WO2017105198A1 - Method for producing a woven endoprosthesis - Google Patents

Method for producing a woven endoprosthesis Download PDF

Info

Publication number
WO2017105198A1
WO2017105198A1 PCT/MX2015/000206 MX2015000206W WO2017105198A1 WO 2017105198 A1 WO2017105198 A1 WO 2017105198A1 MX 2015000206 W MX2015000206 W MX 2015000206W WO 2017105198 A1 WO2017105198 A1 WO 2017105198A1
Authority
WO
WIPO (PCT)
Prior art keywords
threads
structural
braiding
textile
layer
Prior art date
Application number
PCT/MX2015/000206
Other languages
Spanish (es)
French (fr)
Inventor
Rolando SEGURA ARMENTA
Original Assignee
Segura Armenta Rolando
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Segura Armenta Rolando filed Critical Segura Armenta Rolando
Priority to PCT/MX2015/000206 priority Critical patent/WO2017105198A1/en
Publication of WO2017105198A1 publication Critical patent/WO2017105198A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure

Definitions

  • This invention relates generally to stents and more specifically to braided stents that have segments of different strength and rigidity along the length and variable strength.
  • Stents are mechanical devices that are implanted in the arteries in order to physically expand the blood vessels that have been reduced by the accumulated plaque. Even when its use has been demonstrated in combating coronary heart disease, stents are also used in blood vessels and ducts in other parts of the body; These include iliac artery, carotid artery, and renal artery. Although the applications and mechanical requirements, design, and form factor the way in which they are manufactured are similar.
  • a new manufacturing approach using micro-electro machining to cut the microstructures of the metal used in the development of a prosthesis With this technique it is' capable of machining tolerances 3D ultra precision (microns) and extra smooth finishes.
  • the procedure is similar to the electro machining used in the manufacture of molds, only that the size of the electrode is microscopic.
  • the performance and tolerances of the micro electro machining are improved by using an array of flat electrodes with individual discharges that help the electrode capacitance.
  • the invention also presents a method for heating the nitinol io prosthesis sufficient to cause the material to change from a martensite phase to an austenite phase and how the phase change can be monitored by connecting the prosthesis to an electrical power source and censoring the response to the change of current.
  • US patent 6572646 B1 with a subject "Curved nitinol stent for extremly tortuous anatomy” discloses an invention that relates to the fabrication of a unitary nitinol stent stent.
  • a nitinol tube is taken as a base and cut to the desired length; a laser is used to cut the pattern shape.
  • a single piece instead of welding different sections of nitinol to form the prosthesis. In this way, dimensional tolerances can be maintained in a more controlled manner.
  • the nitinol material is used in its super elastic form which means that it includes at least two phases; the martensite phase with a low and stable tensile strength at low temperatures, and an austenite phase with a high tensile strength.
  • the super elastic characteristics allow them to be deformed when the prosthesis collapses.
  • US patent 20130067907 A1 entitled "Single step shape memory alloy expansion” presents an invention related to the manufacture of a prosthesis of a memory material or alloy also called SMA such as nitinol.
  • SMA such as nitinol.
  • the general method for molding the nitinol is to deform and compress the nitinol to the desired form at room temperature; It is then exposed to an elevated temperature of around 500 ° C while it is compressed to its desired shape for 5 to 20 minutes depending on the size by using mandrels with the required diameter per stage, then it is suddenly cooled to store a shape.
  • Figure 1 a schematic representation of the hatching and mandrel of the device.
  • Figure 2 illustrates a longitudinal section of the device.
  • Figure 3 is a longitudinal sectional view of the cylindrical carrier of the present invention.
  • stent and graft characteristics they can be manufactured according to several steps, as illustrated in Figs. 1-3.
  • FIG. 1 shows two structural threads (1), one of each set of structural threads directed in opposite directions, of the weft around a mandrel (2) and supported by coils (3a) and (3b).
  • the threads (1) are only illustrated as a matter of convenience, it is to be appreciated that all the structural threads are wound around the mandrel and held together to shape. However, the structural threads are present, as is the case before the intertwining conformation with the textile threads.
  • Aging by aging is achieved inside an oven (5) in a vacuum or a protective atmosphere. Temperatures are within the range of approximately 350 ° -1000 ° C, with the specific temperature depending on the structural material. The filaments overlap each other to form multiple intersections (6).
  • the tension is established in their respective threads during aging hardening. The appropriate duration for aging hardening varies with the materials and dimensions, but can vary from as short as 30 seconds, to approximately 5 hours.
  • nominal form refers to the form in a relaxed state, that is, when it does not have external stress. Hardened metal monofilaments are highly resistant, that is deformable under external stress, but elastically they return to the nominal shape when free from external stress.
  • an activation temperature which for Nitinol can be below body temperature, ie below about 37 and C. When heated to the activation temperature or above, the structural chain returns to the selected nominal form.
  • the "nominal form" is the way in which the wires return when heated to at least the activation temperature. 4
  • wires (1) are thermoplastic instead of metal monofilaments
  • multiple wires are thermally fixed in a similar manner. More particularly, with thermoplastic weft monofilaments in opposite sets on mandrel (2), the wires are heated to a forming temperature in the range of about 100 to 400 ° C, more preferably 150 to 250 0 C, either within a homo as described above or by heating the mandrel (2).
  • the wires are kept at or above the forming temperature for a generally shorter time than the thermal adjustment of the metal wires, that is, from about 30 seconds to about 2 hours, or more preferably from 5 to 15 minutes .
  • This sequence can be advantageous even when the structural threads and textile threads are formed of the same thermoplastic material, since it allows the manufacture of a prosthesis in which only the structural threads are thermally fixed.
  • the thermal setting process alters the structural threads, in the sense of changing their shapes from an original nominal form to a selected nominal form.
  • the original nominal form is linear, with the selected nominal form determined by the diameter of the mandrel (2) and the field in which the structural threads are wound around the mandrel (2).
  • FIG. 2 schematically illustrates a braiding apparatus (7) that includes a cylindrical carrier assembly (8) including several annular coil arrays (3a) and (3b).
  • the apparatus also includes a mandrel (2), centered within the cylindrical assembly and movable longitudinally in relation to the assembly, as indicated by the arrow.
  • FIG. 3 illustrates part of the cylindrical carrier assembly (8) in greater detail, to reveal five annular matrices or coil assemblies (3a), (3b), (3c), (3d) and (3e) carriers.
  • the assemblies are coaxial and axially separated, each including 48 coils (3a), 24 coils (3b) respectively clockwise and counterclockwise wound on the mandrel (2).
  • the cylindrical carrier 8 is loaded by winding different chapters in different coils (3).
  • the type of wire mesh in each coil (3) depends on the desired braiding pattern and the proportion of structural threads for textile threads. All threads are removed from their respective coils to the mandrel (2) and the braid that proceeds through the mandrel (2) moves longitudinally, while at the same time the coils (3) move relative to each other as dictated by the desired braiding pattern. He The result is a simultaneous intertwining of the structural and textile threads on the mandrel (2), as indicated in (9).
  • the mandrel (2) determines the diameter of the braided structure.
  • the longitudinal speed of the mandrel (2) largely determines the braiding angle.
  • the prosthesis lengths are determined by the duration of braiding, or by reducing the braided structure to predetermined lengths upon removal of the mandrel (2).
  • the braiding process includes the control of the structural wires (1) as well as the orientation during the braiding, to ensure that the individual propellers cooperate to provide the desired nominal tubular configuration for the resulting weft.
  • a similar control of textile threads is not necessary, due to their more docile nature. Correctly oriented structural threads (1) decrease any tendency to untangle and lead to the most predictable contraction and expansion of the prosthesis.

Abstract

The invention involves providing a set of structural threads formed of a structural material that can be thermally adapted, and having an initial nominal shape, providing a series of compatible textile threads, altering the structural threads by winding the structural threads around a mandrel of a selective shape and size, as well as heating the filaments, while being rolled at a thermoforming temperature to give each structural thread a selected nominal shape instead of the initial nominal shape, and after said alteration, three-dimensionally weaving the altered structural threads and the textile threads into a three-dimensional integrated structure.

Description

1  one
PROCESO DE FABRICACION DE ENDOPRÓTESIS ENTRAMADA  ENTRY ENDOPROOTHESIS MANUFACTURING PROCESS
CAMPO TÉCNICO DE LA INVENCIÓN TECHNICAL FIELD OF THE INVENTION
Esta invención se refiere en general a endoprótesis y más específicamente a endoprótesis trenzadas que tienen segmentos de diferente resistencia y rigidez a lo largo de la longitud y resistencia variable. This invention relates generally to stents and more specifically to braided stents that have segments of different strength and rigidity along the length and variable strength.
ANTECEDENTES BACKGROUND
Las endoprótesis son dispositivos mecánicos que son implantados en las arterias con el objetivo de expandir físicamente los vasos sanguíneos que se han reducido por la placa acumulada. Aun cuando se ha demostrado su uso combatiendo las enfermedades coronarías, los stents también son utilizados en vasos sanguíneos y ductos en otras partes del cuerpo; éstas incluyen la artería iliaca, artería carótida, y la artería renal. A pesar de que las aplicaciones y los requerimientos mecánicos, de diseño, y factor de forma la manera en la que se fabrican vienen a ser similares. Stents are mechanical devices that are implanted in the arteries in order to physically expand the blood vessels that have been reduced by the accumulated plaque. Even when its use has been demonstrated in combating coronary heart disease, stents are also used in blood vessels and ducts in other parts of the body; These include iliac artery, carotid artery, and renal artery. Although the applications and mechanical requirements, design, and form factor the way in which they are manufactured are similar.
Un nuevo enfoque de manufactura utilizando micro- electro maquinado para cortar las micro-estructuras del metal utilizado en ei desarrollo de una prótesis. Con ésta técnica se es' capaz de maquinar en 3D con tolerancias de ultra precisión (mieras) y acabados extra suaves. El procedimiento es similar al electro maquinado utilizado en la fabricación de moldes, sólo que el tamaño del electrodo es microscópico. Existe un problema por el que no se ha masrficado la producción de stents con éste y es debido a que en el pasado, se utilizaba un solo electrodo que venía a afectar el rendimiento en comparación con el maquinado láser, sin embargo se ha demostrado que ei rendimiento y las tolerancias del micro electro maquinado se mejoran al usar un arreglo de electrodos planos con descargas individuales que ayudan a la capacitancia del electrodo. A new manufacturing approach using micro-electro machining to cut the microstructures of the metal used in the development of a prosthesis. With this technique it is' capable of machining tolerances 3D ultra precision (microns) and extra smooth finishes. The procedure is similar to the electro machining used in the manufacture of molds, only that the size of the electrode is microscopic. There is a problem that the production of stents with this one has not been overstated and it is because in the past, a single electrode was used that came to affect the performance compared to the laser machining, however it has been shown that The performance and tolerances of the micro electro machining are improved by using an array of flat electrodes with individual discharges that help the electrode capacitance.
Otro de los temas discutidos en la literatura es la utilización de aleaciones que guardan la memoria como las aleaciones de níquel titanio o comercialmente llamado nitinol. La utilización de éste material para la fabricación de tubos como material base de las prótesis permite que se obtengan diámetros de 2.0 milímetros o menos ios cuales pueden ser transformados en prótesis mediante métodos de manufactura como el micro electro maquinado o el maquinado láser. Como métodos para prueba y validación de las prótesis se han realizado avances para comparar el desempeño de las prótesis en comparación con los ambientes a los que están designados dentro del cuerpo humano. Según estudios recientes, han calculado que para un pulso cardiaco humano de 80 latidos por minuto y una vida útil de la prótesis de 10 años, se estiman 400 millones de ciclos de fatiga. Con una velocidad de 2037 rpm a una frecuencia de 0.34 Hz, se crea una 2 Another of the topics discussed in the literature is the use of alloys that keep memory such as nickel titanium alloys or commercially called nitinol. The use of this material for the manufacture of tubes as the base material of the prostheses allows diameters of 2.0 millimeters or less to be obtained, which can be transformed into prostheses by means of manufacturing methods such as micro electro machining or laser machining. As methods for testing and validating the prostheses, advances have been made to compare the performance of the prostheses compared to the environments to which they are designated within the human body. According to recent studies, they have calculated that for a human heartbeat of 80 beats per minute and a lifespan of the prosthesis of 10 years, 400 million cycles of fatigue are estimated. With a speed of 2037 rpm at a frequency of 0.34 Hz, a 2
correlación entre ciclos de fatiga, duración de la prueba y su correspondencia en años dentro del cuerpo humano. correlation between cycles of fatigue, duration of the test and its correspondence in years within the human body.
La patente US 6666881 61 con titulo "Method of heating nitinol stenf nos presenta en su invención un método para fabricar una prótesis o endoprótesis mediante el tejido del hilo de nitinol en un mandril, aplicando calor para generar la forma de bobina y cuando el resorte en espiral se haya enfriado lo suficiente, girar el mandril en la dirección contraria para obtener la forma base de la endoprótesis. El proceso se repite para formar distintas secciones hasta alcanzar la longitud de diseño deseada.  US patent 6666881 61 entitled "Method of heating nitinol stenf presents in its invention a method for manufacturing a prosthesis or stent by weaving the nitinol wire in a mandrel, applying heat to generate the coil shape and when the spring in If the spiral has cooled sufficiently, turn the mandrel in the opposite direction to obtain the stent's base shape.The process is repeated to form different sections until the desired design length is reached.
La invención también nos presenta un método para calentar la prótesis de nitinol io suficiente para causar que el material cambie de una fase de martensita a una fase de austeníta y cómo se puede monitorear el cambio de fase al conectar la prótesis a una fuente de poder eléctrica y censando la respuesta al cambio de corriente. Los inventores mencionan haber logrado sobreponerse a todas las dificultades conocidas para la fabricación de una prótesis flexible a manera de eliminar o reducir la posibilidad de un crecimiento indeseado dentro del tejido.  The invention also presents a method for heating the nitinol io prosthesis sufficient to cause the material to change from a martensite phase to an austenite phase and how the phase change can be monitored by connecting the prosthesis to an electrical power source and censoring the response to the change of current. The inventors mention having managed to overcome all known difficulties for the manufacture of a flexible prosthesis in order to eliminate or reduce the possibility of unwanted growth within the tissue.
La patente US 6572646 B1 con un tema "Curved nitinol stent for extremly tortuous anatomy" presenta una invención que relata la fabricación de una endoprótesis vascular de nitinol unitaria. Para lograr io anterior, se toma como base un tubo de nitinol y se corta a la longitud deseada; se utiliza un láser para cortar la forma patrón. Aquí se presenta como innovación la utilización de una sola pieza en vez de soldar distintas secciones de nitinol para formar la prótesis. De ésta manera se puede mantener las tolerancias dimensionales de una manera más controlada. Se utiliza el material de nitinol en su forma súper elástica lo que significa que incluye al menos dos fases; la fase de martensita con una resistencia a la tensión baja y estable a temperaturas bajas, y una fase de austenita con una resistencia alta a la tensión. Las características súper elásticas permiten que puedan ser deformados al colapsar la prótesis.  US patent 6572646 B1 with a subject "Curved nitinol stent for extremly tortuous anatomy" discloses an invention that relates to the fabrication of a unitary nitinol stent stent. To achieve the above, a nitinol tube is taken as a base and cut to the desired length; a laser is used to cut the pattern shape. Here we present as innovation the use of a single piece instead of welding different sections of nitinol to form the prosthesis. In this way, dimensional tolerances can be maintained in a more controlled manner. The nitinol material is used in its super elastic form which means that it includes at least two phases; the martensite phase with a low and stable tensile strength at low temperatures, and an austenite phase with a high tensile strength. The super elastic characteristics allow them to be deformed when the prosthesis collapses.
La patente US 20130067907 A1 con título "Single step shape memory alloy expansión" presenta una invención relacionada a la fabricación de una prótesis de un material o aleación con memoria también llamados SMA como el nitinol. El método general para moldear el nitinol consiste en deformar y comprimir el nitinol a la forma deseada a temperatura ambiente; después es expuesto a una temperatura elevada de alrededor de 500°C mientras es comprimido a su forma deseada durante 5 a 20 minutos según el tamaño mediante la utilización de mandriles con el diámetro requerido por etapa, luego es enfriado súbitamente para guardar una forma. La manera anterior generaba las prótesis mediante varios ciclos progresivos de expansión incluyendo temperatura se obtiene la forma deseada. Al realizarse en un solo paso, se evita generar fracturas o grietas en la prótesis debido a la fatiga. 3 US patent 20130067907 A1 entitled "Single step shape memory alloy expansion" presents an invention related to the manufacture of a prosthesis of a memory material or alloy also called SMA such as nitinol. The general method for molding the nitinol is to deform and compress the nitinol to the desired form at room temperature; It is then exposed to an elevated temperature of around 500 ° C while it is compressed to its desired shape for 5 to 20 minutes depending on the size by using mandrels with the required diameter per stage, then it is suddenly cooled to store a shape. The previous way generated the prostheses by several progressive cycles of expansion including temperature, the desired shape is obtained. When performed in a single step, it is avoided to generate fractures or cracks in the prosthesis due to fatigue. 3
BREVE DESCRIPCIÓN DE FIGURAS  BRIEF DESCRIPTION OF FIGURES
La figura 1 una representación esquemática del tramado y mandril del dispositivo. Figure 1 a schematic representation of the hatching and mandrel of the device.
La figura 2 ilustra un corte longitudinal del dispositivo. Figure 2 illustrates a longitudinal section of the device.
La figura 3 es una vista de corte longitudinal del portador cilindrico de la presente invención.  Figure 3 is a longitudinal sectional view of the cylindrical carrier of the present invention.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN DETAILED DESCRIPTION OF THE INVENTION
Para lograr características favorables de endoprótesis e injertos, se pueden fabricar de acuerdo con varios pasos, como se ilustra en las Figs. 1-3. To achieve favorable stent and graft characteristics, they can be manufactured according to several steps, as illustrated in Figs. 1-3.
La FIG. 1 muestra dos hilos estructurales (1), uno de cada conjunto de hilos estructurales dirigidos en sentidos opuestos, de la trama alrededor de un mandril (2) y sostenidas por bobinas (3a) y (3b). Aunque los hilos (1) sólo se ¡lustran como una cuestión de conveniencia, es de apreciar que todas los hilos estructurales se enrollan alrededor del mandril y se mantienen juntos para dar forma. Sin embargo los hilos estructurales están presentes, como ocurre antes de la conformación de intertrenzado con los hilos textiles. El endurecimiento por envejecimiento se consigue dentro de un horno (5) en un vacío o una atmósfera protectora. Las temperaturas están dentro del intervalo de aproximadamente 350 ° -1000 ° C, con la temperatura especifica en función del material estructural. Los filamentos se superponen entre sí para formar intersecciones múltiples (6). En las bobinas (3a) y (3b) se establece la tensión sus respectivos hilos durante el endurecimiento por envejecimiento. La duración apropiada para el endurecimiento por envejecimiento varía con los materiales y dimensiones, pero puede variar desde tan breve como 30 segundos, a aproximadamente 5 horas.  FIG. 1 shows two structural threads (1), one of each set of structural threads directed in opposite directions, of the weft around a mandrel (2) and supported by coils (3a) and (3b). Although the threads (1) are only illustrated as a matter of convenience, it is to be appreciated that all the structural threads are wound around the mandrel and held together to shape. However, the structural threads are present, as is the case before the intertwining conformation with the textile threads. Aging by aging is achieved inside an oven (5) in a vacuum or a protective atmosphere. Temperatures are within the range of approximately 350 ° -1000 ° C, with the specific temperature depending on the structural material. The filaments overlap each other to form multiple intersections (6). In the coils (3a) and (3b) the tension is established in their respective threads during aging hardening. The appropriate duration for aging hardening varies with the materials and dimensions, but can vary from as short as 30 seconds, to approximately 5 hours.
Después de endurecimiento por envejecimiento, los hilos estructurales se dejan enfriar, después de lo cual cada hilo estructural retiene la forma helicoidal como su forma nominal. En el contexto de los materiales elásticos, "forma nominal" se refiere a la forma en un estado relajado, es decir, cuando no tiene la tensión externa. Los monofilamentos metálicos endurecidos son altamente resistentes, es decir deformables bajo estrés externo, pero elásticamente vuelven a la forma nominal cuando está libre de la tensión externa. Cuando los hilos se construyen de un metal recuperado son plásticamente deformables cuando se mantiene por debajo de una temperatura de activación, que para Nitinol puede estar por debajo de la temperatura corporal, es decir, por debajo de aproximadamente 37 eC. Cuando se calienta a la temperatura de activación o por encima de, la cadena estructurales vuelve a la seleccionada forma nominal. En el contexto de hilos de metal de recuperación la "forma nominal" es la forma a la que los hilos regresan cuando se calienta hasta al menos la temperatura de activación. 4 After aging hardening, the structural wires are allowed to cool, after which each structural wire retains the helical shape as its nominal shape. In the context of elastic materials, "nominal form" refers to the form in a relaxed state, that is, when it does not have external stress. Hardened metal monofilaments are highly resistant, that is deformable under external stress, but elastically they return to the nominal shape when free from external stress. When the yarns are constructed of a recovered metal are plastically deformable when maintained below an activation temperature, which for Nitinol can be below body temperature, ie below about 37 and C. When heated to the activation temperature or above, the structural chain returns to the selected nominal form. In the context of recovery metal wires the "nominal form" is the way in which the wires return when heated to at least the activation temperature. 4
Cuando hilos estructurales (1) son termoplásticos en lugar de monofilamentos metálicos, múltiples hilos se fijan térmicamente de manera similar. Más particularmente, con los monofilamentos termoplásticos de tramas en conjuntos opuestos sobre mandril (2), los hilos se calientan a una temperatura de formación en el intervalo de aproximadamente 100 a 400 ° C, más preferiblemente 150 a 250 0 C, ya sea dentro de un homo como se describió anteriormente o mediante el calentamiento del mandril (2). Los hilos se mantienen en o por encima de la temperatura de formación durante un tiempo generalmente más corto que el de ajuste térmico de los hilos de metal, es decir, desde aproximadamente 30 segundos hasta aproximadamente 2 horas, o más preferiblemente de 5 a 15 minutos. Una vez más, sólo los hilos estructurales se conforman y antes de que se intertrencen con los hilos textiles. Esta secuencia puede ser ventajosa incluso cuando los hilos estructurales e hilos textiles se forman del mismo material termoplástico, ya que permite la fabricación de una prótesis en la que sólo los hilos estructurales se fijan térmicamente. When structural wires (1) are thermoplastic instead of metal monofilaments, multiple wires are thermally fixed in a similar manner. More particularly, with thermoplastic weft monofilaments in opposite sets on mandrel (2), the wires are heated to a forming temperature in the range of about 100 to 400 ° C, more preferably 150 to 250 0 C, either within a homo as described above or by heating the mandrel (2). The wires are kept at or above the forming temperature for a generally shorter time than the thermal adjustment of the metal wires, that is, from about 30 seconds to about 2 hours, or more preferably from 5 to 15 minutes . Again, only the structural threads conform and before they interfere with the textile threads. This sequence can be advantageous even when the structural threads and textile threads are formed of the same thermoplastic material, since it allows the manufacture of a prosthesis in which only the structural threads are thermally fixed.
Es de apreciar que el proceso de fraguado térmico altera los hilos estructurales, en el sentido de cambiar sus formas a partir de una forma nominal original a una forma nominal seleccionada. Típicamente la forma nominal original es lineal, con la forma nominal seleccionado determinada por el diámetro del mandril (2) y el campo en el que se enrollan los hilos estructurales alrededor del mandril (2).  It is to be appreciated that the thermal setting process alters the structural threads, in the sense of changing their shapes from an original nominal form to a selected nominal form. Typically the original nominal form is linear, with the selected nominal form determined by the diameter of the mandrel (2) and the field in which the structural threads are wound around the mandrel (2).
El intertrenzado de los hilos estructurales y textiles se producen después de la conformación selectiva. FIG. 2 ilustra esquemáticamente un aparato de trenzado (7) que incluye un conjunto portador cilindrico (8) incluyendo varias matrices anulares de bobinas (3a) y (3b). El aparato incluye además un mandril (2), centrado dentro del conjunto cilindrico y movible longitudinalmente con relación al conjunto, como se indica por la flecha.  The intertwining of structural and textile threads occurs after selective shaping. FIG. 2 schematically illustrates a braiding apparatus (7) that includes a cylindrical carrier assembly (8) including several annular coil arrays (3a) and (3b). The apparatus also includes a mandrel (2), centered within the cylindrical assembly and movable longitudinally in relation to the assembly, as indicated by the arrow.
FIG. 3 ilustra parte del conjunto portador cilindrico (8) con mayor detalle, para revelar cinco matrices anulares o conjuntos de bobinas (3a), (3b), (3c), (3d) y (3e) portadoras. Los conjuntos están coaxial y axialmente separados, cada uno incluyendo 48 bobinas (3a), 24 bobinas (3b) respectivamente en sentido horario y antihorario bobinados sobre el mandril (2).  FIG. 3 illustrates part of the cylindrical carrier assembly (8) in greater detail, to reveal five annular matrices or coil assemblies (3a), (3b), (3c), (3d) and (3e) carriers. The assemblies are coaxial and axially separated, each including 48 coils (3a), 24 coils (3b) respectively clockwise and counterclockwise wound on the mandrel (2).
En primer lugar, el portador cilindrico 8 se carga enrollando diferentes capítulos en diferentes bobinas (3). El tipo de hilo entramado en cada bobina (3) depende del patrón de trenzado deseado y la proporción de hilos estructurales para hilos textiles. Todos los hilos se extraen de sus respectivas bobinas al mandril (2) y el trenzado que procede por el mandril (2) se mueva longitudinalmente, mientras que al mismo tiempo las bobinas (3) se mueven uno respecto al otro según lo dictado por el patrón deseado de trenzado. El resultado es un intertrenzado simultáneo de los hilos estructurales y textiles sobre el mandril (2), como se indica en (9). El mandril (2) determina el diámetro de la estructura trenzada. La velocidad longitudinal del mandril (2) determina en gran medida el ángulo de trenzado. Las prótesis longitudes están determinadas por la duración de trenzado, o mediante la reducción de la estructura trenzada a longitudes predeterminadas sobre su retirada del mandril (2). First, the cylindrical carrier 8 is loaded by winding different chapters in different coils (3). The type of wire mesh in each coil (3) depends on the desired braiding pattern and the proportion of structural threads for textile threads. All threads are removed from their respective coils to the mandrel (2) and the braid that proceeds through the mandrel (2) moves longitudinally, while at the same time the coils (3) move relative to each other as dictated by the desired braiding pattern. He The result is a simultaneous intertwining of the structural and textile threads on the mandrel (2), as indicated in (9). The mandrel (2) determines the diameter of the braided structure. The longitudinal speed of the mandrel (2) largely determines the braiding angle. The prosthesis lengths are determined by the duration of braiding, or by reducing the braided structure to predetermined lengths upon removal of the mandrel (2).
El proceso de trenzado incluye el control de los hilos estructurales (1) como a la orientación durante el trenzado, para asegurar que las hélices individuales cooperen para proporcionar la configuración tubular nominal deseada para la trama resultante. Un control similar de los hilos textiles no es necesario, debido a su naturaleza más dócil. Los hilos estructurales (1) orientados correctamente disminuyen cualquier tendencia desenredar y dar lugar a la contracción más predecible y la expansión de la prótesis.  The braiding process includes the control of the structural wires (1) as well as the orientation during the braiding, to ensure that the individual propellers cooperate to provide the desired nominal tubular configuration for the resulting weft. A similar control of textile threads is not necessary, due to their more docile nature. Correctly oriented structural threads (1) decrease any tendency to untangle and lead to the most predictable contraction and expansion of the prosthesis.

Claims

REIVINDICACIONES Un proceso para hacer una prótesis, incluyendo: CLAIMS A process to make a prosthesis, including:
1. Proporcionar un conjunto de hilos estructurales formados de un material estructural térmicamente conformable y que tiene una forma nominal inicial; proporcionar una serie de hilos textiles compatibles; la alteración de los hilos estructurales por arrollamiento de los hilos estructurales alrededor de un mandril de tamaño y de forma selectiva, a continuación, el calentamiento de los filamentos, mientras que se enrolla a una temperatura de formación térmica para impartir a cada hilo estructural una forma nominal seleccionada en lugar de la forma nominal inicial y después de dicha alteración, trenzar tridimensionalmente los hilos estructurales alterados y los hilos textiles en una estructura integrada tridimensional.  1. Provide a set of structural threads formed of a thermally conformable structural material and having an initial nominal shape; provide a series of compatible textile threads; the alteration of the structural threads by winding the structural threads around a mandrel of size and selectively, then the heating of the filaments, while winding at a temperature of thermal formation to impart to each structural thread a shape selected nominal instead of the initial nominal form and after said alteration, braid three-dimensionally altered structural threads and textile threads in an integrated three-dimensional structure.
2. El proceso de la reivindicación 1 en el que, dicho trenzado incluye la formación de los hilos estructurales en un entramado, y la formación de las hilos textiles en una lámina textil soportada por el entramado y ocupando intersticios entre hilos estructurales adyacentes al entramado.  2. The process of claim 1 wherein said braiding includes the formation of the structural threads in a fabric, and the formation of the textile threads in a textile sheet supported by the fabric and occupying interstices between structural threads adjacent to the fabric.
3. El proceso de la reivindicación 1 en el que, dicha alteración se lleva a cabo mientras que los hilos estructurales se mantienen separadas de los hilos textiles. 3. The process of claim 1 wherein said alteration is carried out while the structural threads are kept separate from the textile threads.
4. El proceso de la reivindicación 1 en el que, dichos hilos estructurales en conjunto proporcionan una forma predeterminada de la estructura integrada y dichos trenzado comprenden trenzar los hilos textiles en una lámina textil soportado por las hilos estructurales y adaptado para ajustarse a los cambios dócilmente desde la forma predeterminada debido a deformaciones de las hilos estructurales. 4. The process of claim 1 wherein, said structural threads as a whole provide a predetermined shape of the integrated structure and said braiding comprises braiding the textile threads into a textile sheet supported by the structural threads and adapted to adjust to changes meekly from the predetermined form due to deformations of the structural threads.
5. El proceso de la reivindicación 1 en el que, dicho trenzado incluye trenzar los hilos en al menos una primera y segunda capas discretas de la estructura integrada. 5. The process of claim 1 wherein said braiding includes braiding the wires into at least a first and second discrete layers of the integrated structure.
6. El proceso de la reivindicación 5 en el que, dicho trenzado incluye además al menos uno de los hilos de la primera capa en la segunda capa para enclavar la primera y segunda capas. 6. The process of claim 5 wherein said braid further includes at least one of the threads of the first layer in the second layer to interlock the first and second layers.
7. El proceso de la reivindicación 5 en el que, dicho trenzado incluye la incorporación de una mayor proporción de filamentos más finos en la primera capa, por lo que la primera capa tiene una permeabilidad mayor que la segunda capa.  7. The process of claim 5 wherein said braiding includes the incorporation of a larger proportion of finer filaments in the first layer, whereby the first layer has a greater permeability than the second layer.
8. El proceso de la reivindicación 5 en el que, dicho trenzado incluye la incorporación de una mayor proporción de dichas hilos estructurales dentro de dicha primera capa.  8. The process of claim 5 wherein, said braiding includes the incorporation of a greater proportion of said structural threads within said first layer.
9. El proceso de la reivindicación 1 en el que, dicho trenzado incluye trenzar los hilos en al menos tres capas discretas de la estructura integrada, incluyendo una capa media con los hilos estructurales, y las capas primera y segunda en lados opuestos de la capa media y que consisten principalmente de los hilos textiles. 9. The process of claim 1 wherein said braiding includes braiding the wires into at least three discrete layers of the integrated structure, including one layer media with the structural threads, and the first and second layers on opposite sides of the middle layer and consisting mainly of textile threads.
PCT/MX2015/000206 2015-12-17 2015-12-17 Method for producing a woven endoprosthesis WO2017105198A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/MX2015/000206 WO2017105198A1 (en) 2015-12-17 2015-12-17 Method for producing a woven endoprosthesis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/MX2015/000206 WO2017105198A1 (en) 2015-12-17 2015-12-17 Method for producing a woven endoprosthesis

Publications (1)

Publication Number Publication Date
WO2017105198A1 true WO2017105198A1 (en) 2017-06-22

Family

ID=59057248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2015/000206 WO2017105198A1 (en) 2015-12-17 2015-12-17 Method for producing a woven endoprosthesis

Country Status (1)

Country Link
WO (1) WO2017105198A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995029646A1 (en) * 1994-04-29 1995-11-09 Boston Scientific Corporation Medical prosthetic stent and method of manufacture
US20050096733A1 (en) * 2001-12-29 2005-05-05 Kovneristy July K. Stent and method for the production thereof (variants)
US20070168019A1 (en) * 2006-01-13 2007-07-19 Aga Medical Corporation Intravascular deliverable stent for reinforcement of vascular abnormalities

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995029646A1 (en) * 1994-04-29 1995-11-09 Boston Scientific Corporation Medical prosthetic stent and method of manufacture
US20050096733A1 (en) * 2001-12-29 2005-05-05 Kovneristy July K. Stent and method for the production thereof (variants)
US20070168019A1 (en) * 2006-01-13 2007-07-19 Aga Medical Corporation Intravascular deliverable stent for reinforcement of vascular abnormalities

Similar Documents

Publication Publication Date Title
ES2435742T3 (en) Flat knitted stent and method to perform the same
JP6895437B2 (en) Embolic device and its manufacturing method
CA2580609C (en) Thin film devices for occlusion of a vessel
ES2236707T3 (en) STENT
CA2338662C (en) Woven stent/graft structure
JP4651943B2 (en) Prosthesis that can be embedded in the intestinal tract
JP3119831B2 (en) Stent covered by three-dimensional woven structure
CN104487024B (en) Support and support delivery device
KR100656725B1 (en) Self-expanding endoprosthesis
JP2017511202A5 (en)
US11229439B2 (en) Band-shaped occlusion means
JP2017511203A5 (en)
US8852269B2 (en) Closed loop filament stent
CN108601596A (en) Implantation material
BR102014005968A2 (en) braided flow diverter utilizing flat-rounded technology
WO2017105198A1 (en) Method for producing a woven endoprosthesis
JP2018530382A (en) Braided medical implant
CA3043716A1 (en) Tubular knitted stents

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15910844

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 23.08.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15910844

Country of ref document: EP

Kind code of ref document: A1