WO2017107560A1 - 增强虚拟现实眼镜音效的方法、系统、及虚拟现实眼镜 - Google Patents

增强虚拟现实眼镜音效的方法、系统、及虚拟现实眼镜 Download PDF

Info

Publication number
WO2017107560A1
WO2017107560A1 PCT/CN2016/098023 CN2016098023W WO2017107560A1 WO 2017107560 A1 WO2017107560 A1 WO 2017107560A1 CN 2016098023 W CN2016098023 W CN 2016098023W WO 2017107560 A1 WO2017107560 A1 WO 2017107560A1
Authority
WO
WIPO (PCT)
Prior art keywords
virtual reality
reality glasses
angular velocity
rotation
change
Prior art date
Application number
PCT/CN2016/098023
Other languages
English (en)
French (fr)
Inventor
金鑫
Original Assignee
惠州Tcl移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠州Tcl移动通信有限公司 filed Critical 惠州Tcl移动通信有限公司
Priority to US15/503,706 priority Critical patent/US10123148B2/en
Publication of WO2017107560A1 publication Critical patent/WO2017107560A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S7/00Indicating arrangements; Control arrangements, e.g. balance control
    • H04S7/30Control circuits for electronic adaptation of the sound field
    • H04S7/302Electronic adaptation of stereophonic sound system to listener position or orientation
    • H04S7/303Tracking of listener position or orientation
    • H04S7/304For headphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/12Circuits for transducers, loudspeakers or microphones for distributing signals to two or more loudspeakers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • G06F3/012Head tracking input arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0346Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of the device orientation or free movement in a 3D space, e.g. 3D mice, 6-DOF [six degrees of freedom] pointers using gyroscopes, accelerometers or tilt-sensors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/16Sound input; Sound output
    • G06F3/167Audio in a user interface, e.g. using voice commands for navigating, audio feedback
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • G06T19/003Navigation within 3D models or images
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • H04R5/033Headphones for stereophonic communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2203/00Details of circuits for transducers, loudspeakers or microphones covered by H04R3/00 but not provided for in any of its subgroups
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2400/00Details of stereophonic systems covered by H04S but not provided for in its groups
    • H04S2400/13Aspects of volume control, not necessarily automatic, in stereophonic sound systems

