能的方式是以载波间隔为15KHz的两个符号为基准进行self-contained反馈。一种典型的每毫秒包含1个self-contained时隙的配置如图7或图8所示;每毫秒包含2个self-contained时隙,则如图9所示。从图9中可以看到,7.5KHz子载波间隔的子带,第一个self-contained时隙分别占用了第三个符号的尾部和第四个符号的头部,从而导致第三和第四个符号不能被充分使用。
为减小上述self-contained反馈导致的开销,可以有如下几种方法:
方法1:以图9(b)中子载波间隔为7.5KHz的符号为例,如果self-contained时隙刚好占据了某个符号的一部分,可以采用空白符号(英文:Blank symbol)方法,也就是将当前被截断的符号打掉(也就是说,被截断的那个子带所在的那个子载波不传输任何数据)。这意味着该符号不能被使用,因此,会浪费传输资源。为充分利用传输资源,可以对该符号没有被self-contained时隙覆盖的部分采用不同的波形进行传输,如,采用子载波间隔为15KHz对应的波形进行传输。由于子载波间隔为7.5KHz的符号主要用于MBMS或CoMP传输,就会导致改变波形可能不能满足业务传输要求(因为CP变短)。因此,可以考虑将这部分资源用于其他子带(例如具有更大子载波间隔的子带或相邻子带)进行数据传输。如图9所示,可以将其用于子载波间隔为15KHz的子带进行传输。
方法2:以当前载波的子载波间隔最大的子带为基准,进行self-contained时隙的配置,可以最大限度地降低self-contained反馈占用的开销。图10为以子载波间隔最大的子带为基准配置的self-contained反馈示意图,如图10所示,以子载波间隔为为基准进行self-contained反馈的配置,此时self-contained反馈所导致的开销最小。考虑到即使对于较小的小区半径,也需要保证18μs的GP,且一次上下行转换时间最少约为17μs,因此,为了保持self-contained时 隙的波形不变,一个self-contained时隙必须占用至少两个符号(子载波间隔为30KHz的符号)的长度。当以最小符号长度(或最大子载波间隔)为基准时,TTI3的最后一个符号被截断了。考虑到self-contained反馈主要解决的是超低延迟的传输,而这种传输类型的数据包一般来说都很短,因此,在当前子帧GP结束时是有可能解出包的,并在当前子帧进行反馈。基于这一假设,每毫秒配置一个self-contained时隙可以满足要求。当然,如果当前子帧不能完成解码,则每毫秒就需要配置两个self-contained时隙,如图9所示。
另外,一般的self-contained时隙包括GP、CP和符号(英文:symbol)三部分。可选地,当考虑下行到上行的转换时,需要GP,如果上行到下行就不需要GP。由于各个用户设备(英文:User Equipment;简称:UE)离基站的距离不一样,如果离基站较近的UE收到了下行就开始上行传输,较远的UE还没有接收完,就会形成干扰,所以需要GP来减小这种干扰。上行到下行是基站控制,所有UE都受基站控制,所以不需要。
同样地,如果要充分利用TTI 3的传输资源,则TTI3的最后一个符号未被占用部分采用TTI 1的波形(或最短TTI的波形)进行传输。需要注意的是,本发明实施例中某个子带的最后一个符号仅是相对于图示中的1ms或某个考虑范围内(某个单位时间内)的符号中的最后一个,当考虑的范围成倍增加(例如10ms)时,每一个单位时间内都可以有最后一个符号。
以最短TTI(即,最大子载波间隔)的符号为基准进行self-contained反馈配置时,当每毫秒配置一个self-contained时隙时,占用1/14(约7.14%)的传输资源。如不能满足在GP结束前完成解码,则每毫秒至少需要配置两个self-contained时隙。从图9可以看出,以子载波间隔为15KHz为基准的帧结构会导致子载波间隔为7.5KHz的子带不好利用资源,尤其是第三和第四个符号被截断。因此可以考虑每毫秒包含的符号数为2n个(n=0,1,2,3,4…),整个系统处理会相对简单,表2为三种波形参数配置表,如表2所示:
表2三种波形参数配置表
Figure PCTCN2016106459-appb-000002
Figure PCTCN2016106459-appb-000003
