WO2017104029A1 - 燃焼状態推定装置 - Google Patents

燃焼状態推定装置 Download PDF

Info

Publication number
WO2017104029A1
WO2017104029A1 PCT/JP2015/085256 JP2015085256W WO2017104029A1 WO 2017104029 A1 WO2017104029 A1 WO 2017104029A1 JP 2015085256 W JP2015085256 W JP 2015085256W WO 2017104029 A1 WO2017104029 A1 WO 2017104029A1
Authority
WO
WIPO (PCT)
Prior art keywords
angular velocity
rotating body
blade
cylinder
combustion
Prior art date
Application number
PCT/JP2015/085256
Other languages
English (en)
French (fr)
Inventor
吉田 宏之
和一 生司
宏則 岩元
Original Assignee
株式会社 電子応用
友成 健五
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 電子応用, 友成 健五 filed Critical 株式会社 電子応用
Priority to JP2017555931A priority Critical patent/JP6490239B2/ja
Priority to PCT/JP2015/085256 priority patent/WO2017104029A1/ja
Priority to EP15910719.2A priority patent/EP3392491A4/en
Publication of WO2017104029A1 publication Critical patent/WO2017104029A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1445Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being related to the exhaust flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/008Mounting or arrangement of exhaust sensors in or on exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/023Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure
    • F02D35/024Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2340/00Dimensional characteristics of the exhaust system, e.g. length, diameter or volume of the apparatus; Spatial arrangements of exhaust apparatuses
    • F01N2340/02Dimensional characteristics of the exhaust system, e.g. length, diameter or volume of the apparatus; Spatial arrangements of exhaust apparatuses characterised by the distance of the apparatus to the engine, or the distance between two exhaust treating apparatuses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/07Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas flow rate or velocity meter or sensor, intake flow meters only when exclusively used to determine exhaust gas parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0416Methods of control or diagnosing using the state of a sensor, e.g. of an exhaust gas sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1411Exhaust gas flow rate, e.g. mass flow rate or volumetric flow rate

