WO2017105114A1 - Electrode lead for pouch-type secondary battery and pouch-type secondary battery comprising same - Google Patents

Electrode lead for pouch-type secondary battery and pouch-type secondary battery comprising same Download PDF

Info

Publication number
WO2017105114A1
WO2017105114A1 PCT/KR2016/014748 KR2016014748W WO2017105114A1 WO 2017105114 A1 WO2017105114 A1 WO 2017105114A1 KR 2016014748 W KR2016014748 W KR 2016014748W WO 2017105114 A1 WO2017105114 A1 WO 2017105114A1
Authority
WO
WIPO (PCT)
Prior art keywords
lead
electrode
secondary battery
pouch
lead portion
Prior art date
Application number
PCT/KR2016/014748
Other languages
French (fr)
Korean (ko)
Inventor
방인배
김완중
Original Assignee
솔브레인 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 솔브레인 주식회사 filed Critical 솔브레인 주식회사
Priority claimed from KR1020160171479A external-priority patent/KR20170071437A/en
Publication of WO2017105114A1 publication Critical patent/WO2017105114A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electrode lead used in a pouch type secondary battery and a pouch type secondary battery including the same.
  • a secondary battery is a battery that can be repeatedly charged and discharged, and is widely used in various fields from light weight portable devices such as mobile phones, notebook computers, or cameras to electric vehicles or hybrid vehicles.
  • a type of secondary battery using a non-aqueous electrolyte having a high energy density has a good output, and may be used to drive a motor of an electric vehicle by connecting a plurality of them in series.
  • the secondary battery may be manufactured in various forms, such as a pouch type, a cylindrical shape, or a square shape.
  • a pouch type in the case of the pouch type, its shape is relatively free, light in weight, slim and lightweight, and is widely used for portable devices.
  • the pouch serving as a case in the pouch-type secondary battery has a laminated structure in which a thin film of metal film and an insulating film are attached to both sides thereof, and unlike a cylindrical or square shape formed of a thick metal material, the pouch can be bent freely, and Has a structure including an anode, a cathode, a separator electrolyte and an electrode lead.
  • pouch type secondary batteries are being used as a power source for wearable devices such as smart watches, to meet consumer demand.
  • each member of the pouch-type secondary battery Due to the requirements of the microelectronic device, the size of each member of the pouch-type secondary battery is being developed to meet the miniaturization. However, in the case of an electrode lead, when the size thereof becomes small, a problem may occur in the resistance of the electrode lead.
  • the problem of resistance corresponds to a factor that can cause a large problem in efficiency of the secondary battery, and furthermore, heat generation stability due to resistance. Therefore, there is a need for a study on the electrode lead of the pouch type secondary battery to be miniaturized.
  • the problem to be solved by the present invention is to minimize the portion occupied by the secondary battery in the miniaturized pouch-type secondary battery, while optimizing the space efficiency inside the pouch-type secondary battery according to the miniaturization of the electrode lead,
  • the present invention provides a pouch-type secondary battery electrode lead which has a minimum and improved recovery capacity and lifetime characteristics at high temperature.
  • the present invention provides an electrode lead of a pouch type secondary battery, wherein the electrode lead includes a first lead portion and a second lead portion, and the first lead portion and the second lead portion have the same length and width. Or different, wherein the thickness of the first lead portion is thicker than that of the second lead portion, and the thickness of the first lead portion is 0.5 mm or less.
  • the present invention also provides a secondary battery including a positive electrode, a negative electrode, a separator, and an electrolyte, and is housed in a pouch, including a first lead part protruding out of the pouch, and a second lead part electrically connected to the positive electrode and the negative electrode.
  • the thickness of the first lead part is thicker than that of the second lead part, and the thickness of the first lead part is 0.5 mm or less.
  • the electrode lead for the pouch type secondary battery according to the present invention minimizes the space occupied by the miniaturized pouch type secondary battery by controlling the length, width, and thickness of each lead portion through a double structure of the first lead portion and the second lead portion.
  • the resistance characteristics can be improved.
  • FIG. 1 is a cross-sectional view of a pouch type secondary battery according to an embodiment of the present invention.
  • FIG. 2 is a perspective view of an electrode lead according to an embodiment of the present invention.
  • FIG 3 is a perspective view of an electrode lead according to another exemplary embodiment of the present invention.
  • FIG. 4 is a perspective view of an electrode lead according to another exemplary embodiment of the present invention.
  • FIG. 5 is a perspective view of an electrode lead to which an insulating tape is coupled according to another embodiment of the present invention.
  • an electrode lead is a necessary member.
  • the conventional electrode lead there is no problem of resistance of the electrode lead with a constant thickness of 100 to 400 ⁇ m, and it has been commercialized and used continuously.
  • a battery used in a small electronic device such as a smart watch has to be miniaturized according to the size of the device, each member applied to the secondary battery, and the existing electrode lead is also required to be thin and miniaturized.
  • the electrode lead was produced by making the total thickness of the electrode lead constant at 30 micrometers, the problem of the resistance which did not generate
  • an electrode assembly 10 including an anode 200, a cathode 300, a separator 400, and an electrolyte (not shown) is accommodated in the pouch 500.
  • the electrode lead 100 is electrically connected to the positive electrode 200 and the negative electrode 300, the electrode lead is the first lead portion 101 and the second lead portion And a first lead portion 101 protrudes out of the pouch 500, and the first lead portion 101 and the second lead portion 102 have the same or different lengths and widths.
  • the thickness of the first lead portion 101 is thicker than that of the second lead portion 102, and the thickness of the first lead portion 101 is 0.5 mm or less to provide a pouch type secondary battery 1. .
  • the electrode lead 100 includes a positive electrode tab 201 and a negative electrode tab 301 protruding from the positive electrode 200 and the negative electrode 300 in the electrode assembly 10 accommodated in the pouch 500.
  • the same structure may be applied not only to the coupling structure of the positive electrode tabs and the positive electrode lead, but also to the coupling structure of the negative electrode tabs and the negative electrode lead, so that the present invention will be referred to collectively as the electrode lead 100. .
  • the pouch 500 is formed to a size that can accommodate the electrode assembly 10, the sealing portion is bonded to each other. At this time, the sealing portion of the upper portion of the pouch 501 and the lower portion of the pouch 502 may be made by a method such as heat fusion.
  • the electrode assembly 10 includes an anode 200, a cathode 300, and a separator 400.
  • the electrode assembly 10 may have a positive electrode 200 and a negative electrode 300 sequentially stacked in a state where the separator 400 is interposed therebetween, and may be formed in a stack type or a stack / fold type structure.
  • the positive electrode 200 and the negative electrode 300 include a positive electrode current collector 202 and a negative electrode current collector 302 made of aluminum foil (Al-foil) and copper foil (Cu-foil), respectively.
  • a positive electrode active material (not shown) and a negative electrode active material (not shown) are coated on the positive electrode current collector 202 and the negative electrode current collector 302, respectively.
  • the positive electrode current collector 202 and the negative electrode current collector 302 are insulated from each other by the separator 400.
  • the positive electrode tab 201 and the negative electrode tab 301 extend from the positive electrode 200 and the negative electrode 300 of the electrode assembly 10.
  • the positive electrode tab 201 and the negative electrode tab 301 are not directly exposed to the outside of the pouch 500, but are connected to another component such as the electrode lead 100 so that the electrode lead 100 may be connected to the pouch 500. It can be exposed to the outside.
  • the positive electrode tab 201 and the negative electrode tab 301 and the electrode lead 100 of each of the positive electrode and the negative electrode may be coupled to each other by welding. That is, the positive electrode tab and the positive electrode lead may be coupled to each other by welding, and the negative electrode tab and the negative electrode lead may also be coupled to each other by welding to form a weld (shown in a circle in the drawing).
  • the positive electrode tab 201, the negative electrode tab 301, and the electrode lead 100 may be made of a metallic material, and the coupling between the metallic materials may be easily performed by such a welding method.
  • the present invention is not limited by the specific coupling method of the positive electrode tab 201, the negative electrode tab 301, and the electrode lead 100.
  • the positive electrode tab 201 and the negative electrode tab 301 extending from the positive electrode 200 and the negative electrode 300 each include one or more pieces
  • the electrode lead 100 When using the electrode lead 100 according to an embodiment of the present invention as shown in the circle of Figure 1 it can be optimized to use the space of the weld.
  • the weld corresponds to an element that receives the most electrical resistance by attachment of the electrode tab and the electrode lead.
  • the thickness of the electrode lead 100 is different, and the first lead part 101 is partially exposed to the outside of the pouch 500, and the second lead
  • the unit 102 is electrically connected to the positive electrode tab 201 and the negative electrode tab 301 extending from the negative electrode 300 and the positive electrode 200, and the first lead portion 101 and the second lead portion 102 are electrically connected.
  • the length and width are the same or different, the thickness of the first lead portion 101 is thicker than the second lead portion 102, the thickness of the first lead portion 101 is 0.5mm or less, preferably Preferably, the thickness of the first lead part 101 may be 0.1 mm or less to provide a pouch-type secondary battery, thereby minimizing space utilization and resistance characteristics.
  • the electrode lead 100 for the pouch-type secondary battery includes a first lead part 101 and a second lead part 102, and the first lead part 101 and the second lead. Blowing 102, the length (l) and width (w) is the same or different, the thickness (h) of the first lead portion 101 is thicker than the second lead portion 102, the first lead portion The thickness h of the 101 may be 0.5 mm or less.
  • the length l, width w and thickness h of the electrode lead 100 shown in the present invention can be defined in the directions consisting of the x, y and z axes as shown in FIG.
  • the length l of the first lead portion 101 is set to l '
  • the width w is set to w'
  • the thickness h is set to h '
  • the length l of the second lead portion 102 is divided. Is l ''
  • the width w is w ''
  • the thickness h is h ''.
  • a ratio (l ': l' ') of the length l of the first lead part 101 and the second lead part 102 is from 1: 1.0 to 1.4, and the ratio (w ': w' ') of the width w of the first lead portion 101 and the second lead portion 102 is 1: 0.6 to 1.2, and the first lead portion 101 And the ratio h ': h' 'of the thickness h of the second lead portion 102 may be 1: 0.1 to 0.4.
  • Specific values of the electrode lead 100 according to an embodiment of the present invention may be in the following range.
  • the length l 'of the first lead portion is 10-40 mm
  • the length l' 'of the second lead portion is 10-60 mm
  • the width w' of the first lead portion is 5-20 mm
  • the second lead portion The width w ′′ may be 5-20 mm
  • the thickness h ′ of the first lead part may be 0.1-0.5 mm
  • the thickness h ′′ of the second lead part may be 0.01-0.05 mm.
  • the electrode lead 100 may have a different material according to a cathode and an anode, and may include one or more selected from the group consisting of aluminum, copper, nickel, and nickel plated copper.
  • the electrode lead 100 is formed by integrally forming a metal material including at least one selected from the group consisting of aluminum, copper, nickel, nickel-plated copper, and then crimped or rolled ( It can be produced by molding through a rolling process.
  • electrode leads having various shapes may be formed.
  • the electrode leads may be formed by unidirectional pressing, and in the case of FIG. do. 4 illustrates an embodiment in which the second lead portion is smaller in width and thickness than the first lead portion.
  • the electrode lead 100 further includes an insulating film 103 covering a part of the first lead part 101, and the portion wrapped in the insulating film 103 is a pouch in FIG. 1. It may be located in the sealing portion 500 is formed.
  • the resistance characteristics of the electrode lead according to the exemplary embodiment of the present invention were confirmed through the examples and the comparative examples.
  • the specific experimental environment was measured in a clean room using an AIT slope resistance measuring instrument, and the electrode lead of Example 1 was rolled (rolled) at 500 ° C. at a material made of Cu metal having a thickness of 0.1 mm, a width of 10 mm, and a length of 30 mm. 20mm length was applied to the thickness 0.03mm to make a model as shown in FIG. Since it is processed under pressure, the thickness is thin but the overall density of the electrode leads is the same.
  • the electrode lead of Example 2 was fabricated in the same model as in FIG. 3 by applying a pressure of up to 0.03 mm Cu metal.
  • Example 3 it was produced by the method of rolling (part rolling) in the form of applying a pressure rolling between 400 ⁇ 600 °C.
  • Example 4 it produced by the method similar to the method of 1.
  • the electrode lead was manufactured without undergoing a separate rolling or molding process.
  • An electrode tab including a second lead portion having a length of 10 mm, a width of 10 mm, and a thickness of 0.3 mm and having a ratio shown in Table 2 below was manufactured using the manufacturing method described above.
  • Example 5 10 10 0.3 10 10 0.03 Thickness 1: 0.1 Example 6 10 10 0.3 10 10 0.06 Thickness 1: 0.2 Example 7 10 10 0.3 10 10 0.09 Thickness 1: 0.3 Example 8 10 10 0.3 10 10 0.12 Thickness1: 0.4 Example 9 10 10 0.3 12 10 0.03 Length 1: 1.2 Example 10 10 10 0.3 14 10 0.03 Length 1: 1.4 Example 11 10 10 0.3 10 6 0.03 Width 1: 0.6 Example 12 10 10 0.3 10 12 0.03 Width 1: 1.2 Comparative Example 4 10 10 0.3 10 10 0.3 same
  • NMP solvent N-methyl-2-pyrrolidone
  • the positive electrode mixture slurry was applied to a thin film of aluminum (Al), which is a positive electrode current collector having a thickness of about 20 ⁇ m, dried to prepare a positive electrode, and then subjected to roll press to prepare a positive electrode.
  • a negative electrode mixture slurry was prepared by adding carbon powder as a negative electrode active material, PVdF as a binder, and carbon black as a conductive agent at 96 wt%, 3 wt%, and 1 wt%, respectively, to NMP as a solvent.
  • the negative electrode mixture slurry was applied to a copper (Cu) thin film, which is a negative electrode current collector having a thickness of 10 ⁇ m, dried to prepare a negative electrode, and then roll-rolled to prepare a negative electrode.
  • Cu copper
  • the positive electrode and the negative electrode prepared in this way together with a separator composed of three layers of polypropylene / polyethylene / polypropylene (PP / PE / PP), and electrode tabs were prepared using the electrode tabs of Examples 5 to 12 and Comparative Example 4.
  • the non-aqueous electrolyte prepared by fabricating the pouch-type battery was injected to complete the manufacture of a lithium secondary battery having a capacity of 910 mA.
  • the 910mAh battery produced in Examples 5 to 12 and Comparative Example 4 was charged to 4.2V at 910mA (CC / CV) at room temperature (25 ° C), and then discharged to 2.7V at 910mA (CC) to discharge capacity.
  • CC 910mA
  • the battery was discharged to 2.7V at room temperature and aged for 1 hour, and then charged to 4.2V and discharged to 2.7V to measure the discharge capacity. Compared with the initial measured value.
  • Table 4 The results are shown in Table 4.
  • Example 5 945.3 887.2 847.3 89.6 Thickness 1: 0.1 Example 6 938.3 865.8 840.1 89.5 Thickness 1: 0.2 Example 7 940.6 864.8 842.2 89.5 Thickness 1: 0.3 Example 8 928.1 877.1 827.6 89.2 Thickness1: 0.4 Example 9 927.6 881.8 857.3 92.4 Length 1: 1.2 Example 10 944.7 889.6 859.3 91.0 Length 1: 1.4 Example 11 933.6 871.6 843.7 90.4 Width 1: 0.6 Example 12 944.7 875.1 846.2 89.6 Width 1: 1.2 Comparative Example 4 944.2 861.6 833.2 88.2 same
  • the 910mAh battery manufactured in Examples 5 to 12 and Comparative Example 4 was charged at 1820mA (CC / CV) to 4.2V at a high temperature (45 ° C) and then had a 10 minute rest (rest) time and 1820mA (CC). After discharging up to 2.7V, a method of having a 10 minute rest period was repeated 300 times to compare the capacity (mAh) and the efficiency (%) of the measured value with the initial value of 300 times. The results are shown in Table 5.
  • Example 5 911.9 832.2 91.3 Thickness 1: 0.1 Example 6 913.8 816.9 89.4 Thickness 1: 0.2 Example 7 916.7 814.4 88.9 Thickness 1: 0.3 Example 8 913.5 816.4 89.4 Thickness1: 0.4 Example 9 914.5 836.2 91.4 Length 1: 1.2 Example 10 915.6 812.9 88.8 Length 1: 1.4 Example 11 908.5 827.5 91.9 Width 1: 0.6 Example 12 914.5 824.8 90.7 Width 1: 1.2 Comparative Example 4 909.4 795.8 87.5 same

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Secondary Cells (AREA)

Abstract

The present invention provides an electrode lead for a pouch-type secondary battery, the electrode lead comprising a first lead part and a second lead part, wherein the first lead part and the second lead part have identical or different lengths and widths; the thickness of the first lead part is thicker than the thickness of the second lead part; and the thickness of the first lead part is 0.5mm or less.

Description

파우치형 이차전지용 전극 리드 및 이를 포함하는 파우치형 이차전지Electrode Lead for Pouch-type Secondary Battery and Pouch-type Secondary Battery Containing the Same
본 발명은 파우치형 이차전지에 이용되는 전극 리드 및 이를 포함하는 파우치형 이차전지에 관한 것이다.The present invention relates to an electrode lead used in a pouch type secondary battery and a pouch type secondary battery including the same.
이차전지(Secondary battery)는 일차전지와 달리 반복적 충방전이 가능한 전지로서, 가령 휴대폰이나 노트북 컴퓨터 또는 카메라와 같은 경량 휴대 기기에서부터 전기자동차나 하이브리드 자동차에 이르기까지 여러 분야에서 널리 사용되고 있다.Unlike a primary battery, a secondary battery is a battery that can be repeatedly charged and discharged, and is widely used in various fields from light weight portable devices such as mobile phones, notebook computers, or cameras to electric vehicles or hybrid vehicles.
최근, 기술의 급속한 발전에 따라, 보다 작고 가벼운 대용량 고출력 이차전지가 속속 개발되고 있다. 예컨대 고에너지 밀도의 비수전해액을 이용한 타입의 이차전지는 출력이 좋아, 복수 개를 직렬로 연결하여 전기자동차의 모터 구동에 사용되기도 한다.Recently, with the rapid development of technology, smaller and lighter high-capacity high-power secondary batteries are being developed one after another. For example, a type of secondary battery using a non-aqueous electrolyte having a high energy density has a good output, and may be used to drive a motor of an electric vehicle by connecting a plurality of them in series.
상기한 이차전지는 다양한 형태로 제조가 가능하며, 이를테면 파우치형이나 원통형이나 각형으로 제작 할 수 있다. 특히 상기 파우치형의 경우 그 형상이 비교적 자유롭고 무게가 가벼우며 슬림화 및 경량화가 가능하여 휴대기기용으로 많이 사용되고 있다.The secondary battery may be manufactured in various forms, such as a pouch type, a cylindrical shape, or a square shape. In particular, in the case of the pouch type, its shape is relatively free, light in weight, slim and lightweight, and is widely used for portable devices.
상기 파우치형 이차전지에 있어서 케이스 역할을 하는 파우치는, 박막의 금속필름과 그 양면에 절연성 필름이 부착된 적층 구조를 가지며, 두꺼운 금속재로 성형한 원통형이나 각형과 달리, 자유롭게 구부러짐이 가능하고, 내부에 양극, 음극, 분리막 전해액 및 전극 리드를 포함하는 구성을 가지고 있다.The pouch serving as a case in the pouch-type secondary battery has a laminated structure in which a thin film of metal film and an insulating film are attached to both sides thereof, and unlike a cylindrical or square shape formed of a thick metal material, the pouch can be bent freely, and Has a structure including an anode, a cathode, a separator electrolyte and an electrode lead.
이러한 특성으로 인하여, 파우치형 이차전지는 소비자들의 수요에 맞추어 웨어러블(wearable) 기기, 예를 들어, 스마트 워치 같은 초소형 전자 디바이스에 전력 공급원으로 이용되고 있다.Due to these characteristics, pouch type secondary batteries are being used as a power source for wearable devices such as smart watches, to meet consumer demand.
초소형 전자 디바이스의 요구되는 사항에 의하여 파우치형 이차전지의 각 부재들의 크기도 소형화에 맞추어 개발이 되고 있는 실정이다. 그러나 전극 리드의 경우 그 크기가 작아질 경우 전극 리드의 저항에 문제가 발생될 수 있다. Due to the requirements of the microelectronic device, the size of each member of the pouch-type secondary battery is being developed to meet the miniaturization. However, in the case of an electrode lead, when the size thereof becomes small, a problem may occur in the resistance of the electrode lead.
파우치형 이차전지 등의 전력 공급원에 있어서, 저항의 문제는 이차전지의 효율, 나아가 저항으로 인한 발열 안정성 등에서 큰 문제를 발생시킬 수 있는 요인에 해당한다. 따라서, 소형화되는 파우치형 이차전지의 전극 리드에 대한 연구가 필요한 실정이다.In a power supply source such as a pouch type secondary battery, the problem of resistance corresponds to a factor that can cause a large problem in efficiency of the secondary battery, and furthermore, heat generation stability due to resistance. Therefore, there is a need for a study on the electrode lead of the pouch type secondary battery to be miniaturized.
본 발명이 해결하고자 하는 과제는 소형화된 파우치형 이차전지에 있어서, 이차전지에서 차지하는 부분을 최소화한 전극 리드 및 전극 리드의 소형화에 따른 파우치형 이차전지 내부에서의 공간 효율을 최적화 하면서도, 저항 특성을 최소하고, 고온에서의 회복용량 및 수명특성을 개선한 파우치형 이차전지용 전극 리드를 제공하는 것이다.The problem to be solved by the present invention is to minimize the portion occupied by the secondary battery in the miniaturized pouch-type secondary battery, while optimizing the space efficiency inside the pouch-type secondary battery according to the miniaturization of the electrode lead, The present invention provides a pouch-type secondary battery electrode lead which has a minimum and improved recovery capacity and lifetime characteristics at high temperature.
상기 과제를 해결하기 위하여 본 발명은 파우치형 이차전지의 전극 리드에 있어서, 상기 전극 리드는 제1 리드부와 제2 리드부를 포함하고, 상기 제1 리드부와 제2 리드부는 길이 및 폭은 동일 또는 상이하고, 상기 제1 리드부의 두께는 상기 제2 리드부 보다 두꺼우며, 상기 제1 리드부의 두께는 0.5mm 이하인 것인 파우치형 이차전지용 전극 리드를 제공한다.In order to solve the above problems, the present invention provides an electrode lead of a pouch type secondary battery, wherein the electrode lead includes a first lead portion and a second lead portion, and the first lead portion and the second lead portion have the same length and width. Or different, wherein the thickness of the first lead portion is thicker than that of the second lead portion, and the thickness of the first lead portion is 0.5 mm or less.
또한, 본 발명은 양극, 음극, 분리막 및 전해액을 포함하고 파우치에 수납되는 이차전지에 있어서, 상기 파우치 외부로 돌출되는 제1 리드부, 및 상기 양극 및 음극에 전기적으로 연결되는 제2 리드부를 포함하고, 상기 제1 리드부의 두께는 상기 제2 리드부 보다 두꺼우며, 상기 제1 리드부의 두께는 0.5mm 이하인 것인 파우치형 이차전지를 제공한다.The present invention also provides a secondary battery including a positive electrode, a negative electrode, a separator, and an electrolyte, and is housed in a pouch, including a first lead part protruding out of the pouch, and a second lead part electrically connected to the positive electrode and the negative electrode. The thickness of the first lead part is thicker than that of the second lead part, and the thickness of the first lead part is 0.5 mm or less.
본 발명에 따른 파우치형 이차전지용 전극 리드는 제1 리드부, 및 제2 리드부의 2중 구조를 통하여 각 리드부의 길이, 폭, 두께를 조절함으로써, 소형화되는 파우치형 이차전지에서 차지하는 공간을 최소화 하고, 저항 특성을 개선할 수 있다.The electrode lead for the pouch type secondary battery according to the present invention minimizes the space occupied by the miniaturized pouch type secondary battery by controlling the length, width, and thickness of each lead portion through a double structure of the first lead portion and the second lead portion. The resistance characteristics can be improved.
도 1은 본 발명의 일 실시예에 따른 파우치형 이차전지의 단면도이다.1 is a cross-sectional view of a pouch type secondary battery according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 전극 리드의 사시도이다.2 is a perspective view of an electrode lead according to an embodiment of the present invention.
도 3은 본 발명의 다른 일 실시예에 따른 전극 리드의 사시도이다.3 is a perspective view of an electrode lead according to another exemplary embodiment of the present invention.
도 4는 본 발명의 또 다른 일 실시예에 따른 전극 리드의 사시도이다.4 is a perspective view of an electrode lead according to another exemplary embodiment of the present invention.
도 5는 본 발명의 또 다른 일 실시예에 따른 절연 테이프가 결합된 전극 리드의 사시도이다.5 is a perspective view of an electrode lead to which an insulating tape is coupled according to another embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. Prior to this, terms or words used in the present specification and claims should not be construed as being limited to the common or dictionary meanings, and the inventors should properly explain the concept of terms in order to best explain their own invention. Based on the principle that can be defined, it should be interpreted as meaning and concept corresponding to the technical idea of the present invention.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일부 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Therefore, the embodiments described in the specification and the drawings shown in the drawings are only some of the most preferred embodiments of the present invention and do not represent all of the technical spirit of the present invention, various modifications that can be replaced at the time of the present application It should be understood that there may be equivalents and variations.
이차전지용 파우치형 이차전지를 제작 하는데 전극 리드는 반드시 필요한 부재이다. 기존의 전극 리드의 경우 100 - 400 ㎛의 일정한 두께로 전극 리드의 저항의 문제는 없고 상용화되어 계속 사용되고 있었다. 하지만, 스마트 워치 등의 초소형 전자 디바이스에 이용되는 배터리는 디바이스의 크기에 맞추어 이차전지에 적용되는 각 부재들도 소형화 되어야 하고, 기존의 전극 리드도 얇고 소형화되야 하는 요구가 발생되고 있다. 종래에는, 전극 리드의 전체 두께를 30 ㎛로 일정하게 하여 전극 리드를 제작하였지만 기존의 전극 리드에서는 발생하지 않았던 저항의 문제가 발생되었다. 이에 저항에도 문제가 없고 이차전지를 제작하는데 있어서 최적화된 공간 효율을 가지는 모양을 본 발명의 일 실시예로 도출 하였다.In order to fabricate a pouch type secondary battery for a secondary battery, an electrode lead is a necessary member. In the case of the conventional electrode lead, there is no problem of resistance of the electrode lead with a constant thickness of 100 to 400 μm, and it has been commercialized and used continuously. However, a battery used in a small electronic device such as a smart watch has to be miniaturized according to the size of the device, each member applied to the secondary battery, and the existing electrode lead is also required to be thin and miniaturized. Conventionally, although the electrode lead was produced by making the total thickness of the electrode lead constant at 30 micrometers, the problem of the resistance which did not generate | occur | produce in the conventional electrode lead arises. In this regard, there is no problem in resistance and a shape having an optimized space efficiency in manufacturing a secondary battery is derived as an embodiment of the present invention.
도 1을 참조하여 본 발명의 일 실시예에 따르면, 양극(200), 음극(300), 분리막(400) 및 전해액(미도시)을 포함하는 전극 조립체(10)가 파우치(500)에 수납되는 파우치형 이차전지(1)에 있어서, 상기 양극(200) 및 음극(300)에 전기적으로 연결되는 전극 리드(100)를 포함하고, 상기 전극 리드는 제1 리드부(101) 및 제2 리드부(102)를 포함하며, 제1 리드부(101)는 상기 파우치(500) 외부로 돌출되고, 상기 제1 리드부(101)와 제2 리드부(102)는 길이 및 폭은 동일 또는 상이하고, 상기 제1 리드부(101)의 두께는 상기 제2 리드부(102) 보다 두꺼우며, 상기 제1 리드부(101)의 두께는 0.5mm 이하인 것인 파우치형 이차전지(1)를 제공한다.1, an electrode assembly 10 including an anode 200, a cathode 300, a separator 400, and an electrolyte (not shown) is accommodated in the pouch 500. In the pouch type secondary battery (1), the electrode lead 100 is electrically connected to the positive electrode 200 and the negative electrode 300, the electrode lead is the first lead portion 101 and the second lead portion And a first lead portion 101 protrudes out of the pouch 500, and the first lead portion 101 and the second lead portion 102 have the same or different lengths and widths. The thickness of the first lead portion 101 is thicker than that of the second lead portion 102, and the thickness of the first lead portion 101 is 0.5 mm or less to provide a pouch type secondary battery 1. .
본 발명의 일 실시예에 따른 전극 리드는(100)는 파우치(500)에 수납되는 전극 조립체(10)에서 양극(200) 및 음극(300)에서 돌출되는 양극 탭(201) 및 음극 탭(301)에 결합되는 것으로서, 이러한 구조는 양극 탭들과 양극 리드의 결합 구조뿐만 아니라 음극 탭들과 음극 리드의 결합구조에서도 모두 동일하게 적용될 수 있으므로, 본 발명에서는 전극 리드(100)으로 통칭하여 설명하기로 한다.The electrode lead 100 according to the exemplary embodiment of the present invention includes a positive electrode tab 201 and a negative electrode tab 301 protruding from the positive electrode 200 and the negative electrode 300 in the electrode assembly 10 accommodated in the pouch 500. In the present invention, the same structure may be applied not only to the coupling structure of the positive electrode tabs and the positive electrode lead, but also to the coupling structure of the negative electrode tabs and the negative electrode lead, so that the present invention will be referred to collectively as the electrode lead 100. .
상기 파우치(500)는 전극 조립체(10)를 수용할 수 있는 크기로 형성되고, 실링부가 서로 접착된다. 이때, 파우치 상부(501)와 파우치 하부(502)의 실링부 접착은 열융착 등의 방식으로 이루어질 수 있다.The pouch 500 is formed to a size that can accommodate the electrode assembly 10, the sealing portion is bonded to each other. At this time, the sealing portion of the upper portion of the pouch 501 and the lower portion of the pouch 502 may be made by a method such as heat fusion.
전극 조립체(10)는 양극(200), 음극(300) 및 분리막(400)을 포함한다. 전극 조립체(10)는 분리막(400)이 개재된 상태에서 양극(200)과 음극(300)이 순차적으로 적층되어 있으며, 스택형 또는 스택/폴딩형 구조로 형성될 수 있다.The electrode assembly 10 includes an anode 200, a cathode 300, and a separator 400. The electrode assembly 10 may have a positive electrode 200 and a negative electrode 300 sequentially stacked in a state where the separator 400 is interposed therebetween, and may be formed in a stack type or a stack / fold type structure.
양극(200)과 음극(300)은 각각 알루미늄 포일(Al-foil)과 구리 포일(Cu-foil)로 이루어진 양극 집전체(202)와 음극 집전체(302)를 포함한다. 양극 집전체(202)와 음극 집전체(302)에는 각각 양극 활물질(미도시)과 음극 활물질(미도시)이 도포된다. 이때, 양극 집전체(202)와 음극 집전체(302)는 분리막(400)에 의해 상호 절연된다.The positive electrode 200 and the negative electrode 300 include a positive electrode current collector 202 and a negative electrode current collector 302 made of aluminum foil (Al-foil) and copper foil (Cu-foil), respectively. A positive electrode active material (not shown) and a negative electrode active material (not shown) are coated on the positive electrode current collector 202 and the negative electrode current collector 302, respectively. At this time, the positive electrode current collector 202 and the negative electrode current collector 302 are insulated from each other by the separator 400.
양극 탭(201) 및 음극 탭(301)은 전극 조립체(10)의 양극(200) 및 음극(300)으로부터 연장된다. 이러한 양극 탭(201) 및 음극 탭(301)은 파우치(500)의 외부로 직접 노출되지 않고, 전극 리드(100)와 같은 다른 구성요소에 연결되어, 전극 리드(100)가 파우치(500)의 외부로 노출되도록 할 수 있다. 이때, 양극 탭(201) 및 음극 탭(301)과 양극, 음극 각각의 전극 리드(100)는 용접에 의해 서로 결합될 수 있다. 즉, 양극 탭과 양극 리드는 용접에 의해 서로 결합하고, 음극 탭과 음극 리드 역시 용접에 의해 서로 결합되어 용접부(도면에서 원형으로 표시)를 형성할 수 있다. 양극 탭(201) 및 음극 탭(301)과 전극리드(100)는 금속성 재질로 구성될 수 있는데, 금속성 재질 사이의 결합은 이와 같은 용접 방식에 의해 쉽게 이루어질 수 있다. 다만, 본 발명이 이러한 양극 탭(201) 및 음극 탭(301)과 전극리드(100)의 특정 결합 방식에 의해 제한되는 것은 아니다.The positive electrode tab 201 and the negative electrode tab 301 extend from the positive electrode 200 and the negative electrode 300 of the electrode assembly 10. The positive electrode tab 201 and the negative electrode tab 301 are not directly exposed to the outside of the pouch 500, but are connected to another component such as the electrode lead 100 so that the electrode lead 100 may be connected to the pouch 500. It can be exposed to the outside. At this time, the positive electrode tab 201 and the negative electrode tab 301 and the electrode lead 100 of each of the positive electrode and the negative electrode may be coupled to each other by welding. That is, the positive electrode tab and the positive electrode lead may be coupled to each other by welding, and the negative electrode tab and the negative electrode lead may also be coupled to each other by welding to form a weld (shown in a circle in the drawing). The positive electrode tab 201, the negative electrode tab 301, and the electrode lead 100 may be made of a metallic material, and the coupling between the metallic materials may be easily performed by such a welding method. However, the present invention is not limited by the specific coupling method of the positive electrode tab 201, the negative electrode tab 301, and the electrode lead 100.
파우치형 이차전지(1)의 적층 구조에 따라 다르겠지만, 양극(200) 및 음극(300)으로부터 연장된 양극 탭(201) 및 음극 탭(301)은 각각 1 이상의 복수 개를 포함하여 형성되므로, 도 1의 원형으로 표시되는 부분과 같이 본 발명의 일 실시예에 따른 전극 리드(100)를 이용하는 경우 용접부의 공간 활용을 최적화 할 수 있다. 또한 상기 용접부는 전극 탭 및 전극 리드의 부착으로 가장 많은 전기적인 저항을 받는 요소에 해당한다.Although it depends on the laminated structure of the pouch type secondary battery 1, since the positive electrode tab 201 and the negative electrode tab 301 extending from the positive electrode 200 and the negative electrode 300 each include one or more pieces, When using the electrode lead 100 according to an embodiment of the present invention as shown in the circle of Figure 1 it can be optimized to use the space of the weld. In addition, the weld corresponds to an element that receives the most electrical resistance by attachment of the electrode tab and the electrode lead.
따라서, 단순히 공간활용을 위하여 전극 리드를 얇게만 형성하는 경우에는 저항이 상승하는 문제가 발생하며 구체적인 수치로는 0.1 mΩ ~ 10 Ω 이다.Therefore, in the case of simply forming a thin electrode lead for space utilization, a problem arises in that the resistance increases, and the specific value is 0.1 mΩ to 10 mW.
본 발명의 일 실시예에 따른 파우치형 이차전지(1)는 전극 리드(100)의 두께를 상이하게 하여, 제1 리드부(101)는 파우치(500) 외부로 일부가 노출되고, 제2 리드부(102)는 음극(300) 및 양극(200)으로부터 연장된 양극 탭(201) 및 음극 탭(301)에 전기적으로 연결되고, 상기 제1 리드부(101)와 제2 리드부(102)는 길이 및 폭은 동일 또는 상이하고, 상기 제1 리드부(101)의 두께는 상기 제2 리드부(102) 보다 두꺼우며, 상기 제1 리드부(101)의 두께는 0.5mm 이하이고, 바람직하게는 상기 제1 리드부(101)의 두께는 0.1mm 이하인 파우치형 이차전지를 제공하여 공간 활용 및 저항 특성을 최소화 할 수 있다.In the pouch type secondary battery 1 according to the exemplary embodiment, the thickness of the electrode lead 100 is different, and the first lead part 101 is partially exposed to the outside of the pouch 500, and the second lead The unit 102 is electrically connected to the positive electrode tab 201 and the negative electrode tab 301 extending from the negative electrode 300 and the positive electrode 200, and the first lead portion 101 and the second lead portion 102 are electrically connected. The length and width are the same or different, the thickness of the first lead portion 101 is thicker than the second lead portion 102, the thickness of the first lead portion 101 is 0.5mm or less, preferably Preferably, the thickness of the first lead part 101 may be 0.1 mm or less to provide a pouch-type secondary battery, thereby minimizing space utilization and resistance characteristics.
이하에서는 상기 전극 리드의 구조를 보다 상세하게 설명한다.Hereinafter, the structure of the electrode lead will be described in more detail.
도 2를 참조하여, 본 발명의 일 실시예를 설명한다. 도 2에서 도 1과 동일한 부호는 동일 기능을 나타내는 동일 부재에 해당한다. 본 발명의 일 실시예에 따른 파우치형 이차전지용 전극 리드(100)는, 제1 리드부(101)와 제2 리드부(102)를 포함하고, 상기 제1 리드부(101)와 제2 리드부는(102) 길이(l) 및 폭(w)은 동일 또는 상이하고, 상기 제1 리드부(101)의 두께(h)는 상기 제2 리드부(102) 보다 두꺼우며, 상기 제1 리드부(101)의 두께(h)는 0.5mm 이하일 수 있다.2, an embodiment of the present invention will be described. In FIG. 2, the same code | symbol as FIG. 1 corresponds to the same member which shows the same function. The electrode lead 100 for the pouch-type secondary battery according to the exemplary embodiment of the present invention includes a first lead part 101 and a second lead part 102, and the first lead part 101 and the second lead. Blowing 102, the length (l) and width (w) is the same or different, the thickness (h) of the first lead portion 101 is thicker than the second lead portion 102, the first lead portion The thickness h of the 101 may be 0.5 mm or less.
본 발명에서 나타내는 전극 리드(100)의 길이(l), 폭(w) 및 두께(h)는 도 2에서 도시하는 바와 같이 x, y, z 축으로 이루어진 방향으로 규정될 수 있다. 구분을 위하여 제1 리드부(101)의 길이(l)은 l'으로, 폭(w)는 w', 두께(h)는 h'으로 하며, 제2 리드부(102)의 길이(l)은 l''으로, 폭(w)는 w'', 두께(h)는 h''으로 한다.The length l, width w and thickness h of the electrode lead 100 shown in the present invention can be defined in the directions consisting of the x, y and z axes as shown in FIG. The length l of the first lead portion 101 is set to l ', the width w is set to w', the thickness h is set to h ', and the length l of the second lead portion 102 is divided. Is l '', the width w is w '' and the thickness h is h ''.
본 발명의 일 실시예 따른 전극 리드(100)는, 상기 제1 리드부(101)와 제2 리드부(102)의 길이(l)의 비율(l' : l'')은 1:1.0 내지 1.4이고, 상기 제1 리드부(101)와 제2 리드부(102)의 폭(w)의 비율(w' : w'')은 1:0.6 내지 1.2이며, 상기 제1 리드부(101)와 제2 리드부(102)의 두께(h)의 비율(h' : h'')은 1:0.1 내지 0.4로 할 수 있다. 상기 범위 내로 전극 리드(100)를 형성함으로써, 저항 특성을 개선할 수 있다.In the electrode lead 100 according to the exemplary embodiment of the present invention, a ratio (l ': l' ') of the length l of the first lead part 101 and the second lead part 102 is from 1: 1.0 to 1.4, and the ratio (w ': w' ') of the width w of the first lead portion 101 and the second lead portion 102 is 1: 0.6 to 1.2, and the first lead portion 101 And the ratio h ': h' 'of the thickness h of the second lead portion 102 may be 1: 0.1 to 0.4. By forming the electrode lead 100 within the above range, the resistance characteristics can be improved.
본 발명의 일 실시예에 의한 전극 리드(100)의 구체적인 수치는 이하의 범위 일 수 있다. 제1 리드부의 길이(l')는 10 - 40mm 이고, 제2 리드부의 길이(l'')는 10 - 60mm 이고, 제1 리드부의 폭(w')은 5 - 20mm 이고, 제2 리드부의 폭(w'')는 5 - 20mm 이며, 제1 리드부의 두께(h')는 0.1 - 0.5mm 이고, 제2 리드부의 두께(h'')는 0.01 - 0.05mm 일 수 있다.Specific values of the electrode lead 100 according to an embodiment of the present invention may be in the following range. The length l 'of the first lead portion is 10-40 mm, the length l' 'of the second lead portion is 10-60 mm, the width w' of the first lead portion is 5-20 mm, and the second lead portion The width w ″ may be 5-20 mm, the thickness h ′ of the first lead part may be 0.1-0.5 mm, and the thickness h ″ of the second lead part may be 0.01-0.05 mm.
상기 전극 리드(100)는 음극 및 양극에 따라서, 그 소재가 상이할 수 있으며, 알루미늄, 구리, 니켈, 니켈 도금된 구리로 이루어진 군에서 선택되는 1종 이상을 포함하는 것일 수 있다.The electrode lead 100 may have a different material according to a cathode and an anode, and may include one or more selected from the group consisting of aluminum, copper, nickel, and nickel plated copper.
본 발명의 일 실시예에 따른 상기 전극 리드(100)는 알루미늄, 구리, 니켈, 니켈 도금된 구리로 이루어진 군에서 선택되는 1종 이상을 포함하는 금속 소재를 일체로 형성한 후 압착, 또는 압연(rolling) 공정 등을 통하여 성형하여 제작할 수 있다. 상기 압착공정에 의하는 경우, 다양한 형상의 전극 리드가 형성될 수 있는데, 예를 들면, 도 2의 경우는 단방향 압착을 통하여 형성한 것이고, 도 3의 경우는 양방향 압착을 통하여 형성하는 경우에 해당한다. 또한, 도 4의 경우는 제2 리드부가 제1 리드부 보다 폭, 두께가 모두 작은 경우의 일 실시예를 나타낸다.The electrode lead 100 according to an embodiment of the present invention is formed by integrally forming a metal material including at least one selected from the group consisting of aluminum, copper, nickel, nickel-plated copper, and then crimped or rolled ( It can be produced by molding through a rolling process. In the case of the pressing process, electrode leads having various shapes may be formed. For example, in FIG. 2, the electrode leads may be formed by unidirectional pressing, and in the case of FIG. do. 4 illustrates an embodiment in which the second lead portion is smaller in width and thickness than the first lead portion.
또한, 도 5에 나타내는 바와 같이 전극 리드(100)는 제1 리드부(101)의 일부를 감싸는 절연 필름(103)을 더 포함하고, 상기 절연 필름(103)에 감싸진 부분은 도 1에서 파우치(500)가 형성하는 실링부에 위치하는 것일 수 있다.In addition, as shown in FIG. 5, the electrode lead 100 further includes an insulating film 103 covering a part of the first lead part 101, and the portion wrapped in the insulating film 103 is a pouch in FIG. 1. It may be located in the sealing portion 500 is formed.
실시예Example  And 비교예Comparative example
실시예Example 1 내지 4 및  1 to 4 and 비교예Comparative example 1 내지 3 1 to 3
이하에서는 본 발명의 일 실시예에 따른 전극 리드의 저항 특성을 실시예 및 비교예를 통하여 확인하였다. 구체적인 실험 환경은 AIT사 면 저항 측정기기를 이용하여 클린 룸에서 측정하였으며, 실시예 1의 전극 리드는 두께 0.1mm, 폭 10mm, 길이 30mm의 Cu 금속으로 이루어진 재료를 500℃ 고압에서 rolling(압연)으로 길이 중 20mm를 두께 0.03mm로 압력을 가하여 도 2와 같은 모형으로 제작을 하였다. 압력으로 가공하는 것이기 때문에 두께는 얇지만 전극 리드의 전체 밀도는 동일하다.Hereinafter, the resistance characteristics of the electrode lead according to the exemplary embodiment of the present invention were confirmed through the examples and the comparative examples. The specific experimental environment was measured in a clean room using an AIT slope resistance measuring instrument, and the electrode lead of Example 1 was rolled (rolled) at 500 ° C. at a material made of Cu metal having a thickness of 0.1 mm, a width of 10 mm, and a length of 30 mm. 20mm length was applied to the thickness 0.03mm to make a model as shown in FIG. Since it is processed under pressure, the thickness is thin but the overall density of the electrode leads is the same.
실시예 2의 전극 리드는 두께 0.03mm의 Cu 금속으로 이루어진 재료를 아래 위로 압력를 가하여 도 3가 같은 모형으로 제작을 하였다.The electrode lead of Example 2 was fabricated in the same model as in FIG. 3 by applying a pressure of up to 0.03 mm Cu metal.
실시예 3의 경우는 400 ~ 600 ℃ 사이에서 압력을 압연을 가하는 형식으로 부문적으로 rolling(압연)을 하는 방법으로 제작을 하였다. 실시 예 4의 경우는 1의 방법과 같은 방법으로 제작을 하였다. In the case of Example 3, it was produced by the method of rolling (part rolling) in the form of applying a pressure rolling between 400 ~ 600 ℃. In the case of Example 4, it produced by the method similar to the method of 1.
비교예 1 내지 3의 경우에는 별도의 압연 또는 성형 공정을 거치지 않고 전극 리드를 제작하였다.In the case of Comparative Examples 1 to 3, the electrode lead was manufactured without undergoing a separate rolling or molding process.
그 결과를 표 1에 나타낸다.The results are shown in Table 1.
실험예Experimental Example 1: 저항 측정 1: resistance measurement
구분division 제1 리드부First lead part 제2 리드부2nd lead part 저항 값(mΩ)Resistance value (mΩ)
길이(mm)Length (mm) 길이(mm)Length (mm) 폭(mm)Width (mm) 두께(mm)Thickness (mm) 길이(mm)Length (mm) 폭(mm)Width (mm) 두께(mm)Thickness (mm)
실시예 1Example 1 1010 1010 0.30.3 2020 1010 0.030.03 0.05 0.05
실시예 2Example 2 2020 1010 0.30.3 3030 1010 0.030.03 0.040.04
실시예 3Example 3 3030 1010 0.30.3 4040 1010 0.030.03 0.030.03
실시예 4Example 4 4040 1010 0.30.3 6060 1010 0.030.03 0.020.02
비교예 1Comparative Example 1 3030 1010 0.30.3 4040 1010 0.30.3 66
비교예 2Comparative Example 2 3030 1010 0.10.1 4040 1010 0.10.1 88
비교예 3Comparative Example 3 3030 1010 0.030.03 4040 1010 0.030.03 0.60.6
실시예Example 5 내지 12 및  5 to 12 and 비교예Comparative example 14 14
제1 리드부의 크기를 길이 10mm, 폭 10mm, 두께 0.3mm로 하고, 이하 표 2의 비율을 가지는 제2 리드부를 포함하는 전극 탭을 상기에서 설명한 제조 방법을 이용하여 제조하였다.An electrode tab including a second lead portion having a length of 10 mm, a width of 10 mm, and a thickness of 0.3 mm and having a ratio shown in Table 2 below was manufactured using the manufacturing method described above.
구분division 제1 리드부First lead part 제2 리드부2nd lead part 비율ratio
길이(mm)Length (mm) 폭(mm)Width (mm) 두께(mm)Thickness (mm) 길이(mm)Length (mm) 폭(mm)Width (mm) 두께(mm)Thickness (mm)
실시예 5Example 5 1010 1010 0.30.3 1010 1010 0.030.03 두께1:0.1Thickness 1: 0.1
실시예 6Example 6 1010 1010 0.30.3 1010 1010 0.060.06 두께1:0.2Thickness 1: 0.2
실시예 7Example 7 1010 1010 0.30.3 1010 1010 0.090.09 두께1:0.3Thickness 1: 0.3
실시예 8Example 8 1010 1010 0.30.3 1010 1010 0.120.12 두께1:0.4Thickness1: 0.4
실시예 9Example 9 1010 1010 0.30.3 1212 1010 0.030.03 길이1:1.2Length 1: 1.2
실시예 10Example 10 1010 1010 0.30.3 1414 1010 0.030.03 길이1:1.4Length 1: 1.4
실시예 11Example 11 1010 1010 0.30.3 1010 66 0.030.03 폭1:0.6Width 1: 0.6
실시예 12Example 12 1010 1010 0.30.3 1010 1212 0.030.03 폭1:1.2Width 1: 1.2
비교예 4Comparative Example 4 1010 1010 0.30.3 1010 1010 0.30.3 동일same
[리튬 이차 전지의 제조] [Manufacture of Lithium Secondary Battery]
양극에 에틸렌 카보네이트(EC), 에틸메틸카보네이트(EMC), 그리고 디메틸카보네이트(DEC)의 혼합용액(부피비: EC/EMC/DEC = 1/1/1)에 LiPF6 1.0M이 되도록 첨가하여 전해액을 제조하였다.An electrolyte was prepared by adding LiPF6 1.0M to a mixed solution of ethylene carbonate (EC), ethylmethyl carbonate (EMC), and dimethyl carbonate (DEC) at a positive electrode (volume ratio: EC / EMC / DEC = 1/1/1). It was.
양극 활물질로서 Li(Ni0.5Co0.2Mn0.3)O2 92 중량%, 도전제로 카본 블랙(carbon black) 4 중량%, 바인더로 폴리비닐리덴 플루오라이드(PVdF) 4 중량%를 용매인 N-메틸-2-피롤리돈(NMP)에 첨가하여 양극 혼합물 슬러리를 제조하였다. 상기 양극 혼합물 슬러리를 두께가 20㎛ 정도의 양극 집전체인 알루미늄(Al) 박막에 도포하고, 건조하여 양극을 제조한 후, 롤 프레스(roll press)를 실시하여 양극을 제조하였다.Li (Ni 0.5 Co 0.2 Mn 0.3 ) O 2 as a positive electrode active material 92% by weight, 4% by weight of carbon black as a conductive agent, 4% by weight of polyvinylidene fluoride (PVdF) as a binder was added to the solvent N-methyl-2-pyrrolidone (NMP) to slurry the positive electrode mixture. Was prepared. The positive electrode mixture slurry was applied to a thin film of aluminum (Al), which is a positive electrode current collector having a thickness of about 20 μm, dried to prepare a positive electrode, and then subjected to roll press to prepare a positive electrode.
또한, 음극 활물질로 탄소 분말, 바인더로 PVdF, 도전제로 카본 블랙(carbon black)을 각각 96 중량%, 3 중량% 및 1 중량%로 하여 용매인 NMP에 첨가하여 음극 혼합물 슬러리를 제조하였다. 상기 음극 혼합물 슬러리를 두께가 10㎛의 음극 집전체인 구리(Cu) 박막에 도포하고, 건조하여 음극을 제조한 후, 롤 프레스(roll press)를 실시하여 음극을 제조하였다.Further, a negative electrode mixture slurry was prepared by adding carbon powder as a negative electrode active material, PVdF as a binder, and carbon black as a conductive agent at 96 wt%, 3 wt%, and 1 wt%, respectively, to NMP as a solvent. The negative electrode mixture slurry was applied to a copper (Cu) thin film, which is a negative electrode current collector having a thickness of 10 μm, dried to prepare a negative electrode, and then roll-rolled to prepare a negative electrode.
이와 같이 제조된 양극과 음극을 폴리프로필렌/폴리에틸렌/폴리프로필렌 (PP/PE/PP) 3층으로 이루어진 분리막과 함께, 전극탭을 상기 실시예 5 내지 12 및 비교예 4의 전극 탭을 이용하여 제2 리드부가 파우치형 전지의 내측으로 향하도록 음극 및 양극에 용접 후, 파우치형 전지를 제작하여 제조된 상기 비수성 전해액을 주액하여 910mA의 용량을 가지는 리튬 이차 전지의 제조를 완성하였다. The positive electrode and the negative electrode prepared in this way together with a separator composed of three layers of polypropylene / polyethylene / polypropylene (PP / PE / PP), and electrode tabs were prepared using the electrode tabs of Examples 5 to 12 and Comparative Example 4. After welding the negative electrode and the positive electrode so that the two lead portions face the inside of the pouch-type battery, the non-aqueous electrolyte prepared by fabricating the pouch-type battery was injected to complete the manufacture of a lithium secondary battery having a capacity of 910 mA.
실험예Experimental Example 2: 고온 방치에 따른 저항 평가 2: evaluation of resistance due to high temperature
상기 실시예 5 내지 12 및 비교예 4에서 제작된 910mAh 파우치형 전지를 상온(25℃)에서 910mA(CC/CV)로 4.2V까지 충전한 후, 910mA(CC)로 2.7V까지 방전하여 방전용량을 측정하였다. 다시 동일한 방법으로 4.2V까지 충전하여 60℃에서 30일, 60일간 방치 한 후에 상온에서 2.7V로 방전하여 1시간 동안 에이징한 후에 다시 4.2V로 충전한 후 2.7V로 방전하여 저항을 측정하여 초기 측정 값과 비교하였다. 그 결과를 표 3에 나타내었다.After charging the 910mAh pouch-type battery manufactured in Examples 5 to 12 and Comparative Example 4 to 4.2V at 910mA (CC / CV) at room temperature (25 ° C), discharge to 2.7V at 910mA (CC) Was measured. In the same way, after charging to 4.2V and left at 60 ° C for 30 days and 60 days, the battery was discharged to 2.7V at room temperature and aged for 1 hour, and then charged to 4.2V and discharged to 2.7V to measure resistance. Compared with the measured value. The results are shown in Table 3.
구분division 고온 방치 저항 평가High temperature resistance 증가율60일후/초기(%)Growth rate after 60 days / initial percentage 비율ratio
초기(mΩ)Initial (mΩ) 30일 후(mΩ)30 days later (mΩ) 60일 후(mΩ)60 days later (mΩ)
실시예 5Example 5 24.524.5 34.334.3 41.241.2 61.361.3 두께1:0.1Thickness 1: 0.1
실시예 6Example 6 28.28. 38.438.4 45.645.6 60.860.8 두께1:0.2Thickness 1: 0.2
실시예 7Example 7 25.225.2 36.236.2 42.842.8 60.160.1 두께1:0.3Thickness 1: 0.3
실시예 8Example 8 27.827.8 37.837.8 44.444.4 59.959.9 두께1:0.4Thickness1: 0.4
실시예 9Example 9 28.928.9 32.632.6 37.937.9 31.231.2 길이1:1.2Length 1: 1.2
실시예 10Example 10 27.827.8 32.432.4 38.738.7 39.439.4 길이1:1.4Length 1: 1.4
실시예 11Example 11 26.826.8 37.637.6 43.943.9 63.863.8 폭1:0.6Width 1: 0.6
실시예 12Example 12 25.425.4 35.435.4 42.042.0 65.565.5 폭1:1.2Width 1: 1.2
비교예 4Comparative Example 4 24.824.8 39.139.1 45.345.3 70.170.1 동일same
실험예Experimental Example 3: 고온 방치에 따른 회복용량 평가 3: evaluation of recovery capacity according to high temperature
상기 실시예 5 내지 12 및 비교예 4에서 제작된 제작된 910mAh 전지를 상온(25℃)에서 910mA(CC/CV)로 4.2V까지 충전한 후, 910mA(CC)로 2.7V까지 방전하여 방전용량을 측정하였다. 다시 동일한 방법으로 4.2V까지 충전하여 60℃에서 30일, 60일간 방치 한 후에 상온에서 2.7V로 방전하여 1시간동안 에이징한 후에 다시 4.2V로 충전한 후 2.7V로 방전하여 방전용량을 측정하여 초기 측정 값과 비교하였다. 그 결과를 표 4에 나타내었다.The 910mAh battery produced in Examples 5 to 12 and Comparative Example 4 was charged to 4.2V at 910mA (CC / CV) at room temperature (25 ° C), and then discharged to 2.7V at 910mA (CC) to discharge capacity. Was measured. In the same way, after charging to 4.2V and left at 60 ° C for 30 days and 60 days, the battery was discharged to 2.7V at room temperature and aged for 1 hour, and then charged to 4.2V and discharged to 2.7V to measure the discharge capacity. Compared with the initial measured value. The results are shown in Table 4.
구분division 고온 방치 회복용량 평가Evaluation of recovery capacity at high temperature 유지율60일후/초기(%)Retention rate after 60 days / initial (%) 비율ratio
초기(mA)Initial (mA) 30일 후(mA)30 days later (mA) 60일 후(mA)60 days later (mA)
실시예 5Example 5 945.3945.3 887.2887.2 847.3847.3 89.689.6 두께1:0.1Thickness 1: 0.1
실시예 6Example 6 938.3938.3 865.8865.8 840.1840.1 89.589.5 두께1:0.2Thickness 1: 0.2
실시예 7Example 7 940.6940.6 864.8864.8 842.2842.2 89.589.5 두께1:0.3Thickness 1: 0.3
실시예 8Example 8 928.1928.1 877.1877.1 827.6827.6 89.289.2 두께1:0.4Thickness1: 0.4
실시예 9Example 9 927.6927.6 881.8881.8 857.3857.3 92.492.4 길이1:1.2Length 1: 1.2
실시예 10Example 10 944.7944.7 889.6889.6 859.3859.3 91.091.0 길이1:1.4Length 1: 1.4
실시예 11Example 11 933.6933.6 871.6871.6 843.7843.7 90.490.4 폭1:0.6Width 1: 0.6
실시예 12Example 12 944.7944.7 875.1875.1 846.2846.2 89.689.6 폭1:1.2Width 1: 1.2
비교예 4Comparative Example 4 944.2944.2 861.6861.6 833.2833.2 88.288.2 동일same
실험예Experimental Example 4: 고온 수명특성 평가 4: high temperature life characteristics evaluation
상기 실시예 5 내지 12 및 비교예 4에서 제작된 제작된 910mAh 전지를 고온(45℃)에서 1820mA(CC/CV)로 4.2V까지 충전 후 10분의 휴지(휴식)시간을 갖고 1820mA(CC)로 2.7V까지 방전 후 다시 10분의 휴지(휴식)시간을 갖는 방법으로 300회 반복하여 초기에 측정된 값과 300회의 측정된 값의 용량(mAh) 및 효율(efficiency, %)을 비교하였다. 그 결과를 표 5에 나타내었다.The 910mAh battery manufactured in Examples 5 to 12 and Comparative Example 4 was charged at 1820mA (CC / CV) to 4.2V at a high temperature (45 ° C) and then had a 10 minute rest (rest) time and 1820mA (CC). After discharging up to 2.7V, a method of having a 10 minute rest period was repeated 300 times to compare the capacity (mAh) and the efficiency (%) of the measured value with the initial value of 300 times. The results are shown in Table 5.
구분division 고온 수명 특성 평가High Temperature Life Evaluation 변동율300회/초기(%)Change rate 300 times / initial (%) 비율ratio
초기(mAh)Initial (mAh) 300회(mAh)300 times (mAh)
실시예 5Example 5 911.9911.9 832.2832.2 91.391.3 두께1:0.1Thickness 1: 0.1
실시예 6Example 6 913.8913.8 816.9816.9 89.489.4 두께1:0.2Thickness 1: 0.2
실시예 7Example 7 916.7916.7 814.4814.4 88.988.9 두께1:0.3Thickness 1: 0.3
실시예 8Example 8 913.5913.5 816.4816.4 89.489.4 두께1:0.4Thickness1: 0.4
실시예 9Example 9 914.5914.5 836.2836.2 91.491.4 길이1:1.2Length 1: 1.2
실시예 10Example 10 915.6915.6 812.9812.9 88.888.8 길이1:1.4Length 1: 1.4
실시예 11Example 11 908.5908.5 827.5827.5 91.991.9 폭1:0.6Width 1: 0.6
실시예 12Example 12 914.5914.5 824.8824.8 90.790.7 폭1:1.2Width 1: 1.2
비교예 4Comparative Example 4 909.4909.4 795.8795.8 87.587.5 동일same
상기 표에서 나타나는 바와 같이, 본 발명의 일 실시예에 따른 전극 탭을 포함하는 파우치형 리튬 이차전지의 경우, 고온 저항 특성, 회복용량, 수명 특성이 비교예 보다 모두 우수하다는 것을 확인할 수 있었다.As shown in the table, in the case of the pouch-type lithium secondary battery including the electrode tab according to an embodiment of the present invention, it was confirmed that the high temperature resistance characteristics, recovery capacity, life characteristics are all superior to the comparative example.
[부호의 설명][Description of the code]
1 파우치형 이차전지1 pouch type secondary battery
10 전극조립체10 electrode assembly
100 전극 리드100 electrode leads
101 제1 리드부101 first lead part
102 제2 리드부102 Second lead part
103 절연 필름103 insulation film
200 양극200 anodes
201 양극 탭201 anode tab
202 양극 집전체202 anode current collector
300 음극300 cathode
301 음극 탭301 negative electrode tab
302 음극 집전체302 negative electrode current collector
400 분리막400 membrane
500 파우치500 pouches
501 파우치 상부501 pouch top
502 파우치 하부502 pouch bottom

Claims (8)

  1. 파우치형 이차전지의 전극 리드에 있어서,In the electrode lead of the pouch type secondary battery,
    상기 전극 리드는 제1 리드부와 제2 리드부를 포함하고,The electrode lead includes a first lead portion and a second lead portion,
    상기 제1 리드부와 제2 리드부는 길이 및 폭은 동일 또는 상이하고, 상기 제1 리드부의 두께는 상기 제2 리드부 보다 두꺼우며, 상기 제1 리드부의 두께는 0.5mm 이하인 것인 파우치형 이차전지용 전극 리드.The first lead portion and the second lead portion is the same or different in length and width, the thickness of the first lead portion is thicker than the second lead portion, the thickness of the first lead portion is 0.5mm or less pouch type secondary Battery electrode lead.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 제1 리드부와 제2 리드부의 길이의 비율은 1:1.0 내지 1.4인 것인 파우치형 이차전지용 전극 리드.The ratio of the length of the first lead portion and the second lead portion is 1: 1.0 to 1.4 electrode lead for pouch type secondary battery.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 제1 리드부와 제2 리드부의 폭의 비율은 1:0.6 내지 1.2인 것인 파우치형 이차전지용 전극 리드.The ratio of the width of the first lead portion and the second lead portion is 1: 0.6 to 1.2 electrode lead for pouch type secondary battery.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 제1 리드부와 제2 리드부의 두께의 비율은 1:0.1 내지 0.4인 것인 파우치형 이차전지용 전극 리드.The ratio of the thickness of the first lead portion and the second lead portion is 1: 0.1 to 0.4 electrode lead for pouch type secondary battery.
  5. 청구항 1에 있어서,The method according to claim 1,
    상기 제1 리드부의 두께는 0.1mm 이하인 것인 파우치형 이차전지용 전극 리드.The thickness of the first lead portion is 0.1mm or less electrode lead for pouch type secondary battery.
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 전극 리드는 알루미늄, 구리, 니켈, 니켈 도금된 구리로 이루어진 군에서 선택되는 1종 이상을 포함하는 것인 파우치형 이차전지용 전극 리드.The electrode lead is pouch-type secondary battery electrode lead that comprises at least one selected from the group consisting of aluminum, copper, nickel, nickel-plated copper.
  7. 청구항 1에 있어서,The method according to claim 1,
    상기 전극 리드는 제1 리드부를 감싸는 절연 필름을 더 포함하는 것인 파우치형 이차전지용 전극 리드.The electrode lead further comprises an insulating film surrounding the first lead portion electrode lead for pouch type secondary battery.
  8. 양극, 음극, 분리막 및 전해액을 포함하고 파우치에 수납되는 이차전지에 있어서,In the secondary battery containing a positive electrode, a negative electrode, a separator and an electrolyte solution, which is housed in a pouch,
    상기 파우치 외부로 돌출되는 제1 리드부, 및 상기 양극 및 음극에 전기적으로 연결되는 제2 리드부를 포함하고,A first lead part protruding out of the pouch, and a second lead part electrically connected to the positive electrode and the negative electrode,
    상기 제1 리드부와 제2 리드부는 길이 및 폭은 동일 또는 상이하고, 상기 제1 리드부의 두께는 상기 제2 리드부 보다 두꺼우며, 상기 제1 리드부의 두께는 0.5mm 이하인 것인 파우치형 이차전지. The first lead portion and the second lead portion is the same or different in length and width, the thickness of the first lead portion is thicker than the second lead portion, the thickness of the first lead portion is 0.5mm or less pouch type secondary battery.
PCT/KR2016/014748 2015-12-15 2016-12-15 Electrode lead for pouch-type secondary battery and pouch-type secondary battery comprising same WO2017105114A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2015-0179489 2015-12-15
KR20150179489 2015-12-15
KR10-2016-0171479 2016-12-15
KR1020160171479A KR20170071437A (en) 2015-12-15 2016-12-15 Electrode lead of pouch type secondary battery and pouch type secondary battery comprising the same

Publications (1)

Publication Number Publication Date
WO2017105114A1 true WO2017105114A1 (en) 2017-06-22

Family

ID=59056929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/014748 WO2017105114A1 (en) 2015-12-15 2016-12-15 Electrode lead for pouch-type secondary battery and pouch-type secondary battery comprising same

Country Status (1)

Country Link
WO (1) WO2017105114A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001210303A (en) * 2000-01-28 2001-08-03 Yuasa Corp Electrode group for battery
JP2004087260A (en) * 2002-08-26 2004-03-18 Nissan Motor Co Ltd Layer built cell, battery pack, battery module, and electric automobile
KR100546878B1 (en) * 2004-07-02 2006-01-26 주식회사 엘티케이 Preparation method and an apparatus of electrode tab attachment for secondary battery
KR100846074B1 (en) * 2005-05-09 2008-07-14 주식회사 엘지화학 Three-Dimensional Electrode Terminal For Pouch-Typed Battery
KR20140068562A (en) * 2012-11-28 2014-06-09 주식회사 엘지화학 Improved secondary battery for electrode tab, and electrode tab structure thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001210303A (en) * 2000-01-28 2001-08-03 Yuasa Corp Electrode group for battery
JP2004087260A (en) * 2002-08-26 2004-03-18 Nissan Motor Co Ltd Layer built cell, battery pack, battery module, and electric automobile
KR100546878B1 (en) * 2004-07-02 2006-01-26 주식회사 엘티케이 Preparation method and an apparatus of electrode tab attachment for secondary battery
KR100846074B1 (en) * 2005-05-09 2008-07-14 주식회사 엘지화학 Three-Dimensional Electrode Terminal For Pouch-Typed Battery
KR20140068562A (en) * 2012-11-28 2014-06-09 주식회사 엘지화학 Improved secondary battery for electrode tab, and electrode tab structure thereof

Similar Documents

Publication Publication Date Title
WO2016048002A1 (en) Prismatic battery cell comprising two or more case members
CN107706450B (en) Flexible solid-state multilayer laminated flat lithium ion battery assembly and battery packaging method
WO2020204407A1 (en) Secondary battery battery case and pouch-type secondary battery
WO2019054729A1 (en) Electrode for all-solid-state battery, comprising solid electrolyte
WO2011122868A2 (en) Electrode assembly having a novel structure and a production method for the same
WO2015080305A1 (en) Electrode assembly and electrochemical device including same
CN105830266B (en) The mixed type electrode assembly of step structure
WO2013055190A1 (en) Cable-type secondary battery
KR102124105B1 (en) Electrode assembly and secondary battery comprising the same
WO2015005652A1 (en) Electrode assembly, and battery and device comprising same
WO2012044035A2 (en) Electrode lead comprising a corrosion-preventing protective layer, and a rechargeable battery comprising the same
WO2014126369A1 (en) Battery cell having amorphous structure
JP7312970B2 (en) battery
JP2020013729A (en) Manufacturing method of series-stacked all-solid-state battery
WO2018097455A1 (en) Electrode for secondary battery including electrode protection layer
WO2021038545A1 (en) Pouch-type battery case and pouch-type secondary battery
WO2014129720A1 (en) Secondary battery including silicon-metal alloy based negative active material
JP2010092592A (en) Battery
WO2017061807A1 (en) Battery cell comprising gelled electrolyte component in air pore of separation film constituting electrode assembly
WO2020171376A1 (en) Unit cell and manufacturing method therefor
KR102278443B1 (en) Rechargeable battery
WO2020166803A1 (en) Secondary battery and battery module
JP2002175832A (en) Wound type electrode battery and its manufacturing method
WO2020166802A1 (en) Secondary battery and battery module
KR20090064757A (en) Pouch type secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16876056

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16876056

Country of ref document: EP

Kind code of ref document: A1