图11为以子载波间隔为16.875KHz的符号为基准的self-contained反馈配置示意图,如图11所示,在表2的基础上,以1ms包含一个self-contained时隙为例,图11中的self-contained时隙包含了2个子载波间隔为33.75KHz的符号时间(含GP、CP和符号长度)。考虑到一个TTI1的符号时间为31.25μs,能支持的小区半径范围有限(约为9.3km半径)。考虑到5G高密部署场景,4.2km的小区半径能基本满足要求。从图11中也可以看出,self-contained时隙的开销是2/32(约6.25%),开销相对较小。TTI2的符号刚好用完,而TTI3的一个符号被截断,因此该符号未被占用的部分可以采用空白符号或采用TTI2或TTI1的波形进行数据传输。因此,每毫秒采用2n个(n=0,1,2,3,4…)个符号的帧结构设计对self-contained反馈来说更加合理。
需要说明的是,在下行到上行转换过程中需要配置GP的,如果是上行转下行,则GP可以不需要,因此,可以节省这一开销。并且考虑到未来极低延迟主要用于上行传输,因此,其self-contained反馈主要是在下行传输时需要添加,而上行传输时可以节省GP的开销。图12为本发明实施例提供的不包含GP的self-contained反馈的帧结构示意图,如图12所示,在self-contained反馈中只包含CP和符号部分,而没有GP。但是,如果是以最短符号长度(例如TTI1对应的符号)为基准进行self-contained反馈配置,那么TTI2和TTI3的最后一个符号都会被截断,可以同样采用空白符号或采用最短TTI的波形来利用最后一个符号未被占用的部分。
图13为采用通常的载波间隔配置的self-contained反馈示意图,如图13所示,self-contained时隙的配置也可以采用通常的载波间隔如子载波间隔为15KHz或16.875KHz对应的波形配置,采用这样的波形配置的好处是可以充分利用大带宽上的资源进行信息传输,而最短TTI(如TTI1)可以保持self-contained时隙的波形不变。其中,通常的载波间隔是现有的主要用于数据传输的子载波间隔,一般在15KHz左右,如LTE中为15KHz,或者也可以采用16.875KHz。具有这种子载波间隔的子载波主要用于eMBB传输。
实施例二
本发明实施例提出了一种基于F-OFDM的self-contained反馈的帧结构,并给出了配置self-contained时如何利用被截断的符号的传输资源的方法。
根据实施例一的帧结构,self-contained时隙被配置为跨多个子带或整个载波。当UE在self-contained时隙上进行数据传输时,需要考虑频域资源位置。例如,某个UE的能力受限,只能在某个子带进行数据传输,因此,其对应的self-contained反馈的位置就需要保持和该子带相同的频域资源上。此外,由于self-contained反馈主要用于超低延迟业务(例如MTC业务)的反馈,这种业务一般传输的数据包很小,且这种UE的带宽可能受限。基于此,如果以最短TTI作为基准,采用2个符号作为self-contained反馈资源,可能资源不够,而对具有更大符号长度的子带的被截断的符号资源,却不能加以利用。同时,对其他子带资源,要充分利用(例如充分利用未被self-contained反馈占用的部分),就需要采用最短TTI的波形来进行传输,这就会导致在其他子带上进行上行传输的UE要采用不同的波形来进行上行传输,也会造成系统实现较为复杂。
图14为以eMBB的波形作为self-contained反馈的配置基准的示意图,如图14所示,考虑到一般的eMBB业务对带宽需求较大,且这类UE一般能力较强,对频域的适应能力相对较强,因此,可以在较大的频域进行调度。但是,如果在self-contained时隙采用不同的波形,则会造成实现复杂。因此,可以采用eMBB的波形(如图14中TTI2对应的波形)作为self-contained反馈的配置基础,其优势在于:一是对短TTI,刚好有整数个符号作为self-contained反馈,且可以支持的UE数量较大。二是对TTI2可以保持波形参数不变,而对TTI 3不能利用的时域资源,也可以采用TTI 2的波形,利用eMBB用户设备的能力,通过调度,对其资源进行利用。
因此,如果UE支持在较大带宽上的调度,则可以将UE在self-contained时隙上配置较大带宽,具体地,其实现方式如下:
方法一:self-contained反馈资源通过下行调度控制信令(例如PDCCH信令)进行通知,这一方法类似于传统的LTE中通过物理下行控制信道(英文:Physical Downlink Control Channel;简称:PDCCH)来控制上行资源分配一样。该方法的优势在于资源的调度快速、灵活;但是劣势是UE需要持续监视 PDCCH信令,导致能耗相对较高。另一方面,利用PDCCH进行资源调度也会带来较大的信令开销。而对上行数据传输的反馈(例如反馈针对上行数据的ACK/NACK信息),则需要通过在self-contained反馈中通过控制信令来指示。
方法二:通过在下行数据中携带上行调度资源信息,该上行调度资源信息可以包含在MAC层控制元素(英文:Control Element;简称:CE)中。具体地,对下行数据的反馈可以包含在上行self-contained反馈中,该上行self-contained反馈资源通过在下行数据中增加MAC层CE来指示。对上行数据传输的下行反馈则可以通过在self-contained反馈中通过控制信令指示其位置。
方法三:通过无线资源配置(英文:Radio Resource Configuration;简称:RRC)对self-contained反馈资源进行半静态配置。也就是说,一旦通过RRC配置完成,self-contained反馈资源位置相对固定,一般不会发生变动,除非重新进行配置。因此,这种配置相对来说不是很灵活,但信令开销较小。
需要注意的是,对self-contained反馈资源的配置方法也可以是以上几种方法的组合,比如,对一部分UE采用半静态配置,而对另外一部分UE,则采用方法二进行配置。
实施例三
实施例一给出了一般配置方法,但是对self-contained反馈的波形参数的配置,则需要具体的配置方法。本发明实施例提供了一种配置self-contained反馈的波形参数的方法。
方法一:通过广播或RRC专用配置消息对self-contained反馈进行配置,其中配置参数至少包括下列的一种:起始位置、带宽(可以有多个不同带宽配置,也就是说,可以把一个载波的self-contained反馈分成几个不同的部分,即将一个或多个子带的self-contained反馈组合起来。)、配置间隔指示(如每毫秒一次或2次等)、self-contained反馈的基准波形参数(CP长度、子载波间隔、符号数)以及对大于基准符号长度的符号(或其中未被self-contained反馈占用部分)的波形参数配置(CP长度、子载波间隔、符号数)。图15为本发明实施例提供的一种self-contained反馈的配置流程示意图,如图15所示,UE在收到配置信息后,对self-contained反馈的波形进行配置。图中的self-contained 配置信息可以通过广播或RRC专用配置消息进行配置。
方法二:通过每个子带的控制信令来对self-contained反馈进行配置当需要配置self-contained反馈时,则在控制信令中增加指示进行配置,其中配置参数至少包括下列的一种:起始位置、带宽(多个不同配置)、配置间隔指示(如几个符号配置一个self-contained反馈)、self-contained反馈的基准波形参数(CP长度、子载波间隔、符号数)。如果当前子带的符号被切割,要利用该符号未被占用部分的传输资源,还需要指示其波形配置参数(CP长度、子载波间隔、符号数)。图16为本发明实施例提供的另一种self-contained反馈的配置流程示意图,如图16所示,通过对当前TTI对应的子带进行self-contained反馈进行配置,可以实现对每个子带自由灵活地配置。也就是说,该配置方法是在子带中动态配置的,由于是动态配置,其优势是灵活,当存在需要反馈的资源时进行资源配置,但是其缺点是需要的信令开销相对较大。
方法三:将self-contained反馈的配置通过标准的形式定义好,包括定义self-contained反馈的波形参数等,例如:可以配置几种波形参数、配置间隔等。但是由于所配置的子带可能是可变的,因此,如果配置多个self-contained参数时,还需要通知self-contained反馈的起始位置和带宽及对应的波形参数。通知方法可以是广播,也可以是每个UE按需配置,还可以是通过上述方法二的动态配置方法。具体地,self-contained反馈的波形参数配置如表3所示:
表3 self-contained反馈的波形参数配置表
索引 子载波间隔 CP 符号数
1 15KHz 4.7μs 2
