WO2015010452A1 - 一种基于触摸屏的仪器参数调节方法和系统 - Google Patents

一种基于触摸屏的仪器参数调节方法和系统 Download PDF

Info

Publication number
WO2015010452A1
WO2015010452A1 PCT/CN2014/070017 CN2014070017W WO2015010452A1 WO 2015010452 A1 WO2015010452 A1 WO 2015010452A1 CN 2014070017 W CN2014070017 W CN 2014070017W WO 2015010452 A1 WO2015010452 A1 WO 2015010452A1
Authority
WO
WIPO (PCT)
Prior art keywords
contact point
area
touch screen
parameter
displacement
Prior art date
Application number
PCT/CN2014/070017
Other languages
English (en)
French (fr)
Inventor
张兴杰
宫玥枚
Original Assignee
深圳麦科信仪器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦科信仪器有限公司 filed Critical 深圳麦科信仪器有限公司
Publication of WO2015010452A1 publication Critical patent/WO2015010452A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0484Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
    • G06F3/04847Interaction techniques to control parameter settings, e.g. interaction with sliders or dials
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • G06F3/0488Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures

Definitions

  • the present invention relates to the field of information technology, and in particular, to a touch screen based instrument parameter adjustment method and system.
  • touch screen With the continuous maturity of touch screen technology, more and more consumer electronics and instrumentation are equipped with touch screens as an input means, and test and measurement instruments are no exception, such as Tektronix DP07000 series oscilloscopes.
  • test and measurement instruments are no exception, such as Tektronix DP07000 series oscilloscopes.
  • the touch screen is limited to simple applications such as operating menus.
  • the operation still relies mainly on mechanical knobs and mechanical buttons.
  • the size of a parameter is continuously adjusted in a wide range, and mechanical knobs are generally used. Achieving a large number of mechanical knobs and buttons is not conducive to saving product cost, but also easy to wear, has a life limit, and is not easy to clean and clean, nor can it give the operator a more intuitive experience.
  • the object of the present invention is to overcome the deficiencies of the prior art, and to provide a method and system for adjusting parameters of a touch screen based instrument that is convenient, intuitive, and has a good operating experience and cost saving.
  • a touch screen based instrument parameter adjustment method comprising the following steps:
  • the area A is an area provided on the touch screen for the user to adjust the parameter displayed on the touch display screen;
  • the parameters currently applied by the instrument are adjusted according to the direction and displacement of the contact point sliding; the displacement amount is the displacement of the current position of the contact point relative to the initial position of the contact point on the screen.
  • the method includes:
  • the direction in which the contact point slides in the area A is a positive direction
  • the direction in which the contact point slides in the area A is the reverse direction
  • the direction in which the contact point slides in the area A is the vertical direction.
  • the adjusting the parameters currently applied by the instrument according to the direction in which the contact point slides comprises:
  • the parameter of the current application is increased, and if the direction in which the contact point slides is the reverse direction, the parameter of the current application is reduced;
  • the current applied parameters are reduced, and if the direction in which the contact point slides is in the opposite direction, the currently applied parameters are increased;
  • the parameter according to the displacement of the contact point is adjusted to the parameter currently applied by the instrument, and the amount of change of the parameter is proportional to the displacement of the contact point sliding.
  • the parameter according to the displacement of the contact point sliding adjusts the parameter currently applied by the instrument, and the rate of change of the parameter and the displacement amount of the contact point sliding or the displacement amount of the contact point sliding in the setting direction In direct proportion.
  • the parameters currently applied by the instrument include up, down, left and right movement of the display content, audio/video playback speed, numerical magnitude, and gear position change.
  • a touch screen based instrument parameter adjustment system comprising:
  • a touch screen for providing a specified area A to the user;
  • the area A is an area on the touch screen for the user to adjust the parameters displayed on the touch display screen;
  • An input detecting module configured to detect whether a position of a contact point on the touch screen is in the area A;
  • a sliding detection module configured to detect a direction and a displacement amount of the contact point sliding on the touch screen; the displacement amount is a displacement amount of a current position of the contact point relative to an initial position of the contact point on the screen;
  • the adjustment execution module is used to adjust the current application parameters of the instrument according to the direction and displacement of the contact point sliding.
  • system for adjusting the parameter of the instrument based on the touch screen further comprises:
  • Direction setting module for setting a direction and area A
  • the direction in which the contact point slides in the area A is set to be a positive direction
  • the direction in which the contact point slides in the area A is set to be the reverse direction
  • the direction in which the contact point slides in the area A is set to be a vertical direction.
  • the touch screen-based instrument parameter adjustment system further includes a rule preset module, configured to preset an adjustment rule, where the adjustment rule includes:
  • the current applied parameter is increased; if the direction in which the contact point slides is in the reverse direction, the current applied parameter is reduced;
  • the current applied parameter is reduced; if the direction in which the contact point slides is in the reverse direction, the currently applied parameter is increased;
  • the amount of change in the parameter is proportional to the amount of displacement of the contact point sliding
  • the rate of change of the parameter is proportional to the amount of displacement of the contact point slip or the amount of displacement of the contact point slip in the set direction.
  • the parameters currently applied by the instrument include up, down, left and right movement of the display content, audio/video playback speed, numerical magnitude, and gear position change.
  • the invention provides a touch screen-based instrument parameter adjustment method and system, preset adjustment rules, and corresponding adjustments to current application parameters according to the action of the contact point in the area A, which is convenient and intuitive, and the parameter adjustment direction and speed can be controlled at will. It gives the user an excellent operating experience, which reduces wear and tear compared to mechanical knobs and buttons, which effectively extends the life of the instrument while eliminating hardware costs.
  • FIG. 1 is a general flow chart of a method for adjusting an instrument parameter based on a touch screen according to the present invention
  • FIG. 2 is a flow chart of a parameter adjustment module of a method for adjusting an instrument parameter based on a touch screen according to the present invention
  • FIG. 3 is a schematic block diagram of a system for adjusting parameter of a device based on a touch screen according to the present invention
  • FIG. 4 is a flow chart of adjusting the up, down, left, and right movement of display content according to the first embodiment of the present invention
  • FIG. 5 is a flowchart of adjusting an audio/video playback speed according to a second embodiment of the present invention.
  • FIG. 6 is a flow chart of adjusting a numerical value according to a third embodiment of the present invention.
  • FIG. 7 is a flowchart of adjusting a gear position according to a fourth embodiment of the present invention.
  • step S1 is a general flowchart of a method for adjusting an instrument parameter based on a touch screen according to the present invention.
