WO2017104342A1 - Power generation device and transmitter comprising same - Google Patents
Power generation device and transmitter comprising same Download PDFInfo
- Publication number
- WO2017104342A1 WO2017104342A1 PCT/JP2016/084052 JP2016084052W WO2017104342A1 WO 2017104342 A1 WO2017104342 A1 WO 2017104342A1 JP 2016084052 W JP2016084052 W JP 2016084052W WO 2017104342 A1 WO2017104342 A1 WO 2017104342A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- piezoelectric element
- unit
- signal
- switch
- output
- Prior art date
Links
- 238000010248 power generation Methods 0.000 title claims abstract description 69
- 238000006073 displacement reaction Methods 0.000 claims abstract description 15
- 230000005540 biological transmission Effects 0.000 claims description 37
- 230000007246 mechanism Effects 0.000 claims description 12
- 238000007599 discharging Methods 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 29
- 238000000034 method Methods 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- 230000004048 modification Effects 0.000 description 9
- 238000012986 modification Methods 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 8
- 238000001514 detection method Methods 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 239000000919 ceramic Substances 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 1
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- BITYAPCSNKJESK-UHFFFAOYSA-N potassiosodium Chemical compound [Na].[K] BITYAPCSNKJESK-UHFFFAOYSA-N 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/18—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators
- H02N2/181—Circuits; Control arrangements or methods
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/30—Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
- H10N30/304—Beam type
Definitions
- the present invention relates to a power generation device using a piezoelectric element and a transmitter including the same.
- Patent Document 1 discloses a manual operation device.
- the manual operation device includes a power generation device including a power generation element, a charging unit that charges power from the power generation unit, a power supply unit that supplies power from the charging unit to the control unit, and an operation start control unit.
- the operation start control unit outputs a signal (enable signal) indicating whether or not the detected voltage exceeds the threshold voltage to the power supply unit as an operation start command.
- the enable signal becomes H (high) level
- the power supply unit converts the power stored in the charging unit into a predetermined voltage and starts power supply.
- an output voltage from the piezoelectric element (more specifically, a voltage after rectifying the output voltage) is detected. Then, the magnitude relationship between the detected voltage (detection voltage) and a predetermined threshold voltage is determined, and when the detected voltage is higher than the threshold voltage, power supply to the subsequent load is started. Is done.
- the power generation device When the power generation device is configured in this way, individual differences may occur in the detection voltage even if the deformation amount of the piezoelectric element is equal due to manufacturing variations of the piezoelectric element. Therefore, depending on the piezoelectric element, the detected voltage may not exceed the threshold voltage, and power supply to the load may not be performed normally. In order to enable normal power supply to the load even when using a piezoelectric element with a relatively low detection voltage, the threshold voltage should be set as low as possible. Is desirable.
- the present invention has been made to solve the above-described problems, and an object of the present invention is to improve the utilization efficiency of power generated by a piezoelectric element in a power generation apparatus using the piezoelectric element and a transmitter including the same. Is to provide.
- the power generation device is configured to be able to supply generated power to a load.
- the power generation device outputs an operation unit that is displaced when an operation is received, a piezoelectric element that generates power by being deformed from an initial state according to the displacement of the operation unit, and a first signal when the piezoelectric element is deformed from the initial state
- the switching unit is connected in series to a power line connecting the piezoelectric element and the load, and is switched between a conductive state and a non-conductive state based on the first and second signals.
- the switching unit is in a non-conducting state when the piezoelectric element is deformed from the initial state and the deformation amount of the piezoelectric element has not reached the limit value.
- the switching unit is in a conductive state when the deformation amount of the piezoelectric element has reached the limit value.
- the switching unit is in a conductive state when the piezoelectric element is not deformed from the initial state.
- the power generation device further includes a signal output unit that outputs a switching signal for switching the state of the switching unit based on the first and second signals.
- the signal output unit When the piezoelectric element is not deformed from the initial state, the signal output unit outputs a switching signal so that the switching unit is in a conductive state.
- the signal output unit When the piezoelectric element is deformed from the initial state and the deformation amount of the piezoelectric element has not reached the limit value, the signal output unit outputs a switching signal so that the switching unit is in a non-conductive state.
- the signal output unit outputs a switching signal so that the switching unit is in a conductive state.
- the power generation device further includes a full-wave rectification circuit electrically connected between the piezoelectric element and the switching unit.
- the full-wave rectification circuit has a first node that outputs the voltage received from the piezoelectric element by full-wave rectification, and a second node connected to a power line having a reference potential.
- the first output unit includes a first switch having one end electrically connected to the second node.
- the second output unit includes a second switch having one end electrically connected to the first node.
- the signal output unit includes an output node that outputs a switching signal, first and second diodes, and first and second resistors.
- the first diode has an anode electrically connected to the other end of the first switch and a cathode electrically connected to the output node.
- the second diode has an anode electrically connected to the other end of the second switch, and a cathode electrically connected to the output node.
- the first resistor is electrically connected between one end of the first switch and the first node.
- the second resistor is electrically connected between the output node and the second node.
- the piezoelectric element has first and second output terminals.
- the power generation device further includes a discharge switch and a full-wave rectifier circuit.
- the discharge switch is connected between the first output terminal and the second output terminal, and discharges the electric charge stored in the piezoelectric element.
- the full-wave rectifier circuit is electrically connected between the piezoelectric element and the switching unit, and full-wave rectifies and outputs the voltage received from the piezoelectric element.
- the discharge switch is switched from off to on after the switching unit is switched from the conducting state to the non-conducting state until the switching unit is switched from the non-conducting state to the conducting state.
- the first output unit is disposed between the operation unit and the piezoelectric element.
- the second output unit is disposed on the opposite side of the piezoelectric element from the first output unit.
- the power generation device further includes a transmission mechanism that mechanically transmits the force transmitted from the operation unit to the piezoelectric element to the second output unit.
- a straight line indicating the direction of the force transmitted from the operation unit to the piezoelectric element is different from a straight line indicating the direction of the force transmitted from the transmission mechanism to the second output unit.
- a transmitter includes the power generation device and the load.
- the load includes a transmission unit that transmits a radio signal using electric power supplied from the power generation device.
- the power generation apparatus outputs a third signal when the piezoelectric element is deformed from the initial state due to the displacement of the other operation unit by the displacement of the other operation unit when the operation is accepted and the piezoelectric element is deformed.
- the switching unit is non-conductive when the piezoelectric element is deformed from the initial state due to the displacement of at least one of the operation unit and the other operation unit, and the deformation amount of the piezoelectric element does not reach the limit value. State.
- the switching unit is in a conductive state when the deformation amount of the piezoelectric element has reached the limit value.
- the load further includes a control unit that controls the transmission unit based on the first and third signals. The control unit causes the transmission unit to transmit different radio signals when receiving the first signal and when receiving the third signal.
- the present invention it is possible to improve the utilization efficiency of the electric power generated by the piezoelectric element in the power generation apparatus including the piezoelectric element and the transmitter including the piezoelectric element.
- FIG. 1 is a circuit block diagram schematically showing an overall configuration of a transmitter equipped with a power generation module according to Embodiment 1.
- FIG. It is a figure which shows the structural example of a piezoelectric element. It is a figure which shows the other structural example of a piezoelectric element. It is a figure for demonstrating the transmitter carrying the electric power generation module which concerns on a comparative example.
- FIG. 3 is a diagram for illustrating a configuration of an operation unit and a switch in the first embodiment.
- 4 is a diagram for illustrating a configuration of a signal output unit in Embodiment 1.
- FIG. FIG. 7 is a diagram illustrating a circuit configuration example for realizing the relationship of the Venn diagram illustrated in FIG.
- FIG. 3 is a time chart for explaining the operation of the power generation module according to the first embodiment.
- 6 is a circuit block diagram schematically showing an overall configuration of a transmitter on which a power generation module according to a modification of the first embodiment is mounted.
- FIG. 6 is a time chart for explaining the operation of the power generation module according to a modification of the first embodiment.
- FIG. 10 is a diagram for illustrating a configuration of an operation unit and a switch according to Embodiment 2.
- FIG. 6 is a diagram for illustrating a configuration of a signal output unit in a second embodiment. It is a figure which shows the example of a circuit structure for implement
- 6 is a time chart for explaining the operation of the power generation module according to the second embodiment.
- 6 is a diagram illustrating an arrangement example of each component of a power generation module according to Embodiment 2.
- FIG. It is a Venn diagram for demonstrating the switch signal in case three operation parts
- the power generation module according to the present invention is mounted on a transmitter
- the device on which the power generation module according to the present invention can be mounted is not particularly limited as long as it is an electric device that consumes the power generated by the power generation module.
- FIG. 1 is a circuit block diagram schematically showing an overall configuration of a transmitter on which a power generation module according to Embodiment 1 is mounted.
- the transmitter 100 includes a transmission unit 300 as a load and a power generation module (power generation device) 10 configured to be able to supply the generated power to the transmission unit 300.
- the transmission unit 300 includes an RF (Radio Frequency) antenna 302 and an RF circuit 304.
- the transmission unit 300 transmits an RF signal to a receiver (not shown) provided at a position away from the transmitter 100 using the power supplied from the power generation module 10.
- This RF signal may be a signal indicating a control command to the receiver, or a signal for transmitting various kinds of information to the receiver (for example, when there are a plurality of transmitters, an identification unique to each transmitter). Signal for transmitting the number to the receiver).
- the transmitting unit 300 may include a light emitting element such as an LED (Light Emitting Diode) and a driving circuit thereof (none of which are shown) instead of the RF antenna 302 and the RF circuit 304.
- the power generation module 10 includes a piezoelectric element 1, a full-wave rectifier circuit 2, a capacitor C, a load switch 31, an operation unit 4, switches 51 and 52, and a signal output unit 61.
- the piezoelectric element 1 generates electric power by being deformed according to the displacement of the operation unit 4.
- the piezoelectric element 1 includes output terminals T1 and T2.
- output voltage V the potential of the output terminal (first output terminal) T1 with reference to the potential of the output terminal (second output terminal) T2 is referred to as “output voltage V”.
- the configuration of the piezoelectric element 1 will be described in detail with reference to FIGS.
- the full-wave rectification circuit 2 is electrically connected between the piezoelectric element 1 and the load switch 31, and full-wave rectifies the output voltage V of the piezoelectric element 1.
- the full-wave rectifier circuit 2 for example, a general full-wave rectifier circuit including a diode bridge (not shown) can be used.
- Full-wave rectifier circuit 2 includes nodes N1 and N2.
- the node (first node) N1 is electrically connected to the load switch 31 through the power line PL, and outputs a full-wave rectified voltage (rectified voltage) Vc to the load switch 31.
- Node (second node) N2 is electrically connected to power line GL having reference potential GND.
- the capacitor C is electrically connected between the power line PL and the power line GL, and smoothes the rectified voltage Vc.
- the load switch (switching unit) 31 is provided on the power line PL, and is configured to be able to switch between a conduction state in which the power line PL is conducted and a non-conduction state in which the power line PL is not conducted.
- the load switch 31 may be provided on the power line GL as long as it is connected in series to the power line connecting the piezoelectric element 1 and the transmission unit 300. In that case, the load switch 31 is configured to be able to switch between a conductive state and a non-conductive state of the power line GL.
- the operation unit 4 includes, for example, a button part in a push button switch.
- the operation unit 4 is displaced when a user operation is received.
- Each of the switches 51 and 52 is a contact point in a push button switch, for example, and is switched on and off according to the displacement of the operation unit 4 by a user operation.
- the switch 51 outputs a signal (first signal) S1
- the switch 52 outputs a signal (second signal) S2.
- the signal output unit 61 outputs a switching signal SW for switching the state (conducting state and non-conducting state) of the load switch 31 based on the signals S1 and S2 from the switches 51 and 52.
- the load switch 31 becomes conductive when the switching signal SW is at the H (high) level, and the load switch 31 becomes non-conductive when the switching signal SW is at the L (low) level.
- the configurations of the operation unit 4, the switches 51 and 52, and the signal output unit 61 will be described in detail with reference to FIGS.
- FIG. 2 is a diagram illustrating a configuration example of the piezoelectric element 1.
- the piezoelectric element 1 is, for example, a unimorph type piezoelectric element.
- the piezoelectric element 1 has a double-supported beam structure. That is, both end portions of the piezoelectric element 1 are supported by the support portion 16.
- the structure of the piezoelectric element 1 is not particularly limited, and the piezoelectric element 1 may have a cantilever structure.
- the piezoelectric element 1 includes a piezoelectric body 12 and a metal plate 14.
- the piezoelectric body 12 is made of, for example, lead zirconate titanate ceramic.
- the piezoelectric body 12 may be made of lead-free piezoelectric ceramics (potassium sodium niobate ceramics, alkali niobate ceramics, etc.).
- the piezoelectric element 1 has a flat plate shape.
- An electrode 12A is provided on one main surface of the piezoelectric body 12.
- An output terminal T1 is electrically connected to the electrode 12A.
- An electrode 12B is provided on the other main surface of the piezoelectric body 12.
- the electrode 12B electrically connects the piezoelectric body 12 and the metal plate 14.
- An output terminal T2 is electrically connected to the electrode 12B.
- the piezoelectric element 1 maintains the initial state shown in FIG. 2A when no external force F is applied by the user operation.
- the piezoelectric body 12 when the application of the external force F to the piezoelectric element 1 is stopped, the piezoelectric body 12 is in the initial state (shown in FIG. 2A) by the restoring force of the piezoelectric body 12 itself. It is restored to a flat state. In this restoration process, the polarity of the charge generated in the piezoelectric body 12 is reversed. That is, the electrode 12A is negatively charged while the electrode 12B is positively charged. Therefore, the output voltage V of the piezoelectric element 1 becomes a negative voltage. Thus, the sign of the output voltage V of the piezoelectric element 1 is reversed between the deformation process and the restoration process of the piezoelectric element 1.
- FIG. 3 is a diagram showing another configuration example of the piezoelectric element.
- a stacked element in which a plurality of piezoelectric bodies 12 are stacked may be used as the piezoelectric element 1A. This increases the amount of charge generated in the piezoelectric body 12 as compared with the single-layer configuration shown in FIG. 2, so that larger power can be supplied to the transmitter 300 (see FIG. 1).
- the piezoelectric element 1A is a unimorph type, but a bimorph type or multimorph type piezoelectric element may be adopted.
- FIG. 4 is a diagram for explaining a transmitter equipped with a power generation module according to a comparative example.
- the power generation module 90 is different from the power generation module 10 according to the first embodiment (see FIG. 1) in that it includes a control circuit 9 instead of the switches 51 and 52 and the signal output unit 61. .
- the control circuit 9 is connected between the power line PL and the power line GL. Although not shown, the control circuit 9 includes a comparator circuit and a reference voltage generation circuit, for example. When the rectified voltage Vc becomes higher than the minimum operating voltage of the control circuit 9, the control circuit 9 starts operation using the rectified voltage Vc as the power supply voltage. The control circuit 9 detects the rectified voltage Vc, and determines the magnitude relationship between the detected rectified voltage Vc and a predetermined threshold voltage Vth. The control circuit 9 outputs a control signal to the load switch 31 when the rectified voltage Vc is higher than the threshold voltage Vth. Thereby, the load switch 31 is switched from the non-conductive state to the conductive state.
- the power generation module 90 is configured in this way, due to manufacturing variations of the piezoelectric element 1, even if the deformation amount of the piezoelectric element 1 is equal, individual differences may occur in the rectified voltage Vc. That is, the rectified voltage Vc when some of the piezoelectric elements 1 are used can be lower than the rectified voltage Vc when the average piezoelectric elements 1 are used. For this reason, depending on the piezoelectric element 1, the rectified voltage Vc may not exceed the threshold voltage Vth, and the power supply to the transmission unit 300 may not be performed normally.
- the threshold voltage Vth is set as low as possible. It is desirable to set a low value. For example, as shown in FIG. 4B, the threshold voltage Vth is set lower by a value corresponding to a margin considering manufacturing variations of the piezoelectric element 1.
- the switch 51 when the external force F is added to or stopped from the operation unit 4 Based on the mechanical action of 52, the structure which switches the conduction
- the configuration of the operation unit 4, the switches 51 and 52, and the signal output unit 61 in the first embodiment will be described in detail.
- FIG. 5 is a diagram for explaining the configuration of the operation unit 4 and the switches 51 and 52 in the first embodiment.
- the positive z-axis direction in the drawing is referred to as “upward”, and the negative z-axis direction is referred to as “downward”.
- the negative z-axis direction does not necessarily mean a vertical direction, and can be an arbitrary direction.
- the entire power generation module 10 is accommodated in the case 7.
- the operation unit 4 is provided on the top surface of the case 7 and is configured to be vertically displaceable according to the degree of external force F applied (that is, user operation).
- the switch 51 is disposed between the operation unit 4 and the upper surface of the piezoelectric element 1.
- the switch 52 is disposed between the lower surface of the piezoelectric element 1 and the bottom surface of the case 7. In other words, the switch 52 is disposed on the opposite side of the switch 51 with respect to the piezoelectric element 1.
- FIG. 5A shows a state where the external force F is not applied to the operation unit 4 (initial state). Since the operation unit 4 is not displaced downward in the initial state, the piezoelectric element 1 is not deformed. In addition, the switches 51 and 52 are both off. In this case, as will be described in detail with reference to FIG. 6, the switching signal SW output from the signal output unit 61 is at the H level, and the load switch 31 is controlled to be in a conductive state.
- the switch 51 is provided so as to substantially contact (contact) the operation unit 4. Therefore, as shown in FIG. 5B, when the operation unit 4 is displaced downward by the addition of the external force F, the operation unit 4 mechanically contacts the switch 51. Thereby, the switch 51 is switched from OFF to ON.
- the displacement amount of the operation unit 4 (in other words, the deformation amount of the piezoelectric element 1) is also referred to as “stroke”.
- the stroke is zero in the initial state of the piezoelectric element 1 and increases in the negative z-axis direction as the piezoelectric element 1 is deformed.
- the switch 51 detects that the piezoelectric element 1 is deformed from the initial state due to the displacement of the operation unit 4, and switches the logic level of the signal S1.
- the switch 52 since the piezoelectric element 1 is not yet deformed, the switch 52 remains off, and the logic level of the signal S2 from the switch 52 does not change.
- the signal output unit 61 (see FIG. 6) switches the switching signal SW from the H level to the L level by performing a predetermined logical operation (described later) based on the signals S1 and S2. Thereby, the load switch 31 is switched from the conductive state to the non-conductive state.
- the switch 52 detects that the deformation amount of the piezoelectric element 1 has reached a predetermined limit value, and switches the logic level of the signal S2.
- the switch 52 keeps the logic level of the signal S2 at the L level while the deformation amount of the piezoelectric element 1 reaches a predetermined limit value.
- the switch 51 remains on, and the logic level of the signal S1 from the switch 51 does not change.
- the signal output unit 61 switches the switching signal SW from the L level to the H level by performing a logical operation based on the signals S1 and S2. Thereby, the load switch 31 is switched from the non-conductive state to the conductive state, and the electric power stored in the piezoelectric element 1 is supplied to the transmitting unit 300.
- FIG. 6 is a diagram for explaining the configuration of the signal output unit 61 in the first embodiment.
- the hatched portion indicates that the switching signal SW output from the signal output unit 61 is at the H level.
- a portion not shaded indicates that the switching signal SW is at the L level.
- the switch 52 When the piezoelectric element 1 is not deformed from the initial state, that is, when the switch 51 is off, the switch 52 is also off as is apparent from FIG. In this case, as shown in the region K1, the signal output unit 61 outputs an H level switching signal SW to make the load switch 31 conductive.
- the signal output unit 61 outputs an L level switching signal SW to make the load switch 31 non-conductive.
- the signal output unit 61 A level switching signal SW is output to make the load switch 31 conductive.
- the state in which the switch 51 is off and the switch 52 is on does not actually occur.
- the signal output unit 61 includes a logic circuit shown in FIG.
- the signal output unit 61 includes an input node IN1 that receives the signal S1 from the switch 51, an input node IN2 that receives the signal S2 from the switch 52, an output node OUT that outputs the switching signal SW, and negation.
- a circuit (NOT circuit) 612 and an OR circuit (OR circuit) 614 are included.
- the NOT circuit 612 outputs a signal indicating a negative operation result of the signal S1 to the OR circuit 614.
- the OR circuit 614 outputs a signal indicating the logical sum of the signal from the NOT circuit 612 and the signal S2 to the output node OUT.
- FIG. 7 is a diagram showing a circuit configuration example for realizing the relationship of the Venn diagram shown in FIG.
- the signal output unit 61 includes diodes D1 and D2 and resistors R1 and R2. In FIG. 7, for convenience of illustration, a frame line indicating the signal output unit 61 is not shown.
- the one end of the switch 51 is electrically connected to the power line GL.
- the other end of the switch 51 is electrically connected to the power line PL via the resistor (first resistor) R1, and is also electrically connected to the anode of the diode (first diode) D1.
- the cathode of the diode D1 is electrically connected to the power line GL via the resistor R2 and is also electrically connected to the output node OUT.
- One end of the switch 52 is electrically connected to the power line PL and electrically connected to the other end of the switch 51 via the resistor R1.
- the other end of the switch 52 is electrically connected to the anode of a diode (second diode) D2.
- the cathode of the diode D2 is electrically connected to the output node OUT.
- FIG. 8 is a time chart for explaining the operation of the power generation module 10 according to the first embodiment.
- the horizontal axis represents the elapsed time.
- the vertical axis indicates the stroke in order from the top, the switch 51 on / off, the logic level of the signal S1, the switch 52 on / off, the logic level of the signal S2, and the logic level of the switching signal SW (that is, the conduction state / Non-conducting state) and output voltage V.
- the piezoelectric element 1 is not deformed and the stroke is zero (see FIG. 5A). Therefore, the switch 51 is off and the signal S1 is at the H level. Switch 52 is off and signal S2 is at L level. Therefore, the signal output unit 61 outputs the H level switching signal SW, and the load switch 31 is in the conductive state. However, since the piezoelectric element 1 is not deformed, the output voltage V is substantially zero V (volts), so that power is not supplied from the power generation module 10 to the transmission unit 300.
- the switch 52 When the deformation amount of the piezoelectric element 1 reaches the limit value at time t12 (see FIG. 5D), the switch 52 is switched from OFF to ON, so that the signal S2 becomes H level. On the other hand, since the switch 51 is kept on, the signal S1 is at the L level. Therefore, the signal output unit 61 outputs an H level switching signal SW. As a result, the load switch 31 is switched from the non-conductive state to the conductive state. As a result, the electric power stored in the piezoelectric element 1 is supplied to the transmission unit 300. Thereafter, power supply is continued during a period from time t12 to time t13, and the RF signal is output from the transmission unit 300, whereby the output voltage V gradually decreases toward zero V.
- the switch 51 is turned on before the piezoelectric element 1 starts to be deformed from the initial state by the user operation, so that the load switch 31 becomes non-conductive.
- the electric power generated by the piezoelectric element 1 is relatively small, the electric power can be stored in the piezoelectric element 1 without being supplied to the transmission unit 300.
- the switch 52 is turned on, so that the load switch 31 becomes non-conductive. The state is switched to the conductive state.
- the power supply to the transmission unit 300 can be started in a state where the electric power is most stored in the piezoelectric element 1. Therefore, according to Embodiment 1, the utilization efficiency of the electric power generated by the piezoelectric element 1 can be improved. Similarly, in the restoration process of the piezoelectric element 1, power can be supplied to the transmission unit 300 with high efficiency.
- the time change of the output voltage V in the comparative example is shown by a broken line in FIG. 8, and the effect of the first embodiment will be described in comparison with the comparative example.
- the period during which power is stored in the piezoelectric element 1 is shorter than when no margin is set.
- the load switch 31 is turned on in a state where sufficient electric power is not stored in the piezoelectric element 1.
- the piezoelectric element 1 is mechanically contacted with the switch 52 and the deformation of the piezoelectric element 1 is allowed until further deformation of the piezoelectric element 1 is restricted.
- the load switch 31 can be turned on. Therefore, there is no need to set the above margin. Therefore, the power storage period in Embodiment 1 (the period between time t11 and time t12) is longer than the power storage period in the comparative example. That is, the power generated by the piezoelectric element 1 can be sufficiently stored before being supplied to the transmission unit 300. Therefore, the power utilization efficiency can be improved.
- the switches 51 and 52 correspond to “first and second output units” according to the present invention, respectively.
- the “first and second output units” according to the present invention are not limited to mechanical switches as long as they can mechanically (mechanically) detect deformation of the piezoelectric element 1 and output a signal.
- a pressure sensor a piezoelectric element different from the piezoelectric element 1 may be used.
- FIG. 9 is a circuit block diagram schematically showing an overall configuration of a transmitter equipped with a power generation module according to a modification of the first embodiment.
- the transmitter 100A illustrated in FIG. 9 further includes a control unit 400 that controls the transmission unit 300.
- the power generation module 10 ⁇ / b> A further includes a discharge switch 8.
- the discharge switch 8 is connected between the output terminal T1 and the output terminal T2 of the piezoelectric element 1 and is used for discharging the electric charge stored in the piezoelectric element 1. More specifically, the discharge switch 8 is switched from off to on in response to a discharge command from the control unit 400. As a result, the output terminal T1 and the output terminal T2 are short-circuited, so that the charge stored in the piezoelectric element 1 is discharged.
- the discharge switch 8 for example, an IC (Integrated Circuit) such as an analog switch or a FET (Field Effect Transistor) can be used.
- FIG. 10 is a time chart for explaining the operation of the power generation module 10A according to the modification of the first embodiment. Since the operation up to time t22 in the modification of the first embodiment is equivalent to the operation up to time t12 in the first embodiment (see FIG. 8), description thereof will not be repeated.
- the time change of the output voltage V and the rectified voltage Vc when the discharge by the discharge switch 8 is performed is indicated by a solid line.
- the time change of the output voltage V and the rectified voltage Vc when the discharge by the discharge switch 8 is not performed is indicated by a broken line.
- the output voltage V increases in the negative direction.
- discharge of the piezoelectric element 1 causes the rectified voltage Vc (see the solid line) to be larger than the rectified voltage Vc (see the broken line) when the discharge is not performed (see, for example, time t24). Therefore, according to the modification of the first embodiment, the power use efficiency can be further improved as compared with the first embodiment.
- the piezoelectric element 1 may be similarly discharged using the discharge switch 8 after the supply of electric power generated during the restoration process of the piezoelectric element 1 (after time t24).
- FIG. 11 is a diagram for explaining the configuration of the operation unit and the switch in the second embodiment.
- the power generation module 20 includes two operation units 4A and 4B and three switches 51A, 51B, and 52. Signals output from the switches 51A and 51B are denoted as S1A and S1B, respectively (see FIG. 12B).
- Each of the operation units 4A and 4B accepts user operations.
- the operation unit 4A and the operation unit 4B can be displaced independently of each other in the z-axis direction in the drawing in accordance with a user operation.
- the switch 51A is provided between the operation unit 4A and the upper surface of the piezoelectric element 1 so as to be substantially in contact with the operation unit 4A. Therefore, the switch 51A is switched from off to on when the piezoelectric element 1 is deformed from the initial state in accordance with the displacement of the operation unit 4A.
- the switch 51B is provided between the operation unit 4B and the upper surface of the piezoelectric element 1 so as to be substantially in contact with the operation unit 4B. Therefore, the switch 51B is switched from off to on when the piezoelectric element 1 is deformed from the initial state in accordance with the displacement of the operation unit 4B.
- the switch 52 is provided between the lower surface of the piezoelectric element 1 and the bottom surface of the case 7. When one or both of the operation units 4A and 4B are displaced downward, the piezoelectric element 1 deformed thereby mechanically contacts the switch 52. Thereby, the switch 52 is switched from OFF to ON.
- the power generation module 20 includes a signal output unit 62 instead of the signal output unit 61 as described below.
- FIG. 12 is a diagram for explaining the configuration of the signal output unit 62 in the second embodiment. Referring to FIG. 12A, when both switches 51A and 51B are off as shown in region K5, signal output unit 62 outputs an H level switching signal SW.
- the signal output unit 62 outputs an L level switching signal SW. To do. Further, as shown in the region K8, the signal output unit 62 outputs the L level switching signal SW even when both the switches 51A and 51B are on and the switch 52 is off.
- the signal output unit 62 When the switch 52 is on as shown in the regions K9 to K12, the signal output unit 62 outputs the H level switching signal SW. Note that the state in which the switch 52 is on (see the region K12) does not actually occur even though both the switches 51A and 51B are off.
- signal output unit 62 includes an input node IN1A that receives signal S1A, an input node IN1B that receives signal S1B, an input node IN2 that receives signal S2, and a switching signal.
- An output node OUT for outputting SW, a negative OR circuit (NOR circuit) 622, and an OR circuit (OR circuit) 624 are included.
- the NOR circuit 622 outputs to the OR circuit 624 a signal indicating the operation result of the negative OR of the signal S1A and the signal S1B.
- the OR circuit 624 outputs a signal indicating the logical sum of the signal from the NOR circuit 622 and the signal S2 to the output node OUT.
- FIG. 13 is a diagram showing a circuit configuration example for realizing the relationship of the Venn diagram shown in FIG.
- the power generation module 20 includes a signal output unit 62 instead of the signal output unit 61 as described above, a point including a DC / DC converter 32 instead of the load switch 31, and a point further including a control unit 400. Different from the power generation module 10 according to Embodiment 1 (see FIG. 7).
- the power generation module 20 may further include a discharge switch 8 (see FIG. 9).
- the signal output unit 62 (not shown in FIG. 13) includes diodes D3 to D6, resistors R3 to R6, and a switching element Q1 that is an NMOS (n-type Metal Oxide-Semiconductor) transistor.
- the DC / DC converter 32 includes an input terminal Vin, an output terminal Vout, and an enable terminal EN.
- the enable terminal EN receives the switching signal SW output from the output node OUT as an enable signal for the DC / DC converter 32.
- Control unit 400 outputs an operation command to transmission unit 300 based on signals S1A and S2A.
- each of the switches 51A, 51B, 52 is electrically connected to the power line PL.
- the other end of switch 51A is electrically connected to the gate of switching element Q1 via input node IN1A and diode D3.
- the anode of the diode D3 is electrically connected to the power line GL via the resistor R3.
- the other end of the switch 51B is electrically connected to the gate of the switching element Q1 via the input node IN1B and the diode D4.
- the anode of the diode D4 is electrically connected to the power line GL via the resistor R4.
- the drain of the switching element Q1 is electrically connected to the power line PL via the resistor R5.
- the source of the switching element Q1 is electrically connected to the power line GL.
- the anode of the diode D5 is electrically connected to a connection node between the resistor R5 and the drain of the switching element Q1.
- the cathode of the diode D5 is electrically connected to the enable terminal EN of the DC / DC converter 32 via the output node OUT.
- the cathode of the diode D5 is electrically connected to the power line GL via the resistor R6.
- the other end of the switch 52 is electrically connected to the anode of the diode D6 via the input node IN2.
- the cathode of the diode D6 is electrically connected to the cathode of the diode D5.
- the other configuration of power generation module 20 is the same as the corresponding configuration of power generation module 10 according to Embodiment 1, and therefore detailed description will not be repeated.
- FIG. 14 is a time chart for explaining the operation of the power generation module 20 according to the second embodiment.
- the vertical axis indicates the stroke in order from the top, the switch 51 ON / OFF, the logic level of the signal S1A, the switch 51B ON / OFF, the signal S1B logic level, the switch 52 ON / OFF, and the signal S2 logic.
- the level, the logic level of the switching signal SW (that is, the on / off of the DC / DC converter 32), and the output voltage V are shown.
- FIG. 14 demonstrates operation
- the operation unit 4A receives an operation, and the displacement of the operation unit 4A is started.
- the switch 51A is switched from OFF to ON, so that the signal S1A is switched from L level to H level, and the switching element Q1 is turned ON.
- the switch 52 since the switch 52 remains off, the signal S2 is maintained at the L level. Therefore, the signal output unit 62 outputs the L level switching signal SW. That is, since the enable terminal EN of the DC / DC converter 32 receives the L level enable signal, power supply from the DC / DC converter 32 is not performed.
- the operation unit 4B accepts the operation.
- the switch 51B is switched from OFF to ON, so that the signal S1B is switched from the L level to the H level.
- the switching element Q1 is already turned on by the operation of the switch 51A, and the state is maintained. Therefore, the switching signal SW (enable signal) from the signal output unit 62 remains at the L level.
- the control after time t32 is substantially the same as the control in the first embodiment, and thus detailed description will not be repeated.
- the enable signal to the DC / DC converter 32 is switched from the H level to the L level when both the operation units 4A and 4B accept the operation is also conceivable.
- the enable signal is switched from the H level to the L level when one of the operation units 4A and 4B receives the operation. Therefore, the electric power generated by the piezoelectric element 1 can be stored in the piezoelectric element 1 for a longer time. As a result, the utilization efficiency of the electric power generated by the piezoelectric element 1 can be further improved.
- the control unit 400 issues three types of control commands according to the combination of operations accepted by the operation units 4A and 4B (the combination of the states of the switches 51A and 51B). Can be output.
- the transmitter 200 is used as a remote controller for controlling a blind (not shown)
- the following control is possible. That is, (1) when only the operation unit 4A is operated, the blind is raised. (2) When only the operation unit 4B is operated, the blind is lowered. (3) When both the operation units 4A and 4B are operated, the blind angle is changed.
- FIG. 15 is a diagram illustrating an arrangement example of each component of the power generation module 20 according to the second embodiment.
- the power generation module 20 further includes a lever 72, a circuit board 74, and a transmission mechanism 76.
- the lever 72 is provided between the operation units 4A and 4B and the piezoelectric element 1B.
- the lever 72 is displaced in the vertical direction when at least one of the operation units 4A and 4B is operated, and mechanically transmits the external force F to the piezoelectric element 1B.
- Each element of the electric circuit shown in FIG. 13 is mounted on the circuit board 74.
- the piezoelectric element 1B includes a plurality of metal plates and a piezoelectric body provided on one side of the metal plates.
- the metal plate includes a plate portion and a plurality of leg portions.
- a cylindrical first protrusion is provided so as to protrude to the opposite side of the piezoelectric body so as to be perpendicular to the surface direction.
- the second protrusion is provided so as to protrude to the opposite side of the piezoelectric body so as to be perpendicular to the surface direction. Since the piezoelectric element 1B has a structure in which a plurality of metal plates and a plurality of piezoelectric bodies are laminated, it is possible to obtain larger electric power.
- the transmission mechanism 76 is provided between the piezoelectric element 1B and the switch 52 and functions as a so-called lever. That is, the transmission mechanism 76 mechanically transmits the force applied to the piezoelectric element 1B from at least one of the operation units 4A and 4B via the lever 72 to the switch 52. As shown in FIG. 15, a straight line L1 indicating the direction of the force transmitted from the operation units 4A and 4B to the piezoelectric element 1B via the lever 72, and a straight line indicating the direction of the force transmitted from the transmission mechanism 76 to the switch 52. It is different from L2.
- the transmission mechanism 76 When the transmission mechanism 76 is not provided, it is required to arrange the switch 52 in the space 78 on the straight line L1.
- the switch 52 can be arranged at a place other than the space 78 by providing the transmission mechanism 76. That is, in the mechanism design of the power generation module 20, the degree of freedom of the location where the switch 52 is arranged can be improved.
- Embodiment 2 an example in which two operation units are provided has been described. However, an arbitrary number of three or more operation units (and switches corresponding to each operation unit) may be provided.
- FIG. 16 is a Venn diagram for explaining the switching signal SW when three operation units are provided. As shown in FIG. 16, when all of the three switches 51A, 51B, 51C (not shown) are off or when the switch 52 is on, an H level switching signal SW is output. The In other cases, an L level switching signal SW is output. Since the same applies to the case where four or more operation units are provided, detailed description will not be repeated.
Landscapes
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Abstract
In the present invention, a power generation module (10) comprises: an operating part (4), which is displaced upon receiving an operation; a piezoelectric element (1), which generates power as a result of being deformed from an initial state in accordance with the displacement of the operating part (4); a switch (51), which outputs a signal (S1) when the piezoelectric element (1) is deformed from the initial state; and a switch (52), which outputs a signal (S2) when the deformation amount of the piezoelectric element (1) reaches a predetermined limit value; and a load switch (31). The load switch (31) is switched to either a conducting state or a non-conducting state on the basis of the signals (S1, S2). The load switch (31) is in the non-conducting state when the piezoelectric element (1) is deformed from the initial state and the deformation amount of the piezoelectric element (1) has not reached the limit value, and in the conducting state when the deformation amount of the piezoelectric element (1) has reached the limit value.
Description
本発明は、圧電素子を用いた発電装置およびそれを備えた送信機に関する。
The present invention relates to a power generation device using a piezoelectric element and a transmitter including the same.
圧電素子は、その変形量に応じた電力を発電することが知られており、圧電素子を用いた発電装置に関する種々の技術が提案されている。たとえば特開2011-103729号公報(特許文献1)は手動操作機器を開示する。この手動操作機器は発電素子を含む発電装置と、発電部からの電力を充電する充電部と、充電部からの電力を制御部に供給する電源供給部と、動作開始制御部とを備える。動作開始制御部は、検出された電圧がしきい値電圧を上回ったか否かを示す信号(イネーブル信号)を動作開始指令として電源供給部に出力する。電源供給部は、イネーブル信号がH(ハイ)レベルになると、充電部に蓄えられた電力を所定電圧に変換して電力供給を開始する。
Piezoelectric elements are known to generate electric power in accordance with the amount of deformation, and various techniques relating to power generation devices using piezoelectric elements have been proposed. For example, Japanese Unexamined Patent Publication No. 2011-103729 (Patent Document 1) discloses a manual operation device. The manual operation device includes a power generation device including a power generation element, a charging unit that charges power from the power generation unit, a power supply unit that supplies power from the charging unit to the control unit, and an operation start control unit. The operation start control unit outputs a signal (enable signal) indicating whether or not the detected voltage exceeds the threshold voltage to the power supply unit as an operation start command. When the enable signal becomes H (high) level, the power supply unit converts the power stored in the charging unit into a predetermined voltage and starts power supply.
上記のように、特許文献1に開示された手動操作機器では、圧電素子からの出力電圧(より具体的には出力電圧を整流後の電圧)が検出される。そして、検出された電圧(検出電圧)と、予め定められたしきい値電圧との大小関係が判定され、検出電圧がしきい値電圧よりも高い場合に、後段の負荷への電力供給が開始される。
As described above, in the manual operation device disclosed in Patent Document 1, an output voltage from the piezoelectric element (more specifically, a voltage after rectifying the output voltage) is detected. Then, the magnitude relationship between the detected voltage (detection voltage) and a predetermined threshold voltage is determined, and when the detected voltage is higher than the threshold voltage, power supply to the subsequent load is started. Is done.
このように発電装置を構成すると、圧電素子の製造ばらつきにより、圧電素子の変形量が等しくとも検出電圧に個体差が生じ得る。そのため、圧電素子によっては検出電圧がしきい値電圧を上回らず、負荷への電力供給を正常に行なうことができない場合がある。このような検出電圧が相対的に低い圧電素子を用いた場合であっても負荷への電力供給を正常に行なうことを可能にするためには、しきい値電圧をできるだけ低い値に設定することが望ましい。
When the power generation device is configured in this way, individual differences may occur in the detection voltage even if the deformation amount of the piezoelectric element is equal due to manufacturing variations of the piezoelectric element. Therefore, depending on the piezoelectric element, the detected voltage may not exceed the threshold voltage, and power supply to the load may not be performed normally. In order to enable normal power supply to the load even when using a piezoelectric element with a relatively low detection voltage, the threshold voltage should be set as low as possible. Is desirable.
しかしながら、一般に、検出電圧が相対的に低い圧電素子は少数であり、多くの圧電素子における検出電圧は、全素子における検出電圧の平均値に近い。そのため、しきい値電圧を過度に低い値に設定すると、多くの平均的な圧電素子では、十分な電力が圧電素子に蓄えられる前に電力供給が開始されてしまう。その結果、圧電素子により発電された電力の利用効率が相対的に低くなってしまう。
However, generally, there are a small number of piezoelectric elements having relatively low detection voltages, and the detection voltages of many piezoelectric elements are close to the average value of the detection voltages of all the elements. Therefore, when the threshold voltage is set to an excessively low value, in many average piezoelectric elements, power supply is started before sufficient electric power is stored in the piezoelectric elements. As a result, the utilization efficiency of the electric power generated by the piezoelectric element becomes relatively low.
本発明は上記課題を解決するためになされたものであり、その目的は、圧電素子を用いた発電装置およびそれを備えた送信機において、圧電素子により発電された電力の利用効率を向上させる技術を提供することである。
The present invention has been made to solve the above-described problems, and an object of the present invention is to improve the utilization efficiency of power generated by a piezoelectric element in a power generation apparatus using the piezoelectric element and a transmitter including the same. Is to provide.
本発明のある局面に従う発電装置は、発電した電力を負荷に供給可能に構成される。発電装置は、操作を受け付けると変位する操作部と、操作部の変位に応じて初期状態から変形することにより発電する圧電素子と、圧電素子が初期状態から変形した場合に第1の信号を出力する第1の出力部と、圧電素子の変形量が予め定められた制限値に達している場合に第2の信号を出力する第2の出力部と、切替部とを備える。切替部は、圧電素子と負荷とを結ぶ電力線に直列に接続され、第1および第2の信号に基づいて、導通状態と非導通状態とのどちらかの状態に切り替えられる。切替部は、圧電素子が初期状態から変形しており、かつ、圧電素子の変形量が制限値に達していない場合には、非導通状態である。切替部は、圧電素子の変形量が制限値に達している場合には、導通状態である。
The power generation device according to an aspect of the present invention is configured to be able to supply generated power to a load. The power generation device outputs an operation unit that is displaced when an operation is received, a piezoelectric element that generates power by being deformed from an initial state according to the displacement of the operation unit, and a first signal when the piezoelectric element is deformed from the initial state A first output unit, a second output unit that outputs a second signal when the amount of deformation of the piezoelectric element reaches a predetermined limit value, and a switching unit. The switching unit is connected in series to a power line connecting the piezoelectric element and the load, and is switched between a conductive state and a non-conductive state based on the first and second signals. The switching unit is in a non-conducting state when the piezoelectric element is deformed from the initial state and the deformation amount of the piezoelectric element has not reached the limit value. The switching unit is in a conductive state when the deformation amount of the piezoelectric element has reached the limit value.
好ましくは、切替部は、圧電素子が初期状態から変形していない場合には、導通状態である。
Preferably, the switching unit is in a conductive state when the piezoelectric element is not deformed from the initial state.
好ましくは、発電装置は、第1および第2の信号に基づいて、切替部の状態を切り替えるための切替信号を出力する信号出力部をさらに備える。信号出力部は、圧電素子が初期状態から変形していない場合には、切替部を導通状態とするように切替信号を出力する。信号出力部は、圧電素子が初期状態から変形しており、かつ、圧電素子の変形量が制限値に達していない場合には、切替部を非導通状態とするように切替信号を出力する。信号出力部は、圧電素子の変形量が制限値に達している場合には、切替部を導通状態とするように切替信号を出力する。
Preferably, the power generation device further includes a signal output unit that outputs a switching signal for switching the state of the switching unit based on the first and second signals. When the piezoelectric element is not deformed from the initial state, the signal output unit outputs a switching signal so that the switching unit is in a conductive state. When the piezoelectric element is deformed from the initial state and the deformation amount of the piezoelectric element has not reached the limit value, the signal output unit outputs a switching signal so that the switching unit is in a non-conductive state. When the deformation amount of the piezoelectric element has reached the limit value, the signal output unit outputs a switching signal so that the switching unit is in a conductive state.
好ましくは、発電装置は、圧電素子と切替部との間に電気的に接続された全波整流回路をさらに備える。全波整流回路は、圧電素子から受けた電圧を全波整流して出力する第1のノードと、基準電位を有する電力線に接続された第2のノードとを有する。第1の出力部は、第2のノードに電気的に接続された一方端を有する第1のスイッチを含む。第2の出力部は、第1のノードに電気的に接続された一方端を有する第2のスイッチを含む。信号出力部は、切替信号を出力する出力ノードと、第1および第2のダイオードと、第1および第2の抵抗とを含む。第1のダイオードは、第1のスイッチの他方端に電気的に接続されたアノード、および、出力ノードに電気的に接続されたカソードを有する。第2のダイオードは、第2のスイッチの他方端に電気的に接続されたアノード、および、出力ノードに電気的に接続されたカソードを有する。第1の抵抗は、第1のスイッチの一方端と第1のノードとの間に電気的に接続される。第2の抵抗は、出力ノードと第2のノードとの間に電気的に接続される。
Preferably, the power generation device further includes a full-wave rectification circuit electrically connected between the piezoelectric element and the switching unit. The full-wave rectification circuit has a first node that outputs the voltage received from the piezoelectric element by full-wave rectification, and a second node connected to a power line having a reference potential. The first output unit includes a first switch having one end electrically connected to the second node. The second output unit includes a second switch having one end electrically connected to the first node. The signal output unit includes an output node that outputs a switching signal, first and second diodes, and first and second resistors. The first diode has an anode electrically connected to the other end of the first switch and a cathode electrically connected to the output node. The second diode has an anode electrically connected to the other end of the second switch, and a cathode electrically connected to the output node. The first resistor is electrically connected between one end of the first switch and the first node. The second resistor is electrically connected between the output node and the second node.
好ましくは、圧電素子は、第1および第2の出力端子を有する。発電装置は、放電スイッチと、全波整流回路とをさらに備える。放電スイッチは、第1の出力端子と第2の出力端子との間に接続され、圧電素子に蓄えられた電荷を放電する。全波整流回路は、圧電素子と切替部との間に電気的に接続され、圧電素子から受けた電圧を全波整流して出力する。放電スイッチは、切替部が導通状態から非導通状態へと切り替えられてから、切替部が非導通状態から導通状態へと切り替えられるまでの間に、オフからオンへと切り替えられる。
Preferably, the piezoelectric element has first and second output terminals. The power generation device further includes a discharge switch and a full-wave rectifier circuit. The discharge switch is connected between the first output terminal and the second output terminal, and discharges the electric charge stored in the piezoelectric element. The full-wave rectifier circuit is electrically connected between the piezoelectric element and the switching unit, and full-wave rectifies and outputs the voltage received from the piezoelectric element. The discharge switch is switched from off to on after the switching unit is switched from the conducting state to the non-conducting state until the switching unit is switched from the non-conducting state to the conducting state.
好ましくは、第1の出力部は、操作部と圧電素子との間に配置される。好ましくは、第2の出力部は、圧電素子について第1の出力部とは反対側に配置される。発電装置は、操作部から圧電素子に伝達された力を第2の出力部へと機械的に伝達する伝達機構をさらに備える。操作部から圧電素子に伝達される力の方向を示す直線と、伝達機構から第2の出力部に伝達される力の方向を示す直線とは、互いに異なる。
Preferably, the first output unit is disposed between the operation unit and the piezoelectric element. Preferably, the second output unit is disposed on the opposite side of the piezoelectric element from the first output unit. The power generation device further includes a transmission mechanism that mechanically transmits the force transmitted from the operation unit to the piezoelectric element to the second output unit. A straight line indicating the direction of the force transmitted from the operation unit to the piezoelectric element is different from a straight line indicating the direction of the force transmitted from the transmission mechanism to the second output unit.
本発明の他の局面に従う送信機は、上記発電装置と、上記負荷とを備える。負荷は、発電装置から供給された電力を用いて無線信号を送信する送信部を含む。
A transmitter according to another aspect of the present invention includes the power generation device and the load. The load includes a transmission unit that transmits a radio signal using electric power supplied from the power generation device.
好ましくは、発電装置は、操作を受け付けると変位して圧電素子を変形させる他の操作部と、他の操作部の変位により圧電素子が初期状態から変形した場合に第3の信号を出力する第3の出力部とをさらに備える。切替部は、操作部および他の操作部のうちの少なくとも一方の変位により圧電素子が初期状態から変形しており、かつ、圧電素子の変形量が制限値に達していない場合には、非導通状態である。切替部は、圧電素子の変形量が制限値に達している場合には、導通状態である。負荷は、第1および第3の信号に基づいて、送信部を制御する制御部をさらに含む。制御部は、第1の信号を受けた場合と、第3の信号を受けた場合とでは、異なる無線信号を送信部に送信させる。
Preferably, the power generation apparatus outputs a third signal when the piezoelectric element is deformed from the initial state due to the displacement of the other operation unit by the displacement of the other operation unit when the operation is accepted and the piezoelectric element is deformed. 3 output units. The switching unit is non-conductive when the piezoelectric element is deformed from the initial state due to the displacement of at least one of the operation unit and the other operation unit, and the deformation amount of the piezoelectric element does not reach the limit value. State. The switching unit is in a conductive state when the deformation amount of the piezoelectric element has reached the limit value. The load further includes a control unit that controls the transmission unit based on the first and third signals. The control unit causes the transmission unit to transmit different radio signals when receiving the first signal and when receiving the third signal.
本発明によれば、圧電素子を含む発電装置およびそれを備えた送信機において、圧電素子により発電された電力の利用効率を向上させることができる。
According to the present invention, it is possible to improve the utilization efficiency of the electric power generated by the piezoelectric element in the power generation apparatus including the piezoelectric element and the transmitter including the piezoelectric element.
以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.
以下に示す実施の形態では、本発明に係る発電モジュールが送信機に搭載される構成を例に説明する。しかし、本発明に係る発電モジュールを搭載可能な機器は、発電モジュールにより発電された電力を消費する電気機器であれば特に限定されるものではない。
In the embodiment described below, a configuration in which the power generation module according to the present invention is mounted on a transmitter will be described as an example. However, the device on which the power generation module according to the present invention can be mounted is not particularly limited as long as it is an electric device that consumes the power generated by the power generation module.
[実施の形態1]
図1は、実施の形態1に係る発電モジュールを搭載した送信機の全体構成を概略的に示す回路ブロック図である。送信機100は、負荷としての送信部300と、発電した電力を送信部300に供給可能に構成された発電モジュール(発電装置)10とを備える。 [Embodiment 1]
1 is a circuit block diagram schematically showing an overall configuration of a transmitter on which a power generation module according toEmbodiment 1 is mounted. The transmitter 100 includes a transmission unit 300 as a load and a power generation module (power generation device) 10 configured to be able to supply the generated power to the transmission unit 300.
図1は、実施の形態1に係る発電モジュールを搭載した送信機の全体構成を概略的に示す回路ブロック図である。送信機100は、負荷としての送信部300と、発電した電力を送信部300に供給可能に構成された発電モジュール(発電装置)10とを備える。 [Embodiment 1]
1 is a circuit block diagram schematically showing an overall configuration of a transmitter on which a power generation module according to
送信部300は、RF(Radio Frequency)アンテナ302と、RF回路304とを含む。送信部300は、発電モジュール10から供給された電力を用いて、送信機100から離れた位置に設けられた受信器(図示せず)へとRF信号を送信する。このRF信号は、受信器への制御指令を示す信号であってもよいし、各種情報を受信器に伝達するための信号(たとえば複数の送信機が存在する場合に各送信機に固有の識別番号を受信器に伝達するための信号)であってもよい。また、送信部300は、RFアンテナ302およびRF回路304に代えて、LED(Light Emitting Diode)等の発光素子およびその駆動回路(いずれも図示せず)を含んでもよい。
The transmission unit 300 includes an RF (Radio Frequency) antenna 302 and an RF circuit 304. The transmission unit 300 transmits an RF signal to a receiver (not shown) provided at a position away from the transmitter 100 using the power supplied from the power generation module 10. This RF signal may be a signal indicating a control command to the receiver, or a signal for transmitting various kinds of information to the receiver (for example, when there are a plurality of transmitters, an identification unique to each transmitter). Signal for transmitting the number to the receiver). The transmitting unit 300 may include a light emitting element such as an LED (Light Emitting Diode) and a driving circuit thereof (none of which are shown) instead of the RF antenna 302 and the RF circuit 304.
発電モジュール10は、圧電素子1と、全波整流回路2と、コンデンサCと、ロードスイッチ31と、操作部4と、スイッチ51,52と、信号出力部61とを備える。
The power generation module 10 includes a piezoelectric element 1, a full-wave rectifier circuit 2, a capacitor C, a load switch 31, an operation unit 4, switches 51 and 52, and a signal output unit 61.
圧電素子1は、操作部4の変位に応じて変形することにより発電する。圧電素子1は出力端子T1,T2を含む。以下、出力端子(第2の出力端子)T2の電位を基準とした出力端子(第1の出力端子)T1の電位を「出力電圧V」と記載する。圧電素子1の構成については図2および図3にて詳細に説明する。
The piezoelectric element 1 generates electric power by being deformed according to the displacement of the operation unit 4. The piezoelectric element 1 includes output terminals T1 and T2. Hereinafter, the potential of the output terminal (first output terminal) T1 with reference to the potential of the output terminal (second output terminal) T2 is referred to as “output voltage V”. The configuration of the piezoelectric element 1 will be described in detail with reference to FIGS.
全波整流回路2は、圧電素子1とロードスイッチ31との間に電気的に接続され、圧電素子1の出力電圧Vを全波整流する。全波整流回路2としては、たとえばダイオードブリッジ(図示せず)を含む一般的な全波整流回路を用いることができる。全波整流回路2は、ノードN1,N2を含む。ノード(第1のノード)N1は、電力線PLによってロードスイッチ31に電気的に接続され、全波整流された電圧(整流電圧)Vcをロードスイッチ31に出力する。ノード(第2のノード)N2は、基準電位GNDを有する電力線GLに電気的に接続される。
The full-wave rectification circuit 2 is electrically connected between the piezoelectric element 1 and the load switch 31, and full-wave rectifies the output voltage V of the piezoelectric element 1. As the full-wave rectifier circuit 2, for example, a general full-wave rectifier circuit including a diode bridge (not shown) can be used. Full-wave rectifier circuit 2 includes nodes N1 and N2. The node (first node) N1 is electrically connected to the load switch 31 through the power line PL, and outputs a full-wave rectified voltage (rectified voltage) Vc to the load switch 31. Node (second node) N2 is electrically connected to power line GL having reference potential GND.
コンデンサCは、電力線PLと電力線GLとの間に電気的に接続され、整流電圧Vcを平滑化する。
The capacitor C is electrically connected between the power line PL and the power line GL, and smoothes the rectified voltage Vc.
ロードスイッチ(切替部)31は、電力線PL上に設けられ、電力線PLを導通させる導通状態と、電力線PLを非導通とする非導通状態とを切り替え可能に構成される。なお、ロードスイッチ31は、圧電素子1と送信部300とを結ぶ電力線に直列に接続されていればよいので、電力線GL上に設けられてもよい。その場合には、ロードスイッチ31は、電力線GLの導通状態と非導通状態とを切り替え可能に構成される。
The load switch (switching unit) 31 is provided on the power line PL, and is configured to be able to switch between a conduction state in which the power line PL is conducted and a non-conduction state in which the power line PL is not conducted. The load switch 31 may be provided on the power line GL as long as it is connected in series to the power line connecting the piezoelectric element 1 and the transmission unit 300. In that case, the load switch 31 is configured to be able to switch between a conductive state and a non-conductive state of the power line GL.
操作部4は、たとえば押ボタンスイッチにおけるボタン部分を含んで構成される。操作部4は、ユーザの操作を受け付けると変位する。スイッチ51,52の各々は、たとえば押ボタンスイッチにおける接点であり、ユーザ操作による操作部4の変位に応じてオンとオフとが切り替えられる。スイッチ51は信号(第1の信号)S1を出力し、スイッチ52は信号(第2の信号)S2を出力する。
The operation unit 4 includes, for example, a button part in a push button switch. The operation unit 4 is displaced when a user operation is received. Each of the switches 51 and 52 is a contact point in a push button switch, for example, and is switched on and off according to the displacement of the operation unit 4 by a user operation. The switch 51 outputs a signal (first signal) S1, and the switch 52 outputs a signal (second signal) S2.
信号出力部61は、スイッチ51,52からの信号S1,S2に基づいて、ロードスイッチ31の状態(導通状態および非導通状態)を切り替えるための切替信号SWを出力する。本実施の形態では、切替信号SWがH(ハイ)レベルの場合にロードスイッチ31が導通状態となり、切替信号SWがL(ロー)レベルの場合にロードスイッチ31が非導通状態となる。操作部4、スイッチ51,52、および信号出力部61の構成については図5~図7にて詳細に説明する。
The signal output unit 61 outputs a switching signal SW for switching the state (conducting state and non-conducting state) of the load switch 31 based on the signals S1 and S2 from the switches 51 and 52. In the present embodiment, the load switch 31 becomes conductive when the switching signal SW is at the H (high) level, and the load switch 31 becomes non-conductive when the switching signal SW is at the L (low) level. The configurations of the operation unit 4, the switches 51 and 52, and the signal output unit 61 will be described in detail with reference to FIGS.
図2は、圧電素子1の構成例を示す図である。図2(A)を参照して、圧電素子1は、たとえばユニモルフ型の圧電素子である。本実施の形態において、圧電素子1は両持ち梁構造を有する。すなわち、圧電素子1の両端部が支持部16によって支持されている。しかし、圧電素子1の構造は特に限定されず、圧電素子1は片持ち梁構造を有してもよい。
FIG. 2 is a diagram illustrating a configuration example of the piezoelectric element 1. Referring to FIG. 2A, the piezoelectric element 1 is, for example, a unimorph type piezoelectric element. In the present embodiment, the piezoelectric element 1 has a double-supported beam structure. That is, both end portions of the piezoelectric element 1 are supported by the support portion 16. However, the structure of the piezoelectric element 1 is not particularly limited, and the piezoelectric element 1 may have a cantilever structure.
圧電素子1は、圧電体12と、金属板14とを含む。圧電体12は、たとえばチタン酸ジルコン酸鉛系セラミックスからなる。なお、圧電体12は非鉛系圧電体セラミックス(ニオブ酸カリウムナトリウム系セラミックス、アルカリニオブ酸系セラミックス等)からなってもよい。
The piezoelectric element 1 includes a piezoelectric body 12 and a metal plate 14. The piezoelectric body 12 is made of, for example, lead zirconate titanate ceramic. The piezoelectric body 12 may be made of lead-free piezoelectric ceramics (potassium sodium niobate ceramics, alkali niobate ceramics, etc.).
圧電素子1は平板状である。圧電体12の一方の主面には電極12Aが設けられている。電極12Aには出力端子T1が電気的に接続される。圧電体12の他方の主面には電極12Bが設けられている。電極12Bは、圧電体12と金属板14とを電気的に接続する。電極12Bには出力端子T2が電気的に接続される。圧電素子1は、ユーザ操作による外力Fが加わっていない状態では図2(A)に示す初期状態を保つ。
The piezoelectric element 1 has a flat plate shape. An electrode 12A is provided on one main surface of the piezoelectric body 12. An output terminal T1 is electrically connected to the electrode 12A. An electrode 12B is provided on the other main surface of the piezoelectric body 12. The electrode 12B electrically connects the piezoelectric body 12 and the metal plate 14. An output terminal T2 is electrically connected to the electrode 12B. The piezoelectric element 1 maintains the initial state shown in FIG. 2A when no external force F is applied by the user operation.
図2(B)に示すように、圧電素子1の中央部に外力Fが付加されると、圧電体12が変形(屈曲)する。この変形過程において圧電体12に分極が生じる。図2(B)および図2(C)では正電荷を「+」で示し、負電荷を「-」で示す。分極により電極12Aが正に帯電する一方で、電極12Bは負に帯電する。そのため、出力端子T1の電位は、出力端子T2の電位よりも高くなる。すなわち、圧電素子1の出力電圧Vは正電圧になる。
As shown in FIG. 2B, when an external force F is applied to the central portion of the piezoelectric element 1, the piezoelectric body 12 is deformed (bent). In this deformation process, the piezoelectric body 12 is polarized. In FIGS. 2B and 2C, positive charges are indicated by “+” and negative charges are indicated by “−”. The electrode 12A is positively charged by polarization, while the electrode 12B is negatively charged. Therefore, the potential of the output terminal T1 is higher than the potential of the output terminal T2. That is, the output voltage V of the piezoelectric element 1 becomes a positive voltage.
一方、図2(C)に示すように、圧電素子1への外力Fの付加が停止されると、圧電体12は、圧電体12自身の復元力により初期状態(図2(A)に示す平板状の状態)へと復元する。この復元過程においては、圧電体12に生じる電荷の極性が反転する。すなわち、電極12Aが負に帯電する一方で、電極12Bは正に帯電する。そのため、圧電素子1の出力電圧Vは負電圧になる。このように、圧電素子1の変形過程と復元過程とでは圧電素子1の出力電圧Vの符号が逆転する。
On the other hand, as shown in FIG. 2C, when the application of the external force F to the piezoelectric element 1 is stopped, the piezoelectric body 12 is in the initial state (shown in FIG. 2A) by the restoring force of the piezoelectric body 12 itself. It is restored to a flat state. In this restoration process, the polarity of the charge generated in the piezoelectric body 12 is reversed. That is, the electrode 12A is negatively charged while the electrode 12B is positively charged. Therefore, the output voltage V of the piezoelectric element 1 becomes a negative voltage. Thus, the sign of the output voltage V of the piezoelectric element 1 is reversed between the deformation process and the restoration process of the piezoelectric element 1.
図3は、圧電素子の他の構成例を示す図である。図3に示すように、圧電素子1Aとして複数の圧電体12が積層された積層型の素子を用いてもよい。これにより、図2に示した単層型の構成と比べて圧電体12に生じる電荷量が大きくなるので、より大きな電力を送信部300(図1参照)に供給することが可能になる。なお、圧電素子1Aはユニモルフ型であるが、バイモルフ型やマルチモルフ型の圧電素子を採用してもよい。
FIG. 3 is a diagram showing another configuration example of the piezoelectric element. As shown in FIG. 3, a stacked element in which a plurality of piezoelectric bodies 12 are stacked may be used as the piezoelectric element 1A. This increases the amount of charge generated in the piezoelectric body 12 as compared with the single-layer configuration shown in FIG. 2, so that larger power can be supplied to the transmitter 300 (see FIG. 1). The piezoelectric element 1A is a unimorph type, but a bimorph type or multimorph type piezoelectric element may be adopted.
ここで、実施の形態1に係る発電モジュール10の特徴の理解が容易になるように、まず、比較例に係る発電モジュールを搭載した送信機について説明する。
Here, first, a transmitter equipped with the power generation module according to the comparative example will be described so that the features of the power generation module 10 according to Embodiment 1 can be easily understood.
図4は、比較例に係る発電モジュールを搭載した送信機を説明するための図である。図4に示す送信機900において、発電モジュール90は、スイッチ51,52および信号出力部61に代えて制御回路9を備える点において、実施の形態1に係る発電モジュール10(図1参照)と異なる。
FIG. 4 is a diagram for explaining a transmitter equipped with a power generation module according to a comparative example. In the transmitter 900 shown in FIG. 4, the power generation module 90 is different from the power generation module 10 according to the first embodiment (see FIG. 1) in that it includes a control circuit 9 instead of the switches 51 and 52 and the signal output unit 61. .
制御回路9は、電力線PLと電力線GLとの間に接続される。制御回路9は、いずれも図示しないが、たとえばコンパレータ回路および基準電圧生成回路を含んで構成される。整流電圧Vcが制御回路9の最低動作電圧よりも高くなると、制御回路9は、整流電圧Vcを電源電圧として動作を開始する。制御回路9は、整流電圧Vcを検出し、検出された整流電圧Vcと、予め定められたしきい値電圧Vthとの大小関係を判定する。そして、制御回路9は、整流電圧Vcがしきい値電圧Vthよりも高い場合に制御信号をロードスイッチ31に出力する。これにより、ロードスイッチ31が非導通状態から導通状態へと切り替えられる。
The control circuit 9 is connected between the power line PL and the power line GL. Although not shown, the control circuit 9 includes a comparator circuit and a reference voltage generation circuit, for example. When the rectified voltage Vc becomes higher than the minimum operating voltage of the control circuit 9, the control circuit 9 starts operation using the rectified voltage Vc as the power supply voltage. The control circuit 9 detects the rectified voltage Vc, and determines the magnitude relationship between the detected rectified voltage Vc and a predetermined threshold voltage Vth. The control circuit 9 outputs a control signal to the load switch 31 when the rectified voltage Vc is higher than the threshold voltage Vth. Thereby, the load switch 31 is switched from the non-conductive state to the conductive state.
このように発電モジュール90を構成すると、圧電素子1の製造ばらつきにより、圧電素子1の変形量が等しくとも整流電圧Vcに個体差が生じ得る。つまり、一部の圧電素子1を用いた場合の整流電圧Vcは、平均的な圧電素子1を用いた場合の整流電圧Vcよりも低くなり得る。そのため、圧電素子1によっては整流電圧Vcがしきい値電圧Vthを上回らず、送信部300への電力供給を正常に行なうことができない場合がある。このような整流電圧Vcが相対的に低くなる圧電素子1を用いた場合であっても送信部300への電力供給を正常に行なうことを可能にするためには、しきい値電圧Vthをできるだけ低い値に設定することが望ましい。たとえば図4(B)に示すように、しきい値電圧Vthは、圧電素子1の製造ばらつきを考慮したマージンに相当する値だけ低く設定される。
When the power generation module 90 is configured in this way, due to manufacturing variations of the piezoelectric element 1, even if the deformation amount of the piezoelectric element 1 is equal, individual differences may occur in the rectified voltage Vc. That is, the rectified voltage Vc when some of the piezoelectric elements 1 are used can be lower than the rectified voltage Vc when the average piezoelectric elements 1 are used. For this reason, depending on the piezoelectric element 1, the rectified voltage Vc may not exceed the threshold voltage Vth, and the power supply to the transmission unit 300 may not be performed normally. In order to enable normal power supply to the transmission unit 300 even when the piezoelectric element 1 having such a relatively low rectified voltage Vc is used, the threshold voltage Vth is set as low as possible. It is desirable to set a low value. For example, as shown in FIG. 4B, the threshold voltage Vth is set lower by a value corresponding to a margin considering manufacturing variations of the piezoelectric element 1.
しかしながら、一般に、整流電圧Vcが相対的に低い圧電素子1は少数であり、多くの圧電素子1における整流電圧Vcは、全素子における整流電圧Vcの平均値に近い。そのため、しきい値電圧Vthを過度に低い値に設定すると、多くの平均的な圧電素子1では、十分な電力が圧電素子1に蓄えられる前に電力供給が開始されてしまう。図4(B)に示した例では、電力供給の開始タイミングが時刻t93から時刻t92へと早まる。その結果、圧電素子1により発電された電力の利用効率が相対的に低くなってしまう。
However, generally, there are a small number of piezoelectric elements 1 with relatively low rectified voltages Vc, and the rectified voltages Vc in many piezoelectric elements 1 are close to the average value of the rectified voltages Vc in all elements. Therefore, when the threshold voltage Vth is set to an excessively low value, in many average piezoelectric elements 1, power supply is started before sufficient electric power is stored in the piezoelectric elements 1. In the example shown in FIG. 4B, the power supply start timing is advanced from time t93 to time t92. As a result, the utilization efficiency of the electric power generated by the piezoelectric element 1 is relatively low.
そこで、実施の形態1においては、整流電圧Vcとしきい値電圧Vthとの大小関係を電気的に判定するのに代えて、外力Fが操作部4に付加または付加停止される際のスイッチ51,52の機械的作用に基づいて、ロードスイッチ31の導通状態と非導通状態とを切り替える構成を採用する。以下、実施の形態1における操作部4、スイッチ51,52、および信号出力部61の構成について詳細に説明する。
Therefore, in the first embodiment, instead of electrically determining the magnitude relationship between the rectified voltage Vc and the threshold voltage Vth, the switch 51 when the external force F is added to or stopped from the operation unit 4, Based on the mechanical action of 52, the structure which switches the conduction | electrical_connection state of the load switch 31 and a non-conduction state is employ | adopted. Hereinafter, the configuration of the operation unit 4, the switches 51 and 52, and the signal output unit 61 in the first embodiment will be described in detail.
図5は、実施の形態1における操作部4およびスイッチ51,52の構成を説明するための図である。以下では説明の簡略化のため、図中正のz軸方向を「上方」と称し、負のz軸方向を「下方」と称する。ただし、負のz軸方向は必ずしも鉛直方向を意味するものではなく、任意の方向とすることができる。
FIG. 5 is a diagram for explaining the configuration of the operation unit 4 and the switches 51 and 52 in the first embodiment. In the following, for simplification of description, the positive z-axis direction in the drawing is referred to as “upward”, and the negative z-axis direction is referred to as “downward”. However, the negative z-axis direction does not necessarily mean a vertical direction, and can be an arbitrary direction.
発電モジュール10全体はケース7の内部に収容されている。操作部4は、ケース7の天面に設けられ、外力Fの付加の程度(すなわちユーザ操作)に応じて上下方向に変位可能に構成されている。スイッチ51は、操作部4と圧電素子1の上面との間に配置されている。スイッチ52は、圧電素子1の下面とケース7の底面との間に配置されている。言い換えると、スイッチ52は、圧電素子1についてスイッチ51と反対側に配置されている。
The entire power generation module 10 is accommodated in the case 7. The operation unit 4 is provided on the top surface of the case 7 and is configured to be vertically displaceable according to the degree of external force F applied (that is, user operation). The switch 51 is disposed between the operation unit 4 and the upper surface of the piezoelectric element 1. The switch 52 is disposed between the lower surface of the piezoelectric element 1 and the bottom surface of the case 7. In other words, the switch 52 is disposed on the opposite side of the switch 51 with respect to the piezoelectric element 1.
図5(A)は、操作部4に外力Fが付加されていない状態(初期状態)を示す。初期状態においては操作部4が下方に変位していないので、圧電素子1は変形していない。また、スイッチ51,52は、いずれもオフである。この場合、詳細は図6にて説明するが、信号出力部61から出力される切替信号SWはHレベルであり、ロードスイッチ31は導通状態に制御される。
FIG. 5A shows a state where the external force F is not applied to the operation unit 4 (initial state). Since the operation unit 4 is not displaced downward in the initial state, the piezoelectric element 1 is not deformed. In addition, the switches 51 and 52 are both off. In this case, as will be described in detail with reference to FIG. 6, the switching signal SW output from the signal output unit 61 is at the H level, and the load switch 31 is controlled to be in a conductive state.
スイッチ51は、操作部4とほぼ接触(当接)するように設けられている。そのため、図5(B)に示すように外力Fの付加によって操作部4が下方に変位すると、操作部4がスイッチ51に機械的に接触する。これにより、スイッチ51はオフからオンへと切り替えられる。以下では操作部4の変位量(言い換えると圧電素子1の変形量)を「ストローク」とも記載する。ストロークは、圧電素子1の初期状態ではゼロであり、圧電素子1が変形するに従って負のz軸方向に増加する。
The switch 51 is provided so as to substantially contact (contact) the operation unit 4. Therefore, as shown in FIG. 5B, when the operation unit 4 is displaced downward by the addition of the external force F, the operation unit 4 mechanically contacts the switch 51. Thereby, the switch 51 is switched from OFF to ON. Hereinafter, the displacement amount of the operation unit 4 (in other words, the deformation amount of the piezoelectric element 1) is also referred to as “stroke”. The stroke is zero in the initial state of the piezoelectric element 1 and increases in the negative z-axis direction as the piezoelectric element 1 is deformed.
このように、スイッチ51は、操作部4の変位により圧電素子1が初期状態から変形したことを検出し、信号S1の論理レベルを切り替える。一方、図5(B)の段階では圧電素子1は依然として変形していないので、スイッチ52はオフのままであり、スイッチ52からの信号S2の論理レベルは変化しない。信号出力部61(図6参照)は、信号S1,S2に基づいて所定の論理演算(後述)を行なうことによって、切替信号SWをHレベルからLレベルへと切り替える。これにより、ロードスイッチ31が導通状態から非導通状態へと切り替えられる。
As described above, the switch 51 detects that the piezoelectric element 1 is deformed from the initial state due to the displacement of the operation unit 4, and switches the logic level of the signal S1. On the other hand, at the stage of FIG. 5B, since the piezoelectric element 1 is not yet deformed, the switch 52 remains off, and the logic level of the signal S2 from the switch 52 does not change. The signal output unit 61 (see FIG. 6) switches the switching signal SW from the H level to the L level by performing a predetermined logical operation (described later) based on the signals S1 and S2. Thereby, the load switch 31 is switched from the conductive state to the non-conductive state.
図5(C)に示すように操作部4が下方へと変位するにつれて、スイッチ51はオンに維持されたまま、圧電素子1の変形量が増加する。これにより、圧電素子1では発電が行なわれ、出力電圧Vが次第に高くなる。一方、スイッチ52はオフのままである。つまり、スイッチ51,52は、いずれも図5(B)に示した状態から変化していない。したがって、切替信号SWはLレベルであり、ロードスイッチ31は非導通状態に維持される。その結果、圧電素子1により発電された電力は、送信部300へと供給されることなく圧電素子1に蓄えられることになる。
As shown in FIG. 5C, as the operation unit 4 is displaced downward, the amount of deformation of the piezoelectric element 1 increases while the switch 51 is kept on. As a result, power is generated in the piezoelectric element 1 and the output voltage V gradually increases. On the other hand, the switch 52 remains off. That is, neither of the switches 51 and 52 has changed from the state shown in FIG. Therefore, the switching signal SW is at the L level, and the load switch 31 is maintained in the non-conductive state. As a result, the electric power generated by the piezoelectric element 1 is stored in the piezoelectric element 1 without being supplied to the transmission unit 300.
図5(D)に示すように操作部4がさらに下方へと変位すると、それにより変形した圧電素子1がスイッチ52と機械的に接触する。スイッチ52はケース7の底面に配置されているので、圧電素子1の変形量はスイッチ52およびケース7により制限される。言い換えると、スイッチ52は、圧電素子1の変形量が予め定められた制限値に達していることを検出し、信号S2の論理レベルを切り替える。スイッチ52は、圧電素子1の変形量が予め定められた制限値に達している間、信号S2の論理レベルをLレベルに保つ。一方、スイッチ51はオンのままであり、スイッチ51からの信号S1の論理レベルは変化しない。信号出力部61は、信号S1,S2に基づいて論理演算を行なうことによって、切替信号SWをLレベルからHレベルへと切り替える。これにより、ロードスイッチ31が非導通状態から導通状態へと切り替えられ、圧電素子1に蓄えられた電力が送信部300へと供給される。
As shown in FIG. 5D, when the operation unit 4 is further displaced downward, the piezoelectric element 1 deformed thereby mechanically contacts the switch 52. Since the switch 52 is disposed on the bottom surface of the case 7, the deformation amount of the piezoelectric element 1 is limited by the switch 52 and the case 7. In other words, the switch 52 detects that the deformation amount of the piezoelectric element 1 has reached a predetermined limit value, and switches the logic level of the signal S2. The switch 52 keeps the logic level of the signal S2 at the L level while the deformation amount of the piezoelectric element 1 reaches a predetermined limit value. On the other hand, the switch 51 remains on, and the logic level of the signal S1 from the switch 51 does not change. The signal output unit 61 switches the switching signal SW from the L level to the H level by performing a logical operation based on the signals S1 and S2. Thereby, the load switch 31 is switched from the non-conductive state to the conductive state, and the electric power stored in the piezoelectric element 1 is supplied to the transmitting unit 300.
詳細な説明は繰り返さないが、ユーザが操作部4の操作を止めて(すなわち外力Fの付加の緩和を開始して)圧電素子1が初期状態へと復元する過程においては、図5(D)、図5(C)、図5(B)、図5(A)の順に発電モジュール10の状態が遷移する。
Although the detailed description will not be repeated, in the process in which the user stops the operation of the operation unit 4 (that is, starts to relax the application of the external force F) and the piezoelectric element 1 is restored to the initial state, FIG. , FIG. 5C, FIG. 5B, and FIG.
図6は、実施の形態1における信号出力部61の構成を説明するための図である。図6(A)ならびに後述する図12(A)および図15に示すベン図において、斜線部分は、信号出力部61から出力される切替信号SWがHレベルであることを示す。斜線が付されていない部分は、切替信号SWがLレベルであることを示す。
FIG. 6 is a diagram for explaining the configuration of the signal output unit 61 in the first embodiment. In FIG. 6A and the Venn diagram shown in FIG. 12A and FIG. 15 described later, the hatched portion indicates that the switching signal SW output from the signal output unit 61 is at the H level. A portion not shaded indicates that the switching signal SW is at the L level.
圧電素子1が初期状態から変形していない場合、すなわちスイッチ51がオフの場合には、図5(A)から明らかなように、スイッチ52もオフである。この場合には、領域K1に示すように、信号出力部61は、Hレベルの切替信号SWを出力してロードスイッチ31を導通状態とする。
When the piezoelectric element 1 is not deformed from the initial state, that is, when the switch 51 is off, the switch 52 is also off as is apparent from FIG. In this case, as shown in the region K1, the signal output unit 61 outputs an H level switching signal SW to make the load switch 31 conductive.
圧電素子1が初期状態から変形しているが、圧電素子1の変形量が制限値には達していない場合、すなわち、領域K2に示すようにスイッチ51がオンであり、かつスイッチ52がオフである場合(図5(B)および図5(C)参照)には、信号出力部61は、Lレベルの切替信号SWを出力してロードスイッチ31を非導通状態とする。
When the piezoelectric element 1 is deformed from the initial state, but the deformation amount of the piezoelectric element 1 does not reach the limit value, that is, as shown in the region K2, the switch 51 is on and the switch 52 is off. In some cases (see FIGS. 5B and 5C), the signal output unit 61 outputs an L level switching signal SW to make the load switch 31 non-conductive.
圧電素子1の変形量が制限値に達している場合、すなわち、領域K3,K4に示すようにスイッチ52がオンである場合(図5(D)参照)には、信号出力部61は、Hレベルの切替信号SWを出力してロードスイッチ31を導通させる。なお、図5(D)から明らかなように、スイッチ51がオフであり、かつスイッチ52がオンである状態(領域K4参照)は実際には生じない。
When the deformation amount of the piezoelectric element 1 has reached the limit value, that is, when the switch 52 is on as shown in the regions K3 and K4 (see FIG. 5D), the signal output unit 61 A level switching signal SW is output to make the load switch 31 conductive. As is apparent from FIG. 5D, the state in which the switch 51 is off and the switch 52 is on (see region K4) does not actually occur.
図6(A)に示したベン図の関係を実現するために、信号出力部61においては図6(B)に示す論理回路が構成される。本実施の形態において、信号出力部61は、スイッチ51からの信号S1を受ける入力ノードIN1と、スイッチ52からの信号S2を受ける入力ノードIN2と、切替信号SWを出力する出力ノードOUTと、否定回路(NOT回路)612と、論理和回路(OR回路)614とを含む。
In order to realize the Venn diagram relationship shown in FIG. 6A, the signal output unit 61 includes a logic circuit shown in FIG. In the present embodiment, the signal output unit 61 includes an input node IN1 that receives the signal S1 from the switch 51, an input node IN2 that receives the signal S2 from the switch 52, an output node OUT that outputs the switching signal SW, and negation. A circuit (NOT circuit) 612 and an OR circuit (OR circuit) 614 are included.
NOT回路612は、信号S1の否定の演算結果を示す信号をOR回路614に出力する。OR回路614は、NOT回路612からの信号と、信号S2との論理和の演算結果を示す信号を出力ノードOUTに出力する。
The NOT circuit 612 outputs a signal indicating a negative operation result of the signal S1 to the OR circuit 614. The OR circuit 614 outputs a signal indicating the logical sum of the signal from the NOT circuit 612 and the signal S2 to the output node OUT.
図7は、図6(A)に示したベン図の関係を実現するための回路構成例を示す図である。信号出力部61は、ダイオードD1,D2と、抵抗R1,R2とを含む。なお、図7では図示の都合上、信号出力部61を示す枠線は示されていない。
FIG. 7 is a diagram showing a circuit configuration example for realizing the relationship of the Venn diagram shown in FIG. The signal output unit 61 includes diodes D1 and D2 and resistors R1 and R2. In FIG. 7, for convenience of illustration, a frame line indicating the signal output unit 61 is not shown.
スイッチ51の一方端は、電力線GLに電気的に接続される。スイッチ51の他方端は、抵抗(第1の抵抗)R1を介して電力線PLに電気的に接続されるとともに、ダイオード(第1のダイオード)D1のアノードに電気的に接続される。ダイオードD1のカソードは、抵抗R2を介して電力線GLに電気的に接続されるとともに、出力ノードOUTに電気的に接続される。スイッチ52の一方端は、電力線PLに電気的に接続されるとともに、抵抗R1を介してスイッチ51の他方端に電気的に接続される。スイッチ52の他方端は、ダイオード(第2のダイオード)D2のアノードに電気的に接続される。ダイオードD2のカソードは、出力ノードOUTに電気的に接続される。
The one end of the switch 51 is electrically connected to the power line GL. The other end of the switch 51 is electrically connected to the power line PL via the resistor (first resistor) R1, and is also electrically connected to the anode of the diode (first diode) D1. The cathode of the diode D1 is electrically connected to the power line GL via the resistor R2 and is also electrically connected to the output node OUT. One end of the switch 52 is electrically connected to the power line PL and electrically connected to the other end of the switch 51 via the resistor R1. The other end of the switch 52 is electrically connected to the anode of a diode (second diode) D2. The cathode of the diode D2 is electrically connected to the output node OUT.
なお、図6(B)に示した論理回路の構成例、および、図7に示した電気回路の構成例は、いずれも例示に過ぎず、図6(A)に示したベン図の関係を実現可能であれば他の構成を採用することも可能である。
Note that the configuration example of the logic circuit illustrated in FIG. 6B and the configuration example of the electric circuit illustrated in FIG. 7 are merely examples, and the Venn diagram relationship illustrated in FIG. 6A is realized. Other configurations may be employed if possible.
図8は、実施の形態1に係る発電モジュール10の動作を説明するためのタイムチャートである。図8において横軸は経過時間を表す。縦軸は、上から順にストローク、スイッチ51のオン/オフ、信号S1の論理レベル、スイッチ52のオン/オフ、信号S2の論理レベル、切替信号SWの論理レベル(すなわちロードスイッチ31の導通状態/非導通状態)、および出力電圧Vを示す。
FIG. 8 is a time chart for explaining the operation of the power generation module 10 according to the first embodiment. In FIG. 8, the horizontal axis represents the elapsed time. The vertical axis indicates the stroke in order from the top, the switch 51 on / off, the logic level of the signal S1, the switch 52 on / off, the logic level of the signal S2, and the logic level of the switching signal SW (that is, the conduction state / Non-conducting state) and output voltage V.
時刻t11までの期間では、圧電素子1は変形しておらず、ストロークはゼロである(図5(A)参照)。そのため、スイッチ51はオフであり、信号S1はHレベルである。スイッチ52はオフであり、信号S2はLレベルである。よって、信号出力部61からはHレベルの切替信号SWが出力され、ロードスイッチ31は導通状態である。しかしながら、圧電素子1が変形していないので出力電圧Vが略ゼロV(ボルト)であるため、発電モジュール10から送信部300への電力供給は行なわれていない。
During the period up to time t11, the piezoelectric element 1 is not deformed and the stroke is zero (see FIG. 5A). Therefore, the switch 51 is off and the signal S1 is at the H level. Switch 52 is off and signal S2 is at L level. Therefore, the signal output unit 61 outputs the H level switching signal SW, and the load switch 31 is in the conductive state. However, since the piezoelectric element 1 is not deformed, the output voltage V is substantially zero V (volts), so that power is not supplied from the power generation module 10 to the transmission unit 300.
時刻t11において、外力Fの付加が開始され、圧電素子1の変形(ストロークの負方向への増加)が始まる(図5(B)参照)。これにより、スイッチ51がオフからオンへと切り替わるので、信号S1はHレベルからLレベルへと切り替わる。一方、スイッチ52はオフのままであるので、信号S2はLレベルのまま変化しない。したがって、信号出力部61からはLレベルの切替信号SWが出力される。これにより、ロードスイッチ31は導通状態から非導通状態へと切り替わる。したがって、圧電素子1により発電された電力は、送信部300へと供給されることなく圧電素子1に蓄えられる。よって、時刻t11から時刻t12までの期間、ストロークの負方向への増加が継続され、出力電圧Vが次第に増加する(図5(C)参照)。
At time t11, application of the external force F is started, and deformation of the piezoelectric element 1 (increase in the negative direction of the stroke) starts (see FIG. 5B). As a result, the switch 51 is switched from OFF to ON, and the signal S1 is switched from H level to L level. On the other hand, since the switch 52 remains off, the signal S2 remains at the L level. Therefore, the signal output unit 61 outputs the L level switching signal SW. As a result, the load switch 31 is switched from the conductive state to the non-conductive state. Therefore, the electric power generated by the piezoelectric element 1 is stored in the piezoelectric element 1 without being supplied to the transmission unit 300. Therefore, during the period from time t11 to time t12, the stroke continues to increase in the negative direction, and the output voltage V gradually increases (see FIG. 5C).
時刻t12において圧電素子1の変形量が制限値に達すると(図5(D)参照)、スイッチ52がオフからオンへと切り替わるので、信号S2はHレベルになる。一方、スイッチ51はオンに維持されているので、信号S1はLレベルである。したがって、信号出力部61からはHレベルの切替信号SWが出力される。これにより、ロードスイッチ31は非導通状態から導通状態へと切り替わる。その結果、圧電素子1に蓄えられた電力が送信部300へと供給される。その後、時刻t12から時刻t13までの期間、電力供給が継続され、送信部300からRF信号が出力されることで出力電圧VがゼロVに向けて次第に低下する。
When the deformation amount of the piezoelectric element 1 reaches the limit value at time t12 (see FIG. 5D), the switch 52 is switched from OFF to ON, so that the signal S2 becomes H level. On the other hand, since the switch 51 is kept on, the signal S1 is at the L level. Therefore, the signal output unit 61 outputs an H level switching signal SW. As a result, the load switch 31 is switched from the non-conductive state to the conductive state. As a result, the electric power stored in the piezoelectric element 1 is supplied to the transmission unit 300. Thereafter, power supply is continued during a period from time t12 to time t13, and the RF signal is output from the transmission unit 300, whereby the output voltage V gradually decreases toward zero V.
時刻t13において外力Fの緩和が開始されると、圧電素子1の復元力により、ストロークは正方向へと増加する。これにより、スイッチ52がオンからオフへと切り替わるので、信号S2はLレベルになる。一方、スイッチ51はオンに維持されているので、信号S1はLレベルである。よって、信号出力部61からはLレベルの切替信号SWが出力され、ロードスイッチ31は導通状態から非導通状態へと切り替わる。そのため、圧電素子1の復元過程において発電された電力は圧電素子1に蓄えられる。よって、時刻t13から時刻t14までの期間、出力電圧Vは負方向に増加する。
When the relaxation of the external force F is started at time t13, the stroke increases in the positive direction due to the restoring force of the piezoelectric element 1. As a result, the switch 52 is switched from on to off, so that the signal S2 becomes L level. On the other hand, since the switch 51 is kept on, the signal S1 is at the L level. Therefore, the L level switching signal SW is output from the signal output unit 61, and the load switch 31 is switched from the conductive state to the non-conductive state. Therefore, the electric power generated in the restoration process of the piezoelectric element 1 is stored in the piezoelectric element 1. Therefore, the output voltage V increases in the negative direction during the period from time t13 to time t14.
その後、時刻t14においてストロークがゼロになり圧電素子1は初期状態へと戻ると、スイッチ51がオンからオフへと切り替わるので、信号S1はHレベルになる。一方、スイッチ52はオフのままであるので、信号S2はLレベルである。したがって、信号出力部61からはHレベルの切替信号SWが出力され、ロードスイッチ31は非導通状態から導通状態へと切り替わる。その結果、圧電素子1に蓄えられた電力が送信部300へと供給されるので、出力電圧VはゼロVに向けて正方向に増加する。
After that, when the stroke becomes zero at time t14 and the piezoelectric element 1 returns to the initial state, the switch 51 is switched from on to off, so that the signal S1 becomes H level. On the other hand, since the switch 52 remains off, the signal S2 is at the L level. Therefore, an H level switching signal SW is output from the signal output unit 61, and the load switch 31 is switched from the non-conductive state to the conductive state. As a result, since the electric power stored in the piezoelectric element 1 is supplied to the transmission unit 300, the output voltage V increases in the positive direction toward zero V.
このように、実施の形態1によれば、ユーザ操作により圧電素子1が初期状態から変形を開始するのに先立ってスイッチ51がオンされることにより、ロードスイッチ31が非導通状態となる。これにより、圧電素子1により発電された電力が相対的に小さいうちには、電力を送信部300へと供給することなく圧電素子1に蓄えることができる。さらに、圧電素子1の変形が制限された時点、すなわち圧電素子1の変形量が許容範囲の最大値である制限値に達した時点でスイッチ52がオンされることにより、ロードスイッチ31が非導通状態から導通状態へと切り替えられる。これにより、圧電素子1に電力が最も蓄えられた状態で送信部300への電力供給を開始することができる。したがって、実施の形態1によれば、圧電素子1により発電された電力の利用効率を向上させることができる。また、圧電素子1の復元過程においても同様に、送信部300への電力供給を高効率に行なうことができる。
Thus, according to the first embodiment, the switch 51 is turned on before the piezoelectric element 1 starts to be deformed from the initial state by the user operation, so that the load switch 31 becomes non-conductive. Thereby, while the electric power generated by the piezoelectric element 1 is relatively small, the electric power can be stored in the piezoelectric element 1 without being supplied to the transmission unit 300. Further, when the deformation of the piezoelectric element 1 is restricted, that is, when the deformation amount of the piezoelectric element 1 reaches a limit value that is the maximum value of the allowable range, the switch 52 is turned on, so that the load switch 31 becomes non-conductive. The state is switched to the conductive state. Thereby, the power supply to the transmission unit 300 can be started in a state where the electric power is most stored in the piezoelectric element 1. Therefore, according to Embodiment 1, the utilization efficiency of the electric power generated by the piezoelectric element 1 can be improved. Similarly, in the restoration process of the piezoelectric element 1, power can be supplied to the transmission unit 300 with high efficiency.
比較例における出力電圧Vの時間変化を図8に破線で示し、比較例と対比して実施の形態1の効果を説明する。上述のように比較例では、マージンに相当する値だけ低い値をしきい値電圧Vthとして設定することが求められる。そのため、比較例では、マージンを設定しない場合と比べて、圧電素子1に電力が蓄えられる期間(電力蓄積期間)が短くなる。その結果、十分な電力が圧電素子1に蓄えられていない状態でロードスイッチ31が導通されてしまう可能性がある。
The time change of the output voltage V in the comparative example is shown by a broken line in FIG. 8, and the effect of the first embodiment will be described in comparison with the comparative example. As described above, in the comparative example, it is required to set a value lower by a value corresponding to the margin as the threshold voltage Vth. Therefore, in the comparative example, the period during which power is stored in the piezoelectric element 1 (power storage period) is shorter than when no margin is set. As a result, there is a possibility that the load switch 31 is turned on in a state where sufficient electric power is not stored in the piezoelectric element 1.
これに対し、実施の形態1によれば、圧電素子1がスイッチ52に機械的に接触して、それ以上の圧電素子1の変形が制限されるまで圧電素子1の変形を許容してから、ロードスイッチ31を導通することが可能になる。よって、上述のマージンを設定する必要がない。そのため、実施の形態1における電力蓄積期間(時刻t11と時刻t12との間の期間)は、比較例における電力蓄積期間よりも長くなる。つまり、圧電素子1により発電された電力を十分に蓄えてから送信部300に供給することができる。したがって、電力の利用効率を向上させることができる。
On the other hand, according to the first embodiment, the piezoelectric element 1 is mechanically contacted with the switch 52 and the deformation of the piezoelectric element 1 is allowed until further deformation of the piezoelectric element 1 is restricted. The load switch 31 can be turned on. Therefore, there is no need to set the above margin. Therefore, the power storage period in Embodiment 1 (the period between time t11 and time t12) is longer than the power storage period in the comparative example. That is, the power generated by the piezoelectric element 1 can be sufficiently stored before being supplied to the transmission unit 300. Therefore, the power utilization efficiency can be improved.
なお、スイッチ51,52は、本発明に係る「第1および第2の出力部」にそれぞれ相当する。ただし、本発明に係る「第1および第2の出力部」は、圧電素子1の変形を機械的(力学的)に検出して信号を出力可能であれば機械式スイッチに限定されるものではなく、たとえば圧力センサ(圧電素子1とは別の圧電素子)であってもよい。
The switches 51 and 52 correspond to “first and second output units” according to the present invention, respectively. However, the “first and second output units” according to the present invention are not limited to mechanical switches as long as they can mechanically (mechanically) detect deformation of the piezoelectric element 1 and output a signal. For example, a pressure sensor (a piezoelectric element different from the piezoelectric element 1) may be used.
[実施の形態1の変形例]
実施の形態1の変形例では、適切なタイミングで圧電素子1を放電することによって電力の利用効率を一層向上させることが可能な構成について説明する。 [Modification of Embodiment 1]
In the modification of the first embodiment, a configuration that can further improve the power utilization efficiency by discharging thepiezoelectric element 1 at an appropriate timing will be described.
実施の形態1の変形例では、適切なタイミングで圧電素子1を放電することによって電力の利用効率を一層向上させることが可能な構成について説明する。 [Modification of Embodiment 1]
In the modification of the first embodiment, a configuration that can further improve the power utilization efficiency by discharging the
図9は、実施の形態1の変形例に係る発電モジュールを搭載した送信機の全体構成を概略的に示す回路ブロック図である。図9に示す送信機100Aは、送信部300を制御する制御部400をさらに備える。また、発電モジュール10Aは、放電スイッチ8をさらに備える。
FIG. 9 is a circuit block diagram schematically showing an overall configuration of a transmitter equipped with a power generation module according to a modification of the first embodiment. The transmitter 100A illustrated in FIG. 9 further includes a control unit 400 that controls the transmission unit 300. In addition, the power generation module 10 </ b> A further includes a discharge switch 8.
放電スイッチ8は、圧電素子1の出力端子T1と出力端子T2との間に接続され、圧電素子1に蓄えられた電荷を放電するために用いられる。より具体的には、放電スイッチ8は、制御部400からの放電指令に応答してオフからオンへと切り替えられる。これにより、出力端子T1と出力端子T2とが短絡するので、圧電素子1に蓄えられた電荷が放電される。なお、放電スイッチ8としては、たとえばアナログスイッチなどのIC(Integrated Circuit)またはFET(Field Effect Transistor)を用いることができる。
The discharge switch 8 is connected between the output terminal T1 and the output terminal T2 of the piezoelectric element 1 and is used for discharging the electric charge stored in the piezoelectric element 1. More specifically, the discharge switch 8 is switched from off to on in response to a discharge command from the control unit 400. As a result, the output terminal T1 and the output terminal T2 are short-circuited, so that the charge stored in the piezoelectric element 1 is discharged. As the discharge switch 8, for example, an IC (Integrated Circuit) such as an analog switch or a FET (Field Effect Transistor) can be used.
図10は、実施の形態1の変形例に係る発電モジュール10Aの動作を説明するためのタイムチャートである。実施の形態1の変形例における時刻t22までの動作は、実施の形態1における時刻t12までの動作(図8参照)と同等であるため説明は繰り返さない。
FIG. 10 is a time chart for explaining the operation of the power generation module 10A according to the modification of the first embodiment. Since the operation up to time t22 in the modification of the first embodiment is equivalent to the operation up to time t12 in the first embodiment (see FIG. 8), description thereof will not be repeated.
図10では、放電スイッチ8による放電が行なわれる場合の出力電圧Vおよび整流電圧Vcの時間変化を実線で示す。一方、放電スイッチ8による放電が行なわれない場合の出力電圧Vおよび整流電圧Vcの時間変化を破線で示す。
In FIG. 10, the time change of the output voltage V and the rectified voltage Vc when the discharge by the discharge switch 8 is performed is indicated by a solid line. On the other hand, the time change of the output voltage V and the rectified voltage Vc when the discharge by the discharge switch 8 is not performed is indicated by a broken line.
時刻t22からはロードスイッチ31が導通状態であるので、圧電素子1から負荷である送信部300および制御部400へと電力が供給される。制御部400は、送信部300に動作指令を出力して無線信号を送信させると、時刻t22aにおいて放電スイッチ8に放電指令をさらに出力する。これにより、圧電素子1に蓄えられた電荷が放電されるので、出力電圧Vおよび整流電圧Vcは、いずれもゼロVへと戻る。
Since the load switch 31 is conductive from time t22, electric power is supplied from the piezoelectric element 1 to the transmission unit 300 and the control unit 400 that are loads. When control unit 400 outputs an operation command to transmission unit 300 to transmit a radio signal, control unit 400 further outputs a discharge command to discharge switch 8 at time t22a. Thereby, since the electric charge stored in the piezoelectric element 1 is discharged, both the output voltage V and the rectified voltage Vc return to zero V.
その後の時刻t23から時刻t24までの圧電素子1の復元過程において、出力電圧Vが負方向に増加する。この際、圧電素子1の放電が行なわれることによって、整流電圧Vc(実線参照)が、放電を行なわなかった場合の整流電圧Vc(破線参照)よりも大きくなる(たとえば時刻t24参照)。よって、実施の形態1の変形例によれば、実施の形態1と比べて、電力の利用効率を一層向上させることができる。なお、図示しないが、圧電素子1の復元過程にて発電された電力の供給後(時刻t24以降)にも同様に放電スイッチ8を用いて圧電素子1を放電させてもよい。
In the subsequent restoration process of the piezoelectric element 1 from time t23 to time t24, the output voltage V increases in the negative direction. At this time, discharge of the piezoelectric element 1 causes the rectified voltage Vc (see the solid line) to be larger than the rectified voltage Vc (see the broken line) when the discharge is not performed (see, for example, time t24). Therefore, according to the modification of the first embodiment, the power use efficiency can be further improved as compared with the first embodiment. Although not shown, the piezoelectric element 1 may be similarly discharged using the discharge switch 8 after the supply of electric power generated during the restoration process of the piezoelectric element 1 (after time t24).
[実施の形態2]
実施の形態1では操作部が1つしか設けられていない構成を例に説明したが、発電モジュールには複数の操作部が設けられていてもよい。実施の形態2においては、2つの操作部が設けられた構成例を説明する。 [Embodiment 2]
In the first embodiment, the configuration in which only one operation unit is provided has been described as an example, but the power generation module may be provided with a plurality of operation units. In the second embodiment, a configuration example in which two operation units are provided will be described.
実施の形態1では操作部が1つしか設けられていない構成を例に説明したが、発電モジュールには複数の操作部が設けられていてもよい。実施の形態2においては、2つの操作部が設けられた構成例を説明する。 [Embodiment 2]
In the first embodiment, the configuration in which only one operation unit is provided has been described as an example, but the power generation module may be provided with a plurality of operation units. In the second embodiment, a configuration example in which two operation units are provided will be described.
図11は、実施の形態2における操作部およびスイッチの構成を説明するための図である。実施の形態2において、発電モジュール20は、2つの操作部4A,4Bと、3つのスイッチ51A,51B,52とを備える。スイッチ51A,51Bから出力される信号をS1A,S1Bとそれぞれ記載する(図12(B)参照)。
FIG. 11 is a diagram for explaining the configuration of the operation unit and the switch in the second embodiment. In the second embodiment, the power generation module 20 includes two operation units 4A and 4B and three switches 51A, 51B, and 52. Signals output from the switches 51A and 51B are denoted as S1A and S1B, respectively (see FIG. 12B).
操作部4A,4Bの各々は、ユーザの操作を受け付ける。操作部4Aと操作部4Bとは、ユーザ操作に応じて、図中z軸方向に互いに独立に変位可能である。
Each of the operation units 4A and 4B accepts user operations. The operation unit 4A and the operation unit 4B can be displaced independently of each other in the z-axis direction in the drawing in accordance with a user operation.
スイッチ51Aは、操作部4Aと圧電素子1の上面との間において、操作部4Aとほぼ接触するように設けられている。そのため、スイッチ51Aは、操作部4Aの変位に応じて圧電素子1が初期状態から変形すると、オフからオンへと切り替えられる。同様に、スイッチ51Bは、操作部4Bと圧電素子1の上面との間において、操作部4Bとほぼ接触するように設けられている。そのため、スイッチ51Bは、操作部4Bの変位に応じて圧電素子1が初期状態から変形すると、オフからオンへと切り替えられる。
The switch 51A is provided between the operation unit 4A and the upper surface of the piezoelectric element 1 so as to be substantially in contact with the operation unit 4A. Therefore, the switch 51A is switched from off to on when the piezoelectric element 1 is deformed from the initial state in accordance with the displacement of the operation unit 4A. Similarly, the switch 51B is provided between the operation unit 4B and the upper surface of the piezoelectric element 1 so as to be substantially in contact with the operation unit 4B. Therefore, the switch 51B is switched from off to on when the piezoelectric element 1 is deformed from the initial state in accordance with the displacement of the operation unit 4B.
スイッチ52は、圧電素子1の下面とケース7の底面との間に設けられている。操作部4A,4Bのうちの一方または両方が下方へと変位すると、それにより変形した圧電素子1がスイッチ52に機械的に接触する。これにより、スイッチ52は、オフからオンへと切り替えられる。
The switch 52 is provided between the lower surface of the piezoelectric element 1 and the bottom surface of the case 7. When one or both of the operation units 4A and 4B are displaced downward, the piezoelectric element 1 deformed thereby mechanically contacts the switch 52. Thereby, the switch 52 is switched from OFF to ON.
このような操作部4A,4Bおよびスイッチ51A,51B,52の構成に対応して、以下に説明するように、発電モジュール20は信号出力部61に代えて信号出力部62を備える。
Corresponding to the configuration of the operation units 4A and 4B and the switches 51A, 51B, and 52, the power generation module 20 includes a signal output unit 62 instead of the signal output unit 61 as described below.
図12は、実施の形態2における信号出力部62の構成を説明するための図である。図12(A)を参照して、領域K5に示すようにスイッチ51A,51Bがいずれもオフの場合には、信号出力部62はHレベルの切替信号SWを出力する。
FIG. 12 is a diagram for explaining the configuration of the signal output unit 62 in the second embodiment. Referring to FIG. 12A, when both switches 51A and 51B are off as shown in region K5, signal output unit 62 outputs an H level switching signal SW.
領域K6,R7に示すようにスイッチ51A,51Bのうちの一方がオン、他方がオフであり、かつ、スイッチ52がオフである場合には、信号出力部62はLレベルの切替信号SWを出力する。また、領域K8に示すようにスイッチ51A,51Bがいずれもオンであり、かつ、スイッチ52がオフである場合にも、信号出力部62はLレベルの切替信号SWを出力する。
As shown in regions K6 and R7, when one of the switches 51A and 51B is on, the other is off, and the switch 52 is off, the signal output unit 62 outputs an L level switching signal SW. To do. Further, as shown in the region K8, the signal output unit 62 outputs the L level switching signal SW even when both the switches 51A and 51B are on and the switch 52 is off.
領域K9~K12に示すようにスイッチ52がオンである場合には、信号出力部62はHレベルの切替信号SWを出力する。なお、スイッチ51A,51Bがいずれもオフであるにもかかわらずスイッチ52がオンである状態(領域K12参照)は実際には生じない。
When the switch 52 is on as shown in the regions K9 to K12, the signal output unit 62 outputs the H level switching signal SW. Note that the state in which the switch 52 is on (see the region K12) does not actually occur even though both the switches 51A and 51B are off.
図12(B)を参照して、実施の形態2において信号出力部62は、信号S1Aを受ける入力ノードIN1Aと、信号S1Bを受ける入力ノードIN1Bと、信号S2を受ける入力ノードIN2と、切替信号SWを出力する出力ノードOUTと、否定論理和回路(NOR回路)622と、論理和回路(OR回路)624とを含む。
Referring to FIG. 12B, in the second embodiment, signal output unit 62 includes an input node IN1A that receives signal S1A, an input node IN1B that receives signal S1B, an input node IN2 that receives signal S2, and a switching signal. An output node OUT for outputting SW, a negative OR circuit (NOR circuit) 622, and an OR circuit (OR circuit) 624 are included.
NOR回路622は、信号S1Aと信号S1Bとの否定論理和の演算結果を示す信号をOR回路624に出力する。OR回路624は、NOR回路622からの信号と、信号S2との論理和の演算結果を示す信号を出力ノードOUTに出力する。
The NOR circuit 622 outputs to the OR circuit 624 a signal indicating the operation result of the negative OR of the signal S1A and the signal S1B. The OR circuit 624 outputs a signal indicating the logical sum of the signal from the NOR circuit 622 and the signal S2 to the output node OUT.
図13は、図12(A)に示したベン図の関係を実現するための回路構成例を示す図である。発電モジュール20は、上述のように信号出力部61に代えて信号出力部62を備える点、ロードスイッチ31に代えてDC/DCコンバータ32を備える点、および、制御部400をさらに備える点において、実施の形態1に係る発電モジュール10(図7参照)と異なる。なお、発電モジュール20は、放電スイッチ8(図9参照)をさらに備えてもよい。
FIG. 13 is a diagram showing a circuit configuration example for realizing the relationship of the Venn diagram shown in FIG. The power generation module 20 includes a signal output unit 62 instead of the signal output unit 61 as described above, a point including a DC / DC converter 32 instead of the load switch 31, and a point further including a control unit 400. Different from the power generation module 10 according to Embodiment 1 (see FIG. 7). The power generation module 20 may further include a discharge switch 8 (see FIG. 9).
信号出力部62(図13には図示せず)は、ダイオードD3~D6と、抵抗R3~R6と、NMOS(n-type Metal Oxide-Semiconductor)トランジスタであるスイッチング素子Q1とを含む。DC/DCコンバータ32は、入力端子Vinと、出力端子Voutと、イネーブル端子ENとを含む。イネーブル端子ENは、出力ノードOUTから出力された切替信号SWをDC/DCコンバータ32のイネーブル信号として受ける。制御部400は、信号S1A,S2Aに基づいて送信部300に動作指令を出力する。
The signal output unit 62 (not shown in FIG. 13) includes diodes D3 to D6, resistors R3 to R6, and a switching element Q1 that is an NMOS (n-type Metal Oxide-Semiconductor) transistor. The DC / DC converter 32 includes an input terminal Vin, an output terminal Vout, and an enable terminal EN. The enable terminal EN receives the switching signal SW output from the output node OUT as an enable signal for the DC / DC converter 32. Control unit 400 outputs an operation command to transmission unit 300 based on signals S1A and S2A.
スイッチ51A,51B,52の各々の一方端は、電力線PLに電気的に接続される。スイッチ51Aの他方端は、入力ノードIN1AおよびダイオードD3を介して、スイッチング素子Q1のゲートに電気的に接続される。ダイオードD3のアノードは、抵抗R3を介して電力線GLに電気的にされる。同様に、スイッチ51Bの他方端は、入力ノードIN1BおよびダイオードD4を介して、スイッチング素子Q1のゲートに電気的に接続される。ダイオードD4のアノードは、抵抗R4を介して電力線GLに電気的に接続される。
One end of each of the switches 51A, 51B, 52 is electrically connected to the power line PL. The other end of switch 51A is electrically connected to the gate of switching element Q1 via input node IN1A and diode D3. The anode of the diode D3 is electrically connected to the power line GL via the resistor R3. Similarly, the other end of the switch 51B is electrically connected to the gate of the switching element Q1 via the input node IN1B and the diode D4. The anode of the diode D4 is electrically connected to the power line GL via the resistor R4.
スイッチング素子Q1のドレインは、抵抗R5を介して電力線PLに電気的に接続される。スイッチング素子Q1のソースは、電力線GLに電気的に接続される。
The drain of the switching element Q1 is electrically connected to the power line PL via the resistor R5. The source of the switching element Q1 is electrically connected to the power line GL.
ダイオードD5のアノードは、抵抗R5とスイッチング素子Q1のドレインとの接続ノードに電気的に接続される。ダイオードD5のカソードは、出力ノードOUTを介してDC/DCコンバータ32のイネーブル端子ENに電気的に接続される。また、ダイオードD5のカソードは、抵抗R6を介して電力線GLに電気的に接続される。
The anode of the diode D5 is electrically connected to a connection node between the resistor R5 and the drain of the switching element Q1. The cathode of the diode D5 is electrically connected to the enable terminal EN of the DC / DC converter 32 via the output node OUT. The cathode of the diode D5 is electrically connected to the power line GL via the resistor R6.
スイッチ52の他方端は、入力ノードIN2を介してダイオードD6のアノードに電気的に接続される。ダイオードD6のカソードは、ダイオードD5のカソードに電気的に接続される。なお、発電モジュール20の他の構成は、実施の形態1に係る発電モジュール10の対応する構成と同等であるため詳細な説明は繰り返さない。
The other end of the switch 52 is electrically connected to the anode of the diode D6 via the input node IN2. The cathode of the diode D6 is electrically connected to the cathode of the diode D5. The other configuration of power generation module 20 is the same as the corresponding configuration of power generation module 10 according to Embodiment 1, and therefore detailed description will not be repeated.
図14は、実施の形態2に係る発電モジュール20の動作を説明するためのタイムチャートである。図14において、縦軸は、上から順にストローク、スイッチ51のオン/オフ、信号S1Aの論理レベル、スイッチ51Bのオン/オフ、信号S1Bの論理レベル、スイッチ52のオン/オフ、信号S2の論理レベル、切替信号SWの論理レベル(すなわちDC/DCコンバータ32のオン/オフ)、出力電圧Vを示す。
FIG. 14 is a time chart for explaining the operation of the power generation module 20 according to the second embodiment. In FIG. 14, the vertical axis indicates the stroke in order from the top, the switch 51 ON / OFF, the logic level of the signal S1A, the switch 51B ON / OFF, the signal S1B logic level, the switch 52 ON / OFF, and the signal S2 logic. The level, the logic level of the switching signal SW (that is, the on / off of the DC / DC converter 32), and the output voltage V are shown.
操作部4A、4Bのうちのどちらか一方のみが操作された場合の発電モジュール20の動作は、実施の形態1における発電モジュール10の動作(図8参照)と同等である。そのため、図14では、操作部4A、4Bの両方が操作された場合の発電モジュール20の動作について説明する。
The operation of the power generation module 20 when only one of the operation units 4A and 4B is operated is equivalent to the operation of the power generation module 10 in the first embodiment (see FIG. 8). Therefore, FIG. 14 demonstrates operation | movement of the electric power generation module 20 when both operation part 4A, 4B is operated.
時刻t31において、操作部4Aが操作を受け付け、操作部4Aの変位が開始される。これにより、スイッチ51Aがオフからオンへと切り替わるので、信号S1AはLレベルからHレベルへと切り替わり、スイッチング素子Q1がオンされる。一方、スイッチ52はオフのままであるので、信号S2は、Lレベルに維持される。したがって、信号出力部62からはLレベルの切替信号SWが出力される。つまり、DC/DCコンバータ32のイネーブル端子ENはLレベルのイネーブル信号を受けるので、DC/DCコンバータ32からの電力供給は行なわれない。
At time t31, the operation unit 4A receives an operation, and the displacement of the operation unit 4A is started. As a result, the switch 51A is switched from OFF to ON, so that the signal S1A is switched from L level to H level, and the switching element Q1 is turned ON. On the other hand, since the switch 52 remains off, the signal S2 is maintained at the L level. Therefore, the signal output unit 62 outputs the L level switching signal SW. That is, since the enable terminal EN of the DC / DC converter 32 receives the L level enable signal, power supply from the DC / DC converter 32 is not performed.
時刻t31からわずかに遅れた時刻t31aにおいて、操作部4Bが操作を受け付ける。これにより、スイッチ51Bがオフからオンへと切り替わるので、信号S1BはLレベルからHレベルへと切り替わる。しかし、スイッチング素子Q1は、スイッチ51Aの操作によりすでにオンされており、その状態が維持される。よって、信号出力部62からの切替信号SW(イネーブル信号)はLレベルのままである。なお、時刻t32以降の制御は、実施の形態1における制御とほぼ同等であるため、詳細な説明は繰り返さない。
At time t31a slightly delayed from time t31, the operation unit 4B accepts the operation. As a result, the switch 51B is switched from OFF to ON, so that the signal S1B is switched from the L level to the H level. However, the switching element Q1 is already turned on by the operation of the switch 51A, and the state is maintained. Therefore, the switching signal SW (enable signal) from the signal output unit 62 remains at the L level. The control after time t32 is substantially the same as the control in the first embodiment, and thus detailed description will not be repeated.
2つの操作部4A,4Bが設けられた構成では、操作部4A,4Bの両方が操作を受け付けた時点でDC/DCコンバータ32へのイネーブル信号をHレベルからLレベルへと切り替える構成も考えられる。これに対し、実施の形態2によれば、操作部4A,4Bのうちのいずれか一方が操作を受け付けた時点でイネーブル信号がHレベルからLレベルに切り替えられる。したがって、圧電素子1により発電された電力を、より長い時間、圧電素子1に蓄えることができる。その結果、圧電素子1により発電された電力の利用効率を一層向上させることができる。
In the configuration in which the two operation units 4A and 4B are provided, a configuration in which the enable signal to the DC / DC converter 32 is switched from the H level to the L level when both the operation units 4A and 4B accept the operation is also conceivable. . On the other hand, according to the second embodiment, the enable signal is switched from the H level to the L level when one of the operation units 4A and 4B receives the operation. Therefore, the electric power generated by the piezoelectric element 1 can be stored in the piezoelectric element 1 for a longer time. As a result, the utilization efficiency of the electric power generated by the piezoelectric element 1 can be further improved.
また、2つの操作部4A,4Bを設けることにより、制御部400は、操作部4A,4Bが受け付けた操作の組合せ(スイッチ51A,51Bの状態の組合せ)に応じて、3種類の制御指令を出力することができる。たとえば、図示しないブラインドを制御するためのリモートコントローラとして送信機200を用いる場合には以下のような制御が可能である。すなわち、(1)操作部4Aのみが操作された場合にはブラインドを上げる。(2)操作部4Bのみが操作された場合にはブラインドを下げる。(3)操作部4A,4Bの両方が操作された場合にはブラインドの角度を変更する。
Further, by providing the two operation units 4A and 4B, the control unit 400 issues three types of control commands according to the combination of operations accepted by the operation units 4A and 4B (the combination of the states of the switches 51A and 51B). Can be output. For example, when the transmitter 200 is used as a remote controller for controlling a blind (not shown), the following control is possible. That is, (1) when only the operation unit 4A is operated, the blind is raised. (2) When only the operation unit 4B is operated, the blind is lowered. (3) When both the operation units 4A and 4B are operated, the blind angle is changed.
図15は、実施の形態2に係る発電モジュール20の各構成要素の配置例を示す図である。発電モジュール20は、レバー72と、回路基板74と、伝達機構76とをさらに備える。
FIG. 15 is a diagram illustrating an arrangement example of each component of the power generation module 20 according to the second embodiment. The power generation module 20 further includes a lever 72, a circuit board 74, and a transmission mechanism 76.
レバー72は、操作部4A,4Bと圧電素子1Bとの間に設けられている。レバー72は、操作部4A,4Bのうちの少なくともに一方が操作された場合に上下方向に変位して、外力Fを圧電素子1Bへと機械的に伝達する。回路基板74には、図13に示した電気回路の各素子が実装されている。
The lever 72 is provided between the operation units 4A and 4B and the piezoelectric element 1B. The lever 72 is displaced in the vertical direction when at least one of the operation units 4A and 4B is operated, and mechanically transmits the external force F to the piezoelectric element 1B. Each element of the electric circuit shown in FIG. 13 is mounted on the circuit board 74.
圧電素子1Bは、金属板と、金属板の片面に設けられている圧電体とを複数備える。金属板は、板部と、複数の脚部とを備える。金属板における圧電体が設けられている面と反対側の面の中央には、円筒状の第1の突起が面方向と垂直になるように圧電体と反対側に突出して設けられている。第1の突起における圧電体側の面と反対側の面の中央には、第2の突起が面方向と垂直になるように圧電体と反対側に突出して設けられている。圧電素子1Bは、複数の金属板と複数の圧電体が積層されている構造であるため、より大きな電力を得ることができる。
The piezoelectric element 1B includes a plurality of metal plates and a piezoelectric body provided on one side of the metal plates. The metal plate includes a plate portion and a plurality of leg portions. In the center of the surface of the metal plate opposite to the surface on which the piezoelectric body is provided, a cylindrical first protrusion is provided so as to protrude to the opposite side of the piezoelectric body so as to be perpendicular to the surface direction. At the center of the surface of the first protrusion opposite to the surface on the piezoelectric body side, the second protrusion is provided so as to protrude to the opposite side of the piezoelectric body so as to be perpendicular to the surface direction. Since the piezoelectric element 1B has a structure in which a plurality of metal plates and a plurality of piezoelectric bodies are laminated, it is possible to obtain larger electric power.
伝達機構76は、圧電素子1Bとスイッチ52との間に設けられ、いわゆるテコとして機能する。すなわち、伝達機構76は、操作部4A,4Bのうちの少なくとも一方からレバー72を介して圧電素子1Bに付加された力をスイッチ52へと機械的に伝達する。図15に示すように、操作部4A,4Bからレバー72を介して圧電素子1Bに伝達される力の方向を示す直線L1と、伝達機構76からスイッチ52に伝達される力の方向を示す直線L2とは、互いに異なる。
The transmission mechanism 76 is provided between the piezoelectric element 1B and the switch 52 and functions as a so-called lever. That is, the transmission mechanism 76 mechanically transmits the force applied to the piezoelectric element 1B from at least one of the operation units 4A and 4B via the lever 72 to the switch 52. As shown in FIG. 15, a straight line L1 indicating the direction of the force transmitted from the operation units 4A and 4B to the piezoelectric element 1B via the lever 72, and a straight line indicating the direction of the force transmitted from the transmission mechanism 76 to the switch 52. It is different from L2.
伝達機構76が設けられない場合には、直線L1上のスペース78にスイッチ52を配置することが求められる。これに対し、図15に示す例によれば、伝達機構76を設けることによってスペース78以外の箇所にスイッチ52を配置することが可能になる。つまり、発電モジュール20の機構設計において、スイッチ52の配置箇所の自由度を向上させることができる。
When the transmission mechanism 76 is not provided, it is required to arrange the switch 52 in the space 78 on the straight line L1. On the other hand, according to the example shown in FIG. 15, the switch 52 can be arranged at a place other than the space 78 by providing the transmission mechanism 76. That is, in the mechanism design of the power generation module 20, the degree of freedom of the location where the switch 52 is arranged can be improved.
実施の形態2では2つの操作部を設けた例を説明したが、3つ以上の任意の数の操作部(および各操作部に対応するスイッチ)を設けてもよい。
In Embodiment 2, an example in which two operation units are provided has been described. However, an arbitrary number of three or more operation units (and switches corresponding to each operation unit) may be provided.
図16は、3つの操作部が設けられた場合の切替信号SWを説明するためのベン図である。図16に示すように、3つのスイッチ51A,51B,51C(いずれも図示せず)がいずれもオフである場合、または、スイッチ52がオンである場合に、Hレベルの切替信号SWが出力される。上記以外の場合にはLレベルの切替信号SWが出力される。4つ以上の操作部が設けられる場合についても同様であるため、詳細な説明は繰り返さない。
FIG. 16 is a Venn diagram for explaining the switching signal SW when three operation units are provided. As shown in FIG. 16, when all of the three switches 51A, 51B, 51C (not shown) are off or when the switch 52 is on, an H level switching signal SW is output. The In other cases, an L level switching signal SW is output. Since the same applies to the case where four or more operation units are provided, detailed description will not be repeated.
今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description of the embodiments but by the scope of claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.
1,1A,1B 圧電素子、2 全波整流回路、31 ロードスイッチ、32 DC/DCコンバータ、4,4A,4B 操作部、51,51A,51B,51C,52 スイッチ、61,62 信号出力部、7 ケース、72 レバー、74 回路基板、76 伝達機構、78 スペース、8 放電スイッチ、9 制御回路、10,10A,20,90 発電モジュール、12 圧電体、12A,12B 電極、14 金属板、16 支持部、100,100A,900 送信機、300 送信部、302 RFアンテナ、304 RF回路、400 制御部、C コンデンサ、D1~D6 ダイオード、Q1 スイッチング素子、R1~R6 抵抗、PL,GL 電力線、IN1,IN1A,IN1B,IN2 入力ノード、OUT 出力ノード、N1,N2 ノード、Vin 入力端子、T1,T2,Vout 出力端子、EN イネーブル端子。
1, 1A, 1B piezoelectric element, 2 full wave rectifier circuit, 31 load switch, 32 DC / DC converter, 4, 4A, 4B operation unit, 51, 51A, 51B, 51C, 52 switch, 61, 62 signal output unit, 7 case, 72 lever, 74 circuit board, 76 transmission mechanism, 78 space, 8 discharge switch, 9 control circuit, 10, 10A, 20, 90 power generation module, 12 piezoelectric body, 12A, 12B electrode, 14 metal plate, 16 support Part, 100, 100A, 900 transmitter, 300 transmitter part, 302 RF antenna, 304 RF circuit, 400 control part, C capacitor, D1 to D6 diode, Q1 switching element, R1 to R6 resistor, PL, GL power line, IN1, IN1A, IN1B, IN2 input node, OUT Power node, N1, N2 node, Vin input terminals, T1, T2, Vout output terminal, EN enable terminal.
Claims (8)
- 発電した電力を負荷に供給可能に構成された発電装置であって、
操作を受け付けると変位する操作部と、
前記操作部の変位に応じて初期状態から変形することにより発電する圧電素子と、
前記圧電素子が前記初期状態から変形した場合に第1の信号を出力する第1の出力部と、
前記圧電素子の変形量が予め定められた制限値に達している場合に第2の信号を出力する第2の出力部と、
前記圧電素子と前記負荷とを結ぶ電力線に直列に接続され、前記第1および第2の信号に基づいて、導通状態と非導通状態とのどちらかの状態に切り替えられる切替部とを備え、
前記切替部は、
前記圧電素子が前記初期状態から変形しており、かつ、前記圧電素子の変形量が前記制限値に達していない場合には、前記非導通状態であり、
前記圧電素子の変形量が前記制限値に達している場合には、前記導通状態である、発電装置。 A power generator configured to be able to supply generated power to a load,
An operation unit that is displaced when an operation is received;
A piezoelectric element that generates electric power by being deformed from an initial state according to the displacement of the operation unit;
A first output unit that outputs a first signal when the piezoelectric element is deformed from the initial state;
A second output unit that outputs a second signal when the amount of deformation of the piezoelectric element reaches a predetermined limit value;
A switching unit that is connected in series to a power line connecting the piezoelectric element and the load, and that is switched between a conductive state and a non-conductive state based on the first and second signals;
The switching unit is
When the piezoelectric element is deformed from the initial state and the deformation amount of the piezoelectric element does not reach the limit value, the non-conductive state,
The power generation device that is in the conductive state when the deformation amount of the piezoelectric element reaches the limit value. - 前記切替部は、前記圧電素子が前記初期状態から変形していない場合には、前記導通状態である、請求項1に記載の発電装置。 The power generation device according to claim 1, wherein the switching unit is in the conductive state when the piezoelectric element is not deformed from the initial state.
- 前記第1および第2の信号に基づいて、前記切替部の状態を切り替えるための切替信号を出力する信号出力部をさらに備え、
前記信号出力部は、
前記圧電素子が前記初期状態から変形していない場合には、前記切替部を前記導通状態とするように前記切替信号を出力し、
前記圧電素子が前記初期状態から変形しており、かつ、前記圧電素子の変形量が前記制限値に達していない場合には、前記切替部を前記非導通状態とするように前記切替信号を出力し、
前記圧電素子の変形量が前記制限値に達している場合には、前記切替部を前記導通状態とするように前記切替信号を出力する、請求項2に記載の発電装置。 A signal output unit that outputs a switching signal for switching the state of the switching unit based on the first and second signals;
The signal output unit is
When the piezoelectric element is not deformed from the initial state, the switching signal is output so that the switching unit is in the conductive state,
When the piezoelectric element is deformed from the initial state and the deformation amount of the piezoelectric element does not reach the limit value, the switching signal is output so that the switching unit is in the non-conducting state. And
3. The power generation device according to claim 2, wherein when the amount of deformation of the piezoelectric element reaches the limit value, the switching signal is output so that the switching unit is in the conductive state. - 前記圧電素子と前記切替部との間に電気的に接続され、前記圧電素子から受けた電圧を全波整流して出力する第1のノードと、基準電位を有する電力線に接続された第2のノードとを有する全波整流回路をさらに備え、
前記第1の出力部は、前記第2のノードに電気的に接続された一方端を有する第1のスイッチを含み、
前記第2の出力部は、前記第1のノードに電気的に接続された一方端を有する第2のスイッチを含み、
前記信号出力部は、
前記切替信号を出力する出力ノードと、
前記第1のスイッチの他方端に電気的に接続されたアノード、および、前記出力ノードに電気的に接続されたカソードを有する第1のダイオードと、
前記第2のスイッチの他方端に電気的に接続されたアノード、および、前記出力ノードに電気的に接続されたカソードを有する第2のダイオードと、
前記第1のスイッチの前記一方端と前記第1のノードとの間に電気的に接続された第1の抵抗と、
前記出力ノードと前記第2のノードとの間に電気的に接続された第2の抵抗とを含む、請求項3に記載の発電装置。 A first node that is electrically connected between the piezoelectric element and the switching unit, rectifies and outputs a voltage received from the piezoelectric element, and a second node connected to a power line having a reference potential. A full-wave rectifier circuit having a node,
The first output unit includes a first switch having one end electrically connected to the second node;
The second output unit includes a second switch having one end electrically connected to the first node,
The signal output unit is
An output node for outputting the switching signal;
A first diode having an anode electrically connected to the other end of the first switch and a cathode electrically connected to the output node;
A second diode having an anode electrically connected to the other end of the second switch and a cathode electrically connected to the output node;
A first resistor electrically connected between the one end of the first switch and the first node;
The power generation device according to claim 3, comprising a second resistor electrically connected between the output node and the second node. - 前記圧電素子は、第1および第2の出力端子を有し、
前記発電装置は、
前記第1の出力端子と前記第2の出力端子との間に接続され、前記圧電素子に蓄えられた電荷を放電するための放電スイッチと、
前記圧電素子と前記切替部との間に電気的に接続され、前記圧電素子から受けた電圧を全波整流して出力する全波整流回路とをさらに備え、
前記放電スイッチは、前記切替部が前記導通状態から前記非導通状態へと切り替えられてから、前記切替部が前記非導通状態から前記導通状態へと切り替えられるまでの間に、オフからオンへと切り替えられる、請求項1~3のいずれか1項に記載の発電装置。 The piezoelectric element has first and second output terminals,
The power generator is
A discharge switch connected between the first output terminal and the second output terminal for discharging the charge stored in the piezoelectric element;
A full-wave rectifier circuit that is electrically connected between the piezoelectric element and the switching unit and that outputs a full-wave rectified voltage output from the piezoelectric element;
The discharge switch is turned off from on after the switching unit is switched from the conducting state to the non-conducting state until the switching unit is switched from the non-conducting state to the conducting state. The power generator according to any one of claims 1 to 3, wherein the power generator is switched. - 前記第1の出力部は、前記操作部と前記圧電素子との間に配置され、
前記第2の出力部は、前記圧電素子について前記第1の出力部と反対側に配置され、
前記発電装置は、前記操作部から前記圧電素子に伝達された力を前記第2の出力部へと機械的に伝達する伝達機構をさらに備え、
前記操作部から前記圧電素子に伝達される力の方向を示す直線と、前記伝達機構から前記第2の出力部に伝達される力の方向を示す直線とは、互いに異なる、請求項1~3のいずれか1項に記載の発電装置。 The first output unit is disposed between the operation unit and the piezoelectric element,
The second output unit is disposed on the opposite side of the first output unit with respect to the piezoelectric element,
The power generation device further includes a transmission mechanism that mechanically transmits the force transmitted from the operation unit to the piezoelectric element to the second output unit,
The straight line indicating the direction of the force transmitted from the operation unit to the piezoelectric element is different from the straight line indicating the direction of the force transmitted from the transmission mechanism to the second output unit. The power generation device according to any one of the above. - 請求項1~6のいずれか1項に記載の発電装置と、
前記負荷とを備え、
前記負荷は、前記発電装置から供給された電力を用いて無線信号を送信する送信部を含む、送信機。 A power generator according to any one of claims 1 to 6,
Including the load,
The load includes a transmitter that transmits a radio signal using electric power supplied from the power generation device. - 前記発電装置は、
操作を受け付けると変位して前記圧電素子を変形させる他の操作部と、
前記他の操作部の変位により前記圧電素子が前記初期状態から変形した場合に第3の信号を出力する第3の出力部とをさらに備え、
前記切替部は、
前記操作部および前記他の操作部のうちの少なくとも一方の変位により前記圧電素子が前記初期状態から変形しており、かつ、前記圧電素子の変形量が前記制限値に達していない場合には、前記非導通状態であり、
前記圧電素子の変形量が前記制限値に達している場合には、前記導通状態であり、
前記負荷は、前記第1および第3の信号に基づいて、前記送信部を制御する制御部をさらに含み、
前記制御部は、前記第1の信号を受けた場合と、前記第3の信号を受けた場合とでは、異なる無線信号を前記送信部に送信させる、請求項7に記載の送信機。 The power generator is
Other operation units that displace and deform the piezoelectric element upon receiving an operation;
A third output unit that outputs a third signal when the piezoelectric element is deformed from the initial state due to displacement of the other operation unit;
The switching unit is
When the piezoelectric element is deformed from the initial state due to displacement of at least one of the operation unit and the other operation unit, and the deformation amount of the piezoelectric element does not reach the limit value, The non-conductive state;
When the deformation amount of the piezoelectric element has reached the limit value, it is in the conductive state,
The load further includes a control unit that controls the transmission unit based on the first and third signals,
The transmitter according to claim 7, wherein the control unit causes the transmission unit to transmit different radio signals when the first signal is received and when the third signal is received.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017556432A JP6481773B2 (en) | 2015-12-15 | 2016-11-17 | Power generation device and transmitter having the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-244247 | 2015-12-15 | ||
JP2015244247 | 2015-12-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017104342A1 true WO2017104342A1 (en) | 2017-06-22 |
Family
ID=59056296
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/084052 WO2017104342A1 (en) | 2015-12-15 | 2016-11-17 | Power generation device and transmitter comprising same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6481773B2 (en) |
WO (1) | WO2017104342A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6480626B1 (en) * | 2018-07-11 | 2019-03-13 | 誠 勝部 | Power generation device for portable terminal |
CN111066110A (en) * | 2018-03-05 | 2020-04-24 | 欧姆龙株式会社 | Switch, display holding method, and display holding program |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005500790A (en) * | 2001-08-20 | 2005-01-06 | オーシャン パワー テクノロジーズ,インク. | Sensors for power conversion systems |
JP4811537B1 (en) * | 2011-02-17 | 2011-11-09 | セイコーエプソン株式会社 | Power generator |
WO2015111259A1 (en) * | 2014-01-22 | 2015-07-30 | 株式会社村田製作所 | Piezoelectric power generation module and remote controller |
WO2015111258A1 (en) * | 2014-01-22 | 2015-07-30 | 株式会社村田製作所 | Piezoelectric power generation module and remote controller |
WO2017014003A1 (en) * | 2015-07-17 | 2017-01-26 | 株式会社村田製作所 | Power generation device and electric apparatus provided with same |
-
2016
- 2016-11-17 WO PCT/JP2016/084052 patent/WO2017104342A1/en active Application Filing
- 2016-11-17 JP JP2017556432A patent/JP6481773B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005500790A (en) * | 2001-08-20 | 2005-01-06 | オーシャン パワー テクノロジーズ,インク. | Sensors for power conversion systems |
JP4811537B1 (en) * | 2011-02-17 | 2011-11-09 | セイコーエプソン株式会社 | Power generator |
WO2015111259A1 (en) * | 2014-01-22 | 2015-07-30 | 株式会社村田製作所 | Piezoelectric power generation module and remote controller |
WO2015111258A1 (en) * | 2014-01-22 | 2015-07-30 | 株式会社村田製作所 | Piezoelectric power generation module and remote controller |
WO2017014003A1 (en) * | 2015-07-17 | 2017-01-26 | 株式会社村田製作所 | Power generation device and electric apparatus provided with same |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111066110A (en) * | 2018-03-05 | 2020-04-24 | 欧姆龙株式会社 | Switch, display holding method, and display holding program |
JP6480626B1 (en) * | 2018-07-11 | 2019-03-13 | 誠 勝部 | Power generation device for portable terminal |
JP2020010556A (en) * | 2018-07-11 | 2020-01-16 | 誠 勝部 | Power generation device for mobile terminal |
Also Published As
Publication number | Publication date |
---|---|
JPWO2017104342A1 (en) | 2018-05-24 |
JP6481773B2 (en) | 2019-03-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9882511B2 (en) | Piezoelectric power generation module and remote controller | |
JP4747932B2 (en) | Relay drive circuit | |
US10014801B2 (en) | Piezoelectric power generation module and remote controller | |
JP6481773B2 (en) | Power generation device and transmitter having the same | |
JP2013027183A (en) | Storage circuit | |
US11205904B2 (en) | Energy collecting device capable of reusing residual charge using voltage supervisors | |
US10340847B2 (en) | Power supply control circuit, energy harvesting device, and control method of energy harvesting device | |
CN109494978A (en) | Integrated circuit of power supply switching circuit and power supply switching controller | |
JP6540803B2 (en) | POWER GENERATOR AND ELECTRICAL EQUIPMENT COMPRISING THE SAME | |
US9871600B2 (en) | Wireless switch | |
JP6658900B2 (en) | Piezoelectric generator, piezoelectric generator module and transmitter | |
JP6465259B2 (en) | Piezoelectric generator and transmitter having the same | |
JP5986846B2 (en) | Control circuit for hybrid harvest module, power generation circuit using the control circuit, electronic equipment, wireless sensor | |
US20210159801A1 (en) | Power conversion apparatus | |
US20160066396A1 (en) | Wireless switch | |
US20160065097A1 (en) | Piezoelectric energy harvester and wireless switch including the same | |
US9973022B2 (en) | Non-contact type power receiving apparatus | |
KR101674635B1 (en) | Hybrid Active Diode using Microelectromechanical and Semiconductor Switches | |
TWI398084B (en) | Boost controller and boost circuit thereof | |
JP2019030054A (en) | Driving device | |
JP2018064307A (en) | Environmental power generator and power supply method | |
JP2019030097A (en) | Electric power supply | |
WO2016132658A1 (en) | Electrostatic actuator, switch device, electric power supply device, and program |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16875326 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017556432 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16875326 Country of ref document: EP Kind code of ref document: A1 |