2 30KHz 3.8μs 4
3 16.875KHz 3.2μs 2
4 33.75KHz 1.6μs 4
网络侧在向UE发送self-contained反馈的参数配置信令,可以在该参数配置信令中携带索引,该索引指示self-contained反馈的参数配置。例如:表4中利用索引(1、2、3、4)来代表四种不同的self-contained反馈的参数配置,在网络侧下发的self-contained反馈的参数配置信令可以只携带该索引。这样 可以节省开销,提高系统效率。另外,索引可以是二进制的,且索引的个数本发明实施例并不限定。本发明给出的索引示例仅是一个示例,每个索引对应的波形参数可以是任何其他合理的波形参数配置,并不影响本发明的本质。
表4 self-contained反馈的参数配置表
索引 self-contained反馈的参数配置
1 第一种参数配置
2 第二种参数配置
3 第三种参数配置
4 第四种参数配置
上述波形参数中的符号数表示多少个符号用于self-contained反馈。表中参数只是一个示例,任何采用类似方法的配置都可以视为对本发明的侵权。
在实际配置时,对方法一或方法二,也可以采用这种表索引的方法,只需要对每种配置的起始位置(第几个物理资源块(英文:Physical Resource Block;简称:PRB))、带宽(跨度为几个PRB)以及索引进行配置,可以简化配置,降低资源需求。
通过本发明实施例提供的方法,解决了多TTI子带由于TTI不同而导致self-contained参数难以配置,可能导致开销过大的问题。在多TTI配置的情况下,UE可以实现跨子带调度的方法,从而可以充分利用传输资源。另外本发明实施例也提供了在多TTI配置的情况下,self-contained反馈的配置方法。
本发明实施例提供的方法可以适合跨载波且具有多种不同TTI的场景。也就是说,在本发明实施例中,self-contained反馈可以是跨载波的。
相应于上述方法实施例,本发明实施例提供一种用于多传输时间间隔TTI系统的数据传输装置,如图17所示,包括:
生成模块1701,用于生成包括自包含self-contained反馈的数据帧;
传输模块1702,用于在一个载波划分成的多个子带上传输所述数据帧;
其中,所述多个子带中至少有两个子带具体不同的TTI;
所述多个子带中的至少两个子带的self-contained反馈的参数相同,且所 述多个子带的self-contained反馈的时间长度相同。
结合第二方面,在第二方面的第一种可能的实现方式中,所述数据传输装置还包括:
所述传输模块1702,还用于传输所述self-contained反馈的参数配置信令;
配置模块1703,用于根据所述参数配置信令配置所述self-contained反馈的参数。
上述装置实施例中涉及到的一些技术特征,例如:TTI、self-contained反馈、子载波间隔、CP、GP等,和上述方法实施例中涉及到的一些技术特征类似或对应,在此不再进行重复说明。
相应于上述方法实施例,如图18所示,本发明实施例提供一种用于多传输时间间隔TTI系统的数据传输设备,其特征在于,包括:处理器1801、存储器1802、收发机1804及总线1803,其中所述处理器1801、存储器1802及收发机1804通过所述总线1803连接进行数据传输,所述存储器1802用于存储所述处理器1801处理的数据;
所述处理器1801用于生成包括自包含self-contained反馈的数据帧;
所述收发机1804用于在一个载波划分成的多个子带上传输所述数据帧;
其中,所述多个子带中至少有两个子带具体不同的TTI;
所述多个子带中的至少两个子带的self-contained反馈的参数相同,且所述多个子带的self-contained反馈的时间长度相同。
结合第三方面,在第三方面的第一种可能的实现方式中,所述收发机还用于传输所述self-contained反馈的参数配置信令;
所述处理器1801还用于根据所述参数配置信令配置所述self-contained反馈的参数。
上述装置实施例中涉及到的一些技术特征,例如:TTI、self-contained反馈、子载波间隔、CP、GP等,和上述方法实施例中涉及到的一些技术特征类似或对应,在此不再进行重复说明。
根据本发明的实施例如此处所述。虽然本发明已经在特定实施例中进行了描述,但是应理解,本发明不应该被解释为受这些实施例的限制,而是根据以下权利要求书进行解释。