  • step S1 a direction and an area A are set on the touch screen; if the contact point slides in the area A and the setting If the angle of the smaller direction is less than 90 degrees, the direction in which the contact point slides in the area A is the positive direction; if the angle of the contact point in the area A is smaller than the set direction by an angle greater than 90 degrees, the contact point The direction of sliding in the area A is the reverse direction; if the angle between the direction in which the contact point slides in the area A and the set direction is equal to 90 degrees, the direction in which the contact point slides in the area A is the vertical direction.
  • step S2 the parameter adjustment module is entered.
  • the instrument interface is an adjustable parameter interface, and the user performs a touch operation in the area A, thereby implementing instrument parameter adjustment.
  • the parameter adjustment module is exited, but At this time, the instrument is not turned off, the user can activate the parameter adjustment module in the application that needs to adjust the parameters, and then adjust the parameter again. If the instrument is turned off after this step, step S1 needs to be performed again.
  • step S101 it is detected whether the position of the contact point on the touch screen is in the area A, and if the detection result is Then, step S102 is performed. If the detection result is no, step S103 is performed; area A is an area provided on the touch screen for adjusting the parameters displayed on the touch display screen.
  • step S102 the parameters currently applied by the instrument are adjusted according to the direction and displacement of the contact point sliding; specifically, if the direction in which the contact point slides is a positive direction, the current applied parameter is increased; if the contact point slides in the direction In the reverse direction, the parameters of the current application are reduced; if the direction in which the contact point slides is vertical, the parameters of the current application are not changed.
  • step S102 the parameters currently applied by the instrument are adjusted according to the direction and displacement of the contact point sliding, and the following rule may also be adopted: if the direction in which the contact point slides is a positive direction, Reduce the parameters of the current application; if the direction in which the contact point slides is in the opposite direction, increase the parameters of the current application; if the direction in which the contact point slides is vertical, the parameters of the current application are not changed.
  • step S102 the parameters currently applied by the instrument are adjusted according to the direction and displacement of the contact point sliding; further, the amount of change of the parameter is proportional to the displacement of the contact point sliding, and the rate of change of the parameter and the displacement of the contact point sliding The amount of displacement of the amount or contact point slip is proportional to the component in the set direction.
  • step S103 it is determined whether to exit the detection.
  • the process ends, that is, the parameter adjustment module is exited, and the user can perform other operations on the interface at this time.
  • the determination result is no, the process continues. S101.
  • FIG. 3 is a schematic block diagram of a system for adjusting parameter of a device based on a touch screen according to the present invention.
  • the system includes:
  • the touch screen 1 is used to provide the user with an area A, which is an area on the touch screen for the user to adjust the parameters displayed on the touch display screen;
  • the touch screen 1 may be a resistive touch screen, a capacitive touch screen, an infrared touch screen or a surface acoustic wave screen.
  • the input detecting module 4 is configured to detect whether the position of the contact point on the touch screen is in the area A;
  • the sliding detecting module 5 is configured to detect a direction and a displacement amount of the contact point sliding on the touch screen; the displacement amount is a displacement amount of the current position of the contact point relative to the initial position of the contact point on the screen;
  • the adjustment execution module 3 is configured to adjust the current application parameters of the instrument according to the direction and displacement of the contact point sliding;
  • the direction setting module 6 is configured to set a direction and an area A, and set the contact point to slide in the area A when the contact point is swept in the area A and the angle smaller than the set direction is less than 90 degrees.
  • the direction is the positive direction; when the angle between the direction in which the contact point slides in the area A and the set direction is greater than 90 degrees, the direction in which the contact point slides in the area A is reversed; when the contact point is in the area When the angle of the sliding direction in A is smaller than the angle of the setting direction, the direction in which the contact point slides in the area A is the vertical direction.
  • the rule preset module 2 is configured to preset an adjustment rule, and if the direction in which the contact point slides is a positive direction, the parameter of the current application is added; if the direction of the contact point sliding is a reverse direction, the current applied parameter is reduced. If the direction in which the contact point slides is the vertical direction, the parameters of the current application are not changed; the amount of change of the parameter is proportional to the displacement of the contact point sliding; the rate of the parameter change and the displacement of the contact point sliding or the displacement of the contact point sliding The amount is proportional to the component in the set direction.
  • the current applied parameter is increased; if the direction in which the contact point slides is in the reverse direction, the current applied parameter is reduced; or, if the contact point slides in the direction of In the positive direction, the parameters of the current application are reduced; if the direction in which the contact point slides is in the opposite direction, the parameters of the current application are increased.
  • the touch screen 1, the input detection module 4, the slide detection module 5, the direction setting module 6, and the rule preset module 2 are respectively connected to the adjustment execution module 3, while the input detection module 4 and the slide detection module 5 are also connected to the touch screen 1, respectively.
  • the current application parameters of the instrument include up, down, left and right movement of the display content, audio/video playback speed, numerical value, and gear position change.
  • the invention provides a touch screen-based instrument parameter adjustment method and system, preset adjustment rules, and corresponding adjustments to current application parameters according to the action of the contact point in the area A, which is convenient and intuitive, and the parameter adjustment direction and speed can be controlled at will. It gives the user an excellent operating experience, which reduces wear and tear compared to mechanical knobs and buttons, which effectively extends the life of the instrument while eliminating hardware costs.
  • the flow chart of the embodiment provided in FIG. 4 to FIG. 7 is a flowchart of specific parameter adjustment of the parameter adjustment module in FIG. 2 , which is a specific implementation manner of the process in FIG. 2 , and is based on the general flow of FIG. 1 . On the basis of.
  • step S201 the input detection module 4 detects whether the position of the contact point on the touch screen is in the area A, and if the detection result is If yes, go to step S202. If the result of the test is no, go to step S203.
  • step S202 the sliding detection module 5 detects the direction and displacement amount of the contact point sliding on the touch screen, and the adjustment execution module 3 moves the display content in the same or opposite direction to the direction in which the contact point slides on the touch screen 1, and according to the contact point
  • the displacement amount and rate of sliding on the touch screen 1 adjust the displacement amount and rate of the display content movement.
  • the displacement amount and rate of the display content movement are respectively slid with the displacement amount or the contact point of the contact point sliding on the touch screen 1.
  • the amount of displacement is proportional to the component in the set direction.
  • the displayed content may be a picture, a graphic, a waveform, a symbol, a text, etc.