Definitions

  • the present invention relates to the field of virtual reality glasses, and in particular, to a fast and reliable method, system, and virtual reality glasses for enhancing the sound effect of virtual reality glasses.
  • VR glasses are "virtual reality glasses” (Virtual Reality Glasses). VR glasses use the mobile phone as a display screen and implement virtual reality functions through related applications on the mobile phone.
  • the sound effect of the general VR glasses is played through the audio output of the mobile phone itself.
  • the sound of the two channels will not change, and the augmented reality effect of the presence and surround sound is lacking.
  • the technical problem to be solved by the present invention is to provide a method, a system, and a virtual reality glasses for enhancing the sound effect of the virtual reality glasses in view of the above-mentioned drawbacks of the prior art.
  • a method for enhancing the sound effect using a gyro sensor and a compass sensor is proposed.
  • a method for enhancing the sound effect of a virtual reality glasses comprising:
  • A. a gyro sensor for detecting a rotational angular velocity of the virtual reality glasses and a compass sensor for detecting a rotational direction of the virtual reality glasses are disposed on the virtual reality glasses in advance;
  • the mobile terminal acquires angular velocity data detected by the gyro sensor, acquires rotation direction data detected by the compass sensor, determines a direction change of the virtual reality glasses rotation, and controls a change of the volume level according to the direction change. Correspondingly reduce or increase the sound size of the audio corresponding to the left and right channels.
  • the method for enhancing the sound effect of the virtual reality glasses wherein before the step A, the method further includes:
  • the mobile terminal acquires angular velocity data detected by the gyro sensor, and acquires rotation direction data detected by the compass sensor;
  • the mobile terminal determines, according to the angular velocity data detected by the gyro sensor, the rotational direction data detected by the compass sensor, and determines a direction change of the virtual reality glasses;
  • step C specifically includes:
  • step C further includes:
  • the mobile terminal adjusts the speed of the change of the volume level curve according to the angular velocity of the virtual reality glasses rotating, thereby changing the speed at which the playing volume becomes larger or smaller.
  • step C6 further comprises: the mobile terminal controls the size of the volume adjustment, and corresponds to the angular velocity of the virtual reality glasses, and adjusts the volume.
  • a system for enhancing the sound effects of virtual reality glasses including:
  • a pre-setting module configured to pre-set a gyro sensor for detecting a rotational angular velocity of the virtual reality glasses on the virtual reality glasses, and a compass sensor for detecting a rotation direction of the virtual reality glasses;
  • a detection control module configured to detect an angular velocity of rotation of the virtual reality glasses by the gyro sensor when the user wears the virtual reality glasses to watch the video, and detect a rotation direction of the virtual reality glasses by the compass sensor;
  • a volume adjustment control module configured to control the mobile terminal to acquire angular velocity data detected by the gyro sensor, and obtain rotation direction data detected by the compass sensor, determine a change in direction of rotation of the virtual reality glasses; and change according to the direction Control the change of the volume level, correspondingly reduce or increase the sound size of the audio corresponding to the left and right channels.
  • the system for enhancing the sound effect of the virtual reality glasses further comprising:
  • the volume grading setting module is configured to pre-set the volume adjustment of the mobile terminal matched with the virtual reality glasses into several levels.
  • volume adjustment control module comprises:
  • An acquiring unit configured to control the mobile terminal to acquire angular velocity data detected by the gyro sensor, and acquire rotation direction data detected by the compass sensor;
  • a determining unit configured to control the mobile terminal to determine the direction change of the virtual reality glasses according to the angular velocity data detected by the gyro sensor and the rotation direction data detected by the compass sensor;
  • a first adjusting unit configured to: when determining that the direction change of the virtual reality glasses is rotated to the left, during the rotation, controlling the left channel sound gradually becomes smaller, and the right channel sound gradually becomes larger;
  • the second adjusting unit is configured to: when determining that the direction change of the virtual reality glasses is rotated to the right, during the rotation, the control right channel sound gradually becomes smaller, and the left and right channel sounds gradually become larger.
  • volume adjustment control module further comprises:
  • a third adjusting unit configured to: when determining that the direction change of the virtual reality glasses is rotated upwards or downwards, during the rotation process, both the left and right channels are gradually reduced;
  • volume adjustment control module further comprises:
  • the fourth adjusting unit is configured to control the mobile terminal to adjust the speed of the change of the volume level curve according to the angular velocity of the virtual reality glasses rotating, thereby changing the speed at which the playing volume becomes larger or smaller.
  • the system for enhancing the sound effect of the virtual reality glasses wherein the fourth adjusting unit is specifically configured to: control the size of the volume adjustment and the angular velocity of the virtual reality glasses to rotate one by one, and adjust the volume when the angular velocity is larger, and the volume is increased or decreased. Speed up accordingly; the slower the angular velocity, the slower the volume increase and decrease.
  • a virtual reality glasses includes a system for enhancing the sound effects of virtual reality glasses, and the system for enhancing the sound effects of the virtual reality glasses includes:
  • a pre-setting module configured to pre-set a gyro sensor for detecting a rotational angular velocity of the virtual reality glasses on the virtual reality glasses, and a compass sensor for detecting a rotation direction of the virtual reality glasses;
  • a detection control module configured to detect an angular velocity of rotation of the virtual reality glasses by the gyro sensor when the user wears the virtual reality glasses to watch the video, and detect a rotation direction of the virtual reality glasses by the compass sensor;
  • a volume adjustment control module configured to control the mobile terminal to acquire angular velocity data detected by the gyro sensor, and obtain rotation direction data detected by the compass sensor, determine a change in direction of rotation of the virtual reality glasses; and change according to the direction Control the change of the volume level, correspondingly reduce or increase the sound size of the audio corresponding to the left and right channels.
  • the virtual reality glasses wherein the system for enhancing the sound effects of the virtual reality glasses further comprises:
  • the volume grading setting module is configured to pre-set the volume adjustment of the mobile terminal matched with the virtual reality glasses into several levels.
  • volume adjustment control module comprises:
  • An acquiring unit configured to control the mobile terminal to acquire angular velocity data detected by the gyro sensor, and acquire rotation direction data detected by the compass sensor;
  • a determining unit configured to control the mobile terminal to determine the direction change of the virtual reality glasses according to the angular velocity data detected by the gyro sensor and the rotation direction data detected by the compass sensor;
  • a first adjusting unit configured to: when determining that the direction change of the virtual reality glasses is rotated to the left, during the rotation, controlling the left channel sound gradually becomes smaller, and the right channel sound gradually becomes larger;
  • the second adjusting unit is configured to: when determining that the direction change of the virtual reality glasses is rotated to the right, during the rotation, the control right channel sound gradually becomes smaller, and the left and right channel sounds gradually become larger.
  • volume adjustment control module further comprises:
  • the third adjusting unit is configured to control the left and right channels to gradually decrease during the rotation process when determining that the direction change of the virtual reality glasses is rotating upward or downward.
  • volume adjustment control module further comprises:
  • the fourth adjusting unit is configured to control the mobile terminal to adjust the speed of the change of the volume level curve according to the angular velocity of the virtual reality glasses rotating, thereby changing the speed at which the playing volume becomes larger or smaller.
  • the virtual reality glasses wherein the fourth adjusting unit is specifically configured to: control the size of the volume adjustment to correspond to the angular velocity of the virtual reality glasses, and adjust the volume.
  • the angular velocity is larger, the speed of the volume increase and decrease is correspondingly accelerated; The slower the angular velocity, the slower the volume increase and decrease.
  • the method, the system and the virtual reality glasses for enhancing the sound effect of the virtual reality glasses provide a method for realizing the enhanced sound effect by using the gyro sensor and the compass sensor, so that the sound effect of the virtual reality glasses is better and has a sense of presence. And augmented reality effects of surround sound.
  • FIG. 1 is a flow chart of a preferred embodiment of a method of enhancing the sound effects of a virtual reality glasses in accordance with the present invention.
  • FIG. 2 is a schematic diagram showing the relationship between level and angular velocity ( ⁇ ) of a preferred embodiment of the method for enhancing the sound effect of a virtual reality glasses according to the present invention.
  • FIG. 3 is a functional block diagram of a preferred embodiment of a system for enhancing the sound effects of virtual reality glasses in accordance with the present invention.
  • FIG. 4 is a schematic diagram of hardware modules of a virtual reality glasses according to the present invention.
  • FIG. 1 is a flow chart of a preferred embodiment of a method for enhancing the sound effect of a virtual reality glasses according to the present invention.
  • a method for enhancing the sound effect of a virtual reality glasses as shown in FIG. 1 includes:
  • Step S100 Presetting a gyro sensor for detecting a rotational angular velocity of the virtual reality glasses on the virtual reality glasses, and a compass sensor for detecting a rotation direction of the virtual reality glasses;
  • a gyro sensor for detecting the rotational angular velocity of the virtual reality glasses on the virtual reality glasses
  • a compass sensor for detecting the rotation direction of the virtual reality glasses.
  • Compass Sensor also known as a digital compass
  • the principle of a digital compass is similar to that of a mechanical compass, which is used to measure the Earth's magnetic field by a magnetoresistive sensor and is corrected and calibrated by a technical means to point it to the south (north), preferably the invention
  • the three-axis strap-down reluctance digital magnetic compass is used.
  • This compass has the advantages of anti-shake and anti-vibration, high heading accuracy, electronic compensation for the interference field, and integration into the control loop for data link.
  • the gyroscope used by the intelligent mobile terminal is also called the angular velocity sensor. It is different from the accelerometer (G-sensor). His measured physical quantity is the angular velocity of rotation when tilting and tilting.
  • G-sensor On the mobile terminal, only the accelerometer can't measure or reconstruct the complete 3D motion. If the motion is not detected, G-sensor can only detect the linear motion in the axial direction. However, the gyroscope can make a good measurement of the rotation and deflection, so that the actual motion of the user can be accurately analyzed and judged. Then according to the action, you can do the corresponding operation on the phone.
  • the present invention also pre-sets that the volume adjustment of the mobile terminal coordinated with the virtual reality glasses is divided into several levels. For example, it is divided into six levels, the first level is the smallest, and the sixth level is the largest.
  • Step S200 When the user wears the virtual reality glasses to watch the video, the angular velocity of the virtual reality glasses is detected by the gyro sensor, and the rotation direction of the virtual reality glasses is detected by the compass sensor.
  • the gyro sensor measures angular velocity and the compass sensor measures direction. These two add up to determine the direction, angle and speed at which the user wears the virtual reality glasses to watch the video.
  • Step S300 The mobile terminal acquires angular velocity data detected by the gyro sensor, acquires rotation direction data detected by the compass sensor, determines a change in direction of rotation of the virtual reality glasses, and controls a volume level according to the direction change. Change, correspondingly reduce or increase the sound size of the audio corresponding to the left and right channels.
  • the mobile terminal acquires angular velocity data detected by the gyro sensor, and acquires rotation direction data detected by the compass sensor; the mobile terminal obtains angular velocity data detected by the gyro sensor, and acquires The rotation direction data detected by the compass sensor determines the change in the direction in which the virtual reality glasses rotate.
  • both the left and right channels are gradually reduced.
  • the mobile terminal adjusts the speed of the change of the volume level curve according to the angular velocity of the virtual reality glasses rotating, thereby changing the speed at which the playing volume becomes larger or smaller.
  • the size of the volume adjustment of the mobile terminal is controlled in one-to-one correspondence with the angular velocity of the virtual reality glasses.
  • the mobile terminal when the user watches the video through the VR glasses, if the head has a rotating motion, the mobile terminal can determine the direction of the head rotation through the gyroscope and the compass sensor, and control the change of the volume level according to the direction. Correspondingly reduce or increase the sound size of the audio corresponding to the left and right channels, thus achieving the effect of audio virtual reality. For example, when the head is turned to the left, during the rotation, the left channel sound gradually becomes smaller, and the right channel sound gradually becomes larger. This gives the user the feeling that the source is now in the right front, which is consistent with the user's actual action (left turn). In the same way, turn right, the right channel becomes smaller, and the left channel becomes larger. Turning up and down, both channels become smaller.
  • the speed at which the volume level curve changes is adjusted, thereby changing the speed at which the playback volume becomes larger or smaller.
  • the present invention proposes a method for realizing enhanced sound using a gyro sensor and a compass sensor.
  • the present invention further provides a system for enhancing the sound effect of a virtual reality glasses.
  • the system includes:
  • the preset module 310 is configured to previously set a gyro sensor for detecting the rotational angular velocity of the virtual reality glasses on the virtual reality glasses, and a compass sensor for detecting the rotation direction of the virtual reality glasses; as described above.
  • the detection control module 320 is configured to detect an angular velocity of the virtual reality glasses rotation by the gyro sensor when the user wears the virtual reality glasses to watch the video, and detect a rotation direction of the virtual reality glasses by the compass sensor; Said.
  • the volume adjustment control module 330 is configured to control the mobile terminal to acquire the angular velocity data detected by the gyro sensor, and obtain the rotation direction data detected by the compass sensor, determine the direction change of the virtual reality glasses rotation, and according to the direction The change controls the change of the volume level, correspondingly reduces or increases the sound size of the audio corresponding to the left and right channels; as described above.
  • the volume grading setting module 340 is configured to preset the volume adjustment of the mobile terminal cooperated with the virtual reality glasses into a plurality of levels; as described above.
  • the volume adjustment control module includes:
  • an acquiring unit configured to control the mobile terminal to acquire angular velocity data detected by the gyro sensor, and acquire rotation direction data detected by the compass sensor; specifically as described above.
  • the determining unit is configured to control the mobile terminal to determine the direction change of the virtual reality glasses according to the angular velocity data detected by the gyro sensor and the rotation direction data detected by the compass sensor; as described above.
  • the first adjusting unit is configured to: when determining that the direction change of the virtual reality glasses is rotated to the left, during the rotation, the control left channel sound gradually becomes smaller, and the right channel sound gradually becomes larger; as described above.
  • the second adjusting unit is configured to: when determining that the direction change of the virtual reality glasses is rotated to the right, during the rotation, the control right channel sound gradually becomes smaller, and the left and right channel sounds gradually become larger; as described above.
  • the volume adjustment control module further includes:
  • the third adjusting unit is configured to control the left and right two channels to gradually become smaller during the rotation process when determining that the direction change of the virtual reality glasses is rotating upward or downward; as described above.
  • the fourth adjusting unit is configured to control the mobile terminal to adjust the speed of the change of the volume level curve according to the angular velocity of the virtual reality glasses rotating, thereby changing the speed at which the playing volume becomes larger or smaller.
  • the fourth adjusting unit controls the size of the volume adjustment to correspond to the angular velocity of the virtual reality glasses, and adjusts the volume.
  • the angular velocity is larger, the speed of the volume increase and decrease is correspondingly accelerated; the slower the angular velocity, the volume increase and decrease speed The slower.
  • the present invention further provides a virtual reality glasses for performing the above method for enhancing the sound effect of the virtual reality glasses, and/or a system for operating the sound effects of the enhanced virtual reality glasses, as shown in FIG. 4, the virtual reality Glasses include:
  • the Fidelity module 807 includes a processor 808 having one or more processing cores, and a power supply 809 and the like. It will be understood by those skilled in the art that the terminal structure shown in FIG. 4 does not constitute a limitation to the terminal, and may include more or less components than those illustrated, or a combination of certain components, or different component arrangements.
  • the sensor 805 includes: a gyro sensor for detecting a rotational angular velocity of the virtual reality glasses, and a compass sensor for detecting a rotational direction of the virtual reality glasses.
  • the method, the system and the virtual reality glasses for enhancing the sound effect of the virtual reality glasses provide a method for realizing the enhanced sound effect by using the gyro sensor and the compass sensor, so that the sound effect of the virtual reality glasses is better and has a sense of presence. And augmented reality effects of surround sound; as described above.
  • a computer program to instruct related hardware (such as a processor, a controller, etc.), and the program can be stored in one.
  • the program when executed, may include the processes of the various method embodiments as described above.
  • the storage medium described therein may be a memory, a magnetic disk, an optical disk, or the like.

Abstract

本发明公开了一种增强虚拟现实眼镜音效的方法、系统、及虚拟现实眼镜,包括:穿戴虚拟现实眼镜观看视频时,陀螺仪传感器检测转动的角速度,罗盘传感器检测转动方向;移动终端获取角速度数据和转动方向数据,判断虚拟现实眼镜转动的方向变化;根据方向变化控制音量电平的变化,相应的减少或增大音频对应左右声道的音量。

Description

增强虚拟现实眼镜音效的方法、系统、及虚拟现实眼镜 技术领域
本发明涉及虚拟现实眼镜技术领域,尤其涉及一种快速可靠的增强虚拟现实眼镜音效的方法、系统、及虚拟现实眼镜。
背景技术
VR眼镜即“虚拟现实眼镜”(Virtual Reality Glasses)。VR眼镜通过手机作为显示屏,并通过手机上的相关应用来实现虚拟现实功能。
一般VR眼镜的音效都是通过手机本身的音频输出进行播放,当用户的头转动时,两个声道的声音不会有变化,缺乏临场感和环绕音效的增强现实效果。
因此,现有技术还有待于改进和发展。
技术问题
本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供一种增强虚拟现实眼镜音效的方法、系统、及虚拟现实眼镜。提出了一种利用陀螺仪传感器和罗盘传感器实现增强音效的方法。
技术解决方案
本发明解决技术问题所采用的技术方案如下:
一种增强虚拟现实眼镜音效的方法,其中,包括:
A、预先在虚拟现实眼镜上设置一用于检测虚拟现实眼镜转动角速度的陀螺仪传感器,以及一用于检测虚拟现实眼镜转动方向的罗盘传感器;
B、当用户穿戴所述虚拟现实眼镜观看视频的时候,通过所述陀螺仪传感器检测虚拟现实眼镜转动的角速度,以及通过所述罗盘传感器检测虚拟现实眼镜转动方向;以及
C、移动终端获取所述陀螺仪传感器检测到的角速度数据,以及获取所述罗盘传感器检测到的转动方向数据,判断虚拟现实眼镜转动的方向变化;并根据所述方向变化控制音量电平的变化,相应的减少或者增大音频对应左右声道的声音大小。
所述的增强虚拟现实眼镜音效的方法,其中,所述步骤A之前还包括:
S、预先设置与虚拟现实眼镜配合的移动终端音量调节分为若干等级。
所述的增强虚拟现实眼镜音效的方法,其特征在于,所述步骤C具体包括:
C1、移动终端获取所述陀螺仪传感器检测到的角速度数据,以及获取所述罗盘传感器检测到的转动方向数据;
C2、移动终端根据获取所述陀螺仪传感器检测到的角速度数据,以及获取所述罗盘传感器检测到的转动方向数据,判断虚拟现实眼镜转动的方向变化;
C3、当判断虚拟现实眼镜转动的方向变化是往左转动时,在转动过程中,控制左声道声音逐步变小,右声道声音逐步变大;以及
C4、当判断虚拟现实眼镜转动的方向变化是往右转动时,在转动过程中,控制右声道声音逐步变小,左右声道声音逐步变大。
所述的增强虚拟现实眼镜音效的方法,其中,所述步骤C具体还包括:
C5、当判断虚拟现实眼镜转动的方向变化是往上转动或往下转动时,在转动过程中,控制左右两个声道都逐步变小。
所述的增强虚拟现实眼镜音效的方法,其中,所述步骤C还包括:
C6、移动终端根据虚拟现实眼镜转动的角速度大小,调整音量电平曲线变化的速度,从而改变播放音量变大或变小的速度。
所述的增强虚拟现实眼镜音效的方法,其中,所述步骤C6还包括:移动终端控制音量调节的大小,与虚拟现实眼镜转动的角速度大小一一对应,调整音量当角速度越大,音量增减的速度相应加快;角速度越慢,音量增减速度越慢。
本发明解决技术问题所采用的技术方案如下:
一种增强虚拟现实眼镜音效的系统,其中,包括:
预先设置模块,用于预先在虚拟现实眼镜上设置一用于检测虚拟现实眼镜转动角速度的陀螺仪传感器,以及一用于检测虚拟现实眼镜转动方向的罗盘传感器;
检测控制模块,用于当用户穿戴所述虚拟现实眼镜观看视频的时候,通过所述陀螺仪传感器检测虚拟现实眼镜转动的角速度,以及通过所述罗盘传感器检测虚拟现实眼镜转动方向;以及
音量调节控制模块,用于控制移动终端获取所述陀螺仪传感器检测到的角速度数据,以及获取所述罗盘传感器检测到的转动方向数据,判断虚拟现实眼镜转动的方向变化;并根据所述方向变化控制音量电平的变化,相应的减少或者增大音频对应左右声道的声音大小。
所述增强虚拟现实眼镜音效的系统,其中还包括:
音量分级设置模块,用于预先设置与虚拟现实眼镜配合的移动终端音量调节分为若干等级。
所述增强虚拟现实眼镜音效的系统,其中,所述音量调节控制模块包括:
获取单元,用于控制移动终端获取所述陀螺仪传感器检测到的角速度数据,以及获取所述罗盘传感器检测到的转动方向数据;
判断单元,用于控制移动终端根据获取所述陀螺仪传感器检测到的角速度数据,以及获取所述罗盘传感器检测到的转动方向数据,判断虚拟现实眼镜转动的方向变化;
第一调节单元,用于当判断虚拟现实眼镜转动的方向变化是往左转动时,在转动过程中,控制左声道声音逐步变小,右声道声音逐步变大;以及
第二调节单元,用于当判断虚拟现实眼镜转动的方向变化是往右转动时,在转动过程中,控制右声道声音逐步变小,左右声道声音逐步变大。
所述增强虚拟现实眼镜音效的系统,其中所述音量调节控制模块还包括:
第三调节单元,用于当判断虚拟现实眼镜转动的方向变化是往上转动或往下转动时,在转动过程中,控制左右两个声道都逐步变小;
所述增强虚拟现实眼镜音效的系统,其中所述音量调节控制模块还包括:
第四调节单元,用于控制移动终端根据虚拟现实眼镜转动的角速度大小,调整音量电平曲线变化的速度,从而改变播放音量变大或变小的速度。
所述增强虚拟现实眼镜音效的系统,其中所述第四调节单元具体用于:控制音量调节的大小与虚拟现实眼镜转动的角速度大小一一对应,调整音量当角速度越大,音量增减的速度相应加快;角速度越慢,音量增减速度越慢。
本发明解决技术问题所采用的技术方案如下:
一种虚拟现实眼镜,包括一种增强虚拟现实眼镜音效的系统,所述增强虚拟现实眼镜音效的系统包括:
预先设置模块,用于预先在虚拟现实眼镜上设置一用于检测虚拟现实眼镜转动角速度的陀螺仪传感器,以及一用于检测虚拟现实眼镜转动方向的罗盘传感器;
检测控制模块,用于当用户穿戴所述虚拟现实眼镜观看视频的时候,通过所述陀螺仪传感器检测虚拟现实眼镜转动的角速度,以及通过所述罗盘传感器检测虚拟现实眼镜转动方向;以及
音量调节控制模块,用于控制移动终端获取所述陀螺仪传感器检测到的角速度数据,以及获取所述罗盘传感器检测到的转动方向数据,判断虚拟现实眼镜转动的方向变化;并根据所述方向变化控制音量电平的变化,相应的减少或者增大音频对应左右声道的声音大小。
所述虚拟现实眼镜,其中所述增强虚拟现实眼镜音效的系统还包括:
音量分级设置模块,用于预先设置与虚拟现实眼镜配合的移动终端音量调节分为若干等级。
所述虚拟现实眼镜,其中所述音量调节控制模块包括:
获取单元,用于控制移动终端获取所述陀螺仪传感器检测到的角速度数据,以及获取所述罗盘传感器检测到的转动方向数据;
判断单元,用于控制移动终端根据获取所述陀螺仪传感器检测到的角速度数据,以及获取所述罗盘传感器检测到的转动方向数据,判断虚拟现实眼镜转动的方向变化;
第一调节单元,用于当判断虚拟现实眼镜转动的方向变化是往左转动时,在转动过程中,控制左声道声音逐步变小,右声道声音逐步变大;以及
第二调节单元,用于当判断虚拟现实眼镜转动的方向变化是往右转动时,在转动过程中,控制右声道声音逐步变小,左右声道声音逐步变大。
所述虚拟现实眼镜,其中所述音量调节控制模块还包括:
第三调节单元,用于当判断虚拟现实眼镜转动的方向变化是往上转动或往下转动时,在转动过程中,控制左右两个声道都逐步变小。
所述虚拟现实眼镜,其中所述音量调节控制模块还包括:
第四调节单元,用于控制移动终端根据虚拟现实眼镜转动的角速度大小,调整音量电平曲线变化的速度,从而改变播放音量变大或变小的速度。
所述虚拟现实眼镜,其中所述第四调节单元,具体用于:控制音量调节的大小与虚拟现实眼镜转动的角速度大小一一对应,调整音量当角速度越大,音量增减的速度相应加快;角速度越慢,音量增减速度越慢。
有益效果
本发明所提供的增强虚拟现实眼镜音效的方法、系统、及虚拟现实眼镜,提出了一种利用陀螺仪传感器和罗盘传感器实现增强音效的方法,使虚拟现实眼镜的音效效果更佳,具有临场感和环绕音效的增强现实效果。
附图说明
图1是本发明一种增强虚拟现实眼镜音效的方法的较佳实施例的流程图。
图2是本发明一种增强虚拟现实眼镜音效的方法的较佳实施例的电平(Level)和角速度(ω)的关系示意图。
图3是本发明一种增强虚拟现实眼镜音效的系统的较佳实施例的功能原理框图。
图4是本发明一种虚拟现实眼镜的硬件模块示意图。
本发明的最佳实施方式
为使本发明的目的、技术方案及优点更加清楚、明确,以下参照附图并举实施例对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
请参见图1,图1是本发明一种增强虚拟现实眼镜音效的方法的较佳实施例的流程图。图1所示的一种增强虚拟现实眼镜音效的方法,包括:
步骤S100、预先在虚拟现实眼镜上设置一用于检测虚拟现实眼镜转动角速度的陀螺仪传感器,以及一用于检测虚拟现实眼镜转动方向的罗盘传感器;
本发明实施例中,需要设置预先在虚拟现实眼镜上设置一用于检测虚拟现实眼镜转动角速度的陀螺仪传感器,以及一用于检测虚拟现实眼镜转动方向的罗盘传感器。
罗盘传感器(Compass sensor),又称数字罗盘,数字罗盘的原理与机械指南针类似,通过磁阻传感器用来测量地球磁场,并通过技术方式进行修正和校准,使其指向正南(北),较佳地本发明使用的是三轴捷联磁阻式数字磁罗盘,这种罗盘具有抗摇动和抗振性、航向精度较高、对干扰场有电子补偿、可以集成到控制回路中进行数据链接等优点。
陀螺仪传感器,智能移动终端使用的陀螺仪又叫角速度传感器,是不同于加速度计(G-sensor)的,他的测量物理量是偏转、倾斜时的转动角速度。在移动终端上,仅用加速度计没办法测量或重构出完整的3D动作,测不到转动的动作的,G-sensor只能检测轴向的线性动作。但陀螺仪则可以对转动、偏转的动作做很好的测量,这样就可以精确分析判断出使用者的实际动作。而后根据动作,可以对手机做相应的操作。
并且本发明还预先设置与虚拟现实眼镜配合的移动终端音量调节分为若干等级。例如分为六级,一级最小,六级最大,其等级依次分级。
步骤S200、当用户穿戴所述虚拟现实眼镜观看视频的时候,通过所述陀螺仪传感器检测虚拟现实眼镜转动的角速度,以及通过所述罗盘传感器检测虚拟现实眼镜转动方向。
陀螺仪传感器可以测量角速度,罗盘传感器可以测量方向。这两个加起来可以判断用户穿戴所述虚拟现实眼镜观看视频的时候转动的方向和角度、速度。
步骤S300、移动终端获取所述陀螺仪传感器检测到的角速度数据,以及获取所述罗盘传感器检测到的转动方向数据,判断虚拟现实眼镜转动的方向变化;并根据所述方向变化控制音量电平的变化,相应的减少或者增大音频对应左右声道的声音大小。
本发明实施例中、移动终端获取所述陀螺仪传感器检测到的角速度数据,以及获取所述罗盘传感器检测到的转动方向数据;移动终端根据获取所述陀螺仪传感器检测到的角速度数据,以及获取所述罗盘传感器检测到的转动方向数据,判断虚拟现实眼镜转动的方向变化。
当判断虚拟现实眼镜转动的方向变化是往左转动时,在转动过程中,控制左声道声音逐步变小,右声道声音逐步变大;当判断虚拟现实眼镜转动的方向变化是往右转动时,在转动过程中,控制右声道声音逐步变小,左右声道声音逐步变大。
而当判断虚拟现实眼镜转动的方向变化是往上转动或往下转动时,在转动过程中,控制左右两个声道都逐步变小。
本发明实施例中移动终端根据虚拟现实眼镜转动的角速度大小,调整音量电平曲线变化的速度,从而改变播放音量变大或变小的速度。移动终端控制音量调节的大小,与虚拟现实眼镜转动的角速度大小一一对应,调整音量当角速度越大,音量增减的速度相应加快;角速度越慢,音量增减速度越慢。
即本发明实施例中,当用户通过VR眼镜观看视频的时候,如果头部有转动动作,移动终端可以通过陀螺仪和罗盘传感器判断头部转动的方向,并根据该方向控制音量电平的变化,相应的减少或者增大音频对应左右声道的声音大小,这样就实现了音频虚拟现实的效果。比如头部往左转动,在转动过程中,左声道声音渐渐变小,右声道声音渐渐变大。这样给用户的感觉是音源现在处在右前方,这和用户的实际动作(左转)是一致的。同理,往右转,右声道变小,左声道变大。往上往下转,两个声道都变小。
进一步,根据头部转动的角速度大小,调整音量电平曲线变化的速度,从而改变播放音量变大或变小的速度。角速度越大,音量增减的速度越快;角速度越慢,音量增减速度越慢。因此,可用图2所示简单图示意电平(Level)和角速度(ω)的关系。
由上可见,本发明提出了一种利用陀螺仪传感器和罗盘传感器实现增强音效的方法。
基于上述实施例,本发明还提供了一种增强虚拟现实眼镜音效的系统,如图3所示,所述系统包括:
预先设置模块310,用于预先在虚拟现实眼镜上设置一用于检测虚拟现实眼镜转动角速度的陀螺仪传感器,以及一用于检测虚拟现实眼镜转动方向的罗盘传感器;具体如上所述。
检测控制模块320,用于当用户穿戴所述虚拟现实眼镜观看视频的时候,通过所述陀螺仪传感器检测虚拟现实眼镜转动的角速度,以及通过所述罗盘传感器检测虚拟现实眼镜转动方向;具体如上所述。
音量调节控制模块330,用于控制移动终端获取所述陀螺仪传感器检测到的角速度数据,以及获取所述罗盘传感器检测到的转动方向数据,判断虚拟现实眼镜转动的方向变化;并根据所述方向变化控制音量电平的变化,相应的减少或者增大音频对应左右声道的声音大小;具体如上所述。
音量分级设置模块340,用于预先设置与虚拟现实眼镜配合的移动终端音量调节分为若干等级;具体如上所述。
所述增强虚拟现实眼镜音效的系统,其中,
所述音量调节控制模块包括:
获取单元,用于控制移动终端获取所述陀螺仪传感器检测到的角速度数据,以及获取所述罗盘传感器检测到的转动方向数据;具体如上所述。
判断单元,用于控制移动终端根据获取所述陀螺仪传感器检测到的角速度数据,以及获取所述罗盘传感器检测到的转动方向数据,判断虚拟现实眼镜转动的方向变化;具体如上所述。
第一调节单元,用于当判断虚拟现实眼镜转动的方向变化是往左转动时,在转动过程中,控制左声道声音逐步变小,右声道声音逐步变大;具体如上所述。
第二调节单元,用于当判断虚拟现实眼镜转动的方向变化是往右转动时,在转动过程中,控制右声道声音逐步变小,左右声道声音逐步变大;具体如上所述。
所述增强虚拟现实眼镜音效的系统,其中,
所述音量调节控制模块还包括:
第三调节单元,用于当判断虚拟现实眼镜转动的方向变化是往上转动或往下转动时,在转动过程中,控制左右两个声道都逐步变小;具体如上所述。
第四调节单元,用于控制移动终端根据虚拟现实眼镜转动的角速度大小,调整音量电平曲线变化的速度,从而改变播放音量变大或变小的速度。
具体而言,所述第四调节单元控制音量调节的大小与虚拟现实眼镜转动的角速度大小一一对应,调整音量当角速度越大,音量增减的速度相应加快;角速度越慢,音量增减速度越慢。
基于上述实施例,本发明还提供了一种虚拟现实眼镜,用于执行上述增强虚拟现实眼镜音效的方法、和/或运行增强虚拟现实眼镜音效的系统,如图4所示,所述虚拟现实眼镜包括:
射频(RF,Radio Frequency)电路801、包括有一个或一个以上计算机可读存储介质的存储器802、输入单元803、显示单元804、传感器805、音频电路806、无线保真(WiFi,Wireless Fidelity)模块807、包括有一个或者一个以上处理核心的处理器808、以及电源809等部件。本领域技术人员可以理解,图4中示出的终端结构并不构成对终端的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
其中,所述传感器805包括:用于检测虚拟现实眼镜转动角速度的陀螺仪传感器,以及一用于检测虚拟现实眼镜转动方向的罗盘传感器。
本发明所提供的增强虚拟现实眼镜音效的方法、系统、及虚拟现实眼镜,提出了一种利用陀螺仪传感器和罗盘传感器实现增强音效的方法,使虚拟现实眼镜的音效效果更佳,具有临场感和环绕音效的增强现实效果;具体如上所述。
当然,本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关硬件(如处理器,控制器等)来完成,所述的程序可存储于一计算机可读取的存储介质中,该程序在执行时可包括如上述各方法实施例的流程。其中所述的存储介质可为存储器、磁碟、光盘等。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (18)