Claims (21)

  1. 一种用于多传输时间间隔TTI系统的数据传输方法,其特征在于,包括:
    生成包括自包含self-contained反馈的数据帧;
    在一个载波划分成的多个子带上传输所述数据帧;
    其中,所述多个子带中至少有两个子带具体不同的TTI;
    所述多个子带中的至少两个子带的self-contained反馈的参数相同,且所述多个子带的self-contained反馈的时间长度相同。
  2. 根据权利要求1所述的数据传输方法,其特征在于,
    所述数据传输方法还包括:
    传输所述self-contained反馈的参数配置信令;
    根据所述参数配置信令配置所述self-contained反馈的参数。
  3. 根据权利要求2所述的数据传输方法,其特征在于,
    所述参数配置信令携带指示所述self-contained反馈的参数的索引,其中,不同的索引指示不同的self-contained反馈的参数。
  4. 根据权利要求2或3所述的数据传输方法,其特征在于,
    所述self-contained反馈的参数配置信令通过系统广播或专用配置信令或动态配置信令下发。
  5. 根据权利要求4所述的数据传输方法,其特征在于,
    所述动态配置信令为所述多个子带中每个子带的控制信令;
    所述多个子带中每个子带的self-contained反馈的参数通过所述多个子带中每个子带各自的控制信令单独配置。
  6. 根据权利要求1-5任一项所述的数据传输方法,其特征在于,
    所述self-contained反馈的参数至少包括下列中的一种:起始位置、带宽、配置间隔指示、所述self-contained反馈的基准波形参数以及对大于基准符号长度的符号中未被所述self-contained反馈占用部分的波形参数配置。
  7. 根据权利要求1-6任一项所述的数据传输方法,其特征在于,
    self-contained反馈的参数相同的子带中至少两个子带是相邻的子带。
  8. 一种用于多传输时间间隔TTI系统的数据传输装置,其特征在于,包 括:
    生成模块,用于生成包括自包含self-contained反馈的数据帧;
    传输模块,用于在一个载波划分成的多个子带上传输所述数据帧;
    其中,所述多个子带中至少有两个子带具体不同的TTI;
    所述多个子带中的至少两个子带的self-contained反馈的参数相同,且所述多个子带的self-contained反馈的时间长度相同。
  9. 根据权利要求8所述的数据传输装置,其特征在于,
    所述数据传输装置还包括:
    所述传输模块,还用于传输所述self-contained反馈的参数配置信令;
    配置模块,用于根据所述参数配置信令配置所述self-contained反馈的参数。
  10. 根据权利要求9所述的数据传输装置,其特征在于,
    所述参数配置信令携带指示所述self-contained反馈的参数的索引,其中,不同的索引指示不同的self-contained反馈的参数。
  11. 根据权利要求9或10所述的数据传输装置,其特征在于,
    所述self-contained反馈的参数配置信令通过系统广播或专用配置信令或动态配置信令下发。
  12. 根据权利要求11所述的数据传输装置,其特征在于,
    所述动态配置信令为所述多个子带中每个子带的控制信令;
    所述多个子带中每个子带的self-contained反馈的参数通过所述多个子带中每个子带各自的控制信令单独配置。
  13. 根据权利要求8-12任一项所述的数据传输装置,其特征在于,
    所述self-contained反馈的参数至少包括下列中的一种:起始位置、带宽、配置间隔指示、所述self-contained反馈的基准波形参数以及对大于基准符号长度的符号中未被所述self-contained反馈占用部分的波形参数配置。
  14. 根据权利要求8-13任一项所述的数据传输装置,其特征在于,
    self-contained反馈的参数相同的子带中至少两个子带是相邻的子带。
  15. 一种用于多传输时间间隔TTI系统的数据传输设备,其特征在于,包括:处理器、存储器、收发机及总线,其中所述处理器、存储器及收发机通过所述总线连接进行数据传输,所述存储器用于存储所述处理器处理的数据;
    所述处理器用于生成包括自包含self-contained反馈的数据帧;
    所述收发机用于在一个载波划分成的多个子带上传输所述数据帧;
    其中,所述多个子带中至少有两个子带具体不同的TTI;
    所述多个子带中的至少两个子带的self-contained反馈的参数相同,且所述多个子带的self-contained反馈的时间长度相同。
  16. 根据权利要求15所述的数据传输设备,其特征在于,
    所述收发机还用于传输所述self-contained反馈的参数配置信令;
    所述处理器还用于根据所述参数配置信令配置所述self-contained反馈的参数。
  17. 根据权利要求16所述的数据传输设备,其特征在于,
    所述参数配置信令携带指示所述self-contained反馈的参数的索引,其中,不同的索引指示不同的self-contained反馈的参数。
  18. 根据权利要求16或17所述的数据传输设备,其特征在于,
    所述self-contained反馈的参数配置信令通过系统广播或专用配置信令或动态配置信令下发。
  19. 根据权利要求18所述的数据传输设备,其特征在于,
    所述动态配置信令为所述多个子带中每个子带的控制信令;
    所述多个子带中每个子带的self-contained反馈的参数通过所述多个子带中每个子带各自的控制信令单独配置。
  20. 根据权利要求15-19任一项所述的数据传输设备,其特征在于,
    所述self-contained反馈的参数至少包括下列中的一种:起始位置、带宽、配置间隔指示、所述self-contained反馈的基准波形参数以及对大于基准符号长度的符号中未被所述self-contained反馈占用部分的波形参数配置。
  21. 根据权利要求15-20任一项所述的数据传输设备,其特征在于,
    self-contained反馈的参数相同的子带中至少两个子带是相邻的子带。
PCT/CN2016/106459 2015-12-26 2016-11-18 一种用于多传输时间间隔tti系统的数据传输方法、装置及设备 WO2017107717A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16877528.6A EP3364588A4 (en) 2015-12-26 2016-11-18 Data transmission method, apparatus and device for multi- transmission time interval (tti) system
US15/992,988 US20180278291A1 (en) 2015-12-26 2018-05-30 Data transmission method, apparatus, and device for multi-transmission time interval tti system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510999529.3A CN106921477A (zh) 2015-12-26 2015-12-26 一种用于多传输时间间隔tti系统的数据传输方法、装置及设备
CN201510999529.3 2015-12-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/992,988 Continuation US20180278291A1 (en) 2015-12-26 2018-05-30 Data transmission method, apparatus, and device for multi-transmission time interval tti system