  • the moved content may be an overall movement of the display content, a certain part of the movement, a certain layer movement, an element movement, or a certain layer.
  • the element moves.
  • step S203 it is determined whether the detection is exited.
  • the process is terminated, that is, the parameter adjustment module is exited, and the user can perform other operations on the interface at this time, otherwise step S201 is performed.
  • FIG. 5 is a flowchart of adjusting audio/video playback speed according to a second embodiment of the present invention.
  • step S301 the input detection module 4 detects whether the position of the contact point on the touch screen is in the area A. If the detection result is YES, step S302 is performed, and if the detection result is no, step S306 is performed.
  • step S302 the sliding detection module 5 detects the direction and displacement of the contact point on the touch screen. If the sliding direction is the positive direction, step S303 is performed. If the sliding direction is the reverse direction, step S304 is performed, if the sliding direction is vertical. In the direction, step S305 is performed.
  • step S303 the adjustment execution module 3 increases the playback speed of the audio/video according to the displacement amount of the contact point sliding (ie, increases the number of frames played per second), and the amount of the audio/video playback speed increases and the displacement amount of the contact point slip.
  • the rate at which the audio/video playback speed increases is proportional to the amount of displacement of the contact point slip or the amount of displacement of the contact point slip in the set direction.
  • step S304 the adjustment execution module 3 reduces the playback speed of the audio/video according to the displacement amount of the contact point sliding (ie, increases the number of frames played per second), and the amount of the audio/video playback speed decreases and the displacement amount of the contact point slip.
  • the rate at which the audio/video playback speed is reduced is proportional to the amount of displacement of the contact point slip or the amount of displacement of the contact point slip in the set direction.
  • the step S303 may be that the adjustment execution module 3 reduces the playback speed of the audio/video according to the displacement amount of the contact point sliding (ie, increases the number of frames played every second), and the audio/video playback
  • the amount of speed reduction is proportional to the amount of displacement of the contact point sliding
  • the rate at which the audio/video playback speed is reduced is proportional to the amount of displacement of the contact point slip or the amount of displacement of the contact point slip in the set direction.
  • step S304 may also be that the adjustment execution module 3 increases the playback speed of the audio/video according to the displacement amount of the contact point sliding (ie, increases the number of frames played every second), and the amount of the audio/video playback speed increases and the contact point slides.
  • the amount of displacement is proportional, and the rate at which the audio/video playback speed increases is proportional to the amount of displacement of the contact point slip or the amount of displacement of the contact point slip in the set direction.
  • step S305 the adjustment execution module 3 does not adjust the audio/video playback speed.
  • step S306 it is determined whether the detection is exited.
  • the process ends, that is, the parameter adjustment module is exited, and the user can perform other operations on the interface at this time, otherwise step S301 is performed.
  • FIG. 6 is a flow chart of adjusting a numerical value according to a third embodiment of the present invention.
  • step S401 the input detection module 4 detects whether the position of the contact point on the touch screen is in the area A. If the detection result is YES, step S402 is performed, and if the detection result is no, step S406 is performed.
  • step S402 the sliding detection module 5 detects the direction and displacement of the contact point sliding on the touch screen. If the sliding direction is the positive direction, step S403 is performed. If the sliding direction is the reverse direction, step S404 is performed, if the sliding direction is vertical. In the direction, step S405 is performed.
  • step S403 the adjustment execution module 3 increases the value that needs to be adjusted according to the displacement amount of the contact point sliding, and the amount of the numerical value increase is proportional to the displacement amount of the contact point sliding, and the rate of the numerical value increase and the displacement amount of the contact point sliding. Or the amount of displacement of the contact point sliding is proportional to the component in the set direction.
  • step S404 the adjustment execution module 3 reduces the value that the current application needs to adjust according to the displacement amount of the contact point sliding, and the amount of the numerical decrease is proportional to the displacement amount of the contact point sliding, and the rate of the numerical decrease and the displacement amount of the contact point sliding Or the amount of displacement of the contact point sliding is proportional to the component in the set direction.
  • the step S403 may be that the adjustment execution module 3 reduces the value that the current application needs to adjust according to the displacement amount of the contact point sliding, and the amount of the numerical value reduction is proportional to the displacement amount of the contact point sliding.
  • the rate of decrease in value is proportional to the amount of displacement of the contact point slip or the amount of displacement of the contact point slip in the set direction.
  • step S404 may also be that the adjustment execution module 3 increases the value that needs to be adjusted according to the displacement amount of the contact point sliding, and the amount of the numerical value increase is proportional to the displacement amount of the contact point sliding, and the rate of the numerical value increases and the contact point slides.
  • the amount of displacement or the amount of displacement of the contact point slip is proportional to the component in the set direction.
  • step S405 the adjustment execution module 3 does not adjust the current value.
  • step S406 it is determined whether the detection is exited.
  • the process ends, that is, the parameter adjustment module is exited, and the user can perform other operations on the interface at this time, otherwise step S401 is performed.
  • FIG. 7 is a flowchart of adjusting a gear position according to a fourth embodiment of the present invention.
  • step S501 the input detection module 4 detects whether the position of the contact point on the touch screen is in the area A. If the detection result is YES, step S502 is performed, and if the detection result is no, step S506 is performed.
  • step S502 the sliding detection module 5 detects the direction and displacement of the contact point sliding on the touch screen. If the sliding direction is the positive direction, step S503 is performed. If the sliding direction is the reverse direction, step S504 is performed, if the sliding direction is vertical. In the direction, step S505 is performed.
  • step S503 the adjustment execution module 3 increases the gear position according to the displacement amount of the contact point slip.
  • step S504 the adjustment execution module 3 reduces the gear position according to the displacement amount of the contact point slip.
  • the step S503 may be that the adjustment execution module 3 reduces the gear position according to the displacement amount of the contact point sliding; the step S504 may also be that the adjustment execution module 3 increases the displacement amount according to the contact point sliding. Gear position.
  • step S505 the adjustment execution module 3 does not adjust the gear position.
  • the adjustment execution module 3 stops the adjustment of the gear position.
  • step S506 it is determined whether the detection is exited.
  • the process is terminated, that is, the parameter adjustment module is exited, and the user can perform other operations on the interface at this time, otherwise step S501 is performed.
  • the touch screen-based instrument parameter adjustment method and system of the invention are mainly applied to instruments and meters, but are not limited to instrumentation.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

