WO2017104293A1 - Intermediate-medium type vaporizer - Google Patents

Intermediate-medium type vaporizer Download PDF

Info

Publication number
WO2017104293A1
WO2017104293A1 PCT/JP2016/082993 JP2016082993W WO2017104293A1 WO 2017104293 A1 WO2017104293 A1 WO 2017104293A1 JP 2016082993 W JP2016082993 W JP 2016082993W WO 2017104293 A1 WO2017104293 A1 WO 2017104293A1
Authority
WO
WIPO (PCT)
Prior art keywords
intermediate medium
medium
heat
heat source
heat transfer
Prior art date
Application number
PCT/JP2016/082993
Other languages
French (fr)
Japanese (ja)
Inventor
和彦 浅田
正英 岩崎
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016163294A external-priority patent/JP6651424B2/en
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to SG11201804834SA priority Critical patent/SG11201804834SA/en
Priority to KR1020187020133A priority patent/KR102086641B1/en
Priority to CN201680072264.5A priority patent/CN108368973A/en
Publication of WO2017104293A1 publication Critical patent/WO2017104293A1/en
Priority to NO20180844A priority patent/NO20180844A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation

Definitions

  • the present invention relates to an intermediate medium type vaporizer.
  • Patent Document 1 As an apparatus for vaporizing a low temperature liquid such as LNG (Liquid Natural Gas), an intermediate medium type vaporizer that uses an intermediate medium in addition to a heat source fluid is known. As shown in FIG. 5, the intermediate medium vaporizer disclosed in Patent Document 1 includes an intermediate medium evaporator 81, an LNG evaporator 82, and a warmer 83.
  • LNG Liquid Natural Gas
  • the vaporizer is provided with an inlet chamber 85, a large number of heat transfer tubes 86, an intermediate chamber 87, a large number of heat transfer tubes 88, and an outlet chamber 89 in this order as a path through which seawater as a heat source fluid passes.
  • the heat transfer tube 86 is disposed in the heater 83, and the heat transfer tube 88 is disposed in the intermediate medium evaporator 81.
  • an intermediate medium (for example, propane) M having a boiling point lower than the temperature of seawater is accommodated.
  • the LNG evaporator 82 includes an inlet chamber 91 and an outlet chamber 92, and a large number of heat transfer tubes 93 communicating with both the chambers 91 and 92.
  • Each heat transfer tube 93 is substantially U-shaped and protrudes to the upper part in the intermediate medium evaporator 81.
  • the outlet chamber 92 communicates with the warmer 83 via the NG conduit 94.
  • seawater that is a heat source fluid passes through the inlet chamber 85, the heat transfer tube 86, the intermediate chamber 87, and the heat transfer tube 88 to the outlet chamber 89, but the seawater that passes through the heat transfer tube 88 passes through the intermediate medium evaporation.
  • Heat exchange with the liquid intermediate medium M in the vessel 81 evaporates the intermediate medium M.
  • LNG to be vaporized is introduced into the heat transfer tube 93 from the inlet chamber 91.
  • the heat exchange between the LNG in the heat transfer tube 93 and the evaporation intermediate medium in the intermediate medium evaporator 81 causes the intermediate medium M to condense, and the LNG evaporates in the heat transfer tube 93 by receiving the heat of condensation.
  • This NG is introduced into the heater 83 from the outlet chamber 92 through the NG conduit 94, further heated by heat exchange with seawater flowing through the heat transfer pipe 86 in the heater 83, and then supplied to the use side.
  • the warmer 83 has a large number of heat transfer tubes 86. For this reason, there is a limit in reducing the size of the heater 83, and there is inevitably a limit in reducing the size of the intermediate medium type vaporizer itself.
  • the pressure in the heater 83 also increases, so that the heat transfer tube 86 and its associated tube plate and shell are also required to have pressure resistance. In other words, downsizing becomes increasingly difficult in order to achieve pressure resistance performance commensurate with it.
  • an object of the present invention is to provide an intermediate medium type vaporizer that can be miniaturized.
  • an intermediate medium vaporizer provided as one aspect of the present invention evaporates at least a part of the intermediate medium by heat exchange between the first heat source medium and the liquid intermediate medium.
  • a low temperature liquefied gas in the heat transfer tube by condensing the intermediate medium evaporated in the intermediate medium evaporation unit, and having a heat transfer tube into which a low temperature liquefied gas having a pressure of 6 MPaG or more is introduced.
  • the first heat source medium is seawater or the atmosphere
  • the second heat source medium is steam or hot water
  • the warmer is configured by a microchannel heat exchanger.
  • an intermediate medium type vaporizer (hereinafter simply referred to as a vaporizer) 10 according to the first embodiment converts the heat of seawater, which is a first heat source medium, into a low-temperature liquefied gas via an intermediate medium M.
  • This is a device that transmits to liquefied natural gas (LNG) and obtains gas by vaporizing LNG.
  • the vaporizer 10 may be configured as a device that vaporizes or heats a low-temperature liquefied gas other than LNG, such as liquefied petroleum gas (LPG) or liquid nitrogen (LiN Nitrogen, LN 2 ).
  • the vaporizer 10 includes an intermediate medium evaporator E1 that is an intermediate medium evaporator, an LNG evaporator E2 that is a liquefied gas vaporizer, and a heater E3.
  • the intermediate medium evaporator E1 and the LNG evaporator E2 are provided in one hollow casing 11.
  • the casing 11 has a shape that is long in the horizontal direction, and a lower part thereof is configured as a casing part (first casing part) of the intermediate medium evaporator E1, and an upper part is formed as a casing part (second casing part) of the LNG evaporator E2. It is configured.
  • the inlet chamber (water chamber) 14 is adjacent to one of the pair of side walls constituting the first casing portion, and the outlet chamber 18 is adjacent to the other.
  • a number of heat transfer tubes 20 are provided in the intermediate medium evaporator E1.
  • the heat transfer tube 20 is disposed in the lower part of the space in the casing 11.
  • the heat transfer tube 20 includes a first side wall 11 a that functions as a partition wall with the inlet chamber 14 and a second side wall that functions as a partition wall with the outlet chamber 18 among a pair of side walls facing each other constituting the first casing portion. 11b.
  • the heat transfer tube 20 has a shape extending linearly in one direction, but is not limited to this shape.
  • the inlet chamber 14 is connected to an inlet pipe 22 provided with a pump or the like (not shown), and seawater pumped from the sea is introduced into the inlet chamber 14 through the inlet pipe 22. That is, seawater before being introduced into the entrance chamber 14 is not used to heat NG (Natural Gas).
  • NG Natural Gas
  • a discharge pipe 24 for discharging seawater is connected to the outlet chamber 18. Seawater in the outlet chamber 18 is discharged to the outside through the discharge pipe 24.
  • an intermediate medium for example, propane
  • the intermediate medium M is accommodated so that the liquid level is located above all the heat transfer tubes (heat transfer tubes through which seawater flows) 20.
  • an LNG inlet chamber 32 and an outlet chamber 34 for leading out NG are provided above the outlet chamber 18, an LNG inlet chamber 32 and an outlet chamber 34 for leading out NG are provided.
  • the entrance chamber 32 and the exit chamber 34 are adjacent to the outside on the upper side of the second side wall 11b.
  • the outlet chamber 34 is formed adjacent to the upper side of the inlet chamber 32.
  • a supply pipe 36 for introducing LNG is connected to the inlet chamber 32.
  • a lead-out pipe 38 for leading out NG is connected to the outlet chamber 34.
  • LNG having a pressure of 6 MPaG (gauge pressure of 6 MPa) or more is introduced into the inlet chamber 32.
  • the LNG evaporator E2 includes the inlet chamber 32, the outlet chamber 34, and a large number of heat transfer tubes 40 that connect the inlet chamber 32 and the outlet chamber 34.
  • Each heat transfer tube 40 is substantially U-shaped, and has a first end connected to the inlet chamber 32 and a second end connected to the outlet chamber 34.
  • the heat transfer tube 40 is disposed above the heat transfer tube 20 in the casing 11, that is, above the liquid level of the intermediate medium M.
  • the heater E3 is connected to the outlet pipe 38. NG is supplied to the heater E3 through the outlet tube 38, heated in the heater E3, and then supplied to the user side.
  • the warmer E3 is configured by a microchannel heat exchanger including a laminated body having a structure in which a large number of metal plates 43 and 44 having excellent heat transfer characteristics shown in FIG. 3 are laminated.
  • the microchannel heat exchanger has a structure in which a laminate of metal plates 43, 44 is sandwiched between end plates 45, 45.
  • the first metal plate 43 in which a large number of flow paths (first flow paths) 43a through which NG flows are recessed, and the large number of flow paths (second flow paths) 44a through which steam as a second heat source medium flows are recessed.
  • the provided second metal plates 44 are alternately laminated.
  • the 2nd heat source medium should just be a heat source medium different from a 1st heat source medium (this embodiment seawater), for example, may be warm water.
  • a first inflow header 47 and a first outflow header 48 communicate with each first flow path 43a, and a second inflow header 49 and a second outflow header 50 are connected to each second flow path 44a. Are communicating.
  • the NG supplied through the outlet pipe 38 is distributed to the first flow paths 43a through the first inflow headers 47, and the NG that has flowed through the first flow paths 43a gathers at the first outflow header 48 to be heated by the heater E3.
  • Is derived from A steam supply pipe 51 is connected to the second inflow header 49.
  • the steam supplied through the supply pipe 51 is distributed to each second flow path 44a through the second inflow header 49, and the steam that has flowed through each second flow path 44a gathers at the second outflow header 50 and is heated. Derived from the device E3.
  • the liquid intermediate medium M stored in the lower part of the casing 11 is heated and evaporated by the seawater flowing into the heat transfer tubes 20 through the inlet chamber 14. That is, in the heating medium evaporating unit E1, the intermediate medium M is heated by the first heat source medium and evaporated.
  • the evaporated intermediate medium M heats the heat transfer tube 40 located at the upper part in the casing 11.
  • the LNG flowing from the supply pipe 36 into the heat transfer pipe 40 through the inlet chamber 32 and flowing through the heat transfer pipe 40 is heated by the heat transfer pipe 40 and evaporated to become NG.
  • Seawater flows out of the heat transfer pipe 20 and is discharged to the outside through the outlet chamber 18 and the discharge pipe 24.
  • NG flows through the outlet pipe 38 via the outlet chamber 34 and is introduced into the heater E3.
  • NG is diverted to the first flow paths 43 a through the first inflow header 47.
  • the NG flowing through each first flow path 43a is heated by the steam flowing through each second flow path 44a, led out from the heater E3 through the first outflow header 48, and supplied to the use side.
  • the warmer E3 is configured by a microchannel heat exchanger, the warmer is heated compared to the case where the warmer is configured by a shell and tube type heat exchanger.
  • the size of the device E3 can be reduced.
  • the vaporizer 10 itself can be downsized.
  • LNG having a pressure of 6 MPaG (gauge pressure of 6 MPa) or more is introduced into the LNG evaporator E2.
  • the heater E3 is composed of a microchannel heat exchanger, the heater is similar to the conventional intermediate medium vaporizer shown in FIG. There is no need to take measures such as increasing the thickness of the heat transfer tubes, tube sheets and shells of E3 to increase pressure resistance.
  • the heater E3 it is possible to prevent the heater E3 from increasing in size while being configured to vaporize the high-pressure LNG. Further, as the heater E3 can be reduced in size, the heater E3 can be reduced in weight.
  • the heater E3 is composed of a microchannel heat exchanger, and does not have an outer shell and a can plate as in the heater E3 of the intermediate medium type vaporizer in FIG. Since there is no structure that can withstand the high pressure in the compressing direction, even when a high-pressure gas is introduced into the warmer E3, the warmer E3 is not enlarged. In addition, in the structure of FIG. 5, in addition to the equipment becoming large and heavy, it is difficult to achieve a desired NG outlet temperature in the seawater low temperature period.
  • the heating performance of the gas in the heater E3 can be increased as compared with the case where seawater or air is used as the second heat source medium. it can. In a cold region, it is possible to obtain a gas having a temperature required from the use side.
  • the operating cost required for the configuration of the present embodiment is A
  • the operating cost required for an all-steam heat source type vaporizer in which steam is also used as the first heat source medium is B. Make a comparison.
  • the heat load distribution in the intermediate medium evaporator E1 and the warmer E3 is generally about 80% and about 20%, respectively.
  • 80% of the heat load is covered with inexpensive natural energy (seawater), and the remaining 20% is covered with expensive steam.
  • 100% of the heat load is covered by expensive steam (fuel thermal efficiency of about 90%).
  • the required basic unit of pump power is about 4 kWh / t-LNG. Therefore, if the unit price of electric power is 10 ⁇ / KWh, 40 yen is required to vaporize 40 ⁇ / t-LNG, that is, LNG-1 ton. .
  • the basic unit of steam is about 1.5% (when the thermal efficiency is 90%) on the basis of the fuel consumption, it is 15Kg / t-LNG. If the fuel gas unit price including 40,000 yen / t is 600 yen / t-LNG, that is, 600 yen is required to vaporize LNG-1ton.
  • the operating cost B in the all steam heat source type vaporizer is 600% / t-LNG because it becomes a 100% steam heat source. Therefore, the operating cost is clearly A ⁇ B.
  • the heat load on the intermediate medium evaporator E1 increases due to the rise in seawater temperature, and the heat load on the heater E3 decreases. As a result, the operating cost A is reduced. On the other hand, in the all-steam heat source type vaporizer, even if the heat load in the intermediate medium evaporator E1 increases, the operating cost B is not reduced.
  • the vaporizer 10 of the present embodiment has a characteristic that the heat load in the intermediate medium evaporator E1 is large and the heat load in the heater E3 is small. Therefore, the operating cost A may be reduced beyond the partial load factor.
  • the operating cost B does not decrease beyond this while maintaining the partial load factor. Since seawater temperature change and partial load operation are unavoidable, in the actual operation over the whole year, the above-mentioned synergistic effect will further increase the difference in the operation cost over the whole year to A ⁇ B.
  • FIG. 4 schematically shows the configuration of the vaporizer 10 according to the second embodiment.
  • the atmosphere is used as the first heat source medium.
  • the intermediate medium evaporator E1 and the LNG evaporator E2 are provided in the common casing 11, but in the second embodiment, the intermediate medium evaporator E1 and the LNG evaporator E2 are provided. And are configured separately.
  • the LNG evaporator E2 includes a housing 55 in which the intermediate medium M is enclosed, and a heat transfer tube 40 that is disposed in the housing 55 and vaporizes LNG.
  • the housing 55 is provided with an inlet chamber 32 into which LNG is introduced and an outlet chamber 34 through which NG flows out.
  • a liquid reservoir 55 a for storing the intermediate medium M is provided at the lower portion of the housing 55.
  • a circulation path 57 for the intermediate medium M is connected to the housing 55.
  • One end of the circulation path 57 is connected to the lower surface of the liquid reservoir 55 a in the housing 55 and extends outside the housing 55.
  • the other end of the circulation path 57 is connected to the upper surface of the housing 55.
  • the circulation path 57 is provided with a pump 58. When the pump 58 is driven, the intermediate medium M stored in the liquid reservoir 55 a flows through the circulation path 57.
  • the heat transfer tube 20 of the intermediate medium evaporator E1 is connected to the intermediate portion of the circulation path 57. Therefore, the circulation path 57 includes a liquid pipe 57a through which the liquid intermediate medium M flows toward the heat transfer pipe 20, and a gas pipe 57b through which the gaseous intermediate medium M flows through the heat transfer pipe 20 and flows toward the LNG evaporation section E2. Including.
  • the intermediate medium evaporator E1 has a configuration in which the heat transfer tube 20 is disposed in a heat exchange chamber 60 into which air is introduced.
  • a blower chamber 61 is provided above the heat exchange chamber 60, and the air flows into the heat exchange chamber 60 via the blower chamber 61 by driving the blower 62.
  • the atmosphere flows from the top to the bottom, but the atmosphere may flow from the bottom to the top.
  • the blower chamber 61 may be omitted, the blower 62 may be attached to the heat exchange chamber 60, and the atmosphere may be directly introduced into the heat exchange chamber 60.
  • the air may flow from the heat exchange chamber 60 toward the blower chamber 61.
  • the liquid intermediate medium M stored in the liquid reservoir 55a in the housing 55 flows through the liquid pipe 57a of the circulation path 57 and is transmitted to the intermediate medium evaporator E1. It is introduced into the heat pipe 20.
  • the intermediate medium M is heated and evaporated by the atmosphere and flows through the gas pipe 57 b of the circulation path 57.
  • This gaseous intermediate medium M is introduced into the housing 55 of the LNG evaporation unit E2, and heats the heat transfer tube 40.
  • LNG in the heat transfer tube 40 is vaporized and becomes NG.
  • NG is introduced into the heater E3 through the outlet tube 38, heated by steam, and then supplied to the user side.
  • An intermediate medium vaporizer provided as one aspect of the present invention includes an intermediate medium evaporation unit that evaporates at least a part of the intermediate medium by heat exchange between the first heat source medium and the liquid intermediate medium, and 6 MPaG or more.
  • the first heat source medium is seawater or the atmosphere
  • the second heat source medium is steam or hot water
  • the warmer is configured by a microchannel heat exchanger.
  • the heater is constituted by a micro-channel heat exchanger, the heater is downsized compared to the case where the heater is constituted by a shell and tube type heat exchanger. Can be achieved.
  • the intermediate medium type vaporizer itself can be downsized.
  • a low-temperature liquefied gas having a pressure of 6 MPaG (gauge pressure of 6 MPa) or more is introduced into the liquefied gas vaporization section.
  • 6 MPaG gauge pressure of 6 MPa
  • the heater is composed of a microchannel heat exchanger, the thickness of the heat transfer tubes, tube sheets, and shells can be increased to increase pressure resistance. There is no need to take measures to increase it.
  • the heater can be reduced in size, the heater can be reduced in weight.
  • the second heat source medium is steam or hot water, the heating performance of the gas in the heater can be improved as compared with the case where seawater or air is used as the second heat source medium.
  • the microchannel heat exchanger is a heat exchanger provided with a laminate having a structure in which a large number of metal plates having excellent heat transfer characteristics are laminated.
  • This laminated body has a configuration in which metal plates in which a flow path through which gas flows is recessed and metal plates in which a flow path through which the second heat source medium flows are alternately stacked.
  • the channels formed in these metal plates have a channel width of 0.2 mm to 3 mm, for example. For this reason, even when a high-pressure gas is introduced into the warmer, it is not necessary to redesign the warmer for high pressure resistance, and the warmer is not enlarged.
  • the intermediate medium type vaporizer can be miniaturized.

Abstract

This intermediate-medium type vaporizer is provided with: an intermediate medium evaporation part that evaporates at least a portion of an intermediate medium through heat exchange performed between a first heat source medium and the intermediate medium in a liquid form; a liquid gas vaporizing part that has a heat transfer tube through which a low-temperature liquid gas having a pressure of at least 6 MPaG is introduced, and vaporizes the low-temperature liquid gas in the heat transfer tube to cause a gas to flow out by condensing the intermediate medium evaporated by the intermediate medium evaporation part; and a heater that heats, by means of a second heat source medium, the gas discharged from the liquid gas vaporizing part. The first heat source medium is seawater or atmospheric air, the second heat source medium is steam or warm water, and the heater is provided with a microchannel heat exchanger.

Description

中間媒体式気化器Intermediate medium vaporizer
 本発明は、中間媒体式気化器に関するものである。 The present invention relates to an intermediate medium type vaporizer.
 従来、下記特許文献1に開示されているように、LNG(Liquefied Natural Gas)等の低温液体を気化する装置として、熱源流体に加えて中間媒体を用いる中間媒体式気化器が知られている。特許文献1に開示されている中間媒体式気化器は、図5に示すように、中間媒体蒸発器81と、LNG蒸発器82と、加温器83と、を備えている。 Conventionally, as disclosed in Patent Document 1 below, as an apparatus for vaporizing a low temperature liquid such as LNG (Liquid Natural Gas), an intermediate medium type vaporizer that uses an intermediate medium in addition to a heat source fluid is known. As shown in FIG. 5, the intermediate medium vaporizer disclosed in Patent Document 1 includes an intermediate medium evaporator 81, an LNG evaporator 82, and a warmer 83.
 また、気化器には、熱源流体としての海水が通る経路として、入口室85、多数本の伝熱管86、中間室87、多数本の伝熱管88及び出口室89が、この順に設けられている。伝熱管86は加温器83内に、また伝熱管88は中間媒体蒸発器81内にそれぞれ配置されている。 The vaporizer is provided with an inlet chamber 85, a large number of heat transfer tubes 86, an intermediate chamber 87, a large number of heat transfer tubes 88, and an outlet chamber 89 in this order as a path through which seawater as a heat source fluid passes. . The heat transfer tube 86 is disposed in the heater 83, and the heat transfer tube 88 is disposed in the intermediate medium evaporator 81.
 中間媒体蒸発器81内には、海水の温度よりも沸点の低い中間媒体(例えばプロパン)Mが収容されている。 In the intermediate medium evaporator 81, an intermediate medium (for example, propane) M having a boiling point lower than the temperature of seawater is accommodated.
 LNG蒸発器82は、入口室91及び出口室92と、両室91,92を連通する多数本の伝熱管93とを備えている。各伝熱管93は略U字状をなし、中間媒体蒸発器81内の上部に突き出ている。出口室92は、NG導管94を介して加温器83内に連通している。 The LNG evaporator 82 includes an inlet chamber 91 and an outlet chamber 92, and a large number of heat transfer tubes 93 communicating with both the chambers 91 and 92. Each heat transfer tube 93 is substantially U-shaped and protrudes to the upper part in the intermediate medium evaporator 81. The outlet chamber 92 communicates with the warmer 83 via the NG conduit 94.
 このような気化器において、熱源流体である海水は、入口室85、伝熱管86、中間室87及び伝熱管88を通って出口室89に至るが、伝熱管88を通る海水は、中間媒体蒸発器81内の液状中間媒体Mと熱交換して当該中間媒体Mを蒸発させる。 In such a vaporizer, seawater that is a heat source fluid passes through the inlet chamber 85, the heat transfer tube 86, the intermediate chamber 87, and the heat transfer tube 88 to the outlet chamber 89, but the seawater that passes through the heat transfer tube 88 passes through the intermediate medium evaporation. Heat exchange with the liquid intermediate medium M in the vessel 81 evaporates the intermediate medium M.
 一方、気化対象であるLNGは、入口室91から伝熱管93に導入される。この伝熱管93内のLNGと中間媒体蒸発器81内の蒸発中間媒体との熱交換により、当該中間媒体Mが凝縮するとともに、その凝縮熱を受けてLNGが伝熱管93内で蒸発し、NG(Natural Gas)となる。このNGは、出口室92からNG導管94を通じて加温器83内に導入され、この加温器83内の伝熱管86を流れる海水との熱交換によってさらに加熱された後、利用側に供給される。 On the other hand, LNG to be vaporized is introduced into the heat transfer tube 93 from the inlet chamber 91. The heat exchange between the LNG in the heat transfer tube 93 and the evaporation intermediate medium in the intermediate medium evaporator 81 causes the intermediate medium M to condense, and the LNG evaporates in the heat transfer tube 93 by receiving the heat of condensation. (Natural Gas). This NG is introduced into the heater 83 from the outlet chamber 92 through the NG conduit 94, further heated by heat exchange with seawater flowing through the heat transfer pipe 86 in the heater 83, and then supplied to the use side. The
特開2000-227200号公報JP 2000-227200 A
 特許文献1に開示された中間媒体式気化器では、加温器83が多数の伝熱管86を有する構成となっている。このため、加温器83を小型化するには限界があり、必然的に中間媒体式気化器自体の小型化にも限界がある。特に、中間媒体式気化器に高圧のLNGが導入される場合には、加温器83内の圧力も高くなるため、伝熱管86およびそれに付帯する管板やシェルにも耐圧性が要求されることになり、それに見合った耐圧性能を実現するには、益々小型化は困難になる。 In the intermediate medium type vaporizer disclosed in Patent Document 1, the warmer 83 has a large number of heat transfer tubes 86. For this reason, there is a limit in reducing the size of the heater 83, and there is inevitably a limit in reducing the size of the intermediate medium type vaporizer itself. In particular, when high-pressure LNG is introduced into the intermediate medium type vaporizer, the pressure in the heater 83 also increases, so that the heat transfer tube 86 and its associated tube plate and shell are also required to have pressure resistance. In other words, downsizing becomes increasingly difficult in order to achieve pressure resistance performance commensurate with it.
 そこで、本発明は、前記従来技術を鑑みてなされたものであり、その目的とするところは、小型化を図ることができる中間媒体式気化器を提供することである。 Therefore, the present invention has been made in view of the above prior art, and an object of the present invention is to provide an intermediate medium type vaporizer that can be miniaturized.
 前記の目的を達成するため、本発明の一態様として提供される中間媒体式気化器は、第1熱源媒体と液状の中間媒体との間での熱交換によって前記中間媒体の少なくとも一部を蒸発させる中間媒体蒸発部と、6MPaG以上の圧力を有する低温液化ガスが導入される伝熱管を有し、前記中間媒体蒸発部で蒸発した中間媒体を凝縮させることにより、前記伝熱管内の低温液化ガスを気化させてガスを流出させる液化ガス気化部と、前記液化ガス気化部から流出した前記ガスを第2熱源媒体によって加熱する加温器と、を備える中間媒体式気化器である。前記第1熱源媒体は海水又は大気であり、前記第2熱源媒体はスチーム又は温水であり、前記加温器はマイクロチャネル熱交換器によって構成されている。 In order to achieve the above object, an intermediate medium vaporizer provided as one aspect of the present invention evaporates at least a part of the intermediate medium by heat exchange between the first heat source medium and the liquid intermediate medium. A low temperature liquefied gas in the heat transfer tube by condensing the intermediate medium evaporated in the intermediate medium evaporation unit, and having a heat transfer tube into which a low temperature liquefied gas having a pressure of 6 MPaG or more is introduced. It is an intermediate-medium vaporizer provided with the liquefied gas vaporization part which vaporizes and flows out gas, and the warmer which heats the gas which flowed out from the liquefied gas vaporization part with the 2nd heat source medium. The first heat source medium is seawater or the atmosphere, the second heat source medium is steam or hot water, and the warmer is configured by a microchannel heat exchanger.
第1実施形態に係る中間媒体式気化器の構成を概略的に示す図である。It is a figure which shows roughly the structure of the intermediate | middle medium type vaporizer | carburetor which concerns on 1st Embodiment. 前記中間媒体式気化器に設けられた加温器の構成を、一部破断した状態で概略的に示す図である。It is a figure which shows schematically the structure of the warmer provided in the said intermediate | middle medium type vaporizer in the state which fractured | ruptured partially. 加温器に設けられた積層体を部分的に拡大して示す図である。It is a figure which expands and shows the layered product provided in the warmer partially. 第2実施形態に係る中間媒体式気化器の構成を概略的に示す図である。It is a figure which shows roughly the structure of the intermediate-medium type vaporizer | carburetor which concerns on 2nd Embodiment. 従来の中間媒体式気化器の構成を概略的に示す図である。It is a figure which shows roughly the structure of the conventional intermediate | middle medium type vaporizer | carburetor.
 以下、実施形態について図面を参照しながら詳細に説明する。 Hereinafter, embodiments will be described in detail with reference to the drawings.
 (第1実施形態)
 図1に示すように、第1実施形態に係る中間媒体式気化器(以下、単に気化器と称する)10は、中間媒体Mを介して、第1熱源媒体である海水の熱を低温液化ガスである液化天然ガス(LNG:Liquefied Natural Gas)に伝え、LNGを気化してガスを得る装置である。なお、気化器10は、液化石油ガス(LPG:Liquefied Petroleum Gas)、液体窒素(Liquid Nitrogen、LN)等、LNG以外の低温液化ガスを気化あるいは加温させる装置として構成されていてもよい。
(First embodiment)
As shown in FIG. 1, an intermediate medium type vaporizer (hereinafter simply referred to as a vaporizer) 10 according to the first embodiment converts the heat of seawater, which is a first heat source medium, into a low-temperature liquefied gas via an intermediate medium M. This is a device that transmits to liquefied natural gas (LNG) and obtains gas by vaporizing LNG. The vaporizer 10 may be configured as a device that vaporizes or heats a low-temperature liquefied gas other than LNG, such as liquefied petroleum gas (LPG) or liquid nitrogen (LiN Nitrogen, LN 2 ).
 気化器10は、中間媒体蒸発部である中間媒体蒸発器E1と、液化ガス気化部であるLNG蒸発器E2と、加温器E3と、を備えている。中間媒体蒸発器E1とLNG蒸発器E2は、1つの中空状ケーシング11に設けられている。 The vaporizer 10 includes an intermediate medium evaporator E1 that is an intermediate medium evaporator, an LNG evaporator E2 that is a liquefied gas vaporizer, and a heater E3. The intermediate medium evaporator E1 and the LNG evaporator E2 are provided in one hollow casing 11.
 ケーシング11は、水平方向に長い形状であって、その下部が中間媒体蒸発器E1のケーシング部(第1ケーシング部)として構成され、上部がLNG蒸発器E2のケーシング部(第2ケーシング部)として構成されている。 The casing 11 has a shape that is long in the horizontal direction, and a lower part thereof is configured as a casing part (first casing part) of the intermediate medium evaporator E1, and an upper part is formed as a casing part (second casing part) of the LNG evaporator E2. It is configured.
 第1ケーシング部を構成する一対の側壁のうちの一方には、入口室(水室)14が隣接し、他方には出口室18が隣接している。中間媒体蒸発器E1には、多数の伝熱管20が設けられている。伝熱管20は、ケーシング11内の空間の下部に配置されている。伝熱管20は、第1ケーシング部を構成する互いに対向する一対の側壁のうち、入口室14との仕切壁として機能する第1側壁11aと、出口室18との仕切壁として機能する第2側壁11bとの間に架け渡されている。この伝熱管20は、一方向に直線状に延びる形状を有するが、この形状に限られるものではない。 The inlet chamber (water chamber) 14 is adjacent to one of the pair of side walls constituting the first casing portion, and the outlet chamber 18 is adjacent to the other. A number of heat transfer tubes 20 are provided in the intermediate medium evaporator E1. The heat transfer tube 20 is disposed in the lower part of the space in the casing 11. The heat transfer tube 20 includes a first side wall 11 a that functions as a partition wall with the inlet chamber 14 and a second side wall that functions as a partition wall with the outlet chamber 18 among a pair of side walls facing each other constituting the first casing portion. 11b. The heat transfer tube 20 has a shape extending linearly in one direction, but is not limited to this shape.
 入口室14には、図略のポンプ等が設けられた導入管22が接続されており、海から汲み上げられた海水が導入管22を通して入口室14内に導入される。すなわち、入口室14に導入される前の海水がNG(Natural Gas)を加温するのに用いられることはない。 The inlet chamber 14 is connected to an inlet pipe 22 provided with a pump or the like (not shown), and seawater pumped from the sea is introduced into the inlet chamber 14 through the inlet pipe 22. That is, seawater before being introduced into the entrance chamber 14 is not used to heat NG (Natural Gas).
 出口室18には、海水を排出する排出管24が接続されている。出口室18内の海水は、排出管24を通して外部に排出される。 A discharge pipe 24 for discharging seawater is connected to the outlet chamber 18. Seawater in the outlet chamber 18 is discharged to the outside through the discharge pipe 24.
 ケーシング11内には、海水の温度よりも沸点の低い中間媒体(例えばプロパン)Mが収容されている。中間媒体Mは、全ての伝熱管(海水が流れる伝熱管)20よりも上側に液面が位置する程度に収容されている。 In the casing 11, an intermediate medium (for example, propane) M having a boiling point lower than the temperature of seawater is accommodated. The intermediate medium M is accommodated so that the liquid level is located above all the heat transfer tubes (heat transfer tubes through which seawater flows) 20.
 出口室18の上方には、LNGの入口室32と、NGを導出する出口室34とが設けられている。入口室32及び出口室34は、第2側壁11bの上側における外側に隣接している。出口室34は、入口室32の上側に隣接するように形成されている。入口室32には、LNGを導入するための供給管36が接続されている。出口室34には、NGを導出するための導出管38が接続されている。入口室32には、6MPaG(ゲージ圧で6MPa)以上の圧力を有するLNGが導入される。 Above the outlet chamber 18, an LNG inlet chamber 32 and an outlet chamber 34 for leading out NG are provided. The entrance chamber 32 and the exit chamber 34 are adjacent to the outside on the upper side of the second side wall 11b. The outlet chamber 34 is formed adjacent to the upper side of the inlet chamber 32. A supply pipe 36 for introducing LNG is connected to the inlet chamber 32. A lead-out pipe 38 for leading out NG is connected to the outlet chamber 34. LNG having a pressure of 6 MPaG (gauge pressure of 6 MPa) or more is introduced into the inlet chamber 32.
 LNG蒸発器E2は、前記入口室32と、前記出口室34と、入口室32と出口室34とを連通する多数の伝熱管40と、を備えている。各伝熱管40は略U字状をなしており、第1端部が入口室32に繋がり、第2端部が出口室34に繋がっている。そして、伝熱管40は、ケーシング11内における伝熱管20よりも上方、すなわち中間媒体Mの液面よりも上方に配置されている。 The LNG evaporator E2 includes the inlet chamber 32, the outlet chamber 34, and a large number of heat transfer tubes 40 that connect the inlet chamber 32 and the outlet chamber 34. Each heat transfer tube 40 is substantially U-shaped, and has a first end connected to the inlet chamber 32 and a second end connected to the outlet chamber 34. The heat transfer tube 40 is disposed above the heat transfer tube 20 in the casing 11, that is, above the liquid level of the intermediate medium M.
 導出管38には、加温器E3が接続されている。NGは、導出管38を通して加温器E3に供給され、加温器E3において加熱された後、利用側に供給される。 The heater E3 is connected to the outlet pipe 38. NG is supplied to the heater E3 through the outlet tube 38, heated in the heater E3, and then supplied to the user side.
 加温器E3は、図3に示す伝熱特性に優れる多数の金属板43,44が積層された構造の積層体を備えたマイクロチャネル熱交換器によって構成されている。具体的には、図2及び図3に示すように、マイクロチャネル熱交換器では、端板45,45間に金属板43,44の積層体が挟み込まれた構成となっており、この積層体は、NGが流れる多数の流路(第1流路)43aが凹設された第1金属板43と、第2熱源媒体としてのスチームが流れる多数の流路(第2流路)44aが凹設された第2金属板44とが交互に積層された構成となっている。そして、各第1流路43aを流れるNGと各第2流路44aを流れるスチームとの間で熱交換が行われ、NGが加熱される。これら金属板43,44に形成された流路は、例えば、0.2mm~3mmの流路幅を有している。なお、第2熱源媒体として、スチームに代えて温水が用いられてもよい。 The warmer E3 is configured by a microchannel heat exchanger including a laminated body having a structure in which a large number of metal plates 43 and 44 having excellent heat transfer characteristics shown in FIG. 3 are laminated. Specifically, as shown in FIGS. 2 and 3, the microchannel heat exchanger has a structure in which a laminate of metal plates 43, 44 is sandwiched between end plates 45, 45. The first metal plate 43 in which a large number of flow paths (first flow paths) 43a through which NG flows are recessed, and the large number of flow paths (second flow paths) 44a through which steam as a second heat source medium flows are recessed. The provided second metal plates 44 are alternately laminated. And heat exchange is performed between NG which flows through each 1st channel 43a, and steam which flows in each 2nd channel 44a, and NG is heated. The flow paths formed in these metal plates 43 and 44 have a flow path width of 0.2 mm to 3 mm, for example. Note that hot water may be used as the second heat source medium instead of steam.
 各第1流路43aには、NGが流れ、各第2流路44aには、第2熱源媒体としての水蒸気等のスチームが流れる。なお、第2熱源媒体は、第1熱源媒体(本実施形態では海水)とは異なる熱源媒体であればよく、例えば温水であってもよい。 NG flows in each first flow path 43a, and steam such as water vapor as a second heat source medium flows in each second flow path 44a. In addition, the 2nd heat source medium should just be a heat source medium different from a 1st heat source medium (this embodiment seawater), for example, may be warm water.
 各第1流路43aには、第1流入ヘッダ47と第1流出ヘッダ48とが連通しており、また、各第2流路44aには、第2流入ヘッダ49と第2流出ヘッダ50とが連通している。導出管38を通して供給されたNGは、第1流入ヘッダ47を通して各第1流路43aに分配され、各第1流路43aを流れたNGは第1流出ヘッダ48で集合し、加温器E3から導出される。第2流入ヘッダ49には、スチームの供給管51が接続されている。この供給管51を通して供給されるスチームは、第2流入ヘッダ49を通して各第2流路44aに分配され、各第2流路44aを流れたスチームは、第2流出ヘッダ50で集合し、加温器E3から導出される。 A first inflow header 47 and a first outflow header 48 communicate with each first flow path 43a, and a second inflow header 49 and a second outflow header 50 are connected to each second flow path 44a. Are communicating. The NG supplied through the outlet pipe 38 is distributed to the first flow paths 43a through the first inflow headers 47, and the NG that has flowed through the first flow paths 43a gathers at the first outflow header 48 to be heated by the heater E3. Is derived from A steam supply pipe 51 is connected to the second inflow header 49. The steam supplied through the supply pipe 51 is distributed to each second flow path 44a through the second inflow header 49, and the steam that has flowed through each second flow path 44a gathers at the second outflow header 50 and is heated. Derived from the device E3.
 ここで、第1実施形態に係る気化器10の運転動作について説明する。 Here, the operation of the vaporizer 10 according to the first embodiment will be described.
 ケーシング11内の下部に貯留された液状の中間媒体Mは、入口室14を通して各伝熱管20内に流入した海水によって加熱されて蒸発する。すなわち、加熱媒体蒸発部E1において、中間媒体Mが第1熱源媒体によって加熱されて蒸発する。蒸発した中間媒体Mは、ケーシング11内の上部に位置する伝熱管40を加熱する。供給管36から入口室32を通して伝熱管40内に流入し、伝熱管40内を流れるLNGは、伝熱管40によって加熱されて蒸発してNGとなる。なお、海水は、伝熱管20から流出し、出口室18及び排出管24を通して外部に排出される。 The liquid intermediate medium M stored in the lower part of the casing 11 is heated and evaporated by the seawater flowing into the heat transfer tubes 20 through the inlet chamber 14. That is, in the heating medium evaporating unit E1, the intermediate medium M is heated by the first heat source medium and evaporated. The evaporated intermediate medium M heats the heat transfer tube 40 located at the upper part in the casing 11. The LNG flowing from the supply pipe 36 into the heat transfer pipe 40 through the inlet chamber 32 and flowing through the heat transfer pipe 40 is heated by the heat transfer pipe 40 and evaporated to become NG. Seawater flows out of the heat transfer pipe 20 and is discharged to the outside through the outlet chamber 18 and the discharge pipe 24.
 NGは、出口室34を経由して導出管38を流れ、加温器E3に導入される。加温器E3では、NGは、第1流入ヘッダ47を通して各第1流路43aに分流される。各第1流路43aを流れるNGは、各第2流路44aを流れるスチームによって加熱され、第1流出ヘッダ48を通して加温器E3から導出され、利用側に供給される。 NG flows through the outlet pipe 38 via the outlet chamber 34 and is introduced into the heater E3. In the warmer E <b> 3, NG is diverted to the first flow paths 43 a through the first inflow header 47. The NG flowing through each first flow path 43a is heated by the steam flowing through each second flow path 44a, led out from the heater E3 through the first outflow header 48, and supplied to the use side.
 以上説明したように、本実施形態では、加温器E3がマイクロチャネル熱交換器によって構成されているため、加温器がシェルアンドチューブタイプの熱交換器によって構成される場合に比べ、加温器E3の小型化を図ることができる。 As described above, in the present embodiment, since the warmer E3 is configured by a microchannel heat exchanger, the warmer is heated compared to the case where the warmer is configured by a shell and tube type heat exchanger. The size of the device E3 can be reduced.
 また、気化器10自体の小型化を図ることもできる。特に、LNG蒸発器E2には、6MPaG(ゲージ圧で6MPa)以上の圧力を有するLNGが導入される。このような高圧のLNGを気化させる場合であっても、加温器E3がマイクロチャネル熱交換器で構成されているため、図5に示す従来の中間媒体式気化器のように、加温器E3の伝熱管、管板およびシェルの肉厚を厚くして耐圧性能を高めるというような対策を施す必要がない。 Also, the vaporizer 10 itself can be downsized. In particular, LNG having a pressure of 6 MPaG (gauge pressure of 6 MPa) or more is introduced into the LNG evaporator E2. Even in the case of vaporizing such high-pressure LNG, since the heater E3 is composed of a microchannel heat exchanger, the heater is similar to the conventional intermediate medium vaporizer shown in FIG. There is no need to take measures such as increasing the thickness of the heat transfer tubes, tube sheets and shells of E3 to increase pressure resistance.
 したがって、高圧のLNGを気化させる構成でありながら、加温器E3が大型化するのを防止することができる。また、加温器E3を小型化することができるのに伴い、加温器E3の軽量化を図ることもできる。 Therefore, it is possible to prevent the heater E3 from increasing in size while being configured to vaporize the high-pressure LNG. Further, as the heater E3 can be reduced in size, the heater E3 can be reduced in weight.
 また、加温器E3がマイクロチャネル熱交換器で構成されていて、図5の中間媒体式気化器の加温器E3のように、外殻、缶板を持たず、また伝熱管が外から圧縮する方向の高圧に耐える構成が無いため、加温器E3に高圧のガスが導入される場合であっても、加温器E3が大型化するということはない。なお、図5の構成では、機器が大型且つ大重量になることに加え、海水低温期には所望のNG出口温度の達成が難しい。 Further, the heater E3 is composed of a microchannel heat exchanger, and does not have an outer shell and a can plate as in the heater E3 of the intermediate medium type vaporizer in FIG. Since there is no structure that can withstand the high pressure in the compressing direction, even when a high-pressure gas is introduced into the warmer E3, the warmer E3 is not enlarged. In addition, in the structure of FIG. 5, in addition to the equipment becoming large and heavy, it is difficult to achieve a desired NG outlet temperature in the seawater low temperature period.
 また本実施形態では、第2熱源媒体としてスチームが用いられているので、第2熱源媒体として海水又は大気が用いられる場合に比べて、加温器E3でのガスの加熱性能を高くすることができる。また、寒冷地域においても、利用側から要求される温度のガスを得ることができる。 Moreover, in this embodiment, since steam is used as the second heat source medium, the heating performance of the gas in the heater E3 can be increased as compared with the case where seawater or air is used as the second heat source medium. it can. In a cold region, it is possible to obtain a gas having a temperature required from the use side.
 また本実施形態では、運転経費削減の効果もある。この点について、以下、具体的に説明する。本実施形態の構成の場合に必要となる運転経費をAとし、第1熱源媒体もスチームが用いられる全スチーム熱源式気化器の場合に必要となる運転経費をBとして、通年に亘る運転経費の比較を行う。 Moreover, in this embodiment, there is an effect of reducing operating costs. This point will be specifically described below. The operating cost required for the configuration of the present embodiment is A, and the operating cost required for an all-steam heat source type vaporizer in which steam is also used as the first heat source medium is B. Make a comparison.
 気化器での全気化熱量(100%)のうち、中間媒体蒸発器E1と加温器E3での熱負荷配分はそれぞれ、一般に約80%と約20%である。本実施形態では、熱負荷80%を安価な自然エネルギー(海水)で賄い、残りの20%を高価なスチームで賄う。一方、全スチーム熱源式気化器では、熱負荷の100%を高価なスチーム(燃料熱効率90%程度)で賄うことになる。 Of the total heat of vaporization (100%) in the vaporizer, the heat load distribution in the intermediate medium evaporator E1 and the warmer E3 is generally about 80% and about 20%, respectively. In this embodiment, 80% of the heat load is covered with inexpensive natural energy (seawater), and the remaining 20% is covered with expensive steam. On the other hand, in the all steam heat source type vaporizer, 100% of the heat load is covered by expensive steam (fuel thermal efficiency of about 90%).
 所要のポンプ動力(電力)原単位は、4KWh/t-LNG程度であるため、電力単価を10¥/KWhとすると、40¥/t-LNGつまりLNG-1tonを気化するのに40円を要する。一方、スチーム(燃料費)原単位は、 燃料消費量ベースで 約1.5%(熱効率90%とした場合)を自家消費するので、15Kg/t-LNGとなるため、この場合、ガス化コストを含む燃料ガス単価を40,000¥/tとすると、600¥/t-LNGつまりLNG-1tonを気化するのに、600円を要する。 The required basic unit of pump power (electric power) is about 4 kWh / t-LNG. Therefore, if the unit price of electric power is 10 ¥ / KWh, 40 yen is required to vaporize 40 ¥ / t-LNG, that is, LNG-1 ton. . On the other hand, since the basic unit of steam (fuel cost) is about 1.5% (when the thermal efficiency is 90%) on the basis of the fuel consumption, it is 15Kg / t-LNG. If the fuel gas unit price including 40,000 yen / t is 600 yen / t-LNG, that is, 600 yen is required to vaporize LNG-1ton.
 本実施形態に係る気化器10では、中間媒体蒸発器E1:80%、加温器E3:20%の熱負荷配分であるので、運転経費Aは、40×0.8+600×0.2=152¥/t-LNGとなる。 一方、全スチーム熱源式気化器での運転経費Bは、100%スチーム熱源となるので、600¥/t-LNGとなる。したがって、運転経費は明確にA<<Bとなる。 In the vaporizer 10 according to the present embodiment, since the heat load is distributed between the intermediate medium evaporator E1: 80% and the warmer E3: 20%, the operating cost A is 40 × 0.8 + 600 × 0.2 = 152. ¥ / t-LNG. On the other hand, the operating cost B in the all steam heat source type vaporizer is 600% / t-LNG because it becomes a 100% steam heat source. Therefore, the operating cost is clearly A << B.
 加えて、通年で見ると、本実施形態に係る気化器10では、夏場には、海水温度上昇により中間媒体蒸発器E1での熱負荷が大きくなり、加温器E3での熱負荷が小さくなることにより、その 結果、運転経費Aが低減する。これに対し、全スチーム熱源式気化器では、中間媒体蒸発器E1での熱負荷が大きくなったとしても、運転経費Bは低減しない。 In addition, when viewed throughout the year, in the vaporizer 10 according to the present embodiment, in summer, the heat load on the intermediate medium evaporator E1 increases due to the rise in seawater temperature, and the heat load on the heater E3 decreases. As a result, the operating cost A is reduced. On the other hand, in the all-steam heat source type vaporizer, even if the heat load in the intermediate medium evaporator E1 increases, the operating cost B is not reduced.
 また、操業上不可避な部分負荷運転が行われた場合においては、本実施形態の気化器10では、中間媒体蒸発器E1での熱負荷が大きく、加温器E3での熱負荷が小さくなる特性があることから、部分負荷率を超えて運転経費Aが低減することがある。 Further, when partial load operation is unavoidable in operation, the vaporizer 10 of the present embodiment has a characteristic that the heat load in the intermediate medium evaporator E1 is large and the heat load in the heater E3 is small. Therefore, the operating cost A may be reduced beyond the partial load factor.
 これに対し、全スチーム熱源式加温器では、部分負荷率のままで運転経費Bはこれを超えて低減することはない。海水温度変化や部分負荷運転は不可避であるため、通年に亘る実操業においては、上述の相乗効果により 、通年に亘る運転経費の差は更に拡大しA<<<Bとなる。 On the other hand, in the all-steam heat source type heater, the operating cost B does not decrease beyond this while maintaining the partial load factor. Since seawater temperature change and partial load operation are unavoidable, in the actual operation over the whole year, the above-mentioned synergistic effect will further increase the difference in the operation cost over the whole year to A << B.
 (第2実施形態)
 図4は、第2実施形態に係る気化器10の構成を概略的に示している。図4に示すように、第2実施形態では、第1実施形態と異なり、第1熱源媒体として大気が用いられる。なお、ここでは、第1実施形態と異なる構成及び効果についてのみ説明する。
(Second Embodiment)
FIG. 4 schematically shows the configuration of the vaporizer 10 according to the second embodiment. As shown in FIG. 4, in the second embodiment, unlike the first embodiment, the atmosphere is used as the first heat source medium. Here, only configurations and effects different from those of the first embodiment will be described.
 第1実施形態では、中間媒体蒸発器E1とLNG蒸発器E2とが共通のケーシング11内に設けられた構成となっているが、第2実施形態では、中間媒体蒸発器E1とLNG蒸発器E2とが別個に構成されている。 In the first embodiment, the intermediate medium evaporator E1 and the LNG evaporator E2 are provided in the common casing 11, but in the second embodiment, the intermediate medium evaporator E1 and the LNG evaporator E2 are provided. And are configured separately.
 LNG蒸発器E2は、中間媒体Mが封入された筐体55と、この筐体55内に配設され、LNGを気化させる伝熱管40とを備えている。筐体55には、LNGが導入される入口室32と、NGを流出させる出口室34とが設けられている。筐体55の下部には、中間媒体Mを溜める液溜め55aが設けられている。 The LNG evaporator E2 includes a housing 55 in which the intermediate medium M is enclosed, and a heat transfer tube 40 that is disposed in the housing 55 and vaporizes LNG. The housing 55 is provided with an inlet chamber 32 into which LNG is introduced and an outlet chamber 34 through which NG flows out. A liquid reservoir 55 a for storing the intermediate medium M is provided at the lower portion of the housing 55.
 筐体55には、中間媒体Mの循環路57が接続されている。循環路57の一端部は、筐体55における液溜め55aの下面に接続され、筐体55の外側を延びている。この循環路57の他端部は、筐体55の上面部に接続されている。循環路57にはポンプ58が設けられており、ポンプ58を駆動することにより、液溜め55aに貯留された中間媒体Mが循環路57を流れる。 A circulation path 57 for the intermediate medium M is connected to the housing 55. One end of the circulation path 57 is connected to the lower surface of the liquid reservoir 55 a in the housing 55 and extends outside the housing 55. The other end of the circulation path 57 is connected to the upper surface of the housing 55. The circulation path 57 is provided with a pump 58. When the pump 58 is driven, the intermediate medium M stored in the liquid reservoir 55 a flows through the circulation path 57.
 循環路57の中間部分において、中間媒体蒸発器E1の伝熱管20が接続されている。したがって、循環路57は、伝熱管20に向かって液状の中間媒体Mが流れる液管57aと、伝熱管20で蒸発してLNG蒸発部E2に向かってガス状の中間媒体Mが流れるガス管57bとを含む。 The heat transfer tube 20 of the intermediate medium evaporator E1 is connected to the intermediate portion of the circulation path 57. Therefore, the circulation path 57 includes a liquid pipe 57a through which the liquid intermediate medium M flows toward the heat transfer pipe 20, and a gas pipe 57b through which the gaseous intermediate medium M flows through the heat transfer pipe 20 and flows toward the LNG evaporation section E2. Including.
 中間媒体蒸発器E1は、大気が導入される熱交換室60に伝熱管20が配設された構成である。熱交換室60の上側には、送風機室61が設けられており、送風機62を駆動することにより、大気は送風機室61を経由して熱交換室60に流入する。本実施形態では、大気が上から下に向かって流れる構成となっているが、大気が下から上に向かって流れる構成となっていてもよい。また、送風機室61を省略して送風機62が熱交換室60に取り付けられ、大気が直接、熱交換室60に導入される構成としてもよい。また、熱交換室60から送風機室61に向かって大気が流れる構成であってもよい。 The intermediate medium evaporator E1 has a configuration in which the heat transfer tube 20 is disposed in a heat exchange chamber 60 into which air is introduced. A blower chamber 61 is provided above the heat exchange chamber 60, and the air flows into the heat exchange chamber 60 via the blower chamber 61 by driving the blower 62. In the present embodiment, the atmosphere flows from the top to the bottom, but the atmosphere may flow from the bottom to the top. Alternatively, the blower chamber 61 may be omitted, the blower 62 may be attached to the heat exchange chamber 60, and the atmosphere may be directly introduced into the heat exchange chamber 60. Alternatively, the air may flow from the heat exchange chamber 60 toward the blower chamber 61.
 第2実施形態では、筐体55内の液溜め55aに貯留された液状の中間媒体Mは、ポンプ58が駆動されると、循環路57の液管57aを流れ、中間媒体蒸発器E1の伝熱管20に導入される。伝熱管20において、中間媒体Mは大気によって加熱されて蒸発し、循環路57のガス管57bを流れる。このガス状の中間媒体MはLNG蒸発部E2の筐体55内に導入され、伝熱管40を加熱する。これにより、伝熱管40内のLNGは気化し、NGとなる。NGは導出管38を通して加温器E3に導入され、スチームによって加熱された後、利用側に供給される。 In the second embodiment, when the pump 58 is driven, the liquid intermediate medium M stored in the liquid reservoir 55a in the housing 55 flows through the liquid pipe 57a of the circulation path 57 and is transmitted to the intermediate medium evaporator E1. It is introduced into the heat pipe 20. In the heat transfer pipe 20, the intermediate medium M is heated and evaporated by the atmosphere and flows through the gas pipe 57 b of the circulation path 57. This gaseous intermediate medium M is introduced into the housing 55 of the LNG evaporation unit E2, and heats the heat transfer tube 40. Thereby, LNG in the heat transfer tube 40 is vaporized and becomes NG. NG is introduced into the heater E3 through the outlet tube 38, heated by steam, and then supplied to the user side.
 [実施形態の概説]
 以上の第1実施形態及び上記第2実施形態より、本発明の一態様として提供する中間媒体式気化器について、概説する。
[Outline of Embodiment]
From the first embodiment and the second embodiment, the intermediate medium type vaporizer provided as one aspect of the present invention will be outlined.
 本発明の一態様として提供する中間媒体式気化器は、第1熱源媒体と液状の中間媒体との間での熱交換によって前記中間媒体の少なくとも一部を蒸発させる中間媒体蒸発部と、6MPaG以上の圧力を有する低温液化ガスが導入される伝熱管を有し、前記中間媒体蒸発部で蒸発した中間媒体を凝縮させることにより、前記伝熱管内の低温液化ガスを気化させてガスを流出させる液化ガス気化部と、前記液化ガス気化部から流出した前記ガスを第2熱源媒体によって加熱する加温器と、を備える。前記第1熱源媒体は海水又は大気であり、前記第2熱源媒体はスチーム又は温水であり、前記加温器はマイクロチャネル熱交換器によって構成されている。 An intermediate medium vaporizer provided as one aspect of the present invention includes an intermediate medium evaporation unit that evaporates at least a part of the intermediate medium by heat exchange between the first heat source medium and the liquid intermediate medium, and 6 MPaG or more. A liquefaction having a heat transfer tube into which a low-temperature liquefied gas having a pressure of 5 is introduced and condensing the intermediate medium evaporated in the intermediate medium evaporation section, thereby vaporizing the low-temperature liquefied gas in the heat transfer tube A gas vaporizer; and a heater that heats the gas flowing out of the liquefied gas vaporizer with a second heat source medium. The first heat source medium is seawater or the atmosphere, the second heat source medium is steam or hot water, and the warmer is configured by a microchannel heat exchanger.
 この中間媒体式気化器では、加温器がマイクロチャネル熱交換器によって構成されているため、加温器がシェルアンドチューブタイプの熱交換器によって構成される場合に比べ、加温器の小型化を図ることができる。 In this intermediate medium type vaporizer, since the heater is constituted by a micro-channel heat exchanger, the heater is downsized compared to the case where the heater is constituted by a shell and tube type heat exchanger. Can be achieved.
 また、この中間媒体式気化器自体では、小型化を図ることもできる。特に、液化ガス気化部には、6MPaG(ゲージ圧で6MPa)以上の圧力を有する低温液化ガスが導入される。このような高圧の低温液化ガスを気化させる場合であっても、加温器がマイクロチャネル熱交換器で構成されているため、伝熱管、管板およびシェルの肉厚を厚くして耐圧性能を高めるというような対策を施す必要がない。 Moreover, the intermediate medium type vaporizer itself can be downsized. In particular, a low-temperature liquefied gas having a pressure of 6 MPaG (gauge pressure of 6 MPa) or more is introduced into the liquefied gas vaporization section. Even when vaporizing such high-pressure, low-temperature liquefied gas, since the heater is composed of a microchannel heat exchanger, the thickness of the heat transfer tubes, tube sheets, and shells can be increased to increase pressure resistance. There is no need to take measures to increase it.
 したがって、高圧の低温液化ガスを気化させる構成でありながら、加温器が大型化するのを防止することができる。 Therefore, it is possible to prevent an increase in the size of the heater while being configured to vaporize the high-pressure low-temperature liquefied gas.
 また、加温器を小型化することができるのに伴い、加温器の軽量化を図ることもできる。また、第2熱源媒体はスチーム又は温水であるため、第2熱源媒体として海水又は大気が用いられる場合に比べて、加温器でのガスの加熱性能を高くすることができる。 Also, as the heater can be reduced in size, the heater can be reduced in weight. In addition, since the second heat source medium is steam or hot water, the heating performance of the gas in the heater can be improved as compared with the case where seawater or air is used as the second heat source medium.
 また、寒冷地域においても、利用側から要求される温度のガスを得ることができる。 Also, in a cold region, it is possible to obtain gas at a temperature required from the user side.
 ここで、マイクロチャネル熱交換器とは、伝熱特性に優れる多数の金属板が積層された構造の積層体を備えた熱交換器である。この積層体は、ガスが流れる流路が凹設された金属板と、第2熱源媒体が流れる流路が凹設された金属板とが交互に積層された構成となっている。これら金属板に形成された流路は、例えば、0.2mm~3mmの流路幅を有している。このため、加温器に高圧のガスが導入される場合であっても、加温器を高耐圧用に設計し直す必要がなく、加温器が大型化するということはない。 Here, the microchannel heat exchanger is a heat exchanger provided with a laminate having a structure in which a large number of metal plates having excellent heat transfer characteristics are laminated. This laminated body has a configuration in which metal plates in which a flow path through which gas flows is recessed and metal plates in which a flow path through which the second heat source medium flows are alternately stacked. The channels formed in these metal plates have a channel width of 0.2 mm to 3 mm, for example. For this reason, even when a high-pressure gas is introduced into the warmer, it is not necessary to redesign the warmer for high pressure resistance, and the warmer is not enlarged.
 以上説明したように、上記中間媒体式気化器では、小型化を図ることができる。
 
As described above, the intermediate medium type vaporizer can be miniaturized.

Claims (1)

  1.  第1熱源媒体と液状の中間媒体との間での熱交換によって前記中間媒体の少なくとも一部を蒸発させる中間媒体蒸発部と、
     6MPaG以上の圧力を有する低温液化ガスが導入される伝熱管を有し、前記中間媒体蒸発部で蒸発した中間媒体を凝縮させることにより、前記伝熱管内の低温液化ガスを気化させてガスを流出させる液化ガス気化部と、
     前記液化ガス気化部から流出した前記ガスを第2熱源媒体によって加熱する加温器と、を備え、
     前記第1熱源媒体は海水又は大気であり、前記第2熱源媒体はスチーム又は温水であり、
     前記加温器はマイクロチャネル熱交換器によって構成されている、
     中間媒体式気化器。
    An intermediate medium evaporating unit that evaporates at least a part of the intermediate medium by heat exchange between the first heat source medium and the liquid intermediate medium;
    It has a heat transfer tube into which a low-temperature liquefied gas having a pressure of 6 MPaG or more is introduced, and condenses the intermediate medium evaporated in the intermediate medium evaporation section, thereby evaporating the low-temperature liquefied gas in the heat transfer tube and flowing out the gas A liquefied gas vaporizing section,
    A heater that heats the gas flowing out of the liquefied gas vaporization section with a second heat source medium,
    The first heat source medium is seawater or air, the second heat source medium is steam or hot water,
    The warmer is constituted by a microchannel heat exchanger,
    Intermediate medium vaporizer.
PCT/JP2016/082993 2015-12-18 2016-11-07 Intermediate-medium type vaporizer WO2017104293A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
SG11201804834SA SG11201804834SA (en) 2015-12-18 2016-11-07 Intermediate fluid type vaporizer
KR1020187020133A KR102086641B1 (en) 2015-12-18 2016-11-07 Medium Carburetor
CN201680072264.5A CN108368973A (en) 2015-12-18 2016-11-07 Intermediate medium formula gasifier
NO20180844A NO20180844A1 (en) 2015-12-18 2018-06-18 Intermediate Fluid Type Vaporizer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-247820 2015-12-18
JP2015247820 2015-12-18
JP2016-163294 2016-08-24
JP2016163294A JP6651424B2 (en) 2015-12-18 2016-08-24 Intermediate vaporizer

Publications (1)

Publication Number Publication Date
WO2017104293A1 true WO2017104293A1 (en) 2017-06-22

Family

ID=59056046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082993 WO2017104293A1 (en) 2015-12-18 2016-11-07 Intermediate-medium type vaporizer

Country Status (1)

Country Link
WO (1) WO2017104293A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS535207A (en) * 1976-07-05 1978-01-18 Osaka Gas Co Ltd Vaporizer of liquefied natural gas
JP2000227200A (en) * 1999-02-04 2000-08-15 Kobe Steel Ltd Intermediate medium vaporizer, natural gas supplying method using the same
JP2002527715A (en) * 1998-10-19 2002-08-27 ザ ボード オブ トラスティーズ オブ ザ ユニバーシテイ オブ イリノイ Heat exchange unit with vapor compression cycle
JP2008505297A (en) * 2004-06-07 2008-02-21 プラクスエア・テクノロジー・インコーポレイテッド Method and system for supplying carbon dioxide
JP2015145763A (en) * 2014-02-03 2015-08-13 ダイキン工業株式会社 air conditioning system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS535207A (en) * 1976-07-05 1978-01-18 Osaka Gas Co Ltd Vaporizer of liquefied natural gas
JP2002527715A (en) * 1998-10-19 2002-08-27 ザ ボード オブ トラスティーズ オブ ザ ユニバーシテイ オブ イリノイ Heat exchange unit with vapor compression cycle
JP2000227200A (en) * 1999-02-04 2000-08-15 Kobe Steel Ltd Intermediate medium vaporizer, natural gas supplying method using the same
JP2008505297A (en) * 2004-06-07 2008-02-21 プラクスエア・テクノロジー・インコーポレイテッド Method and system for supplying carbon dioxide
JP2015145763A (en) * 2014-02-03 2015-08-13 ダイキン工業株式会社 air conditioning system

Similar Documents

Publication Publication Date Title
US11391518B2 (en) Method of operating a heat exchanger
JP6651424B2 (en) Intermediate vaporizer
JP3946398B2 (en) Intermediate medium type vaporizer and method of supplying natural gas using the vaporizer
JP6198452B2 (en) Intermediate medium vaporizer
JP6839975B2 (en) Intermediate medium vaporizer
ES2502365T3 (en) Conversion of liquefied natural gas
WO2007029680A1 (en) Vapor generation system
JP5672450B2 (en) Fresh water generator and fresh water generation method
WO2019188676A1 (en) Intermediate-medium vaporizer
WO2017104293A1 (en) Intermediate-medium type vaporizer
JP5157224B2 (en) Steam generation system
KR102522339B1 (en) Liquefied natural gas vaporizer and cold water supply method
JP5239613B2 (en) Steam generation system
WO2017115723A1 (en) Intermediate medium carburetor
JP4853125B2 (en) Steam generation system
KR101645400B1 (en) Vaporization device liquefied natural gas
WO2023047937A1 (en) Liquid hydrogen vaporizer, and generation method for generating hydrogen
JP6058930B2 (en) Fuel supply device for internal combustion engine
JP2019178738A (en) Liquefied natural gas vaporizer
KR102636218B1 (en) Concentration system with improved extraction efficiency
JP2015062899A (en) Fresh water generator and fresh water generating method
JP4923843B2 (en) Steam generation system
JP5135810B2 (en) Steam generator
JP2021536548A (en) Assembly that evaporates liquefied gas to provide combustion gas to the engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16875278

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 11201804834S

Country of ref document: SG

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187020133

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187020133

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 16875278

Country of ref document: EP

Kind code of ref document: A1