Publications (1)

Publication Number Publication Date
WO2017107717A1 true WO2017107717A1 (zh) 2017-06-29

Family

ID=59089005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/106459 WO2017107717A1 (zh) 2015-12-26 2016-11-18 一种用于多传输时间间隔tti系统的数据传输方法、装置及设备

Country Status (4)

Country Link
US (1) US20180278291A1 (zh)
EP (1) EP3364588A4 (zh)
CN (1) CN106921477A (zh)
WO (1) WO2017107717A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112788562A (zh) * 2019-11-08 2021-05-11 大唐移动通信设备有限公司 一种信息反馈、重传方法及终端

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106534001B (zh) * 2015-09-10 2019-07-05 上海朗帛通信技术有限公司 一种低延迟的无线通信方法和装置
CN107959647B (zh) * 2016-10-14 2022-02-25 中兴通讯股份有限公司 多载波系统的符号配置方法及装置、数据解调方法及装置
US10798734B2 (en) * 2017-03-28 2020-10-06 Centre Of Excellence In Wireless Technology Method and wireless device for transmitting RACH preamble in wireless communication network
CN108811098B (zh) * 2017-05-02 2021-05-04 华为技术有限公司 确定时隙格式的方法、终端设备和网络设备
US11758538B2 (en) * 2017-05-12 2023-09-12 Ntt Docomo, Inc. User terminal and radio communication method
WO2019051664A1 (en) * 2017-09-13 2019-03-21 Telefonaktiebolaget Lm Ericsson (Publ) AUTONOMOUS COMMUNICATION WITH COORDINATION SIGNALING FOR A LISTEN-AFTER-TALK-TYPE SCHEME
CN109688623B (zh) * 2017-10-18 2023-03-31 中国电信股份有限公司 无线帧结构及其配置方法和配置装置及物理信道结构
WO2019148385A1 (zh) 2018-01-31 2019-08-08 北京小米移动软件有限公司 配置参数发送、读取方法及装置、基站和用户设备
US11503652B2 (en) * 2019-09-30 2022-11-15 Qualcomm Incorporated Apparatus and methods for synchronization signal and random access communications in full duplex

