WO2017104011A1 - Image coding apparatus - Google Patents

Image coding apparatus Download PDF

Info

Publication number
WO2017104011A1
WO2017104011A1 PCT/JP2015/085146 JP2015085146W WO2017104011A1 WO 2017104011 A1 WO2017104011 A1 WO 2017104011A1 JP 2015085146 W JP2015085146 W JP 2015085146W WO 2017104011 A1 WO2017104011 A1 WO 2017104011A1
Authority
WO
WIPO (PCT)
Prior art keywords
specific area
image
area
control unit
specific
Prior art date
Application number
PCT/JP2015/085146
Other languages
French (fr)
Japanese (ja)
Inventor
亞矢子 根本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2015/085146 priority Critical patent/WO2017104011A1/en
Publication of WO2017104011A1 publication Critical patent/WO2017104011A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/124Quantisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/146Data rate or code amount at the encoder output
    • H04N19/152Data rate or code amount at the encoder output by measuring the fullness of the transmission buffer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock

Definitions

  • the present invention relates to an image encoding device that encodes an image taken by a camera.
  • a surveillance camera system (CCTV: Closed Circuit) that captures a surveillance area from a camera, distributes it to an image recording and display device, divides and displays a plurality of camera images, and sequentially compresses and records image data on a recording medium. TeleVision system) is widely used.
  • various signal processing is applied to an image taken by a camera, and moving image data is compressed with high efficiency.
  • Examples of encoding techniques for compression include MPEG-2, H.264, and the like, which are international standards. H.264 / AVC, H.H. 265 / HEVC and the like. These are hybrid coding schemes combining motion compensation prediction coding, discrete cosine transform coding, variable length coding, and the like.
  • Motion compensation prediction includes intra-frame prediction (intra prediction) and inter-frame prediction (inter prediction).
  • the type of picture to be encoded is classified according to the method of motion compensation prediction, and only encoding by intra-frame prediction is performed.
  • Forward prediction in which motion prediction is performed between an intra-coded picture (hereinafter referred to as an I picture) and a temporally forward frame, and the difference value and motion prediction information are transmitted.
  • Bidirectional predictive coded picture hereinafter referred to as B picture
  • P picture which performs motion prediction between a coded picture (hereinafter referred to as P picture) and temporally forward, backward or bidirectional frames and compresses data.
  • encoding is performed by periodically repeating a group of pictures called GOP (Group Of Pictures) starting from an I picture by using these motion compensated prediction encodings.
  • GOP Group Of Pictures
  • the image quality should be reduced for important areas of particular interest, such as where a person's face is reflected at the entrance of a condominium, or where a person's face or money is reflected near a cash register in a store. There is a desire to improve and improve visibility.
  • a conventional image encoding device in order to improve the image quality of a region of interest, whether each region is a motion region or a static region is determined based on the magnitude and difference value of a motion vector between an input frame and a reference frame for motion prediction. Performs smoothing filter processing by determining a non-moving part such as a background part as a static area, and determining a moving part such as a person part as a moving area and skips the smoothing filter process to perform encoding processing. As a result, the image quality of the motion region has been improved (for example, Patent Document 1).
  • the present invention has been made to solve the above-described problems.
  • moving image data is compressed by inter-frame and intra-frame encoding, and encoded data is transmitted at a predetermined bit rate in real time.
  • An object of the present invention is to provide an image encoding device that can encode a specific area in a screen with high image quality.
  • An image encoding device is as follows.
  • a frame memory unit that rearranges input image signals from the input order to the encoding order, and an image code that encodes the image signals output from the frame memory unit using intra-frame prediction, inter-frame prediction, and variable-length encoding
  • a transmission buffer unit that accumulates data encoded by the image encoding unit and transmits the data according to a predetermined bit rate; Information on the specific area is input, and quantization steps inside and outside the specific area are controlled so that the encoded data can be within the predetermined bit rate, and the information on the quantization step is used as the image encoding unit.
  • a specific area rate control unit to transmit to, It is characterized by comprising.
  • an image encoding device capable of improving the image quality of an important area without exceeding a predetermined bit rate.
  • FIG. 1 is a block diagram showing the overall configuration of an image coding apparatus according to Embodiment 1 of the present invention.
  • 1 is a camera unit
  • 2 is a frame memory unit
  • 3 is an image encoding unit
  • 4 is a transmission buffer unit
  • 5 is a rate control unit
  • 6 is a specific area control unit.
  • the rate control unit 5 and the specific region control unit 6 constitute a specific region rate control unit.
  • a camera unit 1 converts a captured image into a digital signal, performs various signal processing, and outputs an image signal 101.
  • a frame memory unit 2 includes a memory that stores the image signal 101 in units of frames.
  • the block and image encoding unit 3 reads the image signal 103 in accordance with the frame memory read control signal 102 generated so as to rearrange the image signal 101 stored in the frame memory unit 2 in the encoding order, and performs intra-frame prediction or inter-frame prediction.
  • the transmission buffer unit 4 temporarily stores the video stream data 104 output from the image encoding unit 3 and generates a read control signal 107 generated according to the bit rate 106.
  • the rate controller 5 outputs a picture type 110 and a quantization step 111 based on the bit rate 106, the transmission buffer remaining amount 108, and the information generation amount 109.
  • the block to be determined and the specific region control unit 6 determine the final quantization step 114 based on the specific region information 113 notified from the outside and the quantization step 111 and the macroblock position information 112 calculated by the rate control unit 5. It is a block to do.
  • the camera unit 1 includes a lens 10 and an image signal processing circuit 12 having an image pickup device such as a CMOS (Complementary Metal Oxide Semiconductor) image sensor 11, a digital circuit, and a processor.
  • the frame memory unit 2 includes a memory 13 such as an SDRAM (Synchronous Dynamic Random Access Memory).
  • the image encoding unit 3 realizes image signal processing by an image encoding circuit 14 having a digital circuit, a processor, and the like.
  • the transmission buffer unit 4 includes a memory 15 such as an SDRAM.
  • the rate control unit 5 and the specific area control unit 6 have a configuration in which the processor 16 reads out and executes a program stored in the memory 17, and writes or reads data processed in the program to the memory 17. .
  • the camera unit 1 converts a captured moving image into a digital signal and outputs an image signal 101. At this time, the camera unit 1 outputs the image signal 101 at the maximum processable frame rate.
  • the frame memory unit 2 rearranges the image signals 101 written in the shooting order in the encoding order according to the frame memory read control signal 102 and outputs the rearranged image signals 103 as the image signals 103.
  • the image encoding unit 3 performs intra-frame prediction or inter-frame prediction according to the picture type 110 and the quantization step 114 instructed by the rate control unit 5 so as to have a GOP (Group Of Pictures) structure as shown in FIG.
  • Encoding using variable-length coding or the like is performed to output variable-length video stream data 105 and notify the rate control unit 5 of the information generation amount 109 of video stream data for each picture.
  • the encoding method at this time is, for example, MPEG-2, H.264, or the like.
  • H.264 / AVC Advanced Video Coding
  • H.264. H.265 / HEVC High-Efficiency-Video Coding
  • etc. performs encoding processing in conformity with the standard.
  • the transmission buffer unit 4 temporarily stores the video stream data 104 in the memory, and outputs the video stream data 105 according to the read control signal 107 corresponding to the bit rate 106. Further, the remaining amount 108 of transmission buffer stored in the memory is calculated from the bit amount of the written video stream data 104 and the bit amount of the read video stream data 105.
  • the rate control unit 5 is H.264.
  • the ITU-T H.264 The bit amount of the video stream data 104 is controlled so as to comply with a CPB (Coded Picture Buffer) buffer model defined by HRD (Hypothetical Reference Decoder) conformance described in the H.264 standard.
  • CPB Coded Picture Buffer
  • HRD Hypothetical Reference Decoder
  • MPEG-5 TM5 Track Model 5
  • the target information amount in GOP units is calculated from the bit rate 106, the transmission buffer remaining amount 108, and the information generation amount 109
  • the target information generation amount of the picture is calculated from the picture type 110 according to the GOP structure, and the quantization step 111 for each macroblock is controlled and output to the specific area control unit 6.
  • the upper left position and lower right position of the rectangle are input as specific area information 113 to the specific area control unit 6 from the outside by user setting as position information of an important area to which particular attention is paid in the monitoring target area.
  • the position information may be the upper left position of the rectangle, the horizontal size and the vertical size of the rectangle.
  • An example of the specific area information 113 is shown in FIG.
  • the specific area control unit 6 calculates an area ratio of the specific area with respect to the entire screen at the timing of the picture cycle, and determines a reduction amount of the quantization step in the specific area according to the area of the specific area with respect to the entire screen. .
  • the amount of decrease in the quantization step is increased, and when the area of the specific region is larger than the predetermined threshold, the amount of decrease in the quantization step is decreased.
  • the amount of increase in the quantization step for the outside of the specific region is determined according to the area of the specific region with respect to the entire screen.
  • the increase amount of the quantization step is reduced, and when the area of the specific region is larger than the predetermined threshold, the increase amount of the quantization step is increased.
  • a plurality of area thresholds may be provided, and the lowering and raising widths of the quantization step may be determined in stages.