本发明提供了一种基于触摸屏的仪器参数调节方法,包括以下步骤:检测触摸屏上接触点的位置是否在指定的区域A内,所述区域A为触摸屏上提供给用户,用于对触摸显示屏上显示的参数进行调整的区域;若所述检测为是,则根据接触点滑动的方向、位移量对仪器当前应用的参数进行调整。本发明提供了一种基于触摸屏的仪器参数调节的系统,包括触摸屏、输入检测模块、滑动检测模块、调整执行模块。本发明方便直观、操作体验好且节省成本。

Description

一种基于触摸屏的仪器参数调节方法和系统 技术领域
本发明涉及信息技术领域,尤其涉及一种基于触摸屏的仪器参数调节方法和系统。
背景技术
随着触摸屏技术的不断成熟,越来越多的消费电子及仪器设备配备触摸屏作为一种输入手段,测试测量仪器也不例外,例如泰克的DP07000系列示波器等。但在测试测量仪器应用上,触摸屏还仅限于操作菜单等简单应用,对于更多复杂功能的操作仍然主要依赖于机械旋钮与机械按键,例如大范围连续调节一个参数的大小,一般都采用机械旋钮实现,大量使用机械旋钮和按键不利于节约产品成本,而且容易磨损,有寿命极限,同时还不便于清理清洁,也无法给操作者更直观的感受。
技术问题
本发明的目的在于克服现有技术之缺陷,提供了一种方便直观、操作体验好且节省成本的基于触摸屏的仪器参数调节的方法和系统。
技术解决方案
本发明是这样实现的:一种基于触摸屏的仪器参数调节方法,包括以下步骤:
检测触摸屏上接触点的位置是否在区域A内:所述区域A为触摸屏上提供给用户,用于对触摸显示屏上显示的参数进行调整的区域;
若所述检测为是,则根据接触点滑动的方向与位移量对仪器当前应用的参数进行调整;所述位移量为接触点当前位置相对于接触点在屏幕上的初始位置的位移量。
进一步地,所述根据接触点滑动的方向对仪器当前应用的参数进行调整之前,包括:
设定一个方向并指定所述区域A;
若接触点在区域A内滑动的方向与设定方向较小的夹角小于90度,则所述接触点在区域A内滑动的方向为正方向;
若接触点在区域A内滑动的方向与设定方向较小的夹角大于90度,则所述接触点在区域A内滑动的方向为反方向;
若接触点在区域A内滑动的方向与设定方向较小的夹角等于90度,则所述接触点在区域A内滑动的方向为垂直方向。
进一步地,所述根据接触点滑动的方向对仪器当前应用的参数进行调整,包括:
若接触点滑动的方向为正方向,则增加当前应用的参数,若接触点滑动的方向为反方向,则减少当前应用的参数;
或,若接触点滑动的方向为正方向,则减少当前应用的参数,若接触点滑动的方向为反方向,则增加当前应用的参数;
若接触点滑动的方向为垂直方向,则不改变当前应用的参数。
进一步地,所述根据接触点滑动的位移量对仪器当前应用的参数进行调整,参数的改变量与所述接触点滑动的位移量成正比。
进一步地,所述根据接触点滑动的位移量对仪器当前应用的参数进行调整,参数的改变速率与所述接触点滑动的位移量或所述接触点滑动的位移量在设定方向上的分量成正比。
进一步地,所述仪器当前应用的参数包括显示内容的上下左右移动、音/视频播放速度、数值大小和档位改变。
一种基于触摸屏的仪器参数调节的系统,包括:
触摸屏,用于向用户提供指定的区域A;所述区域A为触摸屏上供用户对触摸显示屏上显示的参数进行调整的区域;
输入检测模块,用于检测触摸屏上接触点的位置是否在区域A内;
滑动检测模块,用于检测触摸屏上接触点滑动的方向和位移量;所述位移量为接触点当前位置相对于接触点在屏幕上的初始位置的位移量;
调整执行模块,用于根据接触点滑动的方向与位移量对仪器当前应用的参数进行调整。
进一步地,所述一种基于触摸屏的仪器参数调节的系统还包括:
方向设定模块,用于设定一个方向和区域A,且
当接触点在区域A内滑动的方向与设定方向较小的夹角小于90度时,设定所述接触点在区域A内滑动的方向为正方向;
当接触点在区域A内滑动的方向与设定方向较小的夹角大于90度时,设定所述接触点在区域A内滑动的方向为反方向;
当接触点在区域A内滑动的方向与设定方向较小的夹角等于90度时,设定所述接触点在区域A内滑动的方向为垂直方向。
进一步地,所述一种基于触摸屏的仪器参数调节的系统还包括规则预置模块,用于预置调整规则,所述调整规则包括:
若接触点滑动的方向为正方向,则增加当前应用的参数;若接触点滑动的方向为反方向,则减少当前应用的参数;
或,若接触点滑动的方向为正方向,则减少当前应用的参数;若接触点滑动的方向为反方向,则增加当前应用的参数;
若接触点滑动的方向为垂直方向,则不改变当前应用的参数;
参数的改变量与所述接触点滑动的位移量成正比;
参数的改变速率与所述接触点滑动的位移量或所述接触点滑动的位移量在设定方向上的分量成正比。
进一步地,所述仪器当前应用的参数包括显示内容的上下左右移动、音/视频播放速度、数值大小和档位改变。
有益效果
本发明提供一种基于触摸屏的仪器参数调节方法和系统,预置调整规则,根据接触点在区域A内的动作对当前应用的参数进行相应的调整,方便直观,参数调节方向和速度可随意控制,给用户带来了极佳的操作体验,相比机械式旋钮和按键,减少了磨损,有效延长了仪器的寿命,同时省去了硬件成本。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一种基于触摸屏的仪器参数调节方法的总流程图;
图2为本发明一种基于触摸屏的仪器参数调节方法的参数调节模块流程图;
图3为本发明一种基于触摸屏的仪器参数调节的系统的原理框图;
图4为本发明提供的第一实施例调节显示内容的上下左右移动的流程图;
图5为本发明提供的第二实施例调节音/视频播放速度的流程图;
图6为本发明提供的第三实施例调节数值大小的流程图;
图7为本发明提供的第四实施例调节档位改变的流程图。
本发明的最佳实施方式
本发明的实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动性前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1,为本发明一种基于触摸屏的仪器参数调节方法的总流程图,在步骤S1中,在触摸屏上设定一个方向和区域A;若接触点在区域A内滑动的方向与设定方向较小的夹角小于90度,则接触点在区域A内滑动的方向为正方向;若接触点在区域A内滑动的方向与设定方向较小的夹角大于90度,则接触点在区域A内滑动的方向为反方向;若接触点在区域A内滑动的方向与设定方向较小的夹角等于90度,则接触点在区域A内滑动的方向为垂直方向。
在步骤S2中,进入参数调节模块,在参数调节模块中,仪器界面为可调节参数界面,用户在区域A内进行触摸操作,从而实现仪器参数调节,当参数调节结束,退出参数调节模块,但是此时仪器没有关闭,用户可在后续需要调节参数的应用中激活参数调节模块,再一次进行参数调节,若此步骤后仪器关闭,则需重新执行一次步骤S1。
如图2,为本发明一种基于触摸屏的仪器参数调节方法的步骤S2参数调节模块调节参数流程图,在步骤S101中,检测触摸屏上接触点的位置是否在区域A内,若检测结果为是,则执行步骤S102,若检测结果为否,则执行步骤S103;区域A为触摸屏上提供给用户,用于对触摸显示屏上显示的参数进行调整的区域。
在步骤S102中,根据接触点滑动的方向、位移量对仪器当前应用的参数进行调整;具体包括,若接触点滑动的方向为正方向,则增加当前应用的参数;若接触点滑动的方向为反方向,则减少当前应用的参数;若接触点滑动的方向为垂直方向,则不改变当前应用的参数。
在本发明的其他实施例中,上述在步骤S102中,根据接触点滑动的方向、位移量对仪器当前应用的参数进行调整,也可以采用以下规则:若接触点滑动的方向为正方向,则减少当前应用的参数;若接触点滑动的方向为反方向,则增加当前应用的参数;若接触点滑动的方向为垂直方向,则不改变当前应用的参数。
在步骤S102中,根据接触点滑动的方向、位移量对仪器当前应用的参数进行调整;还包括,参数的改变量与接触点滑动的位移量成正比,参数的改变速率与接触点滑动的位移量或接触点滑动的位移量在设定方向上的分量成正比。
在步骤S103中,判断是否退出检测,当收到退出检测的命令后,则结束本流程,即退出参数调节模块,用户此时可以在界面进行其他操作,当判断结果为否时,继续执行步骤S101。
如图3,为本发明一种基于触摸屏的仪器参数调节的系统的原理框图,本系统包括:
触摸屏1,用于向用户提供区域A,区域A为触摸屏上供用户对触摸显示屏上显示的参数进行调整的区域;触摸屏1可以是电阻触摸屏、电容触摸屏、红外触摸屏或表面声波屏。
输入检测模块4,用于检测触摸屏上接触点的位置是否在区域A内;
滑动检测模块5,用于检测触摸屏上接触点滑动的方向、位移量;位移量为接触点当前位置相对于接触点在屏幕上的初始位置的位移量;
调整执行模块3,用于根据接触点滑动的方向、位移量对仪器当前应用的参数进行调整;
方向设定模块6,用于设定一个方向和区域A,且当接触点在区域A内滑动的方向与设定方向较小的夹角小于90度时,设定接触点在区域A内滑动的方向为正方向;当接触点在区域A内滑动的方向与设定方向较小的夹角大于90度时,设定接触点在区域A内滑动的方向为反方向;当接触点在区域A内滑动的方向与设定方向较小的夹角等于90度时,设定接触点在区域A内滑动的方向为垂直方向。
规则预置模块2,用于预置调整规则,调整规则包括:若接触点滑动的方向为正方向,则增加当前应用的参数;若接触点滑动的方向为反方向,则减少当前应用的参数;若接触点滑动的方向为垂直方向,则不改变当前应用的参数;参数的改变量与接触点滑动的位移量成正比;参数改变的速率与接触点滑动的位移量或接触点滑动的位移量在设定方向上的分量成正比。
上述调整规则中的若接触点滑动的方向为正方向,则增加当前应用的参数;若接触点滑动的方向为反方向,则减少当前应用的参数;也可以是,若接触点滑动的方向为正方向,则减少当前应用的参数;若接触点滑动的方向为反方向,则增加当前应用的参数。
触摸屏1、输入检测模块4、滑动检测模块5、方向设定模块6和规则预置模块2分别连接到调整执行模块3,同时输入检测模块4和滑动检测模块5还分别连接到触摸屏1。
本发明的一种基于触摸屏的仪器参数调节方法和系统中,仪器当前应用的参数包括显示内容的上下左右移动、音/视频播放速度、数值大小和档位改变等。
本发明提供一种基于触摸屏的仪器参数调节方法和系统,预置调整规则,根据接触点在区域A内的动作对当前应用的参数进行相应的调整,方便直观,参数调节方向和速度可随意控制,给用户带来了极佳的操作体验,相比机械式旋钮和按键,减少了磨损,有效延长了仪器的寿命,同时省去了硬件成本。
本发明中图4-图7提供的实施例流程图都是图2中的参数调节模块的具体参数调节的流程图,是图2中流程的具体实施方式,并且都是基于图1的总流程的基础上的。
如图4,为本发明提供的第一实施例调节显示内容的上下左右移动的流程图,在步骤S201中,通过输入检测模块4检测触摸屏上接触点的位置是否在区域A内,若检测结果为是,则执行步骤S202,若检测结果为否,则执行步骤S203。
在步骤S202中,滑动检测模块5检测触摸屏上接触点滑动的方向和位移量,调整执行模块3将显示内容朝与接触点在触摸屏1上滑动的方向相同或相反的方向移动,并根据接触点在触摸屏1上滑动的位移量和速率调整显示内容移动的位移量和速率,在本实施例中,显示内容移动的位移量和速率分别与接触点在触摸屏1上滑动的位移量或接触点滑动的位移量在设定方向上的分量成正比。显示的内容可以是图片、图形、波形、符号、文字等,被移动的内容可以是显示内容的整体移动、某一部分移动、某个图层移动、某个元素移动或者是某个图层中的元素移动。
在步骤S203中,判断是否退出检测,当收到退出检测的命令后,则结束本流程,即退出参数调节模块,用户此时可以在界面进行其他操作,否则执行步骤S201。
如图5,为本发明提供的第二实施例调节音/视频播放速度的流程图;
在步骤S301中,通过输入检测模块4检测触摸屏上接触点的位置是否在区域A内,若检测结果为是,则执行步骤S302,若检测结果为否,则执行步骤S306。
在步骤S302中,滑动检测模块5检测触摸屏上接触点滑动的方向和位移量,若滑动方向为正方向,则执行步骤S303,若滑动方向为反方向,则执行步骤S304,若滑动方向为垂直方向,则执行步骤S305。
在步骤S303中,调整执行模块3根据接触点滑动的位移量增加音/视频的播放速度(即增加每秒播放的帧数),且音/视频播放速度增加的量与接触点滑动的位移量成正比,音/视频播放速度增加的速率与接触点滑动的位移量或接触点滑动的位移量在设定方向上的分量成正比。
在步骤S304中,调整执行模块3根据接触点滑动的位移量减少音/视频的播放速度(即增加每秒播放的帧数),且音/视频播放速度减少的量与接触点滑动的位移量成正比,音/视频播放速度减少的速率与接触点滑动的位移量或接触点滑动的位移量在设定方向上的分量成正比。
在本发明的其他实施例中,上述步骤S303也可以为,调整执行模块3根据接触点滑动的位移量减少音/视频的播放速度(即增加每秒播放的帧数),且音/视频播放速度减少的量与接触点滑动的位移量成正比,音/视频播放速度减少的速率与接触点滑动的位移量或接触点滑动的位移量在设定方向上的分量成正比。
上述步骤S304也可以为,调整执行模块3根据接触点滑动的位移量增加音/视频的播放速度(即增加每秒播放的帧数),且音/视频播放速度增加的量与接触点滑动的位移量成正比,音/视频播放速度增加的速率与接触点滑动的位移量或接触点滑动的位移量在设定方向上的分量成正比。
在步骤S305中,调整执行模块3不对音/视频播放速度进行调整。
在步骤S306中,判断是否退出检测,当收到退出检测的命令后,则结束本流程,即退出参数调节模块,用户此时可以在界面进行其他操作,否则执行步骤S301。
如图6,为本发明提供的第三实施例调节数值大小的流程图,
在步骤S401中,通过输入检测模块4检测触摸屏上接触点的位置是否在区域A内,若检测结果为是,则执行步骤S402,若检测结果为否,则执行步骤S406。
在步骤S402中,滑动检测模块5检测触摸屏上接触点滑动的方向和位移量,若滑动方向为正方向,则执行步骤S403,若滑动方向为反方向,则执行步骤S404,若滑动方向为垂直方向,则执行步骤S405。
在步骤S403中,调整执行模块3根据接触点滑动的位移量增加当前应用需要调整的数值,且数值增加的量与接触点滑动的位移量成正比,数值增加的速率与接触点滑动的位移量或接触点滑动的位移量在设定方向上的分量成正比。
在步骤S404中,调整执行模块3根据接触点滑动的位移量减少当前应用需要调整的数值,且数值减少的量与接触点滑动的位移量成正比,数值减少的速率与接触点滑动的位移量或接触点滑动的位移量在设定方向上的分量成正比。
在本发明的其他实施例中,上述步骤S403也可以是,调整执行模块3根据接触点滑动的位移量减少当前应用需要调整的数值,且数值减少的量与接触点滑动的位移量成正比,数值减少的速率与接触点滑动的位移量或接触点滑动的位移量在设定方向上的分量成正比。
上述步骤S404也可以是,调整执行模块3根据接触点滑动的位移量增加当前应用需要调整的数值,且数值增加的量与接触点滑动的位移量成正比,数值增加的速率与接触点滑动的位移量或接触点滑动的位移量在设定方向上的分量成正比。
在步骤S405中,调整执行模块3不对当前数值进行调整。
在步骤S406中,判断是否退出检测,当收到退出检测的命令后,则结束本流程,即退出参数调节模块,用户此时可以在界面进行其他操作,否则执行步骤S401。
如图7,为本发明提供的第四实施例调节档位改变的流程图,
在步骤S501中,通过输入检测模块4检测触摸屏上接触点的位置是否在区域A内,若检测结果为是,则执行步骤S502,若检测结果为否,则执行步骤S506。
在步骤S502中,滑动检测模块5检测触摸屏上接触点滑动的方向和位移量,若滑动方向为正方向,则执行步骤S503,若滑动方向为反方向,则执行步骤S504,若滑动方向为垂直方向,则执行步骤S505。
在步骤S503中,调整执行模块3根据接触点滑动的位移量增加档位。
在步骤S504中,调整执行模块3根据接触点滑动的位移量减少档位。
在本发明的其他实施例中,上述步骤S503也可以是,调整执行模块3根据接触点滑动的位移量减少档位;上述步骤S504也可以是,调整执行模块3根据接触点滑动的位移量增加档位。
在步骤S505中,调整执行模块3不对档位进行调整。
当接触点从区域A消失或停止滑动时,调整执行模块3停止对档位的调整。
在步骤S506中,判断是否退出检测,当收到退出检测的命令后,则结束本流程,即退出参数调节模块,用户此时可以在界面进行其他操作,否则执行步骤S501。
本发明的一种基于触摸屏的仪器参数调节方法和系统主要应用在仪器仪表上,但不局限于仪器仪表。
以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
序列表自由内容

Claims (1)

1、一种基于触摸屏的仪器参数调节方法,其特征在于,包括以下步骤:
检测触摸屏上接触点的位置是否在区域A内;所述区域A为触摸屏上提供给用户,用于对触摸显示屏上显示的参数进行调整的区域;
若所述检测为是,则根据接触点滑动的方向与位移量对仪器当前应用的参数进行调整;所述位移量为接触点当前位置相对于接触点在屏幕上的初始位置的位移量。
2、如权利要求1所述的基于触摸屏的仪器参数调节方法,其特征在于:所述根据接触点滑动的方向对仪器当前应用的参数进行调整之前,包括:
设定一个方向并指定所述区域A;
若接触点在区域A内滑动的方向与设定方向较小的夹角小于90度,则所述接触点在区域A内滑动的方向为正方向;
若接触点在区域A内滑动的方向与设定方向较小的夹角大于90度,则所述接触点在区域A内滑动的方向为反方向;
若接触点在区域A内滑动的方向与设定方向较小的夹角等于90度,则所述接触点在区域A内滑动的方向为垂直方向。
3、如权利要求2所述的基于触摸屏的仪器参数调节方法,其特征在于:所述根据接触点滑动的方向对仪器当前应用的参数进行调整,包括:
若接触点滑动的方向为正方向,则增加当前应用的参数,若接触点滑动的方向为反方向,则减少当前应用的参数;
或,若接触点滑动的方向为正方向,则减少当前应用的参数,若接触点滑动的方向为反方向,则增加当前应用的参数;
若接触点滑动的方向为垂直方向,则不改变当前应用的参数。
4、如权利要求1所述的基于触摸屏的仪器参数调节方法,其特征在于:所述根据接触点滑动的位移量对仪器当前应用的参数进行调整,参数的改变量与所述接触点滑动的位移量成正比。
5、如权利要求1所述的基于触摸屏的仪器参数调节方法,其特征在于:所述根据接触点滑动的位移量对仪器当前应用的参数进行调整,参数的改变速率与所述接触点滑动的位移量或所述接触点滑动的位移量在设定方向上的分量成正比。
6、如权利要求1所述的基于触摸屏的仪器参数调节方法,其特征在于:所述仪器当前应用的参数包括显示内容的上下左右移动、音/视频播放速度、数值大小和档位改变。
7、一种基于触摸屏的仪器参数调节的系统,其特征在于,包括:
触摸屏,用于向用户提供指定的区域A;所述区域A为触摸屏上供用户对触摸显示屏上显示的参数进行调整的区域;
输入检测模块,用于检测触摸屏上接触点的位置是否在区域A内;
滑动检测模块,用于检测触摸屏上接触点滑动的方向和位移量;所述位移量为接触点当前位置相对于接触点在屏幕上的初始位置的位移量;
调整执行模块,用于根据接触点滑动的方向与位移量对仪器当前应用的参数进行调整。
8、根据权利要求7所述的基于触摸屏的仪器参数调节的系统,其特征在于,还包括:
方向设定模块,用于设定一个方向和区域A,且
当接触点在区域A内滑动的方向与设定方向较小的夹角小于90度时,设定所述接触点在区域A内滑动的方向为正方向;
当接触点在区域A内滑动的方向与设定方向较小的夹角大于90度时,设定所述接触点在区域A内滑动的方向为反方向;
当接触点在区域A内滑动的方向与设定方向较小的夹角等于90度时,设定所述接触点在区域A内滑动的方向为垂直方向。
9、根据权利要求7所述的基于触摸屏的仪器参数调节的系统,其特征在于,还包括规则预置模块,用于预置调整规则,所述调整规则包括:
若接触点滑动的方向为正方向,则增加当前应用的参数;若接触点滑动的方向为反方向,则减少当前应用的参数;
或,若接触点滑动的方向为正方向,则减少当前应用的参数;若接触点滑动的方向为反方向,则增加当前应用的参数;
若接触点滑动的方向为垂直方向,则不改变当前应用的参数;
参数的改变量与所述接触点滑动的位移量成正比;
参数的改变速率与所述接触点滑动的位移量或所述接触点滑动的位移量在设定方向上的分量成正比。
10、根据权利要求7-9任意一项所述的基于触摸屏的仪器参数调节的系统,其特征在于,所述仪器当前应用的参数包括显示内容的上下左右移动、音/视频播放速度、数值大小和档位改变。
PCT/CN2014/070017 2013-07-25 2014-01-02 一种基于触摸屏的仪器参数调节方法和系统 WO2015010452A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310316639.6 2013-07-25
CN2013103166396A CN103412674A (zh) 2013-07-25 2013-07-25 一种基于触摸屏的仪器参数调节方法和系统

