WO2017104463A1 - Method for manufacturing one-side-protected polarizing plate - Google Patents

Method for manufacturing one-side-protected polarizing plate Download PDF

Info

Publication number
WO2017104463A1
WO2017104463A1 PCT/JP2016/086046 JP2016086046W WO2017104463A1 WO 2017104463 A1 WO2017104463 A1 WO 2017104463A1 JP 2016086046 W JP2016086046 W JP 2016086046W WO 2017104463 A1 WO2017104463 A1 WO 2017104463A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
polarizing
polarizing plate
resin
peeling
Prior art date
Application number
PCT/JP2016/086046
Other languages
French (fr)
Japanese (ja)
Inventor
寿和 松本
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN201680074007.5A priority Critical patent/CN108369307A/en
Priority to KR1020187019841A priority patent/KR20180094970A/en
Publication of WO2017104463A1 publication Critical patent/WO2017104463A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to a method for producing a single-side protective polarizing plate.
  • Patent Document 1 JP 2009-109860 A (Patent Document 1)
  • Patent Document 1 JP 2009-109860 A (Patent Document 1)
  • the polarizing plate disclosed in Patent Document 1 is an effective means for reducing the thickness of the polarizing plate, but when the polarizing film and the protective film are bonded together while the thickness of the polarizing film and the protective film is reduced. Sufficient pressure could not be applied, and the resulting polarizing plate sometimes had poor appearance.
  • Patent Document 2 As a countermeasure against such an appearance defect, there is a technique of increasing the overall thickness by arranging a release film on the surface opposite to the protective film in the polarizing film when bonding the polarizing film and the protective film.
  • This method has the advantage that a variety of release films can be selected.
  • the protective film is a cellulose resin film
  • a (meth) acrylic resin film is preferably used as the release film.
  • the protective film is a polyolefin resin film
  • a cellulose resin film is preferably used as the release film.
  • the objective of this invention is providing the manufacturing method of the single-sided protective polarizing plate which can peel easily a polarizing film and a peeling film, and has high productivity.
  • a protective film is bonded to one surface of the polarizing film via an adhesive layer, and a release film is laminated to the other surface of the polarizing film via a layer made of a volatile liquid, to obtain a laminate.
  • a first step of obtaining A second step of volatilizing the volatile liquid;
  • the manufacturing method of the single-sided protective polarizing plate including the 3rd process of peeling the said peeling film so that the conveyance direction of the said peeling film after a peeling point may become substantially horizontal with respect to the conveyance direction of the said laminated body.
  • [2] The method for producing a polarizing plate according to [1], wherein an angle formed by the transport direction of the release film and the transport direction of the laminate after the release point is within 15 °.
  • the step of winding the laminate having the protective film, the polarizing film and the release film in this order to obtain a roll includes the step of [1] or [2].
  • the polarizing film and the release film can be easily peeled off, and a method for producing a single-side protective polarizing plate excellent in productivity can be provided.
  • the “single-side protective polarizing plate” is a polarizing plate in which a protective film is bonded only to one side of the polarizing film, and this protective film is usually bonded to the polarizing film via an adhesive layer.
  • the production method of the present invention will be described below.
  • a protective film is bonded to one surface of the polarizing film via an adhesive layer, and a layer made of a volatile liquid is interposed on the other surface of the polarizing film.
  • the release film is laminated to obtain a laminate.
  • a polarizing plate such as a single-sided protective polarizing plate can be continuously produced as a long product by performing a treatment in each step while continuously unwinding and transporting a long film.
  • the lamination of the protective film and the polarizing film and the lamination of the release film and the polarizing film may be performed sequentially or simultaneously.
  • the polarizing film is usually a step of uniaxially stretching a polyvinyl alcohol-based resin film, a step of adsorbing a dichroic dye by dyeing the polyvinyl alcohol-based resin film with a dichroic dye, a polyvinyl on which the dichroic dye is adsorbed
  • the alcohol-based resin film is manufactured through a step of crosslinking with a boric acid aqueous solution and a step of washing with water after the crosslinking treatment with the boric acid aqueous solution.
  • the polyvinyl alcohol resin can be produced by saponifying a polyvinyl acetate resin.
  • the polyvinyl acetate resin may be a copolymer of vinyl acetate and another monomer copolymerizable therewith, in addition to polyvinyl acetate which is a homopolymer of vinyl acetate.
  • Examples of other monomers copolymerizable with vinyl acetate include unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids, and acrylamides having an ammonium group.
  • the degree of saponification of the polyvinyl alcohol resin is usually about 85 to 100 mol%, preferably 98 mol% or more.
  • the polyvinyl alcohol resin may be modified, for example, polyvinyl formal or polyvinyl acetal modified with aldehydes can be used.
  • the degree of polymerization of the polyvinyl alcohol resin is usually about 1,000 to 10,000, and preferably about 1,500 to 5,000.
  • a film obtained by forming such a polyvinyl alcohol resin is used as an original film of a polarizing film.
  • the method for forming a polyvinyl alcohol-based resin is not particularly limited, and can be formed by a known method.
  • the film thickness of the polyvinyl alcohol resin raw film is, for example, about 10 to 100 ⁇ m, preferably about 10 to 50 ⁇ m.
  • Uniaxial stretching of the polyvinyl alcohol-based resin film can be performed before dyeing with the dichroic dye, simultaneously with dyeing, or after dyeing.
  • the uniaxial stretching may be performed before boric acid treatment or during boric acid treatment.
  • uniaxial stretching can also be performed in a plurality of stages shown here.
  • a method of stretching uniaxially between rolls having different peripheral speeds, a method of stretching uniaxially using a hot roll, or the like can be adopted.
  • Uniaxial stretching may be performed by dry stretching in which stretching is performed in the air, or may be performed by wet stretching in which a polyvinyl alcohol-based resin film is stretched using a solvent such as water. The draw ratio is usually about 3 to 8 times.
  • the dyeing of the polyvinyl alcohol resin film with the dichroic dye can be performed, for example, by a method of immersing the polyvinyl alcohol resin film in an aqueous solution containing the dichroic dye.
  • a method of immersing the polyvinyl alcohol resin film in an aqueous solution containing the dichroic dye Specifically, iodine or a dichroic organic dye is used as the dichroic dye.
  • iodine When iodine is used as the dichroic dye, a method of dyeing a polyvinyl alcohol-based resin film in an aqueous solution containing iodine and potassium iodide is usually employed.
  • the iodine content in this aqueous solution is usually about 0.01 to 1 part by weight per 100 parts by weight of water, and the potassium iodide content is usually about 0.5 to 20 parts by weight per 100 parts by weight of water. It is.
  • the temperature of the aqueous solution used for dyeing is usually about 20 to 40 ° C.
  • the immersion time (dyeing time) in this aqueous solution is usually about 20 to 1,800 seconds.
  • a method of immersing and dyeing a polyvinyl alcohol-based resin film in an aqueous solution containing a water-soluble dichroic organic dye is usually employed.
  • the content of the dichroic organic dye in this aqueous solution is usually about 1 ⁇ 10 ⁇ 4 to 10 parts by weight, preferably 1 ⁇ 10 ⁇ 3 to 1 part by weight per 100 parts by weight of water.
  • This aqueous dye solution may contain an inorganic salt such as sodium sulfate as a dyeing assistant.
  • the temperature of the aqueous dichroic organic dye solution used for dyeing is usually about 20 to 80 ° C.
  • the immersion time (dyeing time) in this aqueous solution is usually about 10 to 1,800 seconds.
  • the boric acid treatment after dyeing with the dichroic dye can be performed by a method of immersing the dyed polyvinyl alcohol-based resin film in a boric acid-containing aqueous solution.
  • the boric acid content in the boric acid-containing aqueous solution is usually about 2 to 15 parts by weight, preferably 5 to 12 parts by weight per 100 parts by weight of water.
  • the boric acid-containing aqueous solution preferably contains potassium iodide.
  • the content of potassium iodide in the boric acid-containing aqueous solution is usually about 0.1 to 15 parts by weight, preferably 5 to 12 parts by weight per 100 parts by weight of water.
  • the immersion time in the boric acid-containing aqueous solution is usually about 60 to 1,200 seconds, preferably 150 to 600 seconds, and more preferably 200 to 400 seconds.
  • the temperature of the boric acid-containing aqueous solution is usually 50 ° C. or higher, preferably 50 to 85 ° C., more preferably 60 to 80 ° C.
  • the polyvinyl alcohol resin film after the boric acid treatment is usually washed with water.
  • the water washing treatment can be performed, for example, by a method of immersing a boric acid-treated polyvinyl alcohol resin film in water.
  • the temperature of water in the water washing treatment is usually about 5 to 40 ° C.
  • the immersion time is usually about 1 to 120 seconds.
  • a drying process is performed to obtain a polarizing film.
  • the drying process can be performed using a hot air dryer or a far infrared heater.
  • the temperature for the drying treatment is usually about 30 to 100 ° C., preferably 50 to 80 ° C.
  • the drying treatment time is usually about 60 to 600 seconds, preferably 120 to 600 seconds.
  • the moisture content in the polarizing film is reduced to a practical level.
  • the water content is usually about 5 to 20% by weight, preferably 8 to 15% by weight.
  • the moisture content is less than 5% by weight, the polarizing film loses its flexibility, and may be damaged or broken after drying. On the other hand, if the moisture content exceeds 20% by weight, the thermal stability tends to be insufficient.
  • a polarizing film having a dichroic dye adsorbed and oriented on a polyvinyl alcohol resin film can be produced.
  • the thickness of the polarizing film is preferably 15 ⁇ m or less.
  • the thickness of the polarizing film is usually 3 ⁇ m or more in that good optical properties can be imparted.
  • the polarizing film preferably has a shrinkage force of 2 N or less per 2 mm width in the absorption axis direction when held at a temperature of 80 ° C. for 240 minutes. If the shrinkage force is greater than 2N, the amount of dimensional change under a high temperature environment increases, and the shrinkage force of the polarizing film increases, so that the polarizing film tends to crack. The shrinkage force of the polarizing film tends to be 2N or less when the draw ratio is lowered and the thickness of the polarizing film is reduced.
  • the protective film is preferably made of a material having excellent transparency, mechanical strength, thermal stability, moisture shielding properties, retardation value stability, and the like.
  • a material for transparent protective film is not particularly limited, but examples thereof include (meth) acrylic resins, polyolefin resins, cyclic olefin resins, polyvinyl chloride resins, cellulose resins, and styrene resins.
  • Resin acrylonitrile / butadiene / styrene resin, acrylonitrile / styrene resin, polyvinyl acetate resin, polyvinylidene chloride resin, polyamide resin, polyacetal resin, polycarbonate resin, modified polyphenylene ether resin, polybutylene terephthalate And a film made of a polyethylene resin, a polyethylene terephthalate resin, a polysulfone resin, a polyethersulfone resin, a polyarylate resin, a polyamideimide resin, a polyimide resin, or the like. Among these, it is preferable to use a film made of a cellulose resin or a polyolefin resin.
  • the cellulose resin may be an organic acid ester or mixed organic acid ester of cellulose in which part or all of the hydrogen atoms in the hydroxyl group of cellulose are substituted with an acetyl group, a propionyl group, and / or a butyryl group.
  • examples include cellulose acetate, propionate, butyrate, and mixed esters thereof. Of these, triacetyl cellulose, diacetyl cellulose, cellulose acetate propionate, cellulose acetate butyrate and the like are preferable.
  • These resins may contain appropriate additives as long as the transparency is not impaired. Additives such as antioxidants, ultraviolet absorbers, antistatic agents, lubricants, nucleating agents, antifogging agents, antiblocking agents, phase difference reducing agents, stabilizers, processing aids, plasticizers, impact aids , Matting agents, antibacterial agents, fungicides and the like. A plurality of these additives may be used in combination.
  • any optimum method may be appropriately selected.
  • a solvent cast method in which a resin dissolved in a solvent is cast on a metal band or drum, and the solvent is removed by drying to obtain a film.
  • the resin is heated above its melting temperature, kneaded and extruded from a die.
  • a melt extrusion method for obtaining a film by cooling can be used.
  • a single layer film can be extruded or a multilayer film can be coextruded.
  • resin films can be easily obtained as commercial products.
  • examples of commercially available films include cellulose resin films, each of which is sold under the trade name “Fujitac (registered trademark) TD”, sold by Konica Minolta, Inc. Konica Minolta “TAC” film “KC”.
  • the olefin resin is a chain aliphatic olefin such as ethylene and propylene, or a structural unit derived from an alicyclic olefin such as norbornene or a substituted product thereof (hereinafter collectively referred to as norbornene monomer). It becomes resin.
  • the olefin resin may be a copolymer using two or more kinds of monomers.
  • a cyclic olefin resin which is a resin mainly containing a structural unit derived from an alicyclic olefin is preferably used.
  • Typical examples of the alicyclic olefin constituting the cyclic olefin resin include a norbornene monomer.
  • Norbornene is a compound in which one carbon-carbon bond of norbornane is a double bond, and according to IUPAC nomenclature, it is named bicyclo [2,2,1] hept-2-ene. is there.
  • norbornene substituents examples include 3-substituted, 4-substituted, 4,5-disubstituted, etc., with norbornene having a double bond position in the 1,2-position.
  • Dicyclopentadiene, dimethanooctahydronaphthalene and the like can also be mentioned.
  • the cyclic olefin-based resin may or may not have a norbornane ring in its structural unit.
  • Examples of the norbornene-based monomer that forms a cyclic olefin-based resin having no norbornane ring as a structural unit include, for example, those that become a five-membered ring by ring opening, typically norbornene, dicyclopentadiene, 1- or 4- Examples thereof include methyl norbornene and 4-phenyl norbornene.
  • the cyclic olefin resin is a copolymer
  • the arrangement state of the molecules is not particularly limited, and may be a random copolymer, a block copolymer, or a graft copolymer. It may be a polymer.
  • cyclic olefin resins include, for example, ring-opening polymers of norbornene monomers, ring-opening copolymers of norbornene monomers and other monomers, addition of maleic acid and cyclopentadiene, etc.
  • examples of other monomers in the case of a copolymer include ⁇ -olefins, cycloalkenes, and non-conjugated dienes.
  • the cyclic olefin resin may be a copolymer using one or more of norbornene monomers and other alicyclic olefins.
  • cyclic olefin-based resin a ring-opening polymer using a norbornene-based monomer or a resin obtained by hydrogenating a ring-opening copolymer is preferably used.
  • Such an olefin resin is formed into a film by a casting method or a melt extrusion method from a solution, and is performed by a known longitudinal uniaxial stretching, tenter transverse uniaxial stretching, simultaneous biaxial stretching, sequential biaxial stretching, or the like. A stretched film can be obtained.
  • Cyclic olefin-based resin films using such norbornene-based monomers can be obtained as commercial products. For example, all of them are trade names such as “ZEONOR (registered trademark)” of Nippon Zeon Co., Ltd. and “ Arton (registered trademark) ".
  • a surface treatment layer such as a hard coat layer, an antiglare layer, an antireflection layer, an antistatic layer, or an antifouling layer can be formed on the surface of the protective film opposite to the polarizing film.
  • the method for forming the surface treatment layer on the surface of the protective film is not particularly limited, and a known method can be used.
  • the adhesive layer for bonding the polarizing film and the protective film can have a thickness of about 0.01 to 30 ⁇ m, preferably 0.01 to 10 ⁇ m, more preferably 0.05 to 5 ⁇ m. If the thickness of the adhesive layer is within this range, the protective film and the polarizing film to be laminated do not float or peel off, and an adhesive force having no practical problem can be obtained.
  • an appropriate adhesive can be used as appropriate according to the type and purpose of the adherend, and an anchor coating agent can be used as necessary.
  • the adhesive include a solvent-type adhesive, an emulsion-type adhesive, a pressure-sensitive adhesive, a rewet-adhesive, a polycondensation-type adhesive, a solventless-type adhesive, a film-type adhesive, and a hot-melt-type adhesive. Can be mentioned.
  • an aqueous adhesive that is, an adhesive component in which the adhesive component is dissolved or dispersed in water.
  • adhesive components that can be dissolved in water include polyvinyl alcohol resins.
  • An example of an adhesive component that can be dispersed in water is a urethane resin having a hydrophilic group.
  • the water-based adhesive can be prepared by mixing such an adhesive component with water together with an additional additive added as necessary.
  • examples of commercially available polyvinyl alcohol resins that can be used as water-based adhesives include “KL-318”, which is a carboxyl group-modified polyvinyl alcohol sold by Kuraray Co., Ltd.
  • the water-based adhesive can contain a crosslinking agent as necessary.
  • the crosslinking agent include amine compounds, aldehyde compounds, methylol compounds, water-soluble epoxy resins, isocyanate compounds, and polyvalent metal salts.
  • an aldehyde compound such as glyoxal, a methylol compound such as methylol melamine, a water-soluble epoxy resin, or the like is preferably used as a crosslinking agent.
  • the water-soluble epoxy resin is, for example, a polyamide obtained by reacting epichlorohydrin with a polyamide polyamine which is a reaction product of a polyalkylene polyamine such as diethylenetriamine or triethylenetetramine and a dicarboxylic acid such as adipic acid. It can be an epoxy resin.
  • An example of a commercially available water-soluble epoxy resin is “Smilease Resin (registered trademark) 650 (30)” sold by Taoka Chemical Co., Ltd.
  • a polarizing plate can be obtained by applying a water-based adhesive to the adhesive surface of the polarizing film and / or the protective film to be bonded thereto, and bonding them together, followed by drying treatment. Prior to adhesion, it is also effective to subject the protective film to easy adhesion treatment such as saponification treatment, corona discharge treatment, plasma treatment, or primer treatment to enhance wettability.
  • the drying temperature can be about 50 to 100 ° C., for example. After drying treatment, curing at a temperature slightly higher than room temperature, for example, at a temperature of about 30 to 50 ° C. for about 1 to 10 days is preferable in order to further increase the adhesive strength.
  • Another preferable adhesive is a curable adhesive composition containing an epoxy compound that is cured by irradiation with active energy rays or heating.
  • the curable epoxy compound has at least two epoxy groups in the molecule.
  • the adhesive between the polarizing film and the protective film is performed by irradiating the applied layer of the adhesive composition with an active energy ray or applying heat to the adhesive composition, and a curable epoxy compound contained in the adhesive. It can carry out by the method of hardening. Curing of the epoxy compound is generally performed by cationic polymerization of the epoxy compound. Further, from the viewpoint of productivity, this curing is preferably performed by irradiation with active energy rays.
  • the epoxy compound contained in the curable adhesive composition is preferably one that does not contain an aromatic ring in the molecule.
  • epoxy compounds that do not contain an aromatic ring in the molecule include hydrogenated epoxy compounds, alicyclic epoxy compounds, and aliphatic epoxy compounds.
  • An epoxy compound suitably used for such a curable adhesive composition is described in detail in, for example, Japanese Patent Application Laid-Open No. 2004-245925, but the outline is also described here.
  • the hydrogenated epoxy compound is a glycidyl compound obtained by subjecting an aromatic polyhydroxy compound, which is a raw material of an aromatic epoxy compound, to a nuclear hydrogenated polyhydroxy compound obtained by selectively performing a nuclear hydrogenation reaction in the presence of a catalyst and under pressure. It can be etherified.
  • aromatic polyhydroxy compound that is a raw material of the aromatic epoxy compound include bisphenols such as bisphenol A, bisphenol F, and bisphenol S; phenol novolac resin, cresol novolac resin, and hydroxybenzaldehyde phenol novolac resin And novolak type resins; polyhydroxy compounds such as tetrahydroxydiphenylmethane, tetrahydroxybenzophenone, and polyvinylphenol.
  • a glycidyl ether can be obtained by performing a nuclear hydrogenation reaction on such an aromatic polyhydroxy compound and reacting the resulting hydrogenated polyhydroxy compound with epichlorohydrin.
  • Suitable hydrogenated epoxy compounds include hydrogenated glycidyl ether of bisphenol A.
  • the alicyclic epoxy compound is a compound having at least one epoxy group bonded to the alicyclic ring in the molecule.
  • the “epoxy group bonded to the alicyclic ring” means a bridged oxygen atom —O— in the structure represented by the following formula, wherein m is an integer of 2 to 5.
  • a compound in which one or more hydrogen atoms in (CH 2 ) m in this formula are removed and bonded to another chemical structure can be an alicyclic epoxy compound. Further, one or more hydrogen atoms in (CH 2 ) m forming the alicyclic ring may be appropriately substituted with a linear alkyl group such as a methyl group or an ethyl group.
  • the aliphatic epoxy compound can be an aliphatic polyhydric alcohol or a polyglycidyl ether of an alkylene oxide adduct thereof. More specifically, diglycidyl ether of propylene glycol; diglycidyl ether of 1,4-butanediol; diglycidyl ether of 1,6-hexanediol; triglycidyl ether of glycerin; triglycidyl ether of trimethylolpropane; ethylene Polyglycidyl ether of polyether polyol (for example, diglycidyl ether of polyethylene glycol) obtained by adding alkylene oxide (ethylene oxide or propylene oxide) to aliphatic polyhydric alcohol such as glycol, propylene glycol, and glycerin Can be mentioned.
  • alkylene oxide ethylene oxide or propylene oxide
  • the epoxy compound may be used alone or in combination of two or more.
  • the epoxy compound preferably includes an alicyclic epoxy compound having at least one epoxy group bonded to the alicyclic ring in the molecule.
  • the epoxy compound used in the curable adhesive composition usually has an epoxy equivalent in the range of 30 to 3,000 g / equivalent, and this epoxy equivalent is preferably in the range of 50 to 1,500 g / equivalent.
  • an epoxy compound having an epoxy equivalent of less than 30 g / equivalent is used, there is a possibility that the flexibility of the polarizing plate after curing is lowered or the adhesive strength is lowered.
  • compatibility with other components contained in the adhesive composition may be reduced.
  • cationic polymerization is preferably used as the curing reaction of the epoxy compound.
  • the cationic polymerization initiator generates a cationic species or a Lewis acid by irradiation or heating with active energy rays such as visible light, ultraviolet rays, X-rays, and electron beams, and initiates an epoxy group polymerization reaction.
  • active energy rays such as visible light, ultraviolet rays, X-rays, and electron beams
  • the cationic polymerization initiator is provided with latency.
  • a cationic polymerization initiator that generates a cationic species or Lewis acid by irradiation of active energy rays and initiates a polymerization reaction of an epoxy group is referred to as a “photo cationic polymerization initiator”, and generates a cationic species or a Lewis acid by heat.
  • the cationic polymerization initiator that initiates the polymerization reaction of the epoxy group is referred to as “thermal cationic polymerization initiator”.
  • the method of curing the adhesive composition by irradiation with active energy rays using a cationic photopolymerization initiator enables curing at normal temperature and humidity, reducing the need to consider the distortion due to heat resistance or expansion of the polarizing film. And it is advantageous in that the protective film and the polarizing film can be satisfactorily bonded.
  • the cationic photopolymerization initiator acts catalytically by light, it is excellent in storage stability and workability even when mixed with an epoxy compound.
  • the photocationic polymerization initiator examples include aromatic diazonium salts; onium salts such as aromatic iodonium salts and aromatic sulfonium salts, and iron-allene complexes.
  • the compounding amount of the photocationic polymerization initiator is usually 0.5 to 20 parts by weight, preferably 1 part by weight or more and preferably 15 parts by weight or less based on 100 parts by weight of the epoxy compound. If the amount of the cationic photopolymerization initiator is less than 0.5 parts by weight based on 100 parts by weight of the epoxy compound, the curing becomes insufficient, and the mechanical strength and adhesive strength of the cured product tend to be reduced.
  • the blending amount of the cationic photopolymerization initiator exceeds 20 parts by weight with respect to 100 parts by weight of the epoxy compound, the ionic substance in the cured product increases, resulting in an increase in the hygroscopic property of the cured product and durability performance. May be reduced.
  • the curable adhesive composition may further contain a photosensitizer as necessary.
  • a photosensitizer By using a photosensitizer, the reactivity of cationic polymerization can be improved, and the mechanical strength and adhesive strength of the cured product can be improved.
  • the photosensitizer include carbonyl compounds, organic sulfur compounds, persulfides, redox compounds, azo compounds, diazo compounds, halogen compounds, and photoreducible dyes.
  • the amount is preferably in the range of 0.1 to 20 parts by weight with respect to 100 parts by weight of the curable adhesive composition.
  • a sensitizing aid such as a naphthoquinone derivative may be used for improving the curing rate.
  • thermal cationic polymerization initiator examples include benzylsulfonium salt, thiophenium salt, thioranium salt, benzylammonium, pyridinium salt, hydrazinium salt, carboxylic acid ester, sulfonic acid ester, and amine imide.
  • the curable adhesive composition containing the epoxy compound is preferably cured by photocationic polymerization as described above, but can be cured by thermal cationic polymerization in the presence of the above-mentioned thermal cationic polymerization initiator. Cationic polymerization and thermal cationic polymerization can be used in combination. When photocationic polymerization and thermal cationic polymerization are used in combination, the curable adhesive composition preferably contains both a photocationic polymerization initiator and a thermal cationic polymerization initiator.
  • the curable adhesive composition may further contain a compound that promotes cationic polymerization, such as an oxetane compound or a polyol compound.
  • An oxetane compound is a compound having a 4-membered ring ether in the molecule.
  • the polyol compound may be alkylene glycol including ethylene glycol, hexamethylene glycol, polyethylene glycol or the like, or an oligomer thereof, polyester polyol, polycaprolactone polyol, polycarbonate polyol and the like.
  • the amount is usually 50% by weight or less, preferably 30% by weight or less in the curable adhesive composition.
  • the curable adhesive composition may contain a (meth) acrylic compound that is radically polymerizable.
  • the (meth) acrylic compound is a (meth) acrylate monomer having at least one (meth) acryloyloxy group in the molecule; obtained by reacting two or more functional group-containing compounds, and at least two in the molecule.
  • (meth) acryloyloxy group-containing compounds such as (meth) acrylate oligomers having (meth) acryloyloxy groups.
  • the curable adhesive composition preferably contains a radical photopolymerization initiator.
  • the photo radical polymerization initiator include acetophenone initiator, benzophenone initiator, benzoin ether initiator, thioxanthone initiator, xanthone, fluorenone, camphorquinone, benzaldehyde, anthraquinone and the like.
  • the curable adhesive composition may have other additives such as ion trapping agents, antioxidants, chain transfer agents, sensitizers, tackifiers, thermoplastic resins, fillers, as long as the adhesiveness is not impaired.
  • the ion trapping agent include inorganic compounds including powdered bismuth-based, antimony-based, magnesium-based, aluminum-based, calcium-based, titanium-based, and mixed systems thereof.
  • the antioxidant include And hindered phenolic antioxidants.
  • the curable adhesive composition containing the epoxy compound After applying the curable adhesive composition containing the epoxy compound to the adhesive surface of the polarizing film or the protective film, or to the adhesive surface of both of them, it is pasted on the adhesive-coated surface, and active energy rays.
  • the polarizing film and the protective film can be bonded by curing the uncured adhesive layer by irradiating or heating.
  • an adhesive coating method for example, various coating methods such as a doctor blade, a wire bar, a die coater, a comma coater, and a gravure coater can be adopted.
  • This curable adhesive composition can basically be used as a solvent-free adhesive that does not substantially contain a solvent, but each coating system has an optimum viscosity range, so that the viscosity is adjusted.
  • a solvent may be contained.
  • the solvent is preferably an organic solvent that dissolves each component including an epoxy compound well without degrading the optical performance of the polarizing film.
  • hydrocarbons typified by toluene, typified by ethyl acetate, etc. Esters can be used.
  • the adhesive composition When the adhesive composition is cured by irradiation with active energy rays, the above-mentioned various types of active energy rays can be used, but since the handling is easy and the amount of irradiation light is easy to control, ultraviolet rays are not emitted. Preferably used. Active energy rays such as ultraviolet irradiation intensity and irradiation dose do not affect various optical performance including polarization degree of polarizing film, and various optical performance including transparency and retardation characteristics of protective film. Therefore, it is determined as appropriate so as to maintain an appropriate productivity.
  • active energy rays such as ultraviolet irradiation intensity and irradiation dose do not affect various optical performance including polarization degree of polarizing film, and various optical performance including transparency and retardation characteristics of protective film. Therefore, it is determined as appropriate so as to maintain an appropriate productivity.
  • the adhesive composition When the adhesive composition is cured by heat, it can be heated by a generally known method. Usually, heating is performed at a temperature higher than the temperature at which the thermal cationic polymerization initiator compounded in the curable adhesive composition generates cationic species and Lewis acid, and the specific heating temperature is, for example, about 50 to 200 ° C. .
  • the release film is a film that can be peeled at a desired timing after being laminated on the polarizing film. “Peelable” means that the polarizing film and the release film can be separated. It is preferable that the polarizing film and the release film can be peeled without being damaged or damaged.
  • the release film is, for example, a chain polyolefin resin such as polyethylene resin or polypropylene resin; a cellulose ester resin such as cellulose triacetate or cellulose diacetate; or polyethylene terephthalate.
  • a film in which one or more of these are formed into a single layer or a multilayer can also be used as a release film.
  • a film made of polyethylene terephthalate, cellulose triacetate, or polymethyl methacrylate resin can be suitably used.
  • the moisture permeability of at least one of the protective film and the release film is 400 g / m 2 ⁇ 24 hr or more. It is preferable that it is 420 g / m 2 ⁇ 24 hr or more. If the moisture permeability is within this range, the volatile liquid can be efficiently volatilized and removed in the subsequent second step, so that productivity can be further improved.
  • a (meth) acrylic resin film is preferably used as the release film.
  • the release film is a cellulose resin film. Is preferably used.
  • the thickness of the release film is, for example, about 5 to 100 ⁇ m, preferably about 10 to 80 ⁇ m.
  • the release film preferably has a shrinkage rate (heat shrinkage rate) of 0.15% or less, more preferably 0.1% or less when heated at 80 ° C. for 5 minutes. If the heat shrinkage rate of the release film is large, the release film 10 is likely to be wrinkled in the heat treatment in the second step, and accordingly, the single-sided protective polarizing plate is likely to be wrinkled.
  • the resin material having a heat shrinkage within the above range include polyethylene terephthalate, cellulose triacetate, and polymethyl methacrylate resin. Note that “the heat shrinkage is 0.15% or less” means that both the MD shrinkage and the TD shrinkage are 0.15% or less.
  • initial dimension A ′ initial dimension of TD (direction orthogonal to MD)
  • dimension B ′ dimension of TD
  • the volatile liquid used for lamination between the polarizing film and the release film is a liquid that can be volatilized by the heat treatment in the second step, and preferably a liquid that does not adversely affect the polarizing film.
  • An additive such as an antistatic agent may be added as long as it does not have an adverse effect.
  • the volatile liquid that can be used in the present invention include water and a mixture of water and a hydrophilic liquid.
  • the hydrophilic liquid is preferably one that does not remain after the heat treatment in the second step.
  • methanol, ethanol, 1-butanol, tetrohydrofuran, acetone, acetonitrile, N, N-dimethylformamide, dimethyl sulfoxide examples include formic acid and acetic acid.
  • a long polarizing film roll (rolled product), a long protective film roll, and a long release film roll are prepared, and the film is conveyed while continuously unwinding them.
  • Each film is conveyed so that the longitudinal direction thereof is the conveyance direction.
  • a guide roll for supporting the traveling film is appropriately provided in the film conveyance path.
  • the conveyance direction (film longitudinal direction) of a polarizing film, the conveyance direction (film longitudinal direction) of a protective film, and the conveyance direction (film longitudinal direction) of a peeling film are parallel.
  • a protective film is bonded to one surface of the polarizing film via an adhesive layer, and a release film is laminated to the other surface of the polarizing film via a volatile liquid.
  • the lamination of the protective film and the lamination of the release film were performed by laminating the protective film, the polarizing film, and the release film so that their longitudinal directions (conveying directions) were parallel and passing between the pair of lamination rolls. This can be done by pressing the film from above and below. At this time, an adhesive is applied between the polarizing film and the protective film, and a volatile liquid is applied between the polarizing film and the release film before passing between the pair of bonding rolls.
  • the protective film, the polarizing film, and the release film are bonded (laminated) at the same time.
  • the bonding of the protective film and the polarizing film and the lamination of the release film and the polarizing film are sequentially performed. It may be done automatically.
  • the polarizing film is directly laminated without interposing a special layer on the polarizing film surface. There was a problem that the film was easily broken.
  • a protective film is bonded to one side of a polarizing film via a water-based adhesive layer, in order to obtain a single-sided protective polarizing plate, a step of drying the water-based adhesive layer is required. In particular, the polarizing film was apt to break during this drying step.
  • the bonding surface of the polarizing film and / or the protective film has a plasma treatment, a corona treatment, an ultraviolet irradiation treatment, a frame (flame) treatment, a Ken to improve adhesion.
  • An easy adhesion treatment such as a crystallization treatment can be performed.
  • the bonding surface of the protective film can be subjected to plasma treatment or corona treatment.
  • a saponification process can be given to the bonding surface of a protective film.
  • the saponification treatment include a method of immersing in an alkaline aqueous solution such as sodium hydroxide or potassium hydroxide.
  • This step is a step for removing volatile liquids by volatilization.
  • the volatile liquid is preferably removed by volatilization by heating.
  • the release film is laminated directly on the surface of the polarizing film with an appropriate adhesion.
  • the drying temperature is preferably 30 to 90 ° C. If it is less than 30 ° C., it takes a long time to dry, and there is a possibility that an appearance defect may occur. If the drying temperature exceeds 90 ° C., the polarizing performance of the polarizing film may be deteriorated by heat.
  • the drying time can be about 10 to 1000 seconds, and from the viewpoint of productivity, it is preferably 60 to 750 seconds, and more preferably 150 to 600 seconds.
  • the heating temperature in this step can be increased to, for example, about 60 ° C. or more and about 90 ° C. or less. That is, even if the heating temperature is set high, in addition to being able to suppress the breakage of the polarizing film, the high-temperature heating can provide a single-side protective polarizing plate with a small shrinkage rate of the polarizing film and thus high dimensional stability. . By reducing the shrinkage rate of the single-side protective polarizing plate, the warpage of the liquid crystal panel can be reduced when a liquid crystal panel is produced using the polarizing plate. Conventionally, since the polarizing film is easily broken, the drying temperature cannot be set high, and it has been difficult to obtain a single-side protective polarizing plate having a low shrinkage rate.
  • sufficient adhesive strength may be obtained by performing curing at a temperature of room temperature or higher for at least half a day, usually several days or longer. Such curing is typically performed in a state of being wound into a roll.
  • the preferable curing temperature is in the range of 30 to 50 ° C, more preferably 35 to 45 ° C. When the curing temperature exceeds 50 ° C., so-called “roll tightening” is likely to occur in the roll winding state.
  • the humidity during curing is not particularly limited, but is preferably selected so that the relative humidity is in the range of about 0 to 70% RH.
  • the curing time is usually about 1 to 10 days, preferably about 2 to 7 days.
  • the storage period is usually 1 day or longer, 7 days or longer, or 1 month or longer. Usually, the storage period is one year or less. As will be described later, the present invention is remarkably effective when the storage period is one month or longer.
  • the storage temperature is, for example, in the range of 10-30 ° C., and the relative humidity is, for example, 0-70% RH.
  • This step is a step of peeling the release film from the laminate.
  • the release film is laminated with an appropriate adhesion, but when the storage period from the second step to the third step is 7 days or more, especially the storage period from the second step to the third step is When it becomes 1 month or more, the adhesive force of a polarizing film and a peeling film rises, and peeling may become difficult.
  • the release film is peeled so that the transport direction of the peel film after the peel point is substantially horizontal to the transport direction of the laminate. It is preferable that the angle (change in transport angle) formed by the transport direction of the release film after the release point and the transport direction of the laminate is within 30 °.
  • the change in the transport angle is more preferably performed within 15 °, and further preferably performed within 5 °.
  • the conveyance angle change referred to in the present invention is an angle 20 formed by the conveyance direction 13 of the laminate before the peeling point 31 and the conveyance direction 14 of the release film after the peeling point 31.
  • the angle formed by the transport direction of the polarizing film and the protective film after the peeling point and the transport direction of the laminate is preferably 15 ° or more, and 30 ° or more. More preferably.
  • the conveyance angle change of the single-sided protective polarizing plate referred to in the present invention is an angle formed by the conveyance direction 13 of the laminate before the peeling point 31 and the conveyance direction 15 of the single-sided protective polarizing plate after the peeling point 31. 21
  • the third step causes the single-sided protective polarizing plate to be peeled off from the laminate.
  • the details of the mechanism are unknown, but if the peel film transport angle exceeds 15 ° before and after the peel point, the peel force tends to exceed 0.5 N / 25 mm.
  • the peeling force between the polarizing film and the release film in the third step is, for example, 0.01 to 0.5 N / 25 mm, preferably 0.01 to 0.2 N / 25 mm, more preferably 0.01 to 0.15 N / 25 mm.
  • the peeling force is less than 0.01 N / 25 mm, the adhesive strength between the polarizing film and the peeling film is small, so that the peeling film partially peels off or is stored in a state where the single-sided protective polarizing plate is rolled.
  • the polarizing film may tear along the stretching direction (in a direction parallel to the stretching direction). Moreover, since it will become difficult to peel a peeling film from a polarizing film when peeling force exceeds 0.5 N / 25mm, when peeling a peeling film, a polarizing film may tear along a extending direction.
  • the peel force is obtained by cutting a single-side protective polarizing plate on which a release film is laminated to a width of 25 mm, obtaining a measurement sample, and using a precision universal testing machine “Autograph AGS-50NX” manufactured by Shimadzu Corporation. Can be measured.
  • a precision universal testing machine Autograph AGS-50NX” manufactured by Shimadzu Corporation.
  • the transport angle of the single-sided protective polarizing plate fix the release film surface to glass (the angle 20 formed by the transport direction 13 of the laminate and the transport direction 14 of the release film in FIG. 1 corresponds to 0 °), It is obtained by measuring the force when the single-sided protective polarizing plate is gripped and peeled off at the same angle as the conveyance angle change employed in the third step.
  • the single-sided protective polarizing plate is fixed to the glass, the release film is gripped, It is calculated
  • the measurement of peeling force is performed in an environment where the peeling speed is 100 mm / min, the temperature is 23 ⁇ 2 ° C., and the relative humidity is 50 ⁇ 5%.
  • the single-sided protective polarizing plate of the present invention may be used in a form in which a pressure-sensitive adhesive layer is formed on the polarizing film surface and bonded to the liquid crystal cell as it is. Moreover, it can utilize suitably also as a manufacture intermediate body of the double-sided protective polarizing plate by which the protective film was bonded on both surfaces of the polarizing plate.
  • a conventionally known appropriate pressure-sensitive adhesive can be used.
  • a (meth) acrylic pressure-sensitive adhesive, a urethane-based pressure-sensitive adhesive, a silicone-based pressure-sensitive adhesive, a polyester-based pressure-sensitive adhesive, a polyamide-based pressure-sensitive adhesive, or a polyether-based pressure-sensitive adhesive examples thereof include an adhesive, a fluorine-based adhesive, and a rubber-based adhesive.
  • a (meth) acrylic pressure-sensitive adhesive is preferably used from the viewpoints of transparency, adhesive strength, reliability, reworkability, and the like.
  • the pressure-sensitive adhesive can be provided by a method in which the pressure-sensitive adhesive is used, for example, in the form of an organic solvent solution, which is coated on the polarizing film 5 with a die coater, a gravure coater, or the like and dried.
  • the sheet-like pressure-sensitive adhesive formed on the plastic film (referred to as a separate film) can also be provided by a method of transferring to the polarizing film 5. Whichever method is used, it is preferable that a separate film is adhered to the surface of the pressure-sensitive adhesive.
  • the thickness of the pressure-sensitive adhesive can be 2 to 40 ⁇ m, for example.
  • the adhesive or pressure-sensitive adhesive described above can be used.
  • the protective film used here may be the same as or different from the protective film used in the single-side protective polarizing plate. It is also a useful technique to make a functional film such as a retardation film or a brightness enhancement film.
  • Measurement of thickness Measurement was performed using a digital micrometer “MH-15M” manufactured by Nikon Corporation.
  • Protective films A and B and release films C and D The following four types of protective films and release films were prepared.
  • Example 1 Production of single-sided protective polarizing plate 1
  • the polarizing film obtained in Production Example 1 was continuously conveyed and the protective film A was continuously unwound from the roll of the protective film A.
  • the release film D was continuously unwound from the roll.
  • a water-based adhesive is injected between the polarizing film and the protective film A, and pure water is injected between the polarizing film and the release film D, passing through a bonding roll, and the protective film A / water-based adhesive layer. It was set as the laminated film consisting of / polarizing film / pure water / release film D (first step). Subsequently, the laminated film is transported and heated at 80 ° C.
  • the single-sided protective polarizing plate 1 with a peeling film was obtained (2nd process).
  • the polarizing film was not broken and the polarizing plate was not wrinkled.
  • the roll of the produced single-sided protective polarizing plate 1 with a release film was stored in an environment of a temperature of 23 ° C. and a humidity of 55% for 3 months.
  • the release film D After storage, when the release film D was peeled from the single-sided protective polarizing plate 1 with a release film, the release film D was peeled with the change in the transport angle of the release film D before and after the release point as 0 °.
  • the peeling force was 0.33 N / 25 mm, and there was no problem in peeling.
  • Example 2 A single-sided protective polarizing plate 1 was prepared in the same manner as in Example 1, wound up on a roll, and stored for 3 months in an environment having a temperature of 23 ° C. and a humidity of 55%.
  • the release film D was peeled from the single-sided protective polarizing plate 1 with a release film after storage, the release film D was peeled off with the change in the transport angle of the release film before and after the release point being 3 °.
  • the peeling force was 0.35 N / 25 mm, and there was no problem in peeling.
  • Example 3 A single-sided protective polarizing plate 1 was prepared in the same manner as in Example 1, wound up on a roll, and stored for 3 months in an environment having a temperature of 23 ° C. and a humidity of 55%.
  • the release film D was peeled from the single-sided protective polarizing plate 1 with a release film after storage, the release film D was peeled off with the change in the transport angle of the release film before and after the release point as 10 °.
  • the peeling force was 0.42 N / 25 mm, and although peeling occurred during the peeling, the peeling was possible.
  • Example 1 A single-sided protective polarizing plate 1 was prepared in the same manner as in Example 1, wound up on a roll, and stored for 3 months in an environment having a temperature of 23 ° C. and a humidity of 55%. After the storage, when the release film D was peeled from the single-sided protective polarizing plate 1 with the release film, the release film D was peeled at 90 ° as the change in the transport angle of the release film before and after the release point. The peeling force was 1.36 N / 25 mm, and peeling was difficult.
  • Example 4 Production of single-sided protective polarizing plate 2
  • the polarizing film obtained in Production Example 1 was continuously conveyed and the protective film B was continuously unwound from the roll of the protective film B.
  • the release film C was continuously unwound from the roll.
  • a water-based adhesive is injected between the polarizing film and the protective film B, and pure water is injected between the polarizing film and the release film C, and the protective film B / water-based adhesive layer is passed through a bonding roll. It was set as the laminated film consisting of / polarizing film / pure water / release film C (first step). Subsequently, the laminated film is transported and heated at 80 ° C.
  • the single-sided protective polarizing plate 2 with a peeling film was obtained (2nd process).
  • the polarizing film was not broken and the polarizing plate was not wrinkled.
  • the roll of the produced single-sided protective polarizing plate 2 with a release film was stored in an environment of a temperature of 23 ° C. and a humidity of 55% for 3 months.
  • the release film C After storage, when the release film C was peeled from the single-side protective polarizing plate 2 with a release film, the release film C was peeled off with the change in the transport angle of the release film C before and after the release point being 0 °.
  • the peeling force was 0.1 N / 25 mm, and there was no problem in peeling.
  • Example 5 A single-sided protective polarizing plate 2 was prepared in the same manner as in Example 4, wound on a roll, and stored for 3 months in an environment having a temperature of 23 ° C. and a humidity of 55%.
  • the release film C was peeled from the single-sided protective polarizing plate 2 with the release film after storage, the release film C was peeled off with the change in the transport angle of the release film before and after the release point being 3 °.
  • the peeling force was 0.3 N / 25 mm, and there was no problem in peeling.
  • Example 6 A single-sided protective polarizing plate 2 was prepared in the same manner as in Example 4, wound on a roll, and stored for 3 months in an environment having a temperature of 23 ° C. and a humidity of 55%.
  • the release film C was peeled from the single-sided protective polarizing plate 2 with a release film after storage, the release film C was peeled off with a change in the transport angle of the release film before and after the release point as 10 °.
  • the peeling force was 0.5 N / 25 mm, and peeling was possible although zipping occurred.
  • a single-sided protective polarizing plate 2 was prepared in the same manner as in Example 4, wound on a roll, and stored for 3 months in an environment having a temperature of 23 ° C. and a humidity of 55%. After storage, when the release film C was peeled from the single-sided protective polarizing plate 2 with a release film, the release film C was peeled at 90 ° as the change in the transport angle of the release film before and after the release point. The peeling force was 1.2 N / 25 mm, and peeling was difficult.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)

Abstract

[Problem] To provide a high-yield method for manufacturing a one-side-protected polarizing plate whereby a polarizing film and a release film can easily be peeled. [Solution] A method for manufacturing a one-side-protected polarizing plate, the method including a first step for obtaining a layered body by affixing a protective film to one surface of a polarizing film via an adhesive layer and layering a release film on the other surface of the polarizing film via a layer comprising a volatile liquid, a second step for volatilizing the volatile liquid, and a third step for peeling the release film in a state in which the conveyance direction of the release film to the rear of the peeling point is substantially horizontal with respect to the conveyance direction of the layered body. [Selected drawing] FIG. 1

Description

片面保護偏光板の製造方法Manufacturing method of single-sided protective polarizing plate
 本発明は、片面保護偏光板の製造方法に関するものである。 The present invention relates to a method for producing a single-side protective polarizing plate.
近年、スマートフォンに代表される液晶モバイル端末の大型化に伴い、限られたバッテリー容量で長時間の駆動を実現するために、輝度向上フィルムを用いる方法などによりバックライト光の利用効率を高める試みがある。一方で、デザインや携帯性の面から、液晶モバイル端末の薄型化の要求が益々高まっており、限られた筐体に占めるバッテリーをできるだけ大きくするため、そこに使用される偏光板についても、さらなる薄型軽量化が要求されている。 In recent years, with the increase in the size of LCD mobile terminals represented by smartphones, attempts to increase the efficiency of backlight use by methods such as using a brightness enhancement film have been made in order to achieve long-term driving with a limited battery capacity. is there. On the other hand, the demand for thinner LCD mobile terminals is increasing from the viewpoint of design and portability, and in order to make the battery occupying a limited housing as large as possible, the polarizing plates used there are further Thin and light weight is required.
 このような要求の中で、偏光フィルムの片面にのみ保護フィルムを積層した偏光板〔例えば特開2009-109860号公報(特許文献1)〕が提案されている。特許文献1が開示する偏光板は、偏光板の薄型化に対しては有効な手段であるが、偏光フィルムや保護フィルムの厚みが薄くなるとともに、偏光フィルムと保護フィルムとを貼合するときに十分な圧力をかけることができず、得られる偏光板に外観不良が発生する場合があった。 In such a demand, a polarizing plate (for example, JP 2009-109860 A (Patent Document 1)) in which a protective film is laminated only on one side of a polarizing film has been proposed. The polarizing plate disclosed in Patent Document 1 is an effective means for reducing the thickness of the polarizing plate, but when the polarizing film and the protective film are bonded together while the thickness of the polarizing film and the protective film is reduced. Sufficient pressure could not be applied, and the resulting polarizing plate sometimes had poor appearance.
 このような外観不良の対策としては、偏光フィルムと保護フィルムとを貼合する際に偏光フィルムにおける保護フィルムとは反対側の面に剥離フィルムを配置して、全体の厚みを大きくするといった手法がとられる(特許文献2)。 As a countermeasure against such an appearance defect, there is a technique of increasing the overall thickness by arranging a release film on the surface opposite to the protective film in the polarizing film when bonding the polarizing film and the protective film. (Patent Document 2).
 この手法では、剥離フィルムとして様々なものを選択できる利点がある。特に、保護フィルムがセルロース系樹脂フィルムであれば剥離フィルムとして(メタ)アクリル系樹脂フィルムが好ましく用いられる。また、保護フィルムがポリオレフィン系樹脂フィルムであれば剥離フィルムとしてはセルロース系樹脂フィルムが好ましく用いられる。 This method has the advantage that a variety of release films can be selected. In particular, if the protective film is a cellulose resin film, a (meth) acrylic resin film is preferably used as the release film. If the protective film is a polyolefin resin film, a cellulose resin film is preferably used as the release film.
特開2009-109860号公報JP 2009-109860 A 国際公開第2015/137250号International Publication No. 2015/137250
 しかしながら、偏光フィルムと剥離フィルムの密着性を上げるために純水などの揮発性液体が好ましく用いられるが、時間経過とともに偏光フィルムと剥離フィルムとの密着力が高くなり、偏光フィルムと剥離フィルムと間の剥離が困難となることがあった。本発明の目的は、偏光フィルムと剥離フィルムとを容易に剥離することができ、生産性の高い片面保護偏光板の製造方法を提供することにある。 However, volatile liquids such as pure water are preferably used in order to increase the adhesion between the polarizing film and the release film, but the adhesion between the polarizing film and the release film increases with time, and the distance between the polarizing film and the release film increases. It may be difficult to peel off. The objective of this invention is providing the manufacturing method of the single-sided protective polarizing plate which can peel easily a polarizing film and a peeling film, and has high productivity.
[1]偏光フィルムの一方の面に接着剤層を介して保護フィルムを貼合するとともに、前記偏光フィルムの他方の面に、揮発性液体からなる層を介して剥離フィルムを積層し、積層体を得る第1工程と、
 前記揮発性液体を揮発させる第2工程と、
剥離点の後における前記剥離フィルムの搬送方向が、前記積層体の搬送方向に対して略水平となるようにして、前記剥離フィルムを剥離する第3の工程とを含む片面保護偏光板の製造方法。
[2]剥離点の後における前記剥離フィルムの搬送方向と前記積層体の搬送方向とのなす角度が15°以内である[1]に記載の偏光板の製造方法。
[3]剥離フィルムを剥離する工程の前に、保護フィルム、偏光フィルム及び剥離フィルムをこの順に有する積層体を巻き取り、ロールを得る工程を含む[1]又は[2]に記載の偏光板の製造方法。
[4]前記揮発性液体が、水を含む[1]~[3]のいずれかに記載の偏光板の製造方法。
[1] A protective film is bonded to one surface of the polarizing film via an adhesive layer, and a release film is laminated to the other surface of the polarizing film via a layer made of a volatile liquid, to obtain a laminate. A first step of obtaining
A second step of volatilizing the volatile liquid;
The manufacturing method of the single-sided protective polarizing plate including the 3rd process of peeling the said peeling film so that the conveyance direction of the said peeling film after a peeling point may become substantially horizontal with respect to the conveyance direction of the said laminated body. .
[2] The method for producing a polarizing plate according to [1], wherein an angle formed by the transport direction of the release film and the transport direction of the laminate after the release point is within 15 °.
[3] Before the step of peeling the release film, the step of winding the laminate having the protective film, the polarizing film and the release film in this order to obtain a roll includes the step of [1] or [2]. Production method.
[4] The method for producing a polarizing plate according to any one of [1] to [3], wherein the volatile liquid contains water.
 本発明の製造方法によれば、偏光フィルムと剥離フィルムとを容易に剥離することができ、生産性に優れた片面保護偏光板の製造方法を提供することができる。 According to the production method of the present invention, the polarizing film and the release film can be easily peeled off, and a method for producing a single-side protective polarizing plate excellent in productivity can be provided.
剥離方法の一例を示す概略図である。It is the schematic which shows an example of the peeling method. 剥離方法の一例を示す概略図である。It is the schematic which shows an example of the peeling method.
 本発明において「片面保護偏光板」とは、偏光フィルムの片面のみに保護フィルムを貼合した偏光板であり、この保護フィルムは通常、接着剤層を介して偏光フィルムに貼合される。以下本発明の製造方法について説明をする。 In the present invention, the “single-side protective polarizing plate” is a polarizing plate in which a protective film is bonded only to one side of the polarizing film, and this protective film is usually bonded to the polarizing film via an adhesive layer. The production method of the present invention will be described below.
 <片面保護偏光板の製造方法>
 〔1〕第1の工程
 第1の工程では、偏光フィルムの一方の面に接着剤層を介して保護フィルムを貼合するとともに、偏光フィルムの他方の面に、揮発性液体からなる層を介して剥離フィルムを積層し、積層体を得る。一般に、片面保護偏光板のような偏光板は、長尺のフィルムを連続的に巻き出して搬送しながら各工程における処理を施すことにより、長尺品として連続的に製造することができる。保護フィルムと偏光フィルムとの貼合、及び剥離フィルムと偏光フィルムとの積層は、それぞれを逐次的に行ってもよいし、同時に行なってもよい。
<Method for producing single-sided protective polarizing plate>
[1] First Step In the first step, a protective film is bonded to one surface of the polarizing film via an adhesive layer, and a layer made of a volatile liquid is interposed on the other surface of the polarizing film. The release film is laminated to obtain a laminate. In general, a polarizing plate such as a single-sided protective polarizing plate can be continuously produced as a long product by performing a treatment in each step while continuously unwinding and transporting a long film. The lamination of the protective film and the polarizing film and the lamination of the release film and the polarizing film may be performed sequentially or simultaneously.
[偏光フィルム]
 偏光フィルムは、通常、ポリビニルアルコール系樹脂フィルムを一軸延伸する工程、ポリビニルアルコール系樹脂フィルムを二色性色素で染色することにより二色性色素を吸着させる工程、二色性色素が吸着されたポリビニルアルコール系樹脂フィルムをホウ酸水溶液で処理して架橋させる工程、及びホウ酸水溶液による架橋処理後に水洗する工程を経て、製造される。
[Polarized film]
The polarizing film is usually a step of uniaxially stretching a polyvinyl alcohol-based resin film, a step of adsorbing a dichroic dye by dyeing the polyvinyl alcohol-based resin film with a dichroic dye, a polyvinyl on which the dichroic dye is adsorbed The alcohol-based resin film is manufactured through a step of crosslinking with a boric acid aqueous solution and a step of washing with water after the crosslinking treatment with the boric acid aqueous solution.
 ポリビニルアルコール系樹脂は、ポリ酢酸ビニル系樹脂をケン化することにより製造できる。ポリ酢酸ビニル系樹脂は、酢酸ビニルの単独重合体であるポリ酢酸ビニルのほか、酢酸ビニルとそれに共重合可能な他の単量体との共重合体であることもできる。酢酸ビニルに共重合可能な他の単量体としては、例えば、不飽和カルボン酸類、オレフィン類、ビニルエーテル類、不飽和スルホン酸類、アンモニウム基を有するアクリルアミド類などが挙げられる。 The polyvinyl alcohol resin can be produced by saponifying a polyvinyl acetate resin. The polyvinyl acetate resin may be a copolymer of vinyl acetate and another monomer copolymerizable therewith, in addition to polyvinyl acetate which is a homopolymer of vinyl acetate. Examples of other monomers copolymerizable with vinyl acetate include unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids, and acrylamides having an ammonium group.
 ポリビニルアルコール系樹脂のケン化度は、通常85~100モル%程度であり、好ましくは98モル%以上である。ポリビニルアルコール系樹脂は変性されていてもよく、例えば、アルデヒド類で変性されたポリビニルホルマールやポリビニルアセタールなども使用可能である。ポリビニルアルコール系樹脂の重合度は、通常1,000~10,000程度であり、好ましくは1,500~5,000程度である。 The degree of saponification of the polyvinyl alcohol resin is usually about 85 to 100 mol%, preferably 98 mol% or more. The polyvinyl alcohol resin may be modified, for example, polyvinyl formal or polyvinyl acetal modified with aldehydes can be used. The degree of polymerization of the polyvinyl alcohol resin is usually about 1,000 to 10,000, and preferably about 1,500 to 5,000.
 このようなポリビニルアルコール系樹脂を製膜したものが、偏光フィルムの原反フィルムとして用いられる。ポリビニルアルコール系樹脂を製膜する方法は、特に限定されるものでなく、公知の方法で製膜することができる。ポリビニルアルコール系樹脂原反フィルムの膜厚は、例えば10~100μm程度、好ましくは10~50μm程度である。 A film obtained by forming such a polyvinyl alcohol resin is used as an original film of a polarizing film. The method for forming a polyvinyl alcohol-based resin is not particularly limited, and can be formed by a known method. The film thickness of the polyvinyl alcohol resin raw film is, for example, about 10 to 100 μm, preferably about 10 to 50 μm.
 ポリビニルアルコール系樹脂フィルムの一軸延伸は、二色性色素による染色の前、染色と同時、又は染色の後に行うことができる。一軸延伸を染色の後で行う場合、この一軸延伸は、ホウ酸処理の前に行ってもよいし、ホウ酸処理中に行ってもよい。もちろん、ここに示した複数の段階で一軸延伸を行うこともできる。一軸延伸には、周速の異なるロール間で一軸に延伸する方法や、熱ロールを用いて一軸に延伸する方法などが採用できる。また一軸延伸は、大気中で延伸を行う乾式延伸により行ってもよいし、水等の溶剤を用い、ポリビニルアルコール系樹脂フィルムを膨潤させた状態で延伸を行う湿式延伸により行ってもよい。延伸倍率は、通常3~8倍程度である。 Uniaxial stretching of the polyvinyl alcohol-based resin film can be performed before dyeing with the dichroic dye, simultaneously with dyeing, or after dyeing. When uniaxial stretching is performed after dyeing, the uniaxial stretching may be performed before boric acid treatment or during boric acid treatment. Of course, uniaxial stretching can also be performed in a plurality of stages shown here. For uniaxial stretching, a method of stretching uniaxially between rolls having different peripheral speeds, a method of stretching uniaxially using a hot roll, or the like can be adopted. Uniaxial stretching may be performed by dry stretching in which stretching is performed in the air, or may be performed by wet stretching in which a polyvinyl alcohol-based resin film is stretched using a solvent such as water. The draw ratio is usually about 3 to 8 times.
 ポリビニルアルコール系樹脂フィルムの二色性色素による染色は、例えば、二色性色素を含有する水溶液にポリビニルアルコール系樹脂フィルムを浸漬する方法により行うことができる。二色性色素として、具体的にはヨウ素や二色性有機染料が用いられる。なお、ポリビニルアルコール系樹脂フィルムは、染色処理の前に水に浸漬して膨潤させる処理を施しておくことが好ましい。 The dyeing of the polyvinyl alcohol resin film with the dichroic dye can be performed, for example, by a method of immersing the polyvinyl alcohol resin film in an aqueous solution containing the dichroic dye. Specifically, iodine or a dichroic organic dye is used as the dichroic dye. In addition, it is preferable to perform the process which a polyvinyl alcohol-type resin film swells by immersing in water before a dyeing process.
 二色性色素としてヨウ素を用いる場合は、通常、ヨウ素及びヨウ化カリウムを含有する水溶液に、ポリビニルアルコール系樹脂フィルムを浸漬して染色する方法が採用される。
この水溶液におけるヨウ素の含有量は、水100重量部あたり、通常 0.01~1重量部程度であり、ヨウ化カリウムの含有量は、水100重量部あたり、通常 0.5~20重量部程度である。染色に用いる水溶液の温度は、通常20~40℃程度である。また、この水溶液への浸漬時間(染色時間)は、通常20~1,800秒程度である。
When iodine is used as the dichroic dye, a method of dyeing a polyvinyl alcohol-based resin film in an aqueous solution containing iodine and potassium iodide is usually employed.
The iodine content in this aqueous solution is usually about 0.01 to 1 part by weight per 100 parts by weight of water, and the potassium iodide content is usually about 0.5 to 20 parts by weight per 100 parts by weight of water. It is. The temperature of the aqueous solution used for dyeing is usually about 20 to 40 ° C. The immersion time (dyeing time) in this aqueous solution is usually about 20 to 1,800 seconds.
 一方、二色性色素として二色性の有機染料を用いる場合は、通常、水溶性の二色性有機染料を含む水溶液に、ポリビニルアルコール系樹脂フィルムを浸漬して染色する方法が採用される。この水溶液における二色性有機染料の含有量は、水100重量部あたり、通常1×10-4~10重量部程度であり、好ましくは1×10-3~1重量部である。この染料水溶液は、硫酸ナトリウムのような無機塩を染色助剤として含有していてもよい。染色に用いる二色性有機染料水溶液の温度は、通常20~80℃程度である。また、この水溶液への浸漬時間(染色時間)は、通常10~1,800秒程度である。 On the other hand, when a dichroic organic dye is used as the dichroic dye, a method of immersing and dyeing a polyvinyl alcohol-based resin film in an aqueous solution containing a water-soluble dichroic organic dye is usually employed. The content of the dichroic organic dye in this aqueous solution is usually about 1 × 10 −4 to 10 parts by weight, preferably 1 × 10 −3 to 1 part by weight per 100 parts by weight of water. This aqueous dye solution may contain an inorganic salt such as sodium sulfate as a dyeing assistant. The temperature of the aqueous dichroic organic dye solution used for dyeing is usually about 20 to 80 ° C. The immersion time (dyeing time) in this aqueous solution is usually about 10 to 1,800 seconds.
 二色性色素による染色後のホウ酸処理は、染色されたポリビニルアルコール系樹脂フィルムをホウ酸含有水溶液に浸漬する方法により、行うことができる。ホウ酸含有水溶液におけるホウ酸の含有量は、水100重量部あたり、通常2~15重量部程度であり、好ましくは5~12重量部である。二色性色素としてヨウ素を用いる場合、このホウ酸含有水溶液はヨウ化カリウムを含有することが好ましい。ホウ酸含有水溶液におけるヨウ化カリウムの含有量は、水100重量部あたり、通常 0.1~15重量部程度であり、好ましくは5~12重量部である。ホウ酸含有水溶液への浸漬時間は、通常 60~1,200秒程度であり、好ましくは150~600秒、さらに好ましくは200~400秒である。ホウ酸含有水溶液の温度は、通常50℃以上であり、好ましくは50~85℃、さらに好ましくは60~80℃である。 The boric acid treatment after dyeing with the dichroic dye can be performed by a method of immersing the dyed polyvinyl alcohol-based resin film in a boric acid-containing aqueous solution. The boric acid content in the boric acid-containing aqueous solution is usually about 2 to 15 parts by weight, preferably 5 to 12 parts by weight per 100 parts by weight of water. When iodine is used as the dichroic dye, the boric acid-containing aqueous solution preferably contains potassium iodide. The content of potassium iodide in the boric acid-containing aqueous solution is usually about 0.1 to 15 parts by weight, preferably 5 to 12 parts by weight per 100 parts by weight of water. The immersion time in the boric acid-containing aqueous solution is usually about 60 to 1,200 seconds, preferably 150 to 600 seconds, and more preferably 200 to 400 seconds. The temperature of the boric acid-containing aqueous solution is usually 50 ° C. or higher, preferably 50 to 85 ° C., more preferably 60 to 80 ° C.
 ホウ酸処理後のポリビニルアルコール系樹脂フィルムは、通常、水洗処理される。水洗処理は、例えば、ホウ酸処理されたポリビニルアルコール系樹脂フィルムを水に浸漬する方法により、行うことができる。水洗処理における水の温度は、通常5~40℃程度である。また浸漬時間は、通常1~120秒程度である。 The polyvinyl alcohol resin film after the boric acid treatment is usually washed with water. The water washing treatment can be performed, for example, by a method of immersing a boric acid-treated polyvinyl alcohol resin film in water. The temperature of water in the water washing treatment is usually about 5 to 40 ° C. The immersion time is usually about 1 to 120 seconds.
 水洗後は乾燥処理が施されて、偏光フィルムが得られる。乾燥処理は、熱風乾燥機や遠赤外線ヒーターを用いて行うことができる。乾燥処理の温度は、通常30~100℃程度であり、好ましくは50~80℃である。乾燥処理の時間は、通常60~600秒程度であり、好ましくは120~600秒である。乾燥処理により、偏光フィルム中の水分率は実用程度にまで低減される。その水分率は、通常5~20重量%程度であり、好ましくは8~15重量%である。水分率が5重量%を下回ると、偏光フィルムの可撓性が失われ、乾燥後に損傷したり、破断したりすることがある。また水分率が20重量%を超えると、熱安定性が不足する傾向にある。 After washing with water, a drying process is performed to obtain a polarizing film. The drying process can be performed using a hot air dryer or a far infrared heater. The temperature for the drying treatment is usually about 30 to 100 ° C., preferably 50 to 80 ° C. The drying treatment time is usually about 60 to 600 seconds, preferably 120 to 600 seconds. By the drying treatment, the moisture content in the polarizing film is reduced to a practical level. The water content is usually about 5 to 20% by weight, preferably 8 to 15% by weight. When the moisture content is less than 5% by weight, the polarizing film loses its flexibility, and may be damaged or broken after drying. On the other hand, if the moisture content exceeds 20% by weight, the thermal stability tends to be insufficient.
 以上のようにして、ポリビニルアルコール系樹脂フィルムに二色性色素が吸着配向した偏光フィルムを製造することができる。 As described above, a polarizing film having a dichroic dye adsorbed and oriented on a polyvinyl alcohol resin film can be produced.
 高温環境下における偏光フィルムの収縮力を低く抑えるためには、偏光フィルムの厚さを15μm以下とすることが好ましい。良好な光学特性を付与できるという点で、偏光フィルムの厚みは通常3μm以上である。 In order to keep the contraction force of the polarizing film in a high temperature environment low, the thickness of the polarizing film is preferably 15 μm or less. The thickness of the polarizing film is usually 3 μm or more in that good optical properties can be imparted.
 偏光フィルムは、80℃の温度で240分間保持したときの、その吸収軸方向の幅2mmあたりの収縮力が、2N以下であることが好ましい。この収縮力が、2Nより大きいと高温環境下での寸法変化量が大きくなり、且つ、偏光フィルムの収縮力が大きくなるために、偏光フィルムに割れが発生しやすくなるという傾向にある。偏光フィルムの収縮力は、延伸倍率を下げると、また偏光フィルムの厚さを薄くすると2N以下となる傾向にある。 The polarizing film preferably has a shrinkage force of 2 N or less per 2 mm width in the absorption axis direction when held at a temperature of 80 ° C. for 240 minutes. If the shrinkage force is greater than 2N, the amount of dimensional change under a high temperature environment increases, and the shrinkage force of the polarizing film increases, so that the polarizing film tends to crack. The shrinkage force of the polarizing film tends to be 2N or less when the draw ratio is lowered and the thickness of the polarizing film is reduced.
[保護フィルム]
 保護フィルムとしては、透明性、機械的強度、熱安定性、水分遮蔽性、および位相差値の安定性等に優れる材料からなることが好ましい。このような透明保護フィルム用材料としては、特に限定されるものではないが、たとえば、(メタ)アクリル系樹脂、ポリオレフィン系樹脂、環状オレフィン系樹脂、ポリ塩化ビニル系樹脂、セルロース系樹脂、スチレン系樹脂、アクリロニトリル・ブタジエン・スチレン系樹脂、アクリロニトリル・スチレン系樹脂、ポリ酢酸ビニル系樹脂、ポリ塩化ビニリデン系樹脂、ポリアミド系樹脂、ポリアセタール系樹脂、ポリカーボネート系樹脂、変性ポリフェニレンエーテル系樹脂、ポリブチレンテフタレート系樹脂、ポリエチレンテフタレート系樹脂、ポリスルホン系樹脂、ポリエーテルスルホン系樹脂、ポリアリレート系樹脂、ポリアミドイミド系樹脂、およびポリイミド系樹脂等からなるフィルムが挙げられる。なかでもセルロース系樹脂、ポリオレフィン系樹脂からなるフィルムを用いることが好ましい。
[Protective film]
The protective film is preferably made of a material having excellent transparency, mechanical strength, thermal stability, moisture shielding properties, retardation value stability, and the like. Such a material for transparent protective film is not particularly limited, but examples thereof include (meth) acrylic resins, polyolefin resins, cyclic olefin resins, polyvinyl chloride resins, cellulose resins, and styrene resins. Resin, acrylonitrile / butadiene / styrene resin, acrylonitrile / styrene resin, polyvinyl acetate resin, polyvinylidene chloride resin, polyamide resin, polyacetal resin, polycarbonate resin, modified polyphenylene ether resin, polybutylene terephthalate And a film made of a polyethylene resin, a polyethylene terephthalate resin, a polysulfone resin, a polyethersulfone resin, a polyarylate resin, a polyamideimide resin, a polyimide resin, or the like. Among these, it is preferable to use a film made of a cellulose resin or a polyolefin resin.
セルロース系樹脂は、セルロースの水酸基における水素原子の一部又は全部が、アセチル基、プロピオニル基及び/又はブチリル基で置換された、セルロースの有機酸エステル又は混合有機酸エステルでありうる。例えば、セルロースの酢酸エステル、プロピオン酸エステル、酪酸エステル、それらの混合エステルなどからなるものが挙げられる。なかでも、トリアセチルセルロース、ジアセチルセルロース、セルロースアセテートプロピオネート、セルロースアセテートブチレートなどが好ましい。 The cellulose resin may be an organic acid ester or mixed organic acid ester of cellulose in which part or all of the hydrogen atoms in the hydroxyl group of cellulose are substituted with an acetyl group, a propionyl group, and / or a butyryl group. Examples include cellulose acetate, propionate, butyrate, and mixed esters thereof. Of these, triacetyl cellulose, diacetyl cellulose, cellulose acetate propionate, cellulose acetate butyrate and the like are preferable.
 これらの樹脂は、透明性を損なわない範囲で、適宜の添加物が配合されていてもよい。
添加物として例えば、酸化防止剤、紫外線吸収剤、帯電防止剤、滑剤、造核剤、防曇剤、アンチブロッキング剤、位相差低減剤、安定剤、加工助剤、可塑剤、耐衝撃助剤、艶消し剤、抗菌剤、防かび剤などを挙げることができる。これらの添加物は、複数種が併用されてもよい。
These resins may contain appropriate additives as long as the transparency is not impaired.
Additives such as antioxidants, ultraviolet absorbers, antistatic agents, lubricants, nucleating agents, antifogging agents, antiblocking agents, phase difference reducing agents, stabilizers, processing aids, plasticizers, impact aids , Matting agents, antibacterial agents, fungicides and the like. A plurality of these additives may be used in combination.
 以上のような樹脂からフィルムを製膜する方法としては、任意の最適な方法を適宜選択すればよい。例えば、溶剤に溶解させた樹脂を、金属製のバンド又はドラムに流延し、溶剤を乾燥除去してフィルムを得る溶剤キャスト法、樹脂をその溶融温度以上に加熱し、混練してダイから押し出し、冷却することによりフィルムを得る溶融押出法などが使用できる。溶融押出法では、単層フィルムを押し出すこともできるし、多層フィルムを同時押出することもできる。 As a method for forming a film from the resin as described above, any optimum method may be appropriately selected. For example, a solvent cast method in which a resin dissolved in a solvent is cast on a metal band or drum, and the solvent is removed by drying to obtain a film. The resin is heated above its melting temperature, kneaded and extruded from a die. A melt extrusion method for obtaining a film by cooling can be used. In the melt extrusion method, a single layer film can be extruded or a multilayer film can be coextruded.
 これら樹脂のフィルムは、市販品を容易に入手することが可能である。市販されているフィルムの例を挙げると、セルロース系樹脂フィルムとして、それぞれ商品名で、富士フイルム株式会社から販売されている“フジタック(登録商標) TD” 、コニカミノルタ株式会社から販売されている“コニカミノルタ TAC フィルム KC”などがある。 These resin films can be easily obtained as commercial products. Examples of commercially available films include cellulose resin films, each of which is sold under the trade name “Fujitac (registered trademark) TD”, sold by Konica Minolta, Inc. Konica Minolta “TAC” film “KC”.
オレフィン系樹脂とは、エチレンおよびプロピレン等の鎖状脂肪族オレフィン、またはノルボルネンやその置換体(以下、これらを総称してノルボルネン系モノマーとも称する)等の脂環式オレフィンから誘導される構成単位からなる樹脂である。オレフィン系樹脂は、2種以上のモノマーを用いた共重合体であってもよい。 The olefin resin is a chain aliphatic olefin such as ethylene and propylene, or a structural unit derived from an alicyclic olefin such as norbornene or a substituted product thereof (hereinafter collectively referred to as norbornene monomer). It becomes resin. The olefin resin may be a copolymer using two or more kinds of monomers.
 中でも、オレフィン系樹脂としては、脂環式オレフィンから誘導される構成単位を主に含む樹脂である環状オレフィン系樹脂が好ましく用いられる。環状オレフィン系樹脂を構成する脂環式オレフィンの典型的な例としては、ノルボルネン系モノマー等を挙げることができる。ノルボルネンとは、ノルボルナンの1つの炭素-炭素結合が二重結合となった化合物であって、IUPAC命名法によれば、ビシクロ[2,2,1]ヘプト-2-エンと命名されるものである。ノルボルネンの置換体の例としては、ノルボルネンの二重結合位置を1,2-位として、3-置換体、4-置換体、および4,5-ジ置換体等を挙げることができ、さらにはジシクロペンタジエンやジメタノオクタヒドロナフタレン等も挙げることができる。 Among these, as the olefin resin, a cyclic olefin resin which is a resin mainly containing a structural unit derived from an alicyclic olefin is preferably used. Typical examples of the alicyclic olefin constituting the cyclic olefin resin include a norbornene monomer. Norbornene is a compound in which one carbon-carbon bond of norbornane is a double bond, and according to IUPAC nomenclature, it is named bicyclo [2,2,1] hept-2-ene. is there. Examples of norbornene substituents include 3-substituted, 4-substituted, 4,5-disubstituted, etc., with norbornene having a double bond position in the 1,2-position. Dicyclopentadiene, dimethanooctahydronaphthalene and the like can also be mentioned.
 環状オレフィン系樹脂は、その構成単位にノルボルナン環を有していてもよいし、有していなくてもよい。構成単位にノルボルナン環を有さない環状オレフィン系樹脂を形成するノルボルネン系モノマーとしては、たとえば、開環により5員環となるもの、代表的には、ノルボルネン、ジシクロペンタジエン、1-または4-メチルノルボルネン、および4-フェニルノルボルネン等が挙げられる。環状オレフィン系樹脂が共重合体である場合、その分子の配列状態は特に限定されるものではなく、ランダム共重合体であってもよいし、ブロック共重合体であってもよいし、グラフト共重合体であってもよい。 The cyclic olefin-based resin may or may not have a norbornane ring in its structural unit. Examples of the norbornene-based monomer that forms a cyclic olefin-based resin having no norbornane ring as a structural unit include, for example, those that become a five-membered ring by ring opening, typically norbornene, dicyclopentadiene, 1- or 4- Examples thereof include methyl norbornene and 4-phenyl norbornene. When the cyclic olefin resin is a copolymer, the arrangement state of the molecules is not particularly limited, and may be a random copolymer, a block copolymer, or a graft copolymer. It may be a polymer.
 環状オレフィン系樹脂のより具体的な例としては、たとえば、ノルボルネン系モノマーの開環重合体、ノルボルネン系モノマーと他のモノマーとの開環共重合体、それらにマレイン酸付加やシクロペンタジエン付加等がなされたポリマー変性物、およびこれらを水素添加した重合体または共重合体;ノルボルネン系モノマーの付加重合体、およびノルボルネン系モノマーと他のモノマーとの付加共重合体等が挙げられる。共重合体とする場合における他のモノマーとしては、α-オレフィン類、シクロアルケン類、および非共役ジエン類等が挙げられる。また、環状オレフィン系樹脂は、ノルボルネン系モノマーおよび他の脂環式オレフィンの1種または2種以上を用いた共重合体であってもよい。 More specific examples of cyclic olefin resins include, for example, ring-opening polymers of norbornene monomers, ring-opening copolymers of norbornene monomers and other monomers, addition of maleic acid and cyclopentadiene, etc. Examples of the polymer-modified products made and hydrogenated polymers or copolymers; addition polymers of norbornene monomers, addition copolymers of norbornene monomers and other monomers, and the like. Examples of other monomers in the case of a copolymer include α-olefins, cycloalkenes, and non-conjugated dienes. Moreover, the cyclic olefin resin may be a copolymer using one or more of norbornene monomers and other alicyclic olefins.
 前記具体例の中でも、環状オレフィン系樹脂としては、ノルボルネン系モノマーを用いた開環重合体または開環共重合体に水素添加した樹脂が好ましく用いられる。 Among the specific examples, as the cyclic olefin-based resin, a ring-opening polymer using a norbornene-based monomer or a resin obtained by hydrogenating a ring-opening copolymer is preferably used.
このようなオレフィン系樹脂は、溶液からのキャスティング法や溶融押出法等により、フィルムに製膜し、公知の縦一軸延伸やテンター横一軸延伸、同時二軸延伸、逐次二軸延伸等で行うことで延伸フィルム得ることができる。このようなノルボルネン系モノマーを用いた環状オレフィン系樹脂フィルムは市販品を入手することができ、たとえば、いずれも商品名で、日本ゼオン株式会社の「ゼオノア(登録商標)」やJSR株式会社の「アートン(登録商標)」等がある。 Such an olefin resin is formed into a film by a casting method or a melt extrusion method from a solution, and is performed by a known longitudinal uniaxial stretching, tenter transverse uniaxial stretching, simultaneous biaxial stretching, sequential biaxial stretching, or the like. A stretched film can be obtained. Cyclic olefin-based resin films using such norbornene-based monomers can be obtained as commercial products. For example, all of them are trade names such as “ZEONOR (registered trademark)” of Nippon Zeon Co., Ltd. and “ Arton (registered trademark) ".
 保護フィルムの偏光フィルムとは反対側の表面には、ハードコート層、防眩層、反射防止層、帯電防止層、防汚層のような表面処理層(コーティング層)を形成することもできる。保護フィルム表面に表面処理層を形成する方法は特に限定されず、公知の方法を用いることができる。 A surface treatment layer (coating layer) such as a hard coat layer, an antiglare layer, an antireflection layer, an antistatic layer, or an antifouling layer can be formed on the surface of the protective film opposite to the polarizing film. The method for forming the surface treatment layer on the surface of the protective film is not particularly limited, and a known method can be used.
[接着剤]
 偏光フィルムと保護フィルムとの貼合は、接着剤によりおこなうことができる。偏光フィルムと保護フィルムとを貼合する接着剤層は、その厚さを0.01~30μm程度とすることができ、好ましくは0.01~10μm、さらに好ましくは0.05~5μmである。接着剤層の厚さがこの範囲にあれば、積層される保護フィルムと偏光フィルムとの間に浮きや剥がれを生じず、実用上問題のない接着力が得られる。
[adhesive]
Bonding of the polarizing film and the protective film can be performed with an adhesive. The adhesive layer for bonding the polarizing film and the protective film can have a thickness of about 0.01 to 30 μm, preferably 0.01 to 10 μm, more preferably 0.05 to 5 μm. If the thickness of the adhesive layer is within this range, the protective film and the polarizing film to be laminated do not float or peel off, and an adhesive force having no practical problem can be obtained.
 接着剤層の形成には、被着体の種類や目的に応じて、適宜、適切な接着剤を用いることができ、また必要に応じてアンカーコート剤を用いることもできる。接着剤として、例えば、溶剤型接着剤、エマルジョン型接着剤、感圧性接着剤、再湿性接着剤、重縮合型接着剤、無溶剤型接着剤、フィルム状接着剤、ホットメルト型接着剤などが挙げられる。 In forming the adhesive layer, an appropriate adhesive can be used as appropriate according to the type and purpose of the adherend, and an anchor coating agent can be used as necessary. Examples of the adhesive include a solvent-type adhesive, an emulsion-type adhesive, a pressure-sensitive adhesive, a rewet-adhesive, a polycondensation-type adhesive, a solventless-type adhesive, a film-type adhesive, and a hot-melt-type adhesive. Can be mentioned.
 好ましい接着剤の一つとして、水系接着剤、すなわち、接着剤成分が水に溶解又は分散しているものを挙げることができる。水に溶解可能な接着剤成分の例を挙げると、ポリビニルアルコール系樹脂がある。また、水に分散可能な接着剤成分の例を挙げると、親水基を有するウレタン系樹脂がある。水系接着剤は、このような接着剤成分を、必要に応じて配合される追加の添加剤とともに、水に混合して調製することができる。水系接着剤となりうる市販のポリビニルアルコール系樹脂の例を挙げると、株式会社クラレから販売されているカルボキシル基変性ポリビニルアルコールである“KL-318”などがある。 As one of preferable adhesives, there can be mentioned an aqueous adhesive, that is, an adhesive component in which the adhesive component is dissolved or dispersed in water. Examples of adhesive components that can be dissolved in water include polyvinyl alcohol resins. An example of an adhesive component that can be dispersed in water is a urethane resin having a hydrophilic group. The water-based adhesive can be prepared by mixing such an adhesive component with water together with an additional additive added as necessary. Examples of commercially available polyvinyl alcohol resins that can be used as water-based adhesives include “KL-318”, which is a carboxyl group-modified polyvinyl alcohol sold by Kuraray Co., Ltd.
 水系接着剤は、必要に応じて架橋剤を含有することができる。架橋剤の例を挙げると、アミン化合物、アルデヒド化合物、メチロール化合物、水溶性エポキシ樹脂、イソシアネート化合物、多価金属塩などがある。ポリビニルアルコール系樹脂を接着剤成分とする場合は、グリオキザールをはじめとするアルデヒド化合物、メチロールメラミンをはじめとするメチロール化合物、水溶性エポキシ樹脂などが、架橋剤として好ましく用いられる。
ここで水溶性エポキシ樹脂は、例えば、ジエチレントリアミンやトリエチレンテトラミンのようなポリアルキレンポリアミンとアジピン酸のようなジカルボン酸との反応物であるポリアミドポリアミンに、エピクロロヒドリンを反応させて得られるポリアミドエポキシ樹脂であることができる。水溶性エポキシ樹脂の市販品の例を挙げると、田岡化学工業株式会社から販売されている“スミレーズレジン(登録商標) 650(30)”などがある。
The water-based adhesive can contain a crosslinking agent as necessary. Examples of the crosslinking agent include amine compounds, aldehyde compounds, methylol compounds, water-soluble epoxy resins, isocyanate compounds, and polyvalent metal salts. When a polyvinyl alcohol resin is used as an adhesive component, an aldehyde compound such as glyoxal, a methylol compound such as methylol melamine, a water-soluble epoxy resin, or the like is preferably used as a crosslinking agent.
Here, the water-soluble epoxy resin is, for example, a polyamide obtained by reacting epichlorohydrin with a polyamide polyamine which is a reaction product of a polyalkylene polyamine such as diethylenetriamine or triethylenetetramine and a dicarboxylic acid such as adipic acid. It can be an epoxy resin. An example of a commercially available water-soluble epoxy resin is “Smilease Resin (registered trademark) 650 (30)” sold by Taoka Chemical Co., Ltd.
 偏光フィルム及び/又はそこに貼合される保護フィルムの接着面に、水系接着剤を塗布し、両者を貼り合わせた後、乾燥処理を施すことにより、偏光板を得ることができる。接着に先立って、保護フィルムには、ケン化処理、コロナ放電処理、プラズマ処理、又はプライマー処理のような易接着処理を施し、濡れ性を高めておくことも有効である。乾燥温度は、例えば50~100℃程度とすることができる。乾燥処理後、室温よりもやや高い温度、例えば30~50℃程度の温度で1~10日間程度養生することは、接着力を一層高めるうえで好ましい。 A polarizing plate can be obtained by applying a water-based adhesive to the adhesive surface of the polarizing film and / or the protective film to be bonded thereto, and bonding them together, followed by drying treatment. Prior to adhesion, it is also effective to subject the protective film to easy adhesion treatment such as saponification treatment, corona discharge treatment, plasma treatment, or primer treatment to enhance wettability. The drying temperature can be about 50 to 100 ° C., for example. After drying treatment, curing at a temperature slightly higher than room temperature, for example, at a temperature of about 30 to 50 ° C. for about 1 to 10 days is preferable in order to further increase the adhesive strength.
 もう一つの好ましい接着剤として、活性エネルギー線の照射又は加熱により硬化するエポキシ化合物を含有する硬化性接着剤組成物が挙げられる。ここで硬化性のエポキシ化合物は、分子内に少なくとも2個のエポキシ基を有するものである。この場合、偏光フィルムと保護フィルムとの接着は、当該接着剤組成物の塗布層に対して、活性エネルギー線を照射するか、又は熱を付与し、接着剤に含有される硬化性のエポキシ化合物を硬化させる方法により行うことができる。エポキシ化合物の硬化は、一般に、エポキシ化合物のカチオン重合により行われる。また生産性の観点から、この硬化は活性エネルギー線の照射により行うことが好ましい。 Another preferable adhesive is a curable adhesive composition containing an epoxy compound that is cured by irradiation with active energy rays or heating. Here, the curable epoxy compound has at least two epoxy groups in the molecule. In this case, the adhesive between the polarizing film and the protective film is performed by irradiating the applied layer of the adhesive composition with an active energy ray or applying heat to the adhesive composition, and a curable epoxy compound contained in the adhesive. It can carry out by the method of hardening. Curing of the epoxy compound is generally performed by cationic polymerization of the epoxy compound. Further, from the viewpoint of productivity, this curing is preferably performed by irradiation with active energy rays.
 耐候性、屈折率、カチオン重合性などの観点から、硬化性接着剤組成物に含有されるエポキシ化合物は、分子内に芳香環を含まないものであることが好ましい。分子内に芳香環を含まないエポキシ化合物として、水素化エポキシ化合物、脂環式エポキシ化合物、脂肪族エポキシ化合物などが例示できる。このような硬化性接着剤組成物に好適に用いられるエポキシ化合物は、例えば、特開2004-245925号公報で詳細に説明されているが、ここでも概略を説明することとする。 From the viewpoint of weather resistance, refractive index, cationic polymerizability, etc., the epoxy compound contained in the curable adhesive composition is preferably one that does not contain an aromatic ring in the molecule. Examples of epoxy compounds that do not contain an aromatic ring in the molecule include hydrogenated epoxy compounds, alicyclic epoxy compounds, and aliphatic epoxy compounds. An epoxy compound suitably used for such a curable adhesive composition is described in detail in, for example, Japanese Patent Application Laid-Open No. 2004-245925, but the outline is also described here.
 水素化エポキシ化合物は、芳香族エポキシ化合物の原料である芳香族ポリヒドロキシ化合物に触媒の存在下及び加圧下で選択的に核水素化反応を行うことにより得られる核水添ポリヒドロキシ化合物を、グリシジルエーテル化したものであることができる。芳香族エポキシ化合物の原料である芳香族ポリヒドロキシ化合物としては、例えば、ビスフェノールA、ビスフェールF、及びビスフェノールSのようなビスフェノール類;フェノールノボラック樹脂、クレゾールノボラック樹脂、及びヒドロキシベンズアルデヒドフェノールノボラック樹脂のようなノボラック型の樹脂;テトラヒドロキシジフェニルメタン、テトラヒドロキシベンゾフェノン、及びポリビニルフェノールのような多官能型の化合物などが挙げられる。このような芳香族ポリヒドロキシ化合物に核水素化反応を行い、得られる核水添ポリヒドロキシ化合物にエピクロロヒドリンを反応させることにより、グリシジルエーテル化することができる。好適な水素化エポキシ化合物として、水素化されたビスフェノールAのグリシジルエーテルが挙げられる。 The hydrogenated epoxy compound is a glycidyl compound obtained by subjecting an aromatic polyhydroxy compound, which is a raw material of an aromatic epoxy compound, to a nuclear hydrogenated polyhydroxy compound obtained by selectively performing a nuclear hydrogenation reaction in the presence of a catalyst and under pressure. It can be etherified. Examples of the aromatic polyhydroxy compound that is a raw material of the aromatic epoxy compound include bisphenols such as bisphenol A, bisphenol F, and bisphenol S; phenol novolac resin, cresol novolac resin, and hydroxybenzaldehyde phenol novolac resin And novolak type resins; polyhydroxy compounds such as tetrahydroxydiphenylmethane, tetrahydroxybenzophenone, and polyvinylphenol. A glycidyl ether can be obtained by performing a nuclear hydrogenation reaction on such an aromatic polyhydroxy compound and reacting the resulting hydrogenated polyhydroxy compound with epichlorohydrin. Suitable hydrogenated epoxy compounds include hydrogenated glycidyl ether of bisphenol A.
 脂環式エポキシ化合物は、脂環式環に結合したエポキシ基を分子内に少なくとも1個有する化合物である。「脂環式環に結合したエポキシ基」とは、次式に示される構造における橋かけの酸素原子-O-を意味し、この式中、mは2~5の整数である。 The alicyclic epoxy compound is a compound having at least one epoxy group bonded to the alicyclic ring in the molecule. The “epoxy group bonded to the alicyclic ring” means a bridged oxygen atom —O— in the structure represented by the following formula, wherein m is an integer of 2 to 5.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 この式における (CH2)m 中の水素原子を1個又は複数個取り除いた形の基が他の化学構造に結合している化合物が、脂環式エポキシ化合物となりうる。また、脂環式環を形成する (CH2)m 中の1個又は複数個の水素原子は、メチル基やエチル基のような直鎖状アルキル基で適宜置換されていてもよい。脂環式エポキシ化合物のなかでも、オキサビシクロヘキサン環(上式においてm=3のもの)や、オキサビシクロヘプタン環(上式においてm=4のもの)を有するエポキシ化合物は、優れた接着性を示すことから好ましく用いられる。以下に、脂環式エポキシ化合物の具体的な例を掲げる。ここでは、まず化合物名を挙げ、その後、それぞれに対応する化学式を示すこととし、化合物名とそれに対応する化学式には同じ符号を付す。 A compound in which one or more hydrogen atoms in (CH 2 ) m in this formula are removed and bonded to another chemical structure can be an alicyclic epoxy compound. Further, one or more hydrogen atoms in (CH 2 ) m forming the alicyclic ring may be appropriately substituted with a linear alkyl group such as a methyl group or an ethyl group. Among alicyclic epoxy compounds, an epoxy compound having an oxabicyclohexane ring (m = 3 in the above formula) or an oxabicycloheptane ring (m = 4 in the above formula) has excellent adhesion. It is preferably used from the indication. Specific examples of the alicyclic epoxy compound are listed below. Here, the compound names are given first, and then the chemical formulas corresponding to each are shown, and the same reference numerals are given to the compound names and the chemical formulas corresponding thereto.
 A:3,4-エポキシシクロヘキシルメチル 3,4-エポキシシクロヘキサンカルボキシレート、
 B:3,4-エポキシ-6-メチルシクロヘキシルメチル 3,4-エポキシ-6-メチルシクロヘキサンカルボキシレート、
 C:エチレンビス(3,4-エポキシシクロヘキサンカルボキシレート)、
 D:ビス(3,4-エポキシシクロヘキシルメチル) アジペート、
 E:ビス(3,4-エポキシ-6-メチルシクロヘキシルメチル) アジペート、
 F:ジエチレングリコールビス(3,4-エポキシシクロヘキシルメチルエーテル)、 G:エチレングリコールビス(3,4-エポキシシクロヘキシルメチルエーテル)、
 H:2,3,14,15-ジエポキシ-7,11,18,21-テトラオキサトリスピロ[5.2.2.5.2.2]ヘンイコサン、
 I:3-(3,4-エポキシシクロヘキシル)-8,9-エポキシ-1,5-ジオキサスピロ[5.5]ウンデカン、
 J:4-ビニルシクロヘキセンジオキサイド、
 K:リモネンジオキサイド、
 L:ビス(2,3-エポキシシクロペンチル)エーテル、
 M:ジシクロペンタジエンジオキサイドなど。
A: 3,4-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate,
B: 3,4-epoxy-6-methylcyclohexylmethyl 3,4-epoxy-6-methylcyclohexanecarboxylate,
C: ethylene bis (3,4-epoxycyclohexanecarboxylate),
D: Bis (3,4-epoxycyclohexylmethyl) adipate,
E: bis (3,4-epoxy-6-methylcyclohexylmethyl) adipate,
F: diethylene glycol bis (3,4-epoxycyclohexyl methyl ether), G: ethylene glycol bis (3,4-epoxycyclohexyl methyl ether),
H: 2,3,14,15-diepoxy-7,11,18,21-tetraoxatrispiro [5.2.2.5.2.2] henicosane,
I: 3- (3,4-epoxycyclohexyl) -8,9-epoxy-1,5-dioxaspiro [5.5] undecane,
J: 4-vinylcyclohexene dioxide
K: Limonene dioxide
L: bis (2,3-epoxycyclopentyl) ether,
M: Dicyclopentadiene dioxide and the like.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 脂肪族エポキシ化合物は、脂肪族多価アルコール又はそのアルキレンオキサイド付加物のポリグリシジルエーテルであることができる。より具体的には、プロピレングリコールのジグリシジルエーテル;1,4-ブタンジオールのジグリシジルエーテル;1,6-ヘキサンジオールのジグリシジルエーテル;グリセリンのトリグリシジルエーテル;トリメチロールプロパンのトリグリシジルエーテル;エチレングリコール、プロピレングリコール、及びグリセリンのような脂肪族多価アルコールにアルキレンオキサイド(エチレンオキサイドやプロピレンオキサイド)を付加することにより得られるポリエーテルポリオールのポリグリシジルエーテル(例えばポリエチレングリコールのジグリシジルエーテル)などが挙げられる。 The aliphatic epoxy compound can be an aliphatic polyhydric alcohol or a polyglycidyl ether of an alkylene oxide adduct thereof. More specifically, diglycidyl ether of propylene glycol; diglycidyl ether of 1,4-butanediol; diglycidyl ether of 1,6-hexanediol; triglycidyl ether of glycerin; triglycidyl ether of trimethylolpropane; ethylene Polyglycidyl ether of polyether polyol (for example, diglycidyl ether of polyethylene glycol) obtained by adding alkylene oxide (ethylene oxide or propylene oxide) to aliphatic polyhydric alcohol such as glycol, propylene glycol, and glycerin Can be mentioned.
 硬化性接着剤組成物において、エポキシ化合物は、1種のみを単独で用いてもよいし、2種以上を併用してもよい。なかでもこのエポキシ化合物は、脂環式環に結合したエポキシ基を分子内に少なくとも1個有する脂環式エポキシ化合物を含むことが好ましい。 In the curable adhesive composition, the epoxy compound may be used alone or in combination of two or more. Among these, the epoxy compound preferably includes an alicyclic epoxy compound having at least one epoxy group bonded to the alicyclic ring in the molecule.
 硬化性接着剤組成物に用いられるエポキシ化合物は、通常30~3,000g/当量の範囲内のエポキシ当量を有し、このエポキシ当量は好ましくは50~1,500g/当量の範囲である。エポキシ当量が30g/当量を下回るエポキシ化合物を用いた場合には、硬化後の偏光板の可撓性が低下したり、接着強度が低下したりする可能性がある。一方、3,000g/当量 を超えるエポキシ当量を有する化合物では、接着剤組成物に含有される他の成分との相溶性が低下する可能性がある。 The epoxy compound used in the curable adhesive composition usually has an epoxy equivalent in the range of 30 to 3,000 g / equivalent, and this epoxy equivalent is preferably in the range of 50 to 1,500 g / equivalent. When an epoxy compound having an epoxy equivalent of less than 30 g / equivalent is used, there is a possibility that the flexibility of the polarizing plate after curing is lowered or the adhesive strength is lowered. On the other hand, in a compound having an epoxy equivalent exceeding 3,000 g / equivalent soot, compatibility with other components contained in the adhesive composition may be reduced.
 反応性の観点から、エポキシ化合物の硬化反応としてカチオン重合が好ましく用いられる。そのためには、エポキシ化合物を含む硬化性接着剤組成物には、カチオン重合開始剤を配合するのが好ましい。カチオン重合開始剤は、可視光線、紫外線、X線、及び電子線のような活性エネルギー線の照射又は加熱によって、カチオン種又はルイス酸を発生し、エポキシ基の重合反応を開始させる。作業性の観点から、カチオン重合開始剤には潜在性が付与されていることが好ましい。以下、活性エネルギー線の照射によってカチオン種又はルイス酸を発生し、エポキシ基の重合反応を開始させるカチオン重合開始剤を「光カチオン重合開始剤」といい、熱によってカチオン種又はルイス酸を発生し、エポキシ基の重合反応を開始させるカチオン重合開始剤を「熱カチオン重合開始剤」という。 From the viewpoint of reactivity, cationic polymerization is preferably used as the curing reaction of the epoxy compound. For that purpose, it is preferable to mix | blend a cationic polymerization initiator with the curable adhesive composition containing an epoxy compound. The cationic polymerization initiator generates a cationic species or a Lewis acid by irradiation or heating with active energy rays such as visible light, ultraviolet rays, X-rays, and electron beams, and initiates an epoxy group polymerization reaction. From the viewpoint of workability, it is preferable that the cationic polymerization initiator is provided with latency. Hereinafter, a cationic polymerization initiator that generates a cationic species or Lewis acid by irradiation of active energy rays and initiates a polymerization reaction of an epoxy group is referred to as a “photo cationic polymerization initiator”, and generates a cationic species or a Lewis acid by heat. The cationic polymerization initiator that initiates the polymerization reaction of the epoxy group is referred to as “thermal cationic polymerization initiator”.
 光カチオン重合開始剤を用い、活性エネルギー線の照射により接着剤組成物の硬化を行う方法は、常温常湿での硬化が可能となり、偏光フィルムの耐熱性又は膨張による歪を考慮する必要が減少し、保護フィルムと偏光フィルムとを良好に接着できる点において有利である。また、光カチオン重合開始剤は、光で触媒的に作用するため、エポキシ化合物に混合しても保存安定性や作業性に優れる。 The method of curing the adhesive composition by irradiation with active energy rays using a cationic photopolymerization initiator enables curing at normal temperature and humidity, reducing the need to consider the distortion due to heat resistance or expansion of the polarizing film. And it is advantageous in that the protective film and the polarizing film can be satisfactorily bonded. In addition, since the cationic photopolymerization initiator acts catalytically by light, it is excellent in storage stability and workability even when mixed with an epoxy compound.
 光カチオン重合開始剤としては、例えば、芳香族ジアゾニウム塩;芳香族ヨードニウム塩や芳香族スルホニウム塩のようなオニウム塩、鉄-アレン錯体などを挙げることができる。光カチオン重合開始剤の配合量は、エポキシ化合物100重量部に対し、通常0.5~20重量部であり、好ましくは1重量部以上、また好ましくは15重量部以下である。
光カチオン重合開始剤の配合量が、エポキシ化合物100重量部に対して0.5重量部を下回ると、硬化が不十分になり、硬化物の機械的強度や接着強度が低下する傾向にある。
一方、光カチオン重合開始剤の配合量が、エポキシ化合物100重量部に対して20重量部を超えると、硬化物中のイオン性物質が増加することで硬化物の吸湿性が高くなり、耐久性能が低下する可能性がある。
Examples of the photocationic polymerization initiator include aromatic diazonium salts; onium salts such as aromatic iodonium salts and aromatic sulfonium salts, and iron-allene complexes. The compounding amount of the photocationic polymerization initiator is usually 0.5 to 20 parts by weight, preferably 1 part by weight or more and preferably 15 parts by weight or less based on 100 parts by weight of the epoxy compound.
If the amount of the cationic photopolymerization initiator is less than 0.5 parts by weight based on 100 parts by weight of the epoxy compound, the curing becomes insufficient, and the mechanical strength and adhesive strength of the cured product tend to be reduced.
On the other hand, when the blending amount of the cationic photopolymerization initiator exceeds 20 parts by weight with respect to 100 parts by weight of the epoxy compound, the ionic substance in the cured product increases, resulting in an increase in the hygroscopic property of the cured product and durability performance. May be reduced.
 光カチオン重合開始剤を用いる場合、硬化性接着剤組成物は、必要に応じてさらに光増感剤を含有することができる。光増感剤を用いることで、カチオン重合の反応性を向上させ、硬化物の機械的強度や接着強度を向上させることができる。光増感剤としては、例えば、カルボニル化合物、有機硫黄化合物、過硫化物、レドックス系化合物、アゾ化合物、ジアゾ化合物、ハロゲン化合物、光還元性色素などが挙げられる。光増感剤を配合する場合、その量は、硬化性接着剤組成物100重量部に対して0.1~20重量部の範囲内とすることが好ましい。また、硬化速度向上のために、ナフトキノン誘導体のような増感助剤を用いてもよい。 When using a photocationic polymerization initiator, the curable adhesive composition may further contain a photosensitizer as necessary. By using a photosensitizer, the reactivity of cationic polymerization can be improved, and the mechanical strength and adhesive strength of the cured product can be improved. Examples of the photosensitizer include carbonyl compounds, organic sulfur compounds, persulfides, redox compounds, azo compounds, diazo compounds, halogen compounds, and photoreducible dyes. When a photosensitizer is blended, the amount is preferably in the range of 0.1 to 20 parts by weight with respect to 100 parts by weight of the curable adhesive composition. Further, a sensitizing aid such as a naphthoquinone derivative may be used for improving the curing rate.
 一方、熱カチオン重合開始剤としては、ベンジルスルホニウム塩、チオフェニウム塩、チオラニウム塩、ベンジルアンモニウム、ピリジニウム塩、ヒドラジニウム塩、カルボン酸エステル、スルホン酸エステル、アミンイミドなどを挙げることができる。 On the other hand, examples of the thermal cationic polymerization initiator include benzylsulfonium salt, thiophenium salt, thioranium salt, benzylammonium, pyridinium salt, hydrazinium salt, carboxylic acid ester, sulfonic acid ester, and amine imide.
 エポキシ化合物を含有する硬化性接着剤組成物は、先述のとおり光カチオン重合によって硬化させることが好ましいが、上記の熱カチオン重合開始剤を存在させ、熱カチオン重合によって硬化させることもできるし、光カチオン重合と熱カチオン重合を併用することもできる。光カチオン重合と熱カチオン重合を併用する場合、硬化性接着剤組成物には、光カチオン重合開始剤と熱カチオン重合開始剤の両方を含有させることが好ましい。 The curable adhesive composition containing the epoxy compound is preferably cured by photocationic polymerization as described above, but can be cured by thermal cationic polymerization in the presence of the above-mentioned thermal cationic polymerization initiator. Cationic polymerization and thermal cationic polymerization can be used in combination. When photocationic polymerization and thermal cationic polymerization are used in combination, the curable adhesive composition preferably contains both a photocationic polymerization initiator and a thermal cationic polymerization initiator.
 また、硬化性接着剤組成物は、オキセタン化合物やポリオール化合物など、カチオン重合を促進させる化合物をさらに含有してもよい。オキセタン化合物は、分子内に4員環エーテルを有する化合物である。オキセタン化合物を配合する場合、その量は、硬化性接着剤組成物中に、通常5~95重量%、好ましくは5~50重量%である。またポリオール化合物は、エチレングリコールやヘキサメチレングリコール、ポリエチレングリコールなどを包含するアルキレングリコール又はそのオリゴマー、ポリエステルポリオール、ポリカプロラクトンポリオール、ポリカーボネートポリオールなどでありうる。ポリオール化合物を配合する場合、その量は、硬化性接着剤組成物中に、通常50重量%以下、好ましくは30重量%以下である。 The curable adhesive composition may further contain a compound that promotes cationic polymerization, such as an oxetane compound or a polyol compound. An oxetane compound is a compound having a 4-membered ring ether in the molecule. When the oxetane compound is blended, the amount thereof is usually 5 to 95% by weight, preferably 5 to 50% by weight in the curable adhesive composition. The polyol compound may be alkylene glycol including ethylene glycol, hexamethylene glycol, polyethylene glycol or the like, or an oligomer thereof, polyester polyol, polycaprolactone polyol, polycarbonate polyol and the like. When a polyol compound is blended, the amount is usually 50% by weight or less, preferably 30% by weight or less in the curable adhesive composition.
 硬化性接着剤組成物は、ラジカル重合性である(メタ)アクリル系化合物を含有するものであってもよい。(メタ)アクリル系化合物としては、分子内に少なくとも1個の(メタ)アクリロイルオキシ基を有する(メタ)アクリレートモノマー;官能基含有化合物を2種以上反応させて得られ、分子内に少なくとも2個の(メタ)アクリロイルオキシ基を有する(メタ)アクリレートオリゴマー等の(メタ)アクリロイルオキシ基含有化合物を挙げることができる。 The curable adhesive composition may contain a (meth) acrylic compound that is radically polymerizable. The (meth) acrylic compound is a (meth) acrylate monomer having at least one (meth) acryloyloxy group in the molecule; obtained by reacting two or more functional group-containing compounds, and at least two in the molecule. And (meth) acryloyloxy group-containing compounds such as (meth) acrylate oligomers having (meth) acryloyloxy groups.
 この場合、硬化性接着剤組成物は、光ラジカル重合開始剤を含有することが好ましい。
光ラジカル重合開始剤としては、例えば、アセトフェノン系開始剤、ベンゾフェノン系開始剤、ベンゾインエーテル系開始剤、チオキサントン系開始剤、キサントン、フルオレノン、カンファーキノン、ベンズアルデヒド、アントラキノン等を挙げることができる。
In this case, the curable adhesive composition preferably contains a radical photopolymerization initiator.
Examples of the photo radical polymerization initiator include acetophenone initiator, benzophenone initiator, benzoin ether initiator, thioxanthone initiator, xanthone, fluorenone, camphorquinone, benzaldehyde, anthraquinone and the like.
 さらに、硬化性接着剤組成物は、その接着性を損なわない限り、他の添加剤、例えば、イオントラップ剤、酸化防止剤、連鎖移動剤、増感剤、粘着付与剤、熱可塑性樹脂、充填剤、流動調整剤、可塑剤、消泡剤などを含有することができる。イオントラップ剤としては、例えば、粉末状のビスマス系、アンチモン系、マグネシウム系、アルミニウム系、カルシウム系、チタン系、これらの混合系などを包含する無機化合物が挙げられ、酸化防止剤としては、例えば、ヒンダードフェノール系酸化防止剤などが挙げられる。 In addition, the curable adhesive composition may have other additives such as ion trapping agents, antioxidants, chain transfer agents, sensitizers, tackifiers, thermoplastic resins, fillers, as long as the adhesiveness is not impaired. Agents, flow modifiers, plasticizers, antifoaming agents, and the like. Examples of the ion trapping agent include inorganic compounds including powdered bismuth-based, antimony-based, magnesium-based, aluminum-based, calcium-based, titanium-based, and mixed systems thereof. Examples of the antioxidant include And hindered phenolic antioxidants.
 エポキシ化合物を含有する硬化性接着剤組成物を、偏光フィルム又は保護フィルムの接着面、あるいはこれら双方の接着面に塗工した後、接着剤の塗工された面で貼合し、活性エネルギー線を照射するか又は加熱することにより未硬化の接着剤層を硬化させて、偏光フィルムと保護フィルムとを接着させることができる。接着剤の塗工方法としては、例えば、ドクターブレード、ワイヤーバー、ダイコーター、カンマコーター、グラビアコーターなど、種々の塗工方式が採用できる。 After applying the curable adhesive composition containing the epoxy compound to the adhesive surface of the polarizing film or the protective film, or to the adhesive surface of both of them, it is pasted on the adhesive-coated surface, and active energy rays. The polarizing film and the protective film can be bonded by curing the uncured adhesive layer by irradiating or heating. As an adhesive coating method, for example, various coating methods such as a doctor blade, a wire bar, a die coater, a comma coater, and a gravure coater can be adopted.
 この硬化性接着剤組成物は、基本的には、溶剤を実質的に含まない無溶剤型接着剤として用いることができるが、各塗工方式には各々最適な粘度範囲があるため、粘度調整のために溶剤を含有させてもよい。溶剤は、偏光フィルムの光学性能を低下させることなく、エポキシ化合物をはじめとする各成分を良好に溶解する有機溶剤であることが好ましく、例えば、トルエンに代表される炭化水素類、酢酸エチルに代表されるエステル類などを用いることができる。 This curable adhesive composition can basically be used as a solvent-free adhesive that does not substantially contain a solvent, but each coating system has an optimum viscosity range, so that the viscosity is adjusted. For this purpose, a solvent may be contained. The solvent is preferably an organic solvent that dissolves each component including an epoxy compound well without degrading the optical performance of the polarizing film. For example, hydrocarbons typified by toluene, typified by ethyl acetate, etc. Esters can be used.
 活性エネルギー線の照射により接着剤組成物の硬化を行う場合、活性エネルギー線としては先述した各種のものを用いることができるが、取扱いが容易で、照射光量などの制御もしやすいことから、紫外線が好ましく用いられる。活性エネルギー線、例えば紫外線の照射強度や照射量は、偏光フィルムの偏光度をはじめとする各種光学性能、及び保護フィルムの透明性や位相差特性をはじめとする各種光学性能に影響を及ぼさない範囲で、適度の生産性が保たれるように適宜決定される。 When the adhesive composition is cured by irradiation with active energy rays, the above-mentioned various types of active energy rays can be used, but since the handling is easy and the amount of irradiation light is easy to control, ultraviolet rays are not emitted. Preferably used. Active energy rays such as ultraviolet irradiation intensity and irradiation dose do not affect various optical performance including polarization degree of polarizing film, and various optical performance including transparency and retardation characteristics of protective film. Therefore, it is determined as appropriate so as to maintain an appropriate productivity.
 熱により接着剤組成物の硬化を行う場合は、一般的に知られた方法で加熱することができる。通常は、硬化性接着剤組成物に配合された熱カチオン重合開始剤がカチオン種やルイス酸を発生する温度以上で加熱が行われ、具体的な加熱温度は、例えば50~200℃程度である。 When the adhesive composition is cured by heat, it can be heated by a generally known method. Usually, heating is performed at a temperature higher than the temperature at which the thermal cationic polymerization initiator compounded in the curable adhesive composition generates cationic species and Lewis acid, and the specific heating temperature is, for example, about 50 to 200 ° C. .
[剥離フィルム]
 剥離フィルムは、偏光フィルムに積層した後、所望のタイミングで剥離可能なフィルムである。「剥離可能」とは、偏光フィルムと剥離フィルムとを分離できることを意味する。偏光フィルム及び剥離フィルムを破損又は傷めることなく、剥離できることが好ましい。
 剥離フィルムは、ハンドリング性、透明性、廉価性等に鑑み、例えば、ポリエチレン系樹脂、ポリプロピレン系樹脂のような鎖状ポリオレフィン系樹脂;セルローストリアセテート、セルロースジアセテートのようなセルロースエステル系樹脂;ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレートのようなポリエステル系樹脂;ポリメタクリル酸メチル系樹脂のような(メタ)アクリル系樹脂又はこれらの混合物、共重合物等からなる透明樹脂フィルムであることができる。これらの1種又は2種以上を単層又は多層状に成形したフィルムを剥離フィルムとして用いることもできる。
中でも、ポリエチレンテレフタレート、セルローストリアセテート、ポリメタクリル酸メチル系樹脂からなるフィルムを好適に用いることができる。
[Peeling film]
The release film is a film that can be peeled at a desired timing after being laminated on the polarizing film. “Peelable” means that the polarizing film and the release film can be separated. It is preferable that the polarizing film and the release film can be peeled without being damaged or damaged.
In view of handling properties, transparency, inexpensiveness, and the like, the release film is, for example, a chain polyolefin resin such as polyethylene resin or polypropylene resin; a cellulose ester resin such as cellulose triacetate or cellulose diacetate; or polyethylene terephthalate. And a transparent resin film made of a polyester resin such as polyethylene naphthalate or polybutylene terephthalate; a (meth) acrylic resin such as polymethyl methacrylate resin or a mixture or copolymer thereof. A film in which one or more of these are formed into a single layer or a multilayer can also be used as a release film.
Among these, a film made of polyethylene terephthalate, cellulose triacetate, or polymethyl methacrylate resin can be suitably used.
 第2の工程で、加熱により偏光フィルムと剥離フィルムとの積層に用いる揮発性液体を揮発させるために、保護フィルム及び剥離フィルムの少なくとも一方のフィルムの透湿度は、400g/m・24hr以上であることが好ましく、420g/m・24hr以上であることがより好ましい。透湿度がこの範囲であると、後の第2工程において揮発性液体を効率良く揮発除去させることができるため、生産性をより高めることができる。 In the second step, in order to volatilize the volatile liquid used for laminating the polarizing film and the release film by heating, the moisture permeability of at least one of the protective film and the release film is 400 g / m 2 · 24 hr or more. It is preferable that it is 420 g / m 2 · 24 hr or more. If the moisture permeability is within this range, the volatile liquid can be efficiently volatilized and removed in the subsequent second step, so that productivity can be further improved.
 例えば、保護フィルムとしてセルロース系樹脂フィルムを用いる場合は、剥離フィルムとしては(メタ)アクリル系樹脂フィルムを用いることが好ましく、保護フィルムとしてポリオレフィン系樹脂フィルムを用いる場合は、剥離フィルムがセルロース系樹脂フィルムを用いることが好ましい。 For example, when a cellulose resin film is used as the protective film, a (meth) acrylic resin film is preferably used as the release film. When a polyolefin resin film is used as the protective film, the release film is a cellulose resin film. Is preferably used.
 剥離フィルムの厚みは、例えば5~100μm程度であり、好ましくは10~80μm程度である。 The thickness of the release film is, for example, about 5 to 100 μm, preferably about 10 to 80 μm.
 剥離フィルムは、80℃にて5分間加熱したときの収縮率(加熱収縮率)が0.15%以下であることが好ましく、0.1%以下であることがより好ましい。剥離フィルムの加熱収縮率が大きいと、第2工程での加熱処理において剥離フィルム10にシワが生じやすくなり、これに伴い、片面保護偏光板にシワが生じやすくなる。加熱収縮率が上記範囲内となる樹脂材料の例は、ポリエチレンテレフタレート、セルローストリアセテート、ポリメタクリル酸メチル系樹脂を含む。
 なお、「加熱収縮率が0.15%以下である」とは、MD収縮率及びTD収縮率の双方が0.15%以下であることを意味する。
The release film preferably has a shrinkage rate (heat shrinkage rate) of 0.15% or less, more preferably 0.1% or less when heated at 80 ° C. for 5 minutes. If the heat shrinkage rate of the release film is large, the release film 10 is likely to be wrinkled in the heat treatment in the second step, and accordingly, the single-sided protective polarizing plate is likely to be wrinkled. Examples of the resin material having a heat shrinkage within the above range include polyethylene terephthalate, cellulose triacetate, and polymethyl methacrylate resin.
Note that “the heat shrinkage is 0.15% or less” means that both the MD shrinkage and the TD shrinkage are 0.15% or less.
 剥離フィルムの収縮率は、1辺が剥離フィルムのMD(フィルム長手方向)と平行になるように1辺100mmの正方形の試験片を切り出し、当該試験片の初期寸法A(MDの初期寸法)と、その試験片を80℃の乾熱環境下で5分保持した後の寸法B(MDの寸法)とから、下記式:
 MD寸法変化率(%)=(A-B)/A×100
により、剥離フィルムのMD寸法変化率を算出し、これをMD収縮率とする。同様にして、初期寸法A’(TD(MDと直交する方向)の初期寸法)と、その試験片を80℃の乾熱環境下で5分保持した後の寸法B’(TDの寸法)とから、TD寸法変化率を算出し、これをTD収縮率とする。
The shrinkage rate of the release film was obtained by cutting out a square test piece having a side of 100 mm so that one side was parallel to the MD (film longitudinal direction) of the release film, and the initial dimension A (initial dimension of MD) of the test piece. From the dimension B (MD dimension) after holding the test piece in a dry heat environment at 80 ° C. for 5 minutes, the following formula:
MD dimensional change rate (%) = (AB) / A × 100
Thus, the MD dimensional change rate of the release film is calculated, and this is used as the MD shrinkage rate. Similarly, initial dimension A ′ (initial dimension of TD (direction orthogonal to MD)) and dimension B ′ (dimension of TD) after holding the test piece in a dry heat environment at 80 ° C. for 5 minutes From this, the TD dimensional change rate is calculated, and this is taken as the TD shrinkage rate.
[揮発性液体]
 偏光フィルムと剥離フィルムとの間の積層に用いる揮発性液体は、第2工程での加熱処理によって揮発し得る液体であり、好ましくは偏光フィルムに悪影響を与えない液体である。悪影響を与えないのであれば、帯電防止剤等の添加剤を添加してもよい。本発明において使用し得る揮発性液体の例を挙げれば、例えば、水や、水と親水性液体との混合物等である。親水性液体は、第2工程での加熱処理後に残留しないものであることが好ましく、例えば、メタノール、エタノール、1-ブタノール、テトロヒドロフラン、アセトン、アセトニトリル、N,N-ジメチルホルムアミド、ジメチルスルホキシド、ギ酸、酢酸等が挙げられる。
[Volatile liquid]
The volatile liquid used for lamination between the polarizing film and the release film is a liquid that can be volatilized by the heat treatment in the second step, and preferably a liquid that does not adversely affect the polarizing film. An additive such as an antistatic agent may be added as long as it does not have an adverse effect. Examples of the volatile liquid that can be used in the present invention include water and a mixture of water and a hydrophilic liquid. The hydrophilic liquid is preferably one that does not remain after the heat treatment in the second step. For example, methanol, ethanol, 1-butanol, tetrohydrofuran, acetone, acetonitrile, N, N-dimethylformamide, dimethyl sulfoxide, Examples include formic acid and acetic acid.
 本工程では、長尺の偏光フィルムのロール(巻回品)、長尺の保護フィルムのロール及び長尺の剥離フィルムのロールを用意し、これらを連続的に巻き出しながらフィルム搬送を行う。各フィルムは、それらの長手方向が搬送方向となるように搬送される。フィルムの搬送経路には適宜、走行するフィルムを支持するガイドロールが設けられる。通常、偏光フィルムの搬送方向(フィルム長手方向)と保護フィルムの搬送方向(フィルム長手方向)と剥離フィルムの搬送方向(フィルム長手方向)とは平行である。
 本工程では、偏光フィルムの一方の面に接着剤層を介して保護フィルムを貼合するとともに、偏光フィルムのもう一方の面に、揮発性液体を介して剥離フィルムを積層する。保護フィルムの貼合及び剥離フィルムの積層は、保護フィルム、偏光フィルム及び剥離フィルムを、それらの長手方向(搬送方向)が平行となるように重ねて一対の貼合ロール間に通し、積層されたフィルムを上下から押圧することによって行うことができる。
 この際、一対の貼合ロール間に通す手前で、偏光フィルムと保護フィルムとの間に接着剤を、偏光フィルムと剥離フィルムとの間に揮発性液体を塗布する。
In this step, a long polarizing film roll (rolled product), a long protective film roll, and a long release film roll are prepared, and the film is conveyed while continuously unwinding them. Each film is conveyed so that the longitudinal direction thereof is the conveyance direction. A guide roll for supporting the traveling film is appropriately provided in the film conveyance path. Usually, the conveyance direction (film longitudinal direction) of a polarizing film, the conveyance direction (film longitudinal direction) of a protective film, and the conveyance direction (film longitudinal direction) of a peeling film are parallel.
In this step, a protective film is bonded to one surface of the polarizing film via an adhesive layer, and a release film is laminated to the other surface of the polarizing film via a volatile liquid. The lamination of the protective film and the lamination of the release film were performed by laminating the protective film, the polarizing film, and the release film so that their longitudinal directions (conveying directions) were parallel and passing between the pair of lamination rolls. This can be done by pressing the film from above and below.
At this time, an adhesive is applied between the polarizing film and the protective film, and a volatile liquid is applied between the polarizing film and the release film before passing between the pair of bonding rolls.
 ここでは、保護フィルム、偏光フィルム及び剥離フィルムを同時に貼合(積層)する例を説明したが、もちろん保護フィルムと偏光フィルムとの貼合、及び剥離フィルムと偏光フィルムとの積層は、それぞれを逐次的に行ってもよい。 Here, an example in which the protective film, the polarizing film, and the release film are bonded (laminated) at the same time has been described. Of course, the bonding of the protective film and the polarizing film and the lamination of the release film and the polarizing film are sequentially performed. It may be done automatically.
 従来の片面保護偏光板の製造方法においては、偏光フィルム面に特段の層を介在させることなく直接剥離フィルムを積層していたことに起因して、片面保護偏光板を製造する工程中に、偏光フィルムが破断しやすいという問題があった。偏光フィルムの片面に水系接着剤層を介して保護フィルムが貼合される場合、片面保護偏光板を得るためには、水系接着剤層を乾燥させる工程が必要になるが、従来の製造方法においては、とりわけこの乾燥工程において偏光フィルムの破断が生じやすかった。 In the conventional method for producing a single-sided protective polarizing plate, in the process of producing a single-sided protective polarizing plate, the polarizing film is directly laminated without interposing a special layer on the polarizing film surface. There was a problem that the film was easily broken. When a protective film is bonded to one side of a polarizing film via a water-based adhesive layer, in order to obtain a single-sided protective polarizing plate, a step of drying the water-based adhesive layer is required. In particular, the polarizing film was apt to break during this drying step.
 これに対して、偏光フィルムと剥離フィルムとの間に揮発性液体からなる層を介在させて剥離フィルムを偏光フィルムに積層する製造方法によれば、接着剤や揮発性液体を乾燥・揮発させる工程(第2工程)においても、偏光フィルムの破断を効果的に抑制することができる。また、偏光フィルムと剥離フィルムとの間に揮発性液体を介在させることは、片面保護偏光板を製造する工程中に片面保護偏光板にシワが生じることを抑制する効果もある。 On the other hand, according to the manufacturing method in which a layer made of a volatile liquid is interposed between the polarizing film and the release film and the release film is laminated on the polarizing film, the process of drying and volatilizing the adhesive and the volatile liquid Also in (2nd process), the fracture | rupture of a polarizing film can be suppressed effectively. Moreover, interposing a volatile liquid between a polarizing film and a peeling film also has an effect which suppresses that a wrinkle arises in a single-sided protective polarizing plate during the process of manufacturing a single-sided protective polarizing plate.
 偏光フィルムに保護フィルムを貼合するにあたり、偏光フィルム及び/又は保護フィルムの貼合面には、接着性を向上させるために、プラズマ処理、コロナ処理、紫外線照射処理、フレーム(火炎)処理、ケン化処理のような易接着処理を行うことができる。これらの中では、プラズマ処理、コロナ処理又はケン化処理を行うことが好ましい。例えば保護フィルムが環状ポリオレフィン系樹脂からなる場合には、保護フィルムの貼合面にプラズマ処理やコロナ処理を施すことができる。また、保護フィルムがセルロースエステル系樹脂からなる場合には、保護フィルムの貼合面にケン化処理を施すことができる。ケン化処理としては、水酸化ナトリウムや水酸化カリウムのようなアルカリ水溶液に浸漬する方法が挙げられる。また、剥離フィルムに対しても揮発性液体の濡れ性を向上させるために保護フィルムと同様の処理を行うことも有用である。 In bonding a protective film to a polarizing film, the bonding surface of the polarizing film and / or the protective film has a plasma treatment, a corona treatment, an ultraviolet irradiation treatment, a frame (flame) treatment, a Ken to improve adhesion. An easy adhesion treatment such as a crystallization treatment can be performed. Among these, it is preferable to perform plasma treatment, corona treatment or saponification treatment. For example, when the protective film is made of a cyclic polyolefin-based resin, the bonding surface of the protective film can be subjected to plasma treatment or corona treatment. Moreover, when a protective film consists of cellulose-ester-type resin, a saponification process can be given to the bonding surface of a protective film. Examples of the saponification treatment include a method of immersing in an alkaline aqueous solution such as sodium hydroxide or potassium hydroxide. In addition, it is also useful to perform the same treatment as the protective film in order to improve the wettability of the volatile liquid to the release film.
 本発明で水系接着剤もしくは加熱により硬化するエポキシ化合物を含有する硬化性接着剤を用いる場合は、次の第2工程で揮発性液体を揮発させるとともに接着剤層を乾燥または硬化させることが好ましい。また、活性エネルギー線の照射により硬化する硬化性接着剤を用いる場合には、第2工程の前に活性エネルギー線を照射し硬化させることが好ましい。 In the present invention, when using a water-based adhesive or a curable adhesive containing an epoxy compound that is cured by heating, it is preferable to volatilize the volatile liquid and dry or cure the adhesive layer in the next second step. Moreover, when using the curable adhesive hardened | cured by irradiation of an active energy ray, it is preferable to irradiate and harden an active energy ray before a 2nd process.
〔2〕第2の工程
本工程は、揮発性液体を揮発除去する工程である。揮発性液体は、加熱により揮発除去されることが好ましい。この加熱処理によって、剥離フィルムは、偏光フィルムの表面に直接、適度な密着力をもって積層される。
 乾燥温度は、好ましくは30~90℃である。30℃未満であると、乾燥にかかる時間が長く外観の不良が発生するおそれがある。また乾燥温度が90℃を超えると、熱によって偏光フィルムの偏光性能が劣化するおそれがある。乾燥時間は10~1000秒程度とすることができ、生産性の観点からは、好ましくは60~750秒、より好ましくは150~600秒である。
[2] Second Step This step is a step for removing volatile liquids by volatilization. The volatile liquid is preferably removed by volatilization by heating. By this heat treatment, the release film is laminated directly on the surface of the polarizing film with an appropriate adhesion.
The drying temperature is preferably 30 to 90 ° C. If it is less than 30 ° C., it takes a long time to dry, and there is a possibility that an appearance defect may occur. If the drying temperature exceeds 90 ° C., the polarizing performance of the polarizing film may be deteriorated by heat. The drying time can be about 10 to 1000 seconds, and from the viewpoint of productivity, it is preferably 60 to 750 seconds, and more preferably 150 to 600 seconds.
 偏光フィルムに揮発性液体からなる層を介して剥離フィルムを積層することにより、本工程における加熱温度を、例えば60℃超90℃以下程度まで高くできる。すなわち、加熱温度を高く設定しても、偏光フィルムの破断を抑制できることに加えて、当該高温加熱によって、偏光フィルムの収縮率が小さく、従って寸法安定性の高い片面保護偏光板を得ることができる。片面保護偏光板の収縮率を小さくすることにより、この偏光板を用いて液晶パネルを作製したときに当該液晶パネルの反りを低減することができる。従来においては、偏光フィルムが破断しやすいことから、乾燥温度を高く設定することができず、低収縮率の片面保護偏光板を得ることが難しかった。 By laminating the release film via a layer made of a volatile liquid on the polarizing film, the heating temperature in this step can be increased to, for example, about 60 ° C. or more and about 90 ° C. or less. That is, even if the heating temperature is set high, in addition to being able to suppress the breakage of the polarizing film, the high-temperature heating can provide a single-side protective polarizing plate with a small shrinkage rate of the polarizing film and thus high dimensional stability. . By reducing the shrinkage rate of the single-side protective polarizing plate, the warpage of the liquid crystal panel can be reduced when a liquid crystal panel is produced using the polarizing plate. Conventionally, since the polarizing film is easily broken, the drying temperature cannot be set high, and it has been difficult to obtain a single-side protective polarizing plate having a low shrinkage rate.
 揮発性液体を揮発除去した後、保護フィルム、偏光フィルムおよび剥離フィルムをこの順に有する積層体を巻き取り、ロールにすることが好ましい。 After volatilizing and removing the volatile liquid, it is preferable to roll up a laminate having a protective film, a polarizing film, and a release film in this order to form a roll.
 第2工程の後、室温以上の温度で少なくとも半日、通常は数日間以上の養生を施して十分な接着強度を得てもよい。かかる養生は、典型的には、ロール状に巻き取られた状態で行われる。好ましい養生温度は、30~50℃の範囲であり、さらに好ましくは35~45℃である。養生温度が50℃を超えると、ロール巻き状態において、いわゆる「巻き締まり」が起こりやすくなる。なお、養生時の湿度は、特に限定されないが、相対湿度が0~70%RH程度の範囲となるように選択されることが好ましい。養生時間は、通常1~10日程度、好ましくは2~7日程度である。 After the second step, sufficient adhesive strength may be obtained by performing curing at a temperature of room temperature or higher for at least half a day, usually several days or longer. Such curing is typically performed in a state of being wound into a roll. The preferable curing temperature is in the range of 30 to 50 ° C, more preferably 35 to 45 ° C. When the curing temperature exceeds 50 ° C., so-called “roll tightening” is likely to occur in the roll winding state. The humidity during curing is not particularly limited, but is preferably selected so that the relative humidity is in the range of about 0 to 70% RH. The curing time is usually about 1 to 10 days, preferably about 2 to 7 days.
 養生した後で、さらに保管工程を設けてもよい。保管期間は通常1日以上であり、7日以上であってもよく、1ヶ月以上であってもよい。また通常、保管期間は1年以下である。後述のとおり、保管期間が1ヶ月以上の場合に、本発明は顕著に効果を奏する。保管温度は例えば10~30℃の範囲であり、相対湿度は例えば0~70%RHである。 After curing, an additional storage process may be provided. The storage period is usually 1 day or longer, 7 days or longer, or 1 month or longer. Usually, the storage period is one year or less. As will be described later, the present invention is remarkably effective when the storage period is one month or longer. The storage temperature is, for example, in the range of 10-30 ° C., and the relative humidity is, for example, 0-70% RH.
〔3〕第3の工程
 本工程は、積層体から剥離フィルムを剥離する工程である。第2工程で剥離フィルムは適度な密着力を持って積層されるが、第2工程から第3工程までの保管期間が7日以上の場合、特に第2工程から第3工程までの保管期間が1か月以上となる場合には、偏光フィルムと剥離フィルムの密着力が上昇し剥離が困難となることがある。
[3] Third Step This step is a step of peeling the release film from the laminate. In the second step, the release film is laminated with an appropriate adhesion, but when the storage period from the second step to the third step is 7 days or more, especially the storage period from the second step to the third step is When it becomes 1 month or more, the adhesive force of a polarizing film and a peeling film rises, and peeling may become difficult.
 本工程では、この問題を解決するために、剥離点の後における剥離フィルムの搬送方向が、積層体の搬送方向に対して略水平となるようにして剥離フィルムの剥離を行う。剥離点の後における剥離フィルムの搬送方向と、積層体の搬送方向とのなす角度(搬送角度変化)が30°以内となるようにするのが好ましい。搬送角度変化は、15°以内となるように行うのがより好ましく、5°以内となるように行うのがさらに好ましい。図1を参照すると、本発明で言う搬送角度変化とは、剥離点31前の積層体の搬送方向13と剥離点31後の剥離フィルムの搬送方向14とのなす角20である。 In this step, in order to solve this problem, the release film is peeled so that the transport direction of the peel film after the peel point is substantially horizontal to the transport direction of the laminate. It is preferable that the angle (change in transport angle) formed by the transport direction of the release film after the release point and the transport direction of the laminate is within 30 °. The change in the transport angle is more preferably performed within 15 °, and further preferably performed within 5 °. Referring to FIG. 1, the conveyance angle change referred to in the present invention is an angle 20 formed by the conveyance direction 13 of the laminate before the peeling point 31 and the conveyance direction 14 of the release film after the peeling point 31.
 また、剥離点の後における偏光フィルム及び保護フィルムの搬送方向と、積層体の搬送方向とのなす角度(片面保護偏光板の搬送角度変化)は、15°以上とすることが好ましく、30°以上とすることがより好ましい。このようにすることで、フィルム搬送時の保護フィルムのばたつきによる剥離不良の発生を抑えることができる。図1を参照すると、本発明で言う片面保護偏光板の搬送角度変化とは、剥離点31前の積層体の搬送方向13と剥離点31後の片面保護偏光板の搬送方向15とのなす角21である In addition, the angle formed by the transport direction of the polarizing film and the protective film after the peeling point and the transport direction of the laminate (change in the transport angle of the single-sided protective polarizing plate) is preferably 15 ° or more, and 30 ° or more. More preferably. By doing in this way, generation | occurrence | production of the peeling defect by flapping of the protective film at the time of film conveyance can be suppressed. Referring to FIG. 1, the conveyance angle change of the single-sided protective polarizing plate referred to in the present invention is an angle formed by the conveyance direction 13 of the laminate before the peeling point 31 and the conveyance direction 15 of the single-sided protective polarizing plate after the peeling point 31. 21
 すなわち、上記のとおり第3の工程は、積層体から片面保護偏光板を引き起こして、剥離フィルムを剥離することが好ましい。 That is, as described above, it is preferable that the third step causes the single-sided protective polarizing plate to be peeled off from the laminate.
 メカニズムの詳細は不明であるが、剥離点の前後で剥離フィルムの搬送角度が15°を超えると剥離力が0.5N/25mm超となりやすい。第3の工程における偏光フィルムと剥離フィルムとの間の剥離力は、例えば0.01~0.5N/25mmであり、好ましくは0.01~0.2N/25mm、より好ましくは0.01~0.15N/25mmである。剥離力が0.01N/25mm未満であると、偏光フィルムと剥離フィルムとの密着力が小さいため、剥離フィルムの部分的な剥がれが生じたり、片面保護偏光板をロール状にした状態で保管中に偏光フィルムが延伸方向に沿って(延伸方向と平行方向に)裂けたりすることがある。また、剥離力が0.5N/25mmを超えると、偏光フィルムから剥離フィルムを剥離するのが困難となるため、剥離フィルムを剥離する際に偏光フィルムが延伸方向に沿って裂けることがある。 The details of the mechanism are unknown, but if the peel film transport angle exceeds 15 ° before and after the peel point, the peel force tends to exceed 0.5 N / 25 mm. The peeling force between the polarizing film and the release film in the third step is, for example, 0.01 to 0.5 N / 25 mm, preferably 0.01 to 0.2 N / 25 mm, more preferably 0.01 to 0.15 N / 25 mm. When the peeling force is less than 0.01 N / 25 mm, the adhesive strength between the polarizing film and the peeling film is small, so that the peeling film partially peels off or is stored in a state where the single-sided protective polarizing plate is rolled. In some cases, the polarizing film may tear along the stretching direction (in a direction parallel to the stretching direction). Moreover, since it will become difficult to peel a peeling film from a polarizing film when peeling force exceeds 0.5 N / 25mm, when peeling a peeling film, a polarizing film may tear along a extending direction.
 ここで、上記剥離力は、剥離フィルムが積層された片面保護偏光板を25mm幅にカットして測定サンプルを取得し、株式会社島津製作所製の精密万能試験機「オートグラフAGS-50NX」を用いて測定できる。片面保護偏光板の搬送角度を変化させるときには、剥離フィルム面をガラスに固定して(図1における積層体の搬送方向13と剥離フィルムの搬送方向14とのなす角度20が0°に相当)、片面保護偏光板を掴み、第3の工程で採用する搬送角度変化と同じ角度で剥がすときの力を測定することにより求められる。 Here, the peel force is obtained by cutting a single-side protective polarizing plate on which a release film is laminated to a width of 25 mm, obtaining a measurement sample, and using a precision universal testing machine “Autograph AGS-50NX” manufactured by Shimadzu Corporation. Can be measured. When changing the transport angle of the single-sided protective polarizing plate, fix the release film surface to glass (the angle 20 formed by the transport direction 13 of the laminate and the transport direction 14 of the release film in FIG. 1 corresponds to 0 °), It is obtained by measuring the force when the single-sided protective polarizing plate is gripped and peeled off at the same angle as the conveyance angle change employed in the third step.
 剥離フィルムの剥離角度(図2における積層体の搬送方向13と剥離フィルムの搬送方向14とのなす角度20に相当)を変化させるときには片面保護偏光板をガラスに固定し、剥離フィルムを掴み、第3の工程で採用する搬送角度変化と同じ角度で剥がすときの力を測定することにより求められる。 When changing the peel angle of the release film (corresponding to the angle 20 between the transport direction 13 of the laminate and the transport direction 14 of the release film in FIG. 2), the single-sided protective polarizing plate is fixed to the glass, the release film is gripped, It is calculated | required by measuring the force when peeling at the same angle as the conveyance angle change employ | adopted at 3 processes.
 剥離フィルムの搬送方向、又は片面保護偏光板の搬送方向が、いずれも積層体の搬送方向に対して水平でない場合、積層フィルムの角度及び剥離フィルムの角度を固定する治具を使用することにより、剥離力の測定を行うことができる。 When the transport direction of the release film or the transport direction of the single-sided protective polarizing plate is not horizontal with respect to the transport direction of the laminate, by using a jig that fixes the angle of the laminate film and the angle of the release film, The peel force can be measured.
 剥離力の測定は、剥離速度100mm/minで温度23±2℃、相対湿度50±5%の環境下で行われる。 The measurement of peeling force is performed in an environment where the peeling speed is 100 mm / min, the temperature is 23 ± 2 ° C., and the relative humidity is 50 ± 5%.
〔4〕その他の工程
 本発明の片面保護偏光板は、偏光フィルム面に粘着剤層を形成しそのまま液晶セルに貼り合わせる形態で使用してもよい。また、偏光板の両面に保護フィルムが貼合された両面保護偏光板の製造中間体としても好適に利用可能である。
[4] Other steps The single-sided protective polarizing plate of the present invention may be used in a form in which a pressure-sensitive adhesive layer is formed on the polarizing film surface and bonded to the liquid crystal cell as it is. Moreover, it can utilize suitably also as a manufacture intermediate body of the double-sided protective polarizing plate by which the protective film was bonded on both surfaces of the polarizing plate.
 粘着剤としては、従来公知の適宜の粘着剤を用いることができ、例えば(メタ)アクリル系粘着剤、ウレタン系粘着剤、シリコーン系粘着剤、ポリエステル系粘着剤、ポリアミド系粘着剤、ポリエーテル系粘着剤、フッ素系粘着剤、ゴム系粘着剤などが挙げられる。
中でも、透明性、粘着力、信頼性、リワーク性などの観点から、(メタ)アクリル系粘着剤が好ましく用いられる。粘着剤は、粘着剤を、例えば有機溶剤溶液の形態で用い、それを偏光フィルム5上にダイコーターやグラビアコーター等によって塗工し、乾燥させる方法によって設けることができる他、離型処理が施されたプラスチックフィルム(セパレートフィルムと呼ばれる。)上に形成されたシート状粘着剤を偏光フィルム5に転写する方法によっても設けることができる。いずれの方法をとっても、粘着剤の表面にセパレートフィルムが貼着されていることが好ましい。粘着剤の厚みは、例えば2~40μmであることができる。
As the pressure-sensitive adhesive, a conventionally known appropriate pressure-sensitive adhesive can be used. For example, a (meth) acrylic pressure-sensitive adhesive, a urethane-based pressure-sensitive adhesive, a silicone-based pressure-sensitive adhesive, a polyester-based pressure-sensitive adhesive, a polyamide-based pressure-sensitive adhesive, or a polyether-based pressure-sensitive adhesive. Examples thereof include an adhesive, a fluorine-based adhesive, and a rubber-based adhesive.
Of these, a (meth) acrylic pressure-sensitive adhesive is preferably used from the viewpoints of transparency, adhesive strength, reliability, reworkability, and the like. The pressure-sensitive adhesive can be provided by a method in which the pressure-sensitive adhesive is used, for example, in the form of an organic solvent solution, which is coated on the polarizing film 5 with a die coater, a gravure coater, or the like and dried. The sheet-like pressure-sensitive adhesive formed on the plastic film (referred to as a separate film) can also be provided by a method of transferring to the polarizing film 5. Whichever method is used, it is preferable that a separate film is adhered to the surface of the pressure-sensitive adhesive. The thickness of the pressure-sensitive adhesive can be 2 to 40 μm, for example.
 片面保護偏光板の偏光フィルム面にもう1つの保護フィルムを積層する場合にも、上記で説明した接着剤や粘着剤を用いることができる。ここで用いる保護フィルムは、上記の片面保護偏光板で使用した保護フィルムと同様のものでも異なるものでもよい。また、位相差フィルムや輝度向上フィルムのような機能性フィルムとすることも有用な技術である。 Also when laminating another protective film on the polarizing film surface of the single-sided protective polarizing plate, the adhesive or pressure-sensitive adhesive described above can be used. The protective film used here may be the same as or different from the protective film used in the single-side protective polarizing plate. It is also a useful technique to make a functional film such as a retardation film or a brightness enhancement film.
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらの例によって規定されるものではない。例中、含有量および使用量を表す%および部は、特記ないかぎり重量基準である。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited by these examples. In the examples,% and parts representing the content and the amount used are based on weight unless otherwise specified.
(1)厚さの測定:
 株式会社ニコン製のデジタルマイクロメーター「MH-15M」を用いて測定した。
(1) Measurement of thickness:
Measurement was performed using a digital micrometer “MH-15M” manufactured by Nikon Corporation.
(2)剥離力の測定:
 株式会社島津製作所製の精密万能試験機「オートグラフAG1-S」を用いて測定した。剥離力の測定は、剥離速度100mm/minで温度23±2℃、相対湿度50±5%の環境下で行った。
(2) Measurement of peeling force:
Measurement was performed using a precision universal testing machine “Autograph AG1-S” manufactured by Shimadzu Corporation. The peeling force was measured in an environment where the peeling speed was 100 mm / min, the temperature was 23 ± 2 ° C., and the relative humidity was 50 ± 5%.
(3)透湿度の測定:
 JIS Z 0208に基づき透湿度を測定した。温湿度条件は、40度90%RHとした。
(3) Measurement of moisture permeability:
The moisture permeability was measured based on JIS Z 0208. The temperature and humidity conditions were 40 degrees and 90% RH.
[製造例1]偏光フィルムの作製
 厚み20μmのポリビニルアルコールフィルム(平均重合度約2400、ケン化度99.9モル%以上)を、乾式延伸により約4倍に一軸延伸し、さらに緊張状態を保ったまま、40℃の純水に40秒間浸漬した後、ヨウ素/ヨウ化カリウム/水の重量比が0.052/5.7/100の水溶液に28℃で30秒間浸漬して染色処理を行った。その後、ヨウ化カリウム/ホウ酸/水の重量比が11.0/6.2/100の水溶液に70℃で120秒間浸漬した。引き続き、8℃の純水で15秒間洗浄した後、300Nの張力で保持した状態で、60℃で50秒間、次いで75℃で20秒間乾燥して、ポリビニルアルコールフィルムにヨウ素が吸着配向している厚み7μmの偏光フィルムを得た。
[Production Example 1] Production of polarizing film A polyvinyl alcohol film having a thickness of 20 µm (average polymerization degree of about 2400, saponification degree of 99.9 mol% or more) is uniaxially stretched by about 4 times by dry stretching, and further maintained in a tension state. The sample was immersed in pure water at 40 ° C. for 40 seconds, and then immersed in an aqueous solution having an iodine / potassium iodide / water weight ratio of 0.052 / 5.7 / 100 at 28 ° C. for 30 seconds to perform a dyeing treatment. It was. Thereafter, it was immersed in an aqueous solution having a weight ratio of potassium iodide / boric acid / water of 11.0 / 6.2 / 100 at 70 ° C. for 120 seconds. Subsequently, after washing with pure water at 8 ° C. for 15 seconds, the film is dried at 60 ° C. for 50 seconds and then at 75 ° C. for 20 seconds while being held at a tension of 300 N, and iodine is adsorbed and oriented on the polyvinyl alcohol film. A polarizing film having a thickness of 7 μm was obtained.
[製造例2]水系接着剤の作製
 水100重量部に対し、カルボキシル基変性ポリビニルアルコール〔株式会社クラレから入手した商品名「KL-318」〕を3重量部溶解し、その水溶液に水溶性エポキシ樹脂であるポリアミドエポキシ系添加剤〔田岡化学工業株式会社から入手した商品名「スミレーズレジン(登録商標) 650(30)」、固形分濃度30重量%の水溶液〕を1.5重量部添加して、水系接着剤を調製した。
[Production Example 2] Preparation of aqueous adhesive 3 parts by weight of a carboxyl group-modified polyvinyl alcohol [trade name “KL-318” obtained from Kuraray Co., Ltd.] was dissolved in 100 parts by weight of water, and a water-soluble epoxy was dissolved in the aqueous solution. 1.5 parts by weight of a resin-based polyamide epoxy additive [trade name “Smileise Resin (registered trademark) 650 (30)” obtained from Taoka Chemical Co., Ltd., aqueous solution with a solid content of 30 wt%] was added. A water-based adhesive was prepared.
[保護フィルムA、B及び剥離フィルムC、D]
 以下の4種類の保護フィルム及び剥離フィルムを用意した。
保護フィルムA:コニカミノルタ株式会社製のトリアセチルセルロースフィルムをケン化処理したフィルム;KC2UAW(厚み25μm、透湿度=1207g/m・24hr)
保護フィルムB:日本ゼオン株式会社製の環状ポリオレフィン系樹脂フィルム;ZF14-013(厚み13μm透湿度=30g/m・24hr)
剥離フィルムC:富士フイルム株式会社製のトリアセチルセルロースフィルム;TD80UL(厚み80μm透湿度=502g/m・24hr)
剥離フィルムD:住友化学株式会社製のポリメタクリル酸メチル樹脂フィルム(厚み80μm、透湿度=50g/m・24hr)
[Protective films A and B and release films C and D]
The following four types of protective films and release films were prepared.
Protective film A: Film obtained by saponifying a triacetylcellulose film manufactured by Konica Minolta, Inc .; KC2UAW (thickness 25 μm, moisture permeability = 1207 g / m 2 · 24 hr)
Protective film B: Cyclic polyolefin resin film manufactured by Zeon Corporation; ZF14-013 (thickness 13 μm, moisture permeability = 30 g / m 2 · 24 hr)
Peeling film C: Triacetyl cellulose film manufactured by FUJIFILM Corporation; TD80UL (thickness 80 μm, moisture permeability = 502 g / m 2 · 24 hr)
Release film D: Polymethyl methacrylate resin film manufactured by Sumitomo Chemical Co., Ltd. (thickness 80 μm, moisture permeability = 50 g / m 2 · 24 hr)
[実施例1]片面保護偏光板1の作製
 製造例1で得られた偏光フィルムを連続的に搬送するとともに保護フィルムAのロールから保護フィルムAを連続的に巻出し、また、剥離フィルムDのロールから剥離フィルムDを連続で巻きだした。次いで、偏光フィルムと保護フィルムAとの間に水系接着剤を注入するとともに、偏光フィルムと剥離フィルムDとの間に純水を注入し、貼合ロールに通して保護フィルムA/水系接着剤層/偏光フィルム/純水/剥離フィルムDからなる積層フィルムとした(第1工程)。引き続き、積層フィルムを搬送し、乾燥炉で80℃、300秒の加熱処理を行うことにより、水系接着剤層の乾燥とともに、偏光フィルムと剥離フィルムDの間に介在する純水を揮発除去して、剥離フィルム付片面保護偏光板1を得た(第2工程)。剥離フィルム付片面保護偏光板1の製造中、偏光フィルムの破断及び偏光板のシワは生じなかった。こうして、作製した剥離フィルム付片面保護偏光板1のロールを温度23℃湿度55%の環境下に3ヶ月保管した。
[Example 1] Production of single-sided protective polarizing plate 1 The polarizing film obtained in Production Example 1 was continuously conveyed and the protective film A was continuously unwound from the roll of the protective film A. The release film D was continuously unwound from the roll. Next, a water-based adhesive is injected between the polarizing film and the protective film A, and pure water is injected between the polarizing film and the release film D, passing through a bonding roll, and the protective film A / water-based adhesive layer. It was set as the laminated film consisting of / polarizing film / pure water / release film D (first step). Subsequently, the laminated film is transported and heated at 80 ° C. for 300 seconds in a drying furnace to volatilize and remove pure water intervening between the polarizing film and the release film D while drying the aqueous adhesive layer. And the single-sided protective polarizing plate 1 with a peeling film was obtained (2nd process). During the production of the single-side protective polarizing plate 1 with a release film, the polarizing film was not broken and the polarizing plate was not wrinkled. Thus, the roll of the produced single-sided protective polarizing plate 1 with a release film was stored in an environment of a temperature of 23 ° C. and a humidity of 55% for 3 months.
 保管の後、剥離フィルム付片面保護偏光板1から剥離フィルムDを剥離する際に、剥離点の前後の剥離フィルムDの搬送角度変化を0°として剥離フィルムDを剥離した。剥離力は、0.33N/25mmであり、剥離に問題はなかった。 After storage, when the release film D was peeled from the single-sided protective polarizing plate 1 with a release film, the release film D was peeled with the change in the transport angle of the release film D before and after the release point as 0 °. The peeling force was 0.33 N / 25 mm, and there was no problem in peeling.
[実施例2]
 実施例1と同様に片面保護偏光板1を作製し、ロールに巻き取って温度23℃湿度55%の環境下に3ヶ月保管した。保管の後、剥離フィルム付片面保護偏光板1から剥離フィルムDを剥離する際に、剥離点の前後の剥離フィルムの搬送角度変化を3°として剥離フィルムDを剥離した。剥離力は、0.35N/25mmであり、剥離に問題はなかった。
[Example 2]
A single-sided protective polarizing plate 1 was prepared in the same manner as in Example 1, wound up on a roll, and stored for 3 months in an environment having a temperature of 23 ° C. and a humidity of 55%. When the release film D was peeled from the single-sided protective polarizing plate 1 with a release film after storage, the release film D was peeled off with the change in the transport angle of the release film before and after the release point being 3 °. The peeling force was 0.35 N / 25 mm, and there was no problem in peeling.
[実施例3]
 実施例1と同様に片面保護偏光板1を作製し、ロールに巻き取って温度23℃湿度55%の環境下に3ヶ月保管した。保管の後、剥離フィルム付片面保護偏光板1から剥離フィルムDを剥離する際に、剥離点の前後の剥離フィルムの搬送角度変化を10°として剥離フィルムDを剥離した。剥離力は0.42N/25mmであり、剥離でのジッピングが発生したものの剥離可能であった。
[Example 3]
A single-sided protective polarizing plate 1 was prepared in the same manner as in Example 1, wound up on a roll, and stored for 3 months in an environment having a temperature of 23 ° C. and a humidity of 55%. When the release film D was peeled from the single-sided protective polarizing plate 1 with a release film after storage, the release film D was peeled off with the change in the transport angle of the release film before and after the release point as 10 °. The peeling force was 0.42 N / 25 mm, and although peeling occurred during the peeling, the peeling was possible.
[比較例1]
 実施例1と同様に片面保護偏光板1を作製し、ロールに巻き取って温度23℃湿度55%の環境下に3ヶ月保管した。保管の後、剥離フィルム付片面保護偏光板1から剥離フィルムDを剥離する際に、剥離点の前後の剥離フィルムの搬送角度変化を90°として剥離フィルムDを剥離した。剥離力は、1.36N/25mmであり、剥離が困難であった。
[Comparative Example 1]
A single-sided protective polarizing plate 1 was prepared in the same manner as in Example 1, wound up on a roll, and stored for 3 months in an environment having a temperature of 23 ° C. and a humidity of 55%. After the storage, when the release film D was peeled from the single-sided protective polarizing plate 1 with the release film, the release film D was peeled at 90 ° as the change in the transport angle of the release film before and after the release point. The peeling force was 1.36 N / 25 mm, and peeling was difficult.
[実施例4]片面保護偏光板2の作製
 製造例1で得られた偏光フィルムを連続的に搬送するとともに保護フィルムBのロールから保護フィルムBを連続的に巻出し、また、剥離フィルムCのロールから剥離フィルムCを連続で巻きだした。次いで、偏光フィルムと保護フィルムBとの間に水系接着剤を注入するとともに、偏光フィルムと剥離フィルムCとの間に純水を注入し、貼合ロールに通して保護フィルムB/水系接着剤層/偏光フィルム/純水/剥離フィルムCからなる積層フィルムとした(第1工程)。引き続き、積層フィルムを搬送し、乾燥炉で80℃、300秒の加熱処理を行うことにより、水系接着剤層の乾燥とともに、偏光フィルムと剥離フィルムCの間に介在する純水を揮発除去して、剥離フィルム付片面保護偏光板2を得た(第2工程)。剥離フィルム付片面保護偏光板2の製造中、偏光フィルムの破断及び偏光板のシワは生じなかった。こうして、作製した剥離フィルム付片面保護偏光板2のロールを温度23℃湿度55%の環境下に3ヶ月保管した。
[Example 4] Production of single-sided protective polarizing plate 2 The polarizing film obtained in Production Example 1 was continuously conveyed and the protective film B was continuously unwound from the roll of the protective film B. The release film C was continuously unwound from the roll. Next, a water-based adhesive is injected between the polarizing film and the protective film B, and pure water is injected between the polarizing film and the release film C, and the protective film B / water-based adhesive layer is passed through a bonding roll. It was set as the laminated film consisting of / polarizing film / pure water / release film C (first step). Subsequently, the laminated film is transported and heated at 80 ° C. for 300 seconds in a drying furnace to volatilize and remove the pure water intervening between the polarizing film and the release film C along with drying of the aqueous adhesive layer. And the single-sided protective polarizing plate 2 with a peeling film was obtained (2nd process). During the production of the single-sided protective polarizing plate 2 with a release film, the polarizing film was not broken and the polarizing plate was not wrinkled. Thus, the roll of the produced single-sided protective polarizing plate 2 with a release film was stored in an environment of a temperature of 23 ° C. and a humidity of 55% for 3 months.
 保管の後、剥離フィルム付片面保護偏光板2から剥離フィルムCを剥離する際に、剥離点の前後の剥離フィルムC搬送角度変化を0°として剥離フィルムCを剥離した。剥離力は0.1N/25mmであり、剥離に問題はなかった。 After storage, when the release film C was peeled from the single-side protective polarizing plate 2 with a release film, the release film C was peeled off with the change in the transport angle of the release film C before and after the release point being 0 °. The peeling force was 0.1 N / 25 mm, and there was no problem in peeling.
[実施例5]
 実施例4と同様に片面保護偏光板2を作製し、ロールに巻き取って温度23℃湿度55%の環境下に3ヶ月保管した。保管の後、剥離フィルム付片面保護偏光板2から剥離フィルムCを剥離する際に、剥離点の前後の剥離フィルムの搬送角度変化を3°として剥離フィルムCを剥離した。剥離力は0.3N/25mmであり、剥離に問題はなかった。
[Example 5]
A single-sided protective polarizing plate 2 was prepared in the same manner as in Example 4, wound on a roll, and stored for 3 months in an environment having a temperature of 23 ° C. and a humidity of 55%. When the release film C was peeled from the single-sided protective polarizing plate 2 with the release film after storage, the release film C was peeled off with the change in the transport angle of the release film before and after the release point being 3 °. The peeling force was 0.3 N / 25 mm, and there was no problem in peeling.
[実施例6]
 実施例4と同様に片面保護偏光板2を作製し、ロールに巻き取って温度23℃湿度55%の環境下に3ヶ月保管した。保管の後、剥離フィルム付片面保護偏光板2から剥離フィルムCを剥離する際に、剥離点の前後の剥離フィルムの搬送角度変化を10°として剥離フィルムCを剥離した。剥離力は0.5N/25mmであり、剥離でのジッピングが発生したものの剥離可能であった。
[Example 6]
A single-sided protective polarizing plate 2 was prepared in the same manner as in Example 4, wound on a roll, and stored for 3 months in an environment having a temperature of 23 ° C. and a humidity of 55%. When the release film C was peeled from the single-sided protective polarizing plate 2 with a release film after storage, the release film C was peeled off with a change in the transport angle of the release film before and after the release point as 10 °. The peeling force was 0.5 N / 25 mm, and peeling was possible although zipping occurred.
[比較例2]
 実施例4と同様に片面保護偏光板2を作製し、ロールに巻き取って温度23℃湿度55%の環境下に3ヶ月保管した。保管の後、剥離フィルム付片面保護偏光板2から剥離フィルムCを剥離する際に、剥離点の前後の剥離フィルムの搬送角度変化を90°として剥離フィルムCを剥離した。剥離力は1.2N/25mmであり、剥離が困難であった。
[Comparative Example 2]
A single-sided protective polarizing plate 2 was prepared in the same manner as in Example 4, wound on a roll, and stored for 3 months in an environment having a temperature of 23 ° C. and a humidity of 55%. After storage, when the release film C was peeled from the single-sided protective polarizing plate 2 with a release film, the release film C was peeled at 90 ° as the change in the transport angle of the release film before and after the release point. The peeling force was 1.2 N / 25 mm, and peeling was difficult.
 以上の結果を表1に示す。なお剥離試験の結果は、以下のような判定基準に基づいて評価した。
 ◎:フィルムの破断等の問題がなく、剥離をすることができた。
 ○:フィルムの剥離時にジッピングが発生するものの、剥離をすることができた。
 ×:フィルムの破断等が生じ、剥離が困難であった。
The results are shown in Table 1. In addition, the result of the peeling test was evaluated based on the following criteria.
(Double-circle): There was no problem, such as a fracture | rupture of a film, and it was able to peel.
○: Although peeling occurred when the film was peeled off, the film could be peeled off.
X: Film breakage or the like occurred, and peeling was difficult.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 10 積層体
 11 片面保護偏光板
 12 剥離フィルム
 13 積層体の搬送方向
 14 剥離フィルムの搬送方向
 15 片面保護偏光板の搬送方向
 20 搬送角度変化
 21 片面保護フィルムの搬送角度変化
 30 ロール
 31 剥離点
DESCRIPTION OF SYMBOLS 10 Laminate 11 Single-sided protective polarizing plate 12 Release film 13 Transport direction of laminate 14 Transport direction of release film 15 Transport direction of single-sided protective polarizing plate 20 Change in transport angle 21 Change in transport angle of single-sided protective film 30 Roll 31 Release point

Claims (4)

  1.  偏光フィルムの一方の面に接着剤層を介して保護フィルムを貼合するとともに、前記偏光フィルムの他方の面に、揮発性液体からなる層を介して剥離フィルムを積層し、積層体を得る第1工程と、
     前記揮発性液体を揮発させる第2工程と、
    剥離点の後における前記剥離フィルムの搬送方向が、前記積層体の搬送方向に対して略水平となるようにして、前記剥離フィルムを剥離する第3の工程とを含む片面保護偏光板の製造方法。
    A protective film is bonded to one surface of the polarizing film via an adhesive layer, and a release film is laminated to the other surface of the polarizing film via a layer made of a volatile liquid to obtain a laminate. 1 process,
    A second step of volatilizing the volatile liquid;
    The manufacturing method of the single-sided protective polarizing plate including the 3rd process of peeling the said peeling film so that the conveyance direction of the said peeling film after a peeling point may become substantially horizontal with respect to the conveyance direction of the said laminated body. .
  2.  剥離点の後における前記剥離フィルムの搬送方向と前記積層体の搬送方向とのなす角度が15°以内である請求項1に記載の偏光板の製造方法。 2. The method for producing a polarizing plate according to claim 1, wherein an angle formed by the transport direction of the release film after the release point and the transport direction of the laminate is within 15 °.
  3.  剥離フィルムを剥離する工程の前に、保護フィルム、偏光フィルム及び剥離フィルムをこの順に有する積層体を巻き取り、ロールを得る工程を含む請求項1又は2に記載の偏光板の製造方法。 The manufacturing method of the polarizing plate of Claim 1 or 2 including the process of winding up the laminated body which has a protective film, a polarizing film, and a peeling film in this order before the process of peeling a peeling film, and obtaining a roll.
  4.  前記揮発性液体が、水を含む請求項1~3のいずれかに記載の偏光板の製造方法。 The method for producing a polarizing plate according to claim 1, wherein the volatile liquid contains water.
PCT/JP2016/086046 2015-12-18 2016-12-05 Method for manufacturing one-side-protected polarizing plate WO2017104463A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680074007.5A CN108369307A (en) 2015-12-18 2016-12-05 Single side protects the manufacturing method of polarization plates
KR1020187019841A KR20180094970A (en) 2015-12-18 2016-12-05 Method of manufacturing single-sided polarizer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-247039 2015-12-18
JP2015247039A JP2017111361A (en) 2015-12-18 2015-12-18 Method for manufacturing one-side protected polarizing plate

Publications (1)

Publication Number Publication Date
WO2017104463A1 true WO2017104463A1 (en) 2017-06-22

Family

ID=59056390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/086046 WO2017104463A1 (en) 2015-12-18 2016-12-05 Method for manufacturing one-side-protected polarizing plate

Country Status (5)

Country Link
JP (1) JP2017111361A (en)
KR (1) KR20180094970A (en)
CN (1) CN108369307A (en)
TW (1) TW201731697A (en)
WO (1) WO2017104463A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022532722A (en) * 2019-10-31 2022-07-19 エルジー・ケム・リミテッド Polarizer laminate and its manufacturing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022048646A (en) * 2020-09-15 2022-03-28 住友化学株式会社 Polarizing plate manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015034960A (en) * 2012-11-16 2015-02-19 日東電工株式会社 Method for manufacturing polarizing plate
WO2015137250A1 (en) * 2014-03-12 2015-09-17 住友化学株式会社 Method for producing polarizing plate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004170545A (en) * 2002-11-18 2004-06-17 Nippon Petrochemicals Co Ltd Manufacturing method of optical element
JP2008230717A (en) * 2007-03-16 2008-10-02 Toshiba Corp Device for peeling adhesive film and manufacturing method of liquid crystal panel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015034960A (en) * 2012-11-16 2015-02-19 日東電工株式会社 Method for manufacturing polarizing plate
WO2015137250A1 (en) * 2014-03-12 2015-09-17 住友化学株式会社 Method for producing polarizing plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022532722A (en) * 2019-10-31 2022-07-19 エルジー・ケム・リミテッド Polarizer laminate and its manufacturing method

Also Published As

Publication number Publication date
JP2017111361A (en) 2017-06-22
TW201731697A (en) 2017-09-16
CN108369307A (en) 2018-08-03
KR20180094970A (en) 2018-08-24

Similar Documents

Publication Publication Date Title
JP6327222B2 (en) Polarizing plate, polarizing plate with adhesive, and liquid crystal display device
JP2011203571A (en) Polarizing plate and method for manufacturing the same
JPWO2013191095A1 (en) Method for producing laminated film
JP2018180407A (en) Polarizing plate and liquid crystal panel
JP2017083820A (en) Polarizing plate and liquid crystal panel, and manufacturing method of polarizing plate
JP6591962B2 (en) Manufacturing method of polarizing plate
WO2017104463A1 (en) Method for manufacturing one-side-protected polarizing plate
TWI701469B (en) Polarizing plate and imaging display device
JP2021036328A (en) Polarizing plate set and liquid crystal panel
JP6257680B2 (en) Manufacturing method of polarizing film, laminated film
JP6775551B2 (en) Polarizing plate set and liquid crystal panel
JP2016224423A (en) Method for manufacturing polarizing plate
CN106990471B (en) Polarizing plate and liquid crystal panel
WO2017130656A1 (en) Production method for polarizing plates
JP2017138582A (en) Method for manufacturing polarizing plate
JP2017191339A (en) Polarizing plate and liquid crystal display device
KR101748531B1 (en) Polarizing plate set and liquid crystal panel
CN109298479B (en) Polarizing plate group and liquid crystal panel
JP2016018183A (en) Polarizing plate and liquid crystal display device
JP2010079210A (en) Method for manufacturing composite polarizing plate
JP2017102425A (en) Polarizing plate and liquid crystal panel
JP2015206925A (en) Manufacturing method of optical film and optical laminate using the same
KR20150063667A (en) Adhesive composition for polarizer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16875446

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187019841

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187019841

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 16875446

Country of ref document: EP

Kind code of ref document: A1