  1. 一种增强虚拟现实眼镜音效的方法,其包括:
    A、预先在虚拟现实眼镜上设置一用于检测虚拟现实眼镜转动角速度的陀螺仪传感器,以及一用于检测虚拟现实眼镜转动方向的罗盘传感器;
    B、当用户穿戴所述虚拟现实眼镜观看视频的时候,通过所述陀螺仪传感器检测虚拟现实眼镜转动的角速度,以及通过所述罗盘传感器检测虚拟现实眼镜转动方向;以及
    C、移动终端获取所述陀螺仪传感器检测到的角速度数据,以及获取所述罗盘传感器检测到的转动方向数据,判断虚拟现实眼镜转动的方向变化;并根据所述方向变化控制音量电平的变化,相应的减少或者增大音频对应左右声道的声音大小。
  2. 根据权利要求1所述的增强虚拟现实眼镜音效的方法,其中所述步骤A之前还包括:
    S、预先设置与虚拟现实眼镜配合的移动终端音量调节分为若干等级。
  3. 根据权利要求1所述的增强虚拟现实眼镜音效的方法,其中所述步骤C具体包括:
    C1、移动终端获取所述陀螺仪传感器检测到的角速度数据,以及获取所述罗盘传感器检测到的转动方向数据;
    C2、移动终端根据获取所述陀螺仪传感器检测到的角速度数据,以及获取所述罗盘传感器检测到的转动方向数据,判断虚拟现实眼镜转动的方向变化;
    C3、当判断虚拟现实眼镜转动的方向变化是往左转动时,在转动过程中,控制左声道声音逐步变小,右声道声音逐步变大;以及
    C4、当判断虚拟现实眼镜转动的方向变化是往右转动时,在转动过程中,控制右声道声音逐步变小,左右声道声音逐步变大。
  4. 根据权利要求1所述的增强虚拟现实眼镜音效的方法,其中所述步骤C具体还包括:
    C5、当判断虚拟现实眼镜转动的方向变化是往上转动或往下转动时,在转动过程中,控制左右两个声道都逐步变小。
  5. 根据权利要求1所述的增强虚拟现实眼镜音效的方法,其中所述步骤C还包括:
    C6、移动终端根据虚拟现实眼镜转动的角速度大小,调整音量电平曲线变化的速度,从而改变播放音量变大或变小的速度。
  6. 根据权利要求5所述的增强虚拟现实眼镜音效的方法,其中所述步骤C6还包括:移动终端控制音量调节的大小,与虚拟现实眼镜转动的角速度大小一一对应,调整音量当角速度越大,音量增减的速度相应加快;角速度越慢,音量增减速度越慢。
  7. 一种增强虚拟现实眼镜音效的系统,其包括:
    预先设置模块,用于预先在虚拟现实眼镜上设置一用于检测虚拟现实眼镜转动角速度的陀螺仪传感器,以及一用于检测虚拟现实眼镜转动方向的罗盘传感器;
    检测控制模块,用于当用户穿戴所述虚拟现实眼镜观看视频的时候,通过所述陀螺仪传感器检测虚拟现实眼镜转动的角速度,以及通过所述罗盘传感器检测虚拟现实眼镜转动方向;以及
    音量调节控制模块,用于控制移动终端获取所述陀螺仪传感器检测到的角速度数据,以及获取所述罗盘传感器检测到的转动方向数据,判断虚拟现实眼镜转动的方向变化;并根据所述方向变化控制音量电平的变化,相应的减少或者增大音频对应左右声道的声音大小。
  8. 根据权利要求7所述增强虚拟现实眼镜音效的系统,其中还包括:
    音量分级设置模块,用于预先设置与虚拟现实眼镜配合的移动终端音量调节分为若干等级。
  9. 根据权利要求7所述增强虚拟现实眼镜音效的系统,其中所述音量调节控制模块包括:
    获取单元,用于控制移动终端获取所述陀螺仪传感器检测到的角速度数据,以及获取所述罗盘传感器检测到的转动方向数据;
    判断单元,用于控制移动终端根据获取所述陀螺仪传感器检测到的角速度数据,以及获取所述罗盘传感器检测到的转动方向数据,判断虚拟现实眼镜转动的方向变化;
    第一调节单元,用于当判断虚拟现实眼镜转动的方向变化是往左转动时,在转动过程中,控制左声道声音逐步变小,右声道声音逐步变大;以及
    第二调节单元,用于当判断虚拟现实眼镜转动的方向变化是往右转动时,在转动过程中,控制右声道声音逐步变小,左右声道声音逐步变大。
  10. 根据权利要求7所述增强虚拟现实眼镜音效的系统,其中所述音量调节控制模块还包括:
    第三调节单元,用于当判断虚拟现实眼镜转动的方向变化是往上转动或往下转动时,在转动过程中,控制左右两个声道都逐步变小。
  11. 根据权利要求7所述增强虚拟现实眼镜音效的系统,其中所述音量调节控制模块还包括:
    第四调节单元,用于控制移动终端根据虚拟现实眼镜转动的角速度大小,调整音量电平曲线变化的速度,从而改变播放音量变大或变小的速度。
  12. 根据权利要求11所述增强虚拟现实眼镜音效的系统,其中所述第四调节单元具体用于:控制音量调节的大小与虚拟现实眼镜转动的角速度大小一一对应,调整音量当角速度越大,音量增减的速度相应加快;角速度越慢,音量增减速度越慢。
  13. 一种虚拟现实眼镜,包括一种增强虚拟现实眼镜音效的系统,所述增强虚拟现实眼镜音效的系统包括:
    预先设置模块,用于预先在虚拟现实眼镜上设置一用于检测虚拟现实眼镜转动角速度的陀螺仪传感器,以及一用于检测虚拟现实眼镜转动方向的罗盘传感器;
    检测控制模块,用于当用户穿戴所述虚拟现实眼镜观看视频的时候,通过所述陀螺仪传感器检测虚拟现实眼镜转动的角速度,以及通过所述罗盘传感器检测虚拟现实眼镜转动方向;以及
    音量调节控制模块,用于控制移动终端获取所述陀螺仪传感器检测到的角速度数据,以及获取所述罗盘传感器检测到的转动方向数据,判断虚拟现实眼镜转动的方向变化;并根据所述方向变化控制音量电平的变化,相应的减少或者增大音频对应左右声道的声音大小。
  14. 根据权利要求13所述虚拟现实眼镜,其中所述增强虚拟现实眼镜音效的系统还包括:
    音量分级设置模块,用于预先设置与虚拟现实眼镜配合的移动终端音量调节分为若干等级。
  15. 根据权利要求13所述虚拟现实眼镜,其中所述音量调节控制模块包括:
    获取单元,用于控制移动终端获取所述陀螺仪传感器检测到的角速度数据,以及获取所述罗盘传感器检测到的转动方向数据;
    判断单元,用于控制移动终端根据获取所述陀螺仪传感器检测到的角速度数据,以及获取所述罗盘传感器检测到的转动方向数据,判断虚拟现实眼镜转动的方向变化;
    第一调节单元,用于当判断虚拟现实眼镜转动的方向变化是往左转动时,在转动过程中,控制左声道声音逐步变小,右声道声音逐步变大;以及
    第二调节单元,用于当判断虚拟现实眼镜转动的方向变化是往右转动时,在转动过程中,控制右声道声音逐步变小,左右声道声音逐步变大。
  16. 根据权利要求13所述虚拟现实眼镜,其中所述音量调节控制模块还包括:
    第三调节单元,用于当判断虚拟现实眼镜转动的方向变化是往上转动或往下转动时,在转动过程中,控制左右两个声道都逐步变小。
  17. 根据权利要求13所述虚拟现实眼镜,其中所述音量调节控制模块还包括:
    第四调节单元,用于控制移动终端根据虚拟现实眼镜转动的角速度大小,调整音量电平曲线变化的速度,从而改变播放音量变大或变小的速度。
  18. 根据权利要求17所述虚拟现实眼镜,其中所述第四调节单元,具体用于:控制音量调节的大小与虚拟现实眼镜转动的角速度大小一一对应,调整音量当角速度越大,音量增减的速度相应加快;角速度越慢,音量增减速度越慢。
PCT/CN2016/098023 2015-12-23 2016-09-05 增强虚拟现实眼镜音效的方法、系统、及虚拟现实眼镜 WO2017107560A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/503,706 US10123148B2 (en) 2015-12-23 2016-09-05 Method and system for enhancing sound effect when using virtual reality glasses

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510977907.8 2015-12-23
CN201510977907.8A CN105578355B (zh) 2015-12-23 2015-12-23 一种增强虚拟现实眼镜音效的方法及系统

Publications (1)

Publication Number Publication Date
WO2017107560A1 true WO2017107560A1 (zh) 2017-06-29

Family

ID=55887932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/098023 WO2017107560A1 (zh) 2015-12-23 2016-09-05 增强虚拟现实眼镜音效的方法、系统、及虚拟现实眼镜

Country Status (3)

Country Link
US (1) US10123148B2 (zh)
CN (1) CN105578355B (zh)
WO (1) WO2017107560A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105578355B (zh) * 2015-12-23 2019-02-26 惠州Tcl移动通信有限公司 一种增强虚拟现实眼镜音效的方法及系统
CN106201437A (zh) * 2016-06-30 2016-12-07 乐视控股(北京)有限公司 一种自动升级vr平台的方法及装置
CN106200924B (zh) * 2016-06-30 2019-03-19 努比亚技术有限公司 一种终端及其对虚拟现实视频进行控制的方法
CN106168855B (zh) * 2016-07-01 2020-06-30 北京麦哲科技有限公司 一种便携式mr眼镜、手机和mr眼镜系统
CN106648528A (zh) * 2016-11-11 2017-05-10 宇龙计算机通信科技(深圳)有限公司 虚拟现实设备的声音调整方法、装置及虚拟现实设备
JP2018082308A (ja) * 2016-11-16 2018-05-24 ソニー株式会社 情報処理装置、方法及びプログラム
CN106657060A (zh) * 2016-12-21 2017-05-10 惠州Tcl移动通信有限公司 一种基于现实场景的vr通讯方法及系统
CN106708268B (zh) * 2016-12-28 2019-08-30 深圳市中兴移动软件有限公司 一种实现应用交互处理的方法及装置
KR102374404B1 (ko) 2017-07-25 2022-03-15 삼성전자주식회사 콘텐트를 제공하기 위한 디바이스 및 방법
CN107632703A (zh) * 2017-09-01 2018-01-26 广州励丰文化科技股份有限公司 基于双目摄像头的混合现实音频控制方法及服务设备
US10375506B1 (en) * 2018-02-28 2019-08-06 Google Llc Spatial audio to enable safe headphone use during exercise and commuting
CN111615044B (zh) * 2019-02-25 2021-09-14 宏碁股份有限公司 声音信号的能量分布修正方法及其系统
CN111093142B (zh) * 2019-12-24 2021-06-08 杭州当虹科技股份有限公司 一种基于vr多方向音源合成的实现方法
CN112040212A (zh) * 2020-09-09 2020-12-04 青岛黄海学院 一种全景视频制作系统及方法
CN113204326B (zh) * 2021-05-12 2022-04-08 同济大学 一种基于混合现实空间下的动态音效调节方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1140968A (zh) * 1995-05-22 1997-01-22 日本胜利株式会社 耳机重放装置
US20020164037A1 (en) * 2000-07-21 2002-11-07 Satoshi Sekine Sound image localization apparatus and method
CN204745623U (zh) * 2015-06-11 2015-11-11 苏州百源软件设计有限公司 可穿戴虚拟现实运动头盔及可穿戴虚拟动作游戏系统
CN105163223A (zh) * 2015-10-12 2015-12-16 中山奥凯华泰电子有限公司 用于三维音源定位的耳机控制方法、耳机控制装置和耳机
CN105578355A (zh) * 2015-12-23 2016-05-11 惠州Tcl移动通信有限公司 一种增强虚拟现实眼镜音效的方法及系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4735993B2 (ja) * 2008-08-26 2011-07-27 ソニー株式会社 音声処理装置、音像定位位置調整方法、映像処理装置及び映像処理方法
US20120212484A1 (en) * 2010-02-28 2012-08-23 Osterhout Group, Inc. System and method for display content placement using distance and location information
CN102546893B (zh) * 2011-11-18 2014-12-17 捷开通讯科技(上海)有限公司 移动终端音量调整装置与方法
CN103152465B (zh) * 2013-01-23 2016-03-30 广东欧珀移动通信有限公司 利用三维加速度传感器实现手机音量加减的方法
US9880615B2 (en) * 2013-02-15 2018-01-30 Seiko Epson Corporation Information processing device and control method for information processing device
US9229235B2 (en) * 2013-12-01 2016-01-05 Apx Labs, Inc. Systems and methods for unlocking a wearable device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1140968A (zh) * 1995-05-22 1997-01-22 日本胜利株式会社 耳机重放装置
US20020164037A1 (en) * 2000-07-21 2002-11-07 Satoshi Sekine Sound image localization apparatus and method
CN204745623U (zh) * 2015-06-11 2015-11-11 苏州百源软件设计有限公司 可穿戴虚拟现实运动头盔及可穿戴虚拟动作游戏系统
CN105163223A (zh) * 2015-10-12 2015-12-16 中山奥凯华泰电子有限公司 用于三维音源定位的耳机控制方法、耳机控制装置和耳机
CN105578355A (zh) * 2015-12-23 2016-05-11 惠州Tcl移动通信有限公司 一种增强虚拟现实眼镜音效的方法及系统

Also Published As

Publication number Publication date
CN105578355B (zh) 2019-02-26
CN105578355A (zh) 2016-05-11
US10123148B2 (en) 2018-11-06
US20180109902A1 (en) 2018-04-19

Similar Documents

Publication Publication Date Title
WO2017107560A1 (zh) 增强虚拟现实眼镜音效的方法、系统、及虚拟现实眼镜
WO2018072568A1 (zh) 移动终端图标动态显示的方法及系统
WO2018076744A1 (zh) 智能穿戴设备的穿戴状态检测方法及检测装置
WO2013118941A1 (en) Portable device and method for controlling the same
WO2017181686A1 (zh) 一种移动终端视频通讯中画面角度自动修正方法及系统
WO2017166588A1 (zh) 一种耳机及其控制方法及装置
WO2014021670A1 (en) Mobile apparatus and control method thereof
CN101662720A (zh) 声音处理装置、声像定位位置调节方法及视频处理装置
WO2018076434A1 (zh) 声音信号的输出方法及装置、耳机状态的检测方法及装置
WO2017041513A1 (zh) 视频播放内容插入方法、装置和存储介质
WO2015010452A1 (zh) 一种基于触摸屏的仪器参数调节方法和系统
WO2017201811A1 (zh) 一种液晶显示器的驱动方法及驱动装置
WO2020050473A1 (ko) Uwb 네트워크에서 프리앰블을 적응적으로 제어하기 위한 장치 및 방법
WO2018171534A1 (zh) 基于移动终端的双摄像头供电控制方法、系统及移动终端
WO2018145597A1 (zh) 基于移动终端的屏幕补光拍照方法及系统、移动终端
WO2016119106A1 (zh) 一种耳机降噪方法及装置
WO2018040174A1 (zh) 一种设置预览分辨率的方法、装置及终端
WO2017067263A1 (zh) 一种指纹传感器校准方法、装置及智能移动终端
WO2019112357A1 (ko) 복수의 스피커의 상태에 기반하여 오디오 신호의 볼륨 레벨을 제어하는 전자 장치
WO2017177714A1 (zh) 一种移动终端及其调节vr眼镜亮度的方法
WO2016150027A1 (zh) 一种基于可穿戴设备组建交流群的方法及可穿戴设备
WO2019074243A1 (en) DISPLAY DEVICE, USER TERMINAL DEVICE, DISPLAY SYSTEM COMPRISING THE SAME, AND ASSOCIATED COMAND METHOD
WO2016064219A1 (ko) 베젤을 이용한 손목시계형 휴대용 단말기
WO2023085859A1 (ko) 보청 이어폰을 이용한 청각 모니터링 방법 및 그 시스템
WO2017008338A1 (zh) 一种三维图像处理方法及装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15503706

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16877371

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16877371

Country of ref document: EP

Kind code of ref document: A1