Publications (1)

Publication Number Publication Date
WO2015010452A1 true WO2015010452A1 (zh) 2015-01-29

Family

ID=49605690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/070017 WO2015010452A1 (zh) 2013-07-25 2014-01-02 一种基于触摸屏的仪器参数调节方法和系统

Country Status (2)

Country Link
CN (1) CN103412674A (zh)
WO (1) WO2015010452A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109947349A (zh) * 2019-03-22 2019-06-28 思特沃克软件技术(北京)有限公司 一种基于车载触摸屏进行参数调节的方法和车载触摸屏

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103412674A (zh) * 2013-07-25 2013-11-27 深圳麦科信仪器有限公司 一种基于触摸屏的仪器参数调节方法和系统
CN103809808B (zh) * 2014-01-25 2016-10-05 深圳麦科信仪器有限公司 一种基于触摸屏的波形平移的方法及装置
CN103913616A (zh) * 2014-03-26 2014-07-09 深圳麦科信仪器有限公司 一种基于触摸屏的示波器垂直与水平系统调节方法
CN108920066B (zh) * 2014-03-27 2021-05-18 青岛海信移动通信技术股份有限公司 触摸屏滑动调整方法、调整装置及触控设备
CN105092919B (zh) * 2014-05-04 2017-11-10 固纬电子实业股份有限公司 触控式测量仪器的档位切换方法
CN104850329A (zh) * 2015-04-29 2015-08-19 小米科技有限责任公司 参数调节方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101192123A (zh) * 2006-11-21 2008-06-04 瑞轩科技股份有限公司 触控式视控显示控制装置及其控制方法与液晶显示器
CN101819498A (zh) * 2009-02-27 2010-09-01 瞬联讯通科技(北京)有限公司 面向触摸屏滑动体的屏幕显示控制方法
CN103412674A (zh) * 2013-07-25 2013-11-27 深圳麦科信仪器有限公司 一种基于触摸屏的仪器参数调节方法和系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005316745A (ja) * 2004-04-28 2005-11-10 Kiko Kagi Kofun Yugenkoshi 開始位置及び移動方向により定義される入力方法、コントロールモジュール及びその電子製品
US20100020021A1 (en) * 2008-07-22 2010-01-28 General Electric Company Touch screen control system and method
KR101901233B1 (ko) * 2011-01-20 2018-09-27 에스케이플래닛 주식회사 터치 스크린의 접촉 방향성을 이용한 영상 확대/축소 장치 및 그 방법
CN102508615B (zh) * 2011-11-28 2015-09-09 明基电通有限公司 触控屏幕画面控制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101192123A (zh) * 2006-11-21 2008-06-04 瑞轩科技股份有限公司 触控式视控显示控制装置及其控制方法与液晶显示器
CN101819498A (zh) * 2009-02-27 2010-09-01 瞬联讯通科技(北京)有限公司 面向触摸屏滑动体的屏幕显示控制方法
CN103412674A (zh) * 2013-07-25 2013-11-27 深圳麦科信仪器有限公司 一种基于触摸屏的仪器参数调节方法和系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109947349A (zh) * 2019-03-22 2019-06-28 思特沃克软件技术(北京)有限公司 一种基于车载触摸屏进行参数调节的方法和车载触摸屏
WO2020191973A1 (en) * 2019-03-22 2020-10-01 Thoughtworks Software Technology (Beijing) Limited Co. Parameter adjustment using vehicle touch screen
US11592976B2 (en) 2019-03-22 2023-02-28 Thoughtworks Software Technology (Beijing) Limited Co. Parameter adjustment using vehicle touch screen

Also Published As

Publication number Publication date
CN103412674A (zh) 2013-11-27

Similar Documents

Publication Publication Date Title
WO2015010452A1 (zh) 一种基于触摸屏的仪器参数调节方法和系统
WO2015109630A1 (zh) 一种基于触摸屏的波形平移的方法及装置
WO2015119378A1 (en) Apparatus and method of displaying windows
WO2014163234A1 (en) Portable device and method for controlling the same
WO2014204048A1 (en) Portable device and method for controlling the same
CN104750301B (zh) 触摸感测系统
WO2012053801A2 (en) Method and apparatus for controlling touch screen in mobile terminal responsive to multi-touch inputs
WO2015161697A1 (zh) 应用于人机交互的运动物体跟踪方法及系统
WO2014077460A1 (en) Display device and controlling method thereof
WO2014098305A1 (en) Touch sensitive device for providing mini-map of tactile user interface and method of controlling the same
WO2010131869A2 (en) Image processing method for mobile terminal
WO2016058231A1 (zh) 集成触摸屏的液晶显示面板及液晶显示装置
EP2534563A2 (en) Screen control method and apparatus for mobile terminal having multiple touch screens
EP2486663A2 (en) Method for providing user interface and mobile terminal using the same
WO2017096924A1 (zh) 一种基于移动终端的页面连续截图方法、系统及移动终端
WO2016074386A1 (zh) 一种基于移动终端实现通话灭屏防误触的方法及系统
WO2016086433A1 (zh) 一种触控基板、终端及提高触摸精度的方法
WO2014113923A1 (zh) 基于触摸屏的物理按键模拟方法及装置
WO2014181919A1 (en) Portable device and control method thereof
KR20150002023A (ko) 터치 스크린 구동 장치 및 방법
WO2012113166A1 (zh) 液晶显示器及其驱动方法
WO2017201811A1 (zh) 一种液晶显示器的驱动方法及驱动装置
KR20140077719A (ko) 터치 스크린 구동 장치 및 방법
WO2017161604A1 (zh) 压力触控液晶显示面板及制作方法
WO2016074276A1 (zh) 一种触控输入装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14829590

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24.06.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14829590

Country of ref document: EP

Kind code of ref document: A1