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102291222A (zh) * 2010-06-21 2011-12-21 电信科学技术研究院 一种反馈预编码矩阵指示方法、装置及系统
CN103686753A (zh) * 2012-09-10 2014-03-26 华为技术有限公司 设备到设备通信中资源共享方法和设备

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102291222A (zh) * 2010-06-21 2011-12-21 电信科学技术研究院 一种反馈预编码矩阵指示方法、装置及系统
CN103686753A (zh) * 2012-09-10 2014-03-26 华为技术有限公司 设备到设备通信中资源共享方法和设备

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
See also references of EP3364588A4 *
XUE, LIXIA ET AL.: "Next Generation TDD Cellular Communicaiotn", 2015 49TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, 11 November 2015 (2015-11-11), pages 1037, XP032874412, ISSN: 1058-6393 *
ZHANG, XI ET AL.: "Filtered-OFDM-Enabler for Flexible Waveform in the 5th Generation Cellular Networks", 2015 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM, 10 December 2015 (2015-12-10), pages 1 - 6, XP032873005 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112788562A (zh) * 2019-11-08 2021-05-11 大唐移动通信设备有限公司 一种信息反馈、重传方法及终端
CN112788562B (zh) * 2019-11-08 2022-08-30 大唐移动通信设备有限公司 一种信息反馈、重传方法及终端

Also Published As

Publication number Publication date
CN106921477A (zh) 2017-07-04
US20180278291A1 (en) 2018-09-27
EP3364588A4 (en) 2018-10-17
EP3364588A1 (en) 2018-08-22

Similar Documents

Publication Publication Date Title
WO2017107717A1 (zh) 一种用于多传输时间间隔tti系统的数据传输方法、装置及设备
EP3103299B1 (en) Flexible sub-carrier spacing and symbol duration in ofdm based communication systems
US10361825B2 (en) Systems and methods of adaptive frame structure for time division duplex
US10499424B2 (en) Scheduling request arrangement for new radio
CN108370586B (zh) 导频信号传输系统和方法
CN103621032B (zh) 用于在无线通信系统中传送和接收时分双工帧配置信息的方法和装置
CA2770993C (en) Method and apparatus for allocating a control channel resource of a relay node in a backhaul subframe
US11405942B2 (en) Method and apparatus for transmitting and receiving downlink signal in next generation wireless network
CN110506442B (zh) 组公共控制信道
WO2008113301A1 (fr) Procédé et appareil de transmission destinés à une signalisation de commande de liaison montante dans un système ofdma par répartition dans le temps
CN110313158A (zh) 在支持tdd的无线通信系统中发送和接收nprach前导码的方法和用于该方法的设备
JP2019523612A (ja) 無線通信システムにおけるシンボルおよびサブフレームのアライメント
CN101466153A (zh) 一种无线通信系统中完成随机接入响应发送的方法及基站
WO2018008457A1 (ja) 基地局装置、端末装置および通信方法
WO2018059407A1 (zh) 一种调度单元时分复用方法及装置、信息传输方法及装置
CN101527969B (zh) 信息交互方法
CN106937388B (zh) 用于配置子帧的方法和装置
JP2022545384A (ja) モノのインターネットにサポートする無線通信システムにおいてダウンリンク情報を送受信する方法及びそのための装置
WO2018086449A1 (zh) 一种小时隙的发送方法、装置和计算机可读存储介质
WO2018008458A2 (ja) 端末装置、基地局装置および通信方法
KR20110082705A (ko) 무선통신시스템에서 참조신호 송수신 방법 및 장치
WO2013166311A1 (en) Scheduling schemes for user equipment power saving in a communication network
CN114071753A (zh) 发送和接收信号的方法和设备
US10652062B2 (en) Configurable waveform for beyond 52.6GHz
KR102510400B1 (ko) 무선 통신 시스템에서 상향링크 제어 정보를 송수신하고 랜덤 액세스를 요청하기 위한 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16877528

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2016877528

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE