WO2017106940A1 - Dispositivo injetor de iniciador de polimerização em reator tubular, reator tubular para polimerização contínua de olefinas, e processo de produção de polímeros e copolímeros de etileno - Google Patents

Dispositivo injetor de iniciador de polimerização em reator tubular, reator tubular para polimerização contínua de olefinas, e processo de produção de polímeros e copolímeros de etileno Download PDF

Info

Publication number
WO2017106940A1
WO2017106940A1 PCT/BR2015/050268 BR2015050268W WO2017106940A1 WO 2017106940 A1 WO2017106940 A1 WO 2017106940A1 BR 2015050268 W BR2015050268 W BR 2015050268W WO 2017106940 A1 WO2017106940 A1 WO 2017106940A1
Authority
WO
WIPO (PCT)
Prior art keywords
throat
constriction
bayonet
injection
reactor
Prior art date
Application number
PCT/BR2015/050268
Other languages
English (en)
French (fr)
Inventor
Eduardo José DOTTI
Paulo Henrique Konat GANDOLFI
Vitor Dal Bó ABELLA
Original Assignee
Braskem S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Braskem S.A. filed Critical Braskem S.A.
Priority to BR112018009563-0A priority Critical patent/BR112018009563B1/pt
Priority to EP15910981.8A priority patent/EP3375793B1/en
Priority to US16/065,275 priority patent/US10829568B2/en
Priority to PCT/BR2015/050268 priority patent/WO2017106940A1/pt
Priority to MX2018007698A priority patent/MX2018007698A/es
Priority to ARP160103991A priority patent/AR107171A1/es
Publication of WO2017106940A1 publication Critical patent/WO2017106940A1/pt

Links

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C31/00Delivery of fire-extinguishing material
    • A62C31/02Nozzles specially adapted for fire-extinguishing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/01Processes of polymerisation characterised by special features of the polymerisation apparatus used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/313Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit
    • B01F25/3131Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit with additional mixing means other than injector mixers, e.g. screens, baffles or rotating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/433Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
    • B01F25/4335Mixers with a converging-diverging cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2455Stationary reactors without moving elements inside provoking a loop type movement of the reactants
    • B01J19/2465Stationary reactors without moving elements inside provoking a loop type movement of the reactants externally, i.e. the mixture leaving the vessel and subsequently re-entering it
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/26Nozzle-type reactors, i.e. the distribution of the initial reactants within the reactor is effected by their introduction or injection through nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/001Feed or outlet devices as such, e.g. feeding tubes
    • B01J4/002Nozzle-type elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/26Processes for applying liquids or other fluent materials performed by applying the liquid or other fluent material from an outlet device in contact with, or almost in contact with, the surface
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/28Oxygen or compounds releasing free oxygen
    • C08F4/32Organic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D123/00Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers
    • C09D123/02Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D123/04Homopolymers or copolymers of ethene
    • C09D123/06Polyethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2204/00Aspects relating to feed or outlet devices; Regulating devices for feed or outlet devices
    • B01J2204/002Aspects relating to feed or outlet devices; Regulating devices for feed or outlet devices the feeding side being of particular interest

Definitions

  • the present invention relates generally to a tubular reactor for homo or olefin copolymerization with one or more primer injection devices. It also relates to a process fluid stream primer injector device in a tubular polymerization reactor, and to the process of producing ethylene polymers and copolymers, particularly low density polyethylene (LDPE), using said device.
  • LDPE low density polyethylene
  • LDPE low density polyethylene
  • the process in general, is a polymerization by free radicals, injecting initiator in a or more points of a tubular reactor in which a process fluid, wholly or partially composed of ethylene, which is converted to polymer in highly exothermic reaction transits.
  • the reaction typically occurs at pressures between 1000 to 4000 bar, temperatures between 100 and 400 ° C, under turbulent flow conditions.
  • An example of a description of the state of the art concerning the LDPE polymerization process and its process flow chart can be found in the ENCYCLOPEDIA OF POLYMER SCIENCE AND ENGINEERING. Vol.
  • the starting temperature of the polymerization reaction - or restart, where there are several points of reaction along reaction tube - ranges from 100 to 280 ° C. Conversion values in a tubular reactor typically range from 20 to 40 percent.
  • the polymerization reaction is initiated (and restarted) by injecting a solution of initiators and isododecane (solvent) into one or more reaction zones within the reactor tube.
  • initiators are organic or inorganic peroxides, oximes, azo compounds, oxygen, etc.
  • the injected initiator mixes with the process fluid and, in the presence of heat (the process fluid is usually already at a suitable reaction temperature), decomposes to free radicals.
  • Decomposition products begin the free radical polymerization reaction with ethylene (and optional comonomers) to form an ethylene-based polymeric product.
  • the reaction is exothermic, forming temperature spikes throughout the reactor due to each primer injection.
  • Troneous occurs mainly as a coating on the walls of the reactor inlet piping, where it may reduce flow.
  • This unwanted material may be high molecular weight or crosslinked polyethylene. When such coating is detached from the walls it may cause downstream blockages. If high molecular weight or crosslinked polyethylene is present in the final product, it can cause processing problems for the converter.
  • a common problem associated with fouling is the lack of homogeneity ("gels"). ) seen on thin-walled films, sheets, and end pieces.
  • Heat removal from the reaction is therefore an extremely important step in this process as uncontrolled reactor temperature causes reaction instability. Between the Possible reactions that may occur include the decomposition of polyethylene, formation of high molecular weight polymer chains, termination by combination, broadening of molecular weight distribution and crosslinking.
  • Dispersion of the initiator in the process fluid often results in a localized zone of high initiator concentration within the process fluid flow.
  • This localized initiator concentration zone promotes an unbalanced reaction profile in the process fluid: there is more polymerization and heat generation near the initiator injection zone and less elsewhere upstream and downstream of this injection point.
  • This unbalanced reaction profile can lead to problems such as the accumulation of high molecular weight material near the primer injection site, which may block the injection port or process fluid flow channel. It may also cause a buildup of high molecular weight material near the injection site or along the reaction tube walls which results in the occasional detachment of such high molecular weight material and entry into the process fluid. If a significant concentration of fresh initiator contacts the reactor tube wall in the reaction section (where temperatures are high), the initiator may decompose and react rapidly by initiating a localized hot spot reaction. that can propagate decomposition throughout the system.
  • FIG. 1 Side schematic partial sectional view of an injector device of the invention. Comparative Example 2.
  • FIG. 2 Schematic perspective view of an injector device of the invention. Comparative Example 2.
  • FIG. 3 Side schematic partial sectional view of the device of example 1.
  • FIG. 4 Schematic perspective view of the device of example 1.
  • FIG. 5 Side schematic view in partial section of the device of example 2.
  • FIG. 6 Schematic perspective view of the device of example 2.
  • Fig. 7 Partial schematic side view of the comparative example 1 device.
  • Fig. 8 Perspective schematic view of the comparative example 1 device.
  • the present invention which provides performance advantages to a continuous ethylene polymerization process in a tubular reactor, relates to a First aspect of a monomer chain reaction initiator injector device 10 comprising a constriction 20 to the process fluid flow, said constriction 20 having a throat 30 at its midpoint, said constriction 20 provided with a tubular through bayonet 40 transverse to the entire diameter of throat 30, and such through bayonet 40 having at least one injection port 50 along throat 30 of constriction 20.
  • a single hole at or near the midpoint two holes symmetrically or approximately symmetrically spaced from the midpoint; two or more holes near the midpoint; any number of holes with symmetrical or non-symmetrical scattering near the midpoint.
  • Constriction 20 includes a region of decreasing cross section, a region of minimum diameter throat, and an expansion region of the cross section.
  • At least one injection port 50 is oriented downstream of the process fluid flow.
  • the injector device 10 of the invention is located between an upstream pipe portion 60, which intersects the constriction 20 at a process fluid inlet 65, and a downstream pipe portion 70, which intersects the constriction. 20 at an outlet 75 of the process fluid.
  • the process fluid moves axially within the tubular reactor tubing, which runs through the injector device of the invention in the following order: a starting region of constriction 20 (cross-section reduction) from inlet 65, a throat 30 where transverse bayonet 40 is located, an expansion portion (enlargement of cross-section) of constriction 20 to outlet 75.
  • the process fluid travels from inlet 65 to outlet 75 of the injector device, with throat 30 and through bayonet 40 positioned between inlet and outlet.
  • the distance between inlet 65 and bayonet 40 is the same as between bayonet 40 and outlet 75.
  • the dimensions of the injector 10's constituent parts of the invention, without excluding any others, are:
  • Bayonet outer diameter 40 6 to 20 mm, preferably 8 mm;
  • Linear throat extension 30 6 to 20mm, preferably 8mm;
  • Bayonet internal diameter 40 0.5 to 5 mm, preferably 0.8 to 3.2 mm;
  • Throat diameter 30 20 to 200 mm, preferably 30 to 75 mm;
  • [028] - diameter of inlet 65 and outlet 75 30 to 200 mm (corresponding to the diameter of the reactor tube, preferably the same diameter upstream and downstream of the injection device 10);
  • the injector device of the invention obeys the equation C v totai +0.0165R to tai -0.1 which represents an advantageous compromise between good homogenization and low recirculation of the process fluid after primer injection, Cvtotai being the mixing index and Rtotai being the recirculation index.
  • the blend index is a parameter known in the art, for example as defined by Olujic et al. in “Effect of the initial gas distribution on the pressure drop of structure packings", published in Chemical Engineering and Processing 43 (2004) 465-476.
  • the coefficient of variation Cv is used to quantify the degree of downstream mixing of the device 10 of the invention. It is a measure that characterizes the distribution of the mass fraction of the initiator in planes transverse to the flow. For a cross section, it is defined as:
  • a t is the total cross-sectional area
  • Ai is the area of a cell
  • xi is the mass fraction in a cell
  • N is the total number of cells. See representation below.
  • the variation C v was evaluated by the integral of C v along the planes after the injector device measured to the distance where the mixture is already substantially homogenized (Cvtotai, or mixing index).
  • Recirculation is defined as the ratio of flow in the opposite direction to the main flow and the flow in the main flow (Vitor Dal Bó Abella, "Study of geometric aspects of primer injector in the production of PE BD in CFD", Federal University of Rio Grande do Sul, School of Engineering,
  • v x is the velocity component in the main direction of flow.
  • R the value of R will be equal to 1. If not, the value of R will be equal to 0.
  • R the area occupied by the recirculation in each plane by integrating R (Rtotai, or recirculation index) into the plane area. The higher the rate of Rtotai recirculation, the greater the extent of the reactor occupied with recirculations.
  • Cv and R are quantities that can be used in CFD (Computational Fluid Dynamics), whose application to chemical processes provides adequate tools for a better understanding of turbulence and flow phenomena.
  • the invention relates to a tubular reactor for continuous polymerization of olefins, particularly directed to low density polyethylene, comprising one or more primer injection devices as described above.
  • the present invention relates to the process of producing LDPE utilizing said device, a free radical polymerization, where primer is injected into one or more points of a tubular reactor where a fluid passes through.
  • process wholly or partially composed of ethylene, which is converted to polymer by a highly exothermic under typical pressure conditions from 1000 to 4000 bar and temperature from 100 to 400 ° C under turbulent flow conditions and characterized by comprising one or more primer injection steps to a tubular reactor using primer injection device (s) as described above.
  • the initiator and ethylene species are mixed at the molecular level and conservation equations are solved for each species.
  • the mass Specificity and viscosity of the mixture are calculated locally as a function of the composition.
  • the output variables analyzed for each example were recirculation, related to vortex formation and counter flow, and the mixture between ethylene and initiator. Recirculation was evaluated by velocity profile and recirculation indices. The mixture was evaluated by the profile of initiator concentrations along the reactor and by the plane and integral mixture index. The simulation results were statistically treated in order to observe and measure the degree of primer dispersion along the reactor. Traditional dispersion analysis criteria were used in relation to an average.
  • Example 1 does not provide a proper balance between mixing and recirculation.
  • Example 1 shows poor mixing of the components and a low recirculation.
  • COMPARATIVE EXAMPLE 1 Example 1 versus geometry of an injector of the invention.
  • the comparative example geometry shows an improved mix of components compared to the example 1 geometry.
  • Example 2 does not provide a proper balance between mixing and recirculation. This geometry features good component mixing and poor recirculation.
  • Comparative Example 2 Example 2 versus geometry of an injector of the invention with the parameters of the fourth column of Table I, Figures 1 and 2.
  • constriction 20 is provided with a tubular through bayonet 40 transverse to the entire diameter of throat 30, and such through bayonet 40 having at least one injection port 50 at the midpoint of the diameter of the throat. constriction throat 30.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Public Health (AREA)
  • Emergency Management (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Business, Economics & Management (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

A presente invenção refere-se, na sua generalidade a um reator tubular para homo ou copolimerização de olefinas, com um ou mais dispositivos de injeção de iniciador. Refere-se também a um dispositivo injetor de iniciador em corrente de fluido de processo em reator tubular de polimerização, e a processo de produção de polímeros e copolímeros de etileno, particularmente polietileno de baixa densidade (PEBD), que utilizam o referido dispositivo.

Description

DISPOSITIVO INJETOR DE INICIADOR DE POLIMERIZAÇÃO
EM REATOR TUBULAR, REATOR TUBULAR PARA
POLIMERIZAÇÃO CONTÍNUA DE OLEFINAS, E PROCESSO DE PRODUÇÃO DE POLÍMEROS E COPOLIMEROS DE ETILENO
[001] A presente invenção refere-se, na sua generalidade a um reator tubular para homo ou copolimerização de olefinas, com um ou mais dispositivos de injeção de iniciador. Refere-se também a um dispositivo injetor de iniciador em corrente de fluido de processo em reator tubular de polimerização, e a processo de produção de polímeros e copolímeros de etileno, particularmente polietileno de baixa densidade (PEBD) , que utilizam o referido dispositivo. ANTECEDENTES DA INVENÇÃO
[002] São conhecidos processos contínuos de polimerização utilizando reatores tubulares para formar polímeros de baixa densidade de etileno, opcionalmente com um ou mais co-monômeros , por exemplo polietileno de baixa densidade (PEBD) . O processo, na sua generalidade, é uma polimerização por radicais livres, injetando-se iniciador em um ou mais pontos de um reator tubular onde transita um fluido de processo, total ou parcialmente composto de etileno, que é convertido em polímero em reação altamente exotérmica. A reação ocorre tipicamente em pressões entre 1000 a 4000 bar, temperaturas entre 100 e 400°C, em condições de fluxo turbulento. Um exemplo de descrição do estado da técnica, relativa ao processo de polimerização de PEBD e o respectivo fluxograma de processo podem ser encontrados na ENCYCLOPEDIA OF POLYMER SCIENCE AND ENGINEERING . Vol . 6, pg . 386- 426. 1986. Outra referência do estado da técnica relativa ao processo de produção de LDPE é o artigo "Fundamentals of the Free-Radical Polymerization of Ethylene", de Ehrliche, P. e Mortimer, G. A., publicado em Adv. Polymer Sei, vol.7, pp . 386-448 (1970). Nestas duas referências se encontram menções não exaustivas de iniciadores de reação, comonômeros e agentes de transferência de cadeia.
A temperatura de início da reação de polimerização - ou reinício, onde existem vários pontos de reação ao longo do tubo de reação - varia entre 100 a 280°C. Valores de conversão em um reator tubular tipicamente variam de 20 a 40 por cento. A reação de polimerização é iniciada (e reiniciada) injetando-se uma solução de iniciadores e isododecano (solvente) em uma ou mais zonas de reação no interior do tubo do reator. Exemplos conhecidos de iniciadores são peróxidos orgânicos ou inorgânicos, oximas, compostos azo, oxigénio, etc. 0 iniciador injetado mistura-se com o fluido de processo e, na presença de calor (o fluido de processo normalmente já está a uma temperatura de reação adequada) , se decompõe, formando radicais livres. Os produtos de decomposição começam a reação de polimerização por radicais livres com o etileno (e co-monômeros opcionais) para formar um produto polimérico à base de etileno. A reação é exotérmica, formando picos de temperatura ao longo do reator devido a cada injeção de iniciador. Há um sistema de remoção de calor na camisa do reator, porém há uma temperatura minima da parede do reator, entre 100 e 180°C, que busca minimizar a formação de incrustações de polímero na parede interna no reator .
A presença de tais incrustações de polímero na parede do reator diminui a troca térmica do fluido de processo com a camisa, podendo ocorrer um aumento na temperatura no interior do reator que pode provocar o descontrole da reação. Esse fato é conhecido, por exemplo como destacado na obra Peacock, A. J. (2000). Handbook of polyethylene : Structures, properties, and applications . New York: Mareei Dekker editor, página 53: "Fouling oceurs principally as a coating on the walls of the reactor inlet piping, where it can reduce flow. This unwelcome material can be high molecular weight or cross-linked polyethylene . When the coating sloughs from the walls it can cause blockages downstream in the reactor and separation system. If high molecular weight or cross-linked polyethylene makes it into the final product it can cause processing problems for the converter . A common problem associated with fouling is the occurrence of inhomogeneities ("gels") seen in filrns, sheets, end thin-walled parts . "
[006] Uma tradução livre para o texto acima é:
"Incrustrações ocorrem principalmente como revestimento sobre as paredes da tubulação de entrada do reator, onde pode reduzir o fluxo. Este material não desejado pode ser polietileno de alto peso molecular ou com ligações cruzadas. Quando tal revestimento se destaca das paredes pode causar bloqueios a jusante no reator, e no sistema de separação. Se polietileno de peso molecular elevado ou reticulado está presente no produto final, pode causar problemas de processamento para o conversor. Um problema comum associado com a incrustação é a ocorrência da falta de homogeneidade ("géis") visto em películas, folhas, e peças de extremidade de parede fina."
[007] A remoção de calor da reação é, portanto, uma etapa de extrema importância nesse processo, uma vez que o descontrole na temperatura do reator provoca instabilidade na reação. Entre as possíveis reações que podem acontecer, cita-se a decomposição do polietileno, formação de cadeias poliméricas de alto peso molecular, terminação por combinação, alargamento da distribuição de peso molecular e ligações entrecruzadas.
[008] Adicionalmente, também influenciam o descontrole da reação a má mistura do iniciador no fluido de processo, assim como zonas de recirculação ou estagnação no reator . Para evitar isto, a escolha do dispositivo de injeção de iniciador é fundamental no processo.
[009] A dispersão do iniciador no fluido de processo, muitas vezes, resulta em uma zona localizada de concentração elevada de iniciador dentro do fluxo de fluido de processo. Esta zona de concentração de iniciador localizada promove um perfil de reação desequilibrada no fluido de processo: há mais geração de polimerização e calor perto da zona de injeção do iniciador e menos em outros lugares a montante e a jusante deste ponto de inj eção . [010] Esse perfil de reação desequilibrada pode levar a problemas, tais como o acúmulo de material de alto peso molecular perto do local de injeção do iniciador, que pode obstruir o orifício de injeção ou o canal de fluxo do fluido de processo. Também pode causar um acúmulo de material de alto peso molecular perto do local de injeção ou ao longo das paredes do tubo de reação que resultam em um ocasional descolamento de tal material de alto peso molecular e entrada no fluido de processo. Se uma concentração significativa de iniciador fresco entra em contato com a parede do tubo reator na seção de reação (onde as temperaturas são elevadas), o iniciador pode decompor-se e reagir rapidamente, iniciando uma reação ponto quente ("hot spot" ) localizada que pode propagar a decomposição por todo o sistema.
[011] Há tentativas conhecidas que buscam melhorar a mistura de iniciador injetado em um fluxo de fluido de processo através de várias configurações de bico e outras alterações no sistema. 0 documento GBl.569.518 descreve o uso de misturadores estáticos em linha para criar fluxo turbulento. 0 documento WO2005065818 descreve um perfil não-circular do tubo de reação. 0 documento US 6.677.408 descreve uma constrição em formato de ampulheta com lâminas em linha que geram fluxo e contrafluxo de gás a montante da injeção de iniciador. 0 documento US 6.951.908 apresenta elementos do redemoinho para introduzir o iniciador no sistema de reação. 0 documento EP449.092 descreve um dispositivo genérico de injeção. 0 documento US8.308.087 revela uma disposição particular de um dispositivo de injeção, com certas geometrias da extremidade de um bico injetor transversa ao fluxo do fluido de processo .
Verifica-se que há uma constante busca no estado da técnica visando aprimorar dispositivos voltados à mistura de iniciadores em reatores tubulares de polimerização de olefinas.
DESCRIÇÃO DAS FIGURAS Fig. 1 - vista esquemática lateral, em corte parcial, de um dispositivo injetor da invenção. Exemplo comparativo 2.
Fig. 2 - vista esquemática, em perspectiva, de um dispositivo injetor da invenção. Exemplo comparativo 2.
Fig. 3 - Vista esquemática lateral, em corte parcial do dispositivo do exemplo 1.
Fig. 4 - Vista esquemática, em perspectiva, do dispositivo do exemplo 1.
Fig. 5 - Vista esquemática lateral, em corte parcial do dispositivo do exemplo 2.
Fig. 6 - Vista esquemática, em perspectiva, do dispositivo do exemplo 2.
Fig. 7 - Vista esquemática lateral, em corte parcial do dispositivo do exemplo comparativo 1. Fig. 8 - Vista esquemática, em perspectiva, do dispositivo do exemplo comparativo 1.
DESCRIÇÃO RESUMIDA DA INVENÇÃO
A presente invenção, que propicia vantagens de desempenho a um processo continuo de polimerização de etileno em um reator tubular, refere-se num primeiro aspecto a um dispositivo 10 injetor de iniciador de reação em corrente de monômero caracterizado por compreender uma constrição 20 ao fluxo do fluido de processo, dita constrição 20 dotada de uma garganta 30 no ponto seu médio, dita constrição 20 dotada de uma baioneta passante tubular 40 transversal a todo o diâmetro da garganta 30, e tal baioneta passante 40 tendo ao menos um orifício de injeção 50 ao longo da garganta 30 da constrição 20.
[014] A referência a "ao menos um orifício de injeção
50 ao longo da garganta 30 têm as seguintes realizações preferenciais, sem excluir qualquer outra: um único orifício no ponto médio ou nas proximidades do ponto médio; dois orifícios afastados de forma simétrica ou aproximadamente simétrica do ponto médio; dois ou mais orifícios nas proximidades do ponto médio; qualquer número de orifícios, com espalhamento simétrico ou não simétrico, nas proximidades do ponto médio.
[015] Em "constrição 20" estão compreendidas uma região de diminuição da seção transversal, uma região de garganta de diâmetro mínimo, e uma região de expansão da seção transversal.
[016] . Está incluída no entendimento da "constrição
20", a alternativa particular em que tanto a "diminuição da seção transversal" quanto "a expansão da seção transversal" sejam substancialmente inexistentes. Ou seja, a menção a constrição 20 engloba também a alternativa em que não há variação de seção transversal, como ilustrados nas figs. 7 e 8.
[017] De forma particular o mencionado ao menos um orifício de injeção 50 é orientado para a jusante do fluxo do fluido de processo.
[018] O dispositivo injetor 10 da invenção situa-se entre uma porção de tubulação 60 à sua montante, que intercepta a constrição 20 em uma entrada 65 do fluido de processo, e uma porção de tubulação 70 à sua jusante, que intercepta a constrição 20 em uma saída 75 do fluido de processo.
[019] O fluido de processo desloca-se axialmente dentro da tubulação do reator tubular, que atravessa o dispositivo injetor da invenção na seguinte ordem: uma região de início da constrição 20 (diminuição da seção transversal) a partir da entrada 65, uma garganta 30 onde está localizado a baioneta transversal 40, uma porção de expansão (aumento da seção transversal) da constrição 20 até a saída 75.
[020] Ou seja, o fluido de processo desloca-se desde a entrada 65 até a saída 75 do dispositivo injetor, com a garganta 30 e baioneta passante 40 posicionadas entre a entrada e saída. De forma particular a distância entre a entrada 65 e a baioneta 40 é a mesma que entre a baioneta 40 e a saída 75.
[021] Um aspecto importante do desempenho do injetor 10 da invenção, contendo a baioneta passante, que atravessa toda a seção transversal do fluxo de fluido na garganta 30, é que ele apresenta um balanço vantajoso entre a diminuição de recirculação e boa misturação à sua jusante, aspectos que permitem maior controle do processo de polimerização. [022] De maneira particular as dimensões das partes constituintes do injetor 10 da invenção, sem excluir quaisquer outras, são:
[023] - extensão linear da constrição 20: 50 a 500 mm, preferencialmente 70 a 250 mm;
[024] - diâmetro externo da baioneta 40: 6 a 20 mm, preferencialmente 8 mm;
[025] - extensão linear da garganta 30: 6 a 20mm, preferencialmente 8 mm;
[026] - diâmetro interno da baioneta 40: 0,5 a 5 mm, preferencialmente 0,8 a 3,2 mm;
[027] - diâmetro da garganta 30: 20 a 200 mm, preferencialmente 30 a 75 mm;
[028] - diâmetro da entrada 65 e da saida 75: 30 a 200 mm (correspondente ao diâmetro do tubo do reator, preferencialmente o mesmo diâmetro a montante e a jusante do dispositivo de injeção 10);
[029] - distância entre a entrada 65 e a garganta 30:
25-250 mm, sendo preferencialmente a mesma distância entre a garganta 30 e a saida 75 .
[030] De maneira particular o dispositivo injetor da invenção obedece a equação Cvtotai + 0, 0165Rtotai - 0, 1 que representa um compromisso vantajoso entre a boa homogeneização e baixa recirculação do fluido de processo após a injeção de iniciador, sendo Cvtotai o indice de mistura e Rtotai o índice de recirculação .
ÍNDICE DE MISTURA
[031] 0 índice de mistura é um parâmetro conhecido na arte, por exemplo tal como definido por Olujic et al . em "Effect of the initial gas distribution on the pressure drop of structure packings", publicado em Chemical Engineering and Processing 43 (2004) 465-476.
[032] O coeficiente de variação Cv, é utilizado para quantificar o grau de misturação a jusante do dispositivo 10 da invenção. É uma medida que caracteriza a distribuição da fração mássica do iniciador em planos transversais ao escoamento. Para uma seção transversal, é definido como:
Figure imgf000016_0001
onde em que At é a área total da seção transversal, Ai é a área de uma célula, xi é a fração mássica numa célula, é a fração mássica média global e N é o número total de células. Ver representação abaixo.
Figure imgf000017_0001
[033] Assim foi avaliada a variação Cv através da integral de Cv ao longo dos planos após o dispositivo injetor medido até a distância onde a mistura já está substancialmente homogeneizada (Cvtotai, ou indice de mistura) .
[034] Quanto maior a proximidade do índice de mistura
Cvtotai a zero, maior a uniformidade na mistura. Ou, em sentido contrário, quanto maior Cvtotai/ pior a homogeneidade da mistura.
ÍNDICE DE RECIRCULAÇÃO
[035] Define-se recirculação como a razão entre vazão no sentido contrário ao fluxo principal e a vazão no fluxo principal (Vitor Dal Bó Abella, "Estudo de aspectos geométricos de injetor de iniciador na producção de PE BD em CFD", Universidade Federal do Rio Grande do Sul, Escola de Engenharia,
Departamento de Engenharia Quimica, ENG07053,
Trabalho de Diplomação em Engenharia Quimica, 09 de dezembro de 2014, página 16) .
[036] A fim de estimar o grau de recirculação, utilizou- se um parâmetro R, medido ao longo dos planos transversais ao escoamento, definido como:
Figure imgf000018_0001
-2
[037] onde vx é a componente da velocidade na direção principal do escoamento.
[038] Desta forma, onde houver escoamento na direção contrária à direção principal do escoamento, o valor de R será igual a 1. Caso não haja, o valor de R será igual a 0. Assim, foi avaliada a área ocupada pela recirculação em cada plano através da integração de R (Rtotai, ou indice de recirculação ) na área do plano. Quanto maior o indice de recirculação Rtotai, maior a extensão do reator ocupada com recirculações .
[039] Como sabe um técnico no assunto, os valores de Cv e R são grandezas passíveis de serem utilizadas em CFD (Computational Fluid Dynamics), cuja aplicação aos processos químicos fornece ferramentas adequadas para o melhor entendimento dos fenómenos de turbulência e fluxo.
[040] Dentro de outro aspecto, a invenção refere-se a um reator tubular para polimerização contínua de olefinas, particularmente voltado a polietileno de baixa densidade, caracterizado por compreender um ou mais dispositivos de injeção de iniciador tal como descritos mais atrás.
[041] Dentro de mais um aspecto, a presente invenção refere-se ao processo de produção de PEBD que utiliza o referido dispositivo, uma polimerização por radicais livres, onde iniciador é injetado em um ou mais pontos de um reator tubular onde transita um fluido de processo, total ou parcialmente composto de etileno, que é convertido em polímero através de uma reação altamente exotérmica em condições típicas de pressão entre 1000 a 4000 bar e temperatura entre 100 e 400°C, em condições de fluxo turbulento e caracterizada por compreender uma ou mais etapas de injeção de iniciador a um reator tubular utilizando dispositivo ( s ) de injeção de iniciador tal como descritos mais atrás.
EXEMPLOS
[042] São dados a seguir exemplos de realização da invenção, a título meramente ilustrativo, sem impor quaisquer limitações ao escopo da invenção além daquelas contidas nas reivindicações apresentadas mais adiante.
Condições operacionais e hipóteses adotadas
[043] Para simulação do escoamento, assumiu-se que a fase contínua é composta somente por eteno e que a solução de iniciador é composta somente por seu solvente isododecano. O escoamento foi considerado isotérmico e incompressível, ou seja, a massa específica e a viscosidade de cada fluido foram constantes ao longo de toda simulação. Não há mudança de fase nem reações químicas. [044] Nos exemplos a seguir, as simulações CFD foram realizadas utilizando o software ANSYS Fluent® versão 14.5. A malha computacional foi gerada usando malhador ANSYS Meshing®. Inicialmente foi discretizada a geometria a ser simulada em um numero finito de elementos através da geração da malha usando-se malhas predominantemente hexaédricas . A malha foi refinada nas regiões de parede e na região de injeção de iniciador.
[045] Cvtotai, ou indice de mistura que corresponde à variação Cv através da integral de Cv ao longo dos planos após o dispositivo injetor foi medido até a distância de lOOx o diâmetro da tubulação.
[046] O software utilizado para geração da geometria foi o ANSYS DesignModeler®.
[047] Foi utilizado para a solução numérica das equações de transporte o software de simulação ANSYS Fluent®, versão 14.5, o qual resolve as equações de transporte (conservação de massa, quantidade de movimento, espécies, etc) através do método de volumes finitos. [048] Esquemas de discretização espacial de segunda ordem (Second Order Upwind) foram selecionados para os termos convectivos das equações de momentum, energia cinética turbulenta e dissipação turbulenta de energia, conforme boas práticas de simulações de CFD (MALISKA, Clóvis R. Transferência de calor e mecânica dos fluidos computacional. 2a. ed. Rio de Janeiro: LTC, 2004. ) .
[049] O escoamento foi considerado incompressível, e não foi considerado haver mudança de fase ou reações químicas.
[050] Para a modelagem da turbulência, utilizou-se a abordagem RANS (Reynolds-Averaged Navier-Stokes equations), na qual as variáveis são decompostas utilizando a média de Reynolds.
[051] A abordagem multicomponente foi utilizada para modelar a distribuição dos iniciadores no reator .
[052] Na abordagem multicomponente, as espécies iniciador e eteno são misturadas a nível molecular e equações de conservação são resolvidas para cada uma das espécies. Nesta abordagem, a massa específica e a viscosidade da mistura são calculadas localmente como função da composição. As variáveis de saída analisadas para cada exemplo foram a recirculação, relacionada com a formação de vórtices e contra fluxos no escoamento, e a mistura entre eteno e iniciador. A recirculação foi avaliada através do perfil de velocidades e dos índices de recirculação. A mistura foi avaliada através do perfil de concentrações de iniciador ao longo do reator e do índice de mistura por plano e integral. Os resultados da simulação foram tratados estatisticamente, de forma a se poder observar e medir o grau de dispersão do iniciador ao longo do reator. Foram usados critérios tradicionais de análise de dispersão em relação a uma média. Para este tratamento, o software ModeFrontier®, da empresa ESTECO, foi usado, o que permitiu a obtenção de informações sobre a influência de cada um dos parâmetros de entrada na eficiência do processo de mistura e na existência de recirculações . [054] A tabela I abaixo resume os dados dos exemplos abaixo, quais sejam, exemplo 1, exemplo comparativo 1, exemplo 2 e exemplo comparativo 2. A numeração utilizada nas figuras 1 e 2, repetida em qualquer das demais figuras, expressa indicação equivalente .
TABELA I
Figure imgf000024_0001
[055] EXEMPLO 1 - geometria do injetor conforme estado da técnica.
[056] Para a realização deste exemplo foram adotados os parâmetros da coluna 1 da tabela I, ilustrados nas figuras 3 e 4, em que 100 indica a tubulação de injeção de iniciador e 500 o ponto de injeção de iniciador .
[057] Os resultados obtidos para Cv total e Rtotal foram 0,184916 e 0,000389 respectivamente.
[058] A geometria do Exemplo 1 não apresenta um balanço adequado entre mistura e recirculação .
Pela equação proposta o Exemplo 1 apresentou:
[059] Cvtotai + 0,0165Rtotai = 0, 1849224. A geometria do exemplo 1 apresenta mistura pobre dos componentes e uma baixa recirculação .
[060] EXEMPLO COMPARATIVO 1: exemplo 1 versus geometria de um injetor da invenção.
[061] Para o Exemplo comparativo 1 foram utilizados os parâmetros da 2a coluna da tabela I, figuras 7 e
8.
[062] Neste exemplo foi utilizado como comparação a geometria objeto da invenção (figuras 7 e 8) cuja constrição 20 é dotada de uma baioneta passante tubular 40 transversal a todo o diâmetro da garganta 30, e tal baioneta passante 40 tendo um orifício de injeção 50 no ponto médio do diâmetro da garganta 30 da constrição 20, voltado à jusante .
[063] Os valores de Cv total e Rtotal foram 0,088593 e
0,072071 respectivamente. A geometria do exemplo comparativo apresenta uma mistura melhorada dos componentes quando comparada com a geometria do exemplo 1.
[064] Pela equação proposta o Exemplo comparativo 1 obtém-se: CVtotal + 0, 0165Rtotal = 0,0897823.
[065] Ao substituir a geometria do exemplo 1 pela geometria do exemplo comparativo 1, objeto da invenção, temos um aumento no balanço entre mistura e recirculações evitando zonas localizadas de concentração elevada de iniciador dentro o fluxo de fluido de processo, a geração de incrustrações e géis obtendo-se assim um processo de produção sem descontroles de reação.
[066] EXEMPLO 2 - geometria do injetor conforme estado da técnica.
[067] Para a realização deste exemplo foram adotados os parâmetros da 3a coluna da tabela I, conforme as figuras 5 e 6, em que 100 indica a tubulação de injeção de iniciador e 500 o ponto de injeção de iniciador .
[068] Os resultados de Cvtotal e Rtotal foram 0,003747 e
10,287774 respectivamente. Pela equação proposta o Exemplo 2 apresenta um Cvtotai + 0, 0165Rtotai = 0, 1734951
[069] A geometria do Exemplo 2 não apresenta um balanço adequado entre mistura e recirculação . Esta geometria apresenta boa mistura dos componentes e uma pobre recirculação .
[070] EXEMPLO COMPARATIVO 2: exemplo 2 versus geometria de um injetor da invenção, com parâmetros da 4 a coluna da tabela I, figuras 1 e 2.
[071] Neste exemplo foi utilizada a geometria objeto da invenção cuja constrição 20 dotada de uma baioneta passante tubular 40 transversal a todo o diâmetro da garganta 30, e tal baioneta passante 40 tendo ao menos um orifício de injeção 50 no ponto médio do diâmetro da garganta 30 da constrição 20.
[072] Os resultados de Cv total e Rtotal foram 0,015512 e 4,508572 respectivamente. A geometria do exemplo comparativo 2 apresenta uma mistura melhorada dos componentes quando comparada com a geometria do Exemplo 2.
[073] Pela equação proposta o Exemplo comparativo 2 tem um CVtotal + 0, 0165Rtotal = 0,0899033.
[074] Ao substituir a geometria do exemplo 2 pela geometria do exemplo comparativo 2, objeto da invenção, temos um aumento no balanço entre mistura e recirculações evitando zonas localizadas de concentração elevada de iniciador dentro o fluxo de fluido de processo, a geração de incrustrações e géis obtendo-se assim um processo de produção sem descontroles de reação.
[075] O homem da técnica saberá prontamente avaliar as vantagens da invenção, por meio dos ensinamentos contidos no texto e nos exemplos apresentados, podendo propor variações e alternativas equivalentes de realização não expressamente descritos sem fugir do escopo da invenção, conforme definido nas reivindicações anexas.

Claims

REIVINDICAÇÕES
Dispositivo 10 injetor de iniciador de polimerização em reator tubular caracterizado por compreender uma constrição 20 ao fluxo do fluido de processo, dita constrição 20 dotada de uma garganta 30 no ponto seu médio, dita constrição 20 dotada de uma baioneta passante tubular 40 transversal a todo o diâmetro da garganta 30, e tal baioneta passante 40 tendo ao menos um orifício de injeção 50 ao longo da garganta 30 da constrição 20.
Dispositivo 10 de acordo com a reivindicação 1 caracterizado pelo fato de que o "ao menos um orifício de injeção 50 ao longo da garganta 30" é escolhido entre as seguintes realizações: um único orifício no ponto médio ou nas proximidades do ponto médio; dois orifícios afastados de forma simétrica ou aproximadamente simétrica do ponto médio; dois ou mais orifícios nas proximidades do ponto médio; qualquer número de orifícios, com espalhamento simétrico ou não simétrico, nas proximidades do ponto médio.
3. Dispositivo 10 de acordo com a reivindicação 1 caracterizado pelo fato de que o ao menos um orifício de injeção 50 é orientado para a jusante do fluxo do fluido de processo.
. Dispositivo 10 de acordo com a reivindicação 1 caracterizado pelo fato de situar-se entre uma porção de tubulação 60 à sua montante, que intercepta a constrição 20 em uma entrada 75 do fluido de processo, e uma porção de tubulação 70 à sua jusante, que intercepta a constrição 20 em uma saida 75 do fluido de processo.
5. Dispositivo 10 de acordo com a reivindicação 1 caracterizado pelo fato de que a distância entre a entrada 65 e a baioneta 40 é a mesma distância que entre a baioneta 40 e a saida 75.
6. Dispositivo 10 de acordo com uma qualquer das reivindicações 1 a 5, caracterizado pelo fato de que as dimensões das partes constituintes do injetor 10 são escolhidas entre uma ou mais das alternativas :
- extensão linear da constrição 20: 50 a 500 mm, preferencialmente 70 a 250 mm; - diâmetro externo da baioneta 40: 6 a 20 mm, preferencialmente 8 mm;
- extensão linear da garganta 30: 6 a 20mm, preferencialmente 8 mm;
- diâmetro interno da baioneta 40: 0,5 a 5 mm, preferencialmente 0,8 a 3,2 mm;
- diâmetro da garganta 30: 20 a 200mm, preferencialmente 30 a 75mm;
- diâmetro da entrada 65 e da saida 75: 30 - 200 mm;
- diâmetro do tubo do reator sendo igual para montante e jusante do dispositivo de injeção 10;
- distância entre a entrada 65 e a garganta 30: 25-250 mm;
- distância entre a saida 75 e a garganta 30 sendo a mesma distância entre a entrada 65 e a garganta 30.
Dispositivo 10 de acordo com uma qualquer das reivindicações 1 a 5, caracterizado pelo fato de obedecer a equação Cvtotal + 0, 0165Rtotal ≤ 0,1. Reator tubular para polimerização continua de olefinas caracterizado por compreender um ou mais dispositivos de injeção de iniciador conforme uma qualquer das reivindicações 1 a 7.
Processo de produção de polímeros e copolímeros de etileno, caracterizado por compreender uma ou mais etapas de injeção de iniciador a um reator tubular utilizando dispositivo ( s ) de injeção de iniciador conforme uma qualquer das reivindicações 1 a 7.
PCT/BR2015/050268 2015-12-22 2015-12-22 Dispositivo injetor de iniciador de polimerização em reator tubular, reator tubular para polimerização contínua de olefinas, e processo de produção de polímeros e copolímeros de etileno WO2017106940A1 (pt)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BR112018009563-0A BR112018009563B1 (pt) 2015-12-22 2015-12-22 Dispositivo injetor de iniciador de polimerização em reator tubular, reator tubular para polimerização contínua de olefinas, e, processo de produção de polímeros e copolímeros de etileno
EP15910981.8A EP3375793B1 (en) 2015-12-22 2015-12-22 Device for injecting a polymerization initiator in a tubular reactor, tubular reactor for continuous polymerization of olefins, and process for producing ethylene copolymers and polymers
US16/065,275 US10829568B2 (en) 2015-12-22 2015-12-22 Tubular reactor polymerization initiator injector device, tubular reactor for continuous polymerization of olefins, and a process for production of polymers and copolymers of ethylene
PCT/BR2015/050268 WO2017106940A1 (pt) 2015-12-22 2015-12-22 Dispositivo injetor de iniciador de polimerização em reator tubular, reator tubular para polimerização contínua de olefinas, e processo de produção de polímeros e copolímeros de etileno
MX2018007698A MX2018007698A (es) 2015-12-22 2015-12-22 Dispositivo inyector iniciador de polimerizacion en un reactor tubular, reactor tubular para polimerizacion continua de olefinas, y un proceso para la produccion de polimeros y copolimeros de etileno.
ARP160103991A AR107171A1 (es) 2015-12-22 2016-12-22 Dispositivo inyector de iniciador de polimerización en reactor tubular, reactor tubular para polimerización continua de olefinas, y proceso de producción de polímeros y copolímeros de etileno

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/BR2015/050268 WO2017106940A1 (pt) 2015-12-22 2015-12-22 Dispositivo injetor de iniciador de polimerização em reator tubular, reator tubular para polimerização contínua de olefinas, e processo de produção de polímeros e copolímeros de etileno

Publications (1)

Publication Number Publication Date
WO2017106940A1 true WO2017106940A1 (pt) 2017-06-29

Family

ID=59088703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2015/050268 WO2017106940A1 (pt) 2015-12-22 2015-12-22 Dispositivo injetor de iniciador de polimerização em reator tubular, reator tubular para polimerização contínua de olefinas, e processo de produção de polímeros e copolímeros de etileno

Country Status (6)

Country Link
US (1) US10829568B2 (pt)
EP (1) EP3375793B1 (pt)
AR (1) AR107171A1 (pt)
BR (1) BR112018009563B1 (pt)
MX (1) MX2018007698A (pt)
WO (1) WO2017106940A1 (pt)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4389775A1 (en) 2022-12-20 2024-06-26 ExxonMobil Chemical Patents Inc. Initiator injection line for high pressure polymerization
EP4389273A1 (en) 2022-12-20 2024-06-26 ExxonMobil Chemical Patents Inc. A tubular reactor comprising a thermocouple device for measuring a temperature within the tubular reactor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114939383B (zh) * 2022-06-01 2023-06-06 浙江大学宁波“五位一体”校区教育发展中心 一种在高压管式反应器中的乙烯聚合方法和装置

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB934444A (en) * 1958-12-17 1963-08-21 Monsanto Chemicals Polymerisation and copolymerisation of ethylene
GB1038215A (en) * 1962-05-21 1966-08-10 Monsanto Co Production of ethylene polymers and copolymers
GB1090823A (en) * 1963-12-03 1967-11-15 Monsanto Co Copolymerisation of ethylene
US3691145A (en) * 1970-08-06 1972-09-12 Basf Ag Production of polyethylene by the high pressure process using a mixture of tertiary butyl hydroperoxide and oxygen as the initiator
US3917577A (en) * 1968-09-20 1975-11-04 Basf Ag Continuous production of ethylene homopolymers
JPS6330515A (ja) * 1986-07-25 1988-02-09 Dainippon Ink & Chem Inc ゴム変性スチレン系樹脂の連続塊状重合法
US6610797B1 (en) * 1997-12-05 2003-08-26 Basf Aktiengesellschaft Method for producing ethylene copolymers in segmented tubular reactors and utilizing copolymers as a flow improver
US20080255302A1 (en) * 2005-03-04 2008-10-16 Thomas Oswald Low Density Ethylenic Polymer Composition and Method of Making the Same
US7737229B2 (en) * 2003-10-31 2010-06-15 Basell Polyolefine Gmbh Continuous preparation of ethylene homopolymers or copolymers
US20110278379A1 (en) * 2009-02-05 2011-11-17 Dow Global Technologies Llc Ldpe tubular reactor peroxide mixer
US8273835B2 (en) * 2009-01-16 2012-09-25 Basell Polyolefine Gmbh Method for ethylene polymerization in a tubular reactor with reduced output
CN203227474U (zh) * 2013-05-23 2013-10-09 浙江鑫甬生物化工有限公司 聚合引发剂压力注入装置
US20130333832A1 (en) * 2011-03-03 2013-12-19 Basell Polyolefine Gmbh Process for preparing ethylene homopolymers or copolymers in a tubular reactor with at least two reaction zones having different concentrations of chain transfer agent
US20150175827A1 (en) * 2013-12-19 2015-06-25 Nova Chemicals (International) S.A. Polyethylene composition for extrusion coating

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1569518A (en) 1978-02-17 1980-06-18 Sumitomo Chemical Co Process for producing ethylene polymers
DE4010271A1 (de) 1990-03-30 1991-10-02 Basf Ag Verfahren zur herstellung von ethylenpolymerisaten bei druecken oberhalb von 500 bar in einem rohrreaktor mit einspritzfinger
DE19926223A1 (de) 1999-06-10 2000-12-14 Elenac Gmbh Verfahren zur Herstellung von Ethylenhomo- und -copolymeren durch intensives Vermischen einer reaktiven Reaktionskomponente mit einem strömenden Fließmedium
DE10060372A1 (de) 2000-12-05 2002-06-06 Basell Polyolefine Gmbh Vorrichtung zur Initiatoreinspeisung an Reaktoren
ES2338565T3 (es) 2004-01-06 2010-05-10 Saudi Basic Industries Corporation Reactor de polimerizacion tubular para la preparacion de polietileno.

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB934444A (en) * 1958-12-17 1963-08-21 Monsanto Chemicals Polymerisation and copolymerisation of ethylene
GB1038215A (en) * 1962-05-21 1966-08-10 Monsanto Co Production of ethylene polymers and copolymers
GB1090823A (en) * 1963-12-03 1967-11-15 Monsanto Co Copolymerisation of ethylene
US3917577A (en) * 1968-09-20 1975-11-04 Basf Ag Continuous production of ethylene homopolymers
US3691145A (en) * 1970-08-06 1972-09-12 Basf Ag Production of polyethylene by the high pressure process using a mixture of tertiary butyl hydroperoxide and oxygen as the initiator
JPS6330515A (ja) * 1986-07-25 1988-02-09 Dainippon Ink & Chem Inc ゴム変性スチレン系樹脂の連続塊状重合法
US6610797B1 (en) * 1997-12-05 2003-08-26 Basf Aktiengesellschaft Method for producing ethylene copolymers in segmented tubular reactors and utilizing copolymers as a flow improver
US7737229B2 (en) * 2003-10-31 2010-06-15 Basell Polyolefine Gmbh Continuous preparation of ethylene homopolymers or copolymers
US20080255302A1 (en) * 2005-03-04 2008-10-16 Thomas Oswald Low Density Ethylenic Polymer Composition and Method of Making the Same
US8273835B2 (en) * 2009-01-16 2012-09-25 Basell Polyolefine Gmbh Method for ethylene polymerization in a tubular reactor with reduced output
US20110278379A1 (en) * 2009-02-05 2011-11-17 Dow Global Technologies Llc Ldpe tubular reactor peroxide mixer
US20130333832A1 (en) * 2011-03-03 2013-12-19 Basell Polyolefine Gmbh Process for preparing ethylene homopolymers or copolymers in a tubular reactor with at least two reaction zones having different concentrations of chain transfer agent
CN203227474U (zh) * 2013-05-23 2013-10-09 浙江鑫甬生物化工有限公司 聚合引发剂压力注入装置
US20150175827A1 (en) * 2013-12-19 2015-06-25 Nova Chemicals (International) S.A. Polyethylene composition for extrusion coating

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4389775A1 (en) 2022-12-20 2024-06-26 ExxonMobil Chemical Patents Inc. Initiator injection line for high pressure polymerization
EP4389273A1 (en) 2022-12-20 2024-06-26 ExxonMobil Chemical Patents Inc. A tubular reactor comprising a thermocouple device for measuring a temperature within the tubular reactor

Also Published As

Publication number Publication date
US20190322771A1 (en) 2019-10-24
US10829568B2 (en) 2020-11-10
BR112018009563A2 (pt) 2018-11-06
BR112018009563B1 (pt) 2021-10-13
EP3375793B1 (en) 2023-09-06
EP3375793A4 (en) 2019-05-22
AR107171A1 (es) 2018-03-28
MX2018007698A (es) 2018-11-09
EP3375793A1 (en) 2018-09-19

Similar Documents

Publication Publication Date Title
Zhang Analysis on the effect of venturi tube structural parameters on fluid flow
WO2017106940A1 (pt) Dispositivo injetor de iniciador de polimerização em reator tubular, reator tubular para polimerização contínua de olefinas, e processo de produção de polímeros e copolímeros de etileno
Ghosal et al. Theoretical and numerical study of a symmetrical triple flame using the parabolic flame path approximation
Sousa et al. Effect of the contraction ratio upon viscoelastic fluid flow in three-dimensional square–square contractions
Wang et al. Flow and mixing characteristics of multiple and multi-set opposing jets
Sousa et al. Laminar flow in three-dimensional square–square expansions
Abiev et al. Hydrodynamics of pulsating flow type apparatus: Simulation and experiments
Aboueian-Jahromi et al. Effects of inclination angle on the steady flow and heat transfer of power-law fluids around a heated inclined square cylinder in a plane channel
Abishek et al. Dynamics of a Taylor bubble in steady and pulsatile co-current flow of Newtonian and shear-thinning liquids in a vertical tube
Tang et al. The impact of upstream contraction flow on three-dimensional polymer extrudate swell from slit dies
Kalb et al. Role of chain scission in cross-slot flow of wormlike micellar solutions
Mayi et al. Numerical simulation of premixed methane/air micro flame: Effects of simplified one step chemical kinetic mechanisms on the flame stability
Wang et al. A numerical study of flow and mixing characteristics of three-dimensional confined turbulent opposing jets: Unequal jets
Williams et al. Cavity flow characteristics and applications to kidney stone removal
Liu A method for computing the degree of mixing in steady continuous flow systems
Maharana et al. Reaction induced interfacial instability of miscible fluids in a channel
Nicoli et al. Rich spray-flame propagating through a 2DLattice of alkane droplets in air
Talhaoui et al. Effect of Geometry Design on Mixing Performance of Newtonian Fluids using Helical Overlapped Mixer Elements in Kenics Static Mixer
Kouris et al. Core–annular flow in a periodically constricted circular tube. Part 2. Nonlinear dynamics
Laidoudi The Effect of Blockage Ratio on Fluid Flow and Heat Transfer around a Confined Square Cylinder under the Effect Thermal Buoyancy
Liu et al. Chaotic mixing analysis of a novel single-screw extruder with a perturbation baffle by the finite-time Lyapunov exponent method
Sierra-Pallares et al. Computational study of organic solvent–CO2 mixing in convective supercritical environment under laminar conditions: Impact of enthalpy of mixing
Shukla et al. Steady flow simulation of a polymer‐diluent solution through an abrupt axisymmetric contraction using internally consistent rheological scaling
Neves et al. Evaluation of the mixing index in a micromixer of side feeds in a conical chamber
Bhatt et al. Nonlinear dynamical behaviour of intrinsic thermal-diffusive oscillations of laminar flames with varying premixedness

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15910981

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018009563

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2015910981

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/007698

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015910981

Country of ref document: EP

Effective date: 20180613

ENP Entry into the national phase

Ref document number: 112018009563

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180511