WO2017104695A1 - Gas barrier packaging material precursor, method for producing same, gas barrier packaging material, and method for producing package - Google Patents

Gas barrier packaging material precursor, method for producing same, gas barrier packaging material, and method for producing package Download PDF

Info

Publication number
WO2017104695A1
WO2017104695A1 PCT/JP2016/087185 JP2016087185W WO2017104695A1 WO 2017104695 A1 WO2017104695 A1 WO 2017104695A1 JP 2016087185 W JP2016087185 W JP 2016087185W WO 2017104695 A1 WO2017104695 A1 WO 2017104695A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas barrier
mass
packaging material
barrier layer
polyvalent metal
Prior art date
Application number
PCT/JP2016/087185
Other languages
French (fr)
Japanese (ja)
Inventor
晴香 大森
大森 望
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Priority to JP2017556090A priority Critical patent/JP6900906B2/en
Publication of WO2017104695A1 publication Critical patent/WO2017104695A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes

Definitions

  • the present invention relates to a precursor for a gas barrier packaging material, a method for producing the same, a gas barrier packaging material, and a method for producing a package.
  • gas barrier properties are used to suppress the permeation of oxygen, water vapor, or other gases that react with the contents and prevent the contents from being altered. Desired.
  • a packaging material having gas barrier properties a film formed from a polymer containing a highly hydrophilic high-bonding group in the molecule, such as poly (meth) acrylic acid or polyvinyl alcohol, Multi-layer films having layers formed from coalescence are used. These films exhibit very good oxygen gas barrier properties under dry conditions. However, due to the hydrophilicity, there is a possibility that the oxygen gas barrier property is greatly lowered under high humidity conditions, and the resistance to humidity and hot water may be inferior.
  • a laminate in which a layer containing a polycarboxylic acid polymer and a layer containing a polyvalent metal compound are laminated on a support has been proposed.
  • a hydrothermal treatment such as a retort treatment
  • the ionic cross-linking of the polycarboxylic acid polymer by polyvalent metal ions proceeds by the reaction between layers, and has a high oxygen gas barrier property even under high humidity conditions.
  • Various studies have been made on such a laminate and its manufacturing method (see, for example, Patent Documents 1 to 3). Examination of the laminate as described above is usually carried out using a polyethylene terephthalate (PET) film as a support from the viewpoint of thermal (dimensional) stability, water absorption, price, etc. Often considered to be reproducible even on a support.
  • PET polyethylene terephthalate
  • PET is very rigid.
  • a PET film is used as the support for the laminate, it is necessary to reduce the thickness of the PET film to some extent from the viewpoint of the flexibility of the packaging material.
  • Such a PET film has low strength. Therefore, from the viewpoint of practical strength as a packaging material, it is necessary to laminate a polyamide-based resin film, and it takes time and cost to manufacture the packaging material.
  • the present inventors examined using a polyamide-based resin film as a support instead of a PET film.
  • the oxygen gas barrier property is very often inferior to the case of using a PET film.
  • it has been found that the above problem is caused by the fact that the water vapor permeability of the film used for the support is higher than that of the PET film.
  • the present invention relates to a precursor for a gas barrier packaging material having a layer exhibiting an excellent oxygen barrier property by hot water treatment on a support having a high water vapor permeability, a method for producing the same, and the precursor for the gas barrier packaging material It aims at providing the manufacturing method of the gas-barrier packaging material and packaging body using this.
  • the precursor for a gas barrier packaging material comprises a support; provided directly on the support, a polycarboxylic acid polymer, a hydrolyzable silane compound, a hydrolyzate thereof, And a gas barrier layer comprising at least one silicon compound selected from the group consisting of these condensates; and a protective layer provided directly on the gas barrier layer and comprising a polyvalent metal component, a polyester resin, and a dispersant
  • a support provided directly on the support, a polycarboxylic acid polymer, a hydrolyzable silane compound, a hydrolyzate thereof, And a gas barrier layer comprising at least one silicon compound selected from the group consisting of these condensates; and a protective layer provided directly on the gas barrier layer and comprising a polyvalent metal component, a polyester resin, and a dispersant
  • the water vapor permeability at 40 ° C. and relative humidity of 90% of the support is 100 g / m 2 or more, and the content of the polyvalent metal component is 40 with
  • the dispersant content is 2-20% by mass with respect to the polyvalent metal component, and the silicon compound content is 2% with respect to the polycarboxylic acid polymer. ⁇ 25% by mass,
  • the maximum peak height in absorbance in the range of wave number 1490cm -1 ⁇ 1659cm -1 and (alpha) the absorbance in the wave number range of 1660 cm -1 ⁇ 1750 cm -1
  • the ratio ( ⁇ / ⁇ ) to the maximum peak height ( ⁇ ) is 1 or more and less than 7.
  • the gas barrier packaging material comprises a support; provided directly on the support, a polycarboxylic acid polymer, a hydrolyzable silane compound, a hydrolyzate thereof, and these A gas barrier layer containing at least one silicon compound selected from the group consisting of condensates; a protective layer provided directly on the gas barrier layer and containing a polyvalent metal component, a polyester resin, and a dispersant; And the support has a water vapor transmission rate of 100 g / m 2 or more at 40 ° C. and a relative humidity of 90%, and the content of the polyvalent metal component is 40 to 90 mass with respect to the total mass of the protective layer.
  • the dispersant content is 2-20 mass% with respect to the polyvalent metal component, and the silicon compound content is 2-25 mass with respect to the polycarboxylic acid polymer.
  • % When measuring the infrared absorption spectrum of the barrier layer, the maximum peak height in absorbance in the range of wave number 1490cm -1 ⁇ 1659cm -1 and (alpha), the maximum absorbance in the wave number range of 1660 cm -1 ⁇ 1750 cm -1 The ratio ( ⁇ / ⁇ ) to the peak height ( ⁇ ) is 7 or more.
  • a polycarboxylic acid polymer, a hydrolyzable silane compound, a hydrolyzate thereof, and a condensate thereof are formed on the surface of a support.
  • a gas barrier layer coating solution containing at least one silicon compound selected from the group consisting of the above and a liquid medium is applied and dried to form a gas barrier layer.
  • a polyvalent metal component and polyester are formed on the surface of the gas barrier layer.
  • a protective layer is formed by applying a coating liquid for a protective layer containing a resin, a dispersant, and water and drying, and the support has a water vapor permeability of 100 g at 40 ° C. and a relative humidity of 90%.
  • the content of the polyvalent metal component is 40 to 90% by mass with respect to the total solid content of the protective layer coating liquid
  • the content of the dispersant is the polyvalent metal. 2 to 20% by weight with respect to the ingredients
  • the content of the silicon compound is 2 to 25% by mass with respect to the polycarboxylic acid polymer
  • the degree of neutralization of the carboxyl group of the polycarboxylic acid polymer by a polyvalent metal is 0 mol%.
  • the precursor for a gas barrier packaging material comprises: a support; an intermediate layer provided directly on the support and including a polyvalent metal component, a polyester resin, and a dispersant; A gas barrier layer provided directly on the layer and comprising a polycarboxylic acid polymer and at least one silicon compound selected from the group consisting of hydrolyzable silane compounds, hydrolysates thereof, and condensates thereof
  • the water vapor permeability at 40 ° C. and 90% relative humidity of the support is 100 g / m 2 or more, and the content of the polyvalent metal component is 40 with respect to the total mass of the intermediate layer.
  • the dispersant content is 2-20 mass% with respect to the polyvalent metal component
  • the silicon compound content is 2 with respect to the polycarboxylic acid polymer.
  • the ratio ( ⁇ / ⁇ ) to the peak height ( ⁇ ) is 1 or more and less than 7.
  • the gas barrier packaging material comprises: a support; an intermediate layer provided directly on the support and including a polyvalent metal component, a polyester resin, and a dispersant; And a gas barrier layer comprising a polycarboxylic acid polymer and at least one silicon compound selected from the group consisting of a hydrolyzable silane compound, a hydrolyzate thereof, and a condensate thereof.
  • the support has a water vapor permeability of 100 g / m 2 or more at 40 ° C. and a relative humidity of 90%, and the content of the polyvalent metal component is 40 to 90 mass with respect to the total mass of the intermediate layer.
  • the dispersant content is 2-20% by mass with respect to the polyvalent metal component, and the silicon compound content is 2-25% by mass with respect to the polycarboxylic acid polymer. %, And the gas burr When measuring the infrared absorption spectrum of the layer, the maximum peak height absorbance in the range of 1490cm -1 ⁇ 1659cm -1 and (alpha), the maximum peak height in absorbance in the range of 1660 cm -1 ⁇ 1750 cm -1 The ratio ( ⁇ / ⁇ ) to ( ⁇ ) is 7 or more.
  • an intermediate layer coating solution containing a polyvalent metal component, a polyester resin, a dispersant, and a liquid medium is applied to the surface of a support.
  • An intermediate layer is formed by drying, and at least one selected from the group consisting of a polycarboxylic acid polymer, a hydrolyzable silane compound, a hydrolyzate thereof, and a condensate thereof is formed on the surface of the intermediate layer.
  • a gas barrier layer coating solution comprising a silicon compound and water is applied and dried to form a gas barrier layer, and the water vapor permeability of the support at 40 ° C. and 90% relative humidity is 100 g / m 2.
  • the content of the polyvalent metal component is 40 to 90% by mass with respect to the total solid content of the intermediate layer coating solution, and the content of the dispersant is based on the polyvalent metal component. 2 to 20% by mass, The content of the compound is 2 to 25% by mass with respect to the polycarboxylic acid polymer, and the degree of neutralization of the carboxyl group of the polycarboxylic acid polymer by a polyvalent metal is 20 to 50 mol%. .
  • the method for manufacturing a package according to the eighth aspect of the present invention uses the precursor for a gas barrier packaging material according to the fifth aspect to package an article to be packaged, and performs hot water treatment to obtain a package.
  • the manufacturing method of the gas barrier packaging material and packaging body using the said precursor for gas barrier packaging materials can be provided.
  • precursor for packaging material a precursor for a gas barrier packaging material according to the first to sixth embodiments of the present invention
  • manufacturing method thereof a gas barrier packaging material (hereinafter referred to as “packaging material”). And the manufacturing method of the package will be described with reference to the accompanying drawings.
  • FIG. 1 is a schematic cross-sectional view of a packaging material precursor 10 according to a first embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of the packaging material 11 obtained from the packaging material precursor 10.
  • the packaging material precursor 10 of the present embodiment has a laminated structure in which a support 1, a gas barrier layer 2, and a protective layer 3 are laminated adjacently in this order. That is, in the packaging material precursor 10 of the present embodiment, the gas barrier layer 2 is directly provided on the support 1, and the protective layer 3 is directly provided on the gas barrier layer 2.
  • the packaging material 11 is the same as the packaging material precursor 10 except that the packaging material 11 has the gas barrier layer 4 instead of the gas barrier layer 2.
  • Water vapor permeability of the support 1 is 100 g / m 2 or more, 120 g / m 2 or more. If the water vapor permeability of the support 1 is equal to or higher than the lower limit (100 g / m 2 ), when the packaging material precursor 10 is subjected to hydrothermal treatment, the gas barrier layer 2 and the protective layer 3 are formed via the support 1. Sufficient moisture is supplied. Therefore, the ratio ( ⁇ / ⁇ ) described later of the gas barrier layer 2 can be set to 7 or more from the range of 1 or more and less than 7.
  • the water vapor permeability of the support 1 is not less than the above lower limit (100 g / m 2 ), the oxygen barrier property after the hot water treatment is good.
  • the water vapor permeability of the support 1 is a value measured under conditions of 40 ° C. and a relative humidity of 90%.
  • the material of the support 1 is not particularly limited as long as the water vapor permeability of the support 1 is 100 g / m 2 or more, and examples thereof include plastics, papers, and rubbers. Among these materials, plastics are preferable from the viewpoint of adhesion between the support 1 and the gas barrier layer 2.
  • plastics examples include polyamide polymers.
  • polyamide polymer examples include nylon 6, nylon 66, nylon 12, nylon 6,66 copolymer, nylon 6,12 copolymer, metaxylene adipamide / nylon 6 copolymer, and the like.
  • the support 1 may be formed from a single layer or may be formed from a plurality of layers. When formed with a plurality of layers, the material forming each layer may be the same or different.
  • the form of the support 1 is not limited to a sheet (film, plate) as illustrated, and may be a bottle, a cup, a tray, a tank, a tube, or the like.
  • the form of the support 1 is preferably a sheet.
  • the plastics film can be used. This film may be stretched or unstretched. From the viewpoint of adhesion to the gas barrier layer 2, the surface of the support 1 may be subjected to surface activation treatment such as corona treatment, flame treatment, and plasma treatment.
  • the thickness of the support 1 is usually 5 ⁇ m to 2 cm, although it varies depending on the application.
  • the form of the support 1 is a sheet, it is preferably 5 to 800 ⁇ m, more preferably 10 to 500 ⁇ m.
  • 100 ⁇ m to 1 cm is preferable, and 150 ⁇ m to 8 mm is more preferable.
  • 20 ⁇ m to 2 cm is preferable.
  • the gas barrier layer 2 includes at least one silicon compound selected from the group consisting of a polycarboxylic acid polymer, a hydrolyzable silane compound, a hydrolyzate thereof, and a condensate thereof (hereinafter referred to as “silicon compound (i ) ”))).
  • the gas barrier layer 2 may further contain other components than the polycarboxylic acid polymer and the silicon compound (i) as necessary.
  • the polycarboxylic acid polymer is a polymer having two or more carboxyl groups in the molecule.
  • Examples of the polycarboxylic acid-based polymer include (co) polymers of ethylenically unsaturated carboxylic acids; copolymers of ethylenically unsaturated carboxylic acids and other ethylenically unsaturated monomers; alginic acid, carboxymethyl cellulose, Examples include acidic polysaccharides having a carboxyl group in the molecule such as pectin.
  • a polycarboxylic acid type polymer you may use individually by 1 type, and may mix and use 2 or more types.
  • Examples of the ethylenically unsaturated carboxylic acid include acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, and crotonic acid.
  • Examples of other ethylenically unsaturated monomers copolymerizable with the ethylenically unsaturated carboxylic acid include ethylene, saturated carboxylic acid vinyl esters such as propylene and vinyl acetate, alkyl acrylates, alkyl methacrylates, and alkyls. Examples include itaconates, vinyl chloride, vinylidene chloride, styrene, acrylamide, acrylonitrile and the like.
  • the polycarboxylic acid polymer is derived from at least one polymerizable monomer selected from the group consisting of acrylic acid, maleic acid, methacrylic acid, itaconic acid, fumaric acid and crotonic acid from the viewpoint of gas barrier properties.
  • a polymer hereinafter also referred to as “polymer (X)”), or a mixture of two or more of the polymers (X). Preferably there is.
  • the polymer (X) may be a homopolymer or a copolymer.
  • the structural unit (x) is preferably a structural unit derived from at least one polymerizable monomer selected from the group consisting of acrylic acid, maleic acid, methacrylic acid and itaconic acid.
  • the polymer (X) may further contain other structural units other than the structural unit (x).
  • the other structural unit include a structural unit derived from an ethylenically unsaturated monomer copolymerizable with the aforementioned ethylenically unsaturated carboxylic acid.
  • the content of the structural unit (x) is preferably 80 mol% or more, and 90 mol% or more with respect to the total of all the structural units constituting the polymer (X). Is more preferable, and may be 100 mol%.
  • the number average molecular weight of the polycarboxylic acid polymer is preferably 2,000 to 10,000,000, more preferably 5,000 to 1,000,000.
  • the packaging material obtained from the packaging material precursor 10 is excellent in water resistance, and the gas barrier property and transparency due to moisture are less likely to be whitened.
  • the number average molecular weight is 10,000,000 or less, the viscosity of the coating solution can be sufficiently lowered when the gas barrier layer 2 is formed by coating a coating solution containing a polycarboxylic acid polymer or the like. Good properties.
  • the number average molecular weight is a polystyrene-reduced number average molecular weight determined by gel permeation chromatography (GPC).
  • a part of the carboxyl group of the polycarboxylic acid polymer in the gas barrier layer 2 is neutralized with a polyvalent metal ion to form a polyvalent metal salt. That is, a part of the carboxy group is ion-crosslinked with a polyvalent metal ion.
  • the polyvalent metal is a metal having a valence of 2 or more, such as beryllium, alkaline earth metals such as magnesium and calcium, titanium, zirconium, chromium, manganese, iron, cobalt, nickel, copper, zinc, etc. Transition metals, aluminum and the like.
  • the polyvalent metal is preferably a divalent metal having a metal ion valence of 2.
  • a part of the carboxyl group of the polycarboxylic acid polymer in the gas barrier layer 2 may be neutralized with at least one selected from the group consisting of monovalent metal ions and ammonium ions. Good. Examples of monovalent metal ions include alkali metals such as sodium and potassium.
  • the neutralization degree of the carboxyl group in the gas barrier layer 2 is about 50 mol% because the ratio ( ⁇ / ⁇ ) described later is 1 or more and less than 7.
  • the silicon compound (i) is at least one selected from the group consisting of a hydrolyzable silane compound, a hydrolyzate thereof, and a condensate thereof. That is, the silicon compound (i) is at least one selected from the group consisting of a hydrolyzable silane compound, a hydrolyzate of the hydrolyzable silane compound, and a hydrolyzable silane compound and a condensate of the hydrolyzate. is there.
  • the silicon compound (i) contributes to improvement of water resistance and gas barrier properties of the packaging material obtained from the packaging material precursor 10.
  • the hydrolyzable silane compound is a compound that generates a silanol group (SiOH) by hydrolysis.
  • the hydrolyzable silane compound is not particularly limited, and examples thereof include compounds represented by the following formula (i-1). Si (OR 1 ) n (R 2 ) 4-n (i-1) (Wherein R 1 is an alkyl group having 1 to 4 carbon atoms or an alkoxyalkyl group having 1 to 4 carbon atoms, R 2 is an organic reactive group, and n is an integer of 1 to 4)
  • R 1 is preferably a methyl group, an ethyl group, or a methoxyethyl group.
  • R 2 include organic groups having reactive functional groups such as amino groups, (meth) acryl groups, epoxy groups, vinyl groups, mercapto groups, isocyanate groups, and isocyanurate groups.
  • the (meth) acryl group indicates both an acrylic group and a methacryl group.
  • R 2 is preferably an organic group having an epoxy group in terms of reactivity with the polyacrylic acid polymer. Examples of the organic group having an epoxy group include a 3-glycidoxypropyl group. n is preferably 3.
  • hydrolyzable silane compound examples include, for example, vinyltrimethoxysilane, vinyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3 -Glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylethyldiethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-2- (Aminoethyl) -3-aminopropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropy
  • the silicon compound (i) may be a hydrolyzable silane compound itself, a hydrolyzate obtained by hydrolyzing the hydrolyzable silane compound, or a condensate thereof.
  • a hydrolyzable silane compound subjected to hydrolysis and condensation reaction using a sol-gel method can be used as the silicon compound (i).
  • a hydrolyzable silane compound is easily hydrolyzed, and easily undergoes a condensation reaction in the presence of an acid or an alkali.
  • the hydrolyzable silane compound represented by the formula (i-1) at least a part of the alkoxy group (OR 1 ) is easily substituted with a hydroxyl group to become a hydrolyzate.
  • the hydrolyzate condenses to form a compound in which silicon atoms (Si) are bonded through oxygen. By repeating this condensation, a condensate is obtained.
  • a configuration in which a hydrolyzate of a hydrolyzable silane compound is condensed is also referred to as a hydrolysis condensate.
  • the silicon compound (i) rarely exists only in the hydrolyzable silane compound, only the hydrolyzate thereof, or only the condensate thereof. That is, the silicon compound (i) often contains a hydrolyzable silane compound, a hydrolyzate thereof, and a hydrolysis condensate. In addition, the hydrolyzate often includes a partial hydrolyzate and a complete hydrolyzate.
  • the silicon compound (i) preferably contains at least a hydrolysis condensate.
  • the other components other than the polycarboxylic acid polymer and the silicon compound (i) are not particularly limited, and various additives may be included.
  • the additive include a plasticizer, a resin, a dispersant, a surfactant, a softener, a stabilizer, an antiblocking agent, a film forming agent, an adhesive, and an oxygen absorber.
  • the stretchability of the gas barrier layer 2 is improved, and the abuse resistance of the packaging material precursor 10 is improved.
  • a plasticizer it can be used by appropriately selecting from known plasticizers. Specific examples of the plasticizer include ethylene glycol, trimethylene glycol, propylene glycol, tetramethylene glycol, 1,3-butanediol, 2,3-butanediol, pentamethylene glycol, hexamethylene glycol, diethylene glycol, triethylene glycol, and the like.
  • Examples include ethylene glycol, polyethylene glycol, polyvinyl alcohol, ethylene-vinyl alcohol copolymer, polyethylene oxide, sorbitol, mannitol, dulcitol, erythritol, glycerin, lactic acid, fatty acid, starch, and phthalate ester. These may be used in a mixture as required.
  • polyethylene glycol, polyvinyl alcohol, ethylene-vinyl alcohol copolymer, glycerin, and starch are preferable from the viewpoints of stretchability and gas barrier properties.
  • the gas barrier layer 2 includes a compound having two or more hydroxyl groups such as polyvinyl alcohol as an additive, the hydroxyl group and a part of the carboxyl groups of the polycarboxylic acid polymer form an ester bond. It may be.
  • the content of the silicon compound (i) in the gas barrier layer 2 is 2 to 25% by mass, preferably 2 to 20% by mass, based on the polycarboxylic acid polymer (100% by mass). If content of silicon compound (i) is in the said range, it will be excellent in adhesiveness with the support body 1. FIG. Moreover, the water resistance of the packaging material obtained from the precursor 10 for packaging materials is more excellent, and it is hard to whiten when exposed to cold water.
  • the mass of the silicon compound (i) other than the hydrolyzable silane compound is a mass in terms of the hydrolyzable silane compound.
  • the silicon compound (i) usually contains a hydrolyzable silane compound, a hydrolyzate thereof, and a condensate thereof, but the mass of the silicon compound (i) is converted to a hydrolyzable silane compound. This is the amount of the hydrolyzable silane compound charged.
  • the total content of the polycarboxylic acid polymer and the silicon compound (i) in the gas barrier layer 2 is preferably 70% by mass or more, more preferably 80% by mass or more, and 100% by mass with respect to the total mass of the gas barrier layer 2. %.
  • the mass of the silicon compound (i) other than the hydrolyzable silane compound is the mass in terms of the hydrolyzable silane compound as described above.
  • the content of other components in the gas barrier layer 2 is preferably 30% by mass or less and more preferably 20% by mass or less with respect to the polycarboxylic acid polymer (100% by mass).
  • Maximum peak height ratio ( ⁇ / ⁇ ) When measuring the infrared absorption spectrum of the gas barrier layer 2, the maximum peak height in absorbance in the range of wave number 1490cm -1 ⁇ 1659cm -1 and (alpha), the absorbance in the wave number range of 1660 cm -1 ⁇ 1750 cm -1 The ratio ( ⁇ / ⁇ ) to the maximum peak height ( ⁇ ) is 1 or more and less than 7.
  • the absorbance when the infrared absorption spectrum of the gas barrier layer 2 is measured is proportional to the amount of chemical species having infrared activity present in the gas barrier layer 2. Therefore, the ratio ( ⁇ / ⁇ ) can be used as a measure representing the ratio of the carboxyl group polyvalent metal salt (—COO ⁇ ) to the free carboxyl group (—COOH) in the gas barrier layer 2. The larger the ratio ( ⁇ / ⁇ ), the higher the ratio of the carboxyl group polyvalent metal salt to the free carboxyl group.
  • the ratio ( ⁇ / ⁇ ) is 1 or more and less than 7, the polyvalent metal salt of the carboxyl group with respect to all the carboxyl groups (carboxyl groups forming the salt and free carboxyl groups) of the polycarboxylic acid polymer It can be determined that the ratio, that is, the ratio of carboxy groups ion-crosslinked by polyvalent metal ions (the degree of ion crosslinking) is about 50 mol%.
  • the gas barrier layer 2 tends to expand during the hot water treatment because the degree of ionic crosslinking is low.
  • the water vapor permeability of the support 1 is low, the amount of water supply is small, so even if the ratio ( ⁇ / ⁇ ) is less than 1, the ratio ( ⁇ / ⁇ ) becomes 7 or more before the gas barrier layer 2 expands much. The degree of ionic crosslinking increases. Therefore, a gas barrier layer having a high crosslink density and a high gas barrier property is obtained.
  • the ratio ( ⁇ / ⁇ ) is less than 1, the amount of moisture supplied during the hot water treatment is large, so the ratio ( ⁇ / ⁇ ) Expands before the gas barrier layer 2 becomes 7 or more. For this reason, the crosslink density of the gas barrier layer is lowered, resulting in insufficient gas barrier properties.
  • the ratio ( ⁇ / ⁇ ) is 1 or more, excellent gas barrier properties are exhibited by the hot water treatment.
  • the carboxy group of the polycarboxylic acid polymer is ionically crosslinked by about 50 mol% before the hot water treatment, so that the expansion of the gas barrier layer 2 during the hot water treatment is suppressed and the crosslinking density is increased. it is conceivable that. If the ratio ( ⁇ / ⁇ ) is less than 7, the flexibility of the gas barrier layer 2 is good, and the packaging material precursor 10 is easily processed into a bag or the like.
  • the ratio ( ⁇ / ⁇ ) is an infrared absorption spectrum of the gas barrier layer 2 is measured, the maximum peak absorbance in the wave number range of 1490cm -1 ⁇ 1659cm -1 height (alpha) and the wavenumber 1660cm -1 ⁇ 1750cm -1
  • the maximum peak height ( ⁇ ) of absorbance within the range can be measured and determined.
  • the infrared absorption spectrum can be measured by using a known method such as a transmission method, an ATR method (attenuated total reflection method), a KBr pellet method, a diffuse reflection method, or a photoacoustic method (PAS method).
  • an infrared absorption spectrum can be measured by the ATR method using an Auto Image manufactured by Perkin Elmer as a Fourier transform infrared spectroscopy (FT-IT) analyzer.
  • FT-IT Fourier transform infrared spectroscopy
  • a transmission method or an ATR method is preferable from the viewpoint of simplicity.
  • a typical method for measuring the infrared absorption spectrum includes a method of measuring the surface of the gas barrier layer 2 by the ATR method.
  • the measurement conditions of the infrared absorption spectrum at this time include measurement conditions using Ge (germanium), an incident angle of 45 degrees, a resolution of 4 cm ⁇ 1 , and an integration count of 10 from the viewpoint of penetration depth.
  • the infrared absorption spectrum in a state where the gas barrier layer 2 and the protective layer 3 are removed from the packaging material precursor 10 as the background.
  • the gas barrier layer 2 and the protective layer 3 can be removed from the packaging material precursor 10 with a strong acid or a strong base, such as hydrochloric acid or a sodium hydroxide aqueous solution.
  • a strong acid or a strong base such as hydrochloric acid or a sodium hydroxide aqueous solution.
  • the maximum peak height of absorbance a value obtained by measuring the line connecting the absorbance of the absorbance and the wave number 1900 cm -1 in wave number 900 cm -1 in a straight line as a baseline.
  • the metal species present in the gas barrier layer 2 can be confirmed by ICP (high frequency inductively coupled plasma) emission spectroscopic analysis, EDX (energy dispersive X-ray) spectroscopy, or the like.
  • Mass per unit area of the gas barrier layer 2 is preferably 0.1 ⁇ 10 g / m 2, more preferably 0.1 ⁇ 6 g / m 2, more preferably 0.1 ⁇ 2g / m 2. When the mass per unit area of the gas barrier layer 2 is within the above range, the gas barrier property is more excellent.
  • the thickness of the gas barrier layer 2 is preferably 0.05 to 5 ⁇ m, more preferably 0.1 to 3 ⁇ m, and further preferably 0.1 to 1 ⁇ m. When the thickness of the gas barrier layer 2 is within the above range, the gas barrier property is more excellent.
  • the protective layer 3 includes a polyvalent metal component, a polyester resin, and a dispersant. It is preferable that the protective layer 3 further contains an isocyanate compound.
  • the protective layer 3 may further include a component other than the polyvalent metal component, the polyester resin, the dispersant, and the isocyanate compound.
  • the polyvalent metal component functions as a supply source of polyvalent metal ions.
  • the polyvalent metal ions ion-crosslink carboxyl groups of the polycarboxylic acid polymer contained in the gas barrier layer 2 to improve gas barrier properties.
  • Examples of the polyvalent metal component include a single polyvalent metal atom and a polyvalent metal compound.
  • the polyvalent metal is a metal having a valence of 2 or more, such as beryllium, alkaline earth metals such as magnesium and calcium, titanium, zirconium, chromium, manganese, iron, cobalt, nickel, copper, zinc, etc. Transition metals, aluminum and the like.
  • the polyvalent metal is preferably a divalent metal having a metal ion valence of 2.
  • a metal ion valence of 2 In terms of oxygen barrier properties, zinc and copper are preferable, and zinc is particularly preferable.
  • the polyvalent metal compound examples include oxides, hydroxides, carbonates, organic acid salts and inorganic acid salts of the polyvalent metals, ammonium complexes and secondary to quaternary amine complexes of the polyvalent metals, Complex carbonates and organic acid salts, polyvalent metal alkyl alkoxides, and the like.
  • Organic acid salts include acetate, oxalate, citrate, lactate, phosphate, phosphite, hypophosphite, stearate, monoethylenically unsaturated carboxylate, etc. Can be mentioned.
  • examples of inorganic acid salts include chlorides, sulfates and nitrates.
  • zinc oxide, copper oxide, and calcium carbonate are preferable in terms of oxygen barrier properties.
  • Ultrafine polyvalent metal component mean particles having an average primary particle diameter of 1 nm to 1000 nm as measured by a laser diffraction scattering method.
  • the average primary particle size of the ultrafine particles is preferably 200 nm or less, more preferably 150 nm or less, and particularly preferably 100 nm or less.
  • the average primary particle diameter of the ultrafine particles is preferably 5 nm or more. If the average primary particle size of the ultrafine particles is not more than the above upper limit (200 nm), the transparency of the protective layer 3 is more excellent.
  • the dispersibility of the ultrafine particles in the coating liquid for the protective layer is excellent, and the liquid stability is good.
  • Commercially available products may be used as the ultrafine particles of the polyvalent metal component.
  • FINEX registered trademark
  • ZINCOX SUPER F-2 manufactured by Hakusui Tech Co., Ltd., average primary particle diameter 65 nm
  • polyester resin functions as a binder for the polyvalent metal component.
  • the binder is a polyester resin
  • the transparency of the precursor 10 for packaging material is excellent as compared with the case where another binder is used.
  • the polyester resin include a copolymer (polycondensate) of one or both of a polybasic acid and a polybasic acid anhydride and a polyhydric alcohol.
  • the polybasic acid, polybasic acid anhydride, and polyhydric alcohol that form the polyester resin may each be one kind or two or more kinds.
  • a polybasic acid there is no limitation in particular as a polybasic acid, For example, an aromatic polybasic acid, an aliphatic polybasic acid, an alicyclic polybasic acid etc. are mentioned. Moreover, as a polybasic acid, a bifunctional polybasic acid may be used, or a trifunctional or more polybasic acid may be used. Examples of the bifunctional aromatic polybasic acid, that is, aromatic dicarboxylic acid, include terephthalic acid, isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, biphenyldicarboxylic acid, and the like.
  • bifunctional aliphatic polybasic acid that is, the aliphatic dicarboxylic acid
  • saturated aliphatic dicarboxylic acid such as succinic acid, adipic acid, sebacic acid, dodecanedioic acid, eicosane diacid, and hydrogenated dimer acid.
  • fumaric acid, and unsaturated aliphatic dicarboxylic acids such as maleic acid, itaconic acid, citraconic acid, and dimer acid.
  • bifunctional alicyclic polybasic acid ie, alicyclic dicarboxylic acid
  • examples of the bifunctional alicyclic polybasic acid, ie, alicyclic dicarboxylic acid include 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, and 2,5-norbornene.
  • dicarboxylic acid and tetrahydrophthalic acid examples include 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, and 2,5-norbornene.
  • examples thereof include dicarboxylic acid and tetrahydrophthalic acid.
  • tribasic or higher polybasic acid examples include trimellitic acid, pyromellitic acid, benzophenone tetracarboxylic acid, trimesic acid, ethylene glycol bis (anhydrotrimellitate), glycerol tris (anhydrotrimellitate), 1 2,3,4-butanetetracarboxylic acid and the like.
  • a polybasic acid anhydride there is no limitation in particular as a polybasic acid anhydride,
  • the acid anhydride of the above-mentioned polybasic acid is mentioned.
  • a bifunctional polybasic acid anhydride or a trifunctional or higher polybasic acid anhydride may be used.
  • acid anhydrides of bifunctional polybasic acids include phthalic anhydride, succinic anhydride, maleic anhydride, itaconic anhydride, citraconic anhydride, 2,5-norbornene dicarboxylic acid anhydride, tetrahydrophthalic anhydride Etc.
  • the acid anhydride of a tribasic or more polybasic acid include trimellitic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic anhydride, and the like.
  • the acid anhydride of the tribasic acid or polybasic acid and the tribasic acid tribasic acid or more is added to 100 mol% of the polybasic acid and polybasic acid anhydride.
  • the total amount is preferably 5 mol% or less. That is, the total amount of the bifunctional polybasic acid and the acid anhydride of the bifunctional polybasic acid is preferably 95 mol% or more.
  • aromatic dicarboxylic acids and acid anhydrides of aromatic dicarboxylic acids such as phthalic anhydride are preferred.
  • the polyhydric alcohol is not particularly limited, and a bifunctional polyhydric alcohol or a trifunctional or higher polyhydric alcohol may be used.
  • the bifunctional polyhydric alcohol include aliphatic glycols having 2 to 10 carbon atoms, alicyclic glycols having 6 to 12 carbon atoms, ether bond-containing glycols, ethylene oxide or propylene oxide adducts of bisphenols, and the like. It is done.
  • Examples of the aliphatic glycol having 2 to 10 carbon atoms include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 2-methyl-1,3-propanediol, 1, Examples include 5-heptanediol, neopentyl glycol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 1,9-nonanediol, 2-ethyl-2-butylpropanediol, and the like.
  • Examples of the alicyclic glycol having 6 to 12 carbon atoms include 1,4-cyclohexanedimethanol.
  • Examples of the ether bond-containing glycol include diethylene glycol, triethylene glycol, dipropylene glycol, polytetramethylene glycol, polyethylene glycol, and polypropylene glycol.
  • Examples of the bisphenols in the ethylene oxide or propylene oxide adduct of bisphenols include 2,2-bis (4- (2-hydroxyethoxy) phenyl) propane, bisphenol A, bisphenol S, and the like.
  • Examples of the trifunctional or higher polyhydric alcohol include glycerin, trimethylolethane, trimethylolpropane, and pentaerythritol.
  • the amount of the trifunctional or higher polyhydric alcohol is preferably 5 mol% or less with respect to 100 mol% of the polyhydric alcohol. That is, the amount of the bifunctional polyhydric alcohol is preferably 95 mol% or more.
  • ethylene glycol and neopentyl glycol are preferable because of their low cost.
  • the total amount of ethylene glycol and neopentyl glycol in 100 mol% of the polyhydric alcohol is preferably 50 mol% or more, more preferably 70 mol% or more, and may be 100 mol%.
  • polyester resin at least one selected from the group consisting of a monocarboxylic acid, a monoalcohol, a lactone, and a hydroxycarboxylic acid together with one or both of the aforementioned polybasic acid and polybasic acid anhydride and a polyhydric alcohol. May be copolymerized.
  • monocarboxylic acids, monoalcohols, lactones or hydroxycarboxylic acids include lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, benzoic acid, p-tert-butylbenzoic acid Examples include acid, cyclohexane acid, 4-hydroxyphenyl stearic acid, stearyl alcohol, 2-phenoxyethanol, ⁇ -caprolactone, lactic acid, ⁇ -hydroxybutyric acid, p-hydroxybenzoic acid and the like.
  • the copolymerization (polycondensation) of either one or both of a polybasic acid and a polybasic acid anhydride and a polyhydric alcohol can be performed by a known method.
  • the esterification reaction is carried out by reacting all the monomers and at least one of their low polymers in an inert atmosphere at 180 to 260 ° C. for about 2.5 to 10 hours.
  • Examples thereof include a method in which a polycondensation reaction proceeds in the presence of a transesterification reaction catalyst at a temperature of 220 to 280 ° C. under a reduced pressure of 130 Pa or less until a desired molecular weight is reached to obtain a polyester resin.
  • Examples of a method for imparting a desired acid value or hydroxyl value to a polyester resin include a method in which a polybasic acid or a polyhydric alcohol is further added to the polycondensation reaction and depolymerization is performed in an inert atmosphere. It is done. When a polybasic acid is added, the acid value increases, and when a polyhydric alcohol is added, the hydroxyl value increases. When depolymerized, bubbles are generated in the resin, and at the time of dispensing, there are cases where pelletization cannot be performed due to the bubbles. In such a case, after depolymerization, the system may be depressurized and defoamed again.
  • the degree of decompression at the time of re-depressurization is preferably 67,000 Pa or less, and more preferably 10,000 Pa or less. If the degree of vacuum is higher than 67,000 Pa, it takes a long time to degas even if the pressure is reduced again.
  • a method for imparting an acid value to the polyester resin there may be mentioned a method in which a polybasic acid anhydride is further added following the above polycondensation reaction, and an addition reaction is performed with a hydroxyl group of the polyester resin in an inert atmosphere.
  • the polyester resin a polyester resin having a carboxyl group introduced by at least one of depolymerization using a polybasic acid and addition reaction using a polybasic acid anhydride is preferable.
  • the polybasic acid used in the depolymerization includes a tribasic or higher polybasic acid. By using a tribasic or higher polybasic acid, a desired acid value can be imparted while suppressing a decrease in the molecular weight of the polyester resin due to depolymerization.
  • polybasic acid or acid anhydride of the polybasic acid used in at least one of the depolymerization and the addition reaction examples include the same as those mentioned above.
  • aromatic polybasic acids and acid anhydrides of aromatic polybasic acids are preferable, terephthalic acid that is an aromatic dicarboxylic acid, isophthalic acid, phthalic anhydride that is an acid anhydride of an aromatic dicarboxylic acid, trifunctional Trimellitic acid which is a polybasic acid and trimellitic anhydride which is an acid anhydride of a trifunctional polybasic acid are preferable.
  • trimellitic anhydride when trimellitic anhydride is used, depolymerization and addition reaction are considered to occur in parallel. Therefore, it is particularly preferable to use trimellitic anhydride because a desired acid value can be imparted while minimizing the decrease in molecular weight of the polyester resin due to depolymerization.
  • the acid value of the polyester resin is preferably 15 mgKOH / g or less, more preferably 10 mgKOH / g or less, and particularly preferably 8 mgKOH / g or less. If an acid value is below the said upper limit (15 mgKOH / g), the water resistance of the precursor 10 for packaging materials which has the protective layer 3 will be excellent. Although there is no particular limitation on the lower limit of the acid value of the polyester resin, it is usually 0.05 mgKOH / g or more on the limit of measurement accuracy.
  • the acid value of the polyester resin is measured according to JIS K0070: 1992.
  • the polyester resin may contain a hydroxyl group as long as the water resistance of the protective layer 3 is not impaired.
  • the hydroxyl value of the polyester resin is preferably 30 mgKOH / g or less, and more preferably 20 mgKOH / g or less.
  • the lower limit of the hydroxyl value of the polyester resin is not particularly limited, but is usually 0.05 mgKOH / g or more due to the limit of measurement accuracy.
  • the glass transition temperature (Tg) of the polyester resin is preferably ⁇ 30 ° C. or higher, more preferably 20 ° C. or higher, and particularly preferably 50 ° C. or higher.
  • Tg is equal to or higher than the lower limit ( ⁇ 30 ° C.)
  • the upper limit of the glass transition temperature (Tg) of the polyester resin is not particularly limited, but is typically 80 ° C. or lower.
  • the number average molecular weight of the polyester resin is preferably 5,000 to 50,000, more preferably 9,000 to 40,000, and particularly preferably 10,000 to 30,000. When the number average molecular weight is within the above range, the water resistance and heat resistance of the packaging material precursor 10 having the protective layer 3 are more excellent.
  • the polyester resin contained in the protective layer 3 may be one type or two or more types.
  • the polyester resin contained in the protective layer 3 is preferably derived from an aqueous polyester resin dispersion.
  • the aqueous polyester resin dispersion contains a polyester resin and water as a dispersion medium.
  • the aqueous polyester resin dispersion preferably further contains a basic compound in order to satisfactorily disperse the polyester resin in water.
  • the aqueous polyester resin dispersion may further contain other components. Other components are not particularly limited.
  • surfactants organic solvents, curing agents, compounds having a protective colloid effect, pigments such as titanium oxide, zinc white, and carbon black, dyes, aqueous urethane resins, aqueous
  • aqueous resins such as olefin resins and aqueous acrylic resins.
  • polyester resin aqueous dispersion commercially available products may be used.
  • Elitel registered trademark
  • KT-8803 Elitel KT-0507
  • Elitel KT-9204 above, manufactured by Unitika Ltd.
  • Bironal registered trademark
  • MD-1200 Vylonal MD-1480
  • Vylonal MD-1480 above, manufactured by Toyobo Co., Ltd.
  • Pesresin A124GP manufactured by Takamatsu Yushi Co., Ltd.
  • the dispersant contributes to the improvement of the dispersibility of the polyvalent metal component in the protective layer coating liquid containing the above-described polyvalent metal component and the polyester resin, and consequently the dispersibility of the polyvalent metal component in the protective layer 3.
  • the dispersant is preferably at least one selected from the group consisting of polycarboxylic acid sodium salt and polycarboxylic acid ammonium salt. Polycarboxylic acid sodium salt and polycarboxylic acid ammonium salt have high adsorbability on the polyvalent metal component surface.
  • the polycarboxylic acid sodium salt and the polycarboxylic acid ammonium salt have properties that are physically and chemically similar to the polycarboxylic acid polymer contained in the gas barrier layer 2. Therefore, when the protective layer 3 is formed adjacent to the gas barrier layer 2, it is possible to obtain a packaging material precursor 10 that is less susceptible to poor transparency due to the reaction between the layers and that is excellent in transparency.
  • polycarboxylic acid in polycarboxylic acid sodium salt or polycarboxylic acid ammonium salt the homopolymer or copolymer of unsaturated carboxylic acid is mentioned, for example.
  • the unsaturated carboxylic acid include acrylic acid, maleic acid, methacrylic acid, itaconic acid, fumaric acid, crotonic acid and the like.
  • the copolymer of unsaturated carboxylic acid includes a copolymer of two or more unsaturated carboxylic acids, a copolymer of one or more unsaturated carboxylic acids and one or more other monomers, and the like. Can be mentioned.
  • the copolymer of two or more unsaturated carboxylic acids may be a copolymer of two or more unsaturated carboxylic acids and another monomer.
  • the polycarboxylic acid sodium salt may be a polycarboxylic acid sodium salt obtained by neutralizing a carboxyl group of a polycarboxylic acid obtained by (co) polymerizing an unsaturated carboxylic acid with sodium. Polycarboxylic acid sodium salt obtained by (co) polymerizing the sodium salt of an acid may also be used.
  • the polycarboxylic acid ammonium salt may be a polycarboxylic acid ammonium salt obtained by neutralizing a carboxyl group of a polycarboxylic acid obtained by (co) polymerizing an unsaturated carboxylic acid with ammonia. It may be a polycarboxylic acid ammonium salt obtained by (co) polymerizing an ammonium salt of an acid.
  • a dispersing agent may be used individually by 1 type, and 2 or more types may be mixed and used for it.
  • the isocyanate compound means a compound having at least one isocyanate group in the molecule.
  • the isocyanate compound is preferably a polyisocyanate compound having at least two isocyanate groups in the molecule, such as phenylene diisocyanate, tolylene diisocyanate, diphenylmethane diisocyanate, xylylene diisocyanate, naphthylene diisocyanate, isophorone diisocyanate, hexamethylene diisocyanate, hydrogen.
  • organic diisocyanate compounds such as added diphenylmethane diisocyanate, polymethylene polyphenyl polyisocyanate, hydrogenated toluene diisocyanate or tetramethylene xylylene diisocyanate, and derivatives of the organic polyisocyanate compound.
  • an isocyanate compound (water-dispersible isocyanate compound) having dispersibility in water.
  • water-dispersible isocyanate compound for example, (1) a part of the isocyanate group of the organic polyisocyanate compound is modified with a hydrophilic group such as polyethylene oxide, carboxy group, or sulfonic acid group to be a self-emulsifying type.
  • An isocyanate compound (2) an isocyanate compound in which the organic polyisocyanate compound is forcibly emulsified with a surfactant or the like so that it can be dispersed in water, (3) various prepolymers derived from the organic polyisocyanate compound, (4 ) A compound in which a part of the isocyanate group in the organic polyisocyanate is blocked with a blocking agent such as alcohols, phenols, oximes, mercaptans, amides, imides or lactams, so-called blocked polyisocyanate compounds Etc.
  • An isocyanate compound may be used individually by 1 type, and may be used in combination of 2 or more type.
  • Examples of other components include softeners, stabilizers, film forming agents, thickeners, and the like.
  • the content of the polyvalent metal component in the protective layer 3 is 40 to 90% by mass, preferably 50 to 85% by mass, and more preferably 60 to 80% by mass with respect to the total mass of the protective layer 3. If content of a polyvalent metal component is in the said range, the gas barrier property of the packaging material obtained by carrying out the hot water process of the precursor 10 for packaging materials will be more excellent.
  • the content of the polyester resin in the protective layer 3 is preferably 10 to 60% by mass and more preferably 20 to 40% by mass with respect to the total mass of the protective layer 3. If content of a polyester resin is in the said range, the water resistance of the precursor 10 for packaging materials, heat resistance, and transparency will be more excellent.
  • the content of the dispersant in the protective layer 3 is 2 to 20% by mass, preferably 2 to 15% by mass, and more preferably 2 to 10% by mass with respect to the polyvalent metal component.
  • the content of the dispersant is within the above range, the dispersibility of the polyvalent metal component in the protective layer coating liquid, and thus the uniformity of the dispersion of the polyvalent metal component in the protective layer 3 is further improved. Therefore, the transparency of the protective layer 3 and the gas barrier property of the packaging material obtained by hydrothermal treatment of the packaging material precursor 10 are more excellent.
  • the content of the isocyanate compound in the protective layer 3 is preferably 1 to 20% by mass and more preferably 2 to 15% by mass with respect to the total mass of the protective layer 3. If content of an isocyanate compound is in the said range, the film-forming property of the protective layer 3, hot water resistance, and adhesiveness with the gas barrier layer 2 will be more excellent. Moreover, the gas barrier property of the packaging material obtained by carrying out the hot water process of the packaging material precursor 10 is more excellent. In addition, when another substrate is laminated on the protective layer 3 via an adhesive layer as shown in a third embodiment to be described later, the adhesion to other substrates is also excellent.
  • the total content of the polyvalent metal component, the polyester resin, the dispersant, and the isocyanate compound in the protective layer 3 is preferably larger than 95% by mass and larger than 97% by mass with respect to the total mass of the protective layer 3. More preferably, it may be 100% by mass.
  • the content of other components in the protective layer 3 is preferably less than 5% by mass and more preferably less than 3% by mass with respect to the total mass of the protective layer 3.
  • Mass per unit area of the protective layer 3 is preferably 0.1 ⁇ 10g / m 2, more preferably 0.1 ⁇ 6g / m 2, more preferably 0.1 ⁇ 2g / m 2. If the mass per unit area of the protective layer 3 is not less than the above lower limit (0.1 g / m 2 ), the gas barrier property is more excellent, and if it is not more than the above upper limit (10 g / m 2 ), the appearance is good. is there.
  • the thickness of the protective layer 3 is preferably 0.05 to 5 ⁇ m, more preferably 0.1 to 3 ⁇ m, and further preferably 0.1 to 1 ⁇ m. If the thickness of the protective layer 3 is not less than the above lower limit (0.05 ⁇ m), the gas barrier property is more excellent, and if it is not more than the above upper limit (5 ⁇ m), the appearance is good.
  • the packaging material precursor 10 can be manufactured, for example, by a manufacturing method including the following steps ( ⁇ 1) and ( ⁇ 2).
  • ⁇ 1 A step of forming the gas barrier layer 2 by applying the following coating liquid for gas barrier layer on one surface of the support 1 and drying it.
  • ⁇ 2 A step of forming the protective layer 3 by applying the following protective layer coating liquid on the surface of the gas barrier layer 2 and drying it.
  • the gas barrier layer coating liquid contains a polycarboxylic acid polymer, a silicon compound (i), and a liquid medium.
  • the gas barrier layer coating solution may further contain other components than the polycarboxylic acid polymer and the silicon compound (i) as necessary.
  • the polycarboxylic acid polymer in the gas barrier layer coating solution is the same as the polycarboxylic acid polymer in the gas barrier layer 2 except that the neutralization degree of the carboxyl group with the polyvalent metal is 0 mol%.
  • the coating liquid for the protective layer is applied to the surface of the gas barrier layer 2, polyvalent metal ions and moisture are supplied, and an ionic crosslinking reaction with the polyvalent metal ions of the carboxyl group of the polycarboxylic acid polymer proceeds. At this time, the lower the degree of neutralization of the carboxyl group, the easier the ion crosslinking reaction proceeds.
  • the degree of neutralization When the degree of neutralization is greater than 0 mol% and less than or equal to 40 mol%, the ionic cross-linking reaction is difficult to proceed when the protective layer coating liquid is applied onto the gas barrier layer 2, and the ratio ( ⁇ / ⁇ ) is 1 or more. Difficult to do. If the degree of neutralization is greater than 40 mol%, the gas barrier layer coating solution gels, making application difficult.
  • the carboxyl group of the polycarboxylic acid polymer is more easily ion-crosslinked as it is closer to the coating surface of the protective layer coating solution. Therefore, it is considered that the degree of ionic crosslinking by the polyvalent metal in the gas barrier layer 2 increases as the protective layer 3 is closer. For example, when the neutralization degree is 0 mol%, in the gas barrier layer 2, the ionic crosslinking degree changes from 0 mol% to 100 mol% from the vicinity of the interface with the support 1 to the vicinity of the interface with the protective layer 3, It is conceivable that the ionic crosslinking degree as a whole is about 50 mol%.
  • the neutralization degree is about 20 mol%
  • the ionic crosslinking degree is about 20 mol% to about 25 mol% from the vicinity of the interface with the support 1 to the vicinity of the interface with the protective layer 3. It can be considered that only changes.
  • the silicon compound (i) and other components in the gas barrier layer coating liquid are the same as the silicon compound (i) and other components in the gas barrier layer 2, respectively, and the preferred embodiments are also the same.
  • the liquid medium is not particularly limited, and water, an organic solvent, a mixed solvent of water and an organic solvent, or the like can be used.
  • the silicon compound (i) contains a hydrolyzable silane compound
  • the liquid medium preferably contains water in order to perform a hydrolysis reaction of the hydrolyzable silane compound.
  • the organic solvent is preferably at least one selected from the group consisting of lower alcohols having 1 to 5 carbon atoms and lower ketones having 3 to 5 carbon atoms. Specific examples include methanol, ethanol, propanol, 2-propanol, n-butanol, isobutanol, sec-butanol, tert-butanol, acetone, and methyl ethyl ketone.
  • a mixed solvent of water and an organic solvent a mixed solvent using the above-described organic solvent is preferable, and a mixed solvent of water and a lower alcohol having 1 to 5 carbon atoms is more preferable.
  • a mixed solvent water is present in an amount of 20 to 95% by mass, and the organic solvent is present in an amount of 80 to 5% by mass (provided that the total of water and the organic solvent is 100% by mass). Is preferred.
  • liquid medium water is preferable in terms of solubility and cost of the polycarboxylic acid polymer.
  • a lower alcohol having 1 to 5 carbon atoms it is preferable to contain a lower alcohol having 1 to 5 carbon atoms. Accordingly, water or a mixed solvent of water and a lower alcohol having 1 to 5 carbon atoms is preferable.
  • the content of the silicon compound (i) in the gas barrier layer coating solution is 2 to 25% by mass, preferably 2 to 20% by mass, based on the polycarboxylic acid polymer (100% by mass).
  • the content of the silicon compound (i) is within the above range, the adhesion between the gas barrier layer 2 and the support 1 is excellent.
  • the water resistance of the packaging material obtained from the precursor 10 for packaging materials is more excellent, and it is hard to whiten when exposed to cold water.
  • the mass of the silicon compound (i) other than the hydrolyzable silane compound is the mass in terms of the hydrolyzable silane compound as described above.
  • the content of other components in the gas barrier layer coating solution is preferably 30% by mass or less, more preferably 20% by mass or less, relative to the polycarboxylic acid polymer (100% by mass).
  • the polycarboxylic acid polymer in the gas barrier layer coating solution, the silicon compound (i), and other components included as necessary Is preferably 0.5 to 50% by mass, more preferably 0.8 to 30% by mass, based on the total mass of the gas barrier layer coating liquid. It is particularly preferably 1.0 to 20% by mass.
  • the total content of the polycarboxylic acid polymer and the silicon compound (i) in the gas barrier layer coating solution is preferably 70% by mass or more, more preferably 80% by mass or more, based on the solid content mass in the gas barrier layer coating solution. Is more preferable, and may be 100% by mass.
  • the mass of the silicon compound (i) other than the hydrolyzable silane compound is the mass in terms of the hydrolyzable silane compound as described above.
  • the coating liquid for gas barrier layer can be prepared by mixing each component.
  • a polyvalent metal component is added during the preparation of the gas barrier layer coating solution, the carboxyl group is neutralized by the reaction of the polycarboxylic acid polymer and the polyvalent metal component in the gas barrier layer coating solution. Is not 0 mol%. Therefore, a polyvalent metal component is not blended in the gas barrier layer coating liquid.
  • the gas barrier layer coating liquid contains a hydrolytic condensate as the silicon compound (i)
  • the hydrolyzable silane compound is directly mixed with the liquid containing the polycarboxylic acid polymer and water to form a gas barrier layer coating liquid. May be prepared. Also, by adding water to the hydrolyzable silane compound, hydrolysis and subsequent condensation reaction are performed, and the resulting hydrolyzed condensate is mixed with a polycarboxylic acid polymer to prepare a gas barrier layer coating solution. May be.
  • the coating liquid for protective layers contains a polyvalent metal component, a polyester resin, a dispersant, and water.
  • the protective layer coating liquid preferably further contains an isocyanate compound.
  • the coating liquid for protective layer may further contain other components other than the polyvalent metal component, the polyester resin, the dispersant, and the isocyanate compound as necessary.
  • the protective layer coating solution may further contain an organic solvent.
  • the polyvalent metal component, the polyester resin, the dispersant, the isocyanate compound, and other components are the same as the polyvalent metal component, the polyester resin, the dispersant, the isocyanate compound, and other components, respectively, in the protective layer 3 described above.
  • the preferred embodiment is also the same.
  • the organic solvent include ethanol, 2-propanol, ethylene glycol monobutyl ether and the like from the viewpoint of improving coating properties and drying efficiency. When these organic solvents are contained in the coating liquid for the protective layer, they may be contained singly or in combination of two or more.
  • the content of the organic solvent is such that water is present in an amount of 20 to 95% by mass, and the organic solvent is present in an amount of 80 to 5% by mass when the total of water and the organic solvent is 100% by mass. An amount is preferred.
  • the solid concentration of the protective layer coating solution is preferably 3 to 30% by mass, more preferably 5 to 20% by mass.
  • Solid content concentration is the ratio of the total solid content with respect to the whole quantity (100 mass%) of the coating liquid for protective layers.
  • the total solid content of the protective layer coating liquid is the total amount of the polyvalent metal component in the protective layer coating liquid, the polyester resin, the dispersant, the isocyanate compound, and the other components that are solid ( Including the case of not containing an isocyanate compound and the case of not containing a solid component among other components).
  • the content of the polyvalent metal component in the protective layer coating solution is 40 to 90% by weight, preferably 50 to 85% by weight, preferably 60 to 85% by weight based on the total solid content (100% by weight) of the protective layer coating solution. 80 mass% is more preferable.
  • the content of the polyester resin in the protective layer coating solution is preferably 10 to 60% by mass, more preferably 20 to 40% by mass, based on the total solid content of the protective layer coating solution.
  • the content of the dispersant in the protective layer coating solution is 2 to 20% by mass, preferably 2 to 15% by mass, and more preferably 2 to 10% by mass with respect to the polyvalent metal component.
  • the content of the isocyanate compound in the protective layer coating solution is preferably 1 to 20% by mass, preferably 2 to 15% by mass, based on the total solid content of the protective layer coating solution. Is more preferable.
  • the content of the solid component is preferably less than 5% by mass and more preferably less than 3% by mass with respect to the total solid content of the protective layer coating solution. That is, the total amount of the polyvalent metal component, the polyester resin, the dispersant, and the isocyanate compound in the protective layer coating liquid is preferably greater than 95% by mass and greater than 97% by mass with respect to the total solid content. More preferred.
  • the method for preparing the protective layer coating liquid is not particularly limited, and the protective layer coating liquid can be obtained by mixing the above-described components uniformly.
  • the polyester resin is preferably derived from the aqueous polyester resin dispersion as described above. That is, the method for preparing the protective layer coating liquid is preferably a method of mixing a polyvalent metal component, an aqueous polyester resin dispersion, a dispersant, and, if necessary, water, an isocyanate compound, and other components.
  • the following method is mentioned as a preferable example of the preparation method of the coating liquid for protective layers.
  • zinc oxide ultrafine particles and a dispersing agent are added to distilled water to break up and disperse the aggregation of primary particles of zinc oxide ultrafine particles.
  • an aqueous dispersion of zinc oxide ultrafine particles is obtained, and distilled water, an aqueous polyester resin dispersion, and a water-dispersible isocyanate compound are added to the aqueous dispersion of zinc oxide ultrafine particles and stirred.
  • an organic solvent such as 2-propanol is added and stirred to obtain a protective layer coating solution.
  • a bead mill, a high-speed stirrer, or the like can be used for crushing the aggregates when obtaining the aqueous dispersion of zinc oxide ultrafine particles.
  • the haze of the resulting packaging material precursor tends to be small, which is preferable.
  • distilled water is added to a water-dispersible isocyanate compound in advance and stirred to obtain an aqueous dispersion of the water-dispersible isocyanate compound.
  • an aqueous dispersion of zinc oxide ultrafine particles is obtained in the same manner as described above, and an aqueous polyester resin dispersion is added to the aqueous dispersion of zinc oxide ultrafine particles.
  • the aqueous dispersion of the water-dispersible isocyanate compound is added to the obtained dispersion and stirred. If necessary, an organic solvent such as 2-propanol is added and stirred to obtain a protective layer coating solution.
  • the gas barrier layer 2 is formed by applying the gas barrier layer coating liquid on the support 1 and removing the liquid medium of the gas barrier layer coating liquid by drying.
  • the coating method of the gas barrier layer coating liquid is not particularly limited.
  • the casting method dipping method, roll coating method, gravure coating method, screen printing method, reverse coating method, spray coating method, kit coating method, die coating method.
  • Method metering bar coating method, chamber doctor combined coating method, curtain coating method and the like.
  • the drying method is not particularly limited, and examples thereof include a hot air drying method, a hot roll contact method, an infrared heating method, and a microwave heating method. The methods may be performed alone or in combination.
  • the drying temperature is not particularly limited, but when the above-mentioned water or a mixed solvent of water and an organic solvent is used as a solvent, it is usually preferably 50 to 160 ° C.
  • the pressure during drying is usually preferably normal pressure or reduced pressure, and preferably normal pressure from the viewpoint of facility simplicity.
  • heat treatment may be performed when drying is completed (or almost completed).
  • the heat treatment is usually carried out at a temperature of 120 to 240 ° C., preferably 150 to 230 ° C., usually 10 seconds to 30 minutes, preferably 20 seconds to 20 minutes.
  • the drying and heat treatment have portions where conditions such as temperature overlap, but these do not need to be clearly distinguished and may be performed continuously.
  • the protective layer is applied by applying the protective layer coating liquid to the surface of the gas barrier layer 2 formed in the step ( ⁇ 1) and removing the water (including the organic solvent in the case of including the organic solvent) by drying. 3 is formed.
  • the coating method for the protective layer coating liquid is not particularly limited. For example, a casting method, dipping method, roll coating method, gravure coating method, screen printing method, reverse coating method, spray coating method, kit coating method, die coating method. Method, metering bar coating method, chamber doctor combined coating method, curtain coating method and the like.
  • the drying method is not particularly limited, and examples thereof include a hot air drying method, a hot roll contact method, an infrared heating method, and a microwave heating method, and these methods may be performed alone or in combination.
  • the drying temperature is not particularly limited, but is usually preferably 50 to 160 ° C.
  • the pressure during drying is usually preferably normal pressure or reduced pressure, and preferably normal pressure from the viewpoint of facility simplicity.
  • the packaging material precursor 10 is useful as a packaging material precursor as shown below, or for the production of a package in which an article to be packaged is packaged with a packaging material.
  • the packaging material 11 is the same as the packaging material precursor 10 except that it has the gas barrier layer 4 instead of the gas barrier layer 2, and the support 1, the gas barrier layer 4, and the protective layer 3 are laminated adjacently in this order. A laminated structure is provided.
  • Gas barrier layer 4 of the packaging material 11 the maximum peak height in absorbance within the range of the wave number 1490cm -1 ⁇ 1659cm -1 and (alpha), the maximum peak absorbance in the range of the wave number 1660 cm -1 ⁇ 1750 cm -1 It is the same as the gas barrier layer 2 of the precursor 10 for packaging material, except that the ratio ( ⁇ / ⁇ ) to the height ( ⁇ ) is 7 or more.
  • the packaging material 11 can be obtained by subjecting the packaging material precursor 10 to a hot water treatment.
  • the hot water treatment include retort treatment and boil treatment. The retort process and the boil process will be described in detail in the subsequent manufacturing method of the package.
  • the packaging material precursor 10 is hydrothermally treated, moisture is supplied to the gas barrier layer 2 and the protective layer 3. Therefore, ionic crosslinking by polyvalent metal ions of the carboxyl group of the polycarboxylic acid polymer contained in the gas barrier layer 2 proceeds, and the ratio ( ⁇ / ⁇ ) increases from a range of 1 to less than 7 to 7 or more, and the gas barrier layer 2 becomes the gas barrier layer 4. Thereby, the packaging material 11 is obtained.
  • the ratio ( ⁇ / ⁇ ) of the gas barrier layer 2 before the hot water treatment is 1 or more and less than 7, the gas barrier layer 2 is unlikely to expand due to moisture supplied via the support 1. If the ratio ( ⁇ / ⁇ ) after the hydrothermal treatment is 7 or more, the ionic crosslinking degree of the carboxyl group of the polycarboxylic acid polymer is sufficiently high. Therefore, the crosslink density of the gas barrier layer 4 after the hot water treatment is sufficiently high, and the gas barrier layer 4 exhibits excellent gas barrier properties even under high humidity conditions.
  • the oxygen permeability of the packaging material 11, that is, the packaging material precursor 10 after the hot water treatment is preferably 50 cm 3 (STP) / (m 2 ⁇ day ⁇ MPa) or less, and 20 cm 3 (STP). ) / (M 2 ⁇ day ⁇ MPa) or less, more preferably 10 cm 3 (STP) / (m 2 ⁇ day ⁇ MPa) or less.
  • the lower limit is not particularly limited, but it is usually 0.1 cm 3 / (m 2 ⁇ day ⁇ MPa) or more.
  • the oxygen permeability is a value measured under conditions of a temperature of 30 ° C. and a relative humidity (RH) of 70% in accordance with ASTM F1927-98 (2004).
  • (STP) means standard conditions (0 ° C., 1 atm) for defining the volume of oxygen.
  • a package body in which the packaged material is packaged with the packaging material 11 can be obtained by packaging the packaged material using the packaging material precursor 10 and subjecting the packaged material to hot water treatment.
  • the package is not particularly limited, but is preferably an article that easily deteriorates due to the influence of oxygen, water vapor, or the like, for example, an article such as a food, a precision metal part such as a beverage, a medicine, or an electronic part, and a food is particularly preferred. Examples of food include miso, pickles, liquid soup, and processed meat. It does not specifically limit as a method of packaging a to-be-packaged object.
  • the precursor 10 for packaging materials is processed into the bag shape which has opening, the to-be-packaged object is accommodated in this, and the method of sealing an opening is mentioned.
  • hot water treatment examples include retort treatment and boil treatment.
  • Retort treatment is a method of sterilizing microorganisms such as molds, yeasts, and bacteria in order to preserve foods and the like in general.
  • the packaging material precursor 10 in which an article to be packaged is packaged is sterilized under pressure at 105 to 140 ° C. and 0.15 to 0.3 MPa for 10 to 120 minutes.
  • the retort apparatus includes a steam type using heated steam, a hot water type using pressurized superheated water, and the like, and can be appropriately used depending on the sterilization conditions of food to be packaged.
  • the boil treatment is a method of sterilizing with wet heat to preserve foods and the like.
  • the packaging material precursor 10 in which the package is packaged is sterilized at 60 to 100 ° C. under atmospheric pressure for 10 to 120 minutes.
  • the boil treatment is usually performed using a hot water tank.
  • FIG. 3 is a schematic cross-sectional view of the packaging material precursor 20 according to the second embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view of the packaging material 21 obtained from the packaging material precursor 20.
  • the packaging material precursor 20 of the present embodiment has a laminated structure in which the support 7, the gas barrier layer 2, and the protective layer 3 are laminated adjacently in this order. That is, in the packaging material precursor 20 of the present embodiment, the gas barrier layer 2 is directly provided on the support 7, and the protective layer 3 is directly provided on the gas barrier layer 2.
  • the support 7 has a base material 5 and an anchor coat layer 6 provided adjacent to one side (gas barrier layer 2 side) of the base material 5.
  • the packaging material 21 is the same as the packaging material precursor 20 except that the gas barrier layer 2 is the gas barrier layer 4.
  • the water vapor permeability of the support 7 is 100 g / m 2 or more, and more preferably 120 g / m 2 or more, like the water vapor permeability of the support 1.
  • the base material 5 which comprises the support body 7 As the base material 5 which comprises the support body 7, the structure similar to the support body 1 of 1st Embodiment is mentioned. However, the water vapor transmission rate in the state where the anchor coat layer 6 is laminated needs to be 100 g / m 2 or more.
  • the anchor coat layer 6 is provided in order to improve the adhesion between the substrate 5 and the gas barrier layer 2.
  • the material constituting the anchor coat layer 6 include alkyd resins, melamine resins, acrylic resins, nitrified cotton, polyurethane resins, polyester resins, phenol resins, amino resins, fluororesins, epoxy resins, and carbodiimide group-containing resins.
  • the resin include polyurethane resins, polyester resins, acrylic resins, epoxy resins, and carbodiimide group-containing resins. These resins may be used alone or in combination of two or more.
  • a polyurethane resin is particularly preferable.
  • the polyol constituting the polyurethane resin a polyester-based polyol is preferable.
  • the polyester polyol include a polyester polyol obtained by reacting a polyvalent carboxylic acid or the like with a glycol.
  • the polyisocyanate constituting the polyurethane resin include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, m-phenylene diisocyanate, p-phenylene diisocyanate, 4,4′-diphenylmethane diisocyanate, hexamethylene diisocyanate, xylylene.
  • the anchor coat layer 6 may contain a carbodiimide group-containing resin from the viewpoint of adhesion with the gas barrier layer 2. If necessary, additives such as a curing agent and a hydrolyzable silane compound may be added to the resin. Examples of the hydrolyzable silane compound include those described above.
  • the thickness of the anchor coat layer 6 is preferably 0.01 to 1 ⁇ m, more preferably 0.05 to 1 ⁇ m, from the viewpoint of adhesion and appearance.
  • the mass per unit area of the anchor coat layer 6 is preferably 0.01 to 1 g / m 2 and more preferably 0.05 to 1 g / m 2 from the viewpoint of adhesion and appearance.
  • the packaging material precursor 20 can be manufactured, for example, by a manufacturing method including the following steps ( ⁇ 1), ( ⁇ 2), and ( ⁇ 3).
  • the gas barrier layer coating liquid and the protective layer coating liquid are the same as in the first embodiment.
  • the formation method of the anchor coat layer 6 is not particularly limited, and a known method can be appropriately selected.
  • the anchor coat layer 6 can be formed by applying and drying an anchor coat layer coating solution.
  • the coating solution for the anchor coat layer include a coating solution containing the above-described resin or its precursor, a solvent, and an additive as necessary.
  • the resin or its precursor a polyurethane-based, polyester-based or acrylic-based polymer material is preferable.
  • the step ( ⁇ 2) can be performed in the same manner as the step ( ⁇ 1) in the first embodiment.
  • the step ( ⁇ 3) can be performed in the same manner as the step ( ⁇ 2) in the first embodiment.
  • An aging treatment may be performed.
  • the aging treatment include a treatment of holding at a temperature of usually 30 to 200 ° C., preferably 30 to 150 ° C. for 0.5 to 10 days, preferably 1 to 7 days.
  • the aging treatment may be performed, and heat treatment may be performed when the aging treatment is completed.
  • the heat treatment is usually carried out at a temperature of 120 to 240 ° C., preferably 150 to 230 ° C., usually 10 seconds to 30 minutes, preferably 20 seconds to 20 minutes.
  • the drying, heat treatment, and aging treatment have portions where conditions such as temperature overlap, but these do not need to be clearly distinguished and may be performed continuously.
  • the packaging material precursor 20 is useful as a precursor for the packaging material 21 or for producing a package in which an article to be packaged is packaged with the packaging material 21.
  • the packaging material 21 is the same as the packaging material precursor 20 except that the gas barrier layer 4 is provided instead of the gas barrier layer 2, and the support 7, the gas barrier layer 4, and the protective layer 3 are laminated adjacently in this order. A laminated structure is provided.
  • the packaging material 21 can be obtained by subjecting the packaging material precursor 20 to hot water treatment.
  • the hot water treatment is the same as described above.
  • the preferable oxygen permeability of the packaging material 21, that is, the packaging material precursor 20 after the hot water treatment is the same as that of the first embodiment.
  • a package body in which the package object is packaged with the packaging material 21 can be obtained by packaging the package object using the packaging material precursor 20 and subjecting the packaged material to hot water treatment. Packaging and hot water treatment of an article to be packaged can be performed as in the first embodiment.
  • FIG. 5 is a schematic cross-sectional view of the packaging material precursor 30 according to the third embodiment of the present invention.
  • FIG. 6 is a schematic cross-sectional view of the packaging material 31 obtained from the packaging material precursor 30.
  • the packaging material precursor 30 of the present embodiment includes a laminated structure in which the support 1, the gas barrier layer 2, and the protective layer 3 are laminated adjacently in this order, and the adhesive layer 9 on the surface of the laminated structure on the protective layer 3 side.
  • stacked via is provided. That is, in the packaging material precursor 30 of the present embodiment, the gas barrier layer 2 is directly provided on the support 1, and the protective layer 3 is directly provided on the gas barrier layer 2.
  • the packaging material 31 is the same as the packaging material precursor 30 except that the gas barrier layer 2 is the gas barrier layer 4.
  • the other base material 8 is used for imparting arbitrary physical properties to the packaging material precursor 30 and the packaging material 31. Specifically, the other base material 8 can provide strength, sealability, easy-opening property at the time of sealing, design property, light blocking property, moisture-proof property, and the like. Furthermore, when performing a retort process, a boil process, etc., the protective layer 3 is not directly exposed to a hot water or a vapor
  • the other substrate 8 is appropriately selected depending on the purpose, but plastic films are preferable.
  • the other substrate 8 may be a laminate having two or more layers. Examples of the material of the other base material 8 include polyolefin, nylon, and inorganic vapor-deposited nylon.
  • the thickness of the other substrate 8 is preferably 1 to 1000 ⁇ m, and more preferably 5 to 500 ⁇ m.
  • the adhesive layer is a layer that adheres the protective layer 3 and the other substrate 8.
  • the material of the adhesive layer 9 is not particularly limited.
  • the adhesive layer 9 can be formed using a one-pack type or two-pack type polyurethane adhesive or acrylic adhesive.
  • an adhesive resin such as an ethylene-vinyl acetate copolymer, an ethylene-acrylic acid copolymer, an ethylene-methacrylic acid copolymer, or an ionomer resin. Can be used to form the adhesive layer 9.
  • the packaging material precursor 30 can be manufactured, for example, by a manufacturing method including the following steps ( ⁇ 1), ( ⁇ 2), and ( ⁇ 3).
  • the step ( ⁇ 1) can be performed in the same manner as the step ( ⁇ 1) in the first embodiment.
  • Step ( ⁇ 2) can be performed in the same manner as step ( ⁇ 2) in the first embodiment.
  • the method for laminating the other substrate 8 is not particularly limited, and examples thereof include a dry laminating method and an extrusion laminating method.
  • the method for applying the adhesive in the dry laminating method is not particularly limited, and examples thereof include a gravure coating method.
  • the packaging material precursor 30 is useful as a precursor for the packaging material 31 or for producing a package in which an object to be packaged is packaged with the packaging material 31.
  • the packaging material 31 is the same as the packaging material precursor 30 except that the packaging material 31 has the gas barrier layer 4 instead of the gas barrier layer 2.
  • the packaging material 31 includes a laminated structure in which the support 1, the gas barrier layer 4, and the protective layer 3 are laminated adjacent to each other in this order, and other layers laminated on the surface of the laminated structure on the protective layer 3 side through an adhesive layer 9 A substrate 8.
  • the packaging material 31 can be obtained by subjecting the packaging material precursor 30 to hot water treatment.
  • the hot water treatment is the same as described above.
  • the preferable oxygen permeability of the packaging material 31, that is, the packaging material precursor 30 after the hot water treatment is the same as that of the first embodiment.
  • a package body in which the packaged material is packaged with the packaging material 31 can be obtained by packaging the packaged material using the packaging material precursor 30 and subjecting the packaged material to hot water treatment.
  • Packaging and hot water treatment of an article to be packaged can be performed as in the first embodiment.
  • the other base material 8 functions as a sealant layer, it can be made into a bag shape by heat-sealing the outer edge with the other base material 8 side surfaces of the packaging material precursor 30 facing each other. Examples of the form of the bag include a three-side seal, a four-side seal, a standing pouch, and pillow packaging.
  • FIG. 7 is a schematic cross-sectional view of the packaging material precursor 110 according to the fourth embodiment of the present invention.
  • FIG. 8 is a schematic cross-sectional view of the packaging material 111 obtained from the packaging material precursor 110.
  • the packaging material precursor 110 of the present embodiment has a laminated structure in which a support 101, an intermediate layer 103, and a gas barrier layer 102 are laminated adjacently in this order. That is, in the packaging material precursor 110 of this embodiment, the intermediate layer 103 is directly provided on the support 101 and the gas barrier layer 102 is directly provided on the intermediate layer 103.
  • the packaging material 111 is the same as the packaging material precursor 110 except that the gas barrier layer 102 is the gas barrier layer 104.
  • the support body 101 of this embodiment has the same configuration as the support body 1 of the first embodiment.
  • the intermediate layer 103 of this embodiment is formed on one surface of the support 101. Other than that, it has the same configuration as the protective layer of the first embodiment. That is, the intermediate layer 103 includes the same polyvalent metal component as that of the protective layer of the first embodiment, a polyester resin, and a dispersant. The intermediate layer 103 preferably further contains the same isocyanate compound as that of the protective layer of the first embodiment. The intermediate layer 103 may further include other components other than the polyvalent metal component, the polyester resin, the dispersant, and the isocyanate compound, similarly to the protective layer of the first embodiment. When the isocyanate compound is contained in the intermediate layer 103, the film formability of the intermediate layer 103, the hot water resistance, and the adhesion with the gas barrier layer 102 and the support 101 are further improved.
  • the gas barrier layer 102 of this embodiment is formed on the intermediate layer 103 formed on one surface of the support 101. Other than that, it has the same configuration as the gas barrier layer 2 of the first embodiment. That is, the gas barrier layer 102 of the present embodiment is a group consisting of the same polycarboxylic acid polymer as the gas barrier layer 2 of the first embodiment, a hydrolyzable silane compound, a hydrolyzate thereof, and a condensate thereof. It is a layer containing at least one selected silicon compound (hereinafter also referred to as “silicon compound (i)”). The gas barrier layer 102 may further contain other components other than the polycarboxylic acid-based polymer and the silicon compound (i) as necessary, like the gas barrier layer 2 of the first embodiment.
  • the packaging material precursor 110 can be manufactured, for example, by a manufacturing method including the following steps ( ⁇ 11) and ( ⁇ 12).
  • the intermediate layer coating solution contains a polyvalent metal component, a polyester resin, a dispersant, and a liquid medium.
  • the intermediate layer coating solution preferably further contains an isocyanate compound.
  • the intermediate layer coating solution may further contain other components other than the polyvalent metal component, the polyester resin, the dispersant, and the isocyanate compound, if necessary.
  • the polyvalent metal component, the polyester resin, the dispersant, the isocyanate compound, and other components are the same as the polyvalent metal component, the polyester resin, the dispersant, the isocyanate compound, and the other components in the intermediate layer 103, respectively. Is the same.
  • the liquid medium is not particularly limited, and water, an organic solvent, a mixed solvent of water and an organic solvent, or the like can be used.
  • the organic solvent include ethanol, 2-propanol, ethylene glycol monobutyl ether and the like from the viewpoint of improving coatability and drying efficiency.
  • these organic solvents are contained in the intermediate layer coating solution, they may be contained singly or in combination of two or more.
  • water or a mixed solvent of water and an organic solvent is preferable.
  • the mixed solvent of water and organic solvent is preferably a mixed solvent using the organic solvent described above, wherein water is present in an amount of 20 to 95% by mass, and the organic solvent is present in an amount of 80 to 5% by mass. Those are particularly preferred.
  • the solid content concentration of the coating solution for the intermediate layer is preferably 3 to 30% by mass, and more preferably 5 to 20% by mass. Solid content concentration is the ratio of the total solid content with respect to the whole quantity (100 mass%) of the coating liquid for intermediate
  • the total solid content of the intermediate layer coating liquid is the total amount of the polyvalent metal component in the intermediate layer coating liquid, the polyester resin, the dispersant, the isocyanate compound, and the other components that are solid ( Including the case of not containing an isocyanate compound and the case of not containing a solid component among other components).
  • the content of the polyvalent metal component in the intermediate layer coating solution is 40 to 90% by mass, preferably 50 to 85% by mass, preferably 60 to 85% by mass with respect to the total solid content (100% by mass) of the intermediate layer coating solution. 80 mass% is more preferable.
  • the content of the polyester resin in the intermediate layer coating solution is preferably 10 to 60% by mass, more preferably 20 to 40% by mass, based on the total solid content of the intermediate layer coating solution.
  • the content of the dispersant in the intermediate layer coating solution is 2 to 20% by mass, preferably 2 to 15% by mass, and more preferably 2 to 10% by mass with respect to the polyvalent metal component.
  • the content of the isocyanate compound in the intermediate layer coating solution is preferably 1 to 20% by mass, preferably 2 to 15% by mass, based on the total solid content of the intermediate layer coating solution. Is more preferable.
  • the content of the other components that are solids is preferably less than 5% by mass and more preferably less than 3% by mass with respect to the total solid content of the intermediate layer coating liquid. That is, the total amount of the polyvalent metal component, the polyester resin, the dispersant, and the isocyanate compound in the intermediate layer coating liquid is preferably more than 95% by mass and more preferably more than 97% by mass with respect to the total solid content.
  • the method for preparing the intermediate layer coating liquid is not particularly limited, and the intermediate layer coating liquid can be obtained by mixing the above-described components uniformly.
  • the polyester resin is preferably derived from the aqueous polyester resin dispersion as described above, and the method for preparing the intermediate layer coating liquid includes a polyvalent metal component, an aqueous polyester resin dispersion, a dispersant, and A method in which water, an isocyanate compound, and other components are mixed as necessary is preferable.
  • zinc oxide ultrafine particles are obtained by adding zinc oxide ultrafine particles and a dispersant to distilled water, and crushing and dispersing the primary particles of zinc oxide ultrafine particles.
  • a distilled dispersion, an aqueous polyester resin dispersion and a water-dispersible isocyanate compound are added to the aqueous dispersion of zinc oxide ultrafine particles and stirred. If necessary, an organic solvent such as isopropyl alcohol is added.
  • a method of obtaining a coating solution for an intermediate layer by stirring is mentioned.
  • a bead mill, a high-speed stirrer, or the like can be used for crushing the aggregates when obtaining the aqueous dispersion of zinc oxide ultrafine particles.
  • the haze of the resulting packaging material precursor tends to be small, which is preferable.
  • distilled water is added to the water-dispersible isocyanate compound in advance and stirred to obtain an aqueous dispersion of the water-dispersible isocyanate compound.
  • An aqueous dispersion of zinc oxide ultrafine particles is obtained by the method, an aqueous polyester resin dispersion is added to the aqueous dispersion of ultrafine zinc oxide, and the aqueous dispersion of the water-dispersible isocyanate compound is added to the obtained dispersion.
  • a method of obtaining an intermediate layer coating liquid by adding an organic solvent such as isopropyl alcohol and stirring as necessary.
  • the gas barrier layer coating liquid of the present embodiment contains a polycarboxylic acid polymer, a silicon compound (i), and water.
  • the gas barrier layer coating solution may further contain other components than the polycarboxylic acid polymer and the silicon compound (i) as necessary.
  • the gas barrier layer coating liquid may further contain an organic solvent.
  • the polycarboxylic acid polymer in the gas barrier layer coating liquid is the same as the polycarboxylic acid polymer in the gas barrier layer 102 except that the neutralization degree of the carboxyl group with the polyvalent metal is 20 to 50 mol%.
  • the neutralization degree of the carboxyl group with the polyvalent metal is 20 to 50 mol%.
  • a gas barrier layer coating liquid containing a polycarboxylic acid polymer is applied to the surface of the intermediate layer 103, polyvalent metal ions are supplied from the intermediate layer 103 until the coating liquid dries, and the polycarboxylic acid polymer The ion cross-linking reaction by polyvalent metal ions of the carboxyl group proceeds. At this time, the lower the degree of neutralization of the carboxyl group, the easier the ion crosslinking reaction proceeds.
  • the degree of neutralization is less than 20 mol%, the ionic crosslinking reaction proceeds rapidly, and the ratio ( ⁇ / ⁇ ) of the gas barrier layer 102 becomes 50 mol% or more. If the neutralization degree is greater than 50 mol%, the gas barrier layer coating solution gels, making application difficult.
  • the carboxyl group of the polycarboxylic acid polymer is more easily ionically cross-linked as the intermediate layer 103 is closer. Therefore, it is considered that the degree of ionic crosslinking by the polyvalent metal in the gas barrier layer 102 increases as the distance from the intermediate layer 103 increases. For example, when the degree of neutralization is 20 mol%, in the gas barrier layer 102, the degree of ionic crosslinking changes from 100 mol% to 20 mol% from the vicinity of the interface with the intermediate layer 103 to the surface on the opposite side. It is conceivable that the degree of ionic crosslinking is about 50 mol%.
  • the neutralization degree is 0 mol%
  • the carboxyl group is completely ion-crosslinked before drying, and the degree of ionic cross-linking from the vicinity of the interface with the intermediate layer 103 to the vicinity of the surface on the opposite side. It is considered that the degree of ionic crosslinking is 100 mol%.
  • the silicon compound (i) and other components in the gas barrier layer coating solution are the same as the silicon compound (i) and other components in the gas barrier layer 102, respectively, and the preferred embodiments are also the same.
  • the organic solvent is preferably at least one selected from the group consisting of lower alcohols having 1 to 5 carbon atoms and lower ketones having 3 to 5 carbon atoms. Specific examples include methanol, ethanol, propanol, isopropanol, n-butanol, isobutanol, sec-butanol, tert-butanol, acetone, and methyl ethyl ketone. From the viewpoint of applicability of the gas barrier layer coating solution, it is particularly preferable to contain a lower alcohol having 1 to 5 carbon atoms as the organic solvent.
  • the content of the organic solvent is such that water is present in an amount of 20 to 95% by mass, and the organic solvent is present in an amount of 80 to 5% by mass when the total of water and the organic solvent is 100% by mass. An amount is preferred.
  • the content of the silicon compound (i) in the gas barrier layer coating solution is 2 to 25% by mass, preferably 2 to 20% by mass, based on the polycarboxylic acid polymer (100% by mass). If the content of the silicon compound (i) is within the above range, the adhesion between the gas barrier layer 102 and the support 101 is excellent, and the water resistance of the packaging material obtained from the packaging material precursor 110 is more excellent, Difficult to whiten when exposed to cold water.
  • the mass of the silicon compound (i) other than the hydrolyzable silane compound is the mass in terms of the hydrolyzable silane compound as described above.
  • the content of other components in the gas barrier layer coating solution is preferably 30% by mass or less, more preferably 20% by mass or less, relative to the polycarboxylic acid polymer (100% by mass).
  • the polycarboxylic acid polymer in the gas barrier layer coating solution, the silicon compound (i), and other components included as necessary Is preferably 0.5 to 50% by mass, more preferably 0.8 to 30% by mass, based on the total mass of the gas barrier layer coating liquid. It is particularly preferably 1.0 to 20% by mass.
  • the total content of the polycarboxylic acid polymer and the silicon compound (i) in the gas barrier layer coating solution is preferably 70% by mass or more, more preferably 80% by mass or more, based on the solid content mass in the gas barrier layer coating solution. Is more preferable, and may be 100% by mass.
  • the mass of the silicon compound (i) other than the hydrolyzable silane compound is the mass in terms of the hydrolyzable silane compound as described above.
  • the gas barrier layer coating liquid of this embodiment can be prepared by mixing each component.
  • a polycarboxylic acid polymer having a neutralization degree of 20 to 50 mol% may be used, or a gas barrier layer using a polycarboxylic acid polymer having a neutralization degree of 0 mol%.
  • the neutralization degree may be 20 to 50 mol% when preparing the coating liquid.
  • a polycarboxylic acid polymer having a neutralization degree of 0 mol%, a polyvalent metal component, and water are mixed, the polycarboxylic acid polymer reacts with the polyvalent metal component to neutralize the carboxyl group.
  • the degree of neutralization can be adjusted by the blending amount of the polyvalent metal component.
  • the hydrolyzable silane compound is directly mixed with the liquid containing the polycarboxylic acid polymer and water to form a gas barrier layer coating liquid.
  • the water barrier is added to the hydrolyzable silane compound to perform hydrolysis and subsequent condensation reaction, and the resulting hydrolyzed condensate is mixed with a polycarboxylic acid polymer to form a gas barrier layer.
  • a coating solution may be prepared.
  • the intermediate layer 103 is formed by applying the intermediate layer coating liquid on the support 101 and removing the liquid medium of the intermediate layer coating liquid by drying.
  • the coating method of the intermediate layer coating liquid is not particularly limited, and for example, a casting method, dipping method, roll coating method, gravure coating method, screen printing method, reverse coating method, spray coating method, kit coating method, die coating method. , Metal ring bar coating method, chamber doctor combined coating method, curtain coating method and the like.
  • the drying method is not particularly limited, and examples thereof include a hot air drying method, a hot roll contact method, an infrared heating method, and a microwave heating method, and these methods may be performed alone or in combination.
  • the drying temperature is not particularly limited, but is usually preferably 50 to 160 ° C.
  • the pressure during drying is usually preferably normal pressure or reduced pressure, and preferably normal pressure from the viewpoint of facility simplicity.
  • a gas barrier layer coating liquid is applied to the surface of the intermediate layer 103 formed in the step ( ⁇ 11), and the gas barrier layer 102 is removed by drying to remove water (or an organic solvent if an organic solvent is included) in the gas barrier layer coating liquid. Is formed.
  • the coating method of the gas barrier layer coating liquid is not particularly limited. For example, casting method, dipping method, roll coating method, gravure coating method, screen printing method, reverse coating method, spray coating method, kit coating method, die coating method. , Metal ring bar coating method, chamber doctor combined coating method, curtain coating method and the like.
  • the drying method is not particularly limited, and examples thereof include a hot air drying method, a hot roll contact method, an infrared heating method, and a microwave heating method, and these methods may be performed alone or in combination.
  • the drying temperature is not particularly limited, but when the above-mentioned water or a mixed solvent of water and an organic solvent is used as a solvent, it is usually preferably 50 to 160 ° C.
  • the pressure during drying is usually preferably normal pressure or reduced pressure, and preferably normal pressure from the viewpoint of facility simplicity.
  • heat treatment may be performed when the drying is completed (or almost completed).
  • the heat treatment is usually carried out at a temperature of 120 to 240 ° C., preferably 150 to 230 ° C., usually 10 seconds to 30 minutes, preferably 20 seconds to 20 minutes.
  • the drying and heat treatment have portions where conditions such as temperature overlap, but these do not need to be clearly distinguished and may be performed continuously.
  • the packaging material precursor 110 is useful as a packaging material precursor as shown below, or for the production of a package in which an article to be packaged is packaged with a packaging material.
  • the packaging material 111 of this embodiment is the same as the packaging material precursor 110 except that the gas barrier layer 104 is provided instead of the gas barrier layer 102, and the support 101, the intermediate layer 103, and the gas barrier layer 104 are adjacent in this order. And a laminated structure laminated.
  • Gas barrier layer 104 of the packaging material 111 the 1490cm -1 ⁇ 1659cm maximum peak height absorbance in the range of -1 and (alpha), the maximum peak height in absorbance within the range of the 1660 cm -1 ⁇ 1750 cm -1 Except that the ratio ( ⁇ / ⁇ ) to ( ⁇ ) is 7 or more, it is the same as the gas barrier layer 102 of the packaging material precursor 110.
  • the packaging material 111 can be obtained by subjecting the packaging material precursor 110 to hot water treatment.
  • hot water treatment include retort treatment and boil treatment. The retort process and the boil process will be described in detail in the subsequent manufacturing method of the package.
  • moisture is supplied to the gas barrier layer 102 and the intermediate layer 103, and ionic crosslinking with polyvalent metal ions of the carboxyl group of the polycarboxylic acid polymer contained in the gas barrier layer 102 proceeds.
  • the ratio ( ⁇ / ⁇ ) increases from 1 to less than 7 to 7 or more, and the gas barrier layer 102 becomes the gas barrier layer 104. Thereby, the packaging material 111 is obtained.
  • the ratio ( ⁇ / ⁇ ) of the gas barrier layer 102 before the hot water treatment is 1 or more and less than 7, the gas barrier layer 102 is difficult to expand due to moisture supplied via the support 101. If the ratio ( ⁇ / ⁇ ) after the hydrothermal treatment is 7 or more, the ionic crosslinking degree of the carboxyl group of the polycarboxylic acid polymer is sufficiently high. Therefore, the crosslink density of the gas barrier layer 104 after the hot water treatment is sufficiently high, and the gas barrier layer 104 exhibits excellent gas barrier properties even under high humidity conditions.
  • the oxygen permeability of the packaging material 111 is preferably 50 cm 3 (STP) / (m 2 ⁇ day ⁇ MPa) or less, and 20 cm 3 (STP). ) / (M 2 ⁇ day ⁇ MPa) or less, more preferably 10 cm 3 (STP) / (m 2 ⁇ day ⁇ MPa) or less.
  • the lower the oxygen permeability is not particularly limited, but it is usually 0.1 cm 3 / (m 2 ⁇ day ⁇ MPa) or more.
  • the oxygen permeability is a value measured under conditions of a temperature of 30 ° C. and a relative humidity (RH) of 70% in accordance with ASTM F1927-98 (2004).
  • (STP) means standard conditions (0 ° C., 1 atm) for defining the volume of oxygen.
  • the packaging material is packaged using the packaging material precursor 110 and subjected to hot water treatment, so that the packaging material is packaged with the packaging material 111. Can be obtained.
  • FIG. 9 is a schematic cross-sectional view of a packaging material precursor 120 according to a fifth embodiment of the present invention.
  • FIG. 10 is a schematic cross-sectional view of the packaging material 121 obtained from the packaging material precursor 120.
  • the packaging material precursor 120 of the present embodiment has a laminated structure in which the support 107, the intermediate layer 103, and the gas barrier layer 102 are laminated adjacently in this order. That is, in the packaging material precursor 120 of this embodiment, the intermediate layer 103 is directly provided on the support 107 and the gas barrier layer 102 is directly provided on the intermediate layer 103.
  • the support 107 includes a base material 105 and an anchor coat layer 106 provided adjacent to one surface (on the intermediate layer 103 side) of the base material 105.
  • the packaging material 121 is the same as the packaging material precursor 120 except that the gas barrier layer 102 is the gas barrier layer 104.
  • the water vapor permeability of the support 107 is 100 g / m 2 or more, and more preferably 120 g / m 2 or more.
  • Examples of the base material 105 constituting the support 107 include the same materials as those of the support 101 of the fourth embodiment. However, the water vapor transmission rate in a state where the anchor coat layer 106 is laminated needs to be 100 g / m 2 or more.
  • the anchor coat layer 106 is provided to improve the adhesion between the base material 105 and the intermediate layer 103.
  • the anchor coat layer 106 can have the same configuration as the anchor coat layer 6 of the second embodiment.
  • the packaging material precursor 120 can be manufactured, for example, by a manufacturing method including the following steps ( ⁇ 11), ( ⁇ 12), and ( ⁇ 13).
  • the intermediate layer coating solution and the gas barrier layer coating solution are the same as those in the fourth embodiment.
  • the formation method of the anchor coat layer 106 is not particularly limited, and a known method can be appropriately selected.
  • the anchor coat layer 106 can be formed by applying and drying an anchor coat layer coating solution.
  • the coating liquid for the anchor coat layer include those containing the above-mentioned resin or its precursor, a solvent, and additives as necessary.
  • the resin or its precursor is preferably a polyurethane-based, polyester-based or acrylic-based polymer material.
  • a two-component solution comprising a main component containing a polyester-based polyol, which is a polyurethane-based polymer material, and a curing agent containing an isocyanate.
  • a type anchor coating agent is preferred.
  • the step ( ⁇ 12) can be performed in the same manner as the step ( ⁇ 11) in the fourth embodiment.
  • the step ( ⁇ 13) can be performed in the same manner as the step ( ⁇ 12) in the fourth embodiment.
  • An aging treatment may be performed.
  • the aging treatment include a treatment of holding at a temperature of usually 30 to 200 ° C., preferably 30 to 150 ° C. for 0.5 to 10 days, preferably 1 to 7 days.
  • a heat treatment may be performed when the treatment is performed and the aging treatment is completed.
  • the heat treatment is usually carried out at a temperature of 120 to 240 ° C., preferably 150 to 230 ° C., usually 10 seconds to 30 minutes, preferably 20 seconds to 20 minutes. Note that the drying, heat treatment, and aging treatment have portions where conditions such as temperature overlap, but these do not need to be clearly distinguished and may be performed continuously.
  • the packaging material precursor 120 is useful as a precursor for the packaging material 121 or for producing a package in which an object to be packaged is packaged with the packaging material 121.
  • the packaging material 121 is the same as the packaging material precursor 120 except that it has the gas barrier layer 104 instead of the gas barrier layer 102, and the support 107, the intermediate layer 103, and the gas barrier layer 104 are laminated adjacently in this order. A laminated structure is provided.
  • the packaging material 121 can be obtained by subjecting the packaging material precursor 120 to hot water treatment.
  • the hot water treatment is the same as described above.
  • the preferable oxygen permeability of the packaging material 121, that is, the packaging material precursor 120 after the hot water treatment is the same as in the fourth embodiment.
  • a package body in which the package object is packaged with the package material 121 can be obtained by packaging the package object using the packaging material precursor 120 and performing hot water treatment. Packaging of the package and hot water treatment can be performed in the same manner as in the fourth embodiment.
  • FIG. 11 is a schematic cross-sectional view of a packaging material precursor 130 according to a sixth embodiment of the present invention.
  • FIG. 12 is a schematic cross-sectional view of the packaging material 131 obtained from the packaging material precursor 130.
  • the packaging material precursor 130 of this embodiment includes a laminated structure in which a support 101, an intermediate layer 103, and a gas barrier layer 102 are laminated adjacently in this order, and an adhesive layer 109 on the surface of the laminated structure on the gas barrier layer 102 side. And the other base material 108 laminated via. That is, in the packaging material precursor 130 of this embodiment, the intermediate layer 103 is directly provided on the support 101 and the gas barrier layer 102 is directly provided on the intermediate layer 103.
  • the packaging material 131 is the same as the packaging material precursor 130 except that the gas barrier layer 102 is the gas barrier layer 104.
  • the other base material 108 is used for imparting arbitrary physical properties to the packaging material precursor 130 and the packaging material 131. Specifically, the other base material 108 can provide strength, sealability, easy-opening property at the time of sealing, design property, light blocking property, moisture resistance, and the like. Furthermore, when performing a retort process, a boil process, etc., the gas barrier layer 102 is not directly exposed to a hot water or a vapor
  • the other substrate 108 is appropriately selected depending on the purpose, but plastic films are preferable.
  • the other base material 108 may be a laminate having two or more layers. Examples of the material of the other base material 108 include polyolefin, nylon, and inorganic vapor-deposited nylon.
  • the thickness of the other substrate 108 is preferably 1 to 1000 ⁇ m, and more preferably 5 to 500 ⁇ m.
  • the adhesive layer is a layer that adheres the intermediate layer 103 and another substrate 108.
  • the material of the adhesive layer 109 is not particularly limited.
  • the adhesive layer 109 can be formed using a one-component or two-component polyurethane adhesive or an acrylic adhesive.
  • an adhesive resin such as an ethylene-vinyl acetate copolymer, an ethylene-acrylic acid copolymer, an ethylene-methacrylic acid copolymer, or an ionomer resin is used.
  • the adhesive layer 109 can be formed.
  • the packaging material precursor 130 can be manufactured, for example, by a manufacturing method including the following steps ( ⁇ 11), ( ⁇ 12), and ( ⁇ 13).
  • the step ( ⁇ 11) can be performed in the same manner as the step ( ⁇ 11) in the fourth embodiment.
  • the step ( ⁇ 12) can be performed in the same manner as the step ( ⁇ 12) in the fourth embodiment.
  • the method for laminating the other base material 108 is not particularly limited, and examples thereof include a dry laminating method and an extrusion laminating method.
  • the method for applying the adhesive in the dry laminating method is not particularly limited, and examples thereof include a gravure coating method.
  • the packaging material precursor 130 is useful as a precursor for the packaging material 131 or for producing a package in which an object to be packaged is packaged with the packaging material 131.
  • the packaging material 131 is the same as the packaging material precursor 130 except that it has the gas barrier layer 104 instead of the gas barrier layer 102, and the support 101, the intermediate layer 103, and the gas barrier layer 104 are laminated adjacently in this order.
  • a laminated structure and another base material 108 laminated with an adhesive layer 109 on the surface of the laminated structure on the intermediate layer 103 side are provided.
  • the packaging material 131 can be obtained by subjecting the packaging material precursor 130 to hot water treatment.
  • the hot water treatment is the same as described above.
  • the preferable oxygen permeability of the packaging material 131, that is, the packaging material precursor 130 after the hot water treatment is the same as in the fourth embodiment.
  • a package body in which the package object is packaged with the package material 131 can be obtained by packaging the package object using the packaging material precursor 130 and performing hot water treatment. Packaging of the package and hot water treatment can be performed in the same manner as in the fourth embodiment.
  • the other base material 108 functions as a sealant layer, it can be formed into a bag shape by heat-sealing the outer edge portion with the other base material 108 side surfaces of the packaging material precursor 130 facing each other. Examples of the form of the bag include a three-side seal, a four-side seal, a standing pouch, and pillow packaging.
  • the present invention has been described with reference to the first to sixth embodiments, the present invention is not limited to these embodiments.
  • the support 7 may be used instead of the support 1.
  • printing or vapor deposition may be given to the other base material 8 from viewpoints, such as designability provision, light-blocking provision, moisture-proof provision.
  • a support 107 may be used instead of the support 101. From the viewpoints of providing design properties, providing light blocking properties, and providing moisture resistance, printing or vapor deposition may be performed on the other base material 108.
  • a two-component curable adhesive Takelac (registered trademark) A620 (main agent) / Takenate (registered trademark) A65 (curing agent) manufactured by Mitsui Chemicals Polyurethane was used.
  • CPP Toray Film processed polypropylene film Treffan (registered trademark) ZK93KM (thickness 60 ⁇ m) was used. The obtained laminated film was cured at 40 ° C. for 3 days after being bonded.
  • a three-sided pouch having a size of 100 mm ⁇ 140 mm was prepared by pasting together the CPP surfaces of the obtained laminate film obtained by the lamination or the laminate film after the abuse test with an impulse sealer.
  • the three-way pouch was filled with 100 g of water.
  • OTR oxygen permeation tester
  • the OTR of the laminate film that has not been subjected to the abuse test is also referred to as “post-retort OTR”, and the OTR of the laminate film that has been subjected to the abuse test is also referred to as “retort OTR after abuse”.
  • the infrared absorption spectrum of the gas barrier layer of the obtained laminate film obtained by the lamination was measured by the following procedure before and after the retort treatment.
  • the CPP film of the laminate film was peeled off.
  • the adhesive was dissolved using an organic solvent such as toluene, and the protective layer was removed using alcohols such as 2-propanol to expose the gas barrier layer.
  • the infrared absorption spectrum of the exposed gas barrier layer was measured by ATR method using FT-JR1710 manufactured by Perkin-Elmer.
  • the CPP film of the laminate film was peeled off.
  • the adhesive was dissolved using an organic solvent such as toluene to expose the gas barrier layer.
  • the infrared absorption spectrum of the exposed gas barrier layer was measured by ATR method using FT-JR1710 manufactured by Perkin-Elmer.
  • Preparation of coating liquid A for anchor coat layer Polyol, Si agent, curing agent and ethyl acetate were mixed in the formulation shown in Table 1 to prepare coating liquid A-1.
  • the polyol Mitsubishi Rayon Dianal LR209 (acrylic polyol) was used.
  • the Si agent Shin-Etsu Silicone KBE9007 (3-isocyanatepropyltriethoxysilane) was used.
  • As a curing agent Takenate A56 (isophorone diisocyanate (IPDI) / xylylene diisocyanate (XDI)) made by Mitsui Chemicals Polyurethane was used.
  • ethyl acetate Tokyo Chemical Industry ethyl acetate was used.
  • “%” of the solid content concentration is “mass%”, and the same applies to the following.
  • a polyol, a curing agent and ethyl acetate were mixed in the formulation shown in Table 2 to prepare a coating liquid A-2.
  • a polyol Mitsui Chemicals Polyurethane Takelac A525 (polyester polyol) was used.
  • Takenate A52 diisocyanate made by Mitsui Chemicals Polyurethane was used.
  • ethyl acetate Tokyo Chemical Industry ethyl acetate was used.
  • a polycarboxylic acid-based polymer, a polyvalent metal compound, a Si agent, distilled water and 2-propanol are mixed in the formulation shown in Table 3, and coating liquid B (B-1, B-2, B-3, B-4) is mixed. , B′-1, B′-2, B′-3, B′-4) were prepared.
  • a polycarboxylic acid polymer Toronsei Aron A10-H (polyacrylic acid, neutralization degree 0 mol%) was used.
  • As the polyvalent metal compound zinc oxide (zinc oxide) manufactured by Tokyo Chemical Industry was used.
  • the silicon compound KBM403 (3-glycidoxypropyltrimethoxysilane) manufactured by Shin-Etsu Silicone was used.
  • 2-propanol 2-propanol produced by Tokyo Chemical Industry was used.
  • the amount of Si agent is the ratio (mass%) of the Si agent with respect to the polycarboxylic acid polymer.
  • ⁇ Preparation of coating liquid T for protective layer and intermediate layer> A polyvalent metal compound, a dispersant and water were mixed in the formulation shown in Table 4 to prepare a coating liquid Ta.
  • a polyvalent metal compound FINEX50 (Zinc oxide ultrafine particles, average primary particle diameter 20 nm) manufactured by Sakai Chemical Industry was used.
  • a dispersant ARON (registered trademark) T-50 (sodium polyacrylate, average molecular weight 6000) manufactured by Toagosei Co., Ltd. was used.
  • T. K fill mix high speed stirrer
  • the obtained coating liquid Ta, polyester resin, isocyanate compound, water and 2-propanol as a solvent were mixed in the formulation shown in Table 4, and coating liquids T (T-1 to T-3, T′-1, T′— 2) was prepared.
  • Unitika Elitel KT-8803 polyester resin
  • isocyanate compound Liofol Hardener UR5889-21 (hexamethylene diisocyanate polymer) manufactured by Henkel was used.
  • 2-propanol 2-propanol produced by Tokyo Chemical Industry was used.
  • the polyvalent metal compound ratio is the ratio (mass%) of the polyvalent metal compound to the total solid content of the coating liquid T
  • the dispersant ratio is the ratio (mass%) of the dispersant to the polyvalent metal component. It is.
  • Example 1 Ny / B-1 / T-1>
  • the coating liquids B-1 and T-1 were sequentially applied using a bar coater so that the thickness after drying was 0.3 ⁇ m and 0.3 ⁇ m, respectively. Dried.
  • a precursor for packaging material having a structure of Ny / gas barrier layer / protective layer was obtained.
  • As a stretched Ny film Unitika stretched nylon film emblem ONBC (thickness 15 ⁇ m) was used.
  • the stretched Ny film had a water vapor permeability of 150 g / m 2 .
  • the above-described evaluation [Lamination] to [Measurement of water vapor permeability] was performed on the obtained packaging material precursor. The results are shown in Table 5.
  • Example 2 Ny / A-1 / B-1 / T-1>
  • the coating solution A-1 was applied and dried using a bar coater so that the thickness after drying was 0.2 ⁇ m, thereby forming an anchor coat layer.
  • a support having a configuration of Ny / A-1 was obtained.
  • the stretched Ny film a united nylon stretched nylon film, Emblem ONBC (thickness 15 ⁇ m) was used.
  • the water vapor permeability of the support was 150 g / m 2 .
  • the coating liquids B-1 and T-1 are sequentially applied and dried using a bar coater so that the thickness after drying becomes 0.3 ⁇ m and 0.3 ⁇ m, respectively. I let you. In this way, a packaging material precursor having a structure of Ny / anchor coat layer / gas barrier layer / protective layer was obtained. The above-mentioned evaluation was performed about the obtained precursor for packaging materials. The results are shown in Table 5.
  • Example 3 Ny / B-1 / T-2> A precursor for a packaging material was obtained and evaluated in the same manner as in Example 1 except that the coating liquid T-2 was used instead of the coating liquid T-1. The results are shown in Table 5.
  • Example 4 Ny / B-1 / T-3> A packaging material precursor was obtained and evaluated in the same manner as in Example 1 except that the coating liquid T-3 was used instead of the coating liquid T-1. The results are shown in Table 5.
  • Example 5 Ny / B-2 / T-1> A packaging material precursor was obtained and evaluated in the same manner as in Example 1 except that the coating liquid B-2 was used instead of the coating liquid B-1. The results are shown in Table 5.
  • Example 6 Ny / A-2 / B-1 / T-1> A packaging material precursor was obtained and evaluated in the same manner as in Example 2 except that the coating liquid A-2 was used in place of the coating liquid A-1. The results are shown in Table 5.
  • the water vapor permeability of the support was 150 g / m 2 .
  • Example 7 Coating was performed in the same manner as described above except that AQUALIC DL40S manufactured by Nippon Shokubai (sodium polyacrylate, solid content (solute) concentration 40%, average molecular weight 3500) was used instead of the dispersant in the coating liquid T-1. Liquid T-4 was prepared. A packaging material precursor was obtained and evaluated in the same manner as in Example 1 except that the coating liquid T-4 was used instead of the coating liquid T-1. The results are shown in Table 5.
  • Example 8> Other than using Aaron A-6330 manufactured by Toagosei Co., Ltd. (sodium acrylate-maleic acid copolymer, solid content (solute) concentration 40%, average molecular weight 10,000) instead of the dispersant in the coating liquid T-1.
  • a coating solution T-5 was prepared in the same manner as described above.
  • a packaging material precursor was obtained and evaluated in the same manner as in Example 1 except that the coating liquid T-5 was used instead of the coating liquid T-1. The results are shown in Table 5.
  • Example 9> The same as above except that Kao's Poise 520 (acrylic acid-maleic acid copolymer sodium, solid (solute) concentration 40%, average molecular weight 4000) was used instead of the dispersant in the coating liquid T-1.
  • Coating liquid T-6 was prepared as described above.
  • a packaging material precursor was obtained and evaluated in the same manner as in Example 1 except that the coating liquid T-6 was used instead of the coating liquid T-1. The results are shown in Table 5.
  • Example 10 Ny / T-1 / B-3>
  • the coating liquids T-1 and B-3 were sequentially applied using a bar coater so that the thickness after drying was 0.3 ⁇ m and 0.3 ⁇ m, respectively. Dried.
  • a precursor for packaging material having a structure of Ny / intermediate layer / gas barrier layer was obtained.
  • As the stretched Ny film a stretched nylon film emblem ONBC (thickness 15 ⁇ m) manufactured by Unitika was used.
  • the stretched Ny film had a water vapor permeability of 150 g / m 2 .
  • the above-described evaluation [Lamination] to [Measurement of water vapor permeability] was performed on the obtained packaging material precursor. The results are shown in Table 5.
  • Example 11 Ny / A-1 / T-1 / B-3>
  • the coating liquid A-1 was applied using a bar coater so that the thickness after drying was 0.2 ⁇ m and dried to form an anchor coat layer, and Ny / A ⁇ A support having the structure of 1 was obtained.
  • the stretched Ny film a stretched nylon film manufactured by Unitika, Emblem ONBC (thickness 15 ⁇ m) was used. The water vapor permeability of the support was 150 g / m 2 .
  • the coating liquids T-1 and B-3 are sequentially applied and dried using a bar coater so that the thickness after drying becomes 0.3 ⁇ m and 0.3 ⁇ m, respectively.
  • a packaging material precursor having a structure of Ny / anchor coat layer / intermediate layer / gas barrier layer was obtained.
  • the above-mentioned evaluation was performed about the obtained precursor for packaging materials. The results are shown in Table 5.
  • Example 12 Ny / T-2 / B-3> A packaging material precursor was obtained and evaluated in the same manner as in Example 10 except that the coating liquid T-2 was used instead of the coating liquid T-1. The results are shown in Table 5.
  • Example 13 Ny / T-3 / B-3> A packaging material precursor was obtained and evaluated in the same manner as in Example 10 except that the coating liquid T-3 was used instead of the coating liquid T-1. The results are shown in Table 5.
  • Example 14 Ny / T-1 / B-4> A packaging material precursor was obtained and evaluated in the same manner as in Example 10 except that the coating liquid B-4 was used instead of the coating liquid B-3. The results are shown in Table 5.
  • Example 15 Ny / A-2 / T-1 / B-3> A precursor for a packaging material was obtained and evaluated in the same manner as in Example 11 except that the coating liquid A-2 was used instead of the coating liquid A-1. The results are shown in Table 5.
  • the water vapor permeability of the support was 150 g / m 2 .
  • Example 16 Coating was performed in the same manner as described above except that AQUALIC DL40S manufactured by Nippon Shokubai (sodium polyacrylate, solid content (solute) concentration 40%, average molecular weight 3500) was used instead of the dispersant in the coating liquid T-1. Liquid T-4 was prepared. A precursor for packaging material was obtained and evaluated in the same manner as in Example 10 except that the coating liquid T-4 was used instead of the coating liquid T-1. The results are shown in Table 5.
  • Example 17> Other than using Aaron A-6330 manufactured by Toagosei Co., Ltd. (sodium acrylate-maleic acid copolymer, solid content (solute) concentration 40%, average molecular weight 10,000) instead of the dispersant in the coating liquid T-1.
  • a coating solution T-5 was prepared in the same manner as described above.
  • a precursor for packaging material was obtained and evaluated in the same manner as in Example 10 except that the coating liquid T-5 was used instead of the coating liquid T-1. The results are shown in Table 5.
  • Example 18> The same as above except that Kao's Poise 520 (acrylic acid-maleic acid copolymer sodium, solid (solute) concentration 40%, average molecular weight 4000) was used instead of the dispersant in the coating liquid T-1.
  • Coating liquid T-6 was prepared as described above.
  • a packaging material precursor was obtained and evaluated in the same manner as in Example 10 except that the coating liquid T-6 was used instead of the coating liquid T-1. The results are shown in Table 5.
  • PET / B-1 / T-1> A precursor for packaging material was obtained and evaluated in the same manner as in Example 1 except that Toray polyethylene terephthalate (PET) film mirror P60 (thickness 12 ⁇ m) was used instead of the stretched Ny film. The results are shown in Table 5. The water vapor permeability of this PET film was 50 g / m 2 .
  • PET Toray polyethylene terephthalate
  • an inorganic vapor deposition layer having a thickness of 20 nm By forming an inorganic vapor deposition layer having a thickness of 20 nm, a support having a configuration of Ny / anchor coat layer / inorganic vapor deposition layer was obtained. The water vapor permeability of this support was 1 g / m 2 .
  • the coating liquids B-1 and T-1 are sequentially applied and dried using a bar coater so that the thickness after drying becomes 0.3 ⁇ m and 0.3 ⁇ m, respectively. I let you.
  • a precursor for packaging material having a structure of Ny / anchor coat layer / inorganic vapor deposition layer / gas barrier layer / protective layer was obtained.
  • the above-mentioned evaluation was performed about the obtained precursor for packaging materials. The results are shown in Table 5.
  • the coating liquids B-1 and T-1 are sequentially applied and dried using a bar coater so that the thickness after drying becomes 0.3 ⁇ m and 0.3 ⁇ m, respectively.
  • a packaging material precursor having a structure of Ny / inorganic vapor deposition layer / gas barrier layer / protective layer was obtained.
  • the above-mentioned evaluation was performed about the obtained precursor for packaging materials. The results are shown in Table 5.
  • PET / T-1 / B-3> A precursor for packaging material was obtained and evaluated in the same manner as in Example 10 except that Toray polyethylene terephthalate (PET) film mirror P60 (thickness 12 ⁇ m) was used instead of the stretched Ny film. The results are shown in Table 5. The water vapor permeability of this PET film was 50 g / m 2 .
  • PET Toray polyethylene terephthalate
  • Example 10 Ny / T-1 / B'-4> A packaging material precursor was obtained and evaluated in the same manner as in Example 10 except that the coating liquid B′-4 was used instead of the coating liquid B-3. The results are shown in Table 5.
  • a support having a structure of / anchor coat layer / inorganic vapor deposition layer was obtained.
  • the water vapor permeability of this support was 1 g / m 2 .
  • the coating liquids T-1 and B-3 are sequentially applied onto the inorganic vapor-deposited layer of the support using a bar coater so that the thickness after drying is 0.3 ⁇ m and 0.3 ⁇ m, respectively, and dried.
  • a precursor for a packaging material having a structure of Ny / anchor coat layer / inorganic vapor deposition layer / intermediate layer / gas barrier layer was obtained.
  • the above-mentioned evaluation was performed about the obtained precursor for packaging materials. The results are shown in Table 5.
  • ⁇ Comparative Example 14 Ny / inorganic vapor deposition layer / T-1 / B-3>
  • On one side of the stretched Ny film by evaporating metal aluminum by introducing a vacuum vapor deposition apparatus using an electron beam heating method, oxygen gas is vaporized therein, and aluminum oxide is vapor deposited to form an inorganic vapor deposition layer having a thickness of 20 nm.
  • a support having a structure of Ny / inorganic vapor deposition layer was obtained.
  • As the stretched Ny film a stretched nylon film manufactured by Unitika, Emblem ONBC (thickness 15 ⁇ m) was used. The water vapor permeability of this support was 1 g / m 2 .
  • the coating liquids T-1 and B-3 are sequentially applied onto the inorganic vapor-deposited layer of the support using a bar coater so that the thickness after drying is 0.3 ⁇ m and 0.3 ⁇ m, respectively, and dried.
  • a packaging material precursor having a structure of Ny / inorganic vapor deposition layer / intermediate layer / gas barrier layer was obtained.
  • the above-mentioned evaluation was performed about the obtained precursor for packaging materials. The results are shown in Table 5.
  • Comparative Examples 1 and 6 to 7 in which the water vapor permeability of the support is less than 100 g / m 2 and Comparative Examples 2 to 3 in which the degree of neutralization of the polycarboxylic acid polymer in the gas barrier layer coating liquid is greater than 0%.
  • Comparative Example 4 in which the content of the dispersant in the coating liquid for the protective layer is less than 2% by mass relative to the polyvalent metal component, and the content of the polyvalent metal component in the coating liquid for the protective layer is the total solid content.
  • the packaging material precursor of Comparative Example 5 which is less than 40% by mass, was inferior to Examples 1 to 9 in oxygen gas barrier properties after retorting. Moreover, when it abused before the retort process, oxygen gas barrier property deteriorated.
  • Comparative Examples 8 and 13 to 14 in which the water vapor permeability of the support is less than 100 g / m 2 and Comparative Examples 9 to 10 in which the neutralization degree of the polycarboxylic acid polymer in the gas barrier layer coating solution is 0%.
  • Comparative Example 11 in which the content of the dispersant in the intermediate layer coating liquid is less than 2% by mass with respect to the polyvalent metal component, and the content of the polyvalent metal component in the intermediate layer coating liquid is the total solid content.
  • the precursor for packaging material of Comparative Example 12 in which the stacking order of the gas barrier layer and the intermediate layer is reversed is less than 40% by mass, and the oxygen gas barrier property after retorting is greater than that of Examples 10-18.
  • the oxygen gas barrier properties deteriorated when abused before the retort treatment.
  • the precursor for a gas barrier packaging material of the present invention has the above characteristics, it is easily deteriorated by the influence of oxygen, water vapor, etc., for example, an article such as a precision metal part such as a food, a beverage, a pharmaceutical, and an electronic part. It is useful as a precursor of a packaging material that wraps the product or for producing a package in which the article is packaged with a packaging material.
  • the above-mentioned article (package) is packaged with a precursor for gas barrier packaging material, and subjected to hot water treatment such as boil treatment and retort treatment, whereby the precursor for gas barrier packaging material is used as a gas barrier packaging material.
  • a package in which an article to be packaged is wrapped with a gas barrier packaging material can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Laminated Bodies (AREA)
  • Wrappers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

This gas barrier packaging material precursor is provided with: a support; a gas barrier layer disposed directly on the support and containing a polycarboxylic acid polymer and at least one silicon compound selected from the group consisting of hydrolyzable silane compounds, hydrolyzates thereof, and their condensates; and a protective layer disposed directly on the gas barrier layer and containing a multivalent metal component, a polyester resin, and a dispersing agent. The water vapor transmission rate of the support at 40°C and a relative humidity of 90% is at least 100 g/m2, the content of the multivalent metal component is 40 to 90 mass% with reference to the total mass of the protective layer, the content of the dispersing agent is 2 to 20 mass% with reference to the multivalent metal component, and the content of the silicon compound is 2 to 25 mass% with reference to the polycarboxylic acid polymer. In measurement of the infrared absorption spectrum of the gas barrier layer, the ratio (α/β) between the maximum peak height (α) for the absorbance in the wavenumber range of 1490 cm–1 to 1659 cm–1 and the maximum peak height (β) for the absorbance in the wavenumber range of 1660 cm–1 to 1750 cm–1 is at least 1 and less than 7.

Description

ガスバリア性包装材料用前駆体、その製造方法、ガスバリア性包装材料および包装体の製造方法Precursor for gas barrier packaging material, method for producing the same, gas barrier packaging material, and method for producing the package
 本発明は、ガスバリア性包装材料用前駆体、その製造方法、ガスバリア性包装材料および包装体の製造方法に関する。
 本願は、2015年12月14日に日本に出願された特願2015-243267号及び特願2015-243335号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a precursor for a gas barrier packaging material, a method for producing the same, a gas barrier packaging material, and a method for producing a package.
This application claims priority based on Japanese Patent Application Nos. 2015-243267 and 2015-243335 filed in Japan on December 14, 2015, the contents of which are incorporated herein by reference.
 食品、医薬品等の包装に用いられる包装材料に対しては、酸素や水蒸気、あるいは、内容物と反応するような他のガスの透過を抑制し、内容物の変質を防止するため、ガスバリア性が求められる。
 従来、ガスバリア性を有する包装材料として、ポリ(メタ)アクリル酸やポリビニルアルコールに代表される、分子内に親水性の高い高水素結合性基を含有する重合体から形成されるフィルムや、前記重合体から形成される層を有する多層フィルムが用いられている。これらのフィルムは、乾燥条件下では非常に優れた酸素ガスバリア性を示す。しかしその親水性に起因して、高湿度条件下では酸素ガスバリア性が大きく低下する問題や、湿度や熱水に対する耐性が劣るおそれがある。
For packaging materials used for packaging foods, pharmaceuticals, etc., gas barrier properties are used to suppress the permeation of oxygen, water vapor, or other gases that react with the contents and prevent the contents from being altered. Desired.
Conventionally, as a packaging material having gas barrier properties, a film formed from a polymer containing a highly hydrophilic high-bonding group in the molecule, such as poly (meth) acrylic acid or polyvinyl alcohol, Multi-layer films having layers formed from coalescence are used. These films exhibit very good oxygen gas barrier properties under dry conditions. However, due to the hydrophilicity, there is a possibility that the oxygen gas barrier property is greatly lowered under high humidity conditions, and the resistance to humidity and hot water may be inferior.
 このような問題に対し、支持体上に、ポリカルボン酸系重合体を含む層と、多価金属化合物を含む層とを積層した積層体が提案されている。かかる積層体は、例えばレトルト処理等の熱水処理を施したときに、層間の反応によって多価金属イオンによるポリカルボン酸系重合体のイオン架橋が進み、高湿度条件下でも高い酸素ガスバリア性を発現することが知られている。このような積層体やその製造方法について、これまで、種々検討がなされている(例えば、特許文献1~3参照)。
 上記のような積層体についての検討は通常、熱(寸法)安定性、吸水性、価格等の観点より、ポリエチレンテレフタレート(PET)フィルムを支持体として行われており、得られた成果は他の支持体でも再現可能とみなされていることが多い。
In order to solve such a problem, a laminate in which a layer containing a polycarboxylic acid polymer and a layer containing a polyvalent metal compound are laminated on a support has been proposed. When such a laminate is subjected to a hydrothermal treatment such as a retort treatment, the ionic cross-linking of the polycarboxylic acid polymer by polyvalent metal ions proceeds by the reaction between layers, and has a high oxygen gas barrier property even under high humidity conditions. It is known to express. Various studies have been made on such a laminate and its manufacturing method (see, for example, Patent Documents 1 to 3).
Examination of the laminate as described above is usually carried out using a polyethylene terephthalate (PET) film as a support from the viewpoint of thermal (dimensional) stability, water absorption, price, etc. Often considered to be reproducible even on a support.
国際公開第2010/061705号International Publication No. 2010/061705 日本国特許第4684891号公報Japanese Patent No. 4684891 国際公開第2010/001836号International Publication No. 2010/001836
 PETは剛直性が高い。上記積層体の支持体としてPETフィルムを用いる場合、包装材料の可とう性の観点から、PETフィルムの厚さをある程度薄くする必要がある。このようなPETフィルムは強度が低い。そのため、包装材料としての実用上の強度の観点から、ポリアミド系樹脂フィルムを積層することが必要になり、包装材料の製造に手間やコストがかかる。 PET is very rigid. When a PET film is used as the support for the laminate, it is necessary to reduce the thickness of the PET film to some extent from the viewpoint of the flexibility of the packaging material. Such a PET film has low strength. Therefore, from the viewpoint of practical strength as a packaging material, it is necessary to laminate a polyamide-based resin film, and it takes time and cost to manufacture the packaging material.
 本発明者らは、包装材料の層の数を削減するために、支持体としてPETフィルムの代わりにポリアミド系樹脂フィルムを用いることについて検討した。その結果、このようなフィルムに特許文献1~3等に開示された技術を適用した場合、PETフィルムを用いる場合に比べて酸素ガスバリア性が劣ることが非常に多かった。
 さらに検討を重ねた結果、上記の問題が、支持体に用いたフィルムの水蒸気透過度がPETフィルムと比較して高いことに起因することを見出した。
In order to reduce the number of layers of the packaging material, the present inventors examined using a polyamide-based resin film as a support instead of a PET film. As a result, when the techniques disclosed in Patent Documents 1 to 3 and the like are applied to such a film, the oxygen gas barrier property is very often inferior to the case of using a PET film.
As a result of further studies, it has been found that the above problem is caused by the fact that the water vapor permeability of the film used for the support is higher than that of the PET film.
 本発明は、水蒸気透過度の高い支持体上に、熱水処理により優れた酸素バリア性を発現する層を有するガスバリア性包装材料用前駆体およびその製造方法、ならびに前記ガスバリア性包装材料用前駆体を用いたガスバリア性包装材料および包装体の製造方法を提供することを目的とする。 The present invention relates to a precursor for a gas barrier packaging material having a layer exhibiting an excellent oxygen barrier property by hot water treatment on a support having a high water vapor permeability, a method for producing the same, and the precursor for the gas barrier packaging material It aims at providing the manufacturing method of the gas-barrier packaging material and packaging body using this.
 本発明の第一態様に係るガスバリア性包装材料用前駆体は、支持体と;前記支持体の上に直接設けられ、ポリカルボン酸系重合体と、加水分解性シラン化合物、その加水分解物、およびこれらの縮合物からなる群から選択される少なくとも1種のケイ素化合物とを含むガスバリア層と;前記ガスバリア層の上に直接設けられ、多価金属成分、ポリエステル樹脂、及び分散剤を含む保護層と、を備え、前記支持体の40℃、相対湿度90%での水蒸気透過度が100g/m以上であり、前記多価金属成分の含有量が、前記保護層の全質量に対して40~90質量%であり、前記分散剤の含有量が、前記多価金属成分に対して2~20質量%であり、前記ケイ素化合物の含有量が、前記ポリカルボン酸系重合体に対して2~25質量%であり、前記ガスバリア層の赤外線吸収スペクトルを測定したときの、波数1490cm-1~1659cm-1の範囲内の吸光度の最大ピーク高さ(α)と、波数1660cm-1~1750cm-1の範囲内の吸光度の最大ピーク高さ(β)との比(α/β)が1以上7未満である。
 本発明の第二態様に係るガスバリア性包装材料は、支持体と;前記支持体の上に直接設けられ、ポリカルボン酸系重合体と、加水分解性シラン化合物、その加水分解物、およびこれらの縮合物からなる群から選択される少なくとも1種のケイ素化合物とを含むガスバリア層と;前記ガスバリア層の上に直接設けられ、多価金属成分、ポリエステル樹脂、及び分散剤を含む保護層と、を備え、前記支持体の40℃、相対湿度90%での水蒸気透過度が100g/m以上であり、前記多価金属成分の含有量が、前記保護層の全質量に対して40~90質量%であり、前記分散剤の含有量が、前記多価金属成分に対して2~20質量%であり、 前記ケイ素化合物の含有量が、前記ポリカルボン酸系重合体に対して2~25質量%であり、前記ガスバリア層の赤外線吸収スペクトルを測定したときの、波数1490cm-1~1659cm-1の範囲内の吸光度の最大ピーク高さ(α)と、波数1660cm-1~1750cm-1の範囲内の吸光度の最大ピーク高さ(β)との比(α/β)が7以上である。
 本発明の第三態様に係るガスバリア性包装材料用前駆体の製造方法は、支持体の表面に、ポリカルボン酸系重合体と、加水分解性シラン化合物、その加水分解物およびこれらの縮合物からなる群から選択される少なくとも1種のケイ素化合物と、液状媒体とを含むガスバリア層用塗液を塗布し乾燥させてガスバリア層を形成し、前記ガスバリア層の表面に、多価金属成分と、ポリエステル樹脂と、分散剤と、水とを含む保護層用塗液を塗布し乾燥させて保護層を形成することを有し、前記支持体の40℃、相対湿度90%での水蒸気透過度が100g/m以上であり、前記多価金属成分の含有量が、前記保護層用塗液の全固形分に対して40~90質量%であり、前記分散剤の含有量が、前記多価金属成分に対して2~20質量%であり、前記ケイ素化合物の含有量が、前記ポリカルボン酸系重合体に対して2~25質量%であり、前記ポリカルボン酸系重合体のカルボキシル基の多価金属による中和度が0モル%である。
 本発明の第四態様に係る包装体の製造方法は、上記第一態様に係るガスバリア性包装材料用前駆体を用いて被包装物を包装し、熱水処理して包装体を得る。
 本発明の第五態様に係るガスバリア性包装材料用前駆体は、支持体と;前記支持体の上に直接設けられ、多価金属成分、ポリエステル樹脂、及び分散剤を含む中間層と;前記中間層の上に直接設けられ、ポリカルボン酸系重合体と、加水分解性シラン化合物、その加水分解物、およびこれらの縮合物からなる群から選択される少なくとも1種のケイ素化合物とを含むガスバリア層と、を備え、前記支持体の40℃、相対湿度90%での水蒸気透過度が100g/m以上であり、 前記多価金属成分の含有量が、前記中間層の全質量に対して40~90質量%であり、前記分散剤の含有量が、前記多価金属成分に対して2~20質量%であり、 前記ケイ素化合物の含有量が、前記ポリカルボン酸系重合体に対して2~25質量%であり、前記ガスバリア層の赤外線吸収スペクトルを測定したときの、波数1490cm-1~1659cm-1の範囲内の吸光度の最大ピーク高さ(α)と、波数1660cm-1~1750cm-1の範囲内の吸光度の最大ピーク高さ(β)との比(α/β)が1以上7未満である。
 本発明の第六態様に係るガスバリア性包装材料は、支持体と;前記支持体の上に直接設けられ、多価金属成分、ポリエステル樹脂、及び分散剤を含む中間層と;前記中間層の上に直接設けられ、ポリカルボン酸系重合体と、加水分解性シラン化合物、その加水分解物、およびこれらの縮合物からなる群から選択される少なくとも1種のケイ素化合物とを含むガスバリア層と、を備え、前記支持体の40℃、相対湿度90%での水蒸気透過度が100g/m以上であり、前記多価金属成分の含有量が、前記中間層の全質量に対して40~90質量%であり、前記分散剤の含有量が、前記多価金属成分に対して2~20質量%であり、前記ケイ素化合物の含有量が、前記ポリカルボン酸系重合体に対して2~25質量%であり、 前記ガスバリア層の赤外線吸収スペクトルを測定したときの、1490cm-1~1659cm-1の範囲内の吸光度の最大ピーク高さ(α)と、1660cm-1~1750cm-1の範囲内の吸光度の最大ピーク高さ(β)との比(α/β)が7以上である。
 本発明の第七態様に係るガスバリア性包装材料用前駆体の製造方法は、支持体の表面に、多価金属成分、ポリエステル樹脂、分散剤、及び液状媒体を含む中間層用塗液を塗布し乾燥させて中間層を形成し、前記中間層の表面に、ポリカルボン酸系重合体と、加水分解性シラン化合物、その加水分解物およびこれらの縮合物からなる群から選択される少なくとも1種のケイ素化合物と、水とを含むガスバリア層用塗液を塗布し乾燥させてガスバリア層を形成することを有し、前記支持体の40℃、相対湿度90%での水蒸気透過度が100g/m以上であり、 前記多価金属成分の含有量が、前記中間層用塗液の全固形分に対して40~90質量%であり、前記分散剤の含有量が、前記多価金属成分に対して2~20質量%であり、前記ケイ素化合物の含有量が、前記ポリカルボン酸系重合体に対して2~25質量%であり、前記ポリカルボン酸系重合体のカルボキシル基の多価金属による中和度が20~50モル%である。
 本発明の第八態様に係る包装体の製造方法は、上記第五態様に係るガスバリア性包装材料用前駆体を用いて被包装物を包装し、熱水処理して包装体を得る。
The precursor for a gas barrier packaging material according to the first aspect of the present invention comprises a support; provided directly on the support, a polycarboxylic acid polymer, a hydrolyzable silane compound, a hydrolyzate thereof, And a gas barrier layer comprising at least one silicon compound selected from the group consisting of these condensates; and a protective layer provided directly on the gas barrier layer and comprising a polyvalent metal component, a polyester resin, and a dispersant The water vapor permeability at 40 ° C. and relative humidity of 90% of the support is 100 g / m 2 or more, and the content of the polyvalent metal component is 40 with respect to the total mass of the protective layer. Is 90% by mass, the dispersant content is 2-20% by mass with respect to the polyvalent metal component, and the silicon compound content is 2% with respect to the polycarboxylic acid polymer. ~ 25% by mass, Wherein when measuring the infrared absorption spectrum of the gas barrier layer, the maximum peak height in absorbance in the range of wave number 1490cm -1 ~ 1659cm -1 and (alpha), the absorbance in the wave number range of 1660 cm -1 ~ 1750 cm -1 The ratio (α / β) to the maximum peak height (β) is 1 or more and less than 7.
The gas barrier packaging material according to the second aspect of the present invention comprises a support; provided directly on the support, a polycarboxylic acid polymer, a hydrolyzable silane compound, a hydrolyzate thereof, and these A gas barrier layer containing at least one silicon compound selected from the group consisting of condensates; a protective layer provided directly on the gas barrier layer and containing a polyvalent metal component, a polyester resin, and a dispersant; And the support has a water vapor transmission rate of 100 g / m 2 or more at 40 ° C. and a relative humidity of 90%, and the content of the polyvalent metal component is 40 to 90 mass with respect to the total mass of the protective layer. %, The dispersant content is 2-20 mass% with respect to the polyvalent metal component, and the silicon compound content is 2-25 mass with respect to the polycarboxylic acid polymer. % When measuring the infrared absorption spectrum of the barrier layer, the maximum peak height in absorbance in the range of wave number 1490cm -1 ~ 1659cm -1 and (alpha), the maximum absorbance in the wave number range of 1660 cm -1 ~ 1750 cm -1 The ratio (α / β) to the peak height (β) is 7 or more.
In the method for producing a precursor for a gas barrier packaging material according to the third aspect of the present invention, a polycarboxylic acid polymer, a hydrolyzable silane compound, a hydrolyzate thereof, and a condensate thereof are formed on the surface of a support. A gas barrier layer coating solution containing at least one silicon compound selected from the group consisting of the above and a liquid medium is applied and dried to form a gas barrier layer. A polyvalent metal component and polyester are formed on the surface of the gas barrier layer. A protective layer is formed by applying a coating liquid for a protective layer containing a resin, a dispersant, and water and drying, and the support has a water vapor permeability of 100 g at 40 ° C. and a relative humidity of 90%. / M 2 or more, the content of the polyvalent metal component is 40 to 90% by mass with respect to the total solid content of the protective layer coating liquid, and the content of the dispersant is the polyvalent metal. 2 to 20% by weight with respect to the ingredients, The content of the silicon compound is 2 to 25% by mass with respect to the polycarboxylic acid polymer, and the degree of neutralization of the carboxyl group of the polycarboxylic acid polymer by a polyvalent metal is 0 mol%. .
In the method for producing a package according to the fourth aspect of the present invention, a package is obtained by packaging an article to be packaged using the precursor for gas barrier packaging material according to the first aspect, and performing hot water treatment.
The precursor for a gas barrier packaging material according to the fifth aspect of the present invention comprises: a support; an intermediate layer provided directly on the support and including a polyvalent metal component, a polyester resin, and a dispersant; A gas barrier layer provided directly on the layer and comprising a polycarboxylic acid polymer and at least one silicon compound selected from the group consisting of hydrolyzable silane compounds, hydrolysates thereof, and condensates thereof The water vapor permeability at 40 ° C. and 90% relative humidity of the support is 100 g / m 2 or more, and the content of the polyvalent metal component is 40 with respect to the total mass of the intermediate layer. Is 90 mass%, the dispersant content is 2-20 mass% with respect to the polyvalent metal component, and the silicon compound content is 2 with respect to the polycarboxylic acid polymer. Up to 25% by mass, When measuring the infrared absorption spectrum of the gas barrier layer, the maximum absorbance of the maximum peak height in absorbance in the range of wave number 1490cm -1 ~ 1659cm -1 and (alpha), within the range of wave number 1660 cm -1 ~ 1750 cm -1 The ratio (α / β) to the peak height (β) is 1 or more and less than 7.
The gas barrier packaging material according to the sixth aspect of the present invention comprises: a support; an intermediate layer provided directly on the support and including a polyvalent metal component, a polyester resin, and a dispersant; And a gas barrier layer comprising a polycarboxylic acid polymer and at least one silicon compound selected from the group consisting of a hydrolyzable silane compound, a hydrolyzate thereof, and a condensate thereof. And the support has a water vapor permeability of 100 g / m 2 or more at 40 ° C. and a relative humidity of 90%, and the content of the polyvalent metal component is 40 to 90 mass with respect to the total mass of the intermediate layer. %, The dispersant content is 2-20% by mass with respect to the polyvalent metal component, and the silicon compound content is 2-25% by mass with respect to the polycarboxylic acid polymer. %, And the gas burr When measuring the infrared absorption spectrum of the layer, the maximum peak height absorbance in the range of 1490cm -1 ~ 1659cm -1 and (alpha), the maximum peak height in absorbance in the range of 1660 cm -1 ~ 1750 cm -1 The ratio (α / β) to (β) is 7 or more.
In the method for producing a precursor for a gas barrier packaging material according to the seventh aspect of the present invention, an intermediate layer coating solution containing a polyvalent metal component, a polyester resin, a dispersant, and a liquid medium is applied to the surface of a support. An intermediate layer is formed by drying, and at least one selected from the group consisting of a polycarboxylic acid polymer, a hydrolyzable silane compound, a hydrolyzate thereof, and a condensate thereof is formed on the surface of the intermediate layer. A gas barrier layer coating solution comprising a silicon compound and water is applied and dried to form a gas barrier layer, and the water vapor permeability of the support at 40 ° C. and 90% relative humidity is 100 g / m 2. The content of the polyvalent metal component is 40 to 90% by mass with respect to the total solid content of the intermediate layer coating solution, and the content of the dispersant is based on the polyvalent metal component. 2 to 20% by mass, The content of the compound is 2 to 25% by mass with respect to the polycarboxylic acid polymer, and the degree of neutralization of the carboxyl group of the polycarboxylic acid polymer by a polyvalent metal is 20 to 50 mol%. .
The method for manufacturing a package according to the eighth aspect of the present invention uses the precursor for a gas barrier packaging material according to the fifth aspect to package an article to be packaged, and performs hot water treatment to obtain a package.
 本発明の上記態様によれば、水蒸気透過度の高い支持体上に、熱水処理により優れた酸素バリア性を発現する層を有するガスバリア性包装材料用前駆体およびその製造方法を提供できる。さらに、本発明の上記態様によれば、前記ガスバリア性包装材料用前駆体を用いたガスバリア性包装材料および包装体の製造方法を提供できる。 According to the above aspect of the present invention, it is possible to provide a precursor for a gas barrier packaging material having a layer exhibiting an excellent oxygen barrier property by hot water treatment on a support having a high water vapor permeability and a method for producing the same. Furthermore, according to the said aspect of this invention, the manufacturing method of the gas barrier packaging material and packaging body using the said precursor for gas barrier packaging materials can be provided.
本発明の第1実施形態に係るガスバリア性包装材料用前駆体の模式断面図である。It is a schematic cross section of the precursor for gas barrier packaging materials according to the first embodiment of the present invention. 第1実施形態に係るガスバリア性包装材料用前駆体から得たガスバリア性包装材料の模式断面図である。It is a schematic cross section of the gas barrier packaging material obtained from the precursor for gas barrier packaging material according to the first embodiment. 本発明の第2実施形態に係るガスバリア性包装材料用前駆体の模式断面図である。It is a schematic cross section of the precursor for gas barrier packaging materials according to the second embodiment of the present invention. 第2実施形態に係るガスバリア性包装材料用前駆体から得たガスバリア性包装材料の模式断面図である。It is a schematic cross section of the gas barrier packaging material obtained from the precursor for gas barrier packaging material according to the second embodiment. 本発明の第3実施形態に係るガスバリア性包装材料用前駆体の模式断面図である。It is a schematic cross section of the precursor for gas barrier packaging materials according to the third embodiment of the present invention. 第3実施形態に係るガスバリア性包装材料用前駆体から得たガスバリア性包装材料の模式断面図である。It is a schematic cross section of the gas barrier packaging material obtained from the precursor for gas barrier packaging material according to the third embodiment. 本発明の第4実施形態に係るガスバリア性包装材料用前駆体の模式断面図である。It is a schematic cross section of the precursor for gas barrier packaging materials according to the fourth embodiment of the present invention. 第4実施形態に係るガスバリア性包装材料用前駆体から得たガスバリア性包装材料の模式断面図である。It is a schematic cross section of the gas barrier packaging material obtained from the precursor for gas barrier packaging material according to the fourth embodiment. 本発明の第5実施形態に係るガスバリア性包装材料用前駆体の模式断面図である。It is a schematic cross section of the precursor for gas barrier packaging materials according to the fifth embodiment of the present invention. 第5実施形態に係るガスバリア性包装材料用前駆体から得たガスバリア性包装材料の模式断面図である。It is a schematic cross section of the gas barrier packaging material obtained from the precursor for gas barrier packaging material according to the fifth embodiment. 本発明の第6実施形態に係るガスバリア性包装材料用前駆体の模式断面図である。It is a schematic cross section of the precursor for gas barrier packaging materials according to the sixth embodiment of the present invention. 第6実施形態に係るガスバリア性包装材料用前駆体から得たガスバリア性包装材料の模式断面図である。It is a schematic cross section of the gas barrier packaging material obtained from the precursor for gas barrier packaging material according to the sixth embodiment.
 以下、本発明の第1~第6実施形態に係るガスバリア性包装材料用前駆体(以下、「包装材料用前駆体」ともいう。)、その製造方法、ガスバリア性包装材料(以下、「包装材料」ともいう。)、及び包装体の製造方法について、添付の図面を用いて説明する。 Hereinafter, a precursor for a gas barrier packaging material according to the first to sixth embodiments of the present invention (hereinafter also referred to as “precursor for packaging material”), a manufacturing method thereof, a gas barrier packaging material (hereinafter referred to as “packaging material”). And the manufacturing method of the package will be described with reference to the accompanying drawings.
≪第1実施形態≫
 図1は、本発明の第1実施形態に係る包装材料用前駆体10の模式断面図である。図2は、包装材料用前駆体10から得た包装材料11の模式断面図である。
 本実施形態の包装材料用前駆体10は、支持体1とガスバリア層2と保護層3とがこの順に隣接して積層した積層構造を備える。つまり、本実施形態の包装材料用前駆体10においては、ガスバリア層2が支持体1の上に直接設けられ、保護層3がガスバリア層2の上に直接設けられている。
 包装材料11は、ガスバリア層2の代わりにガスバリア層4を有すること以外は包装材料用前駆体10と同様である。
<< First Embodiment >>
FIG. 1 is a schematic cross-sectional view of a packaging material precursor 10 according to a first embodiment of the present invention. FIG. 2 is a schematic cross-sectional view of the packaging material 11 obtained from the packaging material precursor 10.
The packaging material precursor 10 of the present embodiment has a laminated structure in which a support 1, a gas barrier layer 2, and a protective layer 3 are laminated adjacently in this order. That is, in the packaging material precursor 10 of the present embodiment, the gas barrier layer 2 is directly provided on the support 1, and the protective layer 3 is directly provided on the gas barrier layer 2.
The packaging material 11 is the same as the packaging material precursor 10 except that the packaging material 11 has the gas barrier layer 4 instead of the gas barrier layer 2.
<包装材料用前駆体>
 〔支持体〕
 支持体1の水蒸気透過度は100g/m以上であり、120g/m以上が好ましい。支持体1の水蒸気透過度が上記下限値(100g/m)以上であれば、包装材料用前駆体10を熱水処理したときに、支持体1を介してガスバリア層2および保護層3に充分な水分が供給される。そのため、ガスバリア層2の後述する比(α/β)を1以上7未満の範囲から7以上にすることができる。
 支持体1の水蒸気透過度が上記下限値(100g/m)以上であれば、熱水処理後の酸素バリア性が良好である。
 支持体1の水蒸気透過度は、40℃、相対湿度90%の条件で測定される値である。
<Precursor for packaging materials>
[Support]
Water vapor permeability of the support 1 is 100 g / m 2 or more, 120 g / m 2 or more. If the water vapor permeability of the support 1 is equal to or higher than the lower limit (100 g / m 2 ), when the packaging material precursor 10 is subjected to hydrothermal treatment, the gas barrier layer 2 and the protective layer 3 are formed via the support 1. Sufficient moisture is supplied. Therefore, the ratio (α / β) described later of the gas barrier layer 2 can be set to 7 or more from the range of 1 or more and less than 7.
If the water vapor permeability of the support 1 is not less than the above lower limit (100 g / m 2 ), the oxygen barrier property after the hot water treatment is good.
The water vapor permeability of the support 1 is a value measured under conditions of 40 ° C. and a relative humidity of 90%.
 支持体1の材質としては、支持体1の水蒸気透過度が100g/m以上となる限り特に限定されず、例えば、プラスチックス類や、紙類、ゴム類等が挙げられる。これらの材質の中でも、支持体1とガスバリア層2との密着性の観点から、プラスチックス類が好ましい。 The material of the support 1 is not particularly limited as long as the water vapor permeability of the support 1 is 100 g / m 2 or more, and examples thereof include plastics, papers, and rubbers. Among these materials, plastics are preferable from the viewpoint of adhesion between the support 1 and the gas barrier layer 2.
 プラスチックス類としては、例えば、ポリアミド系重合体が挙げられる。
 ポリアミド系重合体としては、例えばナイロン6や、ナイロン66、ナイロン12、ナイロン6,66共重合体、ナイロン6,12共重合体、メタキシレンアジパミド・ナイロン6共重合体等が挙げられる。
Examples of the plastics include polyamide polymers.
Examples of the polyamide polymer include nylon 6, nylon 66, nylon 12, nylon 6,66 copolymer, nylon 6,12 copolymer, metaxylene adipamide / nylon 6 copolymer, and the like.
 支持体1は、単一の層から形成されてもよく、複数の層から形成されていてもよい。複数の層で形成されている場合、各層を形成する材質は同じでも異なってもよい。
 支持体1の形態は、図示するようなシート(フィルム、板)に限定されず、ボトルや、カップ、トレー、タンク、チューブ等の形態であってもよい。支持体1の形態としては、シートが好ましい。
 支持体1としては、例えば上記プラスチックス類のフィルムを用いることができる。このフィルムは、延伸されていてもよく、未延伸であってもよい。
 支持体1の表面には、ガスバリア層2との接着性の観点から、コロナ処理や、火炎処理、プラズマ処理等の表面活性化処理が施されていてもよい。
The support 1 may be formed from a single layer or may be formed from a plurality of layers. When formed with a plurality of layers, the material forming each layer may be the same or different.
The form of the support 1 is not limited to a sheet (film, plate) as illustrated, and may be a bottle, a cup, a tray, a tank, a tube, or the like. The form of the support 1 is preferably a sheet.
As the support 1, for example, the plastics film can be used. This film may be stretched or unstretched.
From the viewpoint of adhesion to the gas barrier layer 2, the surface of the support 1 may be subjected to surface activation treatment such as corona treatment, flame treatment, and plasma treatment.
 支持体1の厚さは、用途等によっても異なるが、通常は、5μm~2cmである。支持体1の形態がシートである場合は、5~800μmが好ましく、10~500μmがより好ましい。ボトル、カップ、トレーまたはタンクの形態の場合は、100μm~1cmが好ましく、150μm~8mmがより好ましい。チューブの形態の場合は、20μm~2cmが好ましい。支持体1の厚さが上記範囲内であると、作業性および生産性に優れる。 The thickness of the support 1 is usually 5 μm to 2 cm, although it varies depending on the application. When the form of the support 1 is a sheet, it is preferably 5 to 800 μm, more preferably 10 to 500 μm. In the case of a bottle, cup, tray or tank, 100 μm to 1 cm is preferable, and 150 μm to 8 mm is more preferable. In the case of a tube form, 20 μm to 2 cm is preferable. When the thickness of the support 1 is within the above range, workability and productivity are excellent.
 〔ガスバリア層〕
 ガスバリア層2は、ポリカルボン酸系重合体と、加水分解性シラン化合物、その加水分解物、およびこれらの縮合物からなる群から選択される少なくとも1種のケイ素化合物(以下、「ケイ素化合物(i)」ともいう。)とを含む層である。
 ガスバリア層2は、必要に応じて、ポリカルボン酸系重合体およびケイ素化合物(i)以外の他の成分をさらに含有してもよい。
[Gas barrier layer]
The gas barrier layer 2 includes at least one silicon compound selected from the group consisting of a polycarboxylic acid polymer, a hydrolyzable silane compound, a hydrolyzate thereof, and a condensate thereof (hereinafter referred to as “silicon compound (i ) ”))).
The gas barrier layer 2 may further contain other components than the polycarboxylic acid polymer and the silicon compound (i) as necessary.
 (ポリカルボン酸系重合体)
 ポリカルボン酸系重合体とは、分子内に2個以上のカルボキシル基を有する重合体である。ポリカルボン酸系重合体としては、例えばエチレン性不飽和カルボン酸の(共)重合体;エチレン性不飽和カルボン酸と他のエチレン性不飽和単量体との共重合体;アルギン酸、カルボキシメチルセルロース、ペクチン等の分子内にカルボキシル基を有する酸性多糖類が挙げられる。ポリカルボン酸系重合体としては、1種単独で用いてもよく、2種以上を混合して用いてもよい。
(Polycarboxylic acid polymer)
The polycarboxylic acid polymer is a polymer having two or more carboxyl groups in the molecule. Examples of the polycarboxylic acid-based polymer include (co) polymers of ethylenically unsaturated carboxylic acids; copolymers of ethylenically unsaturated carboxylic acids and other ethylenically unsaturated monomers; alginic acid, carboxymethyl cellulose, Examples include acidic polysaccharides having a carboxyl group in the molecule such as pectin. As a polycarboxylic acid type polymer, you may use individually by 1 type, and may mix and use 2 or more types.
 エチレン性不飽和カルボン酸としては、例えば、アクリル酸や、メタクリル酸、イタコン酸、マレイン酸、フマル酸、クロトン酸等が挙げられる。
 エチレン性不飽和カルボン酸と共重合可能な他のエチレン性不飽和単量体としては、例えば、エチレンや、プロピレン、酢酸ビニル等の飽和カルボン酸ビニルエステル類、アルキルアクリレート類、アルキルメタクリレート類、アルキルイタコネート類、塩化ビニル、塩化ビニリデン、スチレン、アクリルアミド、アクリロニトリル等が挙げられる。
Examples of the ethylenically unsaturated carboxylic acid include acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, and crotonic acid.
Examples of other ethylenically unsaturated monomers copolymerizable with the ethylenically unsaturated carboxylic acid include ethylene, saturated carboxylic acid vinyl esters such as propylene and vinyl acetate, alkyl acrylates, alkyl methacrylates, and alkyls. Examples include itaconates, vinyl chloride, vinylidene chloride, styrene, acrylamide, acrylonitrile and the like.
 ポリカルボン酸系重合体としては、ガスバリア性の観点から、アクリル酸、マレイン酸、メタクリル酸、イタコン酸、フマル酸およびクロトン酸からなる群から選ばれる少なくとも1種の重合性単量体から誘導される構成単位(以下、「構成単位(x)」ともいう。)を含む重合体(以下、「重合体(X)」ともいう。)、または該重合体(X)の2種以上の混合物であることが好ましい。重合体(X)は、単独重合体でもよく共重合体でもよい。構成単位(x)は、アクリル酸、マレイン酸、メタクリル酸およびイタコン酸からなる群から選ばれる少なくとも1種の重合性単量体から誘導される構成単位であることが好ましい。
 重合体(X)は、構成単位(x)以外の他の構成単位をさらに含んでいてもよい。他の構成単位としては、例えば前述のエチレン性不飽和カルボン酸と共重合可能なエチレン性不飽和単量体から誘導される構成単位等が挙げられる。
 重合体(X)において、構成単位(x)の含有量は、重合体(X)を構成する全構成単位の合計に対し、80モル%以上であることが好ましく、90モル%以上であることがより好ましく、100モル%であってもよい。
The polycarboxylic acid polymer is derived from at least one polymerizable monomer selected from the group consisting of acrylic acid, maleic acid, methacrylic acid, itaconic acid, fumaric acid and crotonic acid from the viewpoint of gas barrier properties. A polymer (hereinafter also referred to as “polymer (X)”), or a mixture of two or more of the polymers (X). Preferably there is. The polymer (X) may be a homopolymer or a copolymer. The structural unit (x) is preferably a structural unit derived from at least one polymerizable monomer selected from the group consisting of acrylic acid, maleic acid, methacrylic acid and itaconic acid.
The polymer (X) may further contain other structural units other than the structural unit (x). Examples of the other structural unit include a structural unit derived from an ethylenically unsaturated monomer copolymerizable with the aforementioned ethylenically unsaturated carboxylic acid.
In the polymer (X), the content of the structural unit (x) is preferably 80 mol% or more, and 90 mol% or more with respect to the total of all the structural units constituting the polymer (X). Is more preferable, and may be 100 mol%.
 ポリカルボン酸系重合体の数平均分子量は、2,000~10,000,000が好ましく、5,000~1,000,000がより好ましい。数平均分子量が2,000以上であれば、包装材料用前駆体10から得られる包装材料の耐水性が優れ、水分によるガスバリア性や透明性の悪化、白化等が生じにくい。他方、数平均分子量が10,000,000以下であれば、ポリカルボン酸系重合体等を含む塗液の塗布によってガスバリア層2を形成する際に、塗液の粘度を充分に低くでき、塗布性が良好である。
 上記数平均分子量は、ゲル浸透クロマトグラフィー(GPC)により求めた、ポリスチレン換算の数平均分子量である。
The number average molecular weight of the polycarboxylic acid polymer is preferably 2,000 to 10,000,000, more preferably 5,000 to 1,000,000. When the number average molecular weight is 2,000 or more, the packaging material obtained from the packaging material precursor 10 is excellent in water resistance, and the gas barrier property and transparency due to moisture are less likely to be whitened. On the other hand, if the number average molecular weight is 10,000,000 or less, the viscosity of the coating solution can be sufficiently lowered when the gas barrier layer 2 is formed by coating a coating solution containing a polycarboxylic acid polymer or the like. Good properties.
The number average molecular weight is a polystyrene-reduced number average molecular weight determined by gel permeation chromatography (GPC).
 ガスバリア層2中のポリカルボン酸系重合体のカルボキシル基の一部は、多価金属イオンで中和され、多価金属塩を形成している。すなわちカルボキシ基の一部が多価金属イオンによりイオン架橋されている。多価金属は、金属イオンの価数が2以上の金属であり、例えばベリリウムや、マグネシウム、カルシウム等のアルカリ土類金属、チタン、ジルコニウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛等の遷移金属、アルミニウム等が挙げられる。ガスバリア性、高温水蒸気や熱水に対する耐性、製造性の観点で、多価金属は、金属イオンの価数が2である2価金属が好ましい。酸素バリア性の点では、亜鉛、銅が好ましく、亜鉛が特に好ましい。
 ガスバリア性を損なわない範囲で、ガスバリア層2中のポリカルボン酸系重合体のカルボキシル基の一部が一価金属イオンおよびアンモニウムイオンからなる群から選択される少なくとも1種で中和されていてもよい。一価金属イオンとしては、例えばナトリウム、カリウム等のアルカリ金属等が挙げられる。
 ガスバリア層2中のカルボキシル基の中和度は、後述する比(α/β)が1以上7未満であることから、50モル%程度である。
A part of the carboxyl group of the polycarboxylic acid polymer in the gas barrier layer 2 is neutralized with a polyvalent metal ion to form a polyvalent metal salt. That is, a part of the carboxy group is ion-crosslinked with a polyvalent metal ion. The polyvalent metal is a metal having a valence of 2 or more, such as beryllium, alkaline earth metals such as magnesium and calcium, titanium, zirconium, chromium, manganese, iron, cobalt, nickel, copper, zinc, etc. Transition metals, aluminum and the like. From the viewpoints of gas barrier properties, resistance to high-temperature steam and hot water, and productivity, the polyvalent metal is preferably a divalent metal having a metal ion valence of 2. In terms of oxygen barrier properties, zinc and copper are preferable, and zinc is particularly preferable.
As long as the gas barrier property is not impaired, a part of the carboxyl group of the polycarboxylic acid polymer in the gas barrier layer 2 may be neutralized with at least one selected from the group consisting of monovalent metal ions and ammonium ions. Good. Examples of monovalent metal ions include alkali metals such as sodium and potassium.
The neutralization degree of the carboxyl group in the gas barrier layer 2 is about 50 mol% because the ratio (α / β) described later is 1 or more and less than 7.
 (ケイ素化合物(i))
 ケイ素化合物(i)は、加水分解性シラン化合物、その加水分解物、およびこれらの縮合物からなる群から選択される少なくとも1種である。つまり、ケイ素化合物(i)は、加水分解性シラン化合物、加水分解性シラン化合物の加水分解物、および加水分解性シラン化合物及びその加水分解物の縮合物からなる群から選択される少なくとも1種である。
 ケイ素化合物(i)は、包装材料用前駆体10から得られる包装材料の耐水性およびガスバリア性の向上に寄与する。
(Silicon compound (i))
The silicon compound (i) is at least one selected from the group consisting of a hydrolyzable silane compound, a hydrolyzate thereof, and a condensate thereof. That is, the silicon compound (i) is at least one selected from the group consisting of a hydrolyzable silane compound, a hydrolyzate of the hydrolyzable silane compound, and a hydrolyzable silane compound and a condensate of the hydrolyzate. is there.
The silicon compound (i) contributes to improvement of water resistance and gas barrier properties of the packaging material obtained from the packaging material precursor 10.
 加水分解性シラン化合物は、加水分解によりシラノール基(SiOH)を生じる化合物である。加水分解性シラン化合物としては、特に限定されず、例えば下記式(i-1)で表される化合物が挙げられる。
 Si(OR (R4-n ・・・(i-1)
(式中、Rは炭素数1~4のアルキル基または炭素数1~4のアルコキシアルキル基であり、Rは有機反応基であり、nは1~4の整数である。)
The hydrolyzable silane compound is a compound that generates a silanol group (SiOH) by hydrolysis. The hydrolyzable silane compound is not particularly limited, and examples thereof include compounds represented by the following formula (i-1).
Si (OR 1 ) n (R 2 ) 4-n (i-1)
(Wherein R 1 is an alkyl group having 1 to 4 carbon atoms or an alkoxyalkyl group having 1 to 4 carbon atoms, R 2 is an organic reactive group, and n is an integer of 1 to 4)
 式(i-1)中、Rとしては、メチル基、エチル基、またはメトキシエチル基が好ましい。
 Rとしては、例えばアミノ基や、(メタ)アクリル基、エポキシ基、ビニル基、メルカプト基、イソシアネート基、イソシアヌレート基等の反応性官能基を有する有機基が挙げられる。(メタ)アクリル基は、アクリル基およびメタアクリル基の両方を示す。
 Rとしては、ポリアクリル酸系重合体との反応性の点で、エポキシ基を有する有機基が好ましい。エポキシ基を有する有機基としては、例えば3-グリシドキシプロピル基が挙げられる。
 nは3が好ましい。
In formula (i-1), R 1 is preferably a methyl group, an ethyl group, or a methoxyethyl group.
Examples of R 2 include organic groups having reactive functional groups such as amino groups, (meth) acryl groups, epoxy groups, vinyl groups, mercapto groups, isocyanate groups, and isocyanurate groups. The (meth) acryl group indicates both an acrylic group and a methacryl group.
R 2 is preferably an organic group having an epoxy group in terms of reactivity with the polyacrylic acid polymer. Examples of the organic group having an epoxy group include a 3-glycidoxypropyl group.
n is preferably 3.
 加水分解性シラン化合物の具体例としては、例えば、ビニルトリメトキシシランや、ビニルトリエトキシシラン、2-(3、4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルエチルジエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、トリス-(トリメトキシシリルプロピル)イソシアヌレート等が挙げられる。これらの加水分解性シラン化合物は、いずれか1種を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 Specific examples of the hydrolyzable silane compound include, for example, vinyltrimethoxysilane, vinyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3 -Glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylethyldiethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-2- (Aminoethyl) -3-aminopropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-acryloxyp Pills trimethoxysilane, 3-isocyanate propyl triethoxysilane, tris - (trimethoxysilylpropyl) isocyanurate. Any one of these hydrolyzable silane compounds may be used alone, or two or more thereof may be used in combination.
 ケイ素化合物(i)は、加水分解性シラン化合物自体であってもよく、加水分解性シラン化合物が加水分解した加水分解物でもよく、これらの縮合物であってもよい。
 ケイ素化合物(i)としては、例えばゾルゲル法を用いて、加水分解および縮合反応を行った加水分解性シラン化合物を用いることができる。
The silicon compound (i) may be a hydrolyzable silane compound itself, a hydrolyzate obtained by hydrolyzing the hydrolyzable silane compound, or a condensate thereof.
As the silicon compound (i), for example, a hydrolyzable silane compound subjected to hydrolysis and condensation reaction using a sol-gel method can be used.
 なお、通常、加水分解性シラン化合物は、加水分解が容易におこり、また、酸、アルカリ存在下では容易に縮合反応がおこる。例えば式(i-1)で表される加水分解性シラン化合物は、アルコキシ基(OR)の少なくとも一部が容易に水酸基に置換され加水分解物となる。さらに該加水分解物が縮合することによって、ケイ素原子(Si)が酸素を介して結合した化合物が形成される。この縮合が繰り返されることにより、縮合物が得られる。以下、加水分解性シラン化合物の加水分解物が縮合した構成を加水分解縮合物とも記す。
 そのため、ケイ素化合物(i)は、加水分解性シラン化合物のみ、その加水分解物のみ、またはこれらの縮合物のみで存在することは稀である。すなわちケイ素化合物(i)には、加水分解性シラン化合物、その加水分解物および加水分解縮合物が混在していることが多い。また、加水分解物には、部分加水分解物、完全加水分解物が含まれることが多い。
 ケイ素化合物(i)は、少なくとも加水分解縮合物を含むことが好ましい。
In general, a hydrolyzable silane compound is easily hydrolyzed, and easily undergoes a condensation reaction in the presence of an acid or an alkali. For example, in the hydrolyzable silane compound represented by the formula (i-1), at least a part of the alkoxy group (OR 1 ) is easily substituted with a hydroxyl group to become a hydrolyzate. Further, the hydrolyzate condenses to form a compound in which silicon atoms (Si) are bonded through oxygen. By repeating this condensation, a condensate is obtained. Hereinafter, a configuration in which a hydrolyzate of a hydrolyzable silane compound is condensed is also referred to as a hydrolysis condensate.
Therefore, the silicon compound (i) rarely exists only in the hydrolyzable silane compound, only the hydrolyzate thereof, or only the condensate thereof. That is, the silicon compound (i) often contains a hydrolyzable silane compound, a hydrolyzate thereof, and a hydrolysis condensate. In addition, the hydrolyzate often includes a partial hydrolyzate and a complete hydrolyzate.
The silicon compound (i) preferably contains at least a hydrolysis condensate.
 (他の成分)
 ポリカルボン酸系重合体およびケイ素化合物(i)以外の他の成分としては、特に限定されず、各種の添加剤が含まれていてもよい。
 添加剤としては可塑剤や、樹脂、分散剤、界面活性剤、柔軟剤、安定剤、アンチブロッキング剤、膜形成剤、粘着剤、酸素吸収剤等が挙げられる。
(Other ingredients)
The other components other than the polycarboxylic acid polymer and the silicon compound (i) are not particularly limited, and various additives may be included.
Examples of the additive include a plasticizer, a resin, a dispersant, a surfactant, a softener, a stabilizer, an antiblocking agent, a film forming agent, an adhesive, and an oxygen absorber.
 ガスバリア層2が可塑剤を含むと、ガスバリア層2の延伸性が向上し、包装材料用前駆体10の耐虐待性が向上する。
 可塑剤としては、公知の可塑剤から適宜選択して使用することが可能である。可塑剤の具体例としては、例えば、エチレングリコールや、トリメチレングリコール、プロピレングリコール、テトラメチレングリコール、1,3-ブタンジオール、2,3-ブタンジオール、ペンタメチレングリコール、ヘキサメチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ポリビニルアルコール、エチレン-ビニルアルコール共重合体、ポリエチレンオキサイド、ソルビトール、マンニトール、ズルシトール、エリトリトール、グリセリン、乳酸、脂肪酸、澱粉、フタル酸エステルなどを例示することができる。これらは必要に応じて、混合物で用いてもよい。
 これらの中でも、延伸性及びガスバリア性の観点から、ポリエチレングリコール、ポリビニルアルコール、エチレン-ビニルアルコール共重合体、グリセリン、及び澱粉が好ましい。
When the gas barrier layer 2 contains a plasticizer, the stretchability of the gas barrier layer 2 is improved, and the abuse resistance of the packaging material precursor 10 is improved.
As a plasticizer, it can be used by appropriately selecting from known plasticizers. Specific examples of the plasticizer include ethylene glycol, trimethylene glycol, propylene glycol, tetramethylene glycol, 1,3-butanediol, 2,3-butanediol, pentamethylene glycol, hexamethylene glycol, diethylene glycol, triethylene glycol, and the like. Examples include ethylene glycol, polyethylene glycol, polyvinyl alcohol, ethylene-vinyl alcohol copolymer, polyethylene oxide, sorbitol, mannitol, dulcitol, erythritol, glycerin, lactic acid, fatty acid, starch, and phthalate ester. These may be used in a mixture as required.
Among these, polyethylene glycol, polyvinyl alcohol, ethylene-vinyl alcohol copolymer, glycerin, and starch are preferable from the viewpoints of stretchability and gas barrier properties.
 なお、ガスバリア層2が添加剤として、ポリビニルアルコール等の水酸基を2つ以上有する化合物を含む場合には、その水酸基と、ポリカルボン酸系重合体のカルボキシル基の一部とがエステル結合を形成していてもよい。 In addition, when the gas barrier layer 2 includes a compound having two or more hydroxyl groups such as polyvinyl alcohol as an additive, the hydroxyl group and a part of the carboxyl groups of the polycarboxylic acid polymer form an ester bond. It may be.
 (各成分の含有量)
 ガスバリア層2におけるケイ素化合物(i)の含有量は、前記ポリカルボン酸系重合体(100質量%)に対して2~25質量%であり、2~20質量%が好ましい。ケイ素化合物(i)の含有量が上記範囲内であれば、支持体1との密着性に優れる。また、包装材料用前駆体10から得られる包装材料の耐水性がより優れ、冷水にさらされた際に白化しにくい。
 ここで、加水分解性シラン化合物以外のケイ素化合物(i)の質量は、加水分解性シラン化合物換算の質量である。つまり、ケイ素化合物(i)には、通常、加水分解性シラン化合物、その加水分解物、およびこれらの縮合物が混在するが、ケイ素化合物(i)の質量は、加水分解性シラン化合物に換算した量、すなわち加水分解性シラン化合物の仕込み量である。
(Content of each component)
The content of the silicon compound (i) in the gas barrier layer 2 is 2 to 25% by mass, preferably 2 to 20% by mass, based on the polycarboxylic acid polymer (100% by mass). If content of silicon compound (i) is in the said range, it will be excellent in adhesiveness with the support body 1. FIG. Moreover, the water resistance of the packaging material obtained from the precursor 10 for packaging materials is more excellent, and it is hard to whiten when exposed to cold water.
Here, the mass of the silicon compound (i) other than the hydrolyzable silane compound is a mass in terms of the hydrolyzable silane compound. That is, the silicon compound (i) usually contains a hydrolyzable silane compound, a hydrolyzate thereof, and a condensate thereof, but the mass of the silicon compound (i) is converted to a hydrolyzable silane compound. This is the amount of the hydrolyzable silane compound charged.
 ガスバリア層2におけるポリカルボン酸系重合体とケイ素化合物(i)との合計の含有量は、ガスバリア層2の全質量に対し、70質量%以上が好ましく、80質量%以上がより好ましく、100質量%であってもよい。
 加水分解性シラン化合物以外のケイ素化合物(i)の質量は、前記と同様、加水分解性シラン化合物換算の質量である。
The total content of the polycarboxylic acid polymer and the silicon compound (i) in the gas barrier layer 2 is preferably 70% by mass or more, more preferably 80% by mass or more, and 100% by mass with respect to the total mass of the gas barrier layer 2. %.
The mass of the silicon compound (i) other than the hydrolyzable silane compound is the mass in terms of the hydrolyzable silane compound as described above.
 ガスバリア層2における他の成分の含有量は、ポリカルボン酸系重合体(100質量%)に対して30質量%以下が好ましく、20質量%以下がより好ましい。 The content of other components in the gas barrier layer 2 is preferably 30% by mass or less and more preferably 20% by mass or less with respect to the polycarboxylic acid polymer (100% by mass).
 (最大ピーク高さの比(α/β))
 ガスバリア層2の赤外線吸収スペクトルを測定したときの、波数1490cm-1~1659cm-1の範囲内の吸光度の最大ピーク高さ(α)と、波数1660cm-1~1750cm-1の範囲内の吸光度の最大ピーク高さ(β)との比(α/β)は1以上7未満である。
(Maximum peak height ratio (α / β))
When measuring the infrared absorption spectrum of the gas barrier layer 2, the maximum peak height in absorbance in the range of wave number 1490cm -1 ~ 1659cm -1 and (alpha), the absorbance in the wave number range of 1660 cm -1 ~ 1750 cm -1 The ratio (α / β) to the maximum peak height (β) is 1 or more and less than 7.
 最大ピーク高さ(α)は、塩を形成しているカルボキシル基(-COO)(以下、「カルボキシル基の塩」ともいう。)に帰属する、波数1560cm-1のC=O伸縮振動の赤外線吸収スペクトルにおいて、吸光度の最大ピーク高さである。すなわち、通常、カルボキシル基の塩(-COO)に帰属するC=O伸縮振動は、波数1490cm-1~1659cm-1の赤外光波数領域において、1560cm-1付近に吸収極大を有する吸収ピークを与える。 The maximum peak height (α) is a C═O stretching vibration having a wave number of 1560 cm −1 , which belongs to a carboxyl group (—COO ) forming a salt (hereinafter also referred to as “carboxyl group salt”). In the infrared absorption spectrum, it is the maximum peak height of absorbance. That is, usually, salts of carboxyl groups (-COO -) C = O stretching vibration attributable to, in the infrared wave number range of wavenumber 1490cm -1 ~ 1659cm -1, absorption peaks with absorption maximum around 1560 cm -1 give.
 最大ピーク高さ(β)は、最大ピーク高さ(α)とは分離独立した赤外線吸収スペクトルの吸光度の最大ピーク高さである。つまり、最大ピーク高さ(β)は、遊離カルボキシル基(-COOH)に帰属する、波数1700cm-1のC=O伸縮振動の赤外線吸収スペクトルにおいて、吸光度の最大ピーク高さである。すなわち、通常、遊離カルボキシル基(-COOH)に帰属するC=O伸縮振動は、波数1660cm-1~1750cm-1の赤外光波数領域に、1700cm-1付近に吸収極大を有する吸収ピークを与える。 The maximum peak height (β) is the maximum peak height of the absorbance of the infrared absorption spectrum that is separated from the maximum peak height (α). That is, the maximum peak height (β) is the maximum peak height of absorbance in the infrared absorption spectrum of C═O stretching vibration having a wave number of 1700 cm −1 , which belongs to a free carboxyl group (—COOH). That is, normally, C = O stretching vibration attributable to the free carboxyl group (-COOH) is an infrared wave number range of wave number 1660 cm -1 ~ 1750 cm -1, giving an absorption peak having an absorption maximum in the vicinity of 1700 cm -1 .
 ガスバリア層2の赤外線吸収スペクトルを測定したときの前記の吸光度は、ガスバリア層2中に存在する赤外活性を有する化学種の量と比例関係にある。
 したがって、比(α/β)は、ガスバリア層2中の、カルボキシル基の多価金属塩(-COO)と、遊離カルボキシル基(-COOH)との比を表す尺度として代用することができる。比(α/β)が大きいほど、遊離カルボキシル基に対するカルボキシル基の多価金属塩の比率が高い。
 比(α/β)が1以上7未満である場合、ポリカルボン酸系重合体が有する全てのカルボキシ基(塩を形成しているカルボキシル基および遊離カルボキシル基)に対するカルボキシル基の多価金属塩の比率、つまり多価金属イオンによりイオン架橋されているカルボキシ基の比率(イオン架橋度)が50モル%程度であると判断できる。
The absorbance when the infrared absorption spectrum of the gas barrier layer 2 is measured is proportional to the amount of chemical species having infrared activity present in the gas barrier layer 2.
Therefore, the ratio (α / β) can be used as a measure representing the ratio of the carboxyl group polyvalent metal salt (—COO ) to the free carboxyl group (—COOH) in the gas barrier layer 2. The larger the ratio (α / β), the higher the ratio of the carboxyl group polyvalent metal salt to the free carboxyl group.
When the ratio (α / β) is 1 or more and less than 7, the polyvalent metal salt of the carboxyl group with respect to all the carboxyl groups (carboxyl groups forming the salt and free carboxyl groups) of the polycarboxylic acid polymer It can be determined that the ratio, that is, the ratio of carboxy groups ion-crosslinked by polyvalent metal ions (the degree of ion crosslinking) is about 50 mol%.
 包装材料用前駆体10に対してレトルト処理、ボイル処理等の熱水処理を行うと、水分がガスバリア層2および保護層3に供給される。このときガスバリア層2では、供給された水分によるガスバリア層2の膨張と、保護層3からの多価金属イオンによるポリカルボン酸系重合体のカルボキシル基のイオン架橋とが進行する。保護層3における多価金属イオンの生成には、ガスバリア層2のポリカルボン酸系重合体のカルボキシル基の電離により生成するHが関係する。また、カルボキシル基の電離には、ガスバリア層2に供給される水分および熱が利用される。
 熱水処理前のガスバリア層2の吸光度の最大ピーク高さの比(α/β)が1未満の場合、イオン架橋度が低いために、熱水処理時にガスバリア層2が膨張しやすい。
 支持体1の水蒸気透過度が低い場合は水分の供給量が少ないため、比(α/β)が1未満でもガスバリア層2があまり膨張しないうちに比(α/β)が7以上となる程度までイオン架橋度が高くなる。そのため、架橋密度の高い、ひいてはガスバリア性の高いガスバリア層となる。
 しかし、支持体1の水蒸気透過度が100g/m以上と高い場合に比(α/β)が1未満であると、熱水処理時の水分の供給量が多いため、比(α/β)が7以上となる前にガスバリア層2が膨張してしまう。そのため、ガスバリア層の架橋密度が低くなってガスバリア性が不充分になる。
 比(α/β)が1以上であれば、熱水処理により優れたガスバリア性が発現する。これは、熱水処理前にポリカルボン酸系重合体のカルボキシ基が50モル%程度イオン架橋していることで、熱水処理時のガスバリア層2の膨張が抑制され、架橋密度が高くなるためと考えられる。
 比(α/β)が7未満であれば、ガスバリア層2の可とう性が良好であり、包装材料用前駆体10を袋等の形態に加工しやすい。
When hot water treatment such as retort treatment and boil treatment is performed on the packaging material precursor 10, moisture is supplied to the gas barrier layer 2 and the protective layer 3. At this time, in the gas barrier layer 2, the expansion of the gas barrier layer 2 due to the supplied water and the ionic crosslinking of the carboxyl group of the polycarboxylic acid polymer by the polyvalent metal ions from the protective layer 3 proceed. Production of polyvalent metal ions in the protective layer 3 is related to H + produced by ionization of carboxyl groups of the polycarboxylic acid polymer of the gas barrier layer 2. Further, moisture and heat supplied to the gas barrier layer 2 are used for the ionization of the carboxyl group.
When the ratio (α / β) of the maximum peak height of absorbance of the gas barrier layer 2 before the hot water treatment is less than 1, the gas barrier layer 2 tends to expand during the hot water treatment because the degree of ionic crosslinking is low.
When the water vapor permeability of the support 1 is low, the amount of water supply is small, so even if the ratio (α / β) is less than 1, the ratio (α / β) becomes 7 or more before the gas barrier layer 2 expands much. The degree of ionic crosslinking increases. Therefore, a gas barrier layer having a high crosslink density and a high gas barrier property is obtained.
However, when the water vapor permeability of the support 1 is as high as 100 g / m 2 or more, if the ratio (α / β) is less than 1, the amount of moisture supplied during the hot water treatment is large, so the ratio (α / β ) Expands before the gas barrier layer 2 becomes 7 or more. For this reason, the crosslink density of the gas barrier layer is lowered, resulting in insufficient gas barrier properties.
When the ratio (α / β) is 1 or more, excellent gas barrier properties are exhibited by the hot water treatment. This is because the carboxy group of the polycarboxylic acid polymer is ionically crosslinked by about 50 mol% before the hot water treatment, so that the expansion of the gas barrier layer 2 during the hot water treatment is suppressed and the crosslinking density is increased. it is conceivable that.
If the ratio (α / β) is less than 7, the flexibility of the gas barrier layer 2 is good, and the packaging material precursor 10 is easily processed into a bag or the like.
 比(α/β)は、ガスバリア層2の赤外線吸収スペクトルを測定し、波数1490cm-1~1659cm-1の範囲内の吸光度の最大ピーク高さ(α)および波数1660cm-1~1750cm-1の範囲内の吸光度の最大ピーク高さ(β)を計測して求めることができる。
 赤外線吸収スペクトルの測定は、透過法や、ATR法(減衰全反射法)、KBrペレット法、拡散反射法、光音響法(PAS法)等の公知の方法を用いて行うことができる。例えば、フーリエ変換赤外分光(FT-IT)分析機として、Perkin Elmer社製のAuto Imageを用いて、ATR法による赤外線吸収スペクトルの測定を行うことができる。FT-IRを用いた赤外線吸収スペクトル測定法については、例えば、田隅三生著、「FT-IRの基礎と実際」を参照できる。
The ratio (α / β) is an infrared absorption spectrum of the gas barrier layer 2 is measured, the maximum peak absorbance in the wave number range of 1490cm -1 ~ 1659cm -1 height (alpha) and the wavenumber 1660cm -1 ~ 1750cm -1 The maximum peak height (β) of absorbance within the range can be measured and determined.
The infrared absorption spectrum can be measured by using a known method such as a transmission method, an ATR method (attenuated total reflection method), a KBr pellet method, a diffuse reflection method, or a photoacoustic method (PAS method). For example, an infrared absorption spectrum can be measured by the ATR method using an Auto Image manufactured by Perkin Elmer as a Fourier transform infrared spectroscopy (FT-IT) analyzer. For the infrared absorption spectrum measurement method using FT-IR, reference can be made to, for example, “Fundamentals and Practices of FT-IR” by Mitsuo Tasumi.
 赤外線吸収スペクトルの測定方法としては、簡便性の観点から、透過法またはATR法が好ましい。
 代表的な赤外線吸収スペクトルの測定方法としては、ガスバリア層2の表面をATR法で測定する方法が挙げられる。このときの赤外線吸収スペクトルの測定条件としては、侵入深さの観点より、Ge(ゲルマニウム)を用い、入射角45度、分解能4cm-1、積算回数10回での測定条件が挙げられる。
 透過法で赤外線吸収スペクトルを測定する場合、包装材料用前駆体10からガスバリア層2および保護層3を除いた状態での赤外線吸収スペクトルと、包装材料用前駆体10の赤外線吸収スペクトルとを比較する。この場合、包装材料用前駆体10からガスバリア層2および保護層3を除いた状態での赤外線吸収スペクトルをバックグラウンドとして用いることが好ましい。ガスバリア層2および保護層3は、塩酸や水酸化ナトリウム水溶液のような、強酸または強塩基で包装材料用前駆体10から取り除くことができる。
 赤外線吸収スペクトルにおいて、吸光度の最高ピーク高さは、波数900cm-1の吸光度と波数1900cm-1の吸光度とを直線で結んだ線をベースラインとして計測した値を用いる。
As a method for measuring an infrared absorption spectrum, a transmission method or an ATR method is preferable from the viewpoint of simplicity.
A typical method for measuring the infrared absorption spectrum includes a method of measuring the surface of the gas barrier layer 2 by the ATR method. The measurement conditions of the infrared absorption spectrum at this time include measurement conditions using Ge (germanium), an incident angle of 45 degrees, a resolution of 4 cm −1 , and an integration count of 10 from the viewpoint of penetration depth.
When the infrared absorption spectrum is measured by the transmission method, the infrared absorption spectrum in a state where the gas barrier layer 2 and the protective layer 3 are removed from the packaging material precursor 10 is compared with the infrared absorption spectrum of the packaging material precursor 10. . In this case, it is preferable to use the infrared absorption spectrum in a state where the gas barrier layer 2 and the protective layer 3 are removed from the packaging material precursor 10 as the background. The gas barrier layer 2 and the protective layer 3 can be removed from the packaging material precursor 10 with a strong acid or a strong base, such as hydrochloric acid or a sodium hydroxide aqueous solution.
In the infrared absorption spectrum, the maximum peak height of absorbance, a value obtained by measuring the line connecting the absorbance of the absorbance and the wave number 1900 cm -1 in wave number 900 cm -1 in a straight line as a baseline.
 なお、赤外線吸収スペクトルは、主に、カルボキシル基の化学構造に由来し、塩の金属種による影響は少ない。そのため、ガスバリア層2中のポリカルボン酸系重合体のカルボキシ基の一部が、ガスバリア性を損なわない範囲で、ナトリウム塩等の一価金属塩となっている場合には、カルボキシル基の一価金属塩(-COO)に帰属するC=O伸縮振動は、波数1490cm-1~1659cm-1の赤外光波数領域において、1560cm-1付近に吸収極大を有する吸収ピークを与える。
 ガスバリア層2に存在する金属種は、ICP(高周波誘導結合プラズマ)発光分光分析やEDX(エネルギー分散型X線)分光法などにより確認できる。
The infrared absorption spectrum is mainly derived from the chemical structure of the carboxyl group, and is less affected by the metal species of the salt. Therefore, when a part of the carboxy group of the polycarboxylic acid polymer in the gas barrier layer 2 is a monovalent metal salt such as a sodium salt within a range not impairing the gas barrier property, the monovalent carboxyl group metal salt (-COO -) C = O stretching vibration attributable to, in the infrared wave number range of wavenumber 1490cm -1 ~ 1659cm -1, giving an absorption peak having an absorption maximum in the vicinity of 1560 cm -1.
The metal species present in the gas barrier layer 2 can be confirmed by ICP (high frequency inductively coupled plasma) emission spectroscopic analysis, EDX (energy dispersive X-ray) spectroscopy, or the like.
 ガスバリア層2の単位面積当たりの質量は、0.1~10g/mが好ましく、0.1~6g/mがより好ましく、0.1~2g/mがさらに好ましい。ガスバリア層2の単位面積当たりの質量が上記範囲内であれば、ガスバリア性がより優れる。 Mass per unit area of the gas barrier layer 2 is preferably 0.1 ~ 10 g / m 2, more preferably 0.1 ~ 6 g / m 2, more preferably 0.1 ~ 2g / m 2. When the mass per unit area of the gas barrier layer 2 is within the above range, the gas barrier property is more excellent.
 ガスバリア層2の厚さは、0.05~5μmが好ましく、0.1~3μmがより好ましく、0.1~1μmがさらに好ましい。ガスバリア層2の厚さが上記範囲内であれば、ガスバリア性がより優れる。 The thickness of the gas barrier layer 2 is preferably 0.05 to 5 μm, more preferably 0.1 to 3 μm, and further preferably 0.1 to 1 μm. When the thickness of the gas barrier layer 2 is within the above range, the gas barrier property is more excellent.
 〔保護層〕
 保護層3は、多価金属成分と、ポリエステル樹脂と、分散剤とを含む。
 保護層3は、イソシアネート化合物をさらに含むことが好ましい。
 保護層3は、多価金属成分、ポリエステル樹脂、分散剤およびイソシアネート化合物以外の他の成分をさらに含んでもよい。
[Protective layer]
The protective layer 3 includes a polyvalent metal component, a polyester resin, and a dispersant.
It is preferable that the protective layer 3 further contains an isocyanate compound.
The protective layer 3 may further include a component other than the polyvalent metal component, the polyester resin, the dispersant, and the isocyanate compound.
 (多価金属成分)
 多価金属成分は、多価金属イオンの供給源として機能する。多価金属イオンは、ガスバリア層2に含まれるポリカルボン酸系重合体のカルボキシル基をイオン架橋させ、ガスバリア性を向上させる。
 多価金属成分としては、多価金属原子単体や、多価金属化合物等が挙げられる。
 多価金属は、金属イオンの価数が2以上の金属であり、例えばベリリウムや、マグネシウム、カルシウム等のアルカリ土類金属、チタン、ジルコニウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛等の遷移金属、アルミニウム等が挙げられる。ガスバリア性、高温水蒸気や熱水に対する耐性、製造性の観点で、多価金属は、金属イオンの価数が2である2価金属が好ましい。酸素バリア性の点では、亜鉛、銅が好ましく、亜鉛が特に好ましい。
(Polyvalent metal component)
The polyvalent metal component functions as a supply source of polyvalent metal ions. The polyvalent metal ions ion-crosslink carboxyl groups of the polycarboxylic acid polymer contained in the gas barrier layer 2 to improve gas barrier properties.
Examples of the polyvalent metal component include a single polyvalent metal atom and a polyvalent metal compound.
The polyvalent metal is a metal having a valence of 2 or more, such as beryllium, alkaline earth metals such as magnesium and calcium, titanium, zirconium, chromium, manganese, iron, cobalt, nickel, copper, zinc, etc. Transition metals, aluminum and the like. From the viewpoints of gas barrier properties, resistance to high-temperature steam and hot water, and productivity, the polyvalent metal is preferably a divalent metal having a metal ion valence of 2. In terms of oxygen barrier properties, zinc and copper are preferable, and zinc is particularly preferable.
 多価金属化合物の具体例としては、前記多価金属の酸化物や、水酸化物、炭酸塩、有機酸塩および無機酸塩、前記多価金属のアンモニウム錯体および2~4級アミン錯体、それら錯体の炭酸塩および有機酸塩、多価金属のアルキルアルコキシド等が挙げられる。有機酸塩としては、酢酸塩や、シュウ酸塩、クエン酸塩、乳酸塩、リン酸塩、亜リン酸塩、次亜リン酸塩、ステアリン酸塩、モノエチレン性不飽和カルボン酸塩等が挙げられる。無機酸塩としては、塩化物や、硫酸塩、硝酸塩等が挙げられる。
 多価金属化合物としては、酸素バリア性の点で、酸化亜鉛、酸化銅、及び炭酸カルシウムが好ましい。
Specific examples of the polyvalent metal compound include oxides, hydroxides, carbonates, organic acid salts and inorganic acid salts of the polyvalent metals, ammonium complexes and secondary to quaternary amine complexes of the polyvalent metals, Complex carbonates and organic acid salts, polyvalent metal alkyl alkoxides, and the like. Organic acid salts include acetate, oxalate, citrate, lactate, phosphate, phosphite, hypophosphite, stearate, monoethylenically unsaturated carboxylate, etc. Can be mentioned. Examples of inorganic acid salts include chlorides, sulfates and nitrates.
As the polyvalent metal compound, zinc oxide, copper oxide, and calcium carbonate are preferable in terms of oxygen barrier properties.
 包装材料用前駆体10の透明性、酸素バリア性等の点で、超微粒子状の多価金属成分を用いることが好ましい。
 「超微粒子」とは、レーザー回折散乱法で測定される平均一次粒子径が1nm~1000nmの粒子を意味する。
 超微粒子の平均一次粒径は、200nm以下が好ましく、150nm以下がより好ましく、100nm以下が特に好ましい。また、超微粒子の平均一次粒子径は、5nm以上が好ましい。超微粒子の平均一次粒径が上記上限値(200nm)以下であれば、保護層3の透明性がより優れる。また、保護層用塗液中での超微粒子の分散性が優れ、液安定性が良好である。
 多価金属成分の超微粒子としては、市販品を用いてもよい。例えば酸化亜鉛超微粒子の市販品としては、FINEX(登録商標)50(堺化学工業株式会社製、平均一次粒子径20nm)や、ZINCOX SUPER F-2(ハクスイテック株式会社製、平均一次粒子径65nm)等が挙げられる。
In view of transparency, oxygen barrier property, etc. of the precursor 10 for packaging material, it is preferable to use an ultrafine polyvalent metal component.
“Ultrafine particles” mean particles having an average primary particle diameter of 1 nm to 1000 nm as measured by a laser diffraction scattering method.
The average primary particle size of the ultrafine particles is preferably 200 nm or less, more preferably 150 nm or less, and particularly preferably 100 nm or less. The average primary particle diameter of the ultrafine particles is preferably 5 nm or more. If the average primary particle size of the ultrafine particles is not more than the above upper limit (200 nm), the transparency of the protective layer 3 is more excellent. Moreover, the dispersibility of the ultrafine particles in the coating liquid for the protective layer is excellent, and the liquid stability is good.
Commercially available products may be used as the ultrafine particles of the polyvalent metal component. For example, as a commercial product of zinc oxide ultrafine particles, FINEX (registered trademark) 50 (manufactured by Sakai Chemical Industry Co., Ltd., average primary particle diameter 20 nm) and ZINCOX SUPER F-2 (manufactured by Hakusui Tech Co., Ltd., average primary particle diameter 65 nm) Etc.
 (ポリエステル樹脂)
 ポリエステル樹脂は、多価金属成分のバインダーとして機能する。バインダーがポリエステル樹脂であることで、他のバインダーを用いる場合に比べて、包装材料用前駆体10の透明性が優れる。
 ポリエステル樹脂としては、多塩基酸および多塩基酸無水物のいずれか一方または両方と、多価アルコールとの共重合体(重縮合体)が挙げられる。ポリエステル樹脂を形成する多塩基酸、多塩基酸無水物、及び多価アルコールはそれぞれ1種でもよく2種以上でもよい。
(Polyester resin)
The polyester resin functions as a binder for the polyvalent metal component. When the binder is a polyester resin, the transparency of the precursor 10 for packaging material is excellent as compared with the case where another binder is used.
Examples of the polyester resin include a copolymer (polycondensate) of one or both of a polybasic acid and a polybasic acid anhydride and a polyhydric alcohol. The polybasic acid, polybasic acid anhydride, and polyhydric alcohol that form the polyester resin may each be one kind or two or more kinds.
 多塩基酸としては、特に限定はなく、例えば芳香族多塩基酸や、脂肪族多塩基酸、脂環式多塩基酸等が挙げられる。また、多塩基酸としては、2官能の多塩基酸を用いても、3官能以上の多塩基酸を用いてもよい。
 2官能の芳香族多塩基酸、すなわち芳香族ジカルボン酸としては、例えばテレフタル酸や、イソフタル酸、オルトフタル酸、ナフタレンジカルボン酸、ビフェニルジカルボン酸等が挙げられる。2官能の脂肪族多塩基酸、すなわち脂肪族ジカルボン酸としては、例えばシュウ酸や、コハク酸、アジピン酸、セバシン酸、ドデカン二酸、エイコサン二酸、水添ダイマー酸等の飽和脂肪族ジカルボン酸;フマル酸や、マレイン酸、イタコン酸、シトラコン酸、ダイマー酸等の不飽和脂肪族ジカルボン酸が挙げられる。2官能の脂環式多塩基酸、すなわち脂環式ジカルボン酸としては、例えば1,4-シクロヘキサンジカルボン酸や、1,3-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸、2,5-ノルボルネンジカルボン酸、テトラヒドロフタル酸等が挙げられる。
 3官能以上の多塩基酸としては、例えばトリメリット酸や、ピロメリット酸、ベンゾフェノンテトラカルボン酸、トリメシン酸、エチレングリコールビス(アンヒドロトリメリテート)、グリセロールトリス(アンヒドロトリメリテート)、1,2,3,4-ブタンテトラカルボン酸等が挙げられる。
There is no limitation in particular as a polybasic acid, For example, an aromatic polybasic acid, an aliphatic polybasic acid, an alicyclic polybasic acid etc. are mentioned. Moreover, as a polybasic acid, a bifunctional polybasic acid may be used, or a trifunctional or more polybasic acid may be used.
Examples of the bifunctional aromatic polybasic acid, that is, aromatic dicarboxylic acid, include terephthalic acid, isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, biphenyldicarboxylic acid, and the like. Examples of the bifunctional aliphatic polybasic acid, that is, the aliphatic dicarboxylic acid, include saturated oxalic acid, saturated aliphatic dicarboxylic acid such as succinic acid, adipic acid, sebacic acid, dodecanedioic acid, eicosane diacid, and hydrogenated dimer acid. And fumaric acid, and unsaturated aliphatic dicarboxylic acids such as maleic acid, itaconic acid, citraconic acid, and dimer acid. Examples of the bifunctional alicyclic polybasic acid, ie, alicyclic dicarboxylic acid, include 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, and 2,5-norbornene. Examples thereof include dicarboxylic acid and tetrahydrophthalic acid.
Examples of the tribasic or higher polybasic acid include trimellitic acid, pyromellitic acid, benzophenone tetracarboxylic acid, trimesic acid, ethylene glycol bis (anhydrotrimellitate), glycerol tris (anhydrotrimellitate), 1 2,3,4-butanetetracarboxylic acid and the like.
 多塩基酸無水物としては、特に限定はなく、例えば前述の多塩基酸の酸無水物が挙げられる。多塩基酸無水物としては、2官能の多塩基酸の酸無水物を用いても、3官能以上の多塩基酸の酸無水物を用いてもよい。
 2官能の多塩基酸の酸無水物としては、例えば無水フタル酸や、無水コハク酸、無水マレイン酸、無水イタコン酸、無水シトラコン酸、2,5-ノルボルネンジカルボン酸無水物、テトラヒドロフタル酸無水物等が挙げられる。3官能以上の多塩基酸の酸無水物としては、例えば無水トリメリット酸や、無水ピロメリット酸、無水ベンゾフェノンテトラカルボン酸等が挙げられる。
There is no limitation in particular as a polybasic acid anhydride, For example, the acid anhydride of the above-mentioned polybasic acid is mentioned. As the polybasic acid anhydride, a bifunctional polybasic acid anhydride or a trifunctional or higher polybasic acid anhydride may be used.
Examples of acid anhydrides of bifunctional polybasic acids include phthalic anhydride, succinic anhydride, maleic anhydride, itaconic anhydride, citraconic anhydride, 2,5-norbornene dicarboxylic acid anhydride, tetrahydrophthalic anhydride Etc. Examples of the acid anhydride of a tribasic or more polybasic acid include trimellitic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic anhydride, and the like.
 ポリエステル樹脂製造時のゲル化を抑制する観点から、多塩基酸および多塩基酸無水物の合計100モル%に対し、3官能以上の多塩基酸および3官能以上の多塩基酸の酸無水物の合計量は、5モル%以下であることが好ましい。すなわち、2官能の多塩基酸および2官能の多塩基酸の酸無水物の合計量が95モル%以上であることが好ましい。 From the viewpoint of suppressing gelation during the production of the polyester resin, the acid anhydride of the tribasic acid or polybasic acid and the tribasic acid tribasic acid or more is added to 100 mol% of the polybasic acid and polybasic acid anhydride. The total amount is preferably 5 mol% or less. That is, the total amount of the bifunctional polybasic acid and the acid anhydride of the bifunctional polybasic acid is preferably 95 mol% or more.
 前記多塩基酸および多塩基酸無水物の中でも、芳香族ジカルボン酸や、無水フタル酸等の芳香族ジカルボン酸の酸無水物が好ましい。 Of the polybasic acids and polybasic acid anhydrides, aromatic dicarboxylic acids and acid anhydrides of aromatic dicarboxylic acids such as phthalic anhydride are preferred.
 多価アルコールとしては、特に限定はなく、2官能の多価アルコールを用いても、3官能以上の多価アルコールを用いてもよい。
 2官能の多価アルコールとしては、例えば炭素数2~10の脂肪族グリコールや、炭素数6~12の脂環族グリコール、エーテル結合含有グリコール、ビスフェノール類のエチレンオキサイド又はプロピレンオキサイド付加体等が挙げられる。
 炭素数2~10の脂肪族グリコールとしては、エチレングリコールや、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、2-メチル-1,3-プロパンジオール、1,5-ヘプタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、1,9-ノナンジオール、2-エチル-2-ブチルプロパンジオール等が挙げられる。炭素数6~12の脂環族グリコールとしては、1,4-シクロヘキサンジメタノールが挙げられる。エーテル結合含有グリコールとしては、ジエチレングリコールや、トリエチレングリコール、ジプロピレングリコール、ポリテトラメチレングリコール、ポリエチレングリコール、ポリプロピレングリコール等が挙げられる。ビスフェノール類のエチレンオキサイド又はプロピレンオキサイド付加体におけるビスフェノール類としては、例えば2,2-ビス(4-(2-ヒドロキシエトキシ)フェニル)プロパンや、ビスフェノールA、ビスフェノールS等が挙げられる。
 3官能以上の多価アルコールとしては、例えばグリセリンや、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール等が挙げられる。
The polyhydric alcohol is not particularly limited, and a bifunctional polyhydric alcohol or a trifunctional or higher polyhydric alcohol may be used.
Examples of the bifunctional polyhydric alcohol include aliphatic glycols having 2 to 10 carbon atoms, alicyclic glycols having 6 to 12 carbon atoms, ether bond-containing glycols, ethylene oxide or propylene oxide adducts of bisphenols, and the like. It is done.
Examples of the aliphatic glycol having 2 to 10 carbon atoms include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 2-methyl-1,3-propanediol, 1, Examples include 5-heptanediol, neopentyl glycol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 1,9-nonanediol, 2-ethyl-2-butylpropanediol, and the like. Examples of the alicyclic glycol having 6 to 12 carbon atoms include 1,4-cyclohexanedimethanol. Examples of the ether bond-containing glycol include diethylene glycol, triethylene glycol, dipropylene glycol, polytetramethylene glycol, polyethylene glycol, and polypropylene glycol. Examples of the bisphenols in the ethylene oxide or propylene oxide adduct of bisphenols include 2,2-bis (4- (2-hydroxyethoxy) phenyl) propane, bisphenol A, bisphenol S, and the like.
Examples of the trifunctional or higher polyhydric alcohol include glycerin, trimethylolethane, trimethylolpropane, and pentaerythritol.
 ポリエステル樹脂製造時のゲル化を抑制する観点から、多価アルコール100モル%に対し、3官能以上の多価アルコールの量は、5モル%以下であることが好ましい。すなわち、2官能の多価アルコールの量が95モル%以上であることが好ましい。 From the viewpoint of suppressing gelation during the production of the polyester resin, the amount of the trifunctional or higher polyhydric alcohol is preferably 5 mol% or less with respect to 100 mol% of the polyhydric alcohol. That is, the amount of the bifunctional polyhydric alcohol is preferably 95 mol% or more.
 多価アルコールとしては、安価である点から、エチレングリコール、ネオペンチルグリコールが好ましい。
 多価アルコール100モル%中のエチレングリコールとネオペンチルグリコールとの合計の量は、50モル%以上が好ましく、70モル%以上がより好ましく、100モル%であってもよい。
As the polyhydric alcohol, ethylene glycol and neopentyl glycol are preferable because of their low cost.
The total amount of ethylene glycol and neopentyl glycol in 100 mol% of the polyhydric alcohol is preferably 50 mol% or more, more preferably 70 mol% or more, and may be 100 mol%.
 ポリエステル樹脂においては、前述の多塩基酸および多塩基酸無水物のいずれか一方または両方と多価アルコールとともに、モノカルボン酸、モノアルコール、ラクトン、およびヒドロキシカルボン酸からなる群から選ばれる少なくとも1種が共重合されていてもよい。モノカルボン酸、モノアルコール、ラクトンまたはヒドロキシカルボン酸として、具体的には、ラウリン酸や、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸、リノール酸、リノレン酸、安息香酸、p-tert-ブチル安息香酸、シクロヘキサン酸、4-ヒドロキシフェニルステアリン酸、ステアリルアルコール、2-フェノキシエタノール、ε-カプロラクトン、乳酸、β-ヒドロキシ酪酸、p-ヒドロキシ安息香酸等が挙げられる。 In the polyester resin, at least one selected from the group consisting of a monocarboxylic acid, a monoalcohol, a lactone, and a hydroxycarboxylic acid together with one or both of the aforementioned polybasic acid and polybasic acid anhydride and a polyhydric alcohol. May be copolymerized. Specific examples of monocarboxylic acids, monoalcohols, lactones or hydroxycarboxylic acids include lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, benzoic acid, p-tert-butylbenzoic acid Examples include acid, cyclohexane acid, 4-hydroxyphenyl stearic acid, stearyl alcohol, 2-phenoxyethanol, ε-caprolactone, lactic acid, β-hydroxybutyric acid, p-hydroxybenzoic acid and the like.
 多塩基酸および多塩基酸無水物のいずれか一方または両方と、多価アルコールとの共重合(重縮合)は、公知の方法により行うことができる。例えば、全モノマー及びその低重合体の少なくとも一方を不活性雰囲気下で180~260℃、2.5~10時間程度反応させてエステル化反応を行う。引き続いてエステル交換反応触媒の存在下、130Pa以下の減圧下に220~280℃の温度で所望の分子量に達するまで重縮合反応を進めてポリエステル樹脂を得る方法等が挙げられる。 The copolymerization (polycondensation) of either one or both of a polybasic acid and a polybasic acid anhydride and a polyhydric alcohol can be performed by a known method. For example, the esterification reaction is carried out by reacting all the monomers and at least one of their low polymers in an inert atmosphere at 180 to 260 ° C. for about 2.5 to 10 hours. Examples thereof include a method in which a polycondensation reaction proceeds in the presence of a transesterification reaction catalyst at a temperature of 220 to 280 ° C. under a reduced pressure of 130 Pa or less until a desired molecular weight is reached to obtain a polyester resin.
 ポリエステル樹脂に所望の酸価や水酸基価を付与する方法として、例えば、上記の重縮合反応に引き続き、多塩基酸や多価アルコールをさらに添加し、不活性雰囲気下、解重合を行う方法が挙げられる。多塩基酸を添加すると酸価が大きくなり、多価アルコールを添加すると水酸基価が大きくなる。
 解重合した際に樹脂中に泡が発生し、払出しの際、泡のためにペレット化できない場合がある。このような場合は、解重合後、系内を再減圧し脱泡すればよい。再減圧を行なう際の減圧度は67,000Pa以下が好ましく、10,000Pa以下がより好ましい。減圧度が67,000Paよりも高いと再減圧しても脱泡するのに要する時間が長くなるので好ましくない。
 また、ポリエステル樹脂に酸価を付与する方法として、上記の重縮合反応に引き続き、多塩基酸無水物をさらに添加し、不活性雰囲気下、ポリエステル樹脂の水酸基と付加反応する方法も挙げられる。
Examples of a method for imparting a desired acid value or hydroxyl value to a polyester resin include a method in which a polybasic acid or a polyhydric alcohol is further added to the polycondensation reaction and depolymerization is performed in an inert atmosphere. It is done. When a polybasic acid is added, the acid value increases, and when a polyhydric alcohol is added, the hydroxyl value increases.
When depolymerized, bubbles are generated in the resin, and at the time of dispensing, there are cases where pelletization cannot be performed due to the bubbles. In such a case, after depolymerization, the system may be depressurized and defoamed again. The degree of decompression at the time of re-depressurization is preferably 67,000 Pa or less, and more preferably 10,000 Pa or less. If the degree of vacuum is higher than 67,000 Pa, it takes a long time to degas even if the pressure is reduced again.
Further, as a method for imparting an acid value to the polyester resin, there may be mentioned a method in which a polybasic acid anhydride is further added following the above polycondensation reaction, and an addition reaction is performed with a hydroxyl group of the polyester resin in an inert atmosphere.
 ポリエステル樹脂としては、多塩基酸を用いた解重合及び多塩基酸無水物を用いた付加反応の少なくとも一方によりカルボキシル基を導入したポリエステル樹脂が好ましい。解重合及び付加反応の少なくとも一方によりカルボキシル基を導入することにより、ポリエステル樹脂の分子量や酸価を容易にコントロールすることができる。
 前記解重合の際に使用する多塩基酸は、3官能以上の多塩基酸を含むことが好ましい。
 3官能以上の多塩基酸を使用することにより、解重合によるポリエステル樹脂の分子量低下を抑えながら、所望の酸価を付与することができる。また、解重合や付加反応に3官能以上の多塩基酸や3官能以上の多塩基酸の酸無水物を使用することにより、詳細は不明であるが、より貯蔵安定性の優れた水性分散体を得ることができる。
As the polyester resin, a polyester resin having a carboxyl group introduced by at least one of depolymerization using a polybasic acid and addition reaction using a polybasic acid anhydride is preferable. By introducing a carboxyl group by at least one of depolymerization and addition reaction, the molecular weight and acid value of the polyester resin can be easily controlled.
It is preferable that the polybasic acid used in the depolymerization includes a tribasic or higher polybasic acid.
By using a tribasic or higher polybasic acid, a desired acid value can be imparted while suppressing a decrease in the molecular weight of the polyester resin due to depolymerization. Further, by using a tribasic acid or polybasic acid or an acid anhydride of a trifunctional or more polybasic acid for depolymerization or addition reaction, details are unknown, but an aqueous dispersion having more excellent storage stability. Can be obtained.
 解重合及び付加反応の少なくとも一方で用いる多塩基酸または多塩基酸の酸無水物としては、前記で挙げたものと同様のものが挙げられる。その中でも、芳香族多塩基酸や芳香族多塩基酸の酸無水物が好ましく、芳香族ジカルボン酸であるテレフタル酸、イソフタル酸、芳香族ジカルボン酸の酸無水物である無水フタル酸、3官能の多塩基酸であるトリメリット酸、3官能の多塩基酸の酸無水物である無水トリメリット酸が好ましい。特に無水トリメリット酸を使用した場合には、解重合と付加反応とが平行して起こると考えられる。そのため、解重合によるポリエステル樹脂の分子量低下を極力抑えながら、所望の酸価を付与することができるので、無水トリメリット酸を使用することが特に好ましい。 Examples of the polybasic acid or acid anhydride of the polybasic acid used in at least one of the depolymerization and the addition reaction include the same as those mentioned above. Among them, aromatic polybasic acids and acid anhydrides of aromatic polybasic acids are preferable, terephthalic acid that is an aromatic dicarboxylic acid, isophthalic acid, phthalic anhydride that is an acid anhydride of an aromatic dicarboxylic acid, trifunctional Trimellitic acid which is a polybasic acid and trimellitic anhydride which is an acid anhydride of a trifunctional polybasic acid are preferable. In particular, when trimellitic anhydride is used, depolymerization and addition reaction are considered to occur in parallel. Therefore, it is particularly preferable to use trimellitic anhydride because a desired acid value can be imparted while minimizing the decrease in molecular weight of the polyester resin due to depolymerization.
 ポリエステル樹脂の酸価は、15mgKOH/g以下であることが好ましく、10mgKOH/g以下であることがより好ましく、8mgKOH/g以下であることが特に好ましい。酸価が上記上限値(15mgKOH/g)以下であれば、保護層3を有する包装材料用前駆体10の耐水性が優れる。
 ポリエステル樹脂の酸価の下限に特に限定はないが、測定精度の限界上、通常は0.05mgKOH/g以上である。
 ポリエステル樹脂の酸価は、JIS K0070:1992に準拠して測定される。
The acid value of the polyester resin is preferably 15 mgKOH / g or less, more preferably 10 mgKOH / g or less, and particularly preferably 8 mgKOH / g or less. If an acid value is below the said upper limit (15 mgKOH / g), the water resistance of the precursor 10 for packaging materials which has the protective layer 3 will be excellent.
Although there is no particular limitation on the lower limit of the acid value of the polyester resin, it is usually 0.05 mgKOH / g or more on the limit of measurement accuracy.
The acid value of the polyester resin is measured according to JIS K0070: 1992.
 ポリエステル樹脂は、保護層3の耐水性を損なわない範囲で、水酸基が含まれていてもよい。
 ポリエステル樹脂の水酸基価は、30mgKOH/g以下であることが好ましく、20mgKOH/g以下であることがより好ましい。ポリエステル樹脂の水酸基価の下限に特に限定はないが、測定精度の限界上、通常は0.05mgKOH/g以上である。
The polyester resin may contain a hydroxyl group as long as the water resistance of the protective layer 3 is not impaired.
The hydroxyl value of the polyester resin is preferably 30 mgKOH / g or less, and more preferably 20 mgKOH / g or less. The lower limit of the hydroxyl value of the polyester resin is not particularly limited, but is usually 0.05 mgKOH / g or more due to the limit of measurement accuracy.
 ポリエステル樹脂のガラス転移温度(Tg)は、-30℃以上であることが好ましく、20℃以上であることがより好ましく、50℃以上であることが特に好ましい。Tgが上記下限値(-30℃)以上であれば、保護層3を有する包装材料用前駆体10の耐水性および耐熱性が優れる。
 ポリエステル樹脂のガラス転移温度(Tg)の上限に特に限定はないが、典型的には80℃以下である。
The glass transition temperature (Tg) of the polyester resin is preferably −30 ° C. or higher, more preferably 20 ° C. or higher, and particularly preferably 50 ° C. or higher. When Tg is equal to or higher than the lower limit (−30 ° C.), the packaging material precursor 10 having the protective layer 3 has excellent water resistance and heat resistance.
The upper limit of the glass transition temperature (Tg) of the polyester resin is not particularly limited, but is typically 80 ° C. or lower.
 ポリエステル樹脂の数平均分子量は、5,000~50,000であることが好ましく、9,000~40,000であることがより好ましく、10,000~30,000であることが特に好ましい。数平均分子量が上記範囲内であれば、保護層3を有する包装材料用前駆体10の耐水性および耐熱性がより優れる。
 保護層3に含まれるポリエステル樹脂は1種でも2種以上でもよい。
The number average molecular weight of the polyester resin is preferably 5,000 to 50,000, more preferably 9,000 to 40,000, and particularly preferably 10,000 to 30,000. When the number average molecular weight is within the above range, the water resistance and heat resistance of the packaging material precursor 10 having the protective layer 3 are more excellent.
The polyester resin contained in the protective layer 3 may be one type or two or more types.
 保護層3に含まれるポリエステル樹脂は、ポリエステル樹脂水性分散体に由来することが好ましい。ポリエステル樹脂水性分散体に由来するポリエステル樹脂が含まれると、保護層3の耐熱水性がより優れる。
 ポリエステル樹脂水性分散体は、ポリエステル樹脂および分散媒である水を含む。
 ポリエステル樹脂水性分散体は、ポリエステル樹脂を良好に水中に分散するために、塩基性化合物をさらに含むことが好ましい。
 ポリエステル樹脂水性分散体は、他の成分をさらに含んでいてもよい。他の成分としては特に限定はないが、例えば、界面活性剤や、有機溶剤、硬化剤、保護コロイド作用を有する化合物、酸化チタン、亜鉛華、カーボンブラック等の顔料、染料、水性ウレタン樹脂、水性オレフィン樹脂、水性アクリル樹脂等の水性樹脂等が挙げられる。
 ポリエステル樹脂水性分散体としては、市販品を用いてもよく、例えば、エリーテル(登録商標) KT-8803や、エリーテル KT-0507、エリーテル KT-9204(以上、ユニチカ株式会社製)、バイロナール(登録商標) MD-1200、バイロナール MD-1480(以上、東洋紡績株式会社製)、ペスレジン A124GP(高松油脂株式会社製)等が挙げられる。
The polyester resin contained in the protective layer 3 is preferably derived from an aqueous polyester resin dispersion. When the polyester resin derived from the aqueous polyester resin dispersion is contained, the hot water resistance of the protective layer 3 is more excellent.
The aqueous polyester resin dispersion contains a polyester resin and water as a dispersion medium.
The aqueous polyester resin dispersion preferably further contains a basic compound in order to satisfactorily disperse the polyester resin in water.
The aqueous polyester resin dispersion may further contain other components. Other components are not particularly limited. For example, surfactants, organic solvents, curing agents, compounds having a protective colloid effect, pigments such as titanium oxide, zinc white, and carbon black, dyes, aqueous urethane resins, aqueous Examples thereof include aqueous resins such as olefin resins and aqueous acrylic resins.
As the polyester resin aqueous dispersion, commercially available products may be used. For example, Elitel (registered trademark) KT-8803, Elitel KT-0507, Elitel KT-9204 (above, manufactured by Unitika Ltd.), Bironal (registered trademark) ) MD-1200, Vylonal MD-1480 (above, manufactured by Toyobo Co., Ltd.), Pesresin A124GP (manufactured by Takamatsu Yushi Co., Ltd.), and the like.
 (分散剤)
 分散剤は、上述の多価金属成分およびポリエステル樹脂を含む保護層用塗液における多価金属成分の分散性、ひいては保護層3における多価金属成分の分散性の向上に寄与する。保護層3中に多価金属成分が均一に分散することで、保護層3の透明性、包装材料用前駆体10の熱水処理後のガスバリア性が高まる。
 分散剤としては、ポリカルボン酸ナトリウム塩およびポリカルボン酸アンモニウム塩からなる群から選ばれる少なくとも1種が好ましい。ポリカルボン酸ナトリウム塩及びポリカルボン酸アンモニウム塩は、多価金属成分表面に対する吸着能が高い。また、多価金属成分表面に吸着した後の電離による電気的斥力が生じやすいため、多価金属成分の好適な分散に寄与する。また、ポリカルボン酸ナトリウム塩及びポリカルボン酸アンモニウム塩は、ガスバリア層2に含まれるポリカルボン酸系重合体と物理的、化学的に似た性質を持つ。そのため、ガスバリア層2に隣接して保護層3を形成したときに、層間の反応による透明性不良が生じにくく、透明性に優れた包装材料用前駆体10を得ることができる。
(Dispersant)
The dispersant contributes to the improvement of the dispersibility of the polyvalent metal component in the protective layer coating liquid containing the above-described polyvalent metal component and the polyester resin, and consequently the dispersibility of the polyvalent metal component in the protective layer 3. By uniformly dispersing the polyvalent metal component in the protective layer 3, the transparency of the protective layer 3 and the gas barrier property of the packaging material precursor 10 after the hot water treatment are enhanced.
The dispersant is preferably at least one selected from the group consisting of polycarboxylic acid sodium salt and polycarboxylic acid ammonium salt. Polycarboxylic acid sodium salt and polycarboxylic acid ammonium salt have high adsorbability on the polyvalent metal component surface. In addition, since an electric repulsion due to ionization after adsorbing on the surface of the polyvalent metal component is likely to occur, it contributes to suitable dispersion of the polyvalent metal component. The polycarboxylic acid sodium salt and the polycarboxylic acid ammonium salt have properties that are physically and chemically similar to the polycarboxylic acid polymer contained in the gas barrier layer 2. Therefore, when the protective layer 3 is formed adjacent to the gas barrier layer 2, it is possible to obtain a packaging material precursor 10 that is less susceptible to poor transparency due to the reaction between the layers and that is excellent in transparency.
 ポリカルボン酸ナトリウム塩またはポリカルボン酸アンモニウム塩におけるポリカルボン酸としては、例えば、不飽和カルボン酸の単独重合体または共重合体が挙げられる。
 不飽和カルボン酸としては、例えば、アクリル酸や、マレイン酸、メタクリル酸、イタコン酸、フマル酸、クロトン酸等が挙げられる。
 不飽和カルボン酸の共重合体としては、2種以上の不飽和カルボン酸の共重合体や、1種以上の不飽和カルボン酸と1種以上の他の単量体との共重合体等が挙げられる。2種以上の不飽和カルボン酸の共重合体は、2種以上の不飽和カルボン酸と他の単量体との共重合体であってもよい。
As polycarboxylic acid in polycarboxylic acid sodium salt or polycarboxylic acid ammonium salt, the homopolymer or copolymer of unsaturated carboxylic acid is mentioned, for example.
Examples of the unsaturated carboxylic acid include acrylic acid, maleic acid, methacrylic acid, itaconic acid, fumaric acid, crotonic acid and the like.
The copolymer of unsaturated carboxylic acid includes a copolymer of two or more unsaturated carboxylic acids, a copolymer of one or more unsaturated carboxylic acids and one or more other monomers, and the like. Can be mentioned. The copolymer of two or more unsaturated carboxylic acids may be a copolymer of two or more unsaturated carboxylic acids and another monomer.
 ポリカルボン酸ナトリウム塩は、不飽和カルボン酸を(共)重合することにより得たポリカルボン酸が有するカルボキシル基を、ナトリウムで中和することにより得られるポリカルボン酸ナトリウム塩でもよく、不飽和カルボン酸のナトリウム塩を(共)重合することにより得られるポリカルボン酸ナトリウム塩でもよい。
 ポリカルボン酸アンモニウム塩は、不飽和カルボン酸を(共)重合することにより得たポリカルボン酸が有するカルボキシル基を、アンモニアで中和することにより得られるポリカルボン酸アンモニウム塩でもよく、不飽和カルボン酸のアンモニウム塩を(共)重合することにより得られるポリカルボン酸アンモニウム塩でもよい。
 分散剤は、1種単独で用いてもよく2種以上を混合して用いてもよい。
The polycarboxylic acid sodium salt may be a polycarboxylic acid sodium salt obtained by neutralizing a carboxyl group of a polycarboxylic acid obtained by (co) polymerizing an unsaturated carboxylic acid with sodium. Polycarboxylic acid sodium salt obtained by (co) polymerizing the sodium salt of an acid may also be used.
The polycarboxylic acid ammonium salt may be a polycarboxylic acid ammonium salt obtained by neutralizing a carboxyl group of a polycarboxylic acid obtained by (co) polymerizing an unsaturated carboxylic acid with ammonia. It may be a polycarboxylic acid ammonium salt obtained by (co) polymerizing an ammonium salt of an acid.
A dispersing agent may be used individually by 1 type, and 2 or more types may be mixed and used for it.
 (イソシアネート化合物)
 イソシアネート化合物とは、分子中に少なくとも一つのイソシアネート基を有する化合物を意味する。保護層3にイソシアネート化合物が含まれると、保護層3の成膜性、耐熱水性、及びガスバリア層2との密着性がより優れる。
 イソシアネート化合物としては、分子中に少なくとも2つのイソシアネート基を有するポリイソシアネート化合物が好ましく、例えば、フェニレンジイソシアネートや、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、キシリレンジイソシアネート、ナフチレンジイソシアネート、イソホロンジイソシアネート、ヘキサメチレンジイソシアネート、水素添加ジフェニルメタンジイソシアネート、ポリメチレンポリフェニルポリイソシアネート、水素添加トルエンジイソシアネートまたはテトラメチレンキシリレンジイソシアネート等の有機ポリイソシアネート化合物、該有機ポリイソシアネート化合物の誘導体等が挙げられる。
(Isocyanate compound)
The isocyanate compound means a compound having at least one isocyanate group in the molecule. When the protective layer 3 contains an isocyanate compound, the film forming property of the protective layer 3, the hot water resistance, and the adhesion with the gas barrier layer 2 are more excellent.
The isocyanate compound is preferably a polyisocyanate compound having at least two isocyanate groups in the molecule, such as phenylene diisocyanate, tolylene diisocyanate, diphenylmethane diisocyanate, xylylene diisocyanate, naphthylene diisocyanate, isophorone diisocyanate, hexamethylene diisocyanate, hydrogen. Examples thereof include organic diisocyanate compounds such as added diphenylmethane diisocyanate, polymethylene polyphenyl polyisocyanate, hydrogenated toluene diisocyanate or tetramethylene xylylene diisocyanate, and derivatives of the organic polyisocyanate compound.
 保護層3が、水を含む保護層用塗液を用いて形成される場合は、水に対する分散性を有するイソシアネート化合物(水分散性イソシアネート化合物)を用いることが好ましい。水分散性イソシアネート化合物としては、例えば(1)上記有機ポリイソシアネート化合物の一部のイソシアネート基を、ポリエチレンオキサイドや、カルボキシ基、またはスルホン酸基等の親水性基によって変性して自己乳化型にしたイソシアネート化合物や、(2)上記有機ポリイソシアネート化合物を界面活性剤等によって強制乳化して水分散可能にしたイソシアネート化合物、(3)上記有機ポリイソシアネート化合物から誘導される種々のプレポリマー類、(4)上記有機ポリイソシアネート中のイソシアネート基の一部をアルコール類や、フェノール類、オキシム類、メルカプタン類、アミド類、イミド類またはラクタム類等のブロック化剤でブロックした化合物、いわゆるブロック化ポリイソシアネート化合物等が挙げられる。
 イソシアネート化合物は、1種単独で使用されてもよく2種以上を組み合わせて使用されてもよい。
When the protective layer 3 is formed using a protective layer coating solution containing water, it is preferable to use an isocyanate compound (water-dispersible isocyanate compound) having dispersibility in water. As the water-dispersible isocyanate compound, for example, (1) a part of the isocyanate group of the organic polyisocyanate compound is modified with a hydrophilic group such as polyethylene oxide, carboxy group, or sulfonic acid group to be a self-emulsifying type. An isocyanate compound, (2) an isocyanate compound in which the organic polyisocyanate compound is forcibly emulsified with a surfactant or the like so that it can be dispersed in water, (3) various prepolymers derived from the organic polyisocyanate compound, (4 ) A compound in which a part of the isocyanate group in the organic polyisocyanate is blocked with a blocking agent such as alcohols, phenols, oximes, mercaptans, amides, imides or lactams, so-called blocked polyisocyanate compounds Etc.
An isocyanate compound may be used individually by 1 type, and may be used in combination of 2 or more type.
 (他の成分)
 他の成分としては、柔軟剤や、安定剤、膜形成剤、増粘剤等が挙げられる。
(Other ingredients)
Examples of other components include softeners, stabilizers, film forming agents, thickeners, and the like.
 (各成分の含有量)
 保護層3における多価金属成分の含有量は、保護層3の全質量に対して40~90質量%であり、50~85質量%が好ましく、60~80質量%がより好ましい。多価金属成分の含有量が上記範囲内であれば、包装材料用前駆体10を熱水処理して得られる包装材料のガスバリア性がより優れる。
(Content of each component)
The content of the polyvalent metal component in the protective layer 3 is 40 to 90% by mass, preferably 50 to 85% by mass, and more preferably 60 to 80% by mass with respect to the total mass of the protective layer 3. If content of a polyvalent metal component is in the said range, the gas barrier property of the packaging material obtained by carrying out the hot water process of the precursor 10 for packaging materials will be more excellent.
 保護層3におけるポリエステル樹脂の含有量は、保護層3の全質量に対して10~60質量%が好ましく、20~40質量%がより好ましい。ポリエステル樹脂の含有量が上記範囲内であれば、包装材料用前駆体10の耐水性、耐熱性、及び透明性がより優れる。 The content of the polyester resin in the protective layer 3 is preferably 10 to 60% by mass and more preferably 20 to 40% by mass with respect to the total mass of the protective layer 3. If content of a polyester resin is in the said range, the water resistance of the precursor 10 for packaging materials, heat resistance, and transparency will be more excellent.
 保護層3における分散剤の含有量は、多価金属成分に対して2~20質量%であり、2~15質量%が好ましく、2~10質量%がより好ましい。分散剤の含有量が上記範囲内であれば、保護層用塗液中の多価金属成分の分散性、ひいては保護層3中での多価金属成分の分散の均一性がより優れる。そのため、保護層3の透明性、包装材料用前駆体10を熱水処理して得られる包装材料のガスバリア性がより優れる。 The content of the dispersant in the protective layer 3 is 2 to 20% by mass, preferably 2 to 15% by mass, and more preferably 2 to 10% by mass with respect to the polyvalent metal component. When the content of the dispersant is within the above range, the dispersibility of the polyvalent metal component in the protective layer coating liquid, and thus the uniformity of the dispersion of the polyvalent metal component in the protective layer 3 is further improved. Therefore, the transparency of the protective layer 3 and the gas barrier property of the packaging material obtained by hydrothermal treatment of the packaging material precursor 10 are more excellent.
 保護層3がイソシアネート化合物を含む場合、保護層3におけるイソシアネート化合物の含有量は、保護層3の全質量に対して1~20質量%が好ましく、2~15質量%がより好ましい。イソシアネート化合物の含有量が上記範囲内であれば、保護層3の成膜性、耐熱水性、及びガスバリア層2との密着性がより優れる。また、包装材料用前駆体10を熱水処理して得られる包装材料のガスバリア性がより優れる。また、後述する第3実施形態に示すように保護層3に接着層を介して他の基材をラミネートする場合に、他の基材との密着性にも優れる。 When the protective layer 3 contains an isocyanate compound, the content of the isocyanate compound in the protective layer 3 is preferably 1 to 20% by mass and more preferably 2 to 15% by mass with respect to the total mass of the protective layer 3. If content of an isocyanate compound is in the said range, the film-forming property of the protective layer 3, hot water resistance, and adhesiveness with the gas barrier layer 2 will be more excellent. Moreover, the gas barrier property of the packaging material obtained by carrying out the hot water process of the packaging material precursor 10 is more excellent. In addition, when another substrate is laminated on the protective layer 3 via an adhesive layer as shown in a third embodiment to be described later, the adhesion to other substrates is also excellent.
 保護層3における多価金属成分とポリエステル樹脂と分散剤とイソシアネート化合物との合計の含有量は、保護層3の全質量に対し、95質量%より大きいことが好ましく、97質量%より大きいことがより好ましく、100質量%であってもよい。
 保護層3における他の成分の含有量は、保護層3の全質量に対し、5質量%未満が好ましく、3質量%未満がより好ましい。
The total content of the polyvalent metal component, the polyester resin, the dispersant, and the isocyanate compound in the protective layer 3 is preferably larger than 95% by mass and larger than 97% by mass with respect to the total mass of the protective layer 3. More preferably, it may be 100% by mass.
The content of other components in the protective layer 3 is preferably less than 5% by mass and more preferably less than 3% by mass with respect to the total mass of the protective layer 3.
 保護層3の単位面積当たりの質量は、0.1~10g/mが好ましく、0.1~6g/mがより好ましく、0.1~2g/mがさらに好ましい。保護層3の単位面積当たりの質量が上記下限値(0.1g/m)以上であれば、ガスバリア性がより優れ、上記上限値(10g/m)以下であれば、外観が良好である。 Mass per unit area of the protective layer 3 is preferably 0.1 ~ 10g / m 2, more preferably 0.1 ~ 6g / m 2, more preferably 0.1 ~ 2g / m 2. If the mass per unit area of the protective layer 3 is not less than the above lower limit (0.1 g / m 2 ), the gas barrier property is more excellent, and if it is not more than the above upper limit (10 g / m 2 ), the appearance is good. is there.
 保護層3の厚さは、0.05~5μmが好ましく、0.1~3μmがより好ましく、0.1~1μmがさらに好ましい。保護層3の厚さが上記下限値(0.05μm)以上であれば、ガスバリア性がより優れ、上記上限値(5μm)以下であれば、外観が良好である。 The thickness of the protective layer 3 is preferably 0.05 to 5 μm, more preferably 0.1 to 3 μm, and further preferably 0.1 to 1 μm. If the thickness of the protective layer 3 is not less than the above lower limit (0.05 μm), the gas barrier property is more excellent, and if it is not more than the above upper limit (5 μm), the appearance is good.
 〔包装材料用前駆体の製造方法〕
 包装材料用前駆体10は、例えば、以下の(α1)および(α2)の工程を含む製造方法により製造できる。
 (α1):支持体1の一方の表面に下記のガスバリア層用塗液を塗布し乾燥させてガスバリア層2を形成する工程。
 (α2):ガスバリア層2の表面に下記の保護層用塗液を塗布し乾燥させて保護層3を形成する工程。
[Method for producing precursor for packaging material]
The packaging material precursor 10 can be manufactured, for example, by a manufacturing method including the following steps (α1) and (α2).
(Α1): A step of forming the gas barrier layer 2 by applying the following coating liquid for gas barrier layer on one surface of the support 1 and drying it.
(Α2): A step of forming the protective layer 3 by applying the following protective layer coating liquid on the surface of the gas barrier layer 2 and drying it.
 (ガスバリア層用塗液)
 ガスバリア層用塗液は、ポリカルボン酸系重合体と、ケイ素化合物(i)と、液状媒体とを含む。ガスバリア層用塗液は、必要に応じて、ポリカルボン酸系重合体およびケイ素化合物(i)以外の他の成分をさらに含有してもよい。
(Gas barrier layer coating solution)
The gas barrier layer coating liquid contains a polycarboxylic acid polymer, a silicon compound (i), and a liquid medium. The gas barrier layer coating solution may further contain other components than the polycarboxylic acid polymer and the silicon compound (i) as necessary.
 ガスバリア層用塗液中のポリカルボン酸系重合体は、カルボキシル基の多価金属による中和度が0モル%であること以外は、前述のガスバリア層2におけるポリカルボン酸系重合体と同様であり、好ましい態様も同様である。
 保護層用塗液をガスバリア層2の表面に塗布すると、多価金属イオンおよび水分が供給され、ポリカルボン酸系重合体のカルボキシル基の多価金属イオンによるイオン架橋反応が進む。このとき、カルボキシル基の中和度が低いほど、イオン架橋反応が進みやすい。
 上記中和度が0モル%より大きく40モル%以下であると、ガスバリア層2上に保護層用塗液を塗布した際のイオン架橋反応が進みにくく、比(α/β)を1以上にすることが困難である。
 上記中和度が40モル%より大きいと、ガスバリア層用塗液がゲル化し、塗布が困難になる。
The polycarboxylic acid polymer in the gas barrier layer coating solution is the same as the polycarboxylic acid polymer in the gas barrier layer 2 except that the neutralization degree of the carboxyl group with the polyvalent metal is 0 mol%. There are also preferred embodiments.
When the coating liquid for the protective layer is applied to the surface of the gas barrier layer 2, polyvalent metal ions and moisture are supplied, and an ionic crosslinking reaction with the polyvalent metal ions of the carboxyl group of the polycarboxylic acid polymer proceeds. At this time, the lower the degree of neutralization of the carboxyl group, the easier the ion crosslinking reaction proceeds.
When the degree of neutralization is greater than 0 mol% and less than or equal to 40 mol%, the ionic cross-linking reaction is difficult to proceed when the protective layer coating liquid is applied onto the gas barrier layer 2, and the ratio (α / β) is 1 or more. Difficult to do.
If the degree of neutralization is greater than 40 mol%, the gas barrier layer coating solution gels, making application difficult.
 なお、ポリカルボン酸系重合体のカルボキシル基は、保護層用塗液の塗布面に近いほどイオン架橋されやすいと考えられる。したがって、ガスバリア層2中の多価金属によるイオン架橋度は、保護層3に近いほど高くなっていると考えられる。例えば上記中和度が0モル%の場合、ガスバリア層2中では、支持体1との界面付近から保護層3との界面付近にかけて、イオン架橋度が0モル%から100モル%まで変化し、全体としてのイオン架橋度が50モル%程度になっていることが考えられる。一方、上記中和度が20モル%程度である場合、ガスバリア層2中では、支持体1との界面付近から保護層3との界面付近にかけて、イオン架橋度が20モル%から25モル%程度までしか変化しないことが考えられる。 In addition, it is considered that the carboxyl group of the polycarboxylic acid polymer is more easily ion-crosslinked as it is closer to the coating surface of the protective layer coating solution. Therefore, it is considered that the degree of ionic crosslinking by the polyvalent metal in the gas barrier layer 2 increases as the protective layer 3 is closer. For example, when the neutralization degree is 0 mol%, in the gas barrier layer 2, the ionic crosslinking degree changes from 0 mol% to 100 mol% from the vicinity of the interface with the support 1 to the vicinity of the interface with the protective layer 3, It is conceivable that the ionic crosslinking degree as a whole is about 50 mol%. On the other hand, when the neutralization degree is about 20 mol%, in the gas barrier layer 2, the ionic crosslinking degree is about 20 mol% to about 25 mol% from the vicinity of the interface with the support 1 to the vicinity of the interface with the protective layer 3. It can be considered that only changes.
 ガスバリア層用塗液におけるケイ素化合物(i)、他の成分はそれぞれ、前述のガスバリア層2におけるケイ素化合物(i)、他の成分と同様であり、好ましい態様も同様である。 The silicon compound (i) and other components in the gas barrier layer coating liquid are the same as the silicon compound (i) and other components in the gas barrier layer 2, respectively, and the preferred embodiments are also the same.
 液状媒体としては、特に限定が無く、水や、有機溶剤、水と有機溶剤との混合溶媒等を用いることができる。ケイ素化合物(i)が加水分解性シラン化合物を含む場合には、加水分解性シラン化合物の加水分解反応を行うために、液状媒体が水を含むことが好ましい。 The liquid medium is not particularly limited, and water, an organic solvent, a mixed solvent of water and an organic solvent, or the like can be used. When the silicon compound (i) contains a hydrolyzable silane compound, the liquid medium preferably contains water in order to perform a hydrolysis reaction of the hydrolyzable silane compound.
 有機溶剤としては、炭素数1~5の低級アルコールおよび炭素数3~5の低級ケトンからなる群から選択される少なくとも1種が好ましい。具体的には、メタノールや、エタノール、プロパノール、2-プロパノール、n-ブタノール、イソブタノール、sec-ブタノール、tert-ブタノール、アセトン、メチルエチルケトン等が挙げられる。 The organic solvent is preferably at least one selected from the group consisting of lower alcohols having 1 to 5 carbon atoms and lower ketones having 3 to 5 carbon atoms. Specific examples include methanol, ethanol, propanol, 2-propanol, n-butanol, isobutanol, sec-butanol, tert-butanol, acetone, and methyl ethyl ketone.
 水と有機溶剤との混合溶媒としては、上述した有機溶剤を用いた混合溶媒が好ましく、水と炭素数1~5の低級アルコールとの混合溶媒がより好ましい。
 混合溶媒としては、水が20~95質量%の量で存在し、該有機溶剤が80~5質量%の量で存在する(ただし、水と有機溶剤との合計を100質量%とする)溶媒が好ましい。
As a mixed solvent of water and an organic solvent, a mixed solvent using the above-described organic solvent is preferable, and a mixed solvent of water and a lower alcohol having 1 to 5 carbon atoms is more preferable.
As a mixed solvent, water is present in an amount of 20 to 95% by mass, and the organic solvent is present in an amount of 80 to 5% by mass (provided that the total of water and the organic solvent is 100% by mass). Is preferred.
 液状媒体としては、ポリカルボン酸系重合体の溶解性、コストの面では、水が好ましい。加水分解性シラン化合物の溶解性、ガスバリア層用塗液の塗布性の観点からは、炭素数1~5の低級アルコールを含んでいることが好ましい。したがって、水、または水と炭素数1~5の低級アルコールとの混合溶媒が好ましい。 As the liquid medium, water is preferable in terms of solubility and cost of the polycarboxylic acid polymer. From the viewpoint of the solubility of the hydrolyzable silane compound and the coating properties of the gas barrier layer coating solution, it is preferable to contain a lower alcohol having 1 to 5 carbon atoms. Accordingly, water or a mixed solvent of water and a lower alcohol having 1 to 5 carbon atoms is preferable.
 ガスバリア層用塗液におけるケイ素化合物(i)の含有量は、前記ポリカルボン酸系重合体(100質量%)に対して2~25質量%であり、2~20質量%が好ましい。ケイ素化合物(i)の含有量が上記範囲内であれば、ガスバリア層2と支持体1との密着性に優れる。また、包装材料用前駆体10から得られる包装材料の耐水性がより優れ、冷水にさらされた際に白化しにくい。
 ここで、加水分解性シラン化合物以外のケイ素化合物(i)の質量は、前述のとおり、加水分解性シラン化合物換算の質量である。
The content of the silicon compound (i) in the gas barrier layer coating solution is 2 to 25% by mass, preferably 2 to 20% by mass, based on the polycarboxylic acid polymer (100% by mass). When the content of the silicon compound (i) is within the above range, the adhesion between the gas barrier layer 2 and the support 1 is excellent. Moreover, the water resistance of the packaging material obtained from the precursor 10 for packaging materials is more excellent, and it is hard to whiten when exposed to cold water.
Here, the mass of the silicon compound (i) other than the hydrolyzable silane compound is the mass in terms of the hydrolyzable silane compound as described above.
 ガスバリア層用塗液における他の成分の含有量は、ポリカルボン酸系重合体(100質量%)に対して30質量%以下が好ましく、20質量%以下がより好ましい。 The content of other components in the gas barrier layer coating solution is preferably 30% by mass or less, more preferably 20% by mass or less, relative to the polycarboxylic acid polymer (100% by mass).
 ガスバリア層用塗液においては、ガスバリア性および塗工性の観点から、ガスバリア層用塗液中のポリカルボン酸系重合体と、ケイ素化合物(i)と、必要に応じて含まれる他の成分との合計含有量(固形分質量)が、ガスバリア層用塗液の総質量に対して、0.5~50質量%であることが好ましく、0.8~30質量%であることがより好ましく、1.0~20質量%であることが特に好ましい。 In the gas barrier layer coating solution, from the viewpoint of gas barrier properties and coating properties, the polycarboxylic acid polymer in the gas barrier layer coating solution, the silicon compound (i), and other components included as necessary Is preferably 0.5 to 50% by mass, more preferably 0.8 to 30% by mass, based on the total mass of the gas barrier layer coating liquid. It is particularly preferably 1.0 to 20% by mass.
 ガスバリア層用塗液におけるポリカルボン酸系重合体とケイ素化合物(i)との合計の含有量は、ガスバリア層用塗液中の固形分質量に対し、70質量%以上が好ましく、80質量%以上がより好ましく、100質量%であってもよい。
 加水分解性シラン化合物以外のケイ素化合物(i)の質量は、前記と同様、加水分解性シラン化合物換算の質量である。
The total content of the polycarboxylic acid polymer and the silicon compound (i) in the gas barrier layer coating solution is preferably 70% by mass or more, more preferably 80% by mass or more, based on the solid content mass in the gas barrier layer coating solution. Is more preferable, and may be 100% by mass.
The mass of the silicon compound (i) other than the hydrolyzable silane compound is the mass in terms of the hydrolyzable silane compound as described above.
 ガスバリア層用塗液は、各成分を混合することにより調製できる。
 ガスバリア層用塗液の調製時に多価金属成分を配合すると、ガスバリア層用塗液中でポリカルボン酸系重合体と多価金属成分とが反応してカルボキシル基が中和され、上記中和度が0モル%とはならない。そのため、ガスバリア層用塗液には多価金属成分を配合しない。
 ガスバリア層用塗液がケイ素化合物(i)として加水分解縮合物を含む場合には、加水分解性シラン化合物を、ポリカルボン酸系重合体および水を含む液に直接混合してガスバリア層用塗液を調製してもよい。また、加水分解性シラン化合物に水を加えることによって、加水分解およびそれに続く縮合反応を行い、得られた加水分解縮合物を、ポリカルボン酸系重合体と混合してガスバリア層用塗液を調製してもよい。
The coating liquid for gas barrier layer can be prepared by mixing each component.
When a polyvalent metal component is added during the preparation of the gas barrier layer coating solution, the carboxyl group is neutralized by the reaction of the polycarboxylic acid polymer and the polyvalent metal component in the gas barrier layer coating solution. Is not 0 mol%. Therefore, a polyvalent metal component is not blended in the gas barrier layer coating liquid.
When the gas barrier layer coating liquid contains a hydrolytic condensate as the silicon compound (i), the hydrolyzable silane compound is directly mixed with the liquid containing the polycarboxylic acid polymer and water to form a gas barrier layer coating liquid. May be prepared. Also, by adding water to the hydrolyzable silane compound, hydrolysis and subsequent condensation reaction are performed, and the resulting hydrolyzed condensate is mixed with a polycarboxylic acid polymer to prepare a gas barrier layer coating solution. May be.
 (保護層用塗液)
 保護層用塗液は、多価金属成分と、ポリエステル樹脂と、分散剤と、水とを含む。保護層用塗液は、イソシアネート化合物をさらに含むことが好ましい。保護層用塗液は、必要に応じて、多価金属成分、ポリエステル樹脂、分散剤およびイソシアネート化合物以外の他の成分をさらに含んでもよい。保護層用塗液は、有機溶剤をさらに含んでもよい。
(Protective layer coating solution)
The coating liquid for protective layers contains a polyvalent metal component, a polyester resin, a dispersant, and water. The protective layer coating liquid preferably further contains an isocyanate compound. The coating liquid for protective layer may further contain other components other than the polyvalent metal component, the polyester resin, the dispersant, and the isocyanate compound as necessary. The protective layer coating solution may further contain an organic solvent.
 多価金属成分、ポリエステル樹脂、分散剤、イソシアネート化合物、及び他の成分はそれぞれ、前述の保護層3における多価金属成分、ポリエステル樹脂、分散剤、イソシアネート化合物、及び他の成分と同様であり、好ましい態様も同様である。
 有機溶剤としては、塗工性、乾燥効率向上の観点から、例えばエタノールや、2-プロパノール、エチレングリコールモノブチルエーテル等が挙げられる。これらの有機溶剤が保護層用塗液に含まれる場合には1種単独で含まれていても2種以上が含まれていてもよい。
 有機溶剤の含有量は、水と有機溶剤との合計を100質量%としたときに、水が20~95質量%の量で存在し、該有機溶剤が80~5質量%の量で存在する量が好ましい。
The polyvalent metal component, the polyester resin, the dispersant, the isocyanate compound, and other components are the same as the polyvalent metal component, the polyester resin, the dispersant, the isocyanate compound, and other components, respectively, in the protective layer 3 described above. The preferred embodiment is also the same.
Examples of the organic solvent include ethanol, 2-propanol, ethylene glycol monobutyl ether and the like from the viewpoint of improving coating properties and drying efficiency. When these organic solvents are contained in the coating liquid for the protective layer, they may be contained singly or in combination of two or more.
The content of the organic solvent is such that water is present in an amount of 20 to 95% by mass, and the organic solvent is present in an amount of 80 to 5% by mass when the total of water and the organic solvent is 100% by mass. An amount is preferred.
 保護層用塗液の固形分濃度は、3~30質量%が好ましく、5~20質量%がより好ましい。
 固形分濃度は、保護層用塗液の全量(100質量%)に対する全固形分の割合である。
 保護層用塗液の全固形分は、保護層用塗液中の多価金属成分と、ポリエステル樹脂と、分散剤と、イソシアネート化合物と、他の成分のうち固体であるものとの合計量(イソシアネート化合物を含まない場合や他の成分のうち固体であるものを含まない場合を含む。)である。
The solid concentration of the protective layer coating solution is preferably 3 to 30% by mass, more preferably 5 to 20% by mass.
Solid content concentration is the ratio of the total solid content with respect to the whole quantity (100 mass%) of the coating liquid for protective layers.
The total solid content of the protective layer coating liquid is the total amount of the polyvalent metal component in the protective layer coating liquid, the polyester resin, the dispersant, the isocyanate compound, and the other components that are solid ( Including the case of not containing an isocyanate compound and the case of not containing a solid component among other components).
 保護層用塗液における多価金属成分の含有量は、保護層用塗液の全固形分(100質量%)に対し、40~90質量%であり、50~85質量%が好ましく、60~80質量%がより好ましい。 The content of the polyvalent metal component in the protective layer coating solution is 40 to 90% by weight, preferably 50 to 85% by weight, preferably 60 to 85% by weight based on the total solid content (100% by weight) of the protective layer coating solution. 80 mass% is more preferable.
 保護層用塗液におけるポリエステル樹脂の含有量は、保護層用塗液の全固形分に対して10~60質量%が好ましく、20~40質量%がより好ましい。 The content of the polyester resin in the protective layer coating solution is preferably 10 to 60% by mass, more preferably 20 to 40% by mass, based on the total solid content of the protective layer coating solution.
 保護層用塗液における分散剤の含有量は、多価金属成分に対して2~20質量%であり、2~15質量%が好ましく、2~10質量%がより好ましい。 The content of the dispersant in the protective layer coating solution is 2 to 20% by mass, preferably 2 to 15% by mass, and more preferably 2 to 10% by mass with respect to the polyvalent metal component.
 保護層用塗液がイソシアネート化合物を含む場合、保護層用塗液におけるイソシアネート化合物の含有量は、保護層用塗液の全固形分に対して1~20質量%が好ましく、2~15質量%がより好ましい。 When the protective layer coating solution contains an isocyanate compound, the content of the isocyanate compound in the protective layer coating solution is preferably 1 to 20% by mass, preferably 2 to 15% by mass, based on the total solid content of the protective layer coating solution. Is more preferable.
 保護層用塗液中、他の成分のうち固体である成分の含有量は、保護層用塗液の全固形分に対し、5質量%未満が好ましく、3質量%未満がより好ましい。つまり、保護層用塗液中の多価金属成分とポリエステル樹脂と分散剤とイソシアネート化合物との合計量は、全固形分に対し、95質量%より大きいことが好ましく、97質量%より大きいことがより好ましい。 Among the other components in the protective layer coating solution, the content of the solid component is preferably less than 5% by mass and more preferably less than 3% by mass with respect to the total solid content of the protective layer coating solution. That is, the total amount of the polyvalent metal component, the polyester resin, the dispersant, and the isocyanate compound in the protective layer coating liquid is preferably greater than 95% by mass and greater than 97% by mass with respect to the total solid content. More preferred.
 保護層用塗液の調製方法としては、特に限定はなく、上述の各成分を、均一になるように混合することにより保護層用塗液を得ることができる。 The method for preparing the protective layer coating liquid is not particularly limited, and the protective layer coating liquid can be obtained by mixing the above-described components uniformly.
 本実施形態において、ポリエステル樹脂は、前述のようにポリエステル樹脂水性分散体に由来することが好ましい。つまり、保護層用塗液の調製方法としては、多価金属成分、ポリエステル樹脂水性分散体、分散剤、および必要に応じて水、イソシアネート化合物、他の成分を混合する方法が好ましい。 In this embodiment, the polyester resin is preferably derived from the aqueous polyester resin dispersion as described above. That is, the method for preparing the protective layer coating liquid is preferably a method of mixing a polyvalent metal component, an aqueous polyester resin dispersion, a dispersant, and, if necessary, water, an isocyanate compound, and other components.
 保護層用塗液の調製方法の好ましい例としては、以下の方法が挙げられる。まず、蒸留水に酸化亜鉛超微粒子および分散剤を加え、酸化亜鉛超微粒子の一次粒子の凝集を解砕し、分散する。これにより、酸化亜鉛超微粒子の水性分散体を得て、該酸化亜鉛超微粒子の水性分散体に蒸留水、ポリエステル樹脂水性分散体および水分散性イソシアネート化合物を加えて攪拌する。必要に応じて、2-プロパノール等の有機溶剤を加えて攪拌することにより保護層用塗液を得る。
 前記酸化亜鉛超微粒子の水性分散体を得る際の凝集の解砕には、ビーズミル、高速攪拌機等を用いることができる。特にビーズミルを用いると、得られる包装材料用前駆体のヘイズが小さくなる傾向があり好ましい。
The following method is mentioned as a preferable example of the preparation method of the coating liquid for protective layers. First, zinc oxide ultrafine particles and a dispersing agent are added to distilled water to break up and disperse the aggregation of primary particles of zinc oxide ultrafine particles. As a result, an aqueous dispersion of zinc oxide ultrafine particles is obtained, and distilled water, an aqueous polyester resin dispersion, and a water-dispersible isocyanate compound are added to the aqueous dispersion of zinc oxide ultrafine particles and stirred. If necessary, an organic solvent such as 2-propanol is added and stirred to obtain a protective layer coating solution.
A bead mill, a high-speed stirrer, or the like can be used for crushing the aggregates when obtaining the aqueous dispersion of zinc oxide ultrafine particles. In particular, when a bead mill is used, the haze of the resulting packaging material precursor tends to be small, which is preferable.
 保護層用塗液の調製方法の他の好ましい例としては、以下のような方法が挙げられる。まず、あらかじめ水分散性イソシアネート化合物に蒸留水を加えて攪拌し、水分散性イソシアネート化合物の水性分散体を得る。別途、上記と同様の方法で酸化亜鉛超微粒子の水性分散体を得て、該酸化亜鉛超微粒子の水性分散体にポリエステル樹脂水性分散体を加える。得られた分散液に前記水分散性イソシアネート化合物の水性分散体を加えて攪拌する。必要に応じて、2-プロパノール等の有機溶剤を加えて攪拌することにより保護層用塗液を得る。 Other preferable examples of the method for preparing the protective layer coating liquid include the following methods. First, distilled water is added to a water-dispersible isocyanate compound in advance and stirred to obtain an aqueous dispersion of the water-dispersible isocyanate compound. Separately, an aqueous dispersion of zinc oxide ultrafine particles is obtained in the same manner as described above, and an aqueous polyester resin dispersion is added to the aqueous dispersion of zinc oxide ultrafine particles. The aqueous dispersion of the water-dispersible isocyanate compound is added to the obtained dispersion and stirred. If necessary, an organic solvent such as 2-propanol is added and stirred to obtain a protective layer coating solution.
 (工程(α1))
 支持体1上にガスバリア層用塗液を塗布し、ガスバリア層用塗液の液状媒体を乾燥により除去することによってガスバリア層2が形成される。
 ガスバリア層用塗液の塗工方法としては、特に限定されず、例えばキャスト法や、ディッピング法、ロールコーティング法、グラビアコート法、スクリーン印刷法、リバースコート法、スプレーコート法、キットコート法、ダイコート法、メタリングバーコート法、チャンバードクター併用コート法、カーテンコート法等が挙げられる。
(Process (α1))
The gas barrier layer 2 is formed by applying the gas barrier layer coating liquid on the support 1 and removing the liquid medium of the gas barrier layer coating liquid by drying.
The coating method of the gas barrier layer coating liquid is not particularly limited. For example, the casting method, dipping method, roll coating method, gravure coating method, screen printing method, reverse coating method, spray coating method, kit coating method, die coating method. Method, metering bar coating method, chamber doctor combined coating method, curtain coating method and the like.
 乾燥の方法としては特に限定は無く、例えば熱風乾燥法や、熱ロール接触法、赤外線加熱法、マイクロ波加熱法等の方法が挙げられる。該方法は単独または組み合わせて行ってもよい。乾燥温度としては特に限定は無いが、溶媒として上述した水や、水と有機溶剤との混合溶媒を用いる場合には、通常は50~160℃が好ましい。また乾燥の際の圧力は通常は常圧または減圧下で行うことが好ましく、設備の簡便性の観点から常圧で行うことが好ましい。 The drying method is not particularly limited, and examples thereof include a hot air drying method, a hot roll contact method, an infrared heating method, and a microwave heating method. The methods may be performed alone or in combination. The drying temperature is not particularly limited, but when the above-mentioned water or a mixed solvent of water and an organic solvent is used as a solvent, it is usually preferably 50 to 160 ° C. The pressure during drying is usually preferably normal pressure or reduced pressure, and preferably normal pressure from the viewpoint of facility simplicity.
 ガスバリア層2に含まれるケイ素化合物(i)中の縮合物の割合を増加させる目的で、乾燥が終了(または、ほぼ終了)した時点で、熱処理を行ってもよい。前記熱処理としては通常は、温度120~240℃、好ましくは150~230℃で、通常は10秒~30分、好ましくは20秒~20分行われる。
 なお、前記乾燥および熱処理は、温度等の条件が重複する部分があるが、これらは明確に区別される必要は無く、連続的に行われてもよい。
For the purpose of increasing the proportion of the condensate in the silicon compound (i) contained in the gas barrier layer 2, heat treatment may be performed when drying is completed (or almost completed). The heat treatment is usually carried out at a temperature of 120 to 240 ° C., preferably 150 to 230 ° C., usually 10 seconds to 30 minutes, preferably 20 seconds to 20 minutes.
The drying and heat treatment have portions where conditions such as temperature overlap, but these do not need to be clearly distinguished and may be performed continuously.
 (工程(α2))
 工程(α1)で形成したガスバリア層2の表面に保護層用塗液を塗布し、乾燥により保護層用塗液中の水(有機溶剤を含む場合は有機溶剤も)を除去することによって保護層3が形成される。
 保護層用塗液の塗工方法としては、特に限定されず、例えばキャスト法や、ディッピング法、ロールコーティング法、グラビアコート法、スクリーン印刷法、リバースコート法、スプレーコート法、キットコート法、ダイコート法、メタリングバーコート法、チャンバードクター併用コート法、カーテンコート法等が挙げられる。
(Process (α2))
The protective layer is applied by applying the protective layer coating liquid to the surface of the gas barrier layer 2 formed in the step (α1) and removing the water (including the organic solvent in the case of including the organic solvent) by drying. 3 is formed.
The coating method for the protective layer coating liquid is not particularly limited. For example, a casting method, dipping method, roll coating method, gravure coating method, screen printing method, reverse coating method, spray coating method, kit coating method, die coating method. Method, metering bar coating method, chamber doctor combined coating method, curtain coating method and the like.
 乾燥の方法としては特に限定は無く、例えば熱風乾燥法や、熱ロール接触法、赤外線加熱法、マイクロ波加熱法等の方法が挙げられ、該方法は単独または組み合わせて行ってもよい。乾燥温度としては特に限定は無いが、通常は50~160℃が好ましい。また乾燥の際の圧力は通常は常圧または減圧下で行うことが好ましく、設備の簡便性の観点から常圧で行うことが好ましい。 The drying method is not particularly limited, and examples thereof include a hot air drying method, a hot roll contact method, an infrared heating method, and a microwave heating method, and these methods may be performed alone or in combination. The drying temperature is not particularly limited, but is usually preferably 50 to 160 ° C. The pressure during drying is usually preferably normal pressure or reduced pressure, and preferably normal pressure from the viewpoint of facility simplicity.
 〔用途〕
 包装材料用前駆体10は、以下に示すような包装材料の前駆体として、あるいは被包装物を包装材料で包装した包装体の製造用として有用である。
[Use]
The packaging material precursor 10 is useful as a packaging material precursor as shown below, or for the production of a package in which an article to be packaged is packaged with a packaging material.
<包装材料>
 包装材料11は、ガスバリア層2の代わりにガスバリア層4を有すること以外は包装材料用前駆体10と同様であり、支持体1とガスバリア層4と保護層3とがこの順に隣接して積層した積層構造を備える。
<Packaging materials>
The packaging material 11 is the same as the packaging material precursor 10 except that it has the gas barrier layer 4 instead of the gas barrier layer 2, and the support 1, the gas barrier layer 4, and the protective layer 3 are laminated adjacently in this order. A laminated structure is provided.
 包装材料11のガスバリア層4は、前記波数1490cm-1~1659cm-1の範囲内の吸光度の最大ピーク高さ(α)と、前記波数1660cm-1~1750cm-1の範囲内の吸光度の最大ピーク高さ(β)との比(α/β)が7以上であること以外は、包装材料用前駆体10のガスバリア層2と同様である。 Gas barrier layer 4 of the packaging material 11, the maximum peak height in absorbance within the range of the wave number 1490cm -1 ~ 1659cm -1 and (alpha), the maximum peak absorbance in the range of the wave number 1660 cm -1 ~ 1750 cm -1 It is the same as the gas barrier layer 2 of the precursor 10 for packaging material, except that the ratio (α / β) to the height (β) is 7 or more.
 包装材料11は、包装材料用前駆体10を熱水処理することにより得ることができる。
 熱水処理としては、レトルト処理や、ボイル処理等が挙げられる。レトルト処理、ボイル処理については、この後の包装体の製造方法で詳しく説明する。
 包装材料用前駆体10を熱水処理すると、水分がガスバリア層2および保護層3に供給される。そのため、ガスバリア層2に含まれるポリカルボン酸系重合体のカルボキシル基の多価金属イオンによるイオン架橋が進み、比(α/β)が1以上7未満の範囲から7以上に増大し、ガスバリア層2がガスバリア層4となる。これにより包装材料11が得られる。
The packaging material 11 can be obtained by subjecting the packaging material precursor 10 to a hot water treatment.
Examples of the hot water treatment include retort treatment and boil treatment. The retort process and the boil process will be described in detail in the subsequent manufacturing method of the package.
When the packaging material precursor 10 is hydrothermally treated, moisture is supplied to the gas barrier layer 2 and the protective layer 3. Therefore, ionic crosslinking by polyvalent metal ions of the carboxyl group of the polycarboxylic acid polymer contained in the gas barrier layer 2 proceeds, and the ratio (α / β) increases from a range of 1 to less than 7 to 7 or more, and the gas barrier layer 2 becomes the gas barrier layer 4. Thereby, the packaging material 11 is obtained.
 熱水処理前のガスバリア層2の比(α/β)が1以上7未満であれば、支持体1を介して供給される水分によってガスバリア層2が膨張しにくい。熱水処理後の比(α/β)が7以上であれば、ポリカルボン酸系重合体のカルボキシル基のイオン架橋度が充分に高い。そのため、熱水処理後のガスバリア層4の架橋密度が充分に高くなり、ガスバリア層4が、高湿度条件下であっても優れたガスバリア性を発揮する。 If the ratio (α / β) of the gas barrier layer 2 before the hot water treatment is 1 or more and less than 7, the gas barrier layer 2 is unlikely to expand due to moisture supplied via the support 1. If the ratio (α / β) after the hydrothermal treatment is 7 or more, the ionic crosslinking degree of the carboxyl group of the polycarboxylic acid polymer is sufficiently high. Therefore, the crosslink density of the gas barrier layer 4 after the hot water treatment is sufficiently high, and the gas barrier layer 4 exhibits excellent gas barrier properties even under high humidity conditions.
 包装材料11、すなわち熱水処理を行った後の包装材料用前駆体10の酸素透過度は、50cm(STP)/(m・day・MPa)以下であることが好ましく、20cm(STP)/(m・day・MPa)以下であることがより好ましく、10cm(STP)/(m・day・MPa)以下であることがさらに好ましい。該酸素透過度は低いほど好ましく、その下限としては特に限定はないが通常は0.1cm/(m・day・MPa)以上である。
 上記酸素透過度は、ASTM F1927-98(2004)に準拠して、温度30℃、相対湿度(RH)70%の条件で測定される値である。(STP)は、酸素の体積を規定するための標準条件(0℃、1気圧)を意味する。
The oxygen permeability of the packaging material 11, that is, the packaging material precursor 10 after the hot water treatment is preferably 50 cm 3 (STP) / (m 2 · day · MPa) or less, and 20 cm 3 (STP). ) / (M 2 · day · MPa) or less, more preferably 10 cm 3 (STP) / (m 2 · day · MPa) or less. The lower the oxygen permeability, the better. The lower limit is not particularly limited, but it is usually 0.1 cm 3 / (m 2 · day · MPa) or more.
The oxygen permeability is a value measured under conditions of a temperature of 30 ° C. and a relative humidity (RH) of 70% in accordance with ASTM F1927-98 (2004). (STP) means standard conditions (0 ° C., 1 atm) for defining the volume of oxygen.
<包装体の製造方法>
 包装材料用前駆体10を用いて被包装物を包装し、熱水処理することで、被包装物を包装材料11で包装した包装体を得ることができる。
 被包装物としては、特に限定されないが、酸素、水蒸気等の影響により劣化しやすい物品、例えば食品や、飲料、医薬品、電子部品等の精密金属部品等の物品が好ましく、食品が特に好ましい。食品としては、例えば味噌や、漬物、液体スープ、加工食肉等が挙げられる。
 被包装物を包装する方法としては、特に限定されない。例えば包装材料用前駆体10を、開口を有する袋状に加工し、これに被包装物を収容し、開口を密閉する方法が挙げられる。
<Manufacturing method of package>
A package body in which the packaged material is packaged with the packaging material 11 can be obtained by packaging the packaged material using the packaging material precursor 10 and subjecting the packaged material to hot water treatment.
The package is not particularly limited, but is preferably an article that easily deteriorates due to the influence of oxygen, water vapor, or the like, for example, an article such as a food, a precision metal part such as a beverage, a medicine, or an electronic part, and a food is particularly preferred. Examples of food include miso, pickles, liquid soup, and processed meat.
It does not specifically limit as a method of packaging a to-be-packaged object. For example, the precursor 10 for packaging materials is processed into the bag shape which has opening, the to-be-packaged object is accommodated in this, and the method of sealing an opening is mentioned.
 熱水処理としては、例えばレトルト処理、ボイル処理等が挙げられる。
 以下、レトルト処理、ボイル処理の条件を説明するが、前記条件は被包装物に応じて適宜変更することができる。
 レトルト処理とは、一般に食品等を保存するために、カビ、酵母、細菌などの微生物を加圧殺菌する方法である。通常は、被包装物を包装した包装材料用前駆体10を、105~140℃、0.15~0.3MPaで、10~120分の条件で加圧殺菌処理する。レトルト装置は、加熱蒸気を利用する蒸気式や加圧過熱水を利用する熱水式等があり、被包装物となる食品等の殺菌条件に応じて適宜使い分けられる。
 ボイル処理は、食品等を保存するため湿熱で殺菌する方法である。通常は、被包装物にもよるが、被包装物を包装した包装材料用前駆体10を60~100℃、大気圧下で、10~120分の条件で殺菌処理を行う。ボイル処理は、通常、熱水槽を用いて行う。一定温度の熱水槽の中に浸漬し、一定時間後に取り出すバッチ式と、熱水槽の中をトンネル式に通して殺菌する連続式とがある。
Examples of the hot water treatment include retort treatment and boil treatment.
Hereinafter, although the conditions of a retort process and a boil process are demonstrated, the said conditions can be suitably changed according to a to-be-packaged object.
Retort treatment is a method of sterilizing microorganisms such as molds, yeasts, and bacteria in order to preserve foods and the like in general. Usually, the packaging material precursor 10 in which an article to be packaged is packaged is sterilized under pressure at 105 to 140 ° C. and 0.15 to 0.3 MPa for 10 to 120 minutes. The retort apparatus includes a steam type using heated steam, a hot water type using pressurized superheated water, and the like, and can be appropriately used depending on the sterilization conditions of food to be packaged.
The boil treatment is a method of sterilizing with wet heat to preserve foods and the like. Usually, although depending on the package, the packaging material precursor 10 in which the package is packaged is sterilized at 60 to 100 ° C. under atmospheric pressure for 10 to 120 minutes. The boil treatment is usually performed using a hot water tank. There are a batch type which is immersed in a hot water tank at a constant temperature and taken out after a predetermined time, and a continuous type which is sterilized through a tunnel type through the hot water tank.
≪第2実施形態≫
 図3は、本発明の第2実施形態に係る包装材料用前駆体20の模式断面図である。図4は、包装材料用前駆体20から得た包装材料21の模式断面図である。なお、以下に示す実施形態において、前出の実施形態に対応する構成要素には同一の符号を付してその詳細な説明を省略する。
 本実施形態の包装材料用前駆体20は、支持体7とガスバリア層2と保護層3とがこの順に隣接して積層した積層構造を備える。つまり、本実施形態の包装材料用前駆体20において、ガスバリア層2が支持体7の上に直接設けられ、保護層3がガスバリア層2の上に直接設けられている。
 支持体7は、基材5と、基材5の片面(ガスバリア層2側)に隣接して設けられたアンカーコート層6とを有する。
 包装材料21は、ガスバリア層2がガスバリア層4になっていること以外は包装材料用前駆体20と同様である。
<< Second Embodiment >>
FIG. 3 is a schematic cross-sectional view of the packaging material precursor 20 according to the second embodiment of the present invention. FIG. 4 is a schematic cross-sectional view of the packaging material 21 obtained from the packaging material precursor 20. In the embodiment described below, the same reference numerals are given to the components corresponding to the previous embodiment, and the detailed description thereof is omitted.
The packaging material precursor 20 of the present embodiment has a laminated structure in which the support 7, the gas barrier layer 2, and the protective layer 3 are laminated adjacently in this order. That is, in the packaging material precursor 20 of the present embodiment, the gas barrier layer 2 is directly provided on the support 7, and the protective layer 3 is directly provided on the gas barrier layer 2.
The support 7 has a base material 5 and an anchor coat layer 6 provided adjacent to one side (gas barrier layer 2 side) of the base material 5.
The packaging material 21 is the same as the packaging material precursor 20 except that the gas barrier layer 2 is the gas barrier layer 4.
<包装材料用前駆体>
 (支持体)
 支持体7の水蒸気透過度は、支持体1の水蒸気透過度と同様、100g/m以上であり、120g/m以上がより好ましい。
<Precursor for packaging materials>
(Support)
The water vapor permeability of the support 7 is 100 g / m 2 or more, and more preferably 120 g / m 2 or more, like the water vapor permeability of the support 1.
 支持体7を構成する基材5としては、第1実施形態の支持体1と同様の構成が挙げられる。ただし、アンカーコート層6が積層した状態での水蒸気透過度が100g/m以上である必要がある。 As the base material 5 which comprises the support body 7, the structure similar to the support body 1 of 1st Embodiment is mentioned. However, the water vapor transmission rate in the state where the anchor coat layer 6 is laminated needs to be 100 g / m 2 or more.
 アンカーコート層6は、基材5とガスバリア層2との密着性を高めるために設けられている。
 アンカーコート層6を構成する材質としては、例えば、アルキッド樹脂や、メラミン樹脂、アクリル樹脂、硝化綿、ポリウレタン樹脂、ポリエステル樹脂、フェノール樹脂、アミノ樹脂、フッ素樹脂、エポキシ樹脂、およびカルボジイミド基含有樹脂を用いることができ、ポリウレタン樹脂、ポリエステル樹脂、アクリル樹脂、エポキシ樹脂およびカルボジイミド基含有樹脂等の樹脂が挙げられる。これらの樹脂は、一種単独でも、二種以上を用いてもよい。
The anchor coat layer 6 is provided in order to improve the adhesion between the substrate 5 and the gas barrier layer 2.
Examples of the material constituting the anchor coat layer 6 include alkyd resins, melamine resins, acrylic resins, nitrified cotton, polyurethane resins, polyester resins, phenol resins, amino resins, fluororesins, epoxy resins, and carbodiimide group-containing resins. Examples of the resin include polyurethane resins, polyester resins, acrylic resins, epoxy resins, and carbodiimide group-containing resins. These resins may be used alone or in combination of two or more.
 前記樹脂としては特に、ポリウレタン樹脂が好ましい。ポリウレタン樹脂を構成するポリオールとしては、ポリエステル系ポリオールが好ましい。ポリエステル系ポリオールとしては、例えば多価カルボン酸等とグリコール類とを反応させて得られるポリエステル系ポリオールが挙げられる。ポリウレタン樹脂を構成するポリイソシアネートとしては、例えば2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、m-フェニレンジイソシアネート、p-フェニレンジイソシアネート、4,4'-ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、キシリレンジイソシアネート、イソホロンジイソシアネートが挙げられる。
 アンカーコート層6は、ガスバリア層2との密着性の点から、カルボジイミド基含有樹脂を含んでいてもよい。
 必要に応じて、前記の樹脂に、硬化剤や、加水分解性シラン化合物等の添加物が添加されていてもよい。加水分解性シラン化合物としては、前記と同様のものが挙げられる。
As the resin, a polyurethane resin is particularly preferable. As the polyol constituting the polyurethane resin, a polyester-based polyol is preferable. Examples of the polyester polyol include a polyester polyol obtained by reacting a polyvalent carboxylic acid or the like with a glycol. Examples of the polyisocyanate constituting the polyurethane resin include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, m-phenylene diisocyanate, p-phenylene diisocyanate, 4,4′-diphenylmethane diisocyanate, hexamethylene diisocyanate, xylylene. Examples include range isocyanate and isophorone diisocyanate.
The anchor coat layer 6 may contain a carbodiimide group-containing resin from the viewpoint of adhesion with the gas barrier layer 2.
If necessary, additives such as a curing agent and a hydrolyzable silane compound may be added to the resin. Examples of the hydrolyzable silane compound include those described above.
 アンカーコート層6の厚みは、密着性及び外観の観点から、0.01~1μmであることが好ましく、0.05~1μmであることがより好ましい。
 アンカーコート層6の単位面積当たりの質量は、密着性と外観の観点から、0.01~1g/mであることが好ましく、0.05~1g/mであることがより好ましい。
The thickness of the anchor coat layer 6 is preferably 0.01 to 1 μm, more preferably 0.05 to 1 μm, from the viewpoint of adhesion and appearance.
The mass per unit area of the anchor coat layer 6 is preferably 0.01 to 1 g / m 2 and more preferably 0.05 to 1 g / m 2 from the viewpoint of adhesion and appearance.
 〔包装材料用前駆体の製造方法〕
 包装材料用前駆体20は、例えば、以下の(β1)、(β2)および(β3)の工程を含む製造方法により製造できる。
 (β1):基材5の一方の面上にアンカーコート層6を形成して支持体7を得る工程。
 (β2):支持体7のアンカーコート層6側の表面にガスバリア層用塗液を塗布し乾燥させてガスバリア層2を形成する工程。
 (β3):ガスバリア層2の表面に保護層用塗液を塗布し乾燥させて保護層3を形成する工程。
 ガスバリア層用塗液、保護層用塗液はそれぞれ第1実施形態と同様である。
[Method for producing precursor for packaging material]
The packaging material precursor 20 can be manufactured, for example, by a manufacturing method including the following steps (β1), (β2), and (β3).
(Β1): A step of obtaining the support 7 by forming the anchor coat layer 6 on one surface of the substrate 5.
(Β2): A step of forming the gas barrier layer 2 by applying a coating liquid for gas barrier layer on the surface of the support 7 on the anchor coat layer 6 side and drying.
(Β3): A step of forming the protective layer 3 by applying a coating liquid for the protective layer on the surface of the gas barrier layer 2 and drying it.
The gas barrier layer coating liquid and the protective layer coating liquid are the same as in the first embodiment.
 (工程(β1))
 アンカーコート層6の形成方法は特に限定されず、公知の方法を適宜選択できる。例えば、アンカーコート層用塗液を塗布し乾燥することによりアンカーコート層6を形成できる。
 アンカーコート層用塗液としては、前述の樹脂またはその前駆体と、溶媒と、必要に応じて添加剤とを含む塗液が挙げられる。樹脂またはその前駆体としては、ポリウレタン系、ポリエステル系またはアクリル系のポリマー材料が好ましい。中でも、ポリウレタン系ポリマー材料である、ポリエステル系ポリオールを含有する主剤と、イソシアネートを含有する硬化剤とを含有する二液型のアンカーコート剤が好ましい。
(Process (β1))
The formation method of the anchor coat layer 6 is not particularly limited, and a known method can be appropriately selected. For example, the anchor coat layer 6 can be formed by applying and drying an anchor coat layer coating solution.
Examples of the coating solution for the anchor coat layer include a coating solution containing the above-described resin or its precursor, a solvent, and an additive as necessary. As the resin or its precursor, a polyurethane-based, polyester-based or acrylic-based polymer material is preferable. Among these, a two-component anchor coating agent containing a main component containing a polyester-based polyol and a curing agent containing an isocyanate, which is a polyurethane-based polymer material, is preferable.
 (工程(β2))
 工程(β2)は、第1実施形態における工程(α1)と同様にして行うことができる。
(Process (β2))
The step (β2) can be performed in the same manner as the step (α1) in the first embodiment.
 (工程(β3))
 工程(β3)は、第1実施形態における工程(α2)と同様にして行うことができる。
(Process (β3))
The step (β3) can be performed in the same manner as the step (α2) in the first embodiment.
 工程(β1)にて基材5上にアンカーコート層6を形成した後、または工程(β2)にてガスバリア層2を形成した後、または工程(β3)にて保護層3を形成した後に、熟成処理を行ってもよい。熟成処理としては、通常30~200℃、好ましくは30~150℃の温度条件で、0.5~10日、好ましくは1~7日間保持する処理が挙げられる。 After forming the anchor coat layer 6 on the substrate 5 in the step (β1), after forming the gas barrier layer 2 in the step (β2), or after forming the protective layer 3 in the step (β3), An aging treatment may be performed. Examples of the aging treatment include a treatment of holding at a temperature of usually 30 to 200 ° C., preferably 30 to 150 ° C. for 0.5 to 10 days, preferably 1 to 7 days.
 ガスバリア層2に含まれるケイ素化合物(i)中の縮合物の割合を増加させる目的で、工程(β2)での乾燥が終了(または、ほぼ終了)した時点、または工程(β2)または(β3)の後に前記熟成処理を行い、この前記熟成処理が終了した時点で、熱処理を行ってもよい。前記熱処理としては通常は、温度120~240℃、好ましくは150~230℃で、通常は10秒~30分、好ましくは20秒~20分行われる。
 なお、前記乾燥、熱処理、および熟成処理は、温度等の条件が重複する部分があるが、これらは明確に区別される必要は無く、連続的に行われてもよい。
For the purpose of increasing the proportion of the condensate in the silicon compound (i) contained in the gas barrier layer 2, when the drying in the step (β2) is completed (or almost completed), or the step (β2) or (β3) Thereafter, the aging treatment may be performed, and heat treatment may be performed when the aging treatment is completed. The heat treatment is usually carried out at a temperature of 120 to 240 ° C., preferably 150 to 230 ° C., usually 10 seconds to 30 minutes, preferably 20 seconds to 20 minutes.
The drying, heat treatment, and aging treatment have portions where conditions such as temperature overlap, but these do not need to be clearly distinguished and may be performed continuously.
 〔用途〕
 包装材料用前駆体20は、包装材料21の前駆体として、あるいは被包装物を包装材料21で包装した包装体の製造用として有用である。
[Use]
The packaging material precursor 20 is useful as a precursor for the packaging material 21 or for producing a package in which an article to be packaged is packaged with the packaging material 21.
<包装材料>
 包装材料21は、ガスバリア層2の代わりにガスバリア層4を有すること以外は包装材料用前駆体20と同様であり、支持体7とガスバリア層4と保護層3とがこの順に隣接して積層した積層構造を備える。
<Packaging materials>
The packaging material 21 is the same as the packaging material precursor 20 except that the gas barrier layer 4 is provided instead of the gas barrier layer 2, and the support 7, the gas barrier layer 4, and the protective layer 3 are laminated adjacently in this order. A laminated structure is provided.
 包装材料21は、包装材料用前駆体20を熱水処理することにより得ることができる。
 熱水処理は前記と同様である。
 包装材料21、すなわち熱水処理を行った後の包装材料用前駆体20の好ましい酸素透過度は第1実施形態と同様である。
The packaging material 21 can be obtained by subjecting the packaging material precursor 20 to hot water treatment.
The hot water treatment is the same as described above.
The preferable oxygen permeability of the packaging material 21, that is, the packaging material precursor 20 after the hot water treatment is the same as that of the first embodiment.
<包装体の製造方法>
 包装材料用前駆体20を用いて被包装物を包装し、熱水処理することで、被包装物を包装材料21で包装した包装体を得ることができる。
 被包装物の包装および熱水処理は第1実施形態と同様に行うことができる。
<Manufacturing method of package>
A package body in which the package object is packaged with the packaging material 21 can be obtained by packaging the package object using the packaging material precursor 20 and subjecting the packaged material to hot water treatment.
Packaging and hot water treatment of an article to be packaged can be performed as in the first embodiment.
≪第3実施形態≫
 図5は、本発明の第3実施形態に係る包装材料用前駆体30の模式断面図である。図6は、包装材料用前駆体30から得た包装材料31の模式断面図である。
 本実施形態の包装材料用前駆体30は、支持体1とガスバリア層2と保護層3とがこの順に隣接して積層した積層構造と、前記積層構造の保護層3側の面に接着層9を介して積層した他の基材8とを備える。つまり、本実施形態の包装材料用前駆体30においては、ガスバリア層2が支持体1の上に直接設けられ、保護層3がガスバリア層2の上に直接設けられている。
 包装材料31は、ガスバリア層2がガスバリア層4になっていること以外は包装材料用前駆体30と同様である。
«Third embodiment»
FIG. 5 is a schematic cross-sectional view of the packaging material precursor 30 according to the third embodiment of the present invention. FIG. 6 is a schematic cross-sectional view of the packaging material 31 obtained from the packaging material precursor 30.
The packaging material precursor 30 of the present embodiment includes a laminated structure in which the support 1, the gas barrier layer 2, and the protective layer 3 are laminated adjacently in this order, and the adhesive layer 9 on the surface of the laminated structure on the protective layer 3 side. The other base material 8 laminated | stacked via is provided. That is, in the packaging material precursor 30 of the present embodiment, the gas barrier layer 2 is directly provided on the support 1, and the protective layer 3 is directly provided on the gas barrier layer 2.
The packaging material 31 is the same as the packaging material precursor 30 except that the gas barrier layer 2 is the gas barrier layer 4.
<包装材料用前駆体>
 (他の基材)
 他の基材8は、包装材料用前駆体30や包装材料31に任意の物性を付与するために用いられる。具体的には、他の基材8によって、強度付与や、シール性、シール時の易開封性付与、意匠性付与、光遮断性付与、防湿性付与等が可能である。さらに、レトルト処理、ボイル処理等を施す際に、保護層3が熱水や蒸気に直接さらされず、外観が良好となる。
<Precursor for packaging materials>
(Other base materials)
The other base material 8 is used for imparting arbitrary physical properties to the packaging material precursor 30 and the packaging material 31. Specifically, the other base material 8 can provide strength, sealability, easy-opening property at the time of sealing, design property, light blocking property, moisture-proof property, and the like. Furthermore, when performing a retort process, a boil process, etc., the protective layer 3 is not directly exposed to a hot water or a vapor | steam, and an external appearance becomes favorable.
 他の基材8としては、目的に応じて適宜選択されるが、プラスチックフィルム類が好ましい。他の基材8は、二層以上の層を有する積層体であってもよい。
 他の基材8の材質としては、例えば、ポリオレフィンや、ナイロン、無機蒸着ナイロン等が挙げられる。
 他の基材8の厚みは、1~1000μmであることが好ましく、5~500μmであることがより好ましい。
The other substrate 8 is appropriately selected depending on the purpose, but plastic films are preferable. The other substrate 8 may be a laminate having two or more layers.
Examples of the material of the other base material 8 include polyolefin, nylon, and inorganic vapor-deposited nylon.
The thickness of the other substrate 8 is preferably 1 to 1000 μm, and more preferably 5 to 500 μm.
 (接着層)
 接着層は、保護層3と他の基材8とを接着する層である。
 接着層9の材質としては、特に限定はない。例えばドライラミネート法で他の基材8をラミネートする場合には、一液型や二液型のポリウレタン系接着剤やアクリル系接着剤を用いて接着層9を形成できる。押出しラミネート法で他の基材8をラミネートする場合には、エチレン-酢酸ビニル共重合体や、エチレン-アクリル酸共重合体、エチレン-メタクリル酸共重合体、アイオノマー樹脂等の接着性を有する樹脂を用いて接着層9を形成できる。
(Adhesive layer)
The adhesive layer is a layer that adheres the protective layer 3 and the other substrate 8.
The material of the adhesive layer 9 is not particularly limited. For example, when another substrate 8 is laminated by a dry laminating method, the adhesive layer 9 can be formed using a one-pack type or two-pack type polyurethane adhesive or acrylic adhesive. In the case of laminating another substrate 8 by the extrusion laminating method, an adhesive resin such as an ethylene-vinyl acetate copolymer, an ethylene-acrylic acid copolymer, an ethylene-methacrylic acid copolymer, or an ionomer resin. Can be used to form the adhesive layer 9.
 〔包装材料用前駆体の製造方法〕
 包装材料用前駆体30は、例えば、以下の(γ1)、(γ2)および(γ3)の工程を含む製造方法により製造できる。
 (γ1):支持体1の一方の表面に下記のガスバリア層用塗液を塗布し乾燥させてガスバリア層2を形成する工程。
 (γ2):ガスバリア層2の表面に下記の保護層用塗液を塗布し乾燥させて保護層3を形成する工程。
 (γ3):保護層3の上に、接着層9を介して他の基材8をラミネートする工程。
[Method for producing precursor for packaging material]
The packaging material precursor 30 can be manufactured, for example, by a manufacturing method including the following steps (γ1), (γ2), and (γ3).
(Γ1): A step of forming the gas barrier layer 2 by applying the following coating liquid for gas barrier layer on one surface of the support 1 and drying it.
(Γ2): A step of forming the protective layer 3 by applying the following protective layer coating liquid on the surface of the gas barrier layer 2 and drying it.
(Γ3): A step of laminating another substrate 8 on the protective layer 3 via the adhesive layer 9.
 (工程(γ1))
 工程(γ1)は、第1実施形態における工程(α1)と同様にして行うことができる。
(Process (γ1))
The step (γ1) can be performed in the same manner as the step (α1) in the first embodiment.
 (工程(γ2))
 工程(γ2)は、第1実施形態における工程(α2)と同様にして行うことができる。
(Process (γ2))
Step (γ2) can be performed in the same manner as step (α2) in the first embodiment.
 (工程(γ3))
 他の基材8のラミネート方法としては、特に限定されず、例えばドライラミネート法、押出しラミネート法が挙げられる。
 ドライラミネート法の際の接着剤の塗工方法としては、特に限定されず、例えばグラビアコート法が挙げられる。
(Process (γ3))
The method for laminating the other substrate 8 is not particularly limited, and examples thereof include a dry laminating method and an extrusion laminating method.
The method for applying the adhesive in the dry laminating method is not particularly limited, and examples thereof include a gravure coating method.
 〔用途〕
 包装材料用前駆体30は、包装材料31の前駆体として、あるいは被包装物を包装材料31で包装した包装体の製造用として有用である。
[Use]
The packaging material precursor 30 is useful as a precursor for the packaging material 31 or for producing a package in which an object to be packaged is packaged with the packaging material 31.
<包装材料>
 包装材料31は、ガスバリア層2の代わりにガスバリア層4を有すること以外は包装材料用前駆体30と同様である。包装材料31は、支持体1とガスバリア層4と保護層3とがこの順に隣接して積層した積層構造と、前記積層構造の保護層3側の面に接着層9を介して積層した他の基材8とを備える。
<Packaging materials>
The packaging material 31 is the same as the packaging material precursor 30 except that the packaging material 31 has the gas barrier layer 4 instead of the gas barrier layer 2. The packaging material 31 includes a laminated structure in which the support 1, the gas barrier layer 4, and the protective layer 3 are laminated adjacent to each other in this order, and other layers laminated on the surface of the laminated structure on the protective layer 3 side through an adhesive layer 9 A substrate 8.
 包装材料31は、包装材料用前駆体30を熱水処理することにより得ることができる。
 熱水処理は前記と同様である。
 包装材料31、すなわち熱水処理を行った後の包装材料用前駆体30の好ましい酸素透過度は第1実施形態と同様である。
The packaging material 31 can be obtained by subjecting the packaging material precursor 30 to hot water treatment.
The hot water treatment is the same as described above.
The preferable oxygen permeability of the packaging material 31, that is, the packaging material precursor 30 after the hot water treatment is the same as that of the first embodiment.
<包装体の製造方法>
 包装材料用前駆体30を用いて被包装物を包装し、熱水処理することで、被包装物を包装材料31で包装した包装体を得ることができる。
 被包装物の包装および熱水処理は第1実施形態と同様に行うことができる。
 他の基材8がシーラント層として機能する場合、包装材料用前駆体30の他の基材8側の面同士を対向させて外縁部をヒートシールすることで、袋状にすることができる。袋の形態としては、例えば三方シールや、四方シール、スタンディングパウチ、ピロー包装等が挙げられる。
<Manufacturing method of package>
A package body in which the packaged material is packaged with the packaging material 31 can be obtained by packaging the packaged material using the packaging material precursor 30 and subjecting the packaged material to hot water treatment.
Packaging and hot water treatment of an article to be packaged can be performed as in the first embodiment.
When the other base material 8 functions as a sealant layer, it can be made into a bag shape by heat-sealing the outer edge with the other base material 8 side surfaces of the packaging material precursor 30 facing each other. Examples of the form of the bag include a three-side seal, a four-side seal, a standing pouch, and pillow packaging.
≪第4実施形態≫
 図7は、本発明の第4実施形態の包装材料用前駆体110の模式断面図である。図8は、包装材料用前駆体110から得た包装材料111の模式断面図である。
 本実施形態の包装材料用前駆体110は、支持体101と中間層103とガスバリア層102とがこの順に隣接して積層した積層構造を備える。つまり、本実施形態の包装材料用前駆体110においては、中間層103が支持体101の上に直接設けられ、ガスバリア層102が中間層103の上に直接設けられている。
 包装材料111は、ガスバリア層102がガスバリア層104になっていること以外は包装材料用前駆体110と同様である。
<< Fourth Embodiment >>
FIG. 7 is a schematic cross-sectional view of the packaging material precursor 110 according to the fourth embodiment of the present invention. FIG. 8 is a schematic cross-sectional view of the packaging material 111 obtained from the packaging material precursor 110.
The packaging material precursor 110 of the present embodiment has a laminated structure in which a support 101, an intermediate layer 103, and a gas barrier layer 102 are laminated adjacently in this order. That is, in the packaging material precursor 110 of this embodiment, the intermediate layer 103 is directly provided on the support 101 and the gas barrier layer 102 is directly provided on the intermediate layer 103.
The packaging material 111 is the same as the packaging material precursor 110 except that the gas barrier layer 102 is the gas barrier layer 104.
<包装材料用前駆体>
 〔支持体〕
 本実施形態の支持体101は、第1実施形態の支持体1と同様の構成を有する。
<Precursor for packaging materials>
[Support]
The support body 101 of this embodiment has the same configuration as the support body 1 of the first embodiment.
 〔中間層〕
 本実施形態の中間層103は、支持体101の一方の表面に形成される。それ以外は、第1実施形態の保護層と同様の構成を有する。つまり、中間層103は、第1実施形態の保護層と同様の多価金属成分と、ポリエステル樹脂と、分散剤とを含む。 中間層103は、第1実施形態の保護層と同様のイソシアネート化合物をさらに含むことが好ましい。
 中間層103は、多価金属成分、ポリエステル樹脂、分散剤およびイソシアネート化合物以外の他の成分を、第1実施形態の保護層と同様にさらに含んでもよい。中間層103にイソシアネート化合物が含まれると、中間層103の成膜性、耐熱水性、ガスバリア層102や支持体101との密着性がより優れる。
[Middle layer]
The intermediate layer 103 of this embodiment is formed on one surface of the support 101. Other than that, it has the same configuration as the protective layer of the first embodiment. That is, the intermediate layer 103 includes the same polyvalent metal component as that of the protective layer of the first embodiment, a polyester resin, and a dispersant. The intermediate layer 103 preferably further contains the same isocyanate compound as that of the protective layer of the first embodiment.
The intermediate layer 103 may further include other components other than the polyvalent metal component, the polyester resin, the dispersant, and the isocyanate compound, similarly to the protective layer of the first embodiment. When the isocyanate compound is contained in the intermediate layer 103, the film formability of the intermediate layer 103, the hot water resistance, and the adhesion with the gas barrier layer 102 and the support 101 are further improved.
 〔ガスバリア層〕
 本実施形態のガスバリア層102は、支持体101の一方の表面に形成された中間層103上に形成される。それ以外は、第1実施形態のガスバリア層2と同様の構成を有する。つまり、本実施形態のガスバリア層102は、第1実施形態のガスバリア層2と同様のポリカルボン酸系重合体と、加水分解性シラン化合物、その加水分解物、およびこれらの縮合物からなる群から選択される少なくとも1種のケイ素化合物(以下、「ケイ素化合物(i)」ともいう。)とを含む層である。
 ガスバリア層102は、必要に応じて、ポリカルボン酸系重合体およびケイ素化合物(i)以外の他の成分を、第1実施形態のガスバリア層2と同様に、さらに含有してもよい。
[Gas barrier layer]
The gas barrier layer 102 of this embodiment is formed on the intermediate layer 103 formed on one surface of the support 101. Other than that, it has the same configuration as the gas barrier layer 2 of the first embodiment. That is, the gas barrier layer 102 of the present embodiment is a group consisting of the same polycarboxylic acid polymer as the gas barrier layer 2 of the first embodiment, a hydrolyzable silane compound, a hydrolyzate thereof, and a condensate thereof. It is a layer containing at least one selected silicon compound (hereinafter also referred to as “silicon compound (i)”).
The gas barrier layer 102 may further contain other components other than the polycarboxylic acid-based polymer and the silicon compound (i) as necessary, like the gas barrier layer 2 of the first embodiment.
 〔包装材料用前駆体の製造方法〕
 包装材料用前駆体110は、例えば、以下の(α11)および(α12)の工程を含む製造方法により製造できる。
 (α11):支持体101の一方の表面に下記の中間層用塗液を塗布し乾燥させて中間層103を形成する工程。
 (α12):ガスバリア層102の表面に下記のガスバリア層用塗液を塗布し乾燥させてガスバリア層102を形成する工程。
[Method for producing precursor for packaging material]
The packaging material precursor 110 can be manufactured, for example, by a manufacturing method including the following steps (α11) and (α12).
(Α11): A step of forming the intermediate layer 103 by applying the following intermediate layer coating solution on one surface of the support 101 and drying it.
(Α12): A step of forming the gas barrier layer 102 by applying the following gas barrier layer coating liquid onto the surface of the gas barrier layer 102 and drying it.
 (中間層用塗液)
 中間層用塗液は、多価金属成分と、ポリエステル樹脂と、分散剤と、液状媒体とを含む。中間層用塗液は、イソシアネート化合物をさらに含むことが好ましい。中間層用塗液は、必要に応じて、多価金属成分、ポリエステル樹脂、分散剤およびイソシアネート化合物以外の他の成分をさらに含んでもよい。
(Interlayer coating solution)
The intermediate layer coating solution contains a polyvalent metal component, a polyester resin, a dispersant, and a liquid medium. The intermediate layer coating solution preferably further contains an isocyanate compound. The intermediate layer coating solution may further contain other components other than the polyvalent metal component, the polyester resin, the dispersant, and the isocyanate compound, if necessary.
 多価金属成分、ポリエステル樹脂、分散剤、イソシアネート化合物、他の成分はそれぞれ、前述の中間層103における多価金属成分、ポリエステル樹脂、分散剤、イソシアネート化合物、他の成分と同様であり、好ましい態様も同様である。 The polyvalent metal component, the polyester resin, the dispersant, the isocyanate compound, and other components are the same as the polyvalent metal component, the polyester resin, the dispersant, the isocyanate compound, and the other components in the intermediate layer 103, respectively. Is the same.
 液状媒体としては、特に限定が無く、水、有機溶剤、水と有機溶剤との混合溶媒等を用いることができる。
 有機溶剤としては、塗工性、乾燥効率向上の観点から、例えばエタノール、2-プロパノール、エチレングリコールモノブチルエーテル等が挙げられる。これらの有機溶剤が中間層用塗液に含まれる場合には1種単独で含まれていても2種以上が含まれていてもよい。
 液状媒体としては、水、または水と有機溶剤との混合溶媒が好ましい。水と有機溶剤との混合溶媒としては、上述した有機溶剤を用いた混合溶媒が好ましく、水が20~95質量%の量で存在し、該有機溶剤が80~5質量%の量で存在するものが特に好ましい。
The liquid medium is not particularly limited, and water, an organic solvent, a mixed solvent of water and an organic solvent, or the like can be used.
Examples of the organic solvent include ethanol, 2-propanol, ethylene glycol monobutyl ether and the like from the viewpoint of improving coatability and drying efficiency. When these organic solvents are contained in the intermediate layer coating solution, they may be contained singly or in combination of two or more.
As the liquid medium, water or a mixed solvent of water and an organic solvent is preferable. The mixed solvent of water and organic solvent is preferably a mixed solvent using the organic solvent described above, wherein water is present in an amount of 20 to 95% by mass, and the organic solvent is present in an amount of 80 to 5% by mass. Those are particularly preferred.
 中間層用塗液の固形分濃度は、3~30質量%が好ましく、5~20質量%がより好ましい。
 固形分濃度は、中間層用塗液の全量(100質量%)に対する全固形分の割合である。
中間層用塗液の全固形分は、中間層用塗液中の多価金属成分と、ポリエステル樹脂と、分散剤と、イソシアネート化合物と、他の成分のうち固体であるものとの合計量(イソシアネート化合物を含まない場合や他の成分のうち固体であるものを含まない場合を含む。)である。
The solid content concentration of the coating solution for the intermediate layer is preferably 3 to 30% by mass, and more preferably 5 to 20% by mass.
Solid content concentration is the ratio of the total solid content with respect to the whole quantity (100 mass%) of the coating liquid for intermediate | middle layers.
The total solid content of the intermediate layer coating liquid is the total amount of the polyvalent metal component in the intermediate layer coating liquid, the polyester resin, the dispersant, the isocyanate compound, and the other components that are solid ( Including the case of not containing an isocyanate compound and the case of not containing a solid component among other components).
 中間層用塗液における多価金属成分の含有量は、中間層用塗液の全固形分(100質量%)に対し、40~90質量%であり、50~85質量%が好ましく、60~80質量%がより好ましい。 The content of the polyvalent metal component in the intermediate layer coating solution is 40 to 90% by mass, preferably 50 to 85% by mass, preferably 60 to 85% by mass with respect to the total solid content (100% by mass) of the intermediate layer coating solution. 80 mass% is more preferable.
 中間層用塗液におけるポリエステル樹脂の含有量は、中間層用塗液の全固形分に対して10~60質量%が好ましく、20~40質量%がより好ましい。 The content of the polyester resin in the intermediate layer coating solution is preferably 10 to 60% by mass, more preferably 20 to 40% by mass, based on the total solid content of the intermediate layer coating solution.
 中間層用塗液における分散剤の含有量は、多価金属成分に対して2~20質量%であり、2~15質量%が好ましく、2~10質量%がより好ましい。 The content of the dispersant in the intermediate layer coating solution is 2 to 20% by mass, preferably 2 to 15% by mass, and more preferably 2 to 10% by mass with respect to the polyvalent metal component.
 中間層用塗液がイソシアネート化合物を含む場合、中間層用塗液におけるイソシアネート化合物の含有量は、中間層用塗液の全固形分に対して1~20質量%が好ましく、2~15質量%がより好ましい。 When the intermediate layer coating solution contains an isocyanate compound, the content of the isocyanate compound in the intermediate layer coating solution is preferably 1 to 20% by mass, preferably 2 to 15% by mass, based on the total solid content of the intermediate layer coating solution. Is more preferable.
 中間層用塗液中、他の成分のうち固体であるものの含有量は、中間層用塗液の全固形分に対し、5質量%未満が好ましく、3質量%未満がより好ましい。つまり、中間層用塗液中の多価金属成分とポリエステル樹脂と分散剤とイソシアネート化合物との合計量は、全固形分に対し、95質量%超が好ましく、97質量%超がより好ましい。 In the intermediate layer coating liquid, the content of the other components that are solids is preferably less than 5% by mass and more preferably less than 3% by mass with respect to the total solid content of the intermediate layer coating liquid. That is, the total amount of the polyvalent metal component, the polyester resin, the dispersant, and the isocyanate compound in the intermediate layer coating liquid is preferably more than 95% by mass and more preferably more than 97% by mass with respect to the total solid content.
 中間層用塗液の調製方法としては、特に限定はなく、上述の各成分を、均一になるように混合することにより中間層用塗液を得ることができる。 The method for preparing the intermediate layer coating liquid is not particularly limited, and the intermediate layer coating liquid can be obtained by mixing the above-described components uniformly.
 本発明において、ポリエステル樹脂は、前述のようにポリエステル樹脂水性分散体に由来することが好ましく、中間層用塗液の調製方法としては、多価金属成分、ポリエステル樹脂水性分散体、分散剤、および必要に応じて水、イソシアネート化合物、他の成分を混合する方法が好ましい。 In the present invention, the polyester resin is preferably derived from the aqueous polyester resin dispersion as described above, and the method for preparing the intermediate layer coating liquid includes a polyvalent metal component, an aqueous polyester resin dispersion, a dispersant, and A method in which water, an isocyanate compound, and other components are mixed as necessary is preferable.
 中間層用塗液の調製方法の好ましい例としては、蒸留水に酸化亜鉛超微粒子および分散剤を加え、酸化亜鉛超微粒子の一次粒子の凝集を解砕し、分散することにより、酸化亜鉛超微粒子の水性分散体を得て、該酸化亜鉛超微粒子の水性分散体に蒸留水、ポリエステル樹脂水性分散体および水分散性イソシアネート化合物を加えて攪拌し、必要に応じて、イソプロピルアルコール等の有機溶剤を加えて攪拌することにより中間層用塗液を得る方法が挙げられる。
 前記酸化亜鉛超微粒子の水性分散体を得る際の凝集の解砕には、ビーズミル、高速攪拌機等を用いることができる。特にビーズミルを用いると、得られる包装材料用前駆体のヘイズが小さくなる傾向があり好ましい。
As a preferable example of the method for preparing the coating liquid for the intermediate layer, zinc oxide ultrafine particles are obtained by adding zinc oxide ultrafine particles and a dispersant to distilled water, and crushing and dispersing the primary particles of zinc oxide ultrafine particles. A distilled dispersion, an aqueous polyester resin dispersion and a water-dispersible isocyanate compound are added to the aqueous dispersion of zinc oxide ultrafine particles and stirred. If necessary, an organic solvent such as isopropyl alcohol is added. In addition, a method of obtaining a coating solution for an intermediate layer by stirring is mentioned.
A bead mill, a high-speed stirrer, or the like can be used for crushing the aggregates when obtaining the aqueous dispersion of zinc oxide ultrafine particles. In particular, when a bead mill is used, the haze of the resulting packaging material precursor tends to be small, which is preferable.
 中間層用塗液の調製方法の他の好ましい例としては、あらかじめ水分散性イソシアネート化合物に蒸留水を加えて攪拌し、水分散性イソシアネート化合物の水性分散体を得て、別途、上記と同様の方法で酸化亜鉛超微粒子の水性分散体を得て、該酸化亜鉛超微粒子の水性分散体にポリエステル樹脂水性分散体を加え、得られた分散液に前記水分散性イソシアネート化合物の水性分散体を加えて攪拌し、必要に応じて、イソプロピルアルコール等の有機溶剤を加えて攪拌することにより中間層用塗液を得る方法が挙げられる。 As another preferable example of the method for preparing the intermediate layer coating solution, distilled water is added to the water-dispersible isocyanate compound in advance and stirred to obtain an aqueous dispersion of the water-dispersible isocyanate compound. An aqueous dispersion of zinc oxide ultrafine particles is obtained by the method, an aqueous polyester resin dispersion is added to the aqueous dispersion of ultrafine zinc oxide, and the aqueous dispersion of the water-dispersible isocyanate compound is added to the obtained dispersion. And a method of obtaining an intermediate layer coating liquid by adding an organic solvent such as isopropyl alcohol and stirring as necessary.
 (ガスバリア層用塗液)
 本実施形態のガスバリア層用塗液は、ポリカルボン酸系重合体と、ケイ素化合物(i)と、水とを含む。ガスバリア層用塗液は、必要に応じて、ポリカルボン酸系重合体およびケイ素化合物(i)以外の他の成分をさらに含有してもよい。ガスバリア層用塗液は、有機溶剤をさらに含んでもよい。
(Gas barrier layer coating solution)
The gas barrier layer coating liquid of the present embodiment contains a polycarboxylic acid polymer, a silicon compound (i), and water. The gas barrier layer coating solution may further contain other components than the polycarboxylic acid polymer and the silicon compound (i) as necessary. The gas barrier layer coating liquid may further contain an organic solvent.
 ガスバリア層用塗液におけるポリカルボン酸系重合体は、カルボキシル基の多価金属による中和度が20~50モル%である以外は、前述のガスバリア層102におけるポリカルボン酸系重合体と同様であり、好ましい態様も同様である。
 ポリカルボン酸系重合体を含むガスバリア層用塗液を中間層103の表面に塗布すると、塗液が乾燥するまでの間に中間層103から多価金属イオンが供給され、ポリカルボン酸系重合体のカルボキシル基の多価金属イオンによるイオン架橋反応が進む。このとき、カルボキシル基の中和度が低いほど、イオン架橋反応が進みやすい。
 上記中和度が20モル%未満であると、イオン架橋反応が急速に進み、ガスバリア層102の比(α/β)が50モル%以上になってしまう。
 上記中和度が50モル%より大きいと、ガスバリア層用塗液がゲル化し、塗布が困難になる。
The polycarboxylic acid polymer in the gas barrier layer coating liquid is the same as the polycarboxylic acid polymer in the gas barrier layer 102 except that the neutralization degree of the carboxyl group with the polyvalent metal is 20 to 50 mol%. There are also preferred embodiments.
When a gas barrier layer coating liquid containing a polycarboxylic acid polymer is applied to the surface of the intermediate layer 103, polyvalent metal ions are supplied from the intermediate layer 103 until the coating liquid dries, and the polycarboxylic acid polymer The ion cross-linking reaction by polyvalent metal ions of the carboxyl group proceeds. At this time, the lower the degree of neutralization of the carboxyl group, the easier the ion crosslinking reaction proceeds.
When the degree of neutralization is less than 20 mol%, the ionic crosslinking reaction proceeds rapidly, and the ratio (α / β) of the gas barrier layer 102 becomes 50 mol% or more.
If the neutralization degree is greater than 50 mol%, the gas barrier layer coating solution gels, making application difficult.
 なお、ポリカルボン酸系重合体のカルボキシル基は、中間層103に近いほどイオン架橋されやすいと考えられる。したがって、ガスバリア層102中の多価金属によるイオン架橋度は、中間層103に近いほど高くなっていると考えられる。例えば上記中和度が20モル%の場合、ガスバリア層102中では、中間層103との界面付近からその反対側の表面付近にかけて、イオン架橋度が100モル%から20モル%まで変化し、全体としてのイオン架橋度が50モル%程度になっていることが考えられる。
 一方、上記中和度が0モル%である場合、乾燥するまでの間にカルボキシル基が完全にイオン架橋してしまい、中間層103との界面付近からその反対側の表面付近にかけてのイオン架橋度の傾斜がなく、イオン架橋度が全て100モル%になると考えられる。
In addition, it is considered that the carboxyl group of the polycarboxylic acid polymer is more easily ionically cross-linked as the intermediate layer 103 is closer. Therefore, it is considered that the degree of ionic crosslinking by the polyvalent metal in the gas barrier layer 102 increases as the distance from the intermediate layer 103 increases. For example, when the degree of neutralization is 20 mol%, in the gas barrier layer 102, the degree of ionic crosslinking changes from 100 mol% to 20 mol% from the vicinity of the interface with the intermediate layer 103 to the surface on the opposite side. It is conceivable that the degree of ionic crosslinking is about 50 mol%.
On the other hand, when the neutralization degree is 0 mol%, the carboxyl group is completely ion-crosslinked before drying, and the degree of ionic cross-linking from the vicinity of the interface with the intermediate layer 103 to the vicinity of the surface on the opposite side. It is considered that the degree of ionic crosslinking is 100 mol%.
 ガスバリア層用塗液におけるケイ素化合物(i)、他の成分はそれぞれ、前述のガスバリア層102におけるケイ素化合物(i)、他の成分と同様であり、好ましい態様も同様である。 The silicon compound (i) and other components in the gas barrier layer coating solution are the same as the silicon compound (i) and other components in the gas barrier layer 102, respectively, and the preferred embodiments are also the same.
 有機溶剤としては、炭素数1~5の低級アルコールおよび炭素数3~5の低級ケトンからなる群から選択される少なくとも1種が好ましい。具体的には、メタノール、エタノール、プロパノール、イソプロパノール、n-ブタノール、イソブタノール、sec-ブタノール、tert-ブタノール、アセトン、メチルエチルケトン等が挙げられる。
 ガスバリア層用塗液の塗布性の観点からは、有機溶剤として炭素数1~5の低級アルコールを含むことが特に好ましい。
 有機溶剤の含有量は、水と有機溶剤との合計を100質量%としたときに、水が20~95質量%の量で存在し、該有機溶剤が80~5質量%の量で存在する量が好ましい。
The organic solvent is preferably at least one selected from the group consisting of lower alcohols having 1 to 5 carbon atoms and lower ketones having 3 to 5 carbon atoms. Specific examples include methanol, ethanol, propanol, isopropanol, n-butanol, isobutanol, sec-butanol, tert-butanol, acetone, and methyl ethyl ketone.
From the viewpoint of applicability of the gas barrier layer coating solution, it is particularly preferable to contain a lower alcohol having 1 to 5 carbon atoms as the organic solvent.
The content of the organic solvent is such that water is present in an amount of 20 to 95% by mass, and the organic solvent is present in an amount of 80 to 5% by mass when the total of water and the organic solvent is 100% by mass. An amount is preferred.
 ガスバリア層用塗液におけるケイ素化合物(i)の含有量は、前記ポリカルボン酸系重合体(100質量%)に対して2~25質量%であり、2~20質量%が好ましい。ケイ素化合物(i)の含有量が上記範囲内であれば、ガスバリア層102と支持体101との密着性に優れ、また、包装材料用前駆体110から得られる包装材料の耐水性がより優れ、冷水にさらされた際に白化しにくい。
 ここで、加水分解性シラン化合物以外のケイ素化合物(i)の質量は、前述のとおり、加水分解性シラン化合物換算の質量である。
The content of the silicon compound (i) in the gas barrier layer coating solution is 2 to 25% by mass, preferably 2 to 20% by mass, based on the polycarboxylic acid polymer (100% by mass). If the content of the silicon compound (i) is within the above range, the adhesion between the gas barrier layer 102 and the support 101 is excellent, and the water resistance of the packaging material obtained from the packaging material precursor 110 is more excellent, Difficult to whiten when exposed to cold water.
Here, the mass of the silicon compound (i) other than the hydrolyzable silane compound is the mass in terms of the hydrolyzable silane compound as described above.
 ガスバリア層用塗液における他の成分の含有量は、ポリカルボン酸系重合体(100質量%)に対して30質量%以下が好ましく、20質量%以下がより好ましい。 The content of other components in the gas barrier layer coating solution is preferably 30% by mass or less, more preferably 20% by mass or less, relative to the polycarboxylic acid polymer (100% by mass).
 ガスバリア層用塗液においては、ガスバリア性および塗工性の観点から、ガスバリア層用塗液中のポリカルボン酸系重合体と、ケイ素化合物(i)と、必要に応じて含まれる他の成分との合計含有量(固形分質量)が、ガスバリア層用塗液の総質量に対して、0.5~50質量%であることが好ましく、0.8~30質量%であることがより好ましく、1.0~20質量%であることが特に好ましい。 In the gas barrier layer coating solution, from the viewpoint of gas barrier properties and coating properties, the polycarboxylic acid polymer in the gas barrier layer coating solution, the silicon compound (i), and other components included as necessary Is preferably 0.5 to 50% by mass, more preferably 0.8 to 30% by mass, based on the total mass of the gas barrier layer coating liquid. It is particularly preferably 1.0 to 20% by mass.
 ガスバリア層用塗液におけるポリカルボン酸系重合体とケイ素化合物(i)との合計の含有量は、ガスバリア層用塗液中の固形分質量に対し、70質量%以上が好ましく、80質量%以上がより好ましく、100質量%であってもよい。
 加水分解性シラン化合物以外のケイ素化合物(i)の質量は、前記と同様、加水分解性シラン化合物換算の質量である。
The total content of the polycarboxylic acid polymer and the silicon compound (i) in the gas barrier layer coating solution is preferably 70% by mass or more, more preferably 80% by mass or more, based on the solid content mass in the gas barrier layer coating solution. Is more preferable, and may be 100% by mass.
The mass of the silicon compound (i) other than the hydrolyzable silane compound is the mass in terms of the hydrolyzable silane compound as described above.
 本実施形態のガスバリア層用塗液は、各成分を混合することにより調製できる。
 ポリカルボン酸系重合体は、既に上記中和度が20~50モル%となっているものを用いてもよく、上記中和度が0モル%のポリカルボン酸系重合体を用い、ガスバリア層用塗液の調製時に上記中和度を20~50モル%としてもよい。例えば上記中和度が0モル%のポリカルボン酸系重合体と多価金属成分と水とを混合すると、ポリカルボン酸系重合体と多価金属成分とが反応してカルボキシル基が中和される。多価金属成分の配合量によって中和度を調整できる。
 ガスバリア層用塗液がケイ素化合物(i)として加水分解縮合物を含む場合には、加水分解性シラン化合物を、ポリカルボン酸系重合体および水を含む液に直接混合してガスバリア層用塗液を調製してもよく、加水分解性シラン化合物に水を加えることによって、加水分解およびそれに続く縮合反応を行い、得られた加水分解縮合物を、ポリカルボン酸系重合体と混合してガスバリア層用塗液を調製してもよい。
The gas barrier layer coating liquid of this embodiment can be prepared by mixing each component.
A polycarboxylic acid polymer having a neutralization degree of 20 to 50 mol% may be used, or a gas barrier layer using a polycarboxylic acid polymer having a neutralization degree of 0 mol%. The neutralization degree may be 20 to 50 mol% when preparing the coating liquid. For example, when a polycarboxylic acid polymer having a neutralization degree of 0 mol%, a polyvalent metal component, and water are mixed, the polycarboxylic acid polymer reacts with the polyvalent metal component to neutralize the carboxyl group. The The degree of neutralization can be adjusted by the blending amount of the polyvalent metal component.
When the gas barrier layer coating liquid contains a hydrolytic condensate as the silicon compound (i), the hydrolyzable silane compound is directly mixed with the liquid containing the polycarboxylic acid polymer and water to form a gas barrier layer coating liquid. The water barrier is added to the hydrolyzable silane compound to perform hydrolysis and subsequent condensation reaction, and the resulting hydrolyzed condensate is mixed with a polycarboxylic acid polymer to form a gas barrier layer. A coating solution may be prepared.
 (工程(α11))
 支持体101上に中間層用塗液を塗布し、中間層用塗液の液状媒体を乾燥により除去することによって中間層103が形成される。
 中間層用塗液の塗工方法としては、特に限定されず、例えばキャスト法、ディッピング法、ロールコーティング法、グラビアコート法、スクリーン印刷法、リバースコート法、スプレーコート法、キットコート法、ダイコート法、メタリングバーコート法、チャンバードクター併用コート法、カーテンコート法等が挙げられる。
(Process (α11))
The intermediate layer 103 is formed by applying the intermediate layer coating liquid on the support 101 and removing the liquid medium of the intermediate layer coating liquid by drying.
The coating method of the intermediate layer coating liquid is not particularly limited, and for example, a casting method, dipping method, roll coating method, gravure coating method, screen printing method, reverse coating method, spray coating method, kit coating method, die coating method. , Metal ring bar coating method, chamber doctor combined coating method, curtain coating method and the like.
 乾燥の方法としては特に限定は無く、例えば熱風乾燥法、熱ロール接触法、赤外線加熱法、マイクロ波加熱法等の方法が挙げられ、該方法は単独または組み合わせて行ってもよい。乾燥温度としては特に限定は無いが、通常は50~160℃が好ましい。また乾燥の際の圧力は通常は常圧または減圧下で行うことが好ましく、設備の簡便性の観点から常圧で行うことが好ましい。 The drying method is not particularly limited, and examples thereof include a hot air drying method, a hot roll contact method, an infrared heating method, and a microwave heating method, and these methods may be performed alone or in combination. The drying temperature is not particularly limited, but is usually preferably 50 to 160 ° C. The pressure during drying is usually preferably normal pressure or reduced pressure, and preferably normal pressure from the viewpoint of facility simplicity.
 (工程(α12))
 工程(α11)で形成した中間層103の表面にガスバリア層用塗液を塗布し、乾燥によりガスバリア層用塗液中の水(有機溶剤を含む場合は有機溶剤も)除去することによってガスバリア層102が形成される。
 ガスバリア層用塗液の塗工方法としては、特に限定されず、例えばキャスト法、ディッピング法、ロールコーティング法、グラビアコート法、スクリーン印刷法、リバースコート法、スプレーコート法、キットコート法、ダイコート法、メタリングバーコート法、チャンバードクター併用コート法、カーテンコート法等が挙げられる。
(Process (α12))
A gas barrier layer coating liquid is applied to the surface of the intermediate layer 103 formed in the step (α11), and the gas barrier layer 102 is removed by drying to remove water (or an organic solvent if an organic solvent is included) in the gas barrier layer coating liquid. Is formed.
The coating method of the gas barrier layer coating liquid is not particularly limited. For example, casting method, dipping method, roll coating method, gravure coating method, screen printing method, reverse coating method, spray coating method, kit coating method, die coating method. , Metal ring bar coating method, chamber doctor combined coating method, curtain coating method and the like.
 乾燥の方法としては特に限定は無く、例えば熱風乾燥法、熱ロール接触法、赤外線加熱法、マイクロ波加熱法等の方法が挙げられ、該方法は単独または組み合わせて行ってもよい。乾燥温度としては特に限定は無いが、溶媒として上述した水や、水と有機溶剤との混合溶媒を用いる場合には、通常は50~160℃が好ましい。また乾燥の際の圧力は通常は常圧または減圧下で行うことが好ましく、設備の簡便性の観点から常圧で行うことが好ましい。 The drying method is not particularly limited, and examples thereof include a hot air drying method, a hot roll contact method, an infrared heating method, and a microwave heating method, and these methods may be performed alone or in combination. The drying temperature is not particularly limited, but when the above-mentioned water or a mixed solvent of water and an organic solvent is used as a solvent, it is usually preferably 50 to 160 ° C. The pressure during drying is usually preferably normal pressure or reduced pressure, and preferably normal pressure from the viewpoint of facility simplicity.
 ガスバリア層102に含まれるケイ素化合物(i)中の縮合物の割合を増加させる目的で、乾燥が終了(または、ほぼ終了)した時点で、熱処理を行ってもよい。前記熱処理としては通常は、温度120~240℃、好ましくは150~230℃で、通常は10秒~30分、好ましくは20秒~20分行われる。
 なお、前記乾燥および熱処理は、温度等の条件が重複する部分があるが、これらは明確に区別される必要は無く、連続的に行われてもよい。
For the purpose of increasing the proportion of the condensate in the silicon compound (i) contained in the gas barrier layer 102, heat treatment may be performed when the drying is completed (or almost completed). The heat treatment is usually carried out at a temperature of 120 to 240 ° C., preferably 150 to 230 ° C., usually 10 seconds to 30 minutes, preferably 20 seconds to 20 minutes.
The drying and heat treatment have portions where conditions such as temperature overlap, but these do not need to be clearly distinguished and may be performed continuously.
 〔用途〕
 包装材料用前駆体110は、以下に示すような包装材料の前駆体として、あるいは被包装物を包装材料で包装した包装体の製造用として有用である。
[Use]
The packaging material precursor 110 is useful as a packaging material precursor as shown below, or for the production of a package in which an article to be packaged is packaged with a packaging material.
<包装材料>
 本実施形態の包装材料111は、ガスバリア層102の代わりにガスバリア層104を有すること以外は包装材料用前駆体110と同様であり、支持体101と中間層103とガスバリア層104とがこの順に隣接して積層した積層構造を備える。
<Packaging materials>
The packaging material 111 of this embodiment is the same as the packaging material precursor 110 except that the gas barrier layer 104 is provided instead of the gas barrier layer 102, and the support 101, the intermediate layer 103, and the gas barrier layer 104 are adjacent in this order. And a laminated structure laminated.
 包装材料111のガスバリア層104は、前記1490cm-1~1659cm-1の範囲内の吸光度の最大ピーク高さ(α)と、前記1660cm-1~1750cm-1の範囲内の吸光度の最大ピーク高さ(β)との比(α/β)が7以上であること以外は、包装材料用前駆体110のガスバリア層102と同様である。 Gas barrier layer 104 of the packaging material 111, the 1490cm -1 ~ 1659cm maximum peak height absorbance in the range of -1 and (alpha), the maximum peak height in absorbance within the range of the 1660 cm -1 ~ 1750 cm -1 Except that the ratio (α / β) to (β) is 7 or more, it is the same as the gas barrier layer 102 of the packaging material precursor 110.
 包装材料111は、包装材料用前駆体110を熱水処理することにより得ることができる。
 熱水処理としては、レトルト処理、ボイル処理等が挙げられる。レトルト処理、ボイル処理については、この後の包装体の製造方法で詳しく説明する。
 包装材料用前駆体110を熱水処理すると、水分がガスバリア層102および中間層103に供給され、ガスバリア層102に含まれるポリカルボン酸系重合体のカルボキシル基の多価金属イオンによるイオン架橋が進み、比(α/β)が1以上7未満の範囲から7以上に増大し、ガスバリア層102がガスバリア層104となる。これにより包装材料111が得られる。
The packaging material 111 can be obtained by subjecting the packaging material precursor 110 to hot water treatment.
Examples of the hot water treatment include retort treatment and boil treatment. The retort process and the boil process will be described in detail in the subsequent manufacturing method of the package.
When the packaging material precursor 110 is subjected to hydrothermal treatment, moisture is supplied to the gas barrier layer 102 and the intermediate layer 103, and ionic crosslinking with polyvalent metal ions of the carboxyl group of the polycarboxylic acid polymer contained in the gas barrier layer 102 proceeds. The ratio (α / β) increases from 1 to less than 7 to 7 or more, and the gas barrier layer 102 becomes the gas barrier layer 104. Thereby, the packaging material 111 is obtained.
 熱水処理前のガスバリア層102の比(α/β)が1以上7未満であれば、支持体101を介して供給される水分によってガスバリア層102が膨張しにくい。熱水処理後の比(α/β)が7以上であれば、ポリカルボン酸系重合体のカルボキシル基のイオン架橋度が充分に高い。そのため、熱水処理後のガスバリア層104の架橋密度が充分に高くなり、ガスバリア層104が、高湿度条件下であっても優れたガスバリア性を発揮する。 If the ratio (α / β) of the gas barrier layer 102 before the hot water treatment is 1 or more and less than 7, the gas barrier layer 102 is difficult to expand due to moisture supplied via the support 101. If the ratio (α / β) after the hydrothermal treatment is 7 or more, the ionic crosslinking degree of the carboxyl group of the polycarboxylic acid polymer is sufficiently high. Therefore, the crosslink density of the gas barrier layer 104 after the hot water treatment is sufficiently high, and the gas barrier layer 104 exhibits excellent gas barrier properties even under high humidity conditions.
 包装材料111、すなわち熱水処理を行った後の包装材料用前駆体110の酸素透過度は、50cm(STP)/(m・day・MPa)以下であることが好ましく、20cm(STP)/(m・day・MPa)以下であることがより好ましく、10cm(STP)/(m・day・MPa)以下であることがさらに好ましい。該酸素透過度は低いほど好ましく、その下限としては特に限定はないが通常は0.1cm/(m・day・MPa)以上である。
 上記酸素透過度は、ASTM F1927-98(2004)に準拠して、温度30℃、相対湿度(RH)70%の条件で測定される値である。(STP)は、酸素の体積を規定するための標準条件(0℃、1気圧)を意味する。
The oxygen permeability of the packaging material 111, that is, the packaging material precursor 110 after the hot water treatment is preferably 50 cm 3 (STP) / (m 2 · day · MPa) or less, and 20 cm 3 (STP). ) / (M 2 · day · MPa) or less, more preferably 10 cm 3 (STP) / (m 2 · day · MPa) or less. The lower the oxygen permeability, the better. The lower limit is not particularly limited, but it is usually 0.1 cm 3 / (m 2 · day · MPa) or more.
The oxygen permeability is a value measured under conditions of a temperature of 30 ° C. and a relative humidity (RH) of 70% in accordance with ASTM F1927-98 (2004). (STP) means standard conditions (0 ° C., 1 atm) for defining the volume of oxygen.
<包装体の製造方法>
 第1実施形態の包装体の製造方法と同様の方法を用いて、包装材料用前駆体110を用いて被包装物を包装し、熱水処理することで、被包装物を包装材料111で包装した包装体を得ることができる。
<Manufacturing method of package>
Using the same method as the manufacturing method of the packaging body of the first embodiment, the packaging material is packaged using the packaging material precursor 110 and subjected to hot water treatment, so that the packaging material is packaged with the packaging material 111. Can be obtained.
≪第5実施形態≫
 図9は、本発明の第5実施形態の包装材料用前駆体120の模式断面図である。図10は、包装材料用前駆体120から得た包装材料121の模式断面図である。なお、以下に示す実施形態において、前出の実施形態に対応する構成要素には同一の符号を付してその詳細な説明を省略する。
 本実施形態の包装材料用前駆体120は、支持体107と中間層103とガスバリア層102とがこの順に隣接して積層した積層構造を備える。つまり、本実施形態の包装材料用前駆体120においては、中間層103が支持体107の上に直接設けられ、ガスバリア層102が中間層103の上に直接設けられている。
 支持体107は、基材105と、基材105の片面(中間層103側)に隣接して設けられたアンカーコート層106とからなる。
 包装材料121は、ガスバリア層102がガスバリア層104になっていること以外は包装材料用前駆体120と同様である。
«Fifth embodiment»
FIG. 9 is a schematic cross-sectional view of a packaging material precursor 120 according to a fifth embodiment of the present invention. FIG. 10 is a schematic cross-sectional view of the packaging material 121 obtained from the packaging material precursor 120. In the embodiment described below, the same reference numerals are given to the components corresponding to the previous embodiment, and the detailed description thereof is omitted.
The packaging material precursor 120 of the present embodiment has a laminated structure in which the support 107, the intermediate layer 103, and the gas barrier layer 102 are laminated adjacently in this order. That is, in the packaging material precursor 120 of this embodiment, the intermediate layer 103 is directly provided on the support 107 and the gas barrier layer 102 is directly provided on the intermediate layer 103.
The support 107 includes a base material 105 and an anchor coat layer 106 provided adjacent to one surface (on the intermediate layer 103 side) of the base material 105.
The packaging material 121 is the same as the packaging material precursor 120 except that the gas barrier layer 102 is the gas barrier layer 104.
<包装材料用前駆体>
 (支持体)
 支持体107の水蒸気透過度は、支持体101の水蒸気透過度と同様、100g/m以上であり、120g/m以上がより好ましい。
<Precursor for packaging materials>
(Support)
Similarly to the water vapor permeability of the support 101, the water vapor permeability of the support 107 is 100 g / m 2 or more, and more preferably 120 g / m 2 or more.
 支持体107を構成する基材105としては、第4実施形態の支持体101と同様のものが挙げられる。ただし、アンカーコート層106が積層した状態での水蒸気透過度が100g/m以上である必要がある。 Examples of the base material 105 constituting the support 107 include the same materials as those of the support 101 of the fourth embodiment. However, the water vapor transmission rate in a state where the anchor coat layer 106 is laminated needs to be 100 g / m 2 or more.
 アンカーコート層106は、基材105と中間層103との密着性を高めるために設けられている。
 アンカーコート層106は、第2実施形態のアンカーコート層6と同様の構成を有することができる。
The anchor coat layer 106 is provided to improve the adhesion between the base material 105 and the intermediate layer 103.
The anchor coat layer 106 can have the same configuration as the anchor coat layer 6 of the second embodiment.
 〔包装材料用前駆体の製造方法〕
 包装材料用前駆体120は、例えば、以下の(β11)、(β12)および(β13)の工程を含む製造方法により製造できる。
 (β11):基材105の一方の面上にアンカーコート層106を形成して支持体107を得る工程。
 (β12):支持体107のアンカーコート層106側の表面に中間層用塗液を塗布し乾燥させて中間層103を形成する工程。
 (β13):ガスバリア層102の表面にガスバリア層用塗液を塗布し乾燥させてガスバリア層102を形成する工程。
 中間層用塗液、ガスバリア層用塗液はそれぞれ第4実施形態と同様である。
[Method for producing precursor for packaging material]
The packaging material precursor 120 can be manufactured, for example, by a manufacturing method including the following steps (β11), (β12), and (β13).
(Β11): A step of forming the anchor coat layer 106 on one surface of the substrate 105 to obtain the support 107.
(Β12): A step of forming the intermediate layer 103 by applying the intermediate layer coating liquid to the surface of the support 107 on the anchor coat layer 106 side and drying it.
(Β13): A step of forming the gas barrier layer 102 by applying a gas barrier layer coating solution on the surface of the gas barrier layer 102 and drying it.
The intermediate layer coating solution and the gas barrier layer coating solution are the same as those in the fourth embodiment.
 (工程(β11))
 アンカーコート層106の形成方法は特に限定されず、公知の方法を適宜選択できる。例えば、アンカーコート層用塗液を塗布し乾燥することによりアンカーコート層106を形成できる。
 アンカーコート層用塗液としては、前述の樹脂またはその前駆体と、溶媒と、必要に応じて添加剤を含むものが挙げられる。樹脂またはその前駆体としては、ポリウレタン系、ポリエステル系またはアクリル系のポリマー材料が好ましく、中でも、ポリウレタン系ポリマー材料である、ポリエステル系ポリオールを含有する主剤と、イソシアネートを含有する硬化剤からなる二液型のアンカーコート剤が好ましい。
(Process (β11))
The formation method of the anchor coat layer 106 is not particularly limited, and a known method can be appropriately selected. For example, the anchor coat layer 106 can be formed by applying and drying an anchor coat layer coating solution.
Examples of the coating liquid for the anchor coat layer include those containing the above-mentioned resin or its precursor, a solvent, and additives as necessary. The resin or its precursor is preferably a polyurethane-based, polyester-based or acrylic-based polymer material. Among them, a two-component solution comprising a main component containing a polyester-based polyol, which is a polyurethane-based polymer material, and a curing agent containing an isocyanate. A type anchor coating agent is preferred.
 (工程(β12))
 工程(β12)は、第4実施形態における工程(α11)と同様にして行うことができる。
(Process (β12))
The step (β12) can be performed in the same manner as the step (α11) in the fourth embodiment.
 (工程(β13))
 工程(β13)は、第4実施形態における工程(α12)と同様にして行うことができる。
(Process (β13))
The step (β13) can be performed in the same manner as the step (α12) in the fourth embodiment.
 工程(β11)にて基材105上にアンカーコート層106を形成した後、または工程(β12)にて中間層103を形成した後、または工程(β13)にてガスバリア層102を形成した後に、熟成処理を行ってもよい。熟成処理としては、通常30~200℃、好ましくは30~150℃の温度条件で、0.5~10日、好ましくは1~7日間保持する処理が挙げられる。 After forming the anchor coat layer 106 on the substrate 105 in the step (β11), after forming the intermediate layer 103 in the step (β12), or after forming the gas barrier layer 102 in the step (β13), An aging treatment may be performed. Examples of the aging treatment include a treatment of holding at a temperature of usually 30 to 200 ° C., preferably 30 to 150 ° C. for 0.5 to 10 days, preferably 1 to 7 days.
 ガスバリア層102に含まれるケイ素化合物(i)中の縮合物の割合を増加させる目的で、工程(β13)での乾燥が終了(または、ほぼ終了)した時点、または工程(β13)の後に前記熟成処理を行い、この熟成処理が終了した時点で、熱処理を行ってもよい。前記熱処理としては通常は、温度120~240℃、好ましくは150~230℃で、通常は10秒~30分、好ましくは20秒~20分行われる。
 なお、前記乾燥、熱処理および熟成処理は、温度等の条件が重複する部分があるが、これらは明確に区別される必要は無く、連続的に行われてもよい。
For the purpose of increasing the ratio of the condensate in the silicon compound (i) contained in the gas barrier layer 102, when the drying in the step (β13) is completed (or almost completed) or after the step (β13) A heat treatment may be performed when the treatment is performed and the aging treatment is completed. The heat treatment is usually carried out at a temperature of 120 to 240 ° C., preferably 150 to 230 ° C., usually 10 seconds to 30 minutes, preferably 20 seconds to 20 minutes.
Note that the drying, heat treatment, and aging treatment have portions where conditions such as temperature overlap, but these do not need to be clearly distinguished and may be performed continuously.
 〔用途〕
 包装材料用前駆体120は、包装材料121の前駆体として、あるいは被包装物を包装材料121で包装した包装体の製造用として有用である。
[Use]
The packaging material precursor 120 is useful as a precursor for the packaging material 121 or for producing a package in which an object to be packaged is packaged with the packaging material 121.
<包装材料>
 包装材料121は、ガスバリア層102の代わりにガスバリア層104を有すること以外は包装材料用前駆体120と同様であり、支持体107と中間層103とガスバリア層104とがこの順に隣接して積層した積層構造を備える。
<Packaging materials>
The packaging material 121 is the same as the packaging material precursor 120 except that it has the gas barrier layer 104 instead of the gas barrier layer 102, and the support 107, the intermediate layer 103, and the gas barrier layer 104 are laminated adjacently in this order. A laminated structure is provided.
 包装材料121は、包装材料用前駆体120を熱水処理することにより得ることができる。
 熱水処理は前記と同様である。
 包装材料121、すなわち熱水処理を行った後の包装材料用前駆体120の好ましい酸素透過度は第4実施形態と同様である。
The packaging material 121 can be obtained by subjecting the packaging material precursor 120 to hot water treatment.
The hot water treatment is the same as described above.
The preferable oxygen permeability of the packaging material 121, that is, the packaging material precursor 120 after the hot water treatment is the same as in the fourth embodiment.
<包装体の製造方法>
 包装材料用前駆体120を用いて被包装物を包装し、熱水処理することで、被包装物を包装材料121で包装した包装体を得ることができる。
 被包装物の包装および熱水処理は第4実施形態と同様に行うことができる。
<Manufacturing method of package>
A package body in which the package object is packaged with the package material 121 can be obtained by packaging the package object using the packaging material precursor 120 and performing hot water treatment.
Packaging of the package and hot water treatment can be performed in the same manner as in the fourth embodiment.
≪第6実施形態≫
 図11は、本発明の第6実施形態の包装材料用前駆体130の模式断面図である。図12は、包装材料用前駆体130から得た包装材料131の模式断面図である。
 本実施形態の包装材料用前駆体130は、支持体101と中間層103とガスバリア層102とがこの順に隣接して積層した積層構造と、前記積層構造のガスバリア層102側の面に接着層109を介して積層した他の基材108とを備える。つまり、本実施形態の包装材料用前駆体130においては、中間層103が支持体101の上に直接設けられ、ガスバリア層102が中間層103の上に直接設けられている。
 包装材料131は、ガスバリア層102がガスバリア層104になっていること以外は包装材料用前駆体130と同様である。
<< Sixth Embodiment >>
FIG. 11 is a schematic cross-sectional view of a packaging material precursor 130 according to a sixth embodiment of the present invention. FIG. 12 is a schematic cross-sectional view of the packaging material 131 obtained from the packaging material precursor 130.
The packaging material precursor 130 of this embodiment includes a laminated structure in which a support 101, an intermediate layer 103, and a gas barrier layer 102 are laminated adjacently in this order, and an adhesive layer 109 on the surface of the laminated structure on the gas barrier layer 102 side. And the other base material 108 laminated via. That is, in the packaging material precursor 130 of this embodiment, the intermediate layer 103 is directly provided on the support 101 and the gas barrier layer 102 is directly provided on the intermediate layer 103.
The packaging material 131 is the same as the packaging material precursor 130 except that the gas barrier layer 102 is the gas barrier layer 104.
<包装材料用前駆体>
 (他の基材)
 他の基材108は、包装材料用前駆体130や包装材料131に任意の物性を付与するために用いられる。具体的には、他の基材108によって、強度付与や、シール性やシール時の易開封性付与、意匠性付与、光遮断性付与、防湿性付与等が可能である。さらに、レトルト処理、ボイル処理等を施す際に、ガスバリア層102が熱水や蒸気に直接さらされず、外観が良好となる。
<Precursor for packaging materials>
(Other base materials)
The other base material 108 is used for imparting arbitrary physical properties to the packaging material precursor 130 and the packaging material 131. Specifically, the other base material 108 can provide strength, sealability, easy-opening property at the time of sealing, design property, light blocking property, moisture resistance, and the like. Furthermore, when performing a retort process, a boil process, etc., the gas barrier layer 102 is not directly exposed to a hot water or a vapor | steam, and an external appearance becomes favorable.
 他の基材108としては、目的に応じて適宜選択されるが、プラスチックフィルム類が好ましい。他の基材108は、二層以上の層を有する積層体であってもよい。
 他の基材108の材質としては、例えば、ポリオレフィン、ナイロン、無機蒸着ナイロン等が挙げられる。
 他の基材108の厚みは、1~1000μmであることが好ましく、5~500μmであることがより好ましい。
The other substrate 108 is appropriately selected depending on the purpose, but plastic films are preferable. The other base material 108 may be a laminate having two or more layers.
Examples of the material of the other base material 108 include polyolefin, nylon, and inorganic vapor-deposited nylon.
The thickness of the other substrate 108 is preferably 1 to 1000 μm, and more preferably 5 to 500 μm.
 (接着層)
 接着層は、中間層103と他の基材108とを接着する層である。
 接着層109の材質としては、特に限定はない。例えばドライラミネート法で他の基材108をラミネートする場合には、一液型や二液型のポリウレタン系接着剤やアクリル系接着剤を用いて接着層109を形成できる。押出しラミネート法で他の基材108をラミネートする場合には、エチレン-酢酸ビニル共重合体、エチレン-アクリル酸共重合体、エチレン-メタクリル酸共重合体、アイオノマー樹脂等の接着性を有する樹脂を用いて接着層109を形成できる。
(Adhesive layer)
The adhesive layer is a layer that adheres the intermediate layer 103 and another substrate 108.
The material of the adhesive layer 109 is not particularly limited. For example, when another substrate 108 is laminated by a dry laminating method, the adhesive layer 109 can be formed using a one-component or two-component polyurethane adhesive or an acrylic adhesive. In the case of laminating another base material 108 by an extrusion laminating method, an adhesive resin such as an ethylene-vinyl acetate copolymer, an ethylene-acrylic acid copolymer, an ethylene-methacrylic acid copolymer, or an ionomer resin is used. The adhesive layer 109 can be formed.
 〔包装材料用前駆体の製造方法〕
 包装材料用前駆体130は、例えば、以下の(γ11)、(γ12)および(γ13)の工程を含む製造方法により製造できる。
 (γ11):支持体101の一方の表面に下記の中間層用塗液を塗布し乾燥させて中間層3を形成する工程。
 (γ12):ガスバリア層102の表面に下記のガスバリア層用塗液を塗布し乾燥させてガスバリア層102を形成する工程。
 (γ13):ガスバリア層102の上に、接着層109を介して他の基材108をラミネートする工程。
[Method for producing precursor for packaging material]
The packaging material precursor 130 can be manufactured, for example, by a manufacturing method including the following steps (γ11), (γ12), and (γ13).
(Γ11): A step of forming the intermediate layer 3 by applying the following intermediate layer coating solution on one surface of the support 101 and drying it.
(Γ12): A step of forming the gas barrier layer 102 by applying the following gas barrier layer coating liquid on the surface of the gas barrier layer 102 and drying it.
(Γ13): A process of laminating another base material 108 on the gas barrier layer 102 via the adhesive layer 109.
 (工程(γ11))
 工程(γ11)は、第4実施形態における工程(α11)と同様にして行うことができる。
(Process (γ11))
The step (γ11) can be performed in the same manner as the step (α11) in the fourth embodiment.
 (工程(γ12))
 工程(γ12)は、第4実施形態における工程(α12)と同様にして行うことができる。
(Process (γ12))
The step (γ12) can be performed in the same manner as the step (α12) in the fourth embodiment.
 (工程(γ13))
 他の基材108のラミネート方法としては、特に限定されず、例えばドライラミネート法、押出しラミネート法が挙げられる。
 ドライラミネート法の際の接着剤の塗工方法としては、特に限定されず、例えばグラビアコート法が挙げられる。
(Process (γ13))
The method for laminating the other base material 108 is not particularly limited, and examples thereof include a dry laminating method and an extrusion laminating method.
The method for applying the adhesive in the dry laminating method is not particularly limited, and examples thereof include a gravure coating method.
 〔用途〕
 包装材料用前駆体130は、包装材料131の前駆体として、あるいは被包装物を包装材料131で包装した包装体の製造用として有用である。
[Use]
The packaging material precursor 130 is useful as a precursor for the packaging material 131 or for producing a package in which an object to be packaged is packaged with the packaging material 131.
<包装材料>
 包装材料131は、ガスバリア層102の代わりにガスバリア層104を有すること以外は包装材料用前駆体130と同様であり、支持体101と中間層103とガスバリア層104とがこの順に隣接して積層した積層構造と、前記積層構造の中間層103側の面に接着層109を介して積層した他の基材108とを備える。
<Packaging materials>
The packaging material 131 is the same as the packaging material precursor 130 except that it has the gas barrier layer 104 instead of the gas barrier layer 102, and the support 101, the intermediate layer 103, and the gas barrier layer 104 are laminated adjacently in this order. A laminated structure and another base material 108 laminated with an adhesive layer 109 on the surface of the laminated structure on the intermediate layer 103 side are provided.
 包装材料131は、包装材料用前駆体130を熱水処理することにより得ることができる。
 熱水処理は前記と同様である。
 包装材料131、すなわち熱水処理を行った後の包装材料用前駆体130の好ましい酸素透過度は第4実施形態と同様である。
The packaging material 131 can be obtained by subjecting the packaging material precursor 130 to hot water treatment.
The hot water treatment is the same as described above.
The preferable oxygen permeability of the packaging material 131, that is, the packaging material precursor 130 after the hot water treatment is the same as in the fourth embodiment.
<包装体の製造方法>
 包装材料用前駆体130を用いて被包装物を包装し、熱水処理することで、被包装物を包装材料131で包装した包装体を得ることができる。
 被包装物の包装および熱水処理は第4実施形態と同様に行うことができる。
 他の基材108がシーラント層として機能する場合、包装材料用前駆体130の他の基材108側の面同士を対向させて外縁部をヒートシールすることで、袋状にすることができる。袋の形態としては、例えば三方シール、四方シール、スタンディングパウチ、ピロー包装等が挙げられる。
<Manufacturing method of package>
A package body in which the package object is packaged with the package material 131 can be obtained by packaging the package object using the packaging material precursor 130 and performing hot water treatment.
Packaging of the package and hot water treatment can be performed in the same manner as in the fourth embodiment.
When the other base material 108 functions as a sealant layer, it can be formed into a bag shape by heat-sealing the outer edge portion with the other base material 108 side surfaces of the packaging material precursor 130 facing each other. Examples of the form of the bag include a three-side seal, a four-side seal, a standing pouch, and pillow packaging.
 以上、第1実施形態~第6実施形態を示して本発明を説明したが、本発明はこれらの実施形態に限定されるものではない。上記実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨を逸脱しない範囲内で、構成の付加、省略、置換、およびその他の変更が可能である。
 例えば、第3実施形態において、支持体1の代わりに支持体7を用いてもよい。また、意匠性付与、光遮断性付与、防湿性付与などの観点から、他の基材8に印刷や蒸着が施されていてもよい。
 また、第6実施形態において、支持体101の代わりに支持体107を用いてもよい。意匠性付与、光遮断性付与、防湿性付与などの観点から、他の基材108に印刷や蒸着が施されていてもよい。
While the present invention has been described with reference to the first to sixth embodiments, the present invention is not limited to these embodiments. Each configuration in the above embodiment, a combination thereof, and the like are examples, and the addition, omission, replacement, and other modifications of the configuration can be made without departing from the spirit of the present invention.
For example, in the third embodiment, the support 7 may be used instead of the support 1. Moreover, printing or vapor deposition may be given to the other base material 8 from viewpoints, such as designability provision, light-blocking provision, moisture-proof provision.
Further, in the sixth embodiment, a support 107 may be used instead of the support 101. From the viewpoints of providing design properties, providing light blocking properties, and providing moisture resistance, printing or vapor deposition may be performed on the other base material 108.
 以下、実施例を示して本発明を詳細に説明する。ただし、本発明はこれら実施例に限定されるものではない。
 以下で用いた評価方法を以下に示す。
Hereinafter, the present invention will be described in detail with reference to examples. However, the present invention is not limited to these examples.
The evaluation method used below is shown below.
<評価方法>
[ラミネーション]
 実施例1~9、および比較例1~7で得られた包装材料用前駆体の保護層側の面に、接着剤を用い、HIRANO TECSEED製マルチコーターTM-MCにて、CPP(ポリプロピレンフィルム)と貼り合わせた。さらに、実施例10~18、および比較例8~15で得られた包装材料用前駆体の保護層側の面に、接着剤を用い、HIRANO TECSEED製マルチコーターTM-MCにて、CPP(ポリプロピレンフィルム)と貼り合わせた。このように、包装材料用前駆体/接着層/CPPの構成のラミネートフィルムとした。接着剤は、三井化学ポリウレタン製2液硬化型接着剤タケラック(登録商標)A620(主剤)/タケネート(登録商標)A65(硬化剤)を使用した。CPPは、東レフィルム加工製ポリプロピレンフィルム トレファン(登録商標)ZK93KM(厚さ60μm)を使用した。得られたラミネートフィルムは貼り合わせ後、40℃にて3日間養生した。
<Evaluation method>
[Lamination]
CPP (polypropylene film) was used on the protective layer side surface of the packaging material precursors obtained in Examples 1 to 9 and Comparative Examples 1 to 7 using a multicoater TM-MC made by HIRANO TECSEED. And pasted together. Further, an adhesive was used on the protective layer side surface of the packaging material precursors obtained in Examples 10 to 18 and Comparative Examples 8 to 15, and CPP (polypropylene) was used with a multicoater TM-MC manufactured by HIRANO TECSEED. Film). Thus, it was set as the laminated film of the structure of the precursor for packaging materials / adhesion layer / CPP. As the adhesive, a two-component curable adhesive Takelac (registered trademark) A620 (main agent) / Takenate (registered trademark) A65 (curing agent) manufactured by Mitsui Chemicals Polyurethane was used. As the CPP, Toray Film processed polypropylene film Treffan (registered trademark) ZK93KM (thickness 60 μm) was used. The obtained laminated film was cured at 40 ° C. for 3 days after being bonded.
[屈曲による虐待試験]
 上記ラミネーションにより得られたラミネートフィルムに、テスター産業製ゲルボフレックステスターにて、50回の屈曲を与えた。
[Abuse examination by bending]
The laminate film obtained by the above lamination was bent 50 times with a gelbo flex tester manufactured by Tester Sangyo.
[製袋および水充填]
 上記ラミネーションにより得られた得られたラミネートフィルムまたは上記虐待試験後のラミネートフィルムのCPP面同士をインパルスシーラーで貼り合わせることにより100mm×140mmの大きさの三方パウチを作製した。この三方パウチに水100gを充填した。
[Bag making and water filling]
A three-sided pouch having a size of 100 mm × 140 mm was prepared by pasting together the CPP surfaces of the obtained laminate film obtained by the lamination or the laminate film after the abuse test with an impulse sealer. The three-way pouch was filled with 100 g of water.
[レトルト処理]
 水を充填した三方パウチに対し、日阪製作所(株)製貯湯式レトルト釜:RCS-60/10TGを用い、処理温度120℃、処理時間30分間、処理槽圧力2kg(0.2MPa)の条件でレトルト処理を実施した。その後、三方パウチから水を除去し、三方パウチを構成するラミネートフィルムの酸素透過度を測定した。
[Retort processing]
For a three-way pouch filled with water, a hot water storage retort kettle manufactured by Nisaka Manufacturing Co., Ltd .: RCS-60 / 10TG, treatment temperature 120 ° C, treatment time 30 minutes, treatment tank pressure 2 kg (0.2 MPa) The retort treatment was carried out. Thereafter, water was removed from the three-way pouch, and the oxygen permeability of the laminate film constituting the three-way pouch was measured.
[酸素透過度(OTR)の測定]
 ラミネートフィルムの酸素透過度は、Modern Control社製酸素透過試験器OXTRAN(登録商標)2/20を用いて、温度30℃、相対湿度70%の条件下で測定した。測定方法は、ASTM F1927-98(2004)に準拠し、測定値は、単位cm(STP)/(m・day・MPa)で表記した。(STP)は酸素の体積を規定するための標準条件(0℃、1気圧)を意味する。
 虐待試験を行っていないラミネートフィルムのOTRを「レトルト後OTR」、虐待試験を行ったラミネートフィルムのOTRを「虐待後レトルトOTR」とも記す。
[Measurement of oxygen permeability (OTR)]
The oxygen permeability of the laminate film was measured under the conditions of a temperature of 30 ° C. and a relative humidity of 70% using an oxygen permeation tester OXTRAN (registered trademark) 2/20 manufactured by Modern Control. The measuring method was based on ASTM F1927-98 (2004), and the measured value was expressed in the unit cm 3 (STP) / (m 2 · day · MPa). (STP) means standard conditions (0 ° C., 1 atm) for defining the volume of oxygen.
The OTR of the laminate film that has not been subjected to the abuse test is also referred to as “post-retort OTR”, and the OTR of the laminate film that has been subjected to the abuse test is also referred to as “retort OTR after abuse”.
[水蒸気透過度の測定]
 実施例および比較例で得られた包装材料用前駆体(CPPをラミネートしていない構成)の水蒸気透過度は、Modern Control社製のPERMATRAN-W 3/31を用いて、温度40℃、相対湿度90%における透湿度(WVTR)を測定した。
 測定方法は、ASTM F1249-01に準拠し、測定値は、単位g/(m・day)で表記した。
[Measurement of water vapor permeability]
The water vapor permeability of the precursors for packaging materials obtained in the examples and comparative examples (configuration in which CPP is not laminated) was determined by using PERMATRAN-W 3/31 manufactured by Modern Control, temperature of 40 ° C., and relative humidity. The moisture permeability (WVTR) at 90% was measured.
The measuring method was based on ASTM F1249-01, and the measured value was expressed in units of g / (m 2 · day).
[赤外線吸収スペクトルの測定]
 上記ラミネーションにより得られた得られたラミネートフィルムのガスバリア層の赤外線吸収スペクトルを、上記レトルト処理を行う前および行った後に、以下の手順で測定した。1490cm-1~1659cm-1の範囲内の吸光度の最大ピーク高さ(α)と、1660cm-1~1750cm-1の範囲内の吸光度の最大ピーク高さ(β)との比(α/β)を求めた。
 実施例1~9、および比較例1~7について、まず、ラミネートフィルムのCPPフィルムを剥離した。その後、接着剤をトルエン等の有機溶媒を用いて溶解し、さらに2-プロパノール等のアルコール類を用いて保護層を剥がしガスバリア層を露出した。次に、露出したガスバリア層について、Perkin-Elmer社製FT-JR1710を用いてATR法によって赤外線吸収スペクトルを測定した。
 実施例10~18、および比較例8~15については、まず、ラミネートフィルムのCPPフィルムを剥離した。その後、接着剤をトルエン等の有機溶媒を用いて溶解し、ガスバリア層を露出した。次に、露出したガスバリア層について、Perkin-Elmer社製FT-JR1710を用いてATR法によって赤外線吸収スペクトルを測定した。
[Measurement of infrared absorption spectrum]
The infrared absorption spectrum of the gas barrier layer of the obtained laminate film obtained by the lamination was measured by the following procedure before and after the retort treatment. The ratio of 1490cm -1 ~ 1659cm maximum peak height absorbance in the range of -1 and (alpha), the maximum peak height in absorbance in the range of 1660 cm -1 ~ 1750 cm -1 and (β) (α / β) Asked.
For Examples 1 to 9 and Comparative Examples 1 to 7, first, the CPP film of the laminate film was peeled off. Thereafter, the adhesive was dissolved using an organic solvent such as toluene, and the protective layer was removed using alcohols such as 2-propanol to expose the gas barrier layer. Next, the infrared absorption spectrum of the exposed gas barrier layer was measured by ATR method using FT-JR1710 manufactured by Perkin-Elmer.
For Examples 10 to 18 and Comparative Examples 8 to 15, first, the CPP film of the laminate film was peeled off. Thereafter, the adhesive was dissolved using an organic solvent such as toluene to expose the gas barrier layer. Next, the infrared absorption spectrum of the exposed gas barrier layer was measured by ATR method using FT-JR1710 manufactured by Perkin-Elmer.
<アンカーコート層用の塗液Aの調製>
[塗液A-1の調製]
 ポリオール、Si剤、硬化剤および酢酸エチルを表1に示す配合で混合し、塗液A-1を調製した。
 ポリオールとして、三菱レイヨン製ダイヤナールLR209(アクリルポリオール)を用いた。Si剤として、信越シリコーン製KBE9007(3-イソシアネートプロピルトリエトキシシラン)を用いた。硬化剤として、三井化学ポリウレタン製タケネートA56(イソホロンジイソシアネート(IPDI)・キシリレンジイソシアネート(XDI))を用いた。酢酸エチルとして、東京化成工業製酢酸エチルを用いた。
 表1中、固形分濃度の「%」は「質量%」であり、以下においても同様である。
<Preparation of coating liquid A for anchor coat layer>
[Preparation of coating liquid A-1]
Polyol, Si agent, curing agent and ethyl acetate were mixed in the formulation shown in Table 1 to prepare coating liquid A-1.
As the polyol, Mitsubishi Rayon Dianal LR209 (acrylic polyol) was used. As the Si agent, Shin-Etsu Silicone KBE9007 (3-isocyanatepropyltriethoxysilane) was used. As a curing agent, Takenate A56 (isophorone diisocyanate (IPDI) / xylylene diisocyanate (XDI)) made by Mitsui Chemicals Polyurethane was used. As ethyl acetate, Tokyo Chemical Industry ethyl acetate was used.
In Table 1, “%” of the solid content concentration is “mass%”, and the same applies to the following.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[塗液A-2の調製]
 ポリオール、硬化剤および酢酸エチルを表2に示す配合で混合し、塗液A-2を作製した。
 ポリオールとして、三井化学ポリウレタン製タケラックA525(ポリエステルポリオール)を用いた。硬化剤として、三井化学ポリウレタン製タケネートA52(ジイソシアネート)を用いた。酢酸エチルとして、東京化成工業製酢酸エチルを用いた。
[Preparation of coating liquid A-2]
A polyol, a curing agent and ethyl acetate were mixed in the formulation shown in Table 2 to prepare a coating liquid A-2.
As a polyol, Mitsui Chemicals Polyurethane Takelac A525 (polyester polyol) was used. As a curing agent, Takenate A52 (diisocyanate) made by Mitsui Chemicals Polyurethane was used. As ethyl acetate, Tokyo Chemical Industry ethyl acetate was used.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
<ガスバリア層用の塗液Bの調製>
 ポリカルボン酸系重合体、多価金属化合物、Si剤、蒸留水および2-プロパノールを表3に示す配合で混合し、塗液B(B-1、B-2、B-3、B-4、B’-1、B’-2、B’-3、B’-4)を調製した。
 ポリカルボン酸系重合体として、東亞合成製アロンA10-H(ポリアクリル酸、中和度0モル%)を用いた。多価金属化合物として、東京化成工業製酸化亜鉛(酸化亜鉛)を用いた。ケイ素化合物として、信越シリコーン製KBM403(3-グリシドキシプロピルトリメトキシシラン)を用いた。2-プロパノールとして、東京化成工業製2-プロパノールを用いた。
 表3中、中和度は、ポリカルボン酸系重合体のカルボキシル基のモル数に対する多価金属化合物の多価金属原子換算のモル数の割合(モル%)として求めた。Si剤量は、ポリカルボン酸系重合体に対するSi剤の割合(質量%)である。
<Preparation of coating liquid B for gas barrier layer>
A polycarboxylic acid-based polymer, a polyvalent metal compound, a Si agent, distilled water and 2-propanol are mixed in the formulation shown in Table 3, and coating liquid B (B-1, B-2, B-3, B-4) is mixed. , B′-1, B′-2, B′-3, B′-4) were prepared.
As a polycarboxylic acid polymer, Toronsei Aron A10-H (polyacrylic acid, neutralization degree 0 mol%) was used. As the polyvalent metal compound, zinc oxide (zinc oxide) manufactured by Tokyo Chemical Industry was used. As the silicon compound, KBM403 (3-glycidoxypropyltrimethoxysilane) manufactured by Shin-Etsu Silicone was used. As 2-propanol, 2-propanol produced by Tokyo Chemical Industry was used.
In Table 3, the degree of neutralization was determined as the ratio (mol%) of the number of moles in terms of polyvalent metal atom of the polyvalent metal compound to the number of moles of the carboxyl group of the polycarboxylic acid polymer. The amount of Si agent is the ratio (mass%) of the Si agent with respect to the polycarboxylic acid polymer.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
<保護層用及び中間層用の塗液Tの調製>
 多価金属化合物、分散剤および水を表4に示す配合で混合し、塗液Taを調製した。
 多価金属化合物として、堺化学工業製FINEX50(酸化亜鉛超微粒子、平均一次粒子径20nm)を用いた。分散剤として、東亞合成製アロン(登録商標)T-50(ポリアクリル酸ナトリウム、平均分子量6000)を用いた。攪拌にはプライミクス製T.Kフィルミックス(高速攪拌機)を使用した。
 得られた塗液Ta、ポリエステル樹脂、イソシアネート化合物、溶媒として水および2-プロパノールを表4に示す配合で混合し、塗液T(T-1~T-3、T’-1、T’-2)を調製した。
 ポリエステル系樹脂として、ユニチカ製エリーテルKT-8803(ポリエステル樹脂)を用いた。イソシアネート化合物として、Henkel製Liofol Hardener UR5889-21(ヘキサメチレンジイソシアネートポリマー)を用いた。2-プロパノールとして、東京化成工業製2-プロパノールを用いた。
 表4中、多価金属化合物率は、塗液Tの全固形分に対する多価金属化合物の割合(質量%)であり、分散剤比率は、多価金属成分に対する分散剤の割合(質量%)である。
<Preparation of coating liquid T for protective layer and intermediate layer>
A polyvalent metal compound, a dispersant and water were mixed in the formulation shown in Table 4 to prepare a coating liquid Ta.
As a polyvalent metal compound, FINEX50 (Zinc oxide ultrafine particles, average primary particle diameter 20 nm) manufactured by Sakai Chemical Industry was used. As a dispersant, ARON (registered trademark) T-50 (sodium polyacrylate, average molecular weight 6000) manufactured by Toagosei Co., Ltd. was used. For the stirring, T. K fill mix (high speed stirrer) was used.
The obtained coating liquid Ta, polyester resin, isocyanate compound, water and 2-propanol as a solvent were mixed in the formulation shown in Table 4, and coating liquids T (T-1 to T-3, T′-1, T′— 2) was prepared.
Unitika Elitel KT-8803 (polyester resin) was used as the polyester resin. As the isocyanate compound, Liofol Hardener UR5889-21 (hexamethylene diisocyanate polymer) manufactured by Henkel was used. As 2-propanol, 2-propanol produced by Tokyo Chemical Industry was used.
In Table 4, the polyvalent metal compound ratio is the ratio (mass%) of the polyvalent metal compound to the total solid content of the coating liquid T, and the dispersant ratio is the ratio (mass%) of the dispersant to the polyvalent metal component. It is.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
<実施例1:Ny/B-1/T-1>
 延伸ナイロン(Ny)フィルムの片面上に、上記塗液B-1、T-1を順次、乾燥後の厚さがそれぞれ0.3μm、0.3μmになるように、バーコーターを用いて塗布、乾燥させた。こうして、Ny/ガスバリア層/保護層の構成の包装材料用前駆体を得た。延伸Nyフィルムとして、ユニチカ製延伸ナイロンフィルム エンブレムONBC(厚さ15μm)を使用した。この延伸Nyフィルムの水蒸気透過度は150g/mであった。
 得られた包装材料用前駆体について、前述の評価([ラミネーション]~[水蒸気透過度の測定])を行った。結果を表5に示す。
<Example 1: Ny / B-1 / T-1>
On one side of a stretched nylon (Ny) film, the coating liquids B-1 and T-1 were sequentially applied using a bar coater so that the thickness after drying was 0.3 μm and 0.3 μm, respectively. Dried. Thus, a precursor for packaging material having a structure of Ny / gas barrier layer / protective layer was obtained. As a stretched Ny film, Unitika stretched nylon film emblem ONBC (thickness 15 μm) was used. The stretched Ny film had a water vapor permeability of 150 g / m 2 .
The above-described evaluation ([Lamination] to [Measurement of water vapor permeability]) was performed on the obtained packaging material precursor. The results are shown in Table 5.
<実施例2:Ny/A-1/B-1/T-1>
 延伸Nyフィルムの片面上に、上記塗液A-1を、乾燥後の厚さが0.2μmになるようにバーコーターを用いて塗布、乾燥させてアンカーコート層を形成した。こうして、Ny/A-1の構成の支持体を得た。延伸Nyフィルムとして、ユニチカ製延伸ナイロンフィルム、エンブレムONBC(厚さ15μm)を使用した。支持体の水蒸気透過度は150g/mであった。
 上記支持体のアンカーコート層上に、上記塗液B-1、T-1を順次、乾燥後の厚さがそれぞれ0.3μm、0.3μmになるように、バーコーターを用いて塗布、乾燥させた。こうして、Ny/アンカーコート層/ガスバリア層/保護層の構成の包装材料用前駆体を得た。得られた包装材料用前駆体について、前述の評価を行った。結果を表5に示す。
<Example 2: Ny / A-1 / B-1 / T-1>
On one side of the stretched Ny film, the coating solution A-1 was applied and dried using a bar coater so that the thickness after drying was 0.2 μm, thereby forming an anchor coat layer. Thus, a support having a configuration of Ny / A-1 was obtained. As the stretched Ny film, a united nylon stretched nylon film, Emblem ONBC (thickness 15 μm) was used. The water vapor permeability of the support was 150 g / m 2 .
On the anchor coat layer of the support, the coating liquids B-1 and T-1 are sequentially applied and dried using a bar coater so that the thickness after drying becomes 0.3 μm and 0.3 μm, respectively. I let you. In this way, a packaging material precursor having a structure of Ny / anchor coat layer / gas barrier layer / protective layer was obtained. The above-mentioned evaluation was performed about the obtained precursor for packaging materials. The results are shown in Table 5.
<実施例3:Ny/B-1/T-2>
 塗液T-1の代わりに塗液T-2を使用したこと以外は実施例1と同様にして包装材料用前駆体を得て、評価を行った。結果を表5に示す。
<Example 3: Ny / B-1 / T-2>
A precursor for a packaging material was obtained and evaluated in the same manner as in Example 1 except that the coating liquid T-2 was used instead of the coating liquid T-1. The results are shown in Table 5.
<実施例4:Ny/B-1/T-3>
 塗液T-1の代わりに塗液T-3を使用したこと以外は実施例1と同様にして包装材料用前駆体を得て、評価を行った。結果を表5に示す。
<Example 4: Ny / B-1 / T-3>
A packaging material precursor was obtained and evaluated in the same manner as in Example 1 except that the coating liquid T-3 was used instead of the coating liquid T-1. The results are shown in Table 5.
<実施例5:Ny/B-2/T-1>
 塗液B-1の代わりに塗液B-2を使用したこと以外は実施例1と同様にして包装材料用前駆体を得て、評価を行った。結果を表5に示す。
<Example 5: Ny / B-2 / T-1>
A packaging material precursor was obtained and evaluated in the same manner as in Example 1 except that the coating liquid B-2 was used instead of the coating liquid B-1. The results are shown in Table 5.
<実施例6:Ny/A-2/B-1/T-1>
 塗液A-1の代わりに塗液A-2を使用したこと以外は実施例2と同様にして包装材料用前駆体を得て、評価を行った。結果を表5に示す。支持体の水蒸気透過度は150g/mであった。
<Example 6: Ny / A-2 / B-1 / T-1>
A packaging material precursor was obtained and evaluated in the same manner as in Example 2 except that the coating liquid A-2 was used in place of the coating liquid A-1. The results are shown in Table 5. The water vapor permeability of the support was 150 g / m 2 .
<実施例7>
 上記塗液T-1における分散剤の代わりに、日本触媒製アクアリックDL40S(ポリアクリル酸ナトリウム、固形分(溶質)濃度40%、平均分子量3500)を使用したこと以外は上記と同様にして塗液T-4を調製した。
 塗液T-1の代わりに塗液T-4を使用したこと以外は実施例1と同様にして包装材料用前駆体を得て、評価を行った。結果を表5に示す。
<Example 7>
Coating was performed in the same manner as described above except that AQUALIC DL40S manufactured by Nippon Shokubai (sodium polyacrylate, solid content (solute) concentration 40%, average molecular weight 3500) was used instead of the dispersant in the coating liquid T-1. Liquid T-4 was prepared.
A packaging material precursor was obtained and evaluated in the same manner as in Example 1 except that the coating liquid T-4 was used instead of the coating liquid T-1. The results are shown in Table 5.
<実施例8>
 上記塗液T-1における分散剤の代わりに、東亞合成製アロンA-6330(アクリル酸-マレイン酸共重合体ナトリウム、固形分(溶質)濃度40%、平均分子量10000)を使用したこと以外は上記と同様にして塗液T-5を調製した。
 塗液T-1の代わりに塗液T-5を使用したこと以外は実施例1と同様にして包装材料用前駆体を得て、評価を行った。結果を表5に示す。
<Example 8>
Other than using Aaron A-6330 manufactured by Toagosei Co., Ltd. (sodium acrylate-maleic acid copolymer, solid content (solute) concentration 40%, average molecular weight 10,000) instead of the dispersant in the coating liquid T-1. A coating solution T-5 was prepared in the same manner as described above.
A packaging material precursor was obtained and evaluated in the same manner as in Example 1 except that the coating liquid T-5 was used instead of the coating liquid T-1. The results are shown in Table 5.
<実施例9>
 上記塗液T-1における分散剤の代わりに、花王製ポイズ520(アクリル酸-マレイン酸共重合体ナトリウム、固形分(溶質)濃度40%、平均分子量4000)を使用したこと以外は上記と同様にして塗液T-6を調製した。
 塗液T-1の代わりに塗液T-6を使用したこと以外は実施例1と同様にして包装材料用前駆体を得て、評価を行った。結果を表5に示す。
<Example 9>
The same as above except that Kao's Poise 520 (acrylic acid-maleic acid copolymer sodium, solid (solute) concentration 40%, average molecular weight 4000) was used instead of the dispersant in the coating liquid T-1. Coating liquid T-6 was prepared as described above.
A packaging material precursor was obtained and evaluated in the same manner as in Example 1 except that the coating liquid T-6 was used instead of the coating liquid T-1. The results are shown in Table 5.
<実施例10:Ny/T-1/B-3>
 延伸ナイロン(Ny)フィルムの片面上に、上記塗液T-1、B-3を順次、乾燥後の厚さがそれぞれ0.3μm、0.3μmになるように、バーコーターを用いて塗布、乾燥させた。こうして、Ny/中間層/ガスバリア層の構成の包装材料用前駆体を得た。延伸Nyフィルムは、ユニチカ製延伸ナイロンフィルム エンブレムONBC(厚さ15μm)を使用した。この延伸Nyフィルムの水蒸気透過度は150g/mであった。
 得られた包装材料用前駆体について、前述の評価([ラミネーション]~[水蒸気透過度の測定])を行った。結果を表5に示す。
<Example 10: Ny / T-1 / B-3>
On one side of a stretched nylon (Ny) film, the coating liquids T-1 and B-3 were sequentially applied using a bar coater so that the thickness after drying was 0.3 μm and 0.3 μm, respectively. Dried. In this way, a precursor for packaging material having a structure of Ny / intermediate layer / gas barrier layer was obtained. As the stretched Ny film, a stretched nylon film emblem ONBC (thickness 15 μm) manufactured by Unitika was used. The stretched Ny film had a water vapor permeability of 150 g / m 2 .
The above-described evaluation ([Lamination] to [Measurement of water vapor permeability]) was performed on the obtained packaging material precursor. The results are shown in Table 5.
<実施例11:Ny/A-1/T-1/B-3>
 延伸Nyフィルムの片面上に、上記塗液A-1を、乾燥後の厚さが0.2μmになるようにバーコーターを用いて塗布、乾燥させてアンカーコート層を形成し、Ny/A-1の構成の支持体を得た。延伸Nyフィルムは、ユニチカ製延伸ナイロンフィルム、エンブレムONBC(厚さ15μm)を使用した。支持体の水蒸気透過度は150g/mであった。
 上記支持体のアンカーコート層上に、上記塗液T-1、B-3を順次、乾燥後の厚さがそれぞれ0.3μm、0.3μmになるように、バーコーターを用いて塗布、乾燥させ、Ny/アンカーコート層/中間層/ガスバリア層の構成の包装材料用前駆体を得た。得られた包装材料用前駆体について、前述の評価を行った。結果を表5に示す。
<Example 11: Ny / A-1 / T-1 / B-3>
On one side of the stretched Ny film, the coating liquid A-1 was applied using a bar coater so that the thickness after drying was 0.2 μm and dried to form an anchor coat layer, and Ny / A− A support having the structure of 1 was obtained. As the stretched Ny film, a stretched nylon film manufactured by Unitika, Emblem ONBC (thickness 15 μm) was used. The water vapor permeability of the support was 150 g / m 2 .
On the anchor coat layer of the support, the coating liquids T-1 and B-3 are sequentially applied and dried using a bar coater so that the thickness after drying becomes 0.3 μm and 0.3 μm, respectively. Thus, a packaging material precursor having a structure of Ny / anchor coat layer / intermediate layer / gas barrier layer was obtained. The above-mentioned evaluation was performed about the obtained precursor for packaging materials. The results are shown in Table 5.
<実施例12:Ny/T-2/B-3>
 塗液T-1の代わりに塗液T-2を使用したこと以外は実施例10と同様にして包装材料用前駆体を得て、評価を行った。結果を表5に示す。
<Example 12: Ny / T-2 / B-3>
A packaging material precursor was obtained and evaluated in the same manner as in Example 10 except that the coating liquid T-2 was used instead of the coating liquid T-1. The results are shown in Table 5.
<実施例13:Ny/T-3/B-3>
 塗液T-1の代わりに塗液T-3を使用したこと以外は実施例10と同様にして包装材料用前駆体を得て、評価を行った。結果を表5に示す。
<Example 13: Ny / T-3 / B-3>
A packaging material precursor was obtained and evaluated in the same manner as in Example 10 except that the coating liquid T-3 was used instead of the coating liquid T-1. The results are shown in Table 5.
<実施例14:Ny/T-1/B-4>
 塗液B-3の代わりに塗液B-4を使用したこと以外は実施例10と同様にして包装材料用前駆体を得て、評価を行った。結果を表5に示す。
<Example 14: Ny / T-1 / B-4>
A packaging material precursor was obtained and evaluated in the same manner as in Example 10 except that the coating liquid B-4 was used instead of the coating liquid B-3. The results are shown in Table 5.
<実施例15:Ny/A-2/T-1/B-3>
 塗液A-1の代わりに塗液A-2を使用したこと以外は実施例11と同様にして包装材料用前駆体を得て、評価を行った。結果を表5に示す。支持体の水蒸気透過度は150g/mであった。
<Example 15: Ny / A-2 / T-1 / B-3>
A precursor for a packaging material was obtained and evaluated in the same manner as in Example 11 except that the coating liquid A-2 was used instead of the coating liquid A-1. The results are shown in Table 5. The water vapor permeability of the support was 150 g / m 2 .
<実施例16>
 上記塗液T-1における分散剤の代わりに、日本触媒製アクアリックDL40S(ポリアクリル酸ナトリウム、固形分(溶質)濃度40%、平均分子量3500)を使用したこと以外は上記と同様にして塗液T-4を調製した。
 塗液T-1の代わりに塗液T-4を使用した以外は実施例10と同様にして包装材料用前駆体を得て、評価を行った。結果を表5に示す。
<Example 16>
Coating was performed in the same manner as described above except that AQUALIC DL40S manufactured by Nippon Shokubai (sodium polyacrylate, solid content (solute) concentration 40%, average molecular weight 3500) was used instead of the dispersant in the coating liquid T-1. Liquid T-4 was prepared.
A precursor for packaging material was obtained and evaluated in the same manner as in Example 10 except that the coating liquid T-4 was used instead of the coating liquid T-1. The results are shown in Table 5.
<実施例17>
 上記塗液T-1における分散剤の代わりに、東亞合成製アロンA-6330(アクリル酸-マレイン酸共重合体ナトリウム、固形分(溶質)濃度40%、平均分子量10000)を使用したこと以外は上記と同様にして塗液T-5を調製した。
 塗液T-1の代わりに塗液T-5を使用した以外は実施例10と同様にして包装材料用前駆体を得て、評価を行った。結果を表5に示す。
<Example 17>
Other than using Aaron A-6330 manufactured by Toagosei Co., Ltd. (sodium acrylate-maleic acid copolymer, solid content (solute) concentration 40%, average molecular weight 10,000) instead of the dispersant in the coating liquid T-1. A coating solution T-5 was prepared in the same manner as described above.
A precursor for packaging material was obtained and evaluated in the same manner as in Example 10 except that the coating liquid T-5 was used instead of the coating liquid T-1. The results are shown in Table 5.
<実施例18>
 上記塗液T-1における分散剤の代わりに、花王製ポイズ520(アクリル酸-マレイン酸共重合体ナトリウム、固形分(溶質)濃度40%、平均分子量4000)を使用したこと以外は上記と同様にして塗液T-6を調製した。
 塗液T-1の代わりに塗液T-6を使用したこと以外は実施例10と同様にして包装材料用前駆体を得て、評価を行った。結果を表5に示す。
<Example 18>
The same as above except that Kao's Poise 520 (acrylic acid-maleic acid copolymer sodium, solid (solute) concentration 40%, average molecular weight 4000) was used instead of the dispersant in the coating liquid T-1. Coating liquid T-6 was prepared as described above.
A packaging material precursor was obtained and evaluated in the same manner as in Example 10 except that the coating liquid T-6 was used instead of the coating liquid T-1. The results are shown in Table 5.
<比較例1:PET/B-1/T-1>
 延伸Nyフィルムの代わりに東レ製ポリエチレンテレフタレート(PET)フィルムルミラーP60(厚さ12μm)を使用したこと以外は、実施例1と同様にして包装材料用前駆体を得て、評価を行った。結果を表5に示す。このPETフィルムの水蒸気透過度は50g/mであった。
<Comparative Example 1: PET / B-1 / T-1>
A precursor for packaging material was obtained and evaluated in the same manner as in Example 1 except that Toray polyethylene terephthalate (PET) film mirror P60 (thickness 12 μm) was used instead of the stretched Ny film. The results are shown in Table 5. The water vapor permeability of this PET film was 50 g / m 2 .
<比較例2:Ny/B’-1/T-1>
 塗液B-1の代わりに塗液B’-1を使用したこと以外は実施例1と同様にして包装材料用前駆体を得て、評価を行った。結果を表5に示す。
<Comparative Example 2: Ny / B'-1 / T-1>
A precursor for a packaging material was obtained and evaluated in the same manner as in Example 1 except that the coating liquid B′-1 was used instead of the coating liquid B-1. The results are shown in Table 5.
<比較例3:Ny/B’-2/T-1>
 塗液B-1の代わりに塗液B’-2を使用したこと以外は実施例1と同様にして包装材料用前駆体を得て、評価を行った。結果を表5に示す。
<Comparative Example 3: Ny / B'-2 / T-1>
A precursor for a packaging material was obtained and evaluated in the same manner as in Example 1 except that the coating liquid B′-2 was used instead of the coating liquid B-1. The results are shown in Table 5.
<比較例4:Ny/B-1/T’-1>
 塗液T-1の代わりに塗液T’-1を使用したこと以外は実施例1と同様にして包装材料用前駆体を得て、評価を行った。結果を表5に示す。
<Comparative Example 4: Ny / B-1 / T'-1>
A packaging material precursor was obtained and evaluated in the same manner as in Example 1 except that the coating liquid T′-1 was used instead of the coating liquid T-1. The results are shown in Table 5.
<比較例5:Ny/B-1/T’-2>
 塗液T-1の代わりに塗液T’-2を使用したこと以外は実施例1と同様にして包装材料用前駆体を得て、評価を行った。結果を表5に示す。
<Comparative Example 5: Ny / B-1 / T'-2>
A packaging material precursor was obtained and evaluated in the same manner as in Example 1 except that the coating liquid T′-2 was used instead of the coating liquid T-1. The results are shown in Table 5.
<比較例6:Ny/A-1/無機蒸着層/B-1/T-1>
 延伸Nyフィルムの片面上に、上記塗液A-1を、乾燥後の厚さが0.2μmになるようにバーコーターを用いて塗布、乾燥させてアンカーコート層を形成した。延伸Nyフィルムとして、ユニチカ製延伸ナイロンフィルム、エンブレムONBC(厚さ15μm)を使用した。
 電子線加熱方式による真空蒸着装置により、金属アルミニウムを蒸発させそこに酸素ガスを導入し、上記アンカーコート層上に、酸化アルミニウムを蒸着した。厚さ20nmの無機蒸着層を形成させることによって、Ny/アンカーコート層/無機蒸着層の構成の支持体を得た。この支持体の水蒸気透過度は1g/mであった。
 上記支持体の無機蒸着層上に、上記塗液B-1、T-1を順次、乾燥後の厚さがそれぞれ0.3μm、0.3μmになるように、バーコーターを用いて塗布、乾燥させた。こうして、Ny/アンカーコート層/無機蒸着層/ガスバリア層/保護層の構成の包装材料用前駆体を得た。得られた包装材料用前駆体について、前述の評価を行った。結果を表5に示す。
<Comparative Example 6: Ny / A-1 / inorganic vapor deposition layer / B-1 / T-1>
On one side of the stretched Ny film, the coating solution A-1 was applied and dried using a bar coater so that the thickness after drying was 0.2 μm, thereby forming an anchor coat layer. As the stretched Ny film, a united nylon stretched nylon film, Emblem ONBC (thickness 15 μm) was used.
The metal aluminum was evaporated by an electron beam heating vacuum deposition apparatus, oxygen gas was introduced therein, and aluminum oxide was deposited on the anchor coat layer. By forming an inorganic vapor deposition layer having a thickness of 20 nm, a support having a configuration of Ny / anchor coat layer / inorganic vapor deposition layer was obtained. The water vapor permeability of this support was 1 g / m 2 .
On the inorganic vapor deposition layer of the support, the coating liquids B-1 and T-1 are sequentially applied and dried using a bar coater so that the thickness after drying becomes 0.3 μm and 0.3 μm, respectively. I let you. Thus, a precursor for packaging material having a structure of Ny / anchor coat layer / inorganic vapor deposition layer / gas barrier layer / protective layer was obtained. The above-mentioned evaluation was performed about the obtained precursor for packaging materials. The results are shown in Table 5.
<比較例7:Ny/無機蒸着層/B-1/T-1>
 電子線加熱方式による真空蒸着装置により、金属アルミニウムを蒸発させそこに酸素ガスを導入し、延伸Nyフィルムの片面上に、酸化アルミニウムを蒸着して厚さ20nmの無機蒸着層を形成させた。これにより、Ny/無機蒸着層の構成の支持体を得た。延伸Nyフィルムは、ユニチカ製延伸ナイロンフィルム、エンブレムONBC(厚さ15μm)を使用した。この支持体の水蒸気透過度は1g/mであった。
 上記支持体の無機蒸着層上に、上記塗液B-1、T-1を順次、乾燥後の厚さがそれぞれ0.3μm、0.3μmになるように、バーコーターを用いて塗布、乾燥させ、Ny/無機蒸着層/ガスバリア層/保護層の構成の包装材料用前駆体を得た。得られた包装材料用前駆体について、前述の評価を行った。結果を表5に示す。
<Comparative Example 7: Ny / inorganic vapor deposition layer / B-1 / T-1>
The metal aluminum was evaporated by an electron beam heating vacuum deposition apparatus, oxygen gas was introduced therein, and aluminum oxide was deposited on one side of the stretched Ny film to form an inorganic deposited layer having a thickness of 20 nm. This obtained the support body of the structure of Ny / inorganic vapor deposition layer. As the stretched Ny film, a stretched nylon film manufactured by Unitika, Emblem ONBC (thickness 15 μm) was used. The water vapor permeability of this support was 1 g / m 2 .
On the inorganic vapor deposition layer of the support, the coating liquids B-1 and T-1 are sequentially applied and dried using a bar coater so that the thickness after drying becomes 0.3 μm and 0.3 μm, respectively. Thus, a packaging material precursor having a structure of Ny / inorganic vapor deposition layer / gas barrier layer / protective layer was obtained. The above-mentioned evaluation was performed about the obtained precursor for packaging materials. The results are shown in Table 5.
<比較例8:PET/T-1/B-3>
 延伸Nyフィルムの代わりに東レ製ポリエチレンテレフタレート(PET)フィルムルミラーP60(厚さ12μm)を使用したこと以外は、実施例10と同様にして包装材料用前駆体を得て、評価を行った。結果を表5に示す。このPETフィルムの水蒸気透過度は50g/mであった。
<Comparative Example 8: PET / T-1 / B-3>
A precursor for packaging material was obtained and evaluated in the same manner as in Example 10 except that Toray polyethylene terephthalate (PET) film mirror P60 (thickness 12 μm) was used instead of the stretched Ny film. The results are shown in Table 5. The water vapor permeability of this PET film was 50 g / m 2 .
<比較例9:Ny/T-1/B’-3>
 塗液B-3の代わりに塗液B’-3を使用したこと以外は実施例10と同様にして包装材料用前駆体を得て、評価を行った。結果を表5に示す。
<Comparative Example 9: Ny / T-1 / B'-3>
A packaging material precursor was obtained and evaluated in the same manner as in Example 10 except that the coating liquid B′-3 was used instead of the coating liquid B-3. The results are shown in Table 5.
<比較例10:Ny/T-1/B’-4>
 塗液B-3の代わりに塗液B’-4を使用したこと以外は実施例10と同様にして包装材料用前駆体を得て、評価を行った。結果を表5に示す。
<Comparative Example 10: Ny / T-1 / B'-4>
A packaging material precursor was obtained and evaluated in the same manner as in Example 10 except that the coating liquid B′-4 was used instead of the coating liquid B-3. The results are shown in Table 5.
<比較例11:Ny/T’-1/B-3>
 塗液T-1の代わりに塗液T’-1を使用したこと以外は実施例10と同様にして包装材料用前駆体を得て、評価を行った。結果を表5に示す。
<Comparative Example 11: Ny / T'-1 / B-3>
A packaging material precursor was obtained and evaluated in the same manner as in Example 10 except that the coating liquid T′-1 was used instead of the coating liquid T-1. The results are shown in Table 5.
<比較例12:Ny/T’-2/B-3>
 塗液T-1の代わりに塗液T’-2を使用したこと以外は実施例10と同様にして包装材料用前駆体を得て、評価を行った。結果を表5に示す。
<Comparative Example 12: Ny / T'-2 / B-3>
A packaging material precursor was obtained and evaluated in the same manner as in Example 10 except that the coating liquid T′-2 was used instead of the coating liquid T-1. The results are shown in Table 5.
<比較例13:Ny/A-1/無機蒸着層/T-1/B-3>
 延伸Nyフィルムの片面上に、上記塗液A-1を、乾燥後の厚さが0.2μmになるようにバーコーターを用いて塗布、乾燥させてアンカーコート層を形成した。延伸Nyフィルムは、ユニチカ製延伸ナイロンフィルム、エンブレムONBC(厚さ15μm)を使用した。
 上記アンカーコート層上に、電子線加熱方式による真空蒸着装置により、金属アルミニウムを蒸発させそこに酸素ガスを導入し、酸化アルミニウムを蒸着して厚さ20nmの無機蒸着層を形成させることによって、Ny/アンカーコート層/無機蒸着層の構成の支持体を得た。この支持体の水蒸気透過度は1g/mであった。
 上記支持体の無機蒸着層上に、上記塗液T-1、B-3を順次、乾燥後の厚さがそれぞれ0.3μm、0.3μmになるように、バーコーターを用いて塗布、乾燥させ、Ny/アンカーコート層/無機蒸着層/中間層/ガスバリア層の構成の包装材料用前駆体を得た。得られた包装材料用前駆体について、前述の評価を行った。結果を表5に示す。
<Comparative Example 13: Ny / A-1 / inorganic vapor deposition layer / T-1 / B-3>
On one side of the stretched Ny film, the coating solution A-1 was applied and dried using a bar coater so that the thickness after drying was 0.2 μm, thereby forming an anchor coat layer. As the stretched Ny film, a stretched nylon film manufactured by Unitika, Emblem ONBC (thickness 15 μm) was used.
On the anchor coat layer, an aluminum vapor is evaporated by an electron beam heating type vacuum deposition apparatus, oxygen gas is introduced therein, and aluminum oxide is deposited to form an inorganic vapor deposition layer having a thickness of 20 nm. A support having a structure of / anchor coat layer / inorganic vapor deposition layer was obtained. The water vapor permeability of this support was 1 g / m 2 .
The coating liquids T-1 and B-3 are sequentially applied onto the inorganic vapor-deposited layer of the support using a bar coater so that the thickness after drying is 0.3 μm and 0.3 μm, respectively, and dried. Thus, a precursor for a packaging material having a structure of Ny / anchor coat layer / inorganic vapor deposition layer / intermediate layer / gas barrier layer was obtained. The above-mentioned evaluation was performed about the obtained precursor for packaging materials. The results are shown in Table 5.
<比較例14:Ny/無機蒸着層/T-1/B-3>
 延伸Nyフィルムの片面上に、電子線加熱方式による真空蒸着装置により、金属アルミニウムを蒸発させそこに酸素ガスを導入し、酸化アルミニウムを蒸着して厚さ20nmの無機蒸着層を形成させることによって、Ny/無機蒸着層の構成の支持体を得た。延伸Nyフィルムは、ユニチカ製延伸ナイロンフィルム、エンブレムONBC(厚さ15μm)を使用した。この支持体の水蒸気透過度は1g/mであった。
 上記支持体の無機蒸着層上に、上記塗液T-1、B-3を順次、乾燥後の厚さがそれぞれ0.3μm、0.3μmになるように、バーコーターを用いて塗布、乾燥させ、Ny/無機蒸着層/中間層/ガスバリア層の構成の包装材料用前駆体を得た。得られた包装材料用前駆体について、前述の評価を行った。結果を表5に示す。
<Comparative Example 14: Ny / inorganic vapor deposition layer / T-1 / B-3>
On one side of the stretched Ny film, by evaporating metal aluminum by introducing a vacuum vapor deposition apparatus using an electron beam heating method, oxygen gas is vaporized therein, and aluminum oxide is vapor deposited to form an inorganic vapor deposition layer having a thickness of 20 nm. A support having a structure of Ny / inorganic vapor deposition layer was obtained. As the stretched Ny film, a stretched nylon film manufactured by Unitika, Emblem ONBC (thickness 15 μm) was used. The water vapor permeability of this support was 1 g / m 2 .
The coating liquids T-1 and B-3 are sequentially applied onto the inorganic vapor-deposited layer of the support using a bar coater so that the thickness after drying is 0.3 μm and 0.3 μm, respectively, and dried. Thus, a packaging material precursor having a structure of Ny / inorganic vapor deposition layer / intermediate layer / gas barrier layer was obtained. The above-mentioned evaluation was performed about the obtained precursor for packaging materials. The results are shown in Table 5.
<比較例15:Ny/B-3/T-1>
 延伸ナイロン(Ny)フィルムの片面上に、上記塗液B-3、T-1を順次、乾燥後の厚さがそれぞれ0.3μm、0.3μmになるように、バーコーターを用いて塗布、乾燥させ、Ny/ガスバリア層/中間層の構成の包装材料用前駆体を得た。延伸Nyフィルムは、ユニチカ製延伸ナイロンフィルム エンブレムONBC(厚さ15μm)を使用した。
 得られた包装材料用前駆体について、前述の評価を行った。結果を表5に示す。
<Comparative Example 15: Ny / B-3 / T-1>
On one side of a stretched nylon (Ny) film, the coating liquids B-3 and T-1 were sequentially applied using a bar coater so that the thickness after drying was 0.3 μm and 0.3 μm, respectively. It dried and obtained the precursor for packaging materials of the structure of Ny / gas barrier layer / intermediate layer. As the stretched Ny film, a stretched nylon film emblem ONBC (thickness 15 μm) manufactured by Unitika was used.
The above-mentioned evaluation was performed about the obtained precursor for packaging materials. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 上記結果に示すとおり、実施例1~9の包装材料用前駆体をレトルト処理すると、優れた酸素ガスバリア性が発現した。レトルト処理前に虐待を行った場合でも、酸素ガスバリア性の劣化は見られなかった。
 一方、支持体の水蒸気透過度が100g/m未満である比較例1、6~7、ガスバリア層塗液中のポリカルボン酸系重合体の中和度が0%より大きい比較例2~3、保護層用塗液中の分散剤の含有量が多価金属成分に対して2質量%未満である比較例4、保護層用塗液中の多価金属成分の含有量が全固形分に対して40質量%未満である比較例5の包装材料用前駆体は、レトルト処理後の酸素ガスバリア性が実施例1~9よりも劣っていた。また、レトルト処理前に虐待を行うと、酸素ガスバリア性が劣化した。
As shown in the above results, when the packaging material precursors of Examples 1 to 9 were retorted, excellent oxygen gas barrier properties were exhibited. Even when abused before retort treatment, the oxygen gas barrier property was not deteriorated.
On the other hand, Comparative Examples 1 and 6 to 7 in which the water vapor permeability of the support is less than 100 g / m 2 and Comparative Examples 2 to 3 in which the degree of neutralization of the polycarboxylic acid polymer in the gas barrier layer coating liquid is greater than 0%. Comparative Example 4 in which the content of the dispersant in the coating liquid for the protective layer is less than 2% by mass relative to the polyvalent metal component, and the content of the polyvalent metal component in the coating liquid for the protective layer is the total solid content. On the other hand, the packaging material precursor of Comparative Example 5, which is less than 40% by mass, was inferior to Examples 1 to 9 in oxygen gas barrier properties after retorting. Moreover, when it abused before the retort process, oxygen gas barrier property deteriorated.
 また、上記結果に示すとおり、実施例10~18の包装材料用前駆体をレトルト処理すると、優れた酸素ガスバリア性が発現した。レトルト処理前に虐待を行った場合でも、酸素ガスバリア性の劣化は見られなかった。
 一方、支持体の水蒸気透過度が100g/m未満である比較例8、13~14、ガスバリア層塗液中のポリカルボン酸系重合体の中和度が0%である比較例9~10、中間層用塗液中の分散剤の含有量が多価金属成分に対して2質量%未満である比較例11、中間層用塗液中の多価金属成分の含有量が全固形分に対して40質量%未満である比較例12、ガスバリア層と中間層との積層順を逆にした比較例15の包装材料用前駆体は、レトルト処理後の酸素ガスバリア性が実施例10~18よりも劣っていた。特に比較例8~14では、レトルト処理前に虐待を行うと、酸素ガスバリア性が劣化した。
Further, as shown in the above results, when the packaging material precursors of Examples 10 to 18 were retorted, excellent oxygen gas barrier properties were exhibited. Even when abused before retort treatment, the oxygen gas barrier property was not deteriorated.
On the other hand, Comparative Examples 8 and 13 to 14 in which the water vapor permeability of the support is less than 100 g / m 2 and Comparative Examples 9 to 10 in which the neutralization degree of the polycarboxylic acid polymer in the gas barrier layer coating solution is 0%. Comparative Example 11 in which the content of the dispersant in the intermediate layer coating liquid is less than 2% by mass with respect to the polyvalent metal component, and the content of the polyvalent metal component in the intermediate layer coating liquid is the total solid content. On the other hand, the precursor for packaging material of Comparative Example 12 in which the stacking order of the gas barrier layer and the intermediate layer is reversed is less than 40% by mass, and the oxygen gas barrier property after retorting is greater than that of Examples 10-18. Was also inferior. Particularly in Comparative Examples 8 to 14, the oxygen gas barrier properties deteriorated when abused before the retort treatment.
 本発明のガスバリア性包装材料用前駆体は、上記特性を有しているため、酸素、水蒸気等の影響により劣化しやすい物品、例えば食品、飲料、医薬品、電子部品などの精密金属部品等の物品を包装する包装材料の前駆体として、あるいは該物品を包装材料で包装した包装体の製造用として有用である。
 例えば上記のような物品(被包装物)をガスバリア性包装材料用前駆体で包装し、ボイル処理、レトルト処理等の熱水処理を行うことにより、ガスバリア性包装材料用前駆体をガスバリア性包装材料とすることができ、同時に、ガスバリア性包装材料で被包装物が包装された包装体とすることができる。
Since the precursor for a gas barrier packaging material of the present invention has the above characteristics, it is easily deteriorated by the influence of oxygen, water vapor, etc., for example, an article such as a precision metal part such as a food, a beverage, a pharmaceutical, and an electronic part. It is useful as a precursor of a packaging material that wraps the product or for producing a package in which the article is packaged with a packaging material.
For example, the above-mentioned article (package) is packaged with a precursor for gas barrier packaging material, and subjected to hot water treatment such as boil treatment and retort treatment, whereby the precursor for gas barrier packaging material is used as a gas barrier packaging material. At the same time, a package in which an article to be packaged is wrapped with a gas barrier packaging material can be obtained.
 1,101 支持体
 2,102 ガスバリア層
 3,103 保護層
 4,104 ガスバリア層
 5,105 基材
 6,106 アンカーコート層
 7,107 支持体
 8,108 他の基材
 9,109 接着層
10,110 包装材料用前駆体
11,111 包装材料
20,120 包装材料用前駆体
21,121 包装材料
30,130 包装材料用前駆体
31,131 包装材料
DESCRIPTION OF SYMBOLS 1,101 Support body 2,102 Gas barrier layer 3,103 Protective layer 4,104 Gas barrier layer 5,105 Base material 6,106 Anchor coat layer 7,107 Support body 8,108 Other base materials 9,109 Adhesive layer 10, 110 precursors for packaging materials 11, 111 packaging materials 20, 120 precursors for packaging materials 21, 121 packaging materials 30, 130 precursors for packaging materials 31, 131 packaging materials

Claims (8)

  1.  支持体と;
     前記支持体の上に直接設けられ、ポリカルボン酸系重合体と、加水分解性シラン化合物、その加水分解物、およびこれらの縮合物からなる群から選択される少なくとも1種のケイ素化合物とを含むガスバリア層と;
     前記ガスバリア層の上に直接設けられ、多価金属成分、ポリエステル樹脂、及び分散剤を含む保護層と、を備え、
     前記支持体の40℃、相対湿度90%での水蒸気透過度が100g/m以上であり、
     前記多価金属成分の含有量が、前記保護層の全質量に対して40~90質量%であり、
     前記分散剤の含有量が、前記多価金属成分に対して2~20質量%であり、
     前記ケイ素化合物の含有量が、前記ポリカルボン酸系重合体に対して2~25質量%であり、
     前記ガスバリア層の赤外線吸収スペクトルを測定したときの、波数1490cm-1~1659cm-1の範囲内の吸光度の最大ピーク高さ(α)と、波数1660cm-1~1750cm-1の範囲内の吸光度の最大ピーク高さ(β)との比(α/β)が1以上7未満であるガスバリア性包装材料用前駆体。
    A support;
    Directly provided on the support, comprising a polycarboxylic acid polymer and at least one silicon compound selected from the group consisting of hydrolyzable silane compounds, hydrolysates thereof, and condensates thereof. A gas barrier layer;
    A protective layer provided directly on the gas barrier layer and comprising a polyvalent metal component, a polyester resin, and a dispersant;
    The water vapor permeability at 40 ° C. and 90% relative humidity of the support is 100 g / m 2 or more,
    The content of the polyvalent metal component is 40 to 90% by mass with respect to the total mass of the protective layer,
    The content of the dispersant is 2 to 20% by mass with respect to the polyvalent metal component,
    The content of the silicon compound is 2 to 25% by mass with respect to the polycarboxylic acid polymer,
    Wherein when measuring the infrared absorption spectrum of the gas barrier layer, the maximum peak height in absorbance in the range of wave number 1490cm -1 ~ 1659cm -1 and (alpha), the absorbance in the wave number range of 1660 cm -1 ~ 1750 cm -1 A precursor for a gas barrier packaging material having a ratio (α / β) of 1 to 7 with respect to the maximum peak height (β).
  2.  支持体と;
     前記支持体の上に直接設けられ、ポリカルボン酸系重合体と、加水分解性シラン化合物、その加水分解物、およびこれらの縮合物からなる群から選択される少なくとも1種のケイ素化合物とを含むガスバリア層と;
     前記ガスバリア層の上に直接設けられ、多価金属成分、ポリエステル樹脂、及び分散剤を含む保護層と、を備え、
     前記支持体の40℃、相対湿度90%での水蒸気透過度が100g/m以上であり、
     前記多価金属成分の含有量が、前記保護層の全質量に対して40~90質量%であり、
     前記分散剤の含有量が、前記多価金属成分に対して2~20質量%であり、
     前記ケイ素化合物の含有量が、前記ポリカルボン酸系重合体に対して2~25質量%であり、
     前記ガスバリア層の赤外線吸収スペクトルを測定したときの、波数1490cm-1~1659cm-1の範囲内の吸光度の最大ピーク高さ(α)と、波数1660cm-1~1750cm-1の範囲内の吸光度の最大ピーク高さ(β)との比(α/β)が7以上であるガスバリア性包装材料。
    A support;
    Directly provided on the support, comprising a polycarboxylic acid polymer and at least one silicon compound selected from the group consisting of hydrolyzable silane compounds, hydrolysates thereof, and condensates thereof. A gas barrier layer;
    A protective layer provided directly on the gas barrier layer and comprising a polyvalent metal component, a polyester resin, and a dispersant;
    The water vapor permeability at 40 ° C. and 90% relative humidity of the support is 100 g / m 2 or more,
    The content of the polyvalent metal component is 40 to 90% by mass with respect to the total mass of the protective layer,
    The content of the dispersant is 2 to 20% by mass with respect to the polyvalent metal component,
    The content of the silicon compound is 2 to 25% by mass with respect to the polycarboxylic acid polymer,
    Wherein when measuring the infrared absorption spectrum of the gas barrier layer, the maximum peak height in absorbance in the range of wave number 1490cm -1 ~ 1659cm -1 and (alpha), the absorbance in the wave number range of 1660 cm -1 ~ 1750 cm -1 A gas barrier packaging material having a ratio (α / β) of 7 or more to the maximum peak height (β).
  3.  支持体の表面に、ポリカルボン酸系重合体と、加水分解性シラン化合物、その加水分解物およびこれらの縮合物からなる群から選択される少なくとも1種のケイ素化合物と、液状媒体とを含むガスバリア層用塗液を塗布し乾燥させてガスバリア層を形成し、
     前記ガスバリア層の表面に、多価金属成分と、ポリエステル樹脂と、分散剤と、水とを含む保護層用塗液を塗布し乾燥させて保護層を形成することを有し、
     前記支持体の40℃、相対湿度90%での水蒸気透過度が100g/m以上であり、
     前記多価金属成分の含有量が、前記保護層用塗液の全固形分に対して40~90質量%であり、
     前記分散剤の含有量が、前記多価金属成分に対して2~20質量%であり、
     前記ケイ素化合物の含有量が、前記ポリカルボン酸系重合体に対して2~25質量%であり、
     前記ポリカルボン酸系重合体のカルボキシル基の多価金属による中和度が0モル%であるガスバリア性包装材料用前駆体の製造方法。
    A gas barrier comprising a polycarboxylic acid polymer, a hydrolyzable silane compound, a hydrolyzate thereof, a hydrolyzate thereof, and at least one silicon compound selected from the group consisting of these condensates and a liquid medium on the surface of the support Apply the layer coating liquid and dry to form a gas barrier layer,
    Forming a protective layer by applying a coating liquid for a protective layer containing a polyvalent metal component, a polyester resin, a dispersant, and water on the surface of the gas barrier layer and drying the coating;
    The water vapor permeability at 40 ° C. and 90% relative humidity of the support is 100 g / m 2 or more,
    The content of the polyvalent metal component is 40 to 90% by mass with respect to the total solid content of the protective layer coating solution,
    The content of the dispersant is 2 to 20% by mass with respect to the polyvalent metal component,
    The content of the silicon compound is 2 to 25% by mass with respect to the polycarboxylic acid polymer,
    The manufacturing method of the precursor for gas barrier packaging materials whose neutralization degree by the polyvalent metal of the carboxyl group of the said polycarboxylic acid-type polymer is 0 mol%.
  4.  請求項1に記載のガスバリア性包装材料用前駆体を用いて被包装物を包装し、熱水処理して包装体を得る包装体の製造方法。 A method for producing a package body, which comprises packaging a package using the precursor for a gas barrier packaging material according to claim 1 and treating it with hot water to obtain a package body.
  5.  支持体と;
     前記支持体の上に直接設けられ、多価金属成分、ポリエステル樹脂、及び分散剤を含む中間層と;
     前記中間層の上に直接設けられ、ポリカルボン酸系重合体と、加水分解性シラン化合物、その加水分解物、およびこれらの縮合物からなる群から選択される少なくとも1種のケイ素化合物とを含むガスバリア層と、を備え、
     前記支持体の40℃、相対湿度90%での水蒸気透過度が100g/m以上であり、
     前記多価金属成分の含有量が、前記中間層の全質量に対して40~90質量%であり、
     前記分散剤の含有量が、前記多価金属成分に対して2~20質量%であり、前記ケイ素化合物の含有量が、前記ポリカルボン酸系重合体に対して2~25質量%であり、
     前記ガスバリア層の赤外線吸収スペクトルを測定したときの、波数1490cm-1~1659cm-1の範囲内の吸光度の最大ピーク高さ(α)と、波数1660cm-1~1750cm-1の範囲内の吸光度の最大ピーク高さ(β)との比(α/β)が1以上7未満であるガスバリア性包装材料用前駆体。
    A support;
    An intermediate layer provided directly on the support and comprising a polyvalent metal component, a polyester resin, and a dispersant;
    Directly provided on the intermediate layer, comprising a polycarboxylic acid polymer and at least one silicon compound selected from the group consisting of hydrolyzable silane compounds, hydrolysates thereof, and condensates thereof. A gas barrier layer,
    The water vapor permeability at 40 ° C. and 90% relative humidity of the support is 100 g / m 2 or more,
    The content of the polyvalent metal component is 40 to 90% by mass with respect to the total mass of the intermediate layer,
    The content of the dispersant is 2 to 20% by mass with respect to the polyvalent metal component, and the content of the silicon compound is 2 to 25% by mass with respect to the polycarboxylic acid polymer,
    Wherein when measuring the infrared absorption spectrum of the gas barrier layer, the maximum peak height in absorbance in the range of wave number 1490cm -1 ~ 1659cm -1 and (alpha), the absorbance in the wave number range of 1660 cm -1 ~ 1750 cm -1 A precursor for a gas barrier packaging material having a ratio (α / β) of 1 to 7 with respect to the maximum peak height (β).
  6.  支持体と;
     前記支持体の上に直接設けられ、多価金属成分、ポリエステル樹脂、及び分散剤を含む中間層と;
     前記中間層の上に直接設けられ、ポリカルボン酸系重合体と、加水分解性シラン化合物、その加水分解物、およびこれらの縮合物からなる群から選択される少なくとも1種のケイ素化合物とを含むガスバリア層と、を備え、
     前記支持体の40℃、相対湿度90%での水蒸気透過度が100g/m以上であり、
     前記多価金属成分の含有量が、前記中間層の全質量に対して40~90質量%であり、
     前記分散剤の含有量が、前記多価金属成分に対して2~20質量%であり、
     前記ケイ素化合物の含有量が、前記ポリカルボン酸系重合体に対して2~25質量%であり、
     前記ガスバリア層の赤外線吸収スペクトルを測定したときの、1490cm-1~1659cm-1の範囲内の吸光度の最大ピーク高さ(α)と、1660cm-1~1750cm-1の範囲内の吸光度の最大ピーク高さ(β)との比(α/β)が7以上であるガスバリア性包装材料。
    A support;
    An intermediate layer provided directly on the support and comprising a polyvalent metal component, a polyester resin, and a dispersant;
    Directly provided on the intermediate layer, comprising a polycarboxylic acid polymer and at least one silicon compound selected from the group consisting of hydrolyzable silane compounds, hydrolysates thereof, and condensates thereof. A gas barrier layer,
    The water vapor permeability at 40 ° C. and 90% relative humidity of the support is 100 g / m 2 or more,
    The content of the polyvalent metal component is 40 to 90% by mass with respect to the total mass of the intermediate layer,
    The content of the dispersant is 2 to 20% by mass with respect to the polyvalent metal component,
    The content of the silicon compound is 2 to 25% by mass with respect to the polycarboxylic acid polymer,
    Wherein when the infrared absorption spectrum of the gas barrier layer were measured, 1490cm -1 ~ 1659cm maximum peak height absorbance in the range of -1 and (alpha), the maximum peak absorbance in the range of 1660 cm -1 ~ 1750 cm -1 A gas barrier packaging material having a ratio (α / β) of 7 or more to the height (β).
  7.  支持体の表面に、多価金属成分、ポリエステル樹脂、分散剤、及び液状媒体を含む中間層用塗液を塗布し乾燥させて中間層を形成し、
     前記中間層の表面に、ポリカルボン酸系重合体と、加水分解性シラン化合物、その加水分解物およびこれらの縮合物からなる群から選択される少なくとも1種のケイ素化合物と、水とを含むガスバリア層用塗液を塗布し乾燥させてガスバリア層を形成することを有し、
     前記支持体の40℃、相対湿度90%での水蒸気透過度が100g/m以上であり、 
     前記多価金属成分の含有量が、前記中間層用塗液の全固形分に対して40~90質量%であり、
     前記分散剤の含有量が、前記多価金属成分に対して2~20質量%であり、
     前記ケイ素化合物の含有量が、前記ポリカルボン酸系重合体に対して2~25質量%であり、
     前記ポリカルボン酸系重合体のカルボキシル基の多価金属による中和度が20~50モル%であるガスバリア性包装材料用前駆体の製造方法。
    On the surface of the support, an intermediate layer coating solution containing a polyvalent metal component, a polyester resin, a dispersant, and a liquid medium is applied and dried to form an intermediate layer.
    A gas barrier containing, on the surface of the intermediate layer, at least one silicon compound selected from the group consisting of a polycarboxylic acid polymer, a hydrolyzable silane compound, a hydrolyzate thereof, and a condensate thereof, and water. Applying a layer coating solution and drying to form a gas barrier layer;
    The water vapor permeability at 40 ° C. and 90% relative humidity of the support is 100 g / m 2 or more,
    The content of the polyvalent metal component is 40 to 90% by mass with respect to the total solid content of the intermediate layer coating solution,
    The content of the dispersant is 2 to 20% by mass with respect to the polyvalent metal component,
    The content of the silicon compound is 2 to 25% by mass with respect to the polycarboxylic acid polymer,
    A method for producing a precursor for a gas barrier packaging material, wherein the degree of neutralization of a carboxyl group of the polycarboxylic acid polymer by a polyvalent metal is 20 to 50 mol%.
  8.  請求項5に記載のガスバリア性包装材料用前駆体を用いて被包装物を包装し、熱水処理して包装体を得る包装体の製造方法。 A method for producing a packaged body obtained by packaging a packaged article using the gas barrier packaging material precursor according to claim 5 and treating it with hot water to obtain a packaged body.
PCT/JP2016/087185 2015-12-14 2016-12-14 Gas barrier packaging material precursor, method for producing same, gas barrier packaging material, and method for producing package WO2017104695A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017556090A JP6900906B2 (en) 2015-12-14 2016-12-14 Precursor for gas barrier packaging material, its manufacturing method, gas barrier packaging material, its manufacturing method and packaging manufacturing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-243335 2015-12-14
JP2015243335 2015-12-14
JP2015243267 2015-12-14
JP2015-243267 2015-12-14

Publications (1)

Publication Number Publication Date
WO2017104695A1 true WO2017104695A1 (en) 2017-06-22

Family

ID=59056738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/087185 WO2017104695A1 (en) 2015-12-14 2016-12-14 Gas barrier packaging material precursor, method for producing same, gas barrier packaging material, and method for producing package

Country Status (2)

Country Link
JP (1) JP6900906B2 (en)
WO (1) WO2017104695A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3741560B1 (en) * 2018-01-19 2023-07-12 Toppan Printing Co., Ltd. Gas barrier laminate and package provided with same
WO2023199396A1 (en) * 2022-04-12 2023-10-19 三井化学東セロ株式会社 Gas barrier laminate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008146706A1 (en) * 2007-05-29 2008-12-04 Kureha Corporation Gas barrier precursor laminate, gas barrier laminate, method for production of gas barrier precursor laminate, and method for production of gas barrier laminate
WO2014192500A1 (en) * 2013-05-28 2014-12-04 凸版印刷株式会社 Gas-barrier packaging material
WO2015060147A1 (en) * 2013-10-25 2015-04-30 凸版印刷株式会社 Gas barrier packaging material precursor and gas barrier packaging material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6427947B2 (en) * 2014-05-15 2018-11-28 凸版印刷株式会社 Gas barrier packaging materials

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008146706A1 (en) * 2007-05-29 2008-12-04 Kureha Corporation Gas barrier precursor laminate, gas barrier laminate, method for production of gas barrier precursor laminate, and method for production of gas barrier laminate
WO2014192500A1 (en) * 2013-05-28 2014-12-04 凸版印刷株式会社 Gas-barrier packaging material
WO2015060147A1 (en) * 2013-10-25 2015-04-30 凸版印刷株式会社 Gas barrier packaging material precursor and gas barrier packaging material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3741560B1 (en) * 2018-01-19 2023-07-12 Toppan Printing Co., Ltd. Gas barrier laminate and package provided with same
WO2023199396A1 (en) * 2022-04-12 2023-10-19 三井化学東セロ株式会社 Gas barrier laminate

Also Published As

Publication number Publication date
JP6900906B2 (en) 2021-07-07
JPWO2017104695A1 (en) 2018-09-27

Similar Documents

Publication Publication Date Title
JP6904256B2 (en) Coating liquid and gas barrier laminate
JP5988543B2 (en) Method for producing coating liquid, method for producing gas barrier laminate
JP5941474B2 (en) Method for producing composite structure and method for producing coating liquid
JP5282445B2 (en) Gas barrier precursor laminate, gas barrier laminate and methods for producing the same
US20130034674A1 (en) Composite structural material formed product and packaging material using the same, method for producing the composite structural material, and coating liquid
JP6131570B2 (en) Gas barrier coating liquid, method for producing the same, method for producing gas barrier laminate, method for producing packaging material, and method for producing packaging material for heat sterilization
WO2007026751A1 (en) Gas barrier multilayer film
JP2014231365A (en) Gas barrier packaging material
JP6217173B2 (en) Gas barrier laminate
JP6862815B2 (en) Manufacturing method and molded product of gas barrier laminate for thermoforming, coating liquid, gas barrier laminate for thermoforming
JP2013208794A (en) Multilayer structure, product using the same, and method for producing the multilayer structure
JP2013208793A (en) Multilayer structure, product using the same, and method for producing the multilayer structure
WO2011078366A1 (en) Coating composition for undercoating
JP2021066031A (en) Laminate film, packaging bag, method for producing laminate film, and method for producing packaging bag
EP4169849A1 (en) Gas barrier multilayer body, coating liquid for producing same, packaging material, package, and packaged article
WO2017104695A1 (en) Gas barrier packaging material precursor, method for producing same, gas barrier packaging material, and method for producing package
WO2022154031A1 (en) Gas barrier multilayer body, coating liquid for producing same, packaging material, package, and packaged article
WO2018181457A1 (en) Multilayer barrier film
JP2019019206A (en) Coating liquid, thermoforming gas barrier laminate and molding
JP7088361B1 (en) Gas barrier laminates, packaging materials, packaging and packaging articles
WO2022107858A1 (en) Gas barrier layered product, packaging material, package and packaged article
JP2023127366A (en) Gas barrier laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16875672

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017556090

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16875672

Country of ref document: EP

Kind code of ref document: A1