Definitions

  • the present invention relates to a combustion state estimation device.
  • JP2013-68130A discloses a system in which the in-cylinder pressure of each cylinder is detected by an in-cylinder pressure sensor provided for each cylinder of the internal combustion engine.
  • the present invention has been made paying attention to such problems, and an object thereof is to estimate the combustion state of a cylinder without using an in-cylinder pressure sensor.
  • a combustion state estimation device is rotatably accommodated in a housing provided on an exhaust path of an engine body having a cylinder, and at least one blade is provided.
  • a rotating body that is rotationally driven by the energy of the exhaust gas discharged from each cylinder of the engine body, and a passage that is provided in the housing and detects that the blade of the rotating body has passed through a predetermined position in the housing.
  • the angular velocity of the rotating body is calculated based on the detection sensor and the detection result of the passage detection sensor, and at least one of the combustion energy or the combustion interval of the cylinder of the engine body is calculated based on the angular velocity of the rotating body.
  • a configured arithmetic device is rotatably accommodated in a housing provided on an exhaust path of an engine body having a cylinder, and at least one blade is provided.
  • the combustion state estimation device by providing the combustion state estimation device on the exhaust path, the combustion state of the cylinder such as the combustion energy and the combustion interval of the cylinder of the engine body can be estimated. Therefore, the combustion state of the cylinder can be estimated without using the in-cylinder pressure sensor.
  • FIG. 1 is a schematic configuration diagram of an internal combustion engine according to an embodiment of the present invention.
  • FIG. 2A is a schematic cross-sectional view of a rotating body and a housing.
  • FIG. 2B is a schematic plan view of the rotating body.
  • FIG. 3 is a diagram for explaining the detection principle of an eddy current sensor as a passage detection sensor.
  • FIG. 4A is a diagram showing a transition of an output value when an eddy current sensor is used as a passage detection sensor.
  • FIG. 4B is a diagram showing a transition of an output value when an eddy current sensor is used as a passage detection sensor.
  • FIG. 5 is a diagram illustrating an example of the calculation result of the angular velocity of the compressor wheel when the rotating body is rotated at a constant angular velocity.
  • FIG. 6 is a schematic plan view of a rotating body in which a shape error has occurred in the blade.
  • FIG. 7 is a diagram showing transition of the angular velocity and kinetic energy of the rotating body in one cycle of the internal combustion engine.
  • FIG. 8 is a diagram for explaining a method for calculating the combustion energy of each cylinder and the combustion interval of each cylinder.
  • FIG. 9 is a flowchart illustrating the angular velocity calculation control of the rotating body according to the embodiment of the present invention.
  • FIG. 10 is a flowchart illustrating the estimation control of the combustion energy of each cylinder of the engine body according to the embodiment of the present invention.
  • FIG. 11 is a flowchart for explaining the estimation control of the combustion interval of each cylinder of the engine body according to the embodiment of the present invention.
  • FIG. 1 is a schematic configuration diagram of an internal combustion engine 100 according to an embodiment of the present invention.
  • the internal combustion engine 100 includes an engine body 1, an intake device 20, an exhaust device 30, and an electronic control unit 200 for controlling the internal combustion engine 100.
  • the internal combustion engine 100 is a so-called multi-cylinder internal combustion engine in which the engine body 1 has a plurality of cylinders 4.
  • the engine body 1 burns fuel in a combustion chamber 6 formed in each cylinder 4 to generate power for driving a vehicle, for example.
  • the engine body 1 has four cylinders 4.
  • the number of cylinders is not particularly limited, and may be one (single cylinder), for example.
  • the engine body 1 sparks and burns fuel in the combustion chamber 6, but the fuel combustion method is not particularly limited, and the fuel may be compressed and self-ignited and burned in the combustion chamber. .
  • the configuration of the engine body 1 will be described.
  • the engine body 1 includes a cylinder block 2 and a cylinder head 3 fixed to the upper surface of the cylinder block 2.
  • a plurality of cylinders 4 are formed in the cylinder block 2. Inside the cylinder 4 is received a piston 5 that receives combustion pressure and reciprocates inside the cylinder 4. The piston 5 is connected to a crankshaft via a connecting rod, and the reciprocating motion of the piston 5 is converted into rotational motion by the crankshaft.
  • a space defined by the inner wall surface of the cylinder head 3, the inner wall surface of the cylinder 4, and the piston crown surface is a combustion chamber 6.
  • the cylinder head 3 has an intake port 7 that opens to one side surface of the cylinder head 3 and opens to the combustion chamber 6 of each cylinder 4, and opens to the other side surface of the cylinder head 3 and combustion chamber of each cylinder 4. 6 is formed.
  • the cylinder head 3 includes an intake valve 9 for opening and closing the opening between the combustion chamber 6 and the intake port 7, an exhaust valve 10 for opening and closing the opening between the combustion chamber 6 and the exhaust port 8, and an intake valve 9.
  • An intake camshaft 11 that opens and closes and an exhaust camshaft 12 that opens and closes the exhaust valve 10 are attached.
  • the cylinder head 3 has a fuel injection valve 13 for injecting fuel into the combustion chamber 6, and an ignition for igniting the mixture of fuel and air injected from the fuel injection valve 13 in the combustion chamber 6.
  • a plug 14 is attached.
  • the fuel injection valve 13 may be attached so as to inject fuel into the intake port 7.
  • the intake device 20 is a device for introducing air into the cylinder 4 through the intake port 7, and includes an air cleaner 21, an intake pipe 22, an intake manifold 23, an electronically controlled throttle valve 24, and an air flow meter. 211.
  • the air cleaner 21 removes foreign matters such as sand contained in the air.
  • the intake pipe 22 has one end connected to the air cleaner 21 and the other end connected to a surge tank 23 a of the intake manifold 23.
  • the intake pipe 22 guides air (intake air) flowing into the intake pipe 22 via the air cleaner 21 to the surge tank 23 a of the intake manifold 23.
  • the intake manifold 23 includes a surge tank 23a and a plurality of intake branch pipes 23b branched from the surge tank 23a and connected to the openings of the intake ports 7 formed on the side surface of the cylinder head.
  • the air guided to the surge tank 23a is evenly distributed in each cylinder 4 through the intake branch pipe 23b.
  • the throttle valve 24 is provided in the intake pipe 22.
  • the throttle valve 24 is driven by a throttle actuator 25 to change the passage cross-sectional area of the intake pipe 22 continuously or stepwise.
  • throttle opening By adjusting the opening of the throttle valve 24 (hereinafter referred to as “throttle opening”) by the throttle actuator 25, the amount of intake air taken into each cylinder 4 is adjusted.
  • the throttle opening is detected by the throttle sensor 212.
  • the air flow meter 211 is provided in the intake pipe 22 upstream of the throttle valve 24.
  • the air flow meter 211 detects the flow rate of air flowing through the intake pipe 22 (hereinafter referred to as “intake amount”).
  • the exhaust device 30 is a device for purifying the combustion gas (exhaust gas) generated in the combustion chamber 6 and discharging it to the outside air.
  • the exhaust device 30 includes an exhaust manifold 31, an exhaust pipe 32, and an exhaust aftertreatment device 33. Prepare.
  • the exhaust manifold 31 includes a plurality of exhaust branch pipes 31a connected to the openings of the exhaust ports 8 formed on the side surface of the cylinder head, and a collection pipe 31b that collects the exhaust branch pipes 31a into one. Prepare.
  • the exhaust pipe 32 has one end connected to the collecting pipe 31b of the exhaust manifold 31 and the other end opened to the outside air. Exhaust gas discharged from each cylinder 4 through the exhaust port 8 to the exhaust manifold 31 flows through the exhaust pipe 32 and is discharged to the outside air.
  • the exhaust aftertreatment device 33 is a device for purifying exhaust gas and discharging it to the outside air, and includes various catalysts for purifying harmful substances, filters for collecting harmful substances, and the like.
  • the internal combustion engine 100 further includes a combustion state estimation device 40 for estimating the combustion state of each cylinder 4 such as the combustion energy of each cylinder 4 of the engine body 1 and the combustion interval of each cylinder 4.
  • the combustion state estimation device 40 includes a housing 41 connected to the exhaust pipe 32, a rotating body 42 rotatably disposed in the housing 41, a passage detection sensor 301 attached to the housing 41, and a passage detection sensor 301.
  • the angular velocity of the rotating body 42 is calculated based on the output result, and the combustion state of each cylinder 4 such as the combustion energy of each cylinder 4 of the engine body 1 and the combustion interval of each cylinder 4 is estimated based on the angular velocity of the rotating body 42.
  • an amplifier unit 300 configured to be able to do this. Details of the combustion state estimation device 40 will be described later with reference to FIG.
  • the electronic control unit 200 is composed of a digital computer, and includes a ROM (read only memory), a RAM (random access memory), a CPU (microprocessor), an input port and an output port which are connected to each other by a bidirectional bus.
  • ROM read only memory
  • RAM random access memory
  • CPU microprocessor
  • the electronic control unit 200 provides a signal for calculating the engine speed every time the crankshaft of the engine body 1 rotates, for example, 15 °.
  • An output signal such as a crank angle sensor 213 that generates an output pulse is input via an input port.
  • output signals of various sensors necessary for controlling the internal combustion engine 100 are input to the electronic control unit 200 via the input port.
  • the electronic control unit 200 is electrically connected with control components such as the fuel injection valve 13, the spark plug 14, and the throttle actuator 25 through output ports.
  • the electronic control unit 200 is connected to the amplifier unit 300 via a CAN (Controller (Area Network) communication line so that data can be transmitted and received with each other by CAN communication.
  • CAN Controller (Area Network) communication line
  • the combustion state of each cylinder 4 of the engine body 1 estimated by the amplifier unit 300 is transmitted to the electronic control unit 200.
  • the electronic control unit 200 according to the present embodiment depending on the combustion state of each cylinder 4 of the engine body 1 transmitted from the amplifier unit 300, parameters related to combustion of each cylinder 4, that is, the combustion injection amount, the intake amount, and the ignition It is configured to be able to control time etc.
  • FIG. 2A is a schematic cross-sectional view of the housing 41 and the rotating body 42.
  • FIG. 2B is a schematic plan view of the rotating body 42.
  • the rotating body 42 includes a central body 421 fixed to a shaft 423 rotatably supported by a rolling bearing 424, and a radial direction and an axial direction of the rotating body 42 from the surface of the central body 421.
  • a plurality of blades 422 extending.
  • the central body 421 is fixed to the shaft 423 so that its axis L is coaxial with the axis of the shaft 423.
  • the rotating body 42 is disposed inside the housing 41 so that it can rotate around the axis L. Further, when the rotating body 42 rotates, the radial end portion of the blade 422 moves in the circumferential direction along the inner peripheral surface with a slight gap from the inner peripheral surface of the housing 41. Arranged inside the housing 41.
  • the rotating body 42 has twelve blades 422 having the same shape and arranged at equal intervals.
  • the blades 422 are numbered B1 to B12, respectively.
  • the number of blades 422 is not limited to twelve, and may be more than twelve or less than twelve.
  • each blade 422 is configured to extend in the radial direction and the axial direction of the rotating body 42.
  • the plurality of blades 422 may have any shape such as a curved shape as long as the rotating body 42 can be rotationally driven by the exhaust gas flowing into the housing 41.
  • the blades 422 are not necessarily arranged at equal intervals, and a part or all of the blades 422 may have a different shape from the other blades.
  • the housing 41 has a central passage 411 extending through the center of the housing 41, and an annular passage 412 extending around the central passage 411 and into which exhaust gas flowing through the exhaust pipe flows.
  • An annular passage 412 is disposed around one end (left side in the figure) of the central passage 411, and the rotating body 42 is disposed in the central passage 411 inside the annular passage 412.
  • the other end (right side in the figure) of the central passage 411 is open, and constitutes an outlet 413 through which exhaust flows out. Therefore, the exhaust gas flowing through the exhaust pipe 32 flows out from the outlet 413 of the central passage 411 through the annular passage 412 and the rotating body 42.
  • a passage detection sensor 301 is attached to the housing 41 in order to detect that the blade 422 has passed through a predetermined angular position (predetermined position) in the housing 41.
  • the passage detection sensor 301 detects that the blade 422 has passed in front of the detection unit of the passage detection sensor 301.
  • the passage detection sensor 301 is disposed on the housing 41 so as to face the radial end surface 422a of the blade 422 of the rotating body 42 and to be substantially parallel to the normal direction of the radial end surface 422a of the blade 422. It is attached.
  • the output value of the passage detection sensor 301 is input to the amplifier unit 300.
  • the amplifier unit 300 includes an amplifier that amplifies the output value of the passage detection sensor 301, and a CPU (microprocessor) that performs various calculations such as calculation of the angular velocity of the rotating body 42 using the output value amplified by the amplifier. It is an integrated one.
  • the passage detection sensor 301 and the amplifier unit 300 are separated from each other, but the passage detection sensor 301 may be built in, and the passage detection sensor 301 and the amplifier unit 300 may be integrated.
  • an eddy current sensor is used as the passage detection sensor 301.
  • the eddy current sensor is a sensor that outputs a voltage value corresponding to the distance between the sensor detection unit and the metal material to be measured. The detection principle of the eddy current sensor will be briefly described below with reference to FIG.
  • the eddy current sensor has a coil 301a that generates a magnetic field by an alternating excitation current at its detection unit.
  • an eddy current Y is generated in the blade 422 so as to cancel the magnetic field generated by the coil 301a.
  • the strength of the magnetic field X changes due to the eddy current generated in the blade 422, and as a result, the value of the current flowing through the coil 301a changes. Therefore, it is possible to detect whether or not the blade 422 has passed by detecting a change in voltage value caused by a change in the current value flowing through the coil 301a by the eddy current sensor.
  • the output value of the eddy current sensor reaches a peak, the blade 422 passes in front of the detection unit of the eddy current sensor 5 (that is, a predetermined angular position in the housing 41). Can be determined.
  • any sensor may be used as the passage detection sensor 301 that detects the passage of the blade 422 as long as the passage of the blade 422 can be detected.
  • An example of such a sensor is an electromagnetic pickup (MPU) sensor.
  • the MPU sensor is a sensor having a magnet and a detection coil in its detection unit.
  • the magnetic flux penetrating the detection coil changes, and the induced electromotive force of the detection coil changes accordingly.
  • the passage of the blade 422 in front of the detection unit of the MPU sensor can be detected.
  • an eddy current sensor is used as the passage detection sensor 301 will be described.
  • FIG. 4A and 4B are diagrams showing transition of the output value (voltage value) of the passage detection sensor 301 when an eddy current sensor is used as the passage detection sensor 301.
  • FIG. 4A shows the transition of the output value when the angular speed of the rotating body 42 is relatively slow (for example, the rotational speed of the rotating body 42 is 200,000 [rpm]), and
  • FIG. 4B shows the case where the angular speed of the rotating body 42 is relatively fast.
  • the transition of the output value at each time (for example, the rotational speed of the rotating body 42 is 400,000 [rpm]) is shown.
  • the output value increases as the distance between the detection unit of the passage detection sensor 301 and the object (blade 422 in the present embodiment) passing in front of the detection portion decreases. Therefore, when the blade 422 passes in front of the detection unit of the passage detection sensor 301, the output value of the passage detection sensor 301 increases rapidly. Therefore, the output changed into a convex shape in FIGS. 4A and 4B means that the blade 422 has passed.
  • the numbers B1 to B12 in FIGS. 4A and 4B are the numbers of the blades 422 that have passed in front of the detection unit of the passage detection sensor 301.
  • the output value of the passage detection sensor 301 increases and decreases rapidly as the blade 422 passes, and two adjacent blades 422 The period during which passes is kept constant at a low value.
  • the passage detection sensor 301 can accurately detect that the blade 422 has passed in front of the detection unit of the passage detection sensor 301. Therefore, as an example of a method for calculating the angular velocity of the rotating body 42 using the passage detection sensor 301, an arbitrary one of the blades 422 (hereinafter referred to as “reference blade”) passes in front of the passage detection sensor 301. After that, each time each blade 422 passes in front of the passage detection sensor 301 based on the time interval until the blade passing in front of the passage detection sensor 301 next to the reference blade, A method for calculating the angular velocity is mentioned.
  • the time when the output value of the passage detection sensor 301 shows a peak when the first blade B1 passes in front of the passage detection sensor 301 is time t1.
  • the second blade B2, the third blade B3, and the fourth blade B4 pass in front of the passage detection sensor 301 and the output value of the passage detection sensor 301 shows a peak, times t2, t3, and t4, respectively. To do.
  • the time interval ⁇ t1 from the passage of the first blade B1 through the passage detection sensor 301 to the passage of the second blade B2 is t2-t1.
  • the angular interval between the first blade B1 and the second blade B2 is basically (2 ⁇ / 12) [rad].
  • the instantaneous angular velocity of the rotating body 42 from when the first blade B1 passes through the passage detection sensor 301 to when the second blade B2 passes (hereinafter referred to as “instantaneous angular velocity after passing through the first blade”).
  • ⁇ 1 [rad / s] is 2 ⁇ / (12 ⁇ ⁇ t1).
  • the time interval ⁇ t2 from the passage of the second blade B2 to the passage of the third blade B3 in front of the passage detection sensor 301 is t3-t2, and after the passage of the third blade B3, the fourth blade B4.
  • the time interval ⁇ t3 until passes is t4-t3.
  • the instantaneous angular velocity ⁇ 3 of the rotating body 42 from the passage of the third blade B3 to the passage of the fourth blade B4 in front of the passage detection sensor 301 that is, the instantaneous angular velocity ⁇ 3 after passing the third blade. Is 2 ⁇ / (12 ⁇ ⁇ t3).
  • the pair of adjacent blades 422 that is, the i-th blade Bi and the (i + 1) -th blade B (i + 1)
  • the passage detection sensor 301 Is calculated, the instantaneous angular velocity ⁇ i after passing through the i-th blade Bi is calculated based on the time interval ⁇ ti and the angular interval between the pair of adjacent blades 422. be able to.
  • the angular interval ⁇ i between adjacent pairs of blades 422 is divided by the time interval ⁇ ti that passes between these blades 422 to instantaneously pass through the i-th blade.
  • a precise angular velocity ⁇ i can be calculated.
  • the angular interval ⁇ i is (2 ⁇ / p), where p is the total number of blades 422. Become. Therefore, the instantaneous angular velocity ⁇ i after passing through the i-th blade can be calculated by the following equation (2).
  • FIG. 5 is a diagram illustrating an example of a calculation result when the angular velocity of the rotating body 42 is calculated by the above-described calculation method when the rotating body 42 is rotated at a constant angular velocity.
  • the horizontal axis represents the number of the blade 422
  • the vertical axis represents the instantaneous angular velocity of the rotating body 42 after passing through the blade of the corresponding blade number.
  • the rotating body 42 is rotated at a constant angular velocity. Therefore, the instantaneous angular velocity of the rotating body 42 calculated at this time should be a constant value. However, actually, as shown in FIG. 5, the calculated instantaneous angular velocity of the rotating body 42 is not necessarily constant after passing through each blade 422. For example, in the example shown in FIG. 5, the instantaneous angular velocity of the rotating body 42 after passing through the second blade is slower than the instantaneous angular velocity of the rotating body 42 after passing through the first blade.
  • each blade 422 of the rotating body 42 may have a shape error due to a manufacturing error or a secular change, and this shape error causes an error when the instantaneous angular velocity of the rotating body 42 is calculated.
  • the relationship between the calculated instantaneous angular velocity of the rotating body 42 and the shape error of the blade 422 will be described with reference to FIG.
  • FIG. 6 is a schematic plan view of the rotating body 42 in which a shape error has occurred in the blade 422. 6 indicates the shape of the blade 422 when the blade 422 of the rotating body 42 is formed as designed.
  • the second blade B2 and the tenth blade B10 have a shape error with respect to the designed blade shape. Specifically, the second blade B2 has a shape shifted to the first blade side in the circumferential direction with respect to the design shape. Further, the tenth blade B10 has a shape shifted radially outward from the design shape.
  • the angle interval ⁇ between the blades changes.
  • the shape of the second blade B2 is a shape shifted in the circumferential direction with respect to the designed shape.
  • the actual angular interval between the first blade B1 and the second blade B2 is ⁇ 1, which is smaller than the design value ⁇ 1.
  • the actual angular interval between the second blade B2 and the third blade B3 is ⁇ 2, which is larger than the design value ⁇ 2. Accordingly, the actual angular interval ⁇ 1 between the first blade B1 and the second blade B2 is smaller than the actual angular interval ⁇ 2 between the second blade B2 and the third blade B3.
  • the design value is used instead of the actual angular interval between the blades. For this reason, even if the rotating body 42 rotates at a constant angular velocity, the instantaneous angular velocity ⁇ 1 of the rotating body 42 based on the time interval ⁇ t1 from the first blade B1 to the second blade B2 is increased from the second blade B2 to the second blade B2. It is calculated as being faster than the instantaneous angular velocity ⁇ 2 of the rotating body 42 based on the time interval ⁇ t2 to the three blades B3. As a result, as shown in FIG. 5, the instantaneous angular velocity after passing through the first blade B1 is calculated to be faster than the instantaneous angular velocity after passing through the second blade B2.
  • the tenth blade B10 has a shape shifted outward in the circumferential direction with respect to the design shape.
  • the actual angular interval between the ninth blade B9 and the tenth blade B10 is ⁇ 9 which is smaller than the design value ⁇ 9.
  • the actual angular interval between the tenth blade B10 and the eleventh blade B11 is ⁇ 10 which is larger than the design value ⁇ 10.
  • FIG. 6 shows an example of a shape error in which the shape of the blade 422 is totally shifted in the circumferential direction or the radial direction.
  • the shape error generated in the blade 422 includes various errors other than the above-described shape errors, such as an error in the axial direction of the rotating body 42 and an error in the curved shape of the blade. If such a shape error occurs in the blade 422, the angular velocity of the rotating body 42 cannot be accurately calculated.
  • the time from when the reference blade passes in front of the passage detection sensor 301 until the blade that passes in front of the passage detection sensor 301 next to the reference blade passes.
  • the reference blade passes next to the passage detection sensor 301 and then the reference blade passes next.
  • the angular velocity of the rotating body 42 is calculated based on the time interval until it passes in front of the detection sensor 301, that is, the time required for the rotating body 42 to make one rotation.
  • the angular velocity of the body 42 can be calculated. For example, when the reference blade is the first blade B1, the actual angular interval ⁇ 1 between the first blade B1 and the second blade B2 or the ninth blade B9 and the tenth blade B10 as in the example shown in FIG. Even if the actual angle interval ⁇ 9 between the first blade B1 and the first blade B1 is different from the design values ⁇ 1 and ⁇ 9, the angle interval is always 2 ⁇ [rad]. Even if the shape of the first blade B1 itself changes, the angular interval from the first blade B1 to the first blade B1 is always constant at 2 ⁇ [rad].
  • the angular velocity of the rotating body 42 can be accurately calculated without being affected by the shape error of the blade 422. it can.
  • Equation (3) I is the moment of inertia of the rotating body 42, and ⁇ is the angular velocity of the rotating body 42.
  • the moment of inertia I of the rotating body 42 can be obtained in advance from the shape and material of the rotating body 42 by calculation or the like. Therefore, by obtaining the angular velocity of the rotating body 42, the kinetic energy of the rotating body 42 at the time when the angular velocity is obtained can be calculated.
  • the angular velocity ⁇ of the rotating body 42 is calculated by the amplifier unit 300, and the kinetic energy of the rotating body 42 is calculated by the amplifier unit 300 using Equation (3).
  • the angular velocity ⁇ of the rotating body 42 can be accurately estimated without being affected by the shape error of the rotating body 42, the kinetic energy of the rotating body 42 can also be accurately calculated.
  • FIG. 7 is a diagram showing the transition of the angular velocity and kinetic energy of the rotating body 42 in one cycle of the internal combustion engine 100.
  • the horizontal axis in the figure indicates the crank angle of the engine body 1.
  • the solid line indicates the kinetic energy of the rotating body 42
  • the broken line indicates the angular velocity of the rotating body 42.
  • the angular velocity of the rotating body 42 changes in accordance with the crank angle of the engine body 1.
  • the exhaust valve of the first cylinder is opened and the exhaust gas flows out from the combustion chamber 6, the exhaust gas flowing into the annular passage 412 in the housing 41 increases.
  • the angular velocity of the rotating body 42 increases.
  • the kinetic energy of the rotating body 42 also increases.
  • the angular velocity of the rotating body 42 increases and then decreases, and accordingly, the kinetic energy of the rotating body 42 also increases and decreases. Further, such angular velocity and kinetic energy similarly change in the exhaust strokes of the other cylinders 4. Accordingly, in the four-cylinder internal combustion engine 100, the angular velocity and kinetic energy of the rotating body 42 fluctuate up and down largely four times per cycle of the internal combustion engine 100. That is, the angular velocity and kinetic energy of the rotating body 42 fluctuate up and down several times during one cycle of the internal combustion engine 100 according to the number of cylinders of the internal combustion engine 100.
  • the amount of increase in the kinetic energy of the rotating body 42 during the exhaust stroke of the fourth cylinder ( ⁇ KE in FIG. 7) is the exhaust discharged from the combustion chamber 6 of the fourth cylinder. Is proportional to the exhaust energy.
  • the amount of increase in kinetic energy of the rotating body 42 during the exhaust strokes of the first cylinder, the third cylinder, and the second cylinder is discharged from the combustion chambers 6 of the first cylinder, the third cylinder, and the second cylinder, respectively. It is proportional to the exhaust energy of the exhaust.
  • the exhaust energy of the exhaust discharged from each cylinder 4 is basically based on the combustion energy generated when the fuel is burned in the combustion chamber 6 of each cylinder 4, that is, the combustion in the combustion chamber 6 of each cylinder 4. Proportional to generated torque (combustion torque).
  • the difference in combustion energy (combustion torque) between the cylinders can be detected by comparing the amount of increase in the kinetic energy of the rotating body 42 during the exhaust stroke of each cylinder 4 between the cylinders. Specifically, the difference ( ⁇ KE) between the minimum value of the kinetic energy of the rotator 42 at the start of the exhaust stroke of each cylinder 4 and the maximum value of the kinetic energy of the rotator 42 during the exhaust stroke of the cylinder 4. Based on this, the difference in combustion energy (combustion torque) between the cylinders can be detected.
  • the cylinder 4 having a large difference between the minimum value and the maximum value can be determined to be a cylinder 4 having a large combustion energy (combustion torque), and the cylinder 4 having a small difference between the minimum value and the maximum value has a combustion energy (combustion). It can be determined that the cylinder 4 has a small torque.
  • the time interval from the start of the exhaust stroke of the fourth cylinder to the end of the exhaust stroke ( ⁇ tcom in FIG. 7), that is, the rotating body 42 is discharged from the combustion chamber 6 of the fourth cylinder.
  • the period during which the exhaust is rotated corresponds to the combustion interval from the start of the combustion stroke of the second cylinder to the end of the combustion stroke.
  • the time interval from the start of the exhaust stroke of the first cylinder, the third cylinder and the second cylinder to the end of the exhaust stroke is from the start of the combustion stroke of the third cylinder, the fourth cylinder and the first cylinder, respectively. This corresponds to the combustion interval until the end.
  • the control unit 200 can perform feedback control or feedforward control. Thereby, the difference of the combustion energy (combustion torque) between the cylinders and the difference of the combustion interval can be minimized.
  • the combustion state of the single cylinder such as the combustion energy (combustion torque) and the combustion interval of the single cylinder is calculated as needed, for example, in a steady state (no load fluctuation).
  • the electronic control unit 200 performs feedback control and feedforward control on the parameters related to combustion of each cylinder 4 such as the fuel injection amount, the intake air amount, and the ignition timing so that the combustion states coincide. Can do.
  • FIG. 8 is a diagram illustrating a method for calculating the combustion energy ⁇ KE of each cylinder 4 and the combustion interval ⁇ tcom of each cylinder 4.
  • the horizontal axis in the figure indicates the crank angle of the engine body 1.
  • the solid line in FIG. 8 indicates the kinetic energy of the rotating body 42, and the broken line indicates the angular velocity of the rotating body 42.
  • the amplifier unit 300 sets the angular velocity ⁇ as the angular velocity current value ⁇ z of the rotating body 42 and sets the differential value of the angular velocity current value ⁇ z as the angular acceleration. It is calculated as the present value ⁇ z '. Then, the amplifier unit 300 uses the angular velocity current value ⁇ z when the absolute value of the current angular acceleration current value ⁇ z ′ is equal to or less than a preset extreme value determination threshold value near 0 as the exhaust value of each cylinder 4.
  • Angular velocity at the start of the stroke (hereinafter referred to as “minimum angular velocity”) ⁇ L, or angular velocity at a certain point during the exhaust stroke of each cylinder 4 at which the kinetic energy of the rotating body 42 reaches the maximum value (maximum value) (hereinafter referred to as “maximum angular velocity”).
  • the angular velocity current value ⁇ z when the absolute value of the angular acceleration current value ⁇ z ′ is equal to or less than the extreme value determination threshold, whether the angular velocity current value ⁇ z is the minimum angular velocity ⁇ L or the maximum angular velocity ⁇ H. This determination can be made by determining whether or not the previous angular acceleration value ⁇ z ⁇ 1 ′ calculated immediately before is a positive value.
  • the amplifier unit 300 sets the angular velocity current value ⁇ z to the minimal angular velocity ⁇ L when the absolute value of the angular acceleration current value ⁇ z ′ is equal to or less than the extreme value determination threshold.
  • the previous angular acceleration value ⁇ z ⁇ 1 ′ is a positive value, that is, when the slope of the broken line in FIG. 8 is positive, it can be determined that the angular velocity ⁇ changes from rising to falling.
  • the angular velocity current value omega z when the absolute value of the angular acceleration current value omega z 'is equal to or less than extremum determination threshold is set to the maximum angular velocity .omega.H.
  • Equation (3) Substituting the minimal angular velocity ⁇ L and the maximum angular velocity ⁇ H set in this way into Equation (3), respectively, the minimum value of the kinetic energy of the rotating body 42 at the start of the exhaust stroke of each cylinder 4 and the exhaust of the cylinder 4 It is possible to calculate the maximum value of the kinetic energy of the rotating body 42 during the stroke. If the minimum value is subtracted from the maximum value of the kinetic energy calculated in this way, the combustion energy ⁇ KE generated when the fuel is burned in the combustion chamber 6 of each cylinder 4 can be calculated.
  • the combustion interval ⁇ tcom of each cylinder 4 corresponds to the time interval from the start of the exhaust stroke of each cylinder 4 to the end of the exhaust stroke. Therefore, the combustion interval ⁇ tcom of each cylinder 4 coincides with the time from when the minimal angular velocity ⁇ L is set until the next minimal angular velocity ⁇ L is set. Therefore, the amplifier unit 300 according to the present embodiment calculates the combustion interval of each cylinder 4 by measuring the time from when the minimal angular velocity ⁇ L is set to when the minimal angular velocity ⁇ L is set next.
  • the combustion interval of each cylinder 4 is measured. ⁇ tcom can also be calculated.
  • step S1 the amplifier unit 300 reads the output value of the passage detection sensor 301.
  • step S2 the amplifier unit 300 determines whether or not the elapsed time measurement start flag F1 is set to 0.
  • the elapsed time measurement start flag F1 is a flag whose initial value is set to 0.
  • the passage detection sensor 301 detects the passage of the blade 422. And 1 are set. And if the angular velocity and rotation speed of the rotary body 42 are estimated, it will return to 0 again. If the elapsed time measurement start flag F1 is set to 0, the amplifier unit 300 proceeds to the process of step S2. On the other hand, if the elapsed time measurement start flag F1 is set to 1, the amplifier unit 300 proceeds to the process of step S5.
  • step S3 the amplifier unit 300 determines whether or not the passage of the blade 422 is detected.
  • the blade 422 whose passage has been detected in step S3 is an arbitrary one of a plurality of blades, that is, a reference blade. If the passage of the blade 422 is detected, the amplifier unit 300 proceeds to the process of step S4. On the other hand, if the passage of the blade 422 is not detected, the amplifier unit 300 ends the current process.
  • step S4 the amplifier unit 300 sets the elapsed time measurement start flag F1 to 1, and starts measuring the elapsed time t e1 after the reference blade passes in front of the detection unit of the passage detection sensor 301.
  • step S5 the amplifier unit 300 calculates a material obtained by integrating the sampling cycle t Smp to the previous value of the elapsed time t e1 as elapsed time t e1. It should be noted that the initial value of the elapsed time t e is 0.
  • step S6 the amplifier unit 300 determines whether or not the passage of the blade 422 is detected by the passage detection sensor 301. If the passage detection sensor 301 detects the passage of the blade 422, the amplifier unit 300 proceeds to the process of step S7. On the other hand, if the overdetection sensor 5 does not detect the passage of the blade 422, the amplifier unit 300 ends the current process.
  • step S7 the amplifier unit 300 calculates the blade passage number i after the reference blade passes in front of the detection unit of the passage detection sensor 301. Specifically, the amplifier unit 300 calculates the blade passage number i by adding 1 to the previous value of the blade passage number i. Note that the initial value of the blade passage number i is 0.
  • step S8 the amplifier unit 300 determines whether or not the blade 422 that has detected passage in step S6 is a reference blade. Specifically, the amplifier unit 300 determines whether or not the blade passage number i is a value obtained by multiplying the total number of blades (12 in this embodiment) by a positive integer n.
  • the positive integer n is set to 1, for example, it can be determined whether or not the rotating body 42 has rotated once in step S8. If it is set to 2, for example, whether the rotating body 42 has rotated twice in step S8. It can be determined whether or not. That is, the timing for estimating the angular velocity of the rotating body 42 can be adjusted in accordance with the positive integer n, and the estimated number of angular velocity data of the rotating body 42 per unit time can be adjusted.
  • the positive integer n is set to 1. However, the positive integer n may be set to a value larger than 1 in accordance with the calculation capability of the CPU of the amplifier unit 300.
  • the amplifier unit 300 proceeds to the process of step S9 if the blade 422 whose passage has been detected in step S6 is the reference blade. On the other hand, the amplifier unit 300 ends the current process if the blade 422 whose passage has been detected in step S6 is not the reference blade.
  • step S9 the amplifier unit 300 sets the elapsed time t e1 calculated in step S5 as the reference blade passing time t m .
  • the amplifier unit 300 first detects that the reference blade has passed in front of the detection unit of the passage detection sensor 301, and then the reference unit. blade time to pass in front of the detecting portion of the passage detection sensor 301 (time the rotating body 42 is taken for one rotation) is set as a reference blade passing time t m.
  • step S10 the amplifier unit 300, based on the reference blade passing time t m, to calculate the angular velocity of the rotating body 42. Specifically, the amplifier unit 300 calculates the angular velocity ⁇ of the rotating body 42 by substituting the reference blade passage time t m into the following formula (4). Note In step S10, by substituting the reference blade passing time t m the following equation (5), may be calculated together rotational speed N of the rotating body 42.
  • step S11 the amplifier unit 300 returns the elapsed time t e1 , the blade passage number i, and the elapsed time measurement start flag F1 to the initial value 0.
  • step S21 the amplifier unit 300 determines whether or not the angular velocity ⁇ of the rotating body 42 is newly calculated by the above-described angular velocity calculation control of the rotating body 42. If the angular velocity ⁇ of the rotating body 42 is newly calculated, the amplifier unit 300 proceeds to the process of step S22. On the other hand, the amplifier unit 300 ends the current process if the angular velocity ⁇ of the rotating body 42 is not newly calculated.
  • step S22 the amplifier unit 300 reads the angular velocity ⁇ of the rotating body 42 which is newly calculated, and the reference blade passing time t m that is used in the calculation, the.
  • step S23 the amplifier unit 300 determines whether there are two or more data of the angular velocity ⁇ of the rotating body 42 read so far. If there are two or more data of the angular velocity ⁇ of the rotating body 42 read so far, the amplifier unit 300 proceeds to the process of step S24. On the other hand, the amplifier unit 300 ends the current process if the data of the angular velocity ⁇ of the rotating body 42 read so far is not two or more.
  • step S24 the amplifier unit 300 calculates the angular acceleration current value ⁇ z ′ of the rotating body 42.
  • Amplifier unit 300 Specifically, the angular velocity omega of the newly read rotator 42 now and angular current value omega z of the rotating body 42, an angular velocity omega of the rotating body 42 is loaded before one time, the angular velocity previous value omega z-1 of the rotating body 42. Then, the amplifier unit 300 substitutes the angular velocity current value ⁇ z , the angular velocity previous value ⁇ z ⁇ 1, and the reference blade passage time t m read in step S22 into the following formula (6), and the angular acceleration current value of the rotating body 42 is calculated. The value ⁇ z ′ is calculated.
  • ⁇ z ′ ( ⁇ z ⁇ z ⁇ 1 ) / t m (6)
  • step S25 the amplifier unit 300 determines whether or not the absolute value of the angular acceleration current value ⁇ z ′ of the rotating body 42 is equal to or less than the extreme value determination threshold value. If the angular acceleration current value ⁇ z ′ of the rotating body 42 is equal to or less than the extreme value determination threshold, the amplifier unit 300 proceeds to the process of step S26. On the other hand, if the angular acceleration current value ⁇ z ′ of the rotating body 42 is larger than the extreme value determination threshold, the amplifier unit 300 ends the current process.
  • step S26 the amplifier unit 300 determines whether or not the previous angular acceleration value ⁇ z ⁇ 1 ′ of the rotating body 42 is a negative value. If the previous angular acceleration value ⁇ z ⁇ 1 ′ of the rotating body 42 is a negative value, the amplifier unit 300 proceeds to the process of step S27. On the other hand, if the previous angular acceleration value ⁇ z ⁇ 1 ′ of the rotating body 42 is a positive value, the amplifier unit 300 proceeds to the process of step S29.
  • step S27 the amplifier unit 300 sets the angular velocity present value omega z of the rotating body 42 set in step S24 as a minimum angular velocity .omega.L.
  • step S28 the amplifier unit 300 sets the flag F2 to 1.
  • the flag F2 is a flag whose initial value is set to 0.
  • step S29 the amplifier unit 300 determines whether or not the flag F2 is set to 1. If the flag F2 is set to 1, the amplifier unit 300 proceeds to the process of step S30. On the other hand, if the flag F2 is set to 0, the current process is terminated.
  • step S30 the amplifier unit 300 sets the angular velocity present value omega z of the rotating body 42 set in step S24 as a maximum angular velocity .omega.H.
  • step S31 the amplifier unit 300 substitutes the minimum angular velocity ⁇ L and the maximum angular velocity ⁇ H set in step S27 and step S30 into the following equation (7) to increase the kinetic energy increase ⁇ KE of the rotating body 42, that is, the current exhaust gas.
  • the combustion energy generated when the fuel is burned in the combustion chamber 6 of the cylinder 4 during the stroke is calculated.
  • ⁇ KE I ⁇ ⁇ ( ⁇ H 2 ⁇ L 2 ) / 2 ⁇ (7)
  • step S32 the amplifier unit 300 returns the flag F2 to the initial value 0.
  • step S41 the amplifier unit 300 determines whether or not the flag F3 is set to 0.
  • the flag F3 is a flag in which an initial value (a value at the start of operation of the internal combustion engine 100) is set to 0, and is set to 1 when the minimum angular velocity ⁇ L is set for the first time after the operation of the internal combustion engine 100 is started. Is set.
  • the flag F3 is returned to 0 when the internal combustion engine is stopped or started. If the flag F3 is set to 0, the amplifier unit 300 proceeds to the process of step S42. On the other hand, if the flag F3 is set to 1, the amplifier unit 300 proceeds to the process of step S44.
  • step S42 the amplifier unit 300 determines whether or not the minimum angular velocity ⁇ L is set for the first time after the operation of the internal combustion engine 100 is started. Specifically, after the operation of the internal combustion engine 100 is started, the amplifier unit 300 proceeds to step S27 of the above-described combustion energy estimation control and determines whether or not the minimum angular velocity ⁇ L is set. After the operation of the internal combustion engine 100 is started, the amplifier unit 300 proceeds to step S27 of the combustion energy estimation control described above for the first time, and proceeds to the process of step S43 if the minimum angular velocity ⁇ L is set. On the other hand, after the operation of the internal combustion engine 100 is started, the amplifier unit 300 does not proceed to step S27 of the above-described combustion energy estimation control, and ends the current process if the minimum angular velocity ⁇ L has not yet been set.
  • step S43 the amplifier unit 300 sets the flag F3 to 1, and starts measuring the elapsed time te2 after the angular velocity of the rotating body 42 becomes the minimal angular velocity.
  • step S44 the amplifier unit 300 calculates the elapsed time t e2 by multiplying the previous value of the elapsed time t e2 by the sampling period t smp . Note that the initial value of the elapsed time t e2 is zero.
  • step S45 the amplifier unit 300 determines whether or not the minimum angular velocity ⁇ L has been updated. If the minimum angular velocity ⁇ L has been updated, the amplifier unit 300 proceeds to the process of step S46. On the other hand, if the minimum angular velocity ⁇ L has not been updated, the amplifier unit 300 ends the current process.
  • step S46 the amplifier unit 300 calculates the elapsed time t e2 calculated in step S44 as a combustion distance Derutatcom.
  • step 47 the amplifier unit 300 returns the elapsed time t e2 to the initial value 0, and again starts measuring the elapsed time t e2 after the angular velocity of the rotating body 42 becomes the minimum angular velocity.
  • the combustion state estimation device 40 is rotatably accommodated in the housing 41 provided on the exhaust pipe 32 (exhaust path) of the engine body 1 having the cylinder 4 and at least one of them.
  • a rotating body 42 that has a blade 422 and is rotationally driven by the energy of exhaust discharged from each cylinder 4 of the engine body 1, and is provided in the housing 41. Is detected based on the detection result of the passage detection sensor 301 and the passage detection sensor 301, and the angular velocity of the rotating body 42 is calculated, and the cylinder 4 of the engine body 1 is determined based on the angular velocity of the rotating body 42.
  • An amplifier unit 300 (arithmetic unit) configured to calculate at least one of combustion energy and combustion interval.
  • the combustion state estimating device 40 including the housing 41, the rotating body 42, the passage detection sensor 301, and the amplifier unit 300 is provided in the exhaust pipe 32, so At least one of the combustion energy or the combustion interval of the cylinder 4 of the main body 1 can be calculated.
  • an in-cylinder pressure sensor that detects the pressure in the combustion chamber 6 is provided for each cylinder 4, and based on the detection value of the in-cylinder pressure sensor, There is a method for calculating combustion energy.
  • the same number of in-cylinder pressure sensors as the number of cylinders is required. Therefore, the estimation accuracy of the combustion energy of each cylinder 4 decreases due to individual variations in each cylinder pressure sensor. Furthermore, the degree of deterioration with time may be different for each in-cylinder pressure sensor, and as a result, the estimation accuracy of the combustion energy of each cylinder 4 further decreases with the passage of time.
  • each combustion state estimation device 40 is provided in the exhaust pipe 32, and the combustion energy of each cylinder 4 of the engine body 1 and the combustion interval of each cylinder 4 are changed.
  • the combustion state of the cylinder can be estimated. For this reason, it is possible to accurately estimate the combustion state of each cylinder 4 while suppressing a decrease in the estimation accuracy of the combustion state of each cylinder 4 due to individual variation or aging.
  • the amplifier unit 300 passes the elapsed time after any one of the blades 422 passes once through the predetermined position every time the arbitrary blade 422 passes through the predetermined position a predetermined number of times.
  • the reference blade passing time is calculated, and the angular velocity of the rotating body 42 is calculated based on the reference blade passing time and the number of times any one blade 422 has passed a predetermined position during the reference blade passing time.
  • the angular velocity of the rotating body 42 can be accurately calculated without being affected by the shape error of the blade 422 or aging. Therefore, the combustion energy of each cylinder 4 of the engine body 1 calculated based on the angular velocity of the rotating body 42 or the combustion interval of each cylinder 4 can be calculated with higher accuracy.
  • the amplifier unit 300 calculates the angular acceleration that is a differential value of the angular velocity based on the angular velocity of the rotating body 42, and the absolute value of the angular acceleration is equal to or less than a predetermined extreme value determination threshold value. Based on the angular velocity of the rotating body 42, the combustion energy of the cylinder 4 during the exhaust stroke is calculated. More specifically, in the amplifier unit 300 according to the present embodiment, when the previous value of the angular acceleration is a negative value, the absolute value of the angular acceleration is equal to or less than a predetermined extreme value determination threshold.
  • the angular velocity of the rotating body 42 when the absolute value of the angular acceleration falls below a predetermined extreme value determination threshold is set as the maximum angular velocity.
  • the combustion energy of the cylinder 4 during the exhaust stroke is calculated based on the minimum angular velocity and the maximum angular velocity.
  • the combustion energy of each cylinder 4 can be accurately calculated from the angular velocity of the rotating body 42 calculated by the amplifier unit 300.
  • the amplifier unit 300 is configured to calculate the combustion interval of the cylinder 4 based on a period from when the minimal angular velocity is set to when the minimal angular velocity is updated.
  • the combustion interval of the cylinder 4 can be accurately calculated from the angular velocity of the rotating body 42 calculated by the amplifier unit 300.
  • the housing 41 of the combustion state estimation device 40 is provided upstream of the exhaust aftertreatment device 33 in the exhaust flow direction, but may be provided downstream.
  • the internal combustion engine 100 is not provided with a supercharger (supercharger or turbocharger).
  • the internal combustion engine provided with the supercharger is also provided with the combustion state estimation device 40, and the internal combustion engine 100 The combustion state of each cylinder may be estimated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

燃焼状態推定装置(40)は、気筒(4)を有する機関本体(1)の排気経路(32)上に設けられたハウジング(41)の内部に回転自在に収容されると共に、少なくとも1つのブレード(422)を有して機関本体(1)の各気筒(4)から排出される排気のエネルギによって回転駆動される回転体(42)と、ハウジング(41)に設けられると共に、ハウジング(41)内の所定位置を回転体(42)のブレード(422)が通過したことを検出する通過検出センサ(301)と、通過検出センサ(301)の検出結果に基づいて、回転体(42)の角速度を算出すると共に、回転体(42)の角速度に基づいて、機関本体(1)の気筒(4)の燃焼エネルギ又は燃焼間隔の少なくとも一方を算出するように構成された演算装置(300)と、を備える。

Description

燃焼状態推定装置
 本発明は燃焼状態推定装置に関する。
 JP2013-68130Aには、内燃機関の気筒ごとに設けられた筒内圧力センサによって、各気筒の筒内圧力を検出するものが開示されている。
 ここで気筒の燃焼状態を推定する方法としては、筒内圧力センサの検出値に基づいて気筒の燃焼状態を推定する方法が考えられる。しかしながら、実際には筒内圧力センサの検出値に基づいて気筒の燃焼状態を推定することは難しく、筒内圧力センサを用いずに気筒の燃焼状態を推定する方法が求められている。
 本発明はこのような問題点に着目してなされたものであり、筒内圧力センサを用いずに、気筒の燃焼状態を推定することを目的とする。
 上記課題を解決するために、本発明のある態様による燃焼状態推定装置は、気筒を有する機関本体の排気経路上に設けられたハウジングの内部に回転自在に収容されると共に、少なくとも1つのブレードを有して当該機関本体の各気筒から排出される排気のエネルギによって回転駆動される回転体と、ハウジングに設けられると共に、当該ハウジング内の所定位置を回転体のブレードが通過したことを検出する通過検出センサと、通過検出センサの検出結果に基づいて、回転体の角速度を算出すると共に、当該回転体の角速度に基づいて、機関本体の気筒の燃焼エネルギ又は燃焼間隔の少なくとも一方を算出するように構成された演算装置と、を備える。
 本発明のこの態様による燃焼状態推定装置によれば、燃焼状態推定装置を排気経路上に設けることによって、機関本体の気筒の燃焼エネルギや燃焼間隔といった気筒の燃焼状態を推定することができる。そのため、筒内圧力センサを用いずに、気筒の燃焼状態を推定することができる。
図1は、本発明の一実施形態による内燃機関の概略構成図である。 図2Aは、回転体及びハウジングの概略断面図である。 図2Bは、回転体の概略平面図である。 図3は、通過検出センサとしての渦電流センサの検出原理を説明する図である。 図4Aは、通過検出センサとして渦電流センサを用いた場合における出力値の推移を示す図である。 図4Bは、通過検出センサとして渦電流センサを用いた場合における出力値の推移を示す図である。 図5は、回転体を一定の角速度で回転させた場合のコンプレッサホイールの角速度の算出結果の一例を示す図である。 図6は、ブレードに形状誤差が生じた回転体の概略平面図である。 図7は、内燃機関の1サイクルにおける回転体の角速度と運動エネルギとの推移を示す図である。 図8は、各気筒の燃焼エネルギ及び各気筒の燃焼間隔の算出方法について説明する図である。 図9は、本発明の一実施形態による回転体の角速度算出制御について説明するフローチャートである。 図10は、本発明の一実施形態による機関本体の各気筒の燃焼エネルギの推定制御について説明するフローチャートである。 図11は、本発明の一実施形態による機関本体の各気筒の燃焼間隔の推定制御について説明するフローチャートである。
 以下、図面を参照して本発明の実施形態について詳細に説明する。なお、以下の説明では、同様な構成要素には同一の参照番号を付す。
<全体構成>
 図1は、本発明の一実施形態による内燃機関100の概略構成図である。
 内燃機関100は、機関本体1と、吸気装置20と、排気装置30と、内燃機関100を制御するための電子制御ユニット200と、を備える。内燃機関100は、機関本体1が複数の気筒4を有するいわゆる多気筒内燃機関である。
 機関本体1は、各気筒4に形成される燃焼室6内で燃料を燃焼させて、例えば車両などを駆動するための動力を発生させる。本実施形態では、機関本体1は4つの気筒4を有しているが、気筒数は特に限られるものではなく、例えば1つ(単気筒)であってもよい。また本実施形態では、機関本体1は燃焼室6内で燃料を火花点火燃焼させているが、燃料の燃焼方式も特に限られるものではなく、燃焼室内で燃料を圧縮自己着火燃焼させても良い。以下、機関本体1の構成について説明する。
 機関本体1は、シリンダブロック2と、シリンダブロック2の上面に固定されたシリンダヘッド3と、を備える。
 シリンダブロック2には、複数の気筒4が形成される。気筒4の内部には、燃焼圧力を受けて気筒4の内部を往復運動するピストン5が収められる。ピストン5は、コンロッドを介してクランクシャフトと連結されており、クランクシャフトによってピストン5の往復運動が回転運動に変換される。シリンダヘッド3の内壁面、気筒4の内壁面及びピストン冠面によって区画された空間が燃焼室6となる。
 シリンダヘッド3には、シリンダヘッド3の一方の側面に開口すると共に各気筒4の燃焼室6に開口する吸気ポート7がと、シリンダヘッド3の他方の側面に開口すると共に各気筒4の燃焼室6に開口する排気ポート8と、が形成される。
 またシリンダヘッド3には、燃焼室6と吸気ポート7との開口を開閉するための吸気弁9と、燃焼室6と排気ポート8との開口を開閉するための排気弁10と、吸気弁9を開閉駆動する吸気カムシャフト11と、排気弁10を開閉駆動する排気カムシャフト12と、が取り付けられる。
 さらにシリンダヘッド3には、燃焼室6内に燃料を噴射するための燃料噴射弁13と、燃料噴射弁13から噴射された燃料と空気との混合気を燃焼室6内で点火するための点火プラグ14と、が取り付けられる。なお、燃料噴射弁13は、吸気ポート7内に燃料を噴射するように取り付けてもよい。
 吸気装置20は、吸気ポート7を介して気筒4内に空気を導くための装置であって、エアクリーナ21と、吸気管22と、吸気マニホールド23と、電子制御式のスロットル弁24と、エアフローメータ211と、を備える。
 エアクリーナ21は、空気中に含まれる砂などの異物を除去する。
 吸気管22は、一端がエアクリーナ21に連結され、他端が吸気マニホールド23のサージタンク23aに連結される。吸気管22によって、エアクリーナ21を介して吸気管22内に流入してきた空気(吸気)が吸気マニホールド23のサージタンク23aに導かれる。
 吸気マニホールド23は、サージタンク23aと、サージタンク23aから分岐してシリンダヘッド側面に形成されている各吸気ポート7の開口に連結される複数の吸気枝管23bと、を備える。サージタンク23aに導かれた空気は、吸気枝管23bを介して各気筒4内に均等に分配される。
 スロットル弁24は、吸気管22内に設けられる。スロットル弁24は、スロットルアクチュエータ25によって駆動され、吸気管22の通路断面積を連続的又は段階的に変化させる。スロットルアクチュエータ25によってスロットル弁24の開度(以下「スロットル開度」という。)の調整することで、各気筒4内に吸入される吸気量が調整される。スロットル開度は、スロットルセンサ212によって検出される。
 エアフローメータ211は、スロットル弁24よりも上流側の吸気管22内に設けられる。エアフローメータ211は、吸気管22内を流れる空気の流量(以下「吸気量」という。)を検出する。
 排気装置30は、燃焼室6内で生じた燃焼ガス(排気)を浄化して外気に排出するための装置であって、排気マニホールド31と、排気管32と、排気後処理装置33と、を備える。
 排気マニホールド31は、シリンダヘッド側面に形成されている各排気ポート8の開口と連結される複数の排気枝管31aと、排気枝管31aを集合させて1本にまとめた集合管31bと、を備える。
 排気管32は、一端が排気マニホールド31の集合管31bに連結され、他端が外気に開口している。各気筒4から排気ポート8を介して排気マニホールド31に排出された排気は、排気管32を流れて外気に排出される。
 排気後処理装置33は、排気を浄化した上で外気に排出するための装置であって、有害物質を浄化する各種の触媒や有害物質を捕集するフィルタなどを備える。
 また本実施形態による内燃機関100は、機関本体1の各気筒4の燃焼エネルギや各気筒4の燃焼間隔といった各気筒4の燃焼状態の推定するための燃焼状態推定装置40をさらに備える。燃焼状態推定装置40は、排気管32に接続されるハウジング41と、ハウジング41内に回転自在に配置される回転体42と、ハウジング41に取り付けられた通過検出センサ301と、通過検出センサ301の出力結果に基づいて回転体42の角速度を算出すると共に、回転体42の角速度に基づいて、機関本体1の各気筒4の燃焼エネルギや各気筒4の燃焼間隔といった各気筒4の燃焼状態の推定することができるように構成されたアンプユニット300と、を備える。燃焼状態推定装置40の詳細については図2以降を参照して後述する。
 電子制御ユニット200は、デジタルコンピュータから構成され、双方性バスによって互いに接続されたROM(リードオンリメモリ)、RAM(ランダムアクセスメモリ)、CPU(マイクロプロセッサ)、入力ポート及び出力ポートを備える。
 電子制御ユニット200には、前述したエアフローメータ211やスロットルセンサ212などの出力信号の他にも、機関回転数を算出するための信号として、機関本体1のクランクシャフトが例えば15°回転する毎に出力パルスを発生するクランク角センサ213などの出力信号が、入力ポートを介して入力されている。このように電子制御ユニット200には、内燃機関100を制御するために必要な各種センサの出力信号が、入力ポートを介して入力されている。
 また電子制御ユニット200には、燃料噴射弁13や点火プラグ14、スロットルアクチュエータ25などの各制御部品が、出力ポートを介してそれぞれ電気的に接続されている。
 また電子制御ユニット200は、アンプユニット300とCAN(Controller Area Network)通信線によって接続されており、CAN通信によって互いにデータを送受信できるようになっている。本実施形態では、アンプユニット300で推定された機関本体1の各気筒4の燃焼状態が電子制御ユニット200に送信されるようになっている。そして本実施形態による電子制御ユニット200は、アンプユニット300から送信されてきた機関本体1の各気筒4の燃焼状態に応じて、各気筒4の燃焼に関するパラメータ、すなわち燃焼噴射量や吸気量、点火時期などなどを制御できるように構成されている。
<燃焼状態推定装置の構成>
 図2Aは、ハウジング41及び回転体42の概略断面図である。図2Bは、回転体42の概略平面図である。
 図2Aに示すように、回転体42は、転がり軸受424によって回転自在に支持されたシャフト423に固定された中央本体421と、中央本体421の表面上から回転体42の径方向及び軸線方向に延びる複数のブレード422と、を備える。中央本体421は、その軸線Lがシャフト423の軸線と同軸になるように、シャフト423に固定される。
 回転体42は、軸線L周りに回転できるように、ハウジング41の内部に配置される。また、回転体42は、回転したときに、ブレード422の径方向端部がハウジング41の内周面と僅かな隙間を開けた状態でこの内周面に沿って周方向に移動するように、ハウジング41の内部に配置される。
 また図2Bに示すように、本実施形態による回転体42は、等間隔に配置された同一形状の12枚のブレード422を有する。図2Bには、説明を分かりやすくするために、ブレード422にそれぞれB1からB12までの番号を付してある。なお、ブレード422の枚数は12枚に限定されるものではなく、12枚より多くても12枚より少なくてもよい。本実施形態では、各ブレード422は、回転体42の径方向及び軸線方向に延びるように構成されている。しかしながら、複数のブレード422は、ハウジング41内に流入した排気によって回転体42を回転駆動させることができれば、湾曲した形状等、如何なる形状であっても良い。また各ブレード422は、必ずしも等間隔に配置されていなくてもよく、ブレード422の一部又は全てが他のブレードと異なる形状であっても良い。
 図2Aに戻り、ハウジング41は、ハウジング41の中央を通って延びる中央通路411と、中央通路411の周囲に延びると共に排気管を流れてきた排気が流入する環状通路412とを有する。中央通路411の一方の端部(図中左側)の周りに環状通路412が配置され、この環状通路412の内側において中央通路411内に回転体42が配置される。中央通路411の他方の端部(図中右側)は開いており、排気が流出する出口413を構成する。したがって、排気管32を流れてきた排気は、環状通路412を通って回転体42を介して中央通路411の出口413から流出する。
 またハウジング41には、ハウジング41内の所定の角度位置(所定位置)をブレード422が通過したことを検出するために、通過検出センサ301が取り付けられる。通過検出センサ301は、通過検出センサ301の検知部の前をブレード422が通過したことを検出する。本実施形態では、通過検出センサ301は、回転体42のブレード422の径方向端面422aに対面するように且つブレード422の径方向端面422aの法線方向と略平行となるように、ハウジング41に取り付けられている。
 アンプユニット300には、通過検出センサ301の出力値が入力される。アンプユニット300は、通過検出センサ301の出力値を増幅させるアンプや、アンプによって増幅させた出力値を利用して回転体42の角速度の算出などの種々の演算を行うCPU(マイクロプロセッサ)などを一体化したものである。本実施形態では通過検出センサ301とアンプユニット300とを別体としているが、通過検出センサ301にアンプユニット300を内蔵し、通過検出センサ301とアンプユニット300とを一体化しても良い。
 また、本実施形態では、通過検出センサ301として渦電流センサが用いられる。渦電流センサは、センサ検知部と計測対象の金属物質との間の距離に応じた電圧値を出力するセンサである。以下、図3を参照して、渦電流センサの検出原理について簡単に説明する。
 渦電流センサは、その検知部に、交流励磁電流により磁界を発生させるコイル301aを有する。コイル301aが発生させる磁界Xをブレード422が通過すると、コイル301aの発生させる磁界を打ち消すようにブレード422に渦電流Yが発生する。ブレード422に発生する渦電流により磁界Xの強さが変化し、この結果、コイル301aに流れる電流値が変化する。したがって、渦電流センサによってコイル301aに流れる電流値の変化に起因する電圧値の変化を検出することで、ブレード422が通過したか否かを検出することができる。具体的には、渦電流センサの出力値がピークになったときを、ブレード422が渦電流センサ5の検知部の前を(すなわち、ハウジング41内の所定の角度位置を)通過したときであると判定できる。
 なお、ブレード422の通過を検出する通過検出センサ301としては、ブレード422の通過を検出することができれば、如何なるセンサを用いてもよい。このようなセンサとしては、例えば、電磁ピックアップ(MPU)センサが挙げられる。MPUセンサは、その検知部内にマグネットと検出コイルとを有するセンサである。斯かるMPUセンサでは、磁性体であるブレードがMPUセンサに近づいたり離れたりすると、検出コイルを貫通する磁束が変化し、これに伴って検出コイルの誘導起電力が変化する。これにより、MPUセンサの検知部の前におけるブレード422の通過を検出することができる。以下の説明では、通過検出センサ301として渦電流センサを用いた場合について説明する。
 図4A及び図4Bは、通過検出センサ301として渦電流センサを用いた場合の通過検出センサ301の出力値(電圧値)の推移を示す図である。図4Aは、回転体42の角速度が比較的遅い場合(例えば回転体42の回転数が20万[rpm])における出力値の推移を、図4Bは、回転体42の角速度が比較的速い場合(例えば回転体42の回転数が40万[rpm])における出力値の推移をそれぞれ示している。
 通過検出センサ301として渦電流センサを用いた場合は、通過検出センサ301の検知部とその前を通過する物体(本実施形態ではブレード422)との間の距離が短くなるほど出力値が大きくなる。したがって、通過検出センサ301の検知部の前をブレード422が通過すると、通過検出センサ301の出力値が急激に増大する。よって、図4A及び図4Bにおける凸状に変化した出力はブレード422が通過したことを意味している。なお、図4A及び図4Bの番号B1~B12は、通過検出センサ301の検知部の前を通過した各ブレード422の番号である。
 図4Aに示したように、回転体42の角速度が比較的遅い場合には、ブレード422の通過に伴って通過検出センサ301の出力値が急激に上昇及び下降すると共に、2つの隣り合うブレード422が通過する間の期間は低い値で一定に維持される。
 一方、図4Bに示したように、回転体42の角速度が比較的速い場合には、1つのブレード422の通過に伴って上昇した通過検出センサ301の出力値が下がりきる前に、次のブレード422の通過に伴って通過検出センサ301の出力値が上昇し始める。したがって、図4Bに示したように、2つの隣り合うブレード422が通過する間の期間においても通過検出センサ301の出力値は一定に維持されない。しかしながら、この場合であっても、通過検出センサ301の出力値が最大になった時期がブレード422の通過を示していることから、通過検出センサ301の検知部の前をブレード422が通過したことを正確に検出することができる。
<通過検出センサを用いた回転体の角速度算出方法の一例>
 このように通過検出センサ301は、通過検出センサ301の検知部の前をブレード422が通過したことを正確に検出することができる。そのため、通過検出センサ301を用いた回転体42の角速度の算出方法の一例として、通過検出センサ301の前を各ブレード422のうちの任意の1つのブレード(以下「基準ブレード」という。)が通過してから、当該基準ブレードの次に通過検出センサ301の前を通過するブレードが通過するまでの時間間隔に基づいて、通過検出センサ301の前を各ブレード422が通過するごとに回転体42の角速度を算出する方法が挙げられる。
 以下では、図4Aを参照して、この通過検出センサ301を用いた回転体42の角速度の算出方法の一例について説明する。
 図4Aに示した例では、第1ブレードB1が通過検出センサ301の前を通過することによって通過検出センサ301の出力値がピークを示すときを時刻t1とする。同様に、第2ブレードB2、第3ブレードB3、第4ブレードB4が通過検出センサ301の前を通過することによって通過検出センサ301の出力値がピークを示すときをそれぞれ時刻t2、t3、t4とする。
 この場合、通過検出センサ301の前を第1ブレードB1が通過してから第2ブレードB2が通過するまでの時間間隔Δt1は、t2-t1となる。一方、本実施形態では、12枚のブレードが等間隔に設けられているため、第1ブレードB1と第2ブレードB2との間の角度間隔は基本的に(2π/12)[rad]となる。したがって、通過検出センサ301の前を第1ブレードB1が通過してから第2ブレードB2が通過するまでの回転体42の瞬間的な角速度(以下「第1ブレード通過後の瞬間的な角速度」という。)ω1[rad/s]は、2π/(12×Δt1)となる。
 同様に、通過検出センサ301の前を第2ブレードB2が通過してから第3ブレードB3が通過するまでの時間間隔Δt2はt3-t2となり、第3ブレードB3が通過してから第4ブレードB4が通過するまでの時間間隔Δt3はt4-t3となる。したがって、通過検出センサ301の前を第2ブレードB2が通過してから第3ブレードB3が通過するまでの回転体42の瞬間的な角速度ω2、すなわち第2ブレード通過後の瞬間的な角速度ω2は、2π/(12×Δt2)となる。同様に、通過検出センサ301の前を第3ブレードB3が通過してから第4ブレードB4が通過するまでの回転体42の瞬間的な角速度ω3、すなわち第3ブレード通過後の瞬間的な角速度ω3は、2π/(12×Δt3)となる。
 したがって、ブレード422の番号をiで表すと、通過検出センサ301の出力に基づいて隣り合う対のブレード422(すなわち、第iブレードBiと第(i+1)ブレードB(i+1))が通過検出センサ301の前を通過する間の時間間隔Δtiを算出すれば、時間間隔Δtiと、隣り合う対のブレード422間の角度間隔とに基づいて、第iブレードBi通過後の瞬間的な角速度ωiを算出することができる。
 具体的には、下記式(1)のように,隣り合う対のブレード422間の角度間隔αiを、これらブレード422間を通過する時間間隔Δtiで除算することによって第iブレード通過後の瞬間的な角速度ωiを算出することができる。
 ωi=αi/Δti   …(1)
 また本実施形態のように、各ブレード422が周方向に等間隔に設けられた回転体42の場合であれば、ブレード422の総枚数をpとすると、角度間隔αiは(2π/p)となる。したがって、第iブレード通過後の瞬間的な角速度ωiは、下記式(2)により算出することができる。
 ωi=2π/(p×Δti)   …(2)
 ところが、このような算出方法で回転体42の角速度を算出した場合、すなわち通過検出センサ301の前を基準ブレードが通過してから、当該基準ブレードの次に通過検出センサ301の前を通過するブレードが通過するまでの時間間隔Δtiに基づいて回転体42の角速度を算出した場合、実際の角速度と、算出した角速度と、の間に誤差(算出誤差)が生じることがわかった。
<ブレードの形状誤差>
 図5は、回転体42を一定の角速度で回転させた場合に、上述の算出方法で回転体42の角速度を算出したときの算出結果の一例を示す図である。図5において、横軸がブレード422の番号であり、縦軸は対応するブレード番号のブレード通過後の瞬間的な回転体42の角速度を示す。
 図5に示した例では、回転体42は一定の角速度で回転させられている。したがって、このとき算出される瞬間的な回転体42の角速度も一定の値になるはずである。しかしながら、実際には図5に示したように、算出される瞬間的な回転体42の角速度は必ずしも各ブレード422の通過後において一定にならない。例えば、図5に示した例では、1番ブレード通過後の瞬間的な回転体42の角速度に対して2番ブレード通過後の瞬間的な回転体42の角速度は遅くなっている。
 このように、算出された瞬間的な回転体42の角速度が一定の値にならない原因の1つとして、回転体42のブレード422の形状誤差(形状公差範囲内での誤差)が挙げられる。すなわち、回転体42の各ブレード422には、製造誤差や経年変化によって形状誤差が生じる場合があり、この形状誤差によって、瞬間的な回転体42の角速度を算出した場合に誤差が生じる。以下、図6を参照して、算出された瞬間的な回転体42の角速度とブレード422の形状誤差との関係について説明する。
 図6は、ブレード422に形状誤差が生じた回転体42の概略平面図である。図6の破線は、回転体42のブレード422が設計通りに形成されていた場合のブレード422の形状を示している。図6に示した例では、第2ブレードB2と第10ブレードB10は、設計上のブレード形状に対して形状誤差を有していることがわかる。具体的には、第2ブレードB2が、その設計上の形状に対して周方向において第1ブレード側にシフトした形状になっている。また、第10ブレードB10が、その設計上の形状に対して径方向外側にシフトした形状になっている。
 このようにブレード形状に誤差が生じると、ブレード間の角度間隔αが変化する。図6に示した例では、第2ブレードB2の形状が設計上の形状に対して周方向にシフトした形状となっている。この結果、通過検出センサ301と対面する領域において、第1ブレードB1と第2ブレードB2との間の実際の角度間隔が設計値β1よりも小さいα1となっている。逆に、第2ブレードB2と第3ブレードB3との間の実際の角度間隔が設計値β2よりも大きいα2となっている。したがって、第1ブレードB1と第2ブレードB2との間の実際の角度間隔α1は、第2ブレードB2と第3ブレードB3との間の実際の角度間隔α2よりも小さくなっている。
 一方、角速度を算出するにあたっては、ブレード間の実際の角度間隔ではなく、設計値が用いられる。このため、回転体42が一定の角速度で回転していても、第1ブレードB1から第2ブレードB2までの時間間隔Δt1に基づく瞬間的な回転体42の角速度ω1は、第2ブレードB2から第3ブレードB3までの時間間隔Δt2に基づく瞬間的な回転体42の角速度ω2よりも速いものとして算出される。この結果、図5に示したように、第1ブレードB1通過後の瞬間的な角速度が第2ブレードB2通過後の瞬間的な角速度よりも速いものとして算出される。
 また、図6に示した例では、第10ブレードB10が設計上の形状に対して周方向外側にシフトした形状となっている。この結果、第9ブレードB9と第10ブレードB10との間の実際の角度間隔が設計値β9よりも小さいα9となっている。また、第10ブレードB10と第11ブレードB11との間の実際の角度間隔が設計値β10よりも大きいα10となっている。この結果、回転体42が一定の角速度で回転していても、第9ブレードB9通過後の瞬間的な角速度が第10ブレードB10通過後の瞬間的な角速度よりも速いものとして算出される。
 なお、図6には、ブレード422の形状が周方向又は径方向に全体的にシフトした形状誤差の例を示した。しかしながら、ブレード422に生じる形状誤差には、回転体42の軸線方向における誤差や、ブレードの湾曲形状における誤差等、上記の形状誤差以外にも様々な誤差が含まれる。そして、このような形状誤差がブレード422に生じると、回転体42の角速度を正確に算出することができなくなる。
<形状誤差によって生じる算出誤差への対応>
 そこで本実施形態では、上述した算出方法のように、通過検出センサ301の前を基準ブレードが通過してから当該基準ブレードの次に通過検出センサ301の前を通過するブレードが通過するまでの時間間隔、すなわち隣り合うブレード間を通過するのに要する時間に基づいて回転体42の角速度を算出するのではなく、通過検出センサ301の前を基準ブレードが通過してから当該基準ブレードが次に通過検出センサ301の前を通過するまでの時間間隔、すなわち回転体42が1回転するのに要する時間に基づいて回転体42の角速度を算出する。
 このように回転体42が1回転するのに要する時間に基づいて回転体42の角速度を算出することで、たとえブレード422に形状誤差が生じたとしても、その形状誤差の影響を受けることなく回転体42の角速度を算出することができる。例えば基準ブレードを第1ブレードB1とした場合、図6に示した例のように、第1ブレードB1と第2ブレードB2との間の実際の角度間隔α1や第9ブレードB9と第10ブレードB10との間の実際の角度間隔α9がそれぞれの設計値β1、β9と異なっていても、第1ブレードB1から第1ブレードB1まで角度間隔は常に2π[rad]で一定となる。また、第1ブレードB1自体が形状変化したとしても、第1ブレードB1から第1ブレードB1まで角度間隔は常に2π[rad]で一定となる。
 そのため、回転体42が1回転するのに要する時間に基づいて回転体42の角速度を算出することで、ブレード422の形状誤差の影響を受けることなく回転体42の角速度を正確に算出することができる。
<瞬間的な角速度の利用>
 そして発明者らの鋭意研究の結果、回転体42の角速度を正確に算出することができるようになると、算出した回転体42の角速度に基づいて、機関本体1の各気筒4の燃焼状態を正確に推定できるようになることがわかった。以下、この回転体42の角速度に基づいて、機関本体1の各気筒4の燃焼状態を推定する方法について説明する。
<回転体の運動エネルギの算出>
 ハウジング41の内部では回転体42が回転することになるが、この回転体42の運動エネルギKEは、下記式(3)によって算出することができる。
 KE=I×ω2/2   …(3)
 式(3)において、Iは回転体42の慣性モーメントであり、ωは回転体42の角速度である。回転体42の慣性モーメントIは、回転体42の形状及び材質から予め計算等によって求めておくことができる。したがって、回転体42の角速度を求めることにより、当該角速度を求めた時点における回転体42の運動エネルギを算出することができる。
 そこで本実施形態では、内燃機関100の運転中に、アンプユニット300によって回転体42の角速度ωを算出し、さらにアンプユニット300によって、式(3)により回転体42の運動エネルギを算出する。本実施形態では、回転体42の形状誤差の影響を受けることなく回転体42の角速度ωを正確に推定することができるので、回転体42の運動エネルギも正確に算出することができる。
<燃焼状態の推定>
 このように、回転体42の運動エネルギを正確に算出することができると、算出した運動エネルギに基づいて、機関本体1が複数の気筒4を有している場合であれば、各気筒4の燃焼室6で燃料を燃焼させたときに生じる燃焼エネルギや各気筒4の燃焼間隔など、各気筒4の燃焼状態を推定することができる。また、機関本体1が単気筒の場合であれば、単気筒の燃焼室で燃料を燃焼させたときに生じる燃焼エネルギや燃焼間隔など、単気筒の燃焼状態を推定することができる。以下では、機関本体1が複数の気筒4を有している場合の、回転体42の運動エネルギと各気筒4の燃焼状態との関係について説明する。
 図7は、内燃機関100の1サイクルにおける回転体42の角速度と運動エネルギとの推移を示す図である。図中の横軸は機関本体1のクランク角を示している。図7中の実線は回転体42の運動エネルギを、破線は回転体42の角速度をそれぞれ示している。
 図7に示すように、回転体42の角速度は機関本体1のクランク角に合わせて変化する。図7に示した例では、まず1番気筒の排気弁が開いて燃焼室6から排気が流出すると、ハウジング41内の環状通路412に流入する排気が増大する。このため、回転体42の角速度が増大する。また、これに伴って回転体42の運動エネルギも増大する。
 その後、1番気筒の排気行程の終盤では、燃焼室6から流出する排気の流量が減少する。この結果、回転体42の角速度が減少する。また、これに伴って回転体42の運動エネルギが減少する。
 したがって、図7からわかるように、1番気筒の排気行程の間、回転体42の角速度は上昇してから下降し、これに伴って回転体42の運動エネルギも増大してから減少する。また、このような角速度や運動エネルギは、他の気筒4の排気行程においても同様に推移する。したがって、4気筒の内燃機関100では、回転体42の角速度及び運動エネルギは、内燃機関100の1サイクルあたり、大きく4回上下に変動する。すなわち、回転体42の角速度及び運動エネルギは、内燃機関100の1サイクルの間に、内燃機関100の気筒数に応じて複数回上下に変動する。
 ここで、4番気筒を例にとって考えると、4番気筒の排気行程中における回転体42の運動エネルギの上昇量(図7中のΔKE)は、4番気筒の燃焼室6から排出される排気のもつ排気エネルギに比例する。同様に、1番気筒、3番気筒及び2番気筒の排気行程中における回転体42の運動エネルギの上昇量は、それぞれ1番気筒、3番気筒及び2番気筒の燃焼室6から排出される排気のもつ排気エネルギに比例する。ここで、各気筒4から排出される排気の排気エネルギは、基本的に各気筒4の燃焼室6で燃料を燃焼させたときに生じる燃焼エネルギ、すなわち各気筒4の燃焼室6内における燃焼によって生じるトルク(燃焼トルク)に比例する。
 したがって、各気筒4の排気行程中における回転体42の運動エネルギの上昇量を気筒間で比較することによって、気筒間における燃焼エネルギ(燃焼トルク)の差を検出することができる。具体的には、各気筒4の排気行程開始時における回転体42の運動エネルギの最小値と、その気筒4の排気行程中における回転体42の運動エネルギの最大値との間の差(ΔKE)に基づいて気筒間における燃焼エネルギ(燃焼トルク)の差を検出することができる。これら最小値と最大値との差が大きい気筒4は燃焼エネルギ(燃焼トルク)の大きい気筒4であると判定することができ、これら最小値と最大との差が小さい気筒4は燃焼エネルギ(燃焼トルク)の小さい気筒4であると判定することができる。
 また、4番気筒を例にとって考えると、4番気筒の排気行程開始時から排気行程終了時までの時間間隔(図7中のΔtcom)、すなわち回転体42が4番気筒の燃焼室6から排出された排気によって回転させられている期間は、2番気筒の燃焼行程開始時から燃焼行程終了時までの燃焼間隔に相当する。同様に、1番気筒、3番気筒及び2番気筒の排気行程開始時から排気行程終了時までの時間間隔は、それぞれ3番気筒、4番気筒及び1番気筒の燃焼行程開始時から燃焼行程終了時までの燃焼間隔に相当する。
 したがって、各気筒4の排気行程開始時から排気行程終了時までの時間間隔を気筒間で比較することによって、気筒間における燃焼間隔の差を検出することができる。
 このように、気筒間における燃焼エネルギ(燃焼トルク)の差や燃焼間隔の差を検出することができると、例えば燃料噴射量や吸気量、点火時期などの各気筒4の燃焼に関するパラメータを、電子制御ユニット200によってフィードバック制御やフィードフォワード制御することができる。これにより、気筒間における燃焼エネルギ(燃焼トルク)の差や燃焼間隔の差を最小限に抑制することができるようになる。
 また、機関本体1が単気筒の場合であれば、単気筒の燃焼エネルギ(燃焼トルク)や燃焼間隔といった単気筒の燃焼状態を随時算出することで、たとえば定常状態(負荷変動が無い状態)において燃焼状態に差が生じたときは、燃焼状態が一致するように燃料噴射量や吸気量、点火時期などの各気筒4の燃焼に関するパラメータを、電子制御ユニット200によってフィードバック制御やフィードフォワード制御することができる。
<ΔKE及びΔtcomの算出方法>
 図8は、各気筒4の燃焼エネルギΔKE及び各気筒4の燃焼間隔Δtcomの算出方法について説明する図である。図中の横軸は機関本体1のクランク角を示している。図8中の実線は回転体42の運動エネルギを、破線は回転体42の角速度をそれぞれ示している。
 各気筒4の排気行程中における回転体42の運動エネルギの上昇量、すなわち各気筒4の燃焼室6で燃料を燃焼させたときに生じる燃焼エネルギΔKEを算出するには、各気筒4の排気行程開始時における回転体42の運動エネルギの最小値と、その気筒4の排気行程中における回転体42の運動エネルギの最大値と、をそれぞれ算出する必要がある。
 ここで4番気筒を例にして、回転体42の角速度ωの微分値(以下「角加速度」という。)ω’(=dω/dt;図8の破線の傾き)を考えると、図8に示すように、回転体42の運動エネルギが最小値(極小値)となる各気筒4の排気行程開始時において、角加速度ω’は0となる。また、回転体42の運動エネルギが最大値(極大値)となる各気筒4の排気行程中のある時点においても、角加速度ω’は0となる。
 そこで本実施形態によるアンプユニット300は、回転体42の角速度ωを算出するたびに、その角速度ωを回転体42の角速度今回値ωとして設定し、角速度今回値ωの微分値を角加速度今回値ω’として算出する。そしてアンプユニット300は、角加速度今回値ω’の絶対値が、予め設定された0近傍の値である極値判定閾値以下になったときの角速度今回値ωを、各気筒4の排気行程開始時における角速度(以下「極小角速度」という。)ωL、又は回転体42の運動エネルギが最大値(極大値)となる各気筒4の排気行程中のある時点における角速度(以下「極大角速度」という。)ωHとして設定する。
 なお、角加速度今回値ω’の絶対値が極値判定閾値以下になったときの角速度今回値ωに関して、その角速度今回値ωが極小角速度ωLであるか、極大角速度ωHであるかの判定は、直前に算出された角加速度前回値ωz-1’が正の値か否かを判定することによって行うことができる。
 具体的には、角加速度前回値ωz-1’が負の値の場合、すなわち図8の破線の傾きが負の場合は、角速度が下降から上昇に転じるときと判定できる。そこで本実施形態によるアンプユニット300は、この場合には、角加速度今回値ω’の絶対値が極値判定閾値以下になったときの角速度今回値ωを極小角速度ωLに設定する。一方、角加速度前回値ωz-1’が正の値の場合、すなわち図8の破線の傾きが正の場合は、角速度ωが上昇から下降に転じるときと判定できる。そこで本実施形態によるアンプユニット300は、この場合には、角加速度今回値ω’の絶対値が極値判定閾値以下になったときの角速度今回値ωを、極大角速度ωHに設定する。
 このようにして設定された極小角速度ωL及び極大角速度ωHをそれぞれ式(3)に代入すれば、各気筒4の排気行程開始時における回転体42の運動エネルギの最小値と、その気筒4の排気行程中における回転体42の運動エネルギの最大値と、をそれぞれ算出することができる。そして、このようにして算出した運動エネルギの最大値から最小値を減算すれば、各気筒4の燃焼室6で燃料を燃焼させたときに生じる燃焼エネルギΔKEを算出することができる。
 また各気筒4の燃焼間隔Δtcomは、前述したように各気筒4の排気行程開始時から排気行程終了時までの時間間隔に相当する。したがって、各気筒4の燃焼間隔Δtcomは、極小角速度ωLが設定されてから、次に極小角速度ωLが設定されるまでの時間と一致する。そこで本実施形態によるアンプユニット300は、極小角速度ωLが設定されてから、次に極小角速度ωLが設定されるまでの時間を計測することで各気筒4の燃焼間隔を算出する。
 なお、これ以外にも例えば回転体42の運動エネルギの最小値を算出してから、次に回転体42の運動エネルギの最小値を算出するまでの時間を計測することで各気筒4の燃焼間隔Δtcomを算出することもできる。
<燃焼状態推定制御のフローチャート>
 以下、この本実施形態による通過検出センサ301の出力値を利用した機関本体1の各気筒4の燃焼エネルギ及び各気筒4の燃焼間隔の推定制御について説明する。
 まず、図9を参照して、アンプユニット300が実施する回転体42の角速度算出制御について説明する。アンプユニット300は、このルーチンを所定の演算周期(=サンプリング周期tsmp)で繰り返し実行する。
 ステップS1において、アンプユニット300は、通過検出センサ301の出力値を読み込む。
 ステップS2において、アンプユニット300は、経過時間計測開始フラグF1が0に設定されているか否かを判定する。経過時間計測開始フラグF1は、初期値が0に設定されているフラグであり、経過時間計測開始フラグF1が0に設定されているときに、通過検出センサ301によってブレード422の通過が検出されると1に設定される。そして、回転体42の角速度及び回転数が推定されると再び0に戻される。アンプユニット300は、経過時間計測開始フラグF1が0に設定されていれば、ステップS2の処理に進む。一方でアンプユニット300は、経過時間計測開始フラグF1が1に設定されていれば、ステップS5の処理に進む。
 ステップS3において、アンプユニット300は、ブレード422の通過が検出されたか否かを判定する。このステップS3において通過が検出されたブレード422が、複数のブレードのうちの任意の1つのブレード、すなわち基準ブレードとなる。アンプユニット300は、ブレード422の通過が検出されればステップS4の処理に進む。一方でアンプユニット300は、ブレード422の通過が検出されなければ今回の処理を終了する。
 ステップS4において、アンプユニット300は、経過時間計測開始フラグF1を1に設定し、基準ブレードが通過検出センサ301の検知部の前を通過してからの経過時間te1の計測を開始する。
 ステップS5において、アンプユニット300は、経過時間te1の前回値にサンプリング周期tsmpを積算したものを経過時間te1として算出する。なお、経過時間tの初期値は0である。
 ステップS6において、アンプユニット300は、通過検出センサ301によってブレード422の通過が検出されたか否かを判定する。アンプユニット300は、通過検出センサ301によってブレード422の通過が検出されればステップS7の処理に進む。一方でアンプユニット300は、過検出センサ5によってブレード422の通過が検出されなければ今回の処理を終了する。
 ステップS7において、アンプユニット300は、基準ブレードが通過検出センサ301の検知部の前を通過してからのブレード通過回数iを算出する。具体的には、アンプユニット300はブレード通過回数iの前回値に1を積算したものをブレード通過回数iとして算出する。なお、ブレード通過回数iの初期値は0である。
 ステップS8において、アンプユニット300は、ステップS6で通過を検出したブレード422が基準ブレードであるか否かを判定する。具体的にはアンプユニット300は、ブレード通過回数iが、ブレードの総枚数(本実施形態では12枚)に正の整数nを乗じた値となっているか否かを判定する。
 正の整数nを例えば1に設定すれば、ステップS8において回転体42が1回転したか否かを判定することができ、例えば2に設定すれば、ステップS8において回転体42が2回転したか否かを判定することができる。すなわち、正の整数nに応じて、回転体42の角速度を推定するタイミングを調整することができ、単位時間当たりの回転体42の角速度の推定データ数を調整することができる。本実施形態では、正の整数nを1に設定しているが、アンプユニット300のCPUの演算能力等に応じて正の整数nを1より大きい値に設定して良い。
 アンプユニット300は、ステップS6で通過を検出したブレード422が基準ブレードであればステップS9の処理に進む。一方でアンプユニット300は、ステップS6で通過を検出したブレード422が基準ブレードでなければ今回の処理を終了する。
 ステップS9において、アンプユニット300は、ステップS5で算出した経過時間te1を基準ブレード通過時間tとして設定する。すなわちアンプユニット300は、本実施形態では正の整数nを1に設定しているので、基準ブレードが最初に通過検出センサ301の検知部の前を通過したことを検出してから、次に基準ブレードが通過検出センサ301の検知部の前を通過するまでの時間(回転体42が1回転するのに要した時間)を、基準ブレード通過時間tとして設定する。
 ステップS10において、アンプユニット300は、基準ブレード通過時間tに基づいて、回転体42の角速度を算出する。具体的にはアンプユニット300は、下記式(4)に基準ブレード通過時間tを代入して、回転体42の角速度ωを算出する。なおステップS10において、下記式(5)に基準ブレード通過時間tを代入して、回転体42の回転数Nを併せて算出するようにしても良い。
  ω=2π/t   …(4)
  N=60/t   …(5)
 ステップS11において、アンプユニット300は、経過時間te1、ブレードの通過回数i及び経過時間計測開始フラグF1をそれぞれ初期値の0に戻す。
 次に、図10を参照して、アンプユニット300が実施する機関本体1の各気筒4の燃焼エネルギの推定制御について説明する。アンプユニット300は、このルーチンを所定の演算周期(=サンプリング周期tsmp)で繰り返し実行する。
 ステップS21において、アンプユニット300は、前述した回転体42の角速度算出制御によって、新たに回転体42の角速度ωが算出されたか否かを判定する。アンプユニット300は、回転体42の角速度ωが新たに算出されていればステップS22の処理に進む。一方でアンプユニット300は、回転体42の角速度ωが新たに算出されていなければ今回の処理を終了する。
 ステップS22において、アンプユニット300は、新たに算出された回転体42の角速度ωと、その算出に使用された基準ブレード通過時間tと、を読み込む。
 ステップS23において、アンプユニット300は、これまでに読み込んだ回転体42の角速度ωのデータが2点以上あるか否かを判定する。アンプユニット300は、これまでに読み込んだ回転体42の角速度ωのデータが2点以上あればステップS24の処理に進む。一方でアンプユニット300は、これまでに読み込んだ回転体42の角速度ωのデータが2点以上なければ今回の処理を終了する。
 ステップS24において、アンプユニット300は、回転体42の角加速度今回値ω’を算出する。具体的にはアンプユニット300は、今回新たに読み込んだ回転体42の角速度ωを、回転体42の角速度今回値ωとし、今回の1つ前に読み込まれた回転体42の角速度ωを、回転体42の角速度前回値ωz-1とする。そしてアンプユニット300は、下記式(6)に、角速度今回値ω、角速度前回値ωz-1及びステップS22で読み込んだ基準ブレード通過時間tを代入して、回転体42の角加速度今回値ω’を算出する。
  ω’=(ω-ωz-1)/t   …(6)
 ステップS25において、アンプユニット300は、回転体42の角加速度今回値ω’の絶対値が極値判定閾値以下であるか否かを判定する。アンプユニット300は、回転体42の角加速度今回値ω’が極値判定閾値以下であればステップS26の処理に進む。一方でアンプユニット300は、回転体42の角加速度今回値ω’が極値判定閾値よりも大きければ今回の処理を終了する。
 ステップS26において、アンプユニット300は、回転体42の角加速度前回値ωz-1’が負の値か否かを判定する。アンプユニット300は、回転体42の角加速度前回値ωz-1’が負の値であれば、ステップS27の処理に進む。一方でアンプユニット300は、回転体42の角加速度前回値ωz-1’が正の値であれば、ステップS29の処理に進む。
 ステップS27において、アンプユニット300は、ステップS24で設定された回転体42の角速度今回値ωを極小角速度ωLとして設定する。
 ステップS28において、アンプユニット300は、フラグF2を1に設定する。フラグF2は、初期値が0に設定されているフラグである。
 ステップS29において、アンプユニット300は、フラグF2が1に設定されているか否かを判定する。アンプユニット300は、フラグF2が1に設定されていればステップS30の処理に進む。一方でフラグF2が0に設定されていれば今回の処理を終了する。
 ステップS30において、アンプユニット300は、ステップS24で設定された回転体42の角速度今回値ωを極大角速度ωHとして設定する。
 ステップS31において、アンプユニット300は、下記式(7)にステップS27及びステップS30で設定された極小角速度ωL及び極大角速度ωHを代入して、回転体42の運動エネルギの上昇量ΔKE、すなわち現在排気行程中の気筒4の燃焼室6で燃料を燃焼させたときに生じる燃焼エネルギを算出する。
  ΔKE=I×{(ωH2-ωL2)/2}   …(7)
 ステップS32において、アンプユニット300は、フラグF2を初期値の0に戻す。
 次に、図11を参照して、内燃機関100の運転中にアンプユニット300が実施する機関本体1の各気筒4の燃焼間隔の推定制御について説明する。アンプユニット300は、このルーチンを所定の演算周期(=サンプリング周期tsmp)で繰り返し実行する。
 ステップS41において、アンプユニット300は、フラグF3が0に設定されているか否かを判定する。フラグF3は、初期値(内燃機関100の運転開始時の値)が0に設定されているフラグであり、内燃機関100の運転を開始してから初めて極小角速度ωLが設定されたときに1に設定される。フラグF3は、内燃機関の運転停止時又は運転開始時に0に戻される。アンプユニット300は、フラグF3が0に設定されていればステップS42の処理に進む。一方でアンプユニット300は、フラグF3が1に設定されていればステップS44の処理に進む。
 ステップS42において、アンプユニット300は、内燃機関100の運転を開始してから初めて極小角速度ωLが設定されたか否か判定する。具体的にはアンプユニット300は、内燃機関100の運転開始後、前述した燃焼エネルギの推定制御のステップS27に初めて進んで極小角速度ωLが設定されたか否かを判定する。アンプユニット300は、内燃機関100の運転開始後、前述した燃焼エネルギの推定制御のステップS27に初めて進んで極小角速度ωLが設定されていればステップS43の処理に進む。一方でアンプユニット300は、内燃機関100の運転開始後、前述した燃焼エネルギの推定制御のステップS27に進んでおらず、極小角速度ωLが未だに設定されていなければ今回の処理を終了する。
 ステップS43において、アンプユニット300は、フラグF3を1に設定し、回転体42の角速度が極小角速度になってからの経過時間te2の計測を開始する。
 ステップS44において、アンプユニット300は、経過時間te2の前回値にサンプリング周期tsmpを積算したものを経過時間te2として算出する。なお、経過時間te2の初期値は0である。
 ステップS45において、アンプユニット300は、極小角速度ωLが更新されたか否かを判定する。アンプユニット300は、極小角速度ωLが更新されていれば、ステップS46の処理に進む。一方でアンプユニット300は、極小角速度ωLが更新されていなければ、今回の処理を終了する。
 ステップS46において、アンプユニット300は、ステップS44で算出した経過時間te2を燃焼間隔Δtcomとして算出する。
 ステップ47において、アンプユニット300は、経過時間te2を初期値の0に戻し、再び回転体42の角速度が極小角速度になってからの経過時間te2の計測を開始する。
 以上説明した本実施形態による燃焼状態推定装置40は、気筒4を有する機関本体1の排気管32(排気経路)上に設けられたハウジング41の内部に回転自在に収容されると共に、少なくとも1つのブレード422を有して機関本体1の各気筒4から排出される排気のエネルギによって回転駆動される回転体42と、ハウジング41に設けられると共に、ハウジング41内の所定位置を回転体42のブレード422が通過したことを検出する通過検出センサ301と、通過検出センサ301の検出結果に基づいて、回転体42の角速度を算出すると共に、回転体42の角速度に基づいて、機関本体1の気筒4の燃焼エネルギ又は燃焼間隔の少なくとも一方を算出するように構成されたアンプユニット300(演算装置)と、を備える。
 したがって本実施形態によれば、筒内圧力センサを設けなくても、ハウジング41、回転体42、通過検出センサ301及びアンプユニット300からなる燃焼状態推定装置40を排気管32に設けるだけで、機関本体1の気筒4の燃焼エネルギ又は燃焼間隔の少なくとも一方を算出することができる。
 また、各気筒4の燃焼エネルギを推定する方法としては、例えば気筒4ごとに燃焼室6内の圧力を検出する筒内圧力センサを設け、筒内圧力センサの検出値に基づいて各気筒4の燃焼エネルギを算出する方法がある。しかしながら、この場合は気筒数と同じ数の筒内圧力センサが必要となる。そのため、各筒内圧力センサの個体バラつきによって、各気筒4の燃焼エネルギの推定精度が低下する。さらに、筒内圧力センサごとに経時劣化度合いが異なるおそれがあり、そうすると時間の経過と共にさらに各気筒4の燃焼エネルギの推定精度が低下することになる。
 これに対して本実施形態によれば、前述したように、1つの燃焼状態推定装置40を排気管32に設けるだけで機関本体1の各気筒4の燃焼エネルギや各気筒4の燃焼間隔といった各気筒の燃焼状態を推定することができる。そのため、個体バラつきや経年変化による各気筒4の燃焼状態の推定精度の低下を抑制して、各気筒4の燃焼状態を精度良く推定することができる。
 また本実施形態によるアンプユニット300は、ブレード422のうちの任意の1つのブレード422が所定位置を一度通過してからの経過時間を任意の1つのブレード422が所定位置を所定回数通過するごとに基準ブレード通過時間として算出し、基準ブレード通過時間と基準ブレード通過時間の間に任意の1つのブレード422が所定位置を通過した回数とに基づいて、回転体42の角速度を算出するように構成される。
 そのため、ブレード422の形状誤差や経年変化の影響を受けることなく回転体42の角速度を精度良く算出することができる。したがって、回転体42の角速度に基づいて算出される機関本体1の各気筒4の燃焼エネルギ又は各気筒4の燃焼間隔を一層精度良く算出することができる。
 また本実施形態によるアンプユニット300は、回転体42の角速度に基づいて、当該角速度の微分値である角加速度を算出し、角加速度の絶対値が所定の極値判定閾値以下になったときの回転体42の角速度に基づいて、排気行程中の気筒4の燃焼エネルギを算出するように構成される。より具体的には、本実施形態によるアンプユニット300は、角加速度の前回値が負の値であれば、角加速度の絶対値が所定の極値判定閾値以下になったときの回転体42の角速度を極小角速度として設定し、角加速度の前回値が正の値であれば、角加速度の絶対値が所定の極値判定閾値以下になったときの回転体42の角速度を極大角速度として設定し、極小角速度と極大角速度とに基づいて排気行程中の気筒4の燃焼エネルギを算出するように構成される。
 これにより本実施形態によれば、アンプユニット300によって算出した回転体42の角速度から、各気筒4の燃焼エネルギを精度良く算出することができる。
 また本実施形態によるアンプユニット300は、極小角速度が設定されてから当該極小角速度が更新されるまでの期間に基づいて、気筒4の燃焼間隔を算出するように構成される。
 これにより本実施形態によれば、アンプユニット300によって算出した回転体42の角速度から、気筒4の燃焼間隔を精度良く算出することができる。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 なお上記の実施形態では、燃焼状態推定装置40のハウジング41を排気後処理装置33よりも排気流れ方向上流側に設けたが、下流側に設けても良い。
 また上記の実施形態では、内燃機関100は過給機(スーパーチャージャ又はターボチャージャ)を備えていなかったが、過給機を備える内燃機関にも燃焼状態推定装置40を設けて、当該内燃機関の各気筒の燃焼状態を推定するようにしても良い。
 100  内燃機関
 1  機関本体
 41  ハウジング
 42  回転体
 422  ブレード
 300  アンプユニット(演算装置)
 301  通過検出センサ

Claims (5)

  1.  気筒を有する機関本体の排気経路上に設けられたハウジングの内部に回転自在に収容されると共に、少なくとも1つのブレードを有して当該機関本体の気筒から排出される排気のエネルギによって回転駆動される回転体と、
     前記ハウジングに設けられると共に、当該ハウジング内の所定位置を前記回転体のブレードが通過したことを検出する通過検出センサと、
     前記通過検出センサの検出結果に基づいて、前記回転体の角速度を算出すると共に、当該回転体の角速度に基づいて、前記機関本体の気筒の燃焼エネルギ又は燃焼間隔の少なくとも一方を算出するように構成された演算装置と、
    を備える燃焼状態推定装置。
  2.  前記演算装置は、
      前記回転体の角速度に基づいて、当該角速度の微分値である角加速度を算出し、
      前記角加速度の絶対値が所定の極値判定閾値以下になったときの前記回転体の角速度に基づいて、排気行程中の気筒の燃焼エネルギを算出するように構成される、
    請求項1に記載の燃焼状態推定装置。
  3.  前記演算装置は、
      前記角加速度の前回値が負の値であれば、前記角加速度の絶対値が所定の極値判定閾値以下になったときの前記回転体の角速度を極小角速度として設定し、
      前記角加速度の前回値が正の値であれば、前記角加速度の絶対値が所定の極値判定閾値以下になったときの前記回転体の角速度を極大角速度として設定し、
      前記極小角速度と前記極大角速度とに基づいて、排気行程中の気筒の燃焼エネルギを算出するように構成される、
    請求項2に記載の燃焼状態推定装置。
  4.  前記演算装置は、
      前記極小角速度が設定されてから当該極小角速度が更新されるまでの期間に基づいて、気筒の燃焼間隔を算出するように構成される、
    請求項3に記載の燃焼状態推定装置。
  5.  前記演算装置は、
      前記ブレードのうちの任意の1つのブレードが前記所定位置を一度通過してからの経過時間を、当該任意の1つのブレードが当該所定位置を所定回数通過するごとに基準ブレード通過時間として算出し、
      当該基準ブレード通過時間と、当該基準ブレード通過時間の間に前記任意の1つのブレードが前記所定位置を通過した回数と、に基づいて、前記回転体の角速度を算出するように構成される、
    請求項1から請求項4までのいずれか1つに記載の燃焼状態推定装置。
PCT/JP2015/085256 2015-12-16 2015-12-16 燃焼状態推定装置 WO2017104029A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017555931A JP6490239B2 (ja) 2015-12-16 2015-12-16 燃焼状態推定装置
PCT/JP2015/085256 WO2017104029A1 (ja) 2015-12-16 2015-12-16 燃焼状態推定装置
EP15910719.2A EP3392491A4 (en) 2015-12-16 2015-12-16 DEVICE FOR ESTIMATING COMBUSTION CONDITION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/085256 WO2017104029A1 (ja) 2015-12-16 2015-12-16 燃焼状態推定装置

Publications (1)

Publication Number Publication Date
WO2017104029A1 true WO2017104029A1 (ja) 2017-06-22

Family

ID=59056114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085256 WO2017104029A1 (ja) 2015-12-16 2015-12-16 燃焼状態推定装置

Country Status (3)

Country Link
EP (1) EP3392491A4 (ja)
JP (1) JP6490239B2 (ja)
WO (1) WO2017104029A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002098584A (ja) * 2000-09-22 2002-04-05 Mitsubishi Heavy Ind Ltd 翼振動計測方法及びこれを用いた翼振動監視システム
JP2008014656A (ja) * 2006-07-03 2008-01-24 Denso Corp 回転速度検出装置
JP2012132423A (ja) * 2010-12-24 2012-07-12 Toyota Motor Corp 内燃機関の制御装置
JP2015197074A (ja) * 2014-04-01 2015-11-09 トヨタ自動車株式会社 内燃機関の制御装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4513779B2 (ja) * 2006-04-26 2010-07-28 トヨタ自動車株式会社 内燃機関の排気浄化装置
IT1400362B1 (it) * 2010-06-03 2013-05-31 Magneti Marelli Spa Metodo di determinazione della velocita' di rotazione di un compressore in un motore a combustione interna
DE102011110669B4 (de) * 2011-08-19 2023-05-11 Testo SE & Co. KGaA Verfahren und Messanordnung zur Bestimmung von spezifischen und/oder absoluten Emissionswerten für NOx und/oder CO2 bei einer Verbrennungsmaschine
JP2014231830A (ja) * 2013-05-02 2014-12-11 株式会社電子応用 エンジン制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002098584A (ja) * 2000-09-22 2002-04-05 Mitsubishi Heavy Ind Ltd 翼振動計測方法及びこれを用いた翼振動監視システム
JP2008014656A (ja) * 2006-07-03 2008-01-24 Denso Corp 回転速度検出装置
JP2012132423A (ja) * 2010-12-24 2012-07-12 Toyota Motor Corp 内燃機関の制御装置
JP2015197074A (ja) * 2014-04-01 2015-11-09 トヨタ自動車株式会社 内燃機関の制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3392491A4 *

Also Published As

Publication number Publication date
EP3392491A4 (en) 2019-08-14
JP6490239B2 (ja) 2019-03-27
JPWO2017104029A1 (ja) 2018-07-19
EP3392491A1 (en) 2018-10-24

Similar Documents

Publication Publication Date Title
JP5328757B2 (ja) エンジン制御装置
US20110172898A1 (en) Internal combustion engine system control device
KR101251516B1 (ko) 엔진 시스템 및 이의 신호처리 방법
JP2005291182A (ja) 失火検出装置
JP5446759B2 (ja) エンジンの異常検出方法及び異常検出装置
KR102080959B1 (ko) 내연 기관의 측정된 및 추정된 내부 실린더 압력 값에 기초하여 자기 점화를 검출하기 위한 방법 및 장치
JPH0270960A (ja) 内燃機関の制御装置
JP2012193655A (ja) エンジンの点火時期設定装置
EP3369918B1 (en) Control device for internal combustion engine
WO2017145863A1 (ja) 内燃機関の制御装置
JP6490239B2 (ja) 燃焼状態推定装置
TW200404954A (en) Engine control device
JP6490240B2 (ja) 内燃機関
EP3348956B1 (en) Rotation speed estimation device, multi-cylinder internal combustion engine, and device for controlling multi-cylinder internal combustion engine
JP5246144B2 (ja) 内燃機関の吸入空気量算出装置、内燃機関の制御装置
JP2018115966A (ja) 回転軸の角度検出装置、又は角度検出方法
JP7240302B2 (ja) エンジン試験システム
JP6350591B2 (ja) 内燃機関の制御装置
WO2019130584A1 (ja) 内燃機関、過給機、及びサージング判定機能付きセンサ
WO2019043853A1 (ja) 内燃機関
WO2016157442A1 (ja) 角速度推定装置、エネルギ推定装置及び気筒間バラツキ推定装置
JPH0242160A (ja) 内燃機関の吸入空気量予測装置
JP2016089708A (ja) エンジン
JP2013155638A (ja) 筒内圧センサの劣化検出装置
JPH0726584B2 (ja) 内燃機関の燃料噴射量制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15910719

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017555931

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015910719

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015910719

Country of ref document: EP

Effective date: 20180716