  • the lowering and lower limit values of the quantization step for the inside of the specific region and the increasing amount and upper limit value of the quantization step for the outside of the specific region are determined according to the size of the quantization step 111 in units of macroblocks.
  • the quantization step 111 is smaller than the predetermined threshold, the lowering or increasing width of the quantization step is increased, and when the quantizing step 111 is larger than the predetermined threshold, the lowering or increasing width of the quantization step is decreased.
  • an upper limit value and a lower limit value corresponding to the quantization step 111 are determined. Using the lowering and lower limit values of the quantization step inside the specific area determined as described above or the increase and upper limit values of the quantization step outside the specific area, addition / subtraction and limit processing are performed on the quantization step 111, and finally The quantizing step 114 is output to the image encoding unit 3.
  • a flowchart of the quantization step control in the specific area control unit 6 is shown in FIG.
  • the quantization step is controlled according to the area of the area or the coding difficulty of the entire monitoring area. As a result, the image quality of a specific area can be improved without exceeding a predetermined bit rate.
  • Embodiment 2 FIG. In the first embodiment described above, fluctuations in the amount of information generated per picture are suppressed by controlling the quantization steps inside and outside the specific region with respect to the quantization steps calculated by rate control in units of macroblocks. However, an embodiment in which the picture quality inside the specific area is improved by thinning out the picture without increasing the quantization step outside the specific area and lowering the frame rate will be described.
  • FIG. 6 is a block diagram showing the overall configuration of the image encoding apparatus in such a case.
  • the specific area control unit 6 generates frame decimation information 115 based on the specific area information 113 and adds an output to the rate control unit 5 with respect to the first embodiment.
  • the rate control unit 5 determines the GOP structure based on the frame decimation information 115 and adds the output of the frame decimation information 116 to the image encoding unit 3.
  • the specific area control unit 6 calculates an area ratio of the specific area with respect to the entire screen at the timing of the picture cycle, and determines a reduction amount of the quantization step in the specific area according to the area of the specific area with respect to the entire screen.
  • the frame thinning information 115 is determined.
  • the amount of decrease in the quantization step is increased and the rate of thinning out the frames is reduced (for example, 30 fps ⁇ 15 fps).
  • the quantization step is reduced and the rate of thinning out frames is increased (for example, 30 fps ⁇ 5 fps).
  • the rate control unit 5 determines the GOP structure based on the frame decimation information 115 and outputs the picture type 110 and the frame decimation information 116 to the image encoding unit 3.
  • the image encoding unit 3 determines the encoding target image based on the picture type 110 and the frame decimation information 116, and controls the frame memory read control signal 102 output to the frame memory unit 2 to realize frame decimation. . Also in this case, it is possible to obtain the same effect as in the first embodiment.
  • Embodiment 3 FIG.
  • fluctuations in the amount of information generated per picture are suppressed by controlling the quantization steps inside and outside the specific region with respect to the quantization steps calculated by rate control in units of macroblocks.
  • the outside of the specific area in the case of a P picture or B picture is encoded in a coding mode (macroblock skip) that minimizes the amount of information generated.
  • FIG. 7 is a block diagram showing the overall configuration of the image encoding apparatus in such a case.
  • the specific area control unit 6 generates specific area external information 117 based on the specific area information 113 and adds an output to the rate control unit 5 with respect to the first embodiment.
  • the rate control unit 5 determines a coding mode for each macroblock based on the specific area external information 117 and the picture type 110, and adds the output of the coding mode information 118 to the image coding unit 3.
  • the specific area control unit 6 calculates an area ratio of the specific area with respect to the entire screen at the timing of the picture cycle, and reduces the quantization step reduction amount within the specific area and the specific area outside according to the area of the specific area with respect to the entire screen. Determine the coding mode information for. If the area of the specific area is smaller than the predetermined threshold, the quantization step is increased and the ratio of frames to be skipped by macroblocks is reduced (for example, 1/2 the number of P pictures in the GOP). If the area of the region is larger than a predetermined threshold, the quantization step is decreased and the ratio of frames for macroblock skip is increased (for example, 5/6 of the number of P pictures in the GOP).
  • the rate control unit 5 determines the coding mode based on the specific area external information 117 and outputs the coding mode to the image coding unit 3.
  • the image encoding unit 3 performs encoding according to the encoding mode information 118. Also in this case, it is possible to obtain the same effect as in the first embodiment.
  • Embodiment 4 FIG. In Embodiments 1 to 3 described above, the quantization step is controlled according to the area of the specific area with respect to the entire screen. However, the quantization step is controlled according to the image characteristics of the specified specific area. An embodiment is shown.
  • FIG. 8 is a block diagram showing the overall configuration of the image encoding apparatus in such a case.
  • output of the motion vector information 119, the intra macroblock information 120, and the variance value 121 of the luminance signal of the macroblock to the specific area control unit 6 is added from the image encoding unit 3 to the first embodiment.
  • the image encoding unit 3 has motion vector information 119 determined by motion prediction, intra (intraframe prediction) macroblock information 120, and a luminance signal variance value 121 in units of macroblocks calculated from an input image at the timing of the macroblock period. Is output to the specific area control unit 6.
  • the specific area control unit 6 determines whether the own macroblock is inside or outside the specific area, and when it is inside the specific area, the motion vector information 119 or the intra macroblock information 120 or the variance value 121 of the luminance signal of the macroblock is used. Thus, the encoding difficulty level inside the specific area is calculated.
  • a macroblock whose motion vector size in a specific area is larger than a predetermined threshold, a macroblock encoded as an intra macroblock, or a macroblock whose luminance signal has a variance value larger than a predetermined threshold. It is determined that the macro block has a high degree, and the number is counted. These macroblocks may be counted by any one condition or a combination of a plurality of conditions. After calculating the number of macroblocks having a high degree of difficulty in encoding within a specific area of one picture, the quantization for the inside of the specific area is performed in accordance with the proportion of macroblocks having a high degree of difficulty in encoding within the specific area at the timing of the next picture. Determine the step width.
  • the quantization step Decrease the lowering range.
  • the amount of increase in the quantization step for the outside of the specific area is determined according to the ratio of macroblocks having a high degree of difficulty in encoding inside the specific area. If the number of macroblocks with high encoding difficulty is less than a predetermined threshold, increase the quantization step. If the number of macroblocks with high encoding difficulty is higher than the predetermined threshold, increase the quantization step. Increase Also in this case, it is possible to obtain the same effect as in the first embodiment.
  • Embodiment 5 FIG.
  • the specific area information 113 is notified from the outside.
  • an embodiment in which an important area is detected based on the image of the shooting area to achieve high image quality will be described.
  • FIG. 9 is a block diagram showing the overall configuration of the image encoding apparatus in such a case.
  • the configuration adds a specific area detection unit 7 to the first embodiment, and outputs a specific area flag 123 in units of macroblocks to the specific area control unit 6. Also, the motion vector information 119 and the macroblock color difference 122 are output from the image encoding unit 3 to the specific area detection unit 7.
  • the specific area detection unit 7 uses the motion vector information 119 input from the image encoding unit 3 to detect an area desired to have high image quality.
  • the difference between the motion vector of each macroblock and the previous frame is calculated, and a moving average is calculated while holding values for a plurality of frames.
  • the moving average is larger than a predetermined threshold value, it is determined that a motion has occurred in the stationary area, and the specific area flag 123 for each macroblock is output.
  • the skin color area is detected by comparing the color difference signals of the own macro block and the surrounding macro block with a predetermined threshold value.
  • the unit specific area flag 123 is output.
  • the specific area control unit 6 controls the quantization step in the same manner as in the first to fourth embodiments, and encodes the detected area as a specific area with high image quality.
  • the quantization is performed according to the area of the region and the coding difficulty of the entire monitoring area. Since step control is performed, the image quality of an important area can be improved without exceeding a predetermined bit rate.
  • the image encoding apparatus according to the present invention can be applied as an image encoding apparatus that encodes a moving image or the like.
  • 1 camera unit 1 frame memory unit, 3 image encoding unit, 4 transmission buffer unit, 5 rate control unit, 6 specific region control unit, 7 specific region detection unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

In order to obtain an image coding apparatus with which it is possible to improve the image quality of an important region without exceeding a predetermined bit rate, this image coding apparatus is characterized by being provided with: a frame memory unit that sorts input image signals from input order into coding order; an image coding unit that codes the image signals output from the frame memory unit using intra-frame prediction, inter-frame prediction, and variable-length coding; a transmission buffer unit that accumulates data coded by the image coding unit and transmits the data at a predetermined bit rate; and a specific-region rate control unit to which information regarding a specific region is input, that controls quantization steps inside and outside the specific region so that the coded data falls within the predetermined bit rate, and that transmits information regarding the quantization steps to the image coding unit.

Description

画像符号化装置Image encoding device
 本発明は、カメラで撮影した画像などの符号化を行う画像符号化装置に関するものである。 The present invention relates to an image encoding device that encodes an image taken by a camera.
 近年、カメラから監視エリアを撮影し、画像記録表示装置に配信して複数のカメラ画像を分割表示し、また画像データを順次圧縮して記録媒体に記録しておく監視カメラシステム(CCTV:Closed Circuit TeleVisionシステム)が広く普及している。監視カメラシステムでは、カメラで撮影した画像に様々な信号処理を加え、動画像データを高能率に圧縮する。圧縮のための符号化技術としては、例えば国際標準規格であるMPEG-2、H.264/AVC、H.265/HEVC等が挙げられる。これらは動き補償予測符号化、離散コサイン変換符号化、可変長符号化等を組み合わせたハイブリッド符号化方式である。動き補償予測には、フレーム内予測(イントラ予測)とフレーム間予測(インター予測)があり、符号化されるピクチャのタイプは動き補償予測の方式に応じて分類され、フレーム内予測による符号化のみを行うイントラ符号化ピクチャ(以下、Iピクチャと称する)、時間的に前方向のフレームとの間で動き予測を行い、その差分値と動き予測の情報を送ることによってデータを圧縮する前方向予測符号化ピクチャ(以下、Pピクチャと称する)及び時間的に前方向、後方向、もしくは双方向のいずれかのフレーム間で動き予測を行い、データを圧縮する双方向予測符号化ピクチャ(以下、Bピクチャと称する)の3種に分けられる。これらの動き補償予測符号化を用いて、Iピクチャを先頭とするGOP(Group Of Pictures)というピクチャ群を周期的に繰り返して符号化を行うのが一般的である。 In recent years, a surveillance camera system (CCTV: Closed Circuit) that captures a surveillance area from a camera, distributes it to an image recording and display device, divides and displays a plurality of camera images, and sequentially compresses and records image data on a recording medium. TeleVision system) is widely used. In the surveillance camera system, various signal processing is applied to an image taken by a camera, and moving image data is compressed with high efficiency. Examples of encoding techniques for compression include MPEG-2, H.264, and the like, which are international standards. H.264 / AVC, H.H. 265 / HEVC and the like. These are hybrid coding schemes combining motion compensation prediction coding, discrete cosine transform coding, variable length coding, and the like. Motion compensation prediction includes intra-frame prediction (intra prediction) and inter-frame prediction (inter prediction). The type of picture to be encoded is classified according to the method of motion compensation prediction, and only encoding by intra-frame prediction is performed. Forward prediction in which motion prediction is performed between an intra-coded picture (hereinafter referred to as an I picture) and a temporally forward frame, and the difference value and motion prediction information are transmitted. Bidirectional predictive coded picture (hereinafter referred to as B picture) which performs motion prediction between a coded picture (hereinafter referred to as P picture) and temporally forward, backward or bidirectional frames and compresses data. (Referred to as pictures). In general, encoding is performed by periodically repeating a group of pictures called GOP (Group Of Pictures) starting from an I picture by using these motion compensated prediction encodings.
 監視カメラで所定のエリアを撮影する場合、特に注目される重要な領域、例えばマンションのエントランスで人物の顔が映る箇所や、店舗のレジ付近で人物の顔やお金が映る箇所等は、画質を向上させて視認性を良くしたいという要望がある。 When photographing a predetermined area with a surveillance camera, the image quality should be reduced for important areas of particular interest, such as where a person's face is reflected at the entrance of a condominium, or where a person's face or money is reflected near a cash register in a store. There is a desire to improve and improve visibility.
 従来の画像符号化装置では、注目領域の画質を改善するために、入力フレームと動き予測のための参照フレームとの動きベクトルの大きさと差分値に基づき、各領域が動き領域か静止領域かを判定し、背景部分など動いていない箇所を静止領域と判定して平滑化フィルタ処理を行い、人物部分など動いている箇所を動き領域と判定して平滑化フィルタ処理をスキップして、符号化処理を行うことによって、動き領域の画質を改善していた(例えば、特許文献1)。 In a conventional image encoding device, in order to improve the image quality of a region of interest, whether each region is a motion region or a static region is determined based on the magnitude and difference value of a motion vector between an input frame and a reference frame for motion prediction. Performs smoothing filter processing by determining a non-moving part such as a background part as a static area, and determining a moving part such as a person part as a moving area and skips the smoothing filter process to perform encoding processing. As a result, the image quality of the motion region has been improved (for example, Patent Document 1).
特開2005-295215号公報JP 2005-295215 A
 従来の画像符号化装置では、動きの大きさや動き領域の面積によっては符号量が多く必要になる場合があり、静止領域に平滑化フィルタ処理を行うだけでは符号量を抑えきれない、または動き領域が高画質にならないという問題点があった。 In a conventional image encoding device, a large amount of code may be required depending on the magnitude of motion and the area of the motion region, and it is not possible to suppress the amount of code only by performing smoothing filter processing on the still region, or the motion region There was a problem that did not become high image quality.
 この発明は上記のような問題点を解決するためになされたもので、監視システムにおいて動画像データをフレーム間及びフレーム内符号化により圧縮してリアルタイムに符号化データを所定のビットレートにて伝送する際に、画面内の一部の特定の領域を高画質に符号化することを可能とする画像符号化装置を提供することを目的とする。 The present invention has been made to solve the above-described problems. In a surveillance system, moving image data is compressed by inter-frame and intra-frame encoding, and encoded data is transmitted at a predetermined bit rate in real time. An object of the present invention is to provide an image encoding device that can encode a specific area in a screen with high image quality.
 この発明に係る画像符号化装置は、
 入力された画像信号を入力順から符号化順に並べ替えるフレームメモリ部と
 前記フレームメモリ部から出力した画像信号に、フレーム内予測、フレーム間予測及び可変長符号化を用いて符号化を行う画像符号化部と、
 前記画像符号化部で符号化したデータを蓄積し、所定のビットレートに従って送出する送信バッファ部と、
 特定領域の情報が入力され、前記符号化したデータが前記所定のビットレートに収まるように前記特定領域の内部及び外部の量子化ステップを制御し、前記量子化ステップの情報を前記画像符号化部に送信する特定領域レート制御部と、
 を備えたことを特徴とするものである。
An image encoding device according to the present invention is as follows.
A frame memory unit that rearranges input image signals from the input order to the encoding order, and an image code that encodes the image signals output from the frame memory unit using intra-frame prediction, inter-frame prediction, and variable-length encoding And
A transmission buffer unit that accumulates data encoded by the image encoding unit and transmits the data according to a predetermined bit rate;
Information on the specific area is input, and quantization steps inside and outside the specific area are controlled so that the encoded data can be within the predetermined bit rate, and the information on the quantization step is used as the image encoding unit. A specific area rate control unit to transmit to,
It is characterized by comprising.
 この発明によれば、所定のビットレートを超えることなく、重要な領域の画質を向上させることが可能な画像符号化装置を得ることができる。 According to the present invention, it is possible to obtain an image encoding device capable of improving the image quality of an important area without exceeding a predetermined bit rate.
この発明の実施の形態1に係る画像符号化装置の全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the image coding apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る画像符号化装置のハードウェア構成の一例を示す図である。It is a figure which shows an example of the hardware constitutions of the image coding apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る画像符号化装置における書き込み及び読み出しピクチャを示す説明図である。It is explanatory drawing which shows the write-in and read-out picture in the image coding apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る画像符号化装置における特定領域情報の例を示す説明図である。It is explanatory drawing which shows the example of specific area information in the image coding apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る画像符号化装置の特定領域制御部における量子化ステップ制御の処理フローを示すフローチャートである。It is a flowchart which shows the process flow of the quantization step control in the specific area control part of the image coding apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態2に係る画像符号化装置の全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the image coding apparatus which concerns on Embodiment 2 of this invention. この発明の実施の形態3に係る画像符号化装置の全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the image coding apparatus which concerns on Embodiment 3 of this invention. この発明の実施の形態4に係る画像符号化装置の全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the image coding apparatus which concerns on Embodiment 4 of this invention. この発明の実施の形態5に係る画像符号化装置の全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the image coding apparatus which concerns on Embodiment 5 of this invention.
実施の形態1.
 図1はこの発明の実施の形態1における画像符号化装置の全体構成を示すブロック図である。
 図1において、1はカメラ部、2はフレームメモリ部、3は画像符号化部、4は送信バッファ部、5はレート制御部、6は特定領域制御部、である。レート制御部5と特定領域制御部6とで特定領域レート制御部を構成している。
Embodiment 1 FIG.
FIG. 1 is a block diagram showing the overall configuration of an image coding apparatus according to Embodiment 1 of the present invention.
In FIG. 1, 1 is a camera unit, 2 is a frame memory unit, 3 is an image encoding unit, 4 is a transmission buffer unit, 5 is a rate control unit, and 6 is a specific area control unit. The rate control unit 5 and the specific region control unit 6 constitute a specific region rate control unit.
 図1において、カメラ部1は撮影した画像をデジタル信号に変換して各種信号処理を行い、画像信号101を出力するブロック、フレームメモリ部2は画像信号101をフレーム単位で蓄積するメモリを備えたブロック、画像符号化部3はフレームメモリ部2に蓄積された画像信号101を、符号化順に並べ替えるように生成したフレームメモリ読み出し制御信号102に従って画像信号103を読み出し、フレーム内予測またはフレーム間予測、可変長符号化等を用いて符号化するブロック、送信バッファ部4は画像符号化部3から出力されるビデオストリームデータ104を一旦蓄積し、ビットレート106に応じて生成される読み出し制御信号107に従ってビデオストリームデータ105を出力すると共に、ビデオストリームデータの送信バッファにおける蓄積量(送信バッファ残量)108を出力するブロック、レート制御部5はビットレート106、送信バッファ残量108、情報発生量109を基に、ピクチャタイプ110及び量子化ステップ111を決定するブロック、特定領域制御部6は外部から通知される特定領域情報113とレート制御部5が算出した量子化ステップ111及びマクロブロック位置情報112を基に、最終的な量子化ステップ114を決定するブロックである。 In FIG. 1, a camera unit 1 converts a captured image into a digital signal, performs various signal processing, and outputs an image signal 101. A frame memory unit 2 includes a memory that stores the image signal 101 in units of frames. The block and image encoding unit 3 reads the image signal 103 in accordance with the frame memory read control signal 102 generated so as to rearrange the image signal 101 stored in the frame memory unit 2 in the encoding order, and performs intra-frame prediction or inter-frame prediction. The transmission buffer unit 4 temporarily stores the video stream data 104 output from the image encoding unit 3 and generates a read control signal 107 generated according to the bit rate 106. In accordance with the video stream data 105 and the video stream data The rate controller 5 outputs a picture type 110 and a quantization step 111 based on the bit rate 106, the transmission buffer remaining amount 108, and the information generation amount 109. The block to be determined and the specific region control unit 6 determine the final quantization step 114 based on the specific region information 113 notified from the outside and the quantization step 111 and the macroblock position information 112 calculated by the rate control unit 5. It is a block to do.
 ここで、図1の各ブロックを実現するハードウェア構成の一例を図2に示す。例えばカメラ部1は、レンズ10、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサ11等の撮像素子、デジタル回路、プロセッサ等を有する画像信号処理回路12にて構成される。フレームメモリ部2はSDRAM(Synchronous Dynamic Random Access Memory)等のメモリ13から構成される。画像符号化部3はデジタル回路、プロセッサ等を有する画像符号化回路14で画像信号処理を実現する。送信バッファ部4はSDRAM等のメモリ15から構成される。レート制御部5及び特定領域制御部6は、メモリ17に記憶されたプログラムをプロセッサ16が読み出して実行し、またプログラム中で処理したデータをメモリ17へ書き込みまたはメモリ17から読み出しを行う構成を取る。 Here, an example of a hardware configuration for realizing each block of FIG. 1 is shown in FIG. For example, the camera unit 1 includes a lens 10 and an image signal processing circuit 12 having an image pickup device such as a CMOS (Complementary Metal Oxide Semiconductor) image sensor 11, a digital circuit, and a processor. The frame memory unit 2 includes a memory 13 such as an SDRAM (Synchronous Dynamic Random Access Memory). The image encoding unit 3 realizes image signal processing by an image encoding circuit 14 having a digital circuit, a processor, and the like. The transmission buffer unit 4 includes a memory 15 such as an SDRAM. The rate control unit 5 and the specific area control unit 6 have a configuration in which the processor 16 reads out and executes a program stored in the memory 17, and writes or reads data processed in the program to the memory 17. .
 次に動作について説明する。
 図1において、カメラ部1は撮影した動画像をデジタル信号に変換して画像信号101を出力する。このとき、カメラ部1は処理可能な最大のフレームレートにて画像信号101を出力する。
Next, the operation will be described.
In FIG. 1, the camera unit 1 converts a captured moving image into a digital signal and outputs an image signal 101. At this time, the camera unit 1 outputs the image signal 101 at the maximum processable frame rate.
 フレームメモリ部2は撮影順に書き込まれた画像信号101を、フレームメモリ読み出し制御信号102に従って符号化順に並び替え、画像信号103として出力する。例えばM値(IまたはPピクチャの間隔)=3、N値(Iピクチャの間隔)=15の場合のフレームメモリ部2への書き込み及び読み出しピクチャを図3に示す。 The frame memory unit 2 rearranges the image signals 101 written in the shooting order in the encoding order according to the frame memory read control signal 102 and outputs the rearranged image signals 103 as the image signals 103. For example, FIG. 3 shows pictures to be written to and read from the frame memory unit 2 when M value (interval of I or P picture) = 3 and N value (interval of I picture) = 15.
 画像符号化部3は、図3に示したようなGOP(Group Of Pictures)構造となるようにレート制御部5から指示されるピクチャタイプ110、量子化ステップ114に従ってフレーム内予測またはフレーム間予測、可変長符号化等を用いた符号化を行い、可変長のビデオストリームデータ105を出力すると共に、ピクチャ毎のビデオストリームデータの情報発生量109をレート制御部5に通知する。このときの符号化方式は、例えばMPEG-2、H.264/AVC(Advanced Video Coding)、H.265/HEVC(High Efficiency Video Coding)等であり、規格に準拠した符号化処理を行う。 The image encoding unit 3 performs intra-frame prediction or inter-frame prediction according to the picture type 110 and the quantization step 114 instructed by the rate control unit 5 so as to have a GOP (Group Of Pictures) structure as shown in FIG. Encoding using variable-length coding or the like is performed to output variable-length video stream data 105 and notify the rate control unit 5 of the information generation amount 109 of video stream data for each picture. The encoding method at this time is, for example, MPEG-2, H.264, or the like. H.264 / AVC (Advanced Video Coding), H.264. H.265 / HEVC (High-Efficiency-Video Coding), etc., and performs encoding processing in conformity with the standard.
 送信バッファ部4は、ビデオストリームデータ104をメモリに一旦蓄積し、ビットレート106に応じた読み出し制御信号107に従ってビデオストリームデータ105を出力する。また書き込まれたビデオストリームデータ104のビット量及び読み出されたビデオストリームデータ105のビット量から、メモリに蓄積されている送信バッファ残量108を算出する。 The transmission buffer unit 4 temporarily stores the video stream data 104 in the memory, and outputs the video stream data 105 according to the read control signal 107 corresponding to the bit rate 106. Further, the remaining amount 108 of transmission buffer stored in the memory is calculated from the bit amount of the written video stream data 104 and the bit amount of the read video stream data 105.
 レート制御部5は、例えば符号化方式がH.264/AVCの場合、ITU-TのH.264規格書に記載されているHRD(Hypothetical Reference Decoder)コンフォーマンスで規定されるCPB(Coded Picture Buffer)のバッファモデルを遵守するよう、ビデオストリームデータ104のビット量を制御する。ビット量の制御方法は、例えばMPEG-2のTM5(Test Model5)が一般的に用いられるが、ビットレート106、送信バッファ残量108、情報発生量109よりGOP単位の目標情報量を算出し、GOP構造に従ったピクチャタイプ110よりピクチャの目標情報発生量を算出して、マクロブロック単位の量子化ステップ111を制御して特定領域制御部6に出力する。 For example, the rate control unit 5 is H.264. In the case of H.264 / AVC, the ITU-T H.264 The bit amount of the video stream data 104 is controlled so as to comply with a CPB (Coded Picture Buffer) buffer model defined by HRD (Hypothetical Reference Decoder) conformance described in the H.264 standard. For example, MPEG-5 TM5 (Test Model 5) is generally used as the bit amount control method, but the target information amount in GOP units is calculated from the bit rate 106, the transmission buffer remaining amount 108, and the information generation amount 109, The target information generation amount of the picture is calculated from the picture type 110 according to the GOP structure, and the quantization step 111 for each macroblock is controlled and output to the specific area control unit 6.
 ここで、監視対象エリアにおいて特に注目される重要な領域の位置情報として、矩形の左上位置及び右下位置を特定領域情報113として、外部よりユーザ設定にて特定領域制御部6に入力する。位置情報は、矩形の左上位置、矩形の水平サイズ及び垂直サイズでもよい。また特定領域が複数個あってもよい。特定領域情報113の例を図4に示す。特定領域制御部6は、まずピクチャ周期のタイミングで、特定領域の画面全体に対する面積比を算出し、特定領域の画面全体に対する面積に応じて、特定領域内部に対する量子化ステップの下げ幅を決定する。特定領域の面積が所定の閾値より小さい場合は、量子化ステップの下げ幅を大きくし、特定領域の面積が所定の閾値より大きい場合は、量子化ステップの下げ幅を小さくする。同様に、特定領域の画面全体に対する面積に応じて、特定領域外部に対する量子化ステップの上げ幅を決定する。特定領域の面積が所定の閾値より小さい場合は、量子化ステップの上げ幅を小さくし、特定領域の面積が所定の閾値より大きい場合は、量子化ステップの上げ幅を大きくする。このとき、面積の閾値を複数個持ち、量子化ステップの下げ幅及び上げ幅を段階的に決定してもよい。 Here, the upper left position and lower right position of the rectangle are input as specific area information 113 to the specific area control unit 6 from the outside by user setting as position information of an important area to which particular attention is paid in the monitoring target area. The position information may be the upper left position of the rectangle, the horizontal size and the vertical size of the rectangle. There may be a plurality of specific areas. An example of the specific area information 113 is shown in FIG. First, the specific area control unit 6 calculates an area ratio of the specific area with respect to the entire screen at the timing of the picture cycle, and determines a reduction amount of the quantization step in the specific area according to the area of the specific area with respect to the entire screen. . When the area of the specific region is smaller than the predetermined threshold, the amount of decrease in the quantization step is increased, and when the area of the specific region is larger than the predetermined threshold, the amount of decrease in the quantization step is decreased. Similarly, the amount of increase in the quantization step for the outside of the specific region is determined according to the area of the specific region with respect to the entire screen. When the area of the specific region is smaller than the predetermined threshold, the increase amount of the quantization step is reduced, and when the area of the specific region is larger than the predetermined threshold, the increase amount of the quantization step is increased. At this time, a plurality of area thresholds may be provided, and the lowering and raising widths of the quantization step may be determined in stages.
 次に、マクロブロック周期のタイミングで、特定領域情報113とレート制御部5から通知されるマクロブロック位置情報112を基に、自マクロブロックが特定領域の内部か外部かを判定する。さらに、マクロブロック単位の量子化ステップ111の大きさに応じて、特定領域内部に対する量子化ステップの下げ幅及び下限値と、特定領域外部に対する量子化ステップの上げ幅及び上限値を決定する。量子化ステップ111が所定の閾値より小さい場合は、量子化ステップの下げ幅または上げ幅を大きくし、量子化ステップ111が所定の閾値より大きい場合は、量子化ステップの下げ幅または上げ幅を小さくする。また量子化ステップ111に応じた上限値及び下限値を決定する。以上のように決定した特定領域内部の量子化ステップの下げ幅及び下限値または特定領域外部の量子化ステップの上げ幅及び上限値を用いて、量子化ステップ111に対する加減算及びリミット処理を行い、最終的な量子化ステップ114を画像符号化部3に出力する。特定領域制御部6における量子化ステップ制御のフローチャートを図5に示す。 Next, at the timing of the macroblock period, it is determined whether the own macroblock is inside or outside the specific area based on the specific area information 113 and the macroblock position information 112 notified from the rate control unit 5. Further, the lowering and lower limit values of the quantization step for the inside of the specific region and the increasing amount and upper limit value of the quantization step for the outside of the specific region are determined according to the size of the quantization step 111 in units of macroblocks. When the quantization step 111 is smaller than the predetermined threshold, the lowering or increasing width of the quantization step is increased, and when the quantizing step 111 is larger than the predetermined threshold, the lowering or increasing width of the quantization step is decreased. Further, an upper limit value and a lower limit value corresponding to the quantization step 111 are determined. Using the lowering and lower limit values of the quantization step inside the specific area determined as described above or the increase and upper limit values of the quantization step outside the specific area, addition / subtraction and limit processing are performed on the quantization step 111, and finally The quantizing step 114 is output to the image encoding unit 3. A flowchart of the quantization step control in the specific area control unit 6 is shown in FIG.
 以上のように、この発明の実施の形態1では監視エリアで重要な特定の領域を指定された場合に、その領域の面積や監視エリア全体の符号化難易度に応じて量子化ステップの制御を行うので、所定のビットレートを超えることなく、特定の領域の画質を向上させることが可能となる。 As described above, in the first embodiment of the present invention, when an important specific area is designated in the monitoring area, the quantization step is controlled according to the area of the area or the coding difficulty of the entire monitoring area. As a result, the image quality of a specific area can be improved without exceeding a predetermined bit rate.
実施の形態2.
 以上の実施の形態1では、レート制御によって算出されたマクロブロック単位の量子化ステップに対して、特定領域内部及び外部の量子化ステップを制御することによって、ピクチャ当たりの情報発生量の変動を抑えていたが、特定領域外部の量子化ステップを上げずにピクチャを間引いてフレームレートを下げることにより、特定領域内部の画質を向上させる実施形態を示す。
Embodiment 2. FIG.
In the first embodiment described above, fluctuations in the amount of information generated per picture are suppressed by controlling the quantization steps inside and outside the specific region with respect to the quantization steps calculated by rate control in units of macroblocks. However, an embodiment in which the picture quality inside the specific area is improved by thinning out the picture without increasing the quantization step outside the specific area and lowering the frame rate will be described.
 図6はこのような場合の画像符号化装置の全体構成を示すブロック図である。構成は実施形態1に対して、特定領域制御部6において特定領域情報113を基にフレーム間引き情報115を生成し、レート制御部5への出力を追加している。レート制御部5では、フレーム間引き情報115を基にGOP構造を決定し、画像符号化部3へのフレーム間引き情報116の出力を追加している。 FIG. 6 is a block diagram showing the overall configuration of the image encoding apparatus in such a case. In the configuration, the specific area control unit 6 generates frame decimation information 115 based on the specific area information 113 and adds an output to the rate control unit 5 with respect to the first embodiment. The rate control unit 5 determines the GOP structure based on the frame decimation information 115 and adds the output of the frame decimation information 116 to the image encoding unit 3.
 次に動作について、実施形態1と異なる点を説明する。
 特定領域制御部6は、ピクチャ周期のタイミングで、特定領域の画面全体に対する面積比を算出し、特定領域の画面全体に対する面積に応じて、特定領域内部に対する量子化ステップの下げ幅を決定すると共に、フレーム間引き情報115を決定する。特定領域の面積が所定の閾値より小さい場合は、量子化ステップの下げ幅を大きくすると共に、フレームを間引く割合を少なくし(例えば30fps→15fps)、特定領域の面積が所定の閾値より大きい場合は、量子化ステップの下げ幅を小さくすると共に、フレームを間引く割合を多くする(例えば30fps→5fps)。このとき、面積の閾値を複数個持ち、量子化ステップの下げ幅及びフレームを間引く割合を段階的に決定してもよい。また、特定領域外部に対する量子化ステップは変更しない(上げ幅=0とする)。
Next, the operation will be described while referring to differences from the first embodiment.
The specific area control unit 6 calculates an area ratio of the specific area with respect to the entire screen at the timing of the picture cycle, and determines a reduction amount of the quantization step in the specific area according to the area of the specific area with respect to the entire screen. The frame thinning information 115 is determined. When the area of the specific area is smaller than the predetermined threshold, the amount of decrease in the quantization step is increased and the rate of thinning out the frames is reduced (for example, 30 fps → 15 fps). In addition, the quantization step is reduced and the rate of thinning out frames is increased (for example, 30 fps → 5 fps). At this time, a plurality of area threshold values may be provided, and the reduction width of the quantization step and the ratio of thinning out the frames may be determined in stages. Further, the quantization step for the outside of the specific area is not changed (the increase width = 0).
 レート制御部5は、フレーム間引き情報115を基にGOP構造を決定し、ピクチャタイプ110及びフレーム間引き情報116を画像符号化部3に出力する。画像符号化部3は、ピクチャタイプ110及びフレーム間引き情報116を基に符号化対象画像を決定し、フレームメモリ部2に出力するフレームメモリ読み出し制御信号102を制御することによって、フレーム間引きを実現する。この場合も、実施の形態1と同様の効果を得ることが可能である。 The rate control unit 5 determines the GOP structure based on the frame decimation information 115 and outputs the picture type 110 and the frame decimation information 116 to the image encoding unit 3. The image encoding unit 3 determines the encoding target image based on the picture type 110 and the frame decimation information 116, and controls the frame memory read control signal 102 output to the frame memory unit 2 to realize frame decimation. . Also in this case, it is possible to obtain the same effect as in the first embodiment.
実施の形態3.
 以上の実施の形態1では、レート制御によって算出されたマクロブロック単位の量子化ステップに対して、特定領域内部及び外部の量子化ステップを制御することによって、ピクチャ当たりの情報発生量の変動を抑えていたが、特定領域外部の量子化ステップを上げずに、PピクチャまたはBピクチャの場合の特定領域外部を情報発生量が最小限になるような符号化モード(マクロブロックスキップ)にて符号化することにより、特定領域内部の画質を向上させる実施形態を示す。
Embodiment 3 FIG.
In the first embodiment described above, fluctuations in the amount of information generated per picture are suppressed by controlling the quantization steps inside and outside the specific region with respect to the quantization steps calculated by rate control in units of macroblocks. However, without increasing the quantization step outside the specific area, the outside of the specific area in the case of a P picture or B picture is encoded in a coding mode (macroblock skip) that minimizes the amount of information generated. Thus, an embodiment in which the image quality inside a specific area is improved will be described.
 図7はこのような場合の画像符号化装置の全体構成を示すブロック図である。構成は実施形態1に対して、特定領域制御部6において特定領域情報113を基に特定領域外部情報117を生成し、レート制御部5への出力を追加している。レート制御部5では、特定領域外部情報117及びピクチャタイプ110を基にマクロブロック単位の符号化モードを決定し、画像符号化部3への符号化モード情報118の出力を追加している。 FIG. 7 is a block diagram showing the overall configuration of the image encoding apparatus in such a case. In the configuration, the specific area control unit 6 generates specific area external information 117 based on the specific area information 113 and adds an output to the rate control unit 5 with respect to the first embodiment. The rate control unit 5 determines a coding mode for each macroblock based on the specific area external information 117 and the picture type 110, and adds the output of the coding mode information 118 to the image coding unit 3.
 次に動作について、実施形態1と異なる点を説明する。
 特定領域制御部6は、ピクチャ周期のタイミングで、特定領域の画面全体に対する面積比を算出し、特定領域の画面全体に対する面積に応じて、特定領域内部に対する量子化ステップの下げ幅及び特定領域外部に対する符号化モード情報を決定する。特定領域の面積が所定の閾値より小さい場合は、量子化ステップの下げ幅を大きくすると共に、マクロブロックスキップにするフレームの割合を少なくし(例えばGOP内のPピクチャ枚数の1/2)、特定領域の面積が所定の閾値より大きい場合は、量子化ステップの下げ幅を小さくすると共に、マクロブロックスキップにするフレームの割合を多くする(例えばGOP内のPピクチャ枚数の5/6)。このとき、面積の閾値を複数個持ち、量子化ステップの下げ幅及びマクロブロックスキップにするフレームの割合を段階的に決定してもよい。また、特定領域外部に対する量子化ステップは変更しない(上げ幅=0とする)。
Next, the operation will be described while referring to differences from the first embodiment.
The specific area control unit 6 calculates an area ratio of the specific area with respect to the entire screen at the timing of the picture cycle, and reduces the quantization step reduction amount within the specific area and the specific area outside according to the area of the specific area with respect to the entire screen. Determine the coding mode information for. If the area of the specific area is smaller than the predetermined threshold, the quantization step is increased and the ratio of frames to be skipped by macroblocks is reduced (for example, 1/2 the number of P pictures in the GOP). If the area of the region is larger than a predetermined threshold, the quantization step is decreased and the ratio of frames for macroblock skip is increased (for example, 5/6 of the number of P pictures in the GOP). At this time, a plurality of area threshold values may be provided, and the quantization step reduction width and the ratio of frames to be macroblock skipped may be determined step by step. Further, the quantization step for the outside of the specific area is not changed (the increase width = 0).
次に、マクロブロック周期のタイミングで、特定領域情報113とレート制御部5から通知されるマクロブロック位置情報112を基に、自マクロブロックが特定領域の内部か外部かを判定し、特定領域外部の場合は、特定領域外部情報117をレート制御部5に出力する。レート制御部5は、ピクチャタイプがPピクチャまたはBピクチャの場合は、特定領域外部情報117を基に符号化モードを決定し、画像符号化部3へ出力する。画像符号化部3は、符号化モード情報118に従って符号化を行う。この場合も、実施の形態1と同様の効果を得ることが可能である。 Next, based on the specific area information 113 and the macro block position information 112 notified from the rate control unit 5 at the timing of the macro block period, it is determined whether the own macro block is inside or outside the specific area. In this case, the specific area external information 117 is output to the rate control unit 5. When the picture type is P picture or B picture, the rate control unit 5 determines the coding mode based on the specific area external information 117 and outputs the coding mode to the image coding unit 3. The image encoding unit 3 performs encoding according to the encoding mode information 118. Also in this case, it is possible to obtain the same effect as in the first embodiment.
実施の形態4.
 以上の実施の形態1~3では、特定領域の画面全体に対する面積に応じて、量子化ステップを制御していたが、指定された特定領域の画像の特徴に応じて、量子化ステップを制御する実施形態を示す。
Embodiment 4 FIG.
In Embodiments 1 to 3 described above, the quantization step is controlled according to the area of the specific area with respect to the entire screen. However, the quantization step is controlled according to the image characteristics of the specified specific area. An embodiment is shown.
 図8はこのような場合の画像符号化装置の全体構成を示すブロック図である。構成は実施形態1に対して、画像符号化部3より動きベクトル情報119、イントラマクロブロック情報120、マクロブロックの輝度信号の分散値121の特定領域制御部6への出力を追加している。 FIG. 8 is a block diagram showing the overall configuration of the image encoding apparatus in such a case. In the configuration, output of the motion vector information 119, the intra macroblock information 120, and the variance value 121 of the luminance signal of the macroblock to the specific area control unit 6 is added from the image encoding unit 3 to the first embodiment.
 次に動作について、実施形態1と異なる点を説明する。
 画像符号化部3は、マクロブロック周期のタイミングで、動き予測により決定した動きベクトル情報119、イントラ(フレーム内予測)マクロブロック情報120、入力画像から算出したマクロブロック単位の輝度信号の分散値121を特定領域制御部6に出力する。特定領域制御部6は、自マクロブロックが特定領域の内部か外部かを判定し、特定領域内部の場合は動きベクトル情報119またはイントラマクロブロック情報120またはマクロブロックの輝度信号の分散値121を用いて、特定領域内部の符号化難易度を算出する。特定領域内部の動きベクトルの大きさが所定の閾値よりも大きいマクロブロック、またはイントラマクロブロックとして符号化されるマクロブロック、または輝度信号の分散値が所定の閾値よりも大きいマクロブロックを符号化難易度が高いマクロブロックと判定し、その数をカウントしておく。これらのマクロブロックのカウントは、いずれか一つの条件によるカウントでも複数の条件を組み合わせたカウントでもいずれでも良い。1ピクチャの特定領域内部の符号化難易度が高いマクロブロック数を算出したら、次ピクチャのタイミングにて特定領域内部の符号化難易度が高いマクロブロックの割合に応じて、特定領域内部に対する量子化ステップの下げ幅を決定する。
Next, the operation will be described while referring to differences from the first embodiment.
The image encoding unit 3 has motion vector information 119 determined by motion prediction, intra (intraframe prediction) macroblock information 120, and a luminance signal variance value 121 in units of macroblocks calculated from an input image at the timing of the macroblock period. Is output to the specific area control unit 6. The specific area control unit 6 determines whether the own macroblock is inside or outside the specific area, and when it is inside the specific area, the motion vector information 119 or the intra macroblock information 120 or the variance value 121 of the luminance signal of the macroblock is used. Thus, the encoding difficulty level inside the specific area is calculated. It is difficult to encode a macroblock whose motion vector size in a specific area is larger than a predetermined threshold, a macroblock encoded as an intra macroblock, or a macroblock whose luminance signal has a variance value larger than a predetermined threshold. It is determined that the macro block has a high degree, and the number is counted. These macroblocks may be counted by any one condition or a combination of a plurality of conditions. After calculating the number of macroblocks having a high degree of difficulty in encoding within a specific area of one picture, the quantization for the inside of the specific area is performed in accordance with the proportion of macroblocks having a high degree of difficulty in encoding within the specific area at the timing of the next picture. Determine the step width.
 符号化難易度が高いマクロブロックが所定の閾値よりも少ない場合は、量子化ステップの下げ幅を大きくし、符号化難易度が高いマクロブロックが所定の閾値よりも多い場合は、量子化ステップの下げ幅を小さくする。同様に、特定領域内部の符号化難易度が高いマクロブロックの割合に応じて、特定領域外部に対する量子化ステップの上げ幅を決定する。符号化難易度が高いマクロブロックが所定の閾値よりも少ない場合は、量子化ステップの上げ幅を小さくし、符号化難易度が高いマクロブロックが所定の閾値よりも多い場合は、量子化ステップの上げ幅を大きくする。この場合も、実施の形態1と同様の効果を得ることが可能である。 When the number of macroblocks with high encoding difficulty is less than a predetermined threshold, the amount of decrease in the quantization step is increased, and when the number of macroblocks with high encoding difficulty is higher than a predetermined threshold, the quantization step Decrease the lowering range. Similarly, the amount of increase in the quantization step for the outside of the specific area is determined according to the ratio of macroblocks having a high degree of difficulty in encoding inside the specific area. If the number of macroblocks with high encoding difficulty is less than a predetermined threshold, increase the quantization step. If the number of macroblocks with high encoding difficulty is higher than the predetermined threshold, increase the quantization step. Increase Also in this case, it is possible to obtain the same effect as in the first embodiment.
実施の形態5.
 以上の実施の形態1~4では、特定領域情報113は外部から通知されていたが、撮影エリアの画像を基に重要な領域を検出して高画質にする実施形態を示す。
Embodiment 5 FIG.
In the first to fourth embodiments described above, the specific area information 113 is notified from the outside. However, an embodiment in which an important area is detected based on the image of the shooting area to achieve high image quality will be described.
 図9はこのような場合の画像符号化装置の全体構成を示すブロック図である。構成は実施形態1に対して、特定領域検出部7を追加し、そこからマクロブロック単位の特定領域フラグ123を特定領域制御部6に出力する。また画像符号化部3から特定領域検出部7に、動きベクトル情報119及びマクロブロック色差122を出力する。 FIG. 9 is a block diagram showing the overall configuration of the image encoding apparatus in such a case. The configuration adds a specific area detection unit 7 to the first embodiment, and outputs a specific area flag 123 in units of macroblocks to the specific area control unit 6. Also, the motion vector information 119 and the macroblock color difference 122 are output from the image encoding unit 3 to the specific area detection unit 7.
 次に動作について、実施形態1~4と異なる点を説明する。
 特定領域検出部7は、画像符号化部3より入力される動きベクトル情報119を用いて、高画質にしたい領域を検出する。各マクロブロックの動きベクトルの前フレームとの差分を算出し、複数フレーム分の値を保持して移動平均を算出する。移動平均の大きさが所定の閾値よりも大きくなった場合、静止していた領域に動きが発生したと判断し、マクロブロック単位の特定領域フラグ123を出力する。また、画像符号化部3より入力されるマクロブロック色差122を用いて、同様に高画質にしたい領域を検出する。自マクロブロック及び周辺マクロブロックの色差信号を用いて所定の閾値と比較して肌色領域を検出し、連続した肌色領域のマクロブロック数が所定の閾値より小さい場合は顔領域と判断し、マクロブロック単位の特定領域フラグ123を出力する。特定領域制御部6では、実施形態1~4と同様に量子化ステップを制御し、特定領域と検出された箇所を高画質に符号化する。
Next, differences in operation from the first to fourth embodiments will be described.
The specific area detection unit 7 uses the motion vector information 119 input from the image encoding unit 3 to detect an area desired to have high image quality. The difference between the motion vector of each macroblock and the previous frame is calculated, and a moving average is calculated while holding values for a plurality of frames. When the moving average is larger than a predetermined threshold value, it is determined that a motion has occurred in the stationary area, and the specific area flag 123 for each macroblock is output. In addition, using the macroblock color difference 122 input from the image encoding unit 3, similarly, an area desired to have high image quality is detected. The skin color area is detected by comparing the color difference signals of the own macro block and the surrounding macro block with a predetermined threshold value. If the number of macro blocks in the continuous skin color area is smaller than the predetermined threshold value, the face area is determined. The unit specific area flag 123 is output. The specific area control unit 6 controls the quantization step in the same manner as in the first to fourth embodiments, and encodes the detected area as a specific area with high image quality.
 この場合も、実施の形態1と同様の効果を得ることが可能である。 In this case, the same effect as that of the first embodiment can be obtained.
以上のように、この発明では監視エリアの被写体の動きや顔の大きさに応じて重要な領域だと判断した場合に、その領域の面積や監視エリア全体の符号化難易度に応じて量子化ステップの制御を行うので、所定のビットレートを超えることなく、重要な領域の画質を向上させることが可能となる。 As described above, in the present invention, when it is determined that the region is an important region according to the movement of the subject in the monitoring area and the size of the face, the quantization is performed according to the area of the region and the coding difficulty of the entire monitoring area. Since step control is performed, the image quality of an important area can be improved without exceeding a predetermined bit rate.
 本発明にかかる画像符号化装置は動画像などの符号化を行う画像符号化装置として適用できる。 The image encoding apparatus according to the present invention can be applied as an image encoding apparatus that encodes a moving image or the like.
 1 カメラ部、2 フレームメモリ部、3 画像符号化部、4 送信バッファ部、5 レート制御部、6 特定領域制御部、7 特定領域検出部 1 camera unit, 2 frame memory unit, 3 image encoding unit, 4 transmission buffer unit, 5 rate control unit, 6 specific region control unit, 7 specific region detection unit

Claims (11)

  1.  入力された画像信号を入力順から符号化順に並べ替えるフレームメモリ部と
     前記フレームメモリ部から出力した画像信号に、フレーム内予測、フレーム間予測及び可変長符号化を用いて符号化を行う画像符号化部と、
     前記画像符号化部で符号化したデータを蓄積し、所定のビットレートに従って送出する送信バッファ部と、
     特定領域の情報が入力され、前記符号化したデータが前記所定のビットレートに収まるように前記特定領域の内部及び外部の量子化ステップを制御し、前記量子化ステップの情報を前記画像符号化部に送信する特定領域レート制御部と、
     を備えたことを特徴とする画像符号化装置。
    A frame memory unit that rearranges input image signals from the input order to the encoding order, and an image code that encodes the image signals output from the frame memory unit using intra-frame prediction, inter-frame prediction, and variable-length encoding And
    A transmission buffer unit that accumulates data encoded by the image encoding unit and transmits the data according to a predetermined bit rate;
    Information on the specific area is input, and quantization steps inside and outside the specific area are controlled so that the encoded data can be within the predetermined bit rate, and the information on the quantization step is used as the image encoding unit. A specific area rate control unit to transmit to,
    An image encoding apparatus comprising:
  2.  前記特定領域レート制御部は、前記画像信号を前記所定のビットレートで符号化する難易度に応じて、前記特定領域の内部及び外部の量子化ステップを制御することを特徴とする請求項1に記載の画像符号化装置。 The specific area rate control unit controls quantization steps inside and outside the specific area according to a difficulty level of encoding the image signal at the predetermined bit rate. The image encoding device described.
  3.  前記特定領域レート制御部は、前記画像信号のうちの前記特定領域の面積に応じて、前記特定領域の内部及び外部の量子化ステップを制御することを特徴とする請求項1または請求項2に記載の画像符号化装置。 The specific region rate control unit controls quantization steps inside and outside the specific region according to an area of the specific region in the image signal. The image encoding device described.
  4.  前記特定領域レート制御部は、前記画像信号のうちの前記特定領域の面積に応じて、前記特定領域の内部の量子化ステップ及び符号化するフレームレートを制御することを特徴とする請求項1から請求項3のいずれか一項に記載の画像符号化装置。 The specific region rate control unit controls a quantization step and a frame rate to be encoded in the specific region according to an area of the specific region in the image signal. The image encoding device according to claim 3.
  5.  前記特定領域レート制御部は、前記画像信号のうちの前記特定領域の面積に応じて、前記特定領域の内部の量子化ステップ及びマクロブロックの符号化モードを制御することを特徴とする請求項1から請求項4のいずれか一項に記載の画像符号化装置。 2. The specific area rate control unit controls a quantization step and a macroblock coding mode inside the specific area according to an area of the specific area in the image signal. The image encoding device according to any one of claims 1 to 4.
  6.  前記特定領域レート制御部は、前記画像信号のうちの前記特定領域の動きベクトルの大きさに応じて、前記特定領域の内部及び外部の量子化ステップを制御することを特徴とする請求項1から請求項5のいずれか一項に記載の画像符号化装置。 The specific area rate control unit controls quantization steps inside and outside the specific area according to a magnitude of a motion vector of the specific area in the image signal. The image encoding device according to claim 5.
  7.  前記特定領域レート制御部は、前記画像信号のうちの前記特定領域のフレーム内予測マクロブロックの数に応じて、前記特定領域の内部及び外部の量子化ステップを制御することを特徴とする請求項1から請求項6のいずれか一項に記載の画像符号化装置。 The specific area rate control unit controls quantization steps inside and outside the specific area according to the number of intra-frame prediction macroblocks in the specific area of the image signal. The image encoding device according to any one of claims 1 to 6.
  8.  前記特定領域レート制御部は、前記画像信号のうちの前記特定領域の輝度信号の分散値の大きさに応じて、前記特定領域の内部及び外部の量子化ステップを制御することを特徴とする請求項1から請求項7のいずれか一項に記載の画像符号化装置。 The specific area rate control unit controls quantization steps inside and outside the specific area according to a magnitude of a variance value of a luminance signal of the specific area in the image signal. The image encoding device according to any one of claims 1 to 7.
  9.  入力された画像信号の特徴に応じて重要な領域を検出し、その領域の情報を前記特定領域の情報として前記特定領域レート制御部に出力する特定領域検出部、
     を備えたことを特徴とする請求項1から請求項8のいずれか一項に記載の画像符号化装置。
    A specific area detection unit that detects an important area according to the characteristics of the input image signal and outputs information on the area as information on the specific area to the specific area rate control unit;
    The image encoding device according to claim 1, further comprising:
  10.  前記特定領域検出部は、前記画像信号から算出されるマクロブロック単位の動きベクトルの大きさ及び時間方法の変化に応じて、前記画像信号の前記重要な領域を検出することを特徴とする請求項9に記載の画像符号化装置。 The specific area detecting unit detects the important area of the image signal according to a magnitude of a motion vector in units of macroblocks calculated from the image signal and a change in a time method. 9. The image encoding device according to 9.
  11.  前記特定領域検出部は、前記画像信号から算出されるある所定サイズ毎の色差信号の大きさ及び分布に応じて、前記画像信号の前記重要な領域を検出することを特徴とする請求項9または請求項10に記載の画像符号化装置。 The specific area detection unit detects the important area of the image signal according to the magnitude and distribution of a color difference signal for each predetermined size calculated from the image signal. The image encoding device according to claim 10.
PCT/JP2015/085146 2015-12-16 2015-12-16 Image coding apparatus WO2017104011A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/085146 WO2017104011A1 (en) 2015-12-16 2015-12-16 Image coding apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/085146 WO2017104011A1 (en) 2015-12-16 2015-12-16 Image coding apparatus

Publications (1)

Publication Number Publication Date
WO2017104011A1 true WO2017104011A1 (en) 2017-06-22

Family

ID=59056204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085146 WO2017104011A1 (en) 2015-12-16 2015-12-16 Image coding apparatus

Country Status (1)

Country Link
WO (1) WO2017104011A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023053394A1 (en) * 2021-09-30 2023-04-06 日本電気株式会社 Information processing system, information processing method, and information processing device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000078588A (en) * 1998-08-31 2000-03-14 Sharp Corp Moving picture encoding device
JP2000197050A (en) * 1998-12-25 2000-07-14 Canon Inc Image processing unit and its method
JP2001313943A (en) * 2000-04-28 2001-11-09 Canon Inc Image encoder, its method and storage medium
JP2005295379A (en) * 2004-04-02 2005-10-20 Sony Corp Image coding method, imaging apparatus, and computer program
JP2009027493A (en) * 2007-07-20 2009-02-05 Victor Co Of Japan Ltd Image coder and image coding method
JP2011146883A (en) * 2010-01-14 2011-07-28 Mega Chips Corp Image processor
JP5593468B1 (en) * 2013-03-27 2014-09-24 パナソニック株式会社 Image coding apparatus and image coding method
JP2015162844A (en) * 2014-02-28 2015-09-07 三菱電機株式会社 Image encoding apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000078588A (en) * 1998-08-31 2000-03-14 Sharp Corp Moving picture encoding device
JP2000197050A (en) * 1998-12-25 2000-07-14 Canon Inc Image processing unit and its method
JP2001313943A (en) * 2000-04-28 2001-11-09 Canon Inc Image encoder, its method and storage medium
JP2005295379A (en) * 2004-04-02 2005-10-20 Sony Corp Image coding method, imaging apparatus, and computer program
JP2009027493A (en) * 2007-07-20 2009-02-05 Victor Co Of Japan Ltd Image coder and image coding method
JP2011146883A (en) * 2010-01-14 2011-07-28 Mega Chips Corp Image processor
JP5593468B1 (en) * 2013-03-27 2014-09-24 パナソニック株式会社 Image coding apparatus and image coding method
JP2015162844A (en) * 2014-02-28 2015-09-07 三菱電機株式会社 Image encoding apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023053394A1 (en) * 2021-09-30 2023-04-06 日本電気株式会社 Information processing system, information processing method, and information processing device

Similar Documents

Publication Publication Date Title
KR101960006B1 (en) Video encoding method and video encoder system
JP6961443B2 (en) Image processing equipment, image processing methods, and programs
WO2020103384A1 (en) Video encoding method and apparatus, electronic device, and computer readable storage medium
JP2001169281A (en) Device and method for encoding moving image
JP6149707B2 (en) Moving picture coding apparatus, moving picture coding method, moving picture coding program, and moving picture photographing apparatus
KR101585022B1 (en) Streaming Data Analysis System for Motion Detection in Image Monitering System and Streaming Data Analysis Method for Motion detection
KR102424258B1 (en) Method and encoder system for encoding video
JP2007134755A (en) Moving picture encoder and image recording and reproducing device
WO2017104011A1 (en) Image coding apparatus
JP2010258576A (en) Scene change detector, and video recorder
JP3599942B2 (en) Moving picture coding method and moving picture coding apparatus
JP4911625B2 (en) Image processing apparatus and imaging apparatus equipped with the same
KR101606931B1 (en) Apparatus for recording/playing key frame still image and method for orerating the same
JP2005340896A (en) Motion picture encoder
JP4107544B2 (en) Image signal re-encoding device
JP2005341601A (en) Motion picture encoder
JP3074115B2 (en) Image transmission device
JP5585271B2 (en) Video encoding device
JP4605183B2 (en) Image signal processing apparatus and method
JP4700992B2 (en) Image processing device
JP4228739B2 (en) Encoding apparatus, encoding method, program, and recording medium
JP2010239230A (en) Image encoding apparatus
JP2007324685A (en) Moving picture processing unit and method
KR100842545B1 (en) Method for determining weighting factor using luminance value and the mobile communication terminal therefor
KR100584537B1 (en) Method for storeing data of monitoring camera

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15910702

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15910702

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP