WO2017103411A2 - Ensemble d'anneau de turbine avec maintien élastique a froid. - Google Patents

Ensemble d'anneau de turbine avec maintien élastique a froid. Download PDF

Info

Publication number
WO2017103411A2
WO2017103411A2 PCT/FR2016/053343 FR2016053343W WO2017103411A2 WO 2017103411 A2 WO2017103411 A2 WO 2017103411A2 FR 2016053343 W FR2016053343 W FR 2016053343W WO 2017103411 A2 WO2017103411 A2 WO 2017103411A2
Authority
WO
WIPO (PCT)
Prior art keywords
ring
annular
elastic
sector
ring sector
Prior art date
Application number
PCT/FR2016/053343
Other languages
English (en)
Other versions
WO2017103411A3 (fr
Inventor
Thierry TESSON
Maxime Carlin
Jordan CARON
Original Assignee
Safran Ceramics
Safran Aircraft Engines
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Ceramics, Safran Aircraft Engines filed Critical Safran Ceramics
Priority to US16/063,019 priority Critical patent/US10378385B2/en
Priority to CN201680080640.5A priority patent/CN109072705B/zh
Priority to EP16825829.1A priority patent/EP3390782B1/fr
Publication of WO2017103411A2 publication Critical patent/WO2017103411A2/fr
Publication of WO2017103411A3 publication Critical patent/WO2017103411A3/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • F01D25/246Fastening of diaphragms or stator-rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/005Selecting particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/60Assembly methods
    • F05D2230/64Assembly methods using positioning or alignment devices for aligning or centring, e.g. pins
    • F05D2230/642Assembly methods using positioning or alignment devices for aligning or centring, e.g. pins using maintaining alignment while permitting differential dilatation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/11Shroud seal segments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/55Seals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape
    • F05D2250/75Shape given by its similarity to a letter, e.g. T-shaped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/30Retaining components in desired mutual position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/50Intrinsic material properties or characteristics
    • F05D2300/502Thermal properties
    • F05D2300/5021Expansivity
    • F05D2300/50212Expansivity dissimilar
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/603Composites; e.g. fibre-reinforced
    • F05D2300/6033Ceramic matrix composites [CMC]

Definitions

  • the field of application of the invention is in particular that of aeronautical gas turbine engines.
  • the invention is however applicable to other turbomachines, for example industrial turbines.
  • Ceramic matrix composite materials are known to retain their mechanical properties at high temperatures, which makes them suitable for constituting hot structural elements.
  • a set of metal turbine ring deforms under the effect of heat flow, which changes the clearance at the flow path and, therefore, the performance of the turbine.
  • the ring sectors comprise an annular base whose inner face defines the inner face of the turbine ring and an outer face from which two leg portions extend. whose ends are engaged in housings of a metal ring support structure.
  • ring segments in CMC significantly reduces the ventilation required to cool the turbine ring.
  • maintaining the ring sectors in position remains a problem in particular with respect to the differential expansions that can occur between the metal support structure and the CMC ring sectors.
  • another problem lies in controlling the shape of the vein both cold and hot without generating too much stress on the ring sectors.
  • the aim of the invention is to avoid such drawbacks and proposes for this purpose a turbine ring assembly comprising a plurality of ring sectors of ceramic matrix composite material forming a turbine ring and a ring support structure comprising a first and second annular flanges, each ring sector having an annular base portion with an inner face defining the inner face of the turbine ring and an outer face from which a first and a second leg extend, the tabs of each ring sector being held between the two annular flanges of the ring support structure, characterized in that the first tab of each ring sector has an annular groove on its face opposite the first flange.
  • the first annular flange of the ring support structure comprising an annular projection on its face opposite the first leg of each ring sector, the annular projection of the first flange being housed in the annular groove of the first leg of each ring sector, a clearance being present cold between the annular projection and the annular groove, in that at least the second leg of each ring sector is connected to the ring support structure by at least one elastic holding member, and in that the second leg of each ring sector has at least one opening in which is housed a portion of a holding member secured to the second annular flange of the ring support structure, a game being present cold between the opening of the second tab and the portion of the holding member in said opening, said holding member being of a material having a thermal expansion coefficient greater than the thermal expansion coefficient of the ceramic matrix composite material of the ring sectors.
  • the ring sectors are kept cold by elastic holding means which allow mounting of the ring sectors without prestressing.
  • the maintenance of the ring sectors by the elastic holding means is no longer ensured hot because of their expansion.
  • the holding force is resumed by the expansion of the annular projection of the first flange and the holding element or elements, which expansion does not cause stress on the ring sectors due to the presence of a cold clearance between the annular projection of the first flange and the annular groove of the first leg of each ring sector, on the one hand, and, on the other hand, the clearance present between the holding element (s) and the opening or openings of the second leg.
  • each ring sector has a Pi shape in axial section, first and second legs extending from the outer face of the base portion.
  • the elastic holding means comprising a base fixed on the ring support structure from which extend a first and a second arm, each arm having at its free end a resilient attachment portion of type C- clip, the free end of the first leg of each ring sector being held by the elastic attachment portion of the first arm while the free end of the second leg of each ring sector is maintained by the portion of elastic fastening of the second arm of the elastic holding means.
  • C-clip elastic attachment portions allows cold mounting with limited constraints.
  • the contact between the ring sectors and the ring support structure is uniform, which allows a good distribution of forces.
  • the first leg of each ring sector has an external groove and an internal groove cooperating with the C-clip type elastic attachment portion of the first arm of the ring. holding means elastic, the second leg of each ring sector having an outer groove and an inner groove cooperating with the C-clip type elastic fastening portion of the second arm of the elastic holding means.
  • the internal and external grooves of the first and second legs of each ring sector may have a radius of curvature similar to the radius of curvature of the C-clip type elastic attachment portions of the first and second arms of the elastic holding means. They may also have a rectilinear shape, the C-clip type elastic attachment portions of the first and second arms of the elastic holding means extending in this case in a rectilinear direction.
  • each ring sector has a Pi shape in axial section, first and second legs extending from the outer face of the portion forming annular base, the elastic holding means comprising a base attached to the ring support structure from which extend a first and a second arm together forming a C-clip elastic fastening portion, the end free of the first leg of each ring sector being held by the first arm while the free end of the second leg of each ring sector is held by the second arm of the elastic holding means.
  • the first leg of each ring sector has an external groove cooperating with the free end of the first arm of the elastic holding means, the second leg of each sector. ring having an external groove cooperating with the free end of the second arm of the elastic holding means.
  • the outer grooves of the first and second legs of each ring sector may have a rectilinear shape, the free ends of the first and second arms of the elastic holding means extending in a rectilinear direction.
  • each ring sector presents in axial section a K-shape, first and second legs extending from the outer face of the part. forming an annular base, the first tab having at its end an annular groove in which is housed the annular projection of the first annular flange, the second leg of each ring sector being connected to the second flange by one or more elastic holding elements .
  • the second leg of each ring sector is connected to the second annular flange of the ring support structure by one or more clipping members.
  • FIG. 1 is a sectional view showing an embodiment of a turbine ring assembly according to the invention
  • FIG. 2 schematically shows the mounting of a ring sector in the ring support structure of the ring assembly of FIG. 1;
  • FIG. 3 is a schematic perspective view showing an alternative embodiment of the ring assembly of FIG. 1;
  • FIG. 4 is a sectional view showing another embodiment of a turbine ring assembly according to the invention.
  • Fig. 5 schematically shows the mounting of a ring sector in the ring support structure of the ring assembly of Fig. 4;
  • FIG. 6 is a sectional view showing another embodiment of a turbine ring assembly according to the invention.
  • FIG. 7 schematically shows the mounting of a ring sector in the ring support structure of the ring assembly of FIG. 6.
  • FIG. 1 shows a high pressure turbine ring assembly comprising a turbine ring 1 made of ceramic matrix composite material (CMC) and a metal ring support structure 3.
  • the turbine ring 1 surrounds a set of blades 5.
  • the turbine ring 1 is formed of a plurality of ring sectors 10, Figure 1 being a radial sectional view.
  • the arrow DA indicates the axial direction with respect to the turbine ring 1 while the arrow DR indicates the radial direction with respect to the turbine ring 1.
  • Each ring sector 10 has a substantially P-shaped or inverted ⁇ -shaped section with an annular base 12 whose inner face coated with a layer 13 of abradable material defines the flow stream gas flow in the turbine.
  • Upstream and downstream tabs 14, 16 extend from the outer face of the annular base 12 in the radial direction DR.
  • upstream and downstream are used herein with reference to the flow direction of the gas flow in the turbine (arrow F).
  • the ring support structure 3 which is integral with a turbine casing 30 comprises an element or elastic holding means 50 comprising a base 51 fixed on the inner face of the shell 31 of the turbine casing 30, a first and a second arm 52 and 53 extend from the base 51 respectively upstream and downstream.
  • the base 51 can be fixed on the inner face of the ferrule 31 of the turbine casing 30, in particular by welding, by plating, by riveting or by clamping by means of a screw / nut-type connection member, the orifices being pierced in the base 51 and the ferrule 31 to allow the passage of the fastening or connecting elements.
  • the first arm 52 comprises at its free end 520 an elastic fastening portion 521 C-clip type here having a radius of curvature.
  • the elastic fastening portion 521 holds the free end 141 of the upstream tab 14 of each ring sector 10.
  • the free end 141 of the upstream tab 14 has internal grooves 142 and 143 external grooves formed on each side of the lug 14 and cooperating with the elastic fastening portion 521, the grooves 142 and 143 having here a radius of curvature similar to the radius of curvature of the elastic fastening portion 521.
  • the second arm 53 comprises at its free end 530 an elastic fastening portion 531 type C-clip, here having a radius curvature, which holds the free end 161 of the downstream tab 16 of each ring sector 10.
  • the free end 161 of the downstream tab 16 has internal grooves 162 and outer 163 formed on each side of the tab 16 and cooperating with the elastic fastening portion 531, the grooves 162 and 163 having here a radius of curvature similar to the radius of curvature of the elastic fastening portion 531.
  • the elastic holding member 50 may be made of metallic material such as a Waspaloy®, inconel 718 or AMI alloy. It is preferably made of several annular sectors in order to facilitate its fixing on the housing 30.
  • the elastic holding element 50 ensures the cold maintenance of the ring sectors 10 on the ring support structure 3.
  • the temperature at which the ring assembly is located when the turbine does not operate that is to say at an ambient temperature which may be for example about 25 ° vs.
  • the ring support structure 3 comprises an annular upstream radial flange 32 having a first projection 34 on its inner face 32a opposite the upstream tabs 14 of the ring sectors 10, the projection 34 being housed in an annular groove 140 present on the outer face 14a of the upstream lugs 14.
  • a clearance Jl is present cold between the first projection 34 and the annular groove 140.
  • the expansion of the first projection 34 in the annular groove 140 contributes to the hot maintenance of the ring sectors 10 on the ring support structure 3.
  • hot is meant here the temperatures to which the ring assembly is subjected during the operation of the turbine, these temperatures being between 600 ° C and 900 ° C .
  • the annular upstream radial flange 32 also has a second projection 35 facing the outer face 14a of the upstream lugs 14, the second projection 35 extending from the inner face 32a of the upstream radial flange 32 for a distance less than that of the first projection 34.
  • the ring support structure On the downstream side, the ring support structure comprises an annular downstream radial flange 36 having a projection 38 on its inner face 36a opposite the downstream tabs 16 of the ring sectors 10.
  • each fret 40 passes through respectively an orifice 37 formed in the annular downstream radial flange 36 and an orifice 17 formed each downstream lug 16, the orifices 37 and 17 being aligned during the assembly of the ring sectors 10 on the ring support structure 3.
  • the locking bands 40 are made of a material having a coefficient of thermal expansion greater than the coefficient of thermal expansion of the ceramic matrix composite material of the ring sectors 10.
  • the locking bands 40 may for example be made of metal material.
  • a clearance J2 is present cold between the locking frets 40 and the orifices 17 present in each downstream lug 16. The expansion of the locking frets 40 in the orifices 17 contributes to the hot maintenance of the ring sectors 10 on the structure of ring support 3.
  • inter-sector sealing is provided by sealing tabs housed in grooves facing in the opposite edges of two neighboring ring sectors.
  • a tongue 22a extends over almost the entire length of the annular base 12 in the middle portion thereof.
  • Another tab 22b extends along the tab 14 and on a portion of the annular base 12.
  • Another tab 22c extends along the tab 16. At one end, the tab 22c abuts the tab 22a and on the tongue 22b.
  • the tongues 22a, 22b, 22c are for example metallic and are mounted with cold play in their housings to ensure the sealing function at the temperatures encountered in service.
  • Ventperes 33 formed in the flange 32 make it possible to supply cooling air to the outside of the turbine ring 10.
  • Each ring sector 10 described above is made of ceramic matrix composite material (CMC) by forming a fibrous preform having a shape close to that of the ring sector and densification of the ring sector by a ceramic matrix .
  • CMC ceramic matrix composite material
  • the fiber preform it is possible to use ceramic fiber yarns, for example SiC fiber yarns, such as those marketed by the Japanese company Nippon Carbon under the name "Nicalon", or carbon fiber yarns.
  • the fiber preform is advantageously made by three-dimensional weaving, or multilayer weaving with development of debonding zones to separate the preform portions corresponding to the tabs 14 and 16 of the sectors 10.
  • the weave can be interlock type, as illustrated.
  • Other weaves of three-dimensional weave or multilayer can be used as for example multi-web or multi-satin weaves.
  • the blank After weaving, the blank can be shaped to obtain a ring sector preform which is consolidated and densified by a ceramic matrix, the densification can be achieved in particular by chemical vapor infiltration (CVI) which is well known in itself.
  • CVI chemical vapor infiltration
  • the ring support structure 3 is made of a metallic material such as a Waspaloy®, inconel 718 or AMI alloy.
  • the ring support structure comprises at least one flange.
  • the annular downstream radial flange 36 which is elastically deformable in the axial direction DA of the ring.
  • the annular downstream radial flange 36 is pulled in the direction DA as shown in FIG. 2 in order to increase the spacing between the flanges 32 and 36 and to allow the insertion of the first projection 34 has on the flange 32 in the groove 140 present on the lug 14 without risk of damage to the ring sector 10.
  • the annular downstream radial flange 36 In order to facilitate the traction separation of the annular downstream radial flange 36, it comprises a a plurality of hooks 39 distributed on its face 36b, which face is opposed to the face 36a of the flange 36 opposite the downstream tabs 16 of the ring sectors 10.
  • the traction in the axial direction DA of the ring exerted on the flange 36 elastically deformable is here made by means of a tool 50 comprising at least one arm 51 whose end comprises a hook 510 which is engaged in a hook 39 present on the outer face 36a of the flange 36.
  • the number of hooks 39 distributed on the face 36a of the flange 36 is defined as a function of the number of traction points that one This number depends mainly on the elastic nature of the flange.
  • Other forms and arrangements of means for exerting traction in the axial direction DA on one of the flanges of the ring support structure can of course be considered within the scope of the present invention.
  • the free ends 141 and 161 of the lugs 14 and 16 are respectively engaged in the elastic attachment portions 521 and 531 of the elastic holding element 50, on the one hand, until the grooves 142 and 143 of the lug 14 respectively cooperate with the curved ends 5210 and 5211 of the elastic fastening portion 521, and, on the other hand, until the grooves 162 and 163 of the lug 16 cooperate respectively with the curved ends 5310 and 5311 of the elastic attachment portion 531.
  • each lug 14 or 16 of the ring sector may comprise one or more orifices for the passage of one or more frets.
  • the hoop 40 are hooped in the orifices 37 of the annular downstream radial flange 36 by known metal assemblies such as adjustments H6-P6 or other force arrangements that allow the holding of these elements cold.
  • the frets 40 may be replaced by pins or any other equivalent element.
  • FIG. 3 shows an alternative embodiment of the high-pressure turbine ring assembly which differs from the high-pressure turbine ring assembly described above in connection with FIGS.
  • the internal and external grooves 1142, 1143 present at the end 1141 of the tab 114 of the ring sectors 110 and the inner and outer grooves 1162, 1163 present at the end 1161 of the tab 116 of the ring sectors 110 have a rectilinear shape and the curved ends 6210, 6211 of the elastic fastening portion 621 have at the end of the first arm 62 of the elastic holding member 60 and the curved ends 6310, 6311 of the elastic fastening portion 631 present at the end of the second arm 63 of the elastic holding member 60 extend in a rectilinear direction.
  • the elastic holding member 60 is made of a plurality of segments.
  • the other parts of the high pressure turbine ring assembly are identical to those already described above in connection with the ring assembly shown in FIGS. 1 and 2.
  • FIG. 4 shows a high pressure turbine ring assembly according to another embodiment which differs from the above described ring assembly in connection with FIGS. 1 and 2 in that it uses a means or element different elastic holding.
  • the ring assembly of FIG. 4 comprises a turbine ring 201 of ceramic matrix composite material (CMC) and a ring support metal structure 203.
  • the turbine ring 201 is formed of a plurality of ring sectors 210 and surrounds a set of rotary blades 205.
  • Each ring sector 210 has a substantially P-shaped or inverted ⁇ -shaped section with an annular base 212 whose inner face is coated with a layer 213 of abradable material, upstream and downstream tabs 214, 216 extend from the outer face of the annular base 212 in the radial direction DR.
  • the ring support structure 203 which is integral with a turbine casing 230 comprises an element or elastic holding means 250 comprising a base 251 fixed on the inner face of the shell 231 of the turbine casing 230, a first and a second arm 252 and 253 extend from the base 251 respectively upstream and downstream.
  • the elastic holding element 250 forms with these two arms 252 and 253 a C-clip type elastic fastener making it possible to keep the ring sectors 210 cold on the ring support structure 203.
  • the first arm 252 comprises its free end 2520 a curved attachment portion 2521 extending here in a rectilinear direction.
  • the curved attachment portion 2521 holds the free end 2141 of the upstream tab 214 of each ring sector 210.
  • the free end 2141 of the upstream tab 214 has an external groove 2143 formed on the outer face 214a of the tab 214 and cooperating with the curved attachment portion 2521, the groove 2143 here having a rectilinear shape.
  • the second arm 253 comprises at its free end 2530 a curved attachment portion 2531, extending in a rectilinear direction, which holds the free end 2161 of the downstream tab 216 of each ring sector 210.
  • free end 2161 of the downstream tab 216 has an external groove 2163 formed on the outer face 216a of the tab 216 and cooperating with the curved attachment portion 2531, the groove 2163 here having a rectilinear shape.
  • the elastic holding member 250 may be made of a metallic material such as a Waspaloy®, inconel 718 or AMI alloy. It is preferably made of several annular sectors to facilitate its attachment to the housing 230. The elastic holding member 250 ensures the cold maintenance of the ring sectors 210 on the ring support structure 203.
  • the ring support structure 203 comprises an annular upstream radial flange 232 having a first projection 234 on its inner face 232a opposite the upstream legs 214 of the ring sectors 210, the projection 234 being housed in an annular groove 2140 on the outer face 214a of the upstream lugs 214.
  • a clearance J21 is present cold between the first projection 234 and the annular groove 2140. The expansion of the first projection 234 in the annular grooves 2140 participates in the hot maintenance of the ring sectors 210 on the ring support structure 203.
  • the annular upstream radial flange 232 also has a second projection 235 facing the outer face 214a of the upstream legs 214, the second projection 235 extending from the inner face 232a of the upstream radial flange 232 to a distance less than that of the first projection 234.
  • the ring support structure comprises an annular downstream radial flange 236 having a projection 238 on its inner face 236a opposite the legs downstream 216 ring sectors 210.
  • the ring sectors 210 are furthermore held by holding elements, here in the form of locking frets 240.
  • the locking frets 240 are engaged both in the upstream downstream flange. annular 236 of the ring support structure 203 and in the downstream legs 216 of the ring sectors 210.
  • each band 240 passes respectively through an orifice 237 formed in the annular downstream radial flange 236 and an orifice 217 formed each
  • the blocking shrouds 240 are made of a material having a coefficient of thermal expansion greater than the coefficient of thermal expansion of the ceramic matrix composite material of the ring sectors 210.
  • the blocking frets 240 may for example be made of metallic material.
  • a clearance J22 is present in cold condition between the locking frets 240 and the orifices 217 present in each downstream lug 216.
  • the expansion of the locking frets 240 in the orifices 217 contributes to the heat retention of the ring sectors 210 on the structure of ring support 203.
  • inter-sector sealing is provided by sealing tabs 222a, 222b, 222c as previously cut.
  • ventilation orifices 233 formed in the flange 232 make it possible to supply cooling air to the outside of the turbine ring 210.
  • Each ring sector 210 is made of ceramic matrix composite material (CMC) by forming a fibrous preform having a shape close to that of the ring sector and densifying the ring sector by a ceramic matrix.
  • the ring support structure 203 is made of a metallic material such as a Waspaloy®, inconel 718 or AMI alloy.
  • the annular downstream radial flange 236 When mounting a ring sector 210, the annular downstream radial flange 236 is pulled in the direction DA as shown in Fig. 5 to allow the insertion of the first projection 234 on the flange 232 into the groove 2140 present on the leg 214 without risk in order to facilitate the traction separation of the annular downstream radial flange 236, the latter comprises a plurality of hooks 239 distributed on its face 236b, which face is opposite the face 236a of the flange 236 opposite the downstream tabs 216 of the ring sectors 210.
  • the traction in the axial direction DA of the ring exerted on the elastically deformable flange 236 is here carried out by means of a tool 270 comprising at least one arm 271 whose end comprises a hook 2710 which is engaged in a hook 239 present on the outer face 236a of the flange 236.
  • the free ends 2141 and 2161 of the tabs 214 and 216 are engaged between the ends 2520 and 2530 of the elastic holding member 250 until the groove 2143 of the leg 214 and the groove 2163 of the tab 216 cooperate respectively with the curved attachment portions 2521 and 2531 of the elastic holding member 250.
  • the projection 234 of the flange 214 inserted in the groove 2140 of the tab 214 the Curved attachment portions 2521 and 2531 positioned in the grooves 2143 and 2163 and said tabs 214 and 216 positioned to align the holes 217 and 237, the flange 236 is released.
  • a band 240 is then engaged in the aligned orifices 237 and 217 respectively formed in the annular downstream radial flange 236 and in the downstream tab 216.
  • Each leg 214 or 216 ring sector may comprise one or more orifices for the passage of one or more frets.
  • the frets 240 are shrunk in the orifices 237 of the annular downstream radial flange 236 by known metal assemblies such as adjustments H6-P6 or other force arrangements that allow the holding of these elements cold.
  • the frets 240 may be replaced by pins or any other equivalent element.
  • FIG. 6 shows a high pressure turbine ring assembly according to another embodiment.
  • the ring assembly of FIG. 6 comprises a turbine ring 301 made of a ceramic matrix composite material (CMC) and a metal ring support structure 303 integral with a housing.
  • CMC ceramic matrix composite material
  • the turbine ring 301 is formed of a plurality of ring sectors 310 and surrounds a set of rotating blades (not shown in Figure 6).
  • Each ring sector 310 has a K-shape with an annular base 312 whose inner face coated with a layer 313 of abradable material defines the flow stream gas flow in the turbine.
  • a first leg 314 and a second substantially S-shaped lug 316 extend from the outer face of the annular base 312.
  • the ring support structure 303 comprises an annular upstream radial flange 332 having a first projection 334 on its inner face 332a opposite the upstream tabs 314 of the ring sectors 310, the projection 334 being housed in an annular groove 3140 present in FIG. the end 3141 of the upstream tabs 314.
  • a clearance J31 is present cold between the first projection 334 and the annular groove 3140.
  • the expansion of the first projection 334 in the annular grooves 3140 contributes to the hot maintenance of the ring sectors 310 on the ring support structure 303.
  • the annular upstream radial flange 332 also has a second projection 335 which extends under the end 3141 of the upstream tabs 314.
  • the ring support structure On the downstream side, the ring support structure comprises an annular downstream radial flange 336 having a projection 338 on its outer face 336b.
  • the annular radial flange 336 further comprises arms 339, here two in each ring sector, which extend radially on the side of the outer surface of the flange 336.
  • Each arm 339 has at its free end 3390 an orifice 3391.
  • the ring assembly further comprises elastic holding means or members 350 of the C-clip type each comprising a first elastic attachment portion 352 and a second elastic attachment portion 353.
  • the elastic holding members 350 make it possible to cold keeping the end 3161 of the downstream lug 316 of the ring sectors 310 against the seam 338, a constraint being exerted on its two parts respectively by the end 3520 of the first elastic fastening portion 352 and the end 3530 of the second elastic fastening portion 353 of each elastic holding member 350.
  • the elastic holding member 350 may be made of metallic material such as a Waspaloy® alloy, inconel 718, or AMI.
  • the ring sectors 310 are further maintained by holding members, here in the form of pins 340.
  • the pins 340 are engaged both in the arms 339 of the annular upstream downstream flange. 336 of the ring support structure 303, in the elastic retaining elements 350 and in the downstream tabs 316 of the ring sectors 310.
  • each pin 340 passes through respectively an orifice 3391 formed in each arm 339 present on the annular downstream radial flange 3236, an orifice 355 formed in each elastic holding element 350 and an orifice 317 formed in each lug 316.
  • the pins 340 are made of a material having a coefficient of thermal expansion greater than the coefficient of thermal expansion of the material ceramic matrix composite of the ring sectors 310.
  • the pins 340 may for example be made of metal material.
  • a clearance J32 is present cold between the pins 340 and the orifices 317 present in each downstream leg 216. The expansion of the pins 340 in the orifices 317 participate in the hot maintenance of the ring sectors 310 on the ring support structure 303.
  • Each ring sector 310 is made of ceramic matrix composite material (CMC) by forming a fibrous preform having a shape close to that of the ring sector and densification of the ring sector by a ceramic matrix.
  • the ring support structure 303 is made of a metallic material such as a Waspaloy®, inconel 718 or AMI alloy.
  • the first projection 334 on the flange 332 is engaged in the groove 3140 on the tab 314.
  • the end 3161 of the tab 316 of each sector ring 310 is pressed against the projection 338 at the end of the annular flange 336.
  • the elastic fastening elements 250 are positioned between the end 3161 and the projection 338, the end 3520 of the first portion resilient fastener 352 being in contact with the protrusion 338 and the end 3530 of the second elastic fastening portion 353 of each elastic holding member 350 being in contact with the end 3161 of the tab 316.
  • the elastic members 350 keep the end 3161 of the lug 316 of each ring sector 310 against the seam 338 of the annular flange 336 cold.
  • a pin 340 is then engaged in each series of aligned orifices 3391, 355, and 317 respectively formed in each arm 339 present on the annular downstream radial flange 3236, in an elastic holding member 350 and in the leg 316.
  • the pins 340 are shrunk into the orifices 3391 of each arm 339 by known metal assemblies such as adjustments H6-P6 or other strength arrangements that allow the holding of these elements cold.
  • the pins 340 may be replaced by fretsou any other equivalent element.
  • the ring sectors 310 are held by the resilient retaining element 350.
  • the expansion of the elastic retaining element 350 no longer makes it possible to maintain the ring sectors at the level of the portions. resilient fasteners 352 and 353.
  • the hot hold is provided both by the expansion of the protrusion 334 in the groove 3140 of the tab 314 which fills or cancels the clearance J31 and by the expansion of the pins 340 in the orifice 317 of the paw 316 which fills or cancels the game J32.
  • FIGS. 6 and 7 The turbine ring assembly of FIGS. 6 and 7 has been described with ring sectors having a K-shaped section. However, this embodiment also applies to ring sectors having a section substantially In the same way, the embodiments of the turbine ring assembly described in relation to FIGS. having a K-shaped section.

Abstract

Un ensemble d'anneau de turbine comprend une pluralité de secteurs d'anneau (10) en matériau composite à matrice céramique formant un anneau de turbine (1) et une structure de support d'anneau (3) comportant une première et une deuxième brides annulaires (32, 36), chaque secteur d'anneau ayant des pattes (14, 16). La première patte (14) de chaque secteur d'anneau (10) comporte une rainure annulaire (140) dans laquelle est logée une saillie annulaire (34) de la première bride (32), un jeu (J1) étant présent à froid entre la saillie annulaire (34) et la rainure annulaire (140). La deuxième patte (16) de chaque secteur d'anneau (10) est reliée à la structure de support d'anneau (3) par un élément de maintien élastique (50). la deuxième patte (16) de chaque secteur d'anneau (10) comporte au moins une ouverture (17) dans laquelle est logée une partie d'un élément de maintien (40) solidaire de la deuxième bride annulaire (36) de la structure de support d'anneau (3), un jeu (J2) étant présent à froid entre l'ouverture (17) de la deuxième patte (16) et la partie de l'élément de maintien (40) présente dans ladite ouverture, ledit élément de maintien étant en un matériau ayant un coefficient de dilatation thermique supérieur au coefficient de dilatation thermique du matériau composite à matrice céramique des secteurs d'anneau.

Description

Ensemble d'anneau de turbine avec maintien élastique à froid
Arrière-plan de l'invention
Le domaine d'application de l'invention est notamment celui des moteurs aéronautiques à turbine à gaz. L'invention est toutefois applicable à d'autres turbomachines, par exemple des turbines industrielles.
Les matériaux composites à matrice céramique, ou CMC, sont connus pour conserver leurs propriétés mécaniques à des températures élevées, ce qui les rend aptes à constituer des éléments de structure chaude.
Dans des moteurs aéronautiques à turbine à gaz, l'amélioration du rendement et la réduction de certaines émissions polluantes conduisent à rechercher un fonctionnement à des températures toujours plus élevées. Dans le cas d'ensembles d'anneau de turbine entièrement métalliques, il est nécessaire de refroidir tous les éléments de l'ensemble et en particulier l'anneau de turbine qui est soumis à des flux très chauds, typiquement supérieurs à la température supportable par le matériau métallique. Ce refroidissement a un impact significatif sur la performance du moteur puisque le flux de refroidissement utilisé est prélevé sur le flux principal du moteur. En outre, l'utilisation de métal pour l'anneau de turbine limite les possibilités d'augmenter la température au niveau de la turbine, ce qui permettrait pourtant d'améliorer les performances des moteurs aéronautiques.
Par ailleurs, un ensemble d'anneau de turbine métallique se déforme sous l'effet des flux thermiques, ce qui modifie les jeux au niveau de la veine d'écoulement et, par conséquent, les performances de la turbine.
C'est pourquoi l'utilisation de CMC pour différentes parties chaudes des moteurs a déjà été envisagée, d'autant que les CMC présentent comme avantage complémentaire une masse volumique inférieure à celle de métaux réfractaires traditionnellement utilisés.
Ainsi, la réalisation de secteurs d'anneau de turbine en une seule pièce en CMC est notamment décrite dans le document US 2012/0027572. Les secteurs d'anneau comportent une base annulaire dont la face interne définit la face interne de l'anneau de turbine et une face externe à partir de laquelle s'étendent deux parties formant pattes dont les extrémités sont engagées dans des logements d'une structure métallique de support d'anneau.
L'utilisation de secteurs d'anneau en CMC permet de réduire significativement la ventilation nécessaire au refroidissement de l'anneau de turbine. Toutefois, le maintien en position des secteurs d'anneau demeure un problème en particulier vis-à-vis des dilatations différentielles qui peuvent se produire entre la structure métallique de support et les secteurs d'anneau en CMC. En outre, une autre problématique réside dans le contrôle de la forme de la veine aussi bien à froid qu'à chaud sans générer de contraintes trop importantes sur les secteurs d'anneau.
Objet et résumé de l'invention
L'invention vise à éviter de tels inconvénients et propose à cet effet un ensemble d'anneau de turbine comprenant une pluralité de secteurs d'anneau en matériau composite à matrice céramique formant un anneau de turbine et une structure de support d'anneau comportant une première et une deuxième brides annulaires, chaque secteur d'anneau ayant une partie formant base annulaire avec une face interne définissant la face interne de l'anneau de turbine et une face externe à partir de laquelle s'étendent une première et une deuxième pattes, les pattes de chaque secteur d'anneau étant maintenues entre les deux brides annulaires de la structure de support d'anneau, caractérisé en ce que la première patte de chaque secteur d'anneau comporte une rainure annulaire sur sa face en regard de la première bride annulaire de la structure de support d'anneau, la première bride annulaire de la structure de support d'anneau comprenant une saillie annulaire sur sa face en regard de la première patte de chaque secteur d'anneau, la saillie annulaire de la première bride étant logée dans la rainure annulaire de la première patte de chaque secteur d'anneau, un jeu étant présent à froid entre la saillie annulaire et la rainure annulaire, en ce qu'au moins la deuxième patte de chaque secteur d'anneau est reliée à la structure de support d'anneau par au moins un élément de maintien élastique, et en ce que la deuxième patte de chaque secteur d'anneau comporte au moins une ouverture dans laquelle est logée une partie d'un élément de maintien solidaire de la deuxième bride annulaire de la structure de support d'anneau, un jeu étant présent à froid entre l'ouverture de la deuxième patte et la partie de l'élément de maintien présente dans ladite ouverture, ledit élément de maintien étant en un matériau ayant un coefficient de dilatation thermique supérieur au coefficient de dilatation thermique du matériau composite à matrice céramique des secteurs d'anneau.
Dans l'ensemble d'anneau selon l'invention, les secteurs d'anneau sont maintenus à froid par des moyens de maintien élastiques qui permettent un montage des secteurs d'anneau sans précontrainte. Le maintien des secteurs d'anneau par les moyens de maintien élastiques n'est plus assuré à chaud en raison de leur dilatation. A chaud, l'effort de maintien est repris par la dilatation de la saillie annulaire de la première bride et le ou les éléments de maintien, dilatation qui n'entraîne pas de contrainte sur les secteurs d'anneaux en raison de la présence d'un jeu à froid entre la saillie annulaire de la première bride et la rainure annulaire de la première patte de chaque secteur d'anneau, d'une part, et, d'autre part, le jeu présent entre le ou les éléments de maintien et la ou les ouvertures de la deuxième patte.
Selon un mode de réalisation de l'ensemble d'anneau selon l'invention, chaque secteur d'anneau présente une forme de Pi en coupe axiale, des première et deuxième pattes s'étendant à partir de la face externe de la partie formant base annulaire, le moyen de maintien élastique comprenant une base fixée sur la structure de support d'anneau à partir de laquelle s'étendent un premier et un deuxième bras, chaque bras comportant à son extrémité libre une portion d'attache élastique de type C-clip, l'extrémité libre de la première patte de chaque secteur d'anneau étant maintenue par la portion d'attache élastique du premier bras tandis que l'extrémité libre de la deuxième patte de chaque secteur d'anneau est maintenue par la portion d'attache élastique du deuxième bras du moyen de maintien élastique.
L'utilisation de portions d'attache élastiques de type C-clip permet un montage à froid avec des contraintes limitées. Le contact entre les secteurs d'anneau et la structure de support d'anneau est uniforme, ce qui permet une bonne répartition des efforts.
Selon une caractéristique particulière de l'ensemble d'anneau de l'invention, la première patte de chaque secteur d'anneau comporte une rainure externe et une rainure interne coopérant avec la portion d'attache élastique de type C-clip du premier bras du moyen de maintien élastique, la deuxième patte de chaque secteur d'anneau comportant une rainure externe et une rainure interne coopérant avec la portion d'attache élastique de type C-clip du deuxième bras du moyen de maintien élastique.
Les rainures internes et externes des première et deuxième pattes de chaque secteur d'anneau peuvent présenter un rayon de courbure similaire au rayon de courbure des portions d'attache élastiques de type C-clip des premier et deuxième bras du moyen de maintien élastique. Elles peuvent également présenter une forme rectiligne, les portions d'attache élastiques de type C-clip des premier et deuxième bras du moyen de maintien élastique s'étendant dans ce cas suivant une direction rectiligne.
Selon un autre mode de réalisation de l'ensemble d'anneau selon l'invention, chaque secteur d'anneau présente une forme de Pi en coupe axiale, des première et deuxième pattes s'étendant à partir de la face externe de la partie formant base annulaire, le moyen de maintien élastique comprenant une base fixée sur la structure de support d'anneau à partir de laquelle s'étendent un premier et un deuxième bras formant ensemble une portion d'attache élastique de type C-clip, l'extrémité libre de la première patte de chaque secteur d'anneau étant maintenue par le premier bras tandis que l'extrémité libre de la deuxième patte de chaque secteur d'anneau est maintenue par le deuxième bras du moyen de maintien élastique.
L'utilisation d'une portion d'attache élastique de type C-clip permet un montage à froid avec des contraintes limitées. Le contact entre les secteurs d'anneau et la structure de support d'anneau est uniforme, ce qui permet une bonne répartition des efforts.
Selon une caractéristique particulière de l'ensemble d'anneau de l'invention, la première patte de chaque secteur d'anneau comporte une rainure externe coopérant avec l'extrémité libre du premier bras du moyen de maintien élastique, la deuxième patte de chaque secteur d'anneau comportant une rainure externe coopérant avec l'extrémité libre du deuxième bras du moyen de maintien élastique.
Les rainures externes des première et deuxième pattes de chaque secteur d'anneau peuvent présenter une forme rectiligne, les extrémités libres des premier et deuxième bras du moyen de maintien élastique s'étendant suivant une direction rectiligne.
Selon encore un autre mode de réalisation de l'ensemble d'anneau selon l'invention, chaque secteur d'anneau présente en coupe axiale une forme de K, des première et deuxième pattes s'étendant à partir de la face externe de la partie formant base annulaire, la première patte comportant à son extrémité une rainure annulaire dans laquelle est logée la saillie annulaire de la première bride annulaire, la deuxième patte de chaque secteur d'anneau étant reliée à la deuxième bride par un ou plusieurs éléments de maintien élastiques.
Selon une caractéristique particulière de l'ensemble d'anneau de l'invention, la deuxième patte de chaque secteur d'anneau est reliée à la deuxième bride annulaire de la structure de support d'anneau par un ou plusieurs éléments de clipsage.
Brève description des dessins.
L'invention sera mieux comprise à la lecture faite ci-après, à titre indicatif mais non limitatif, en référence aux dessins annexés sur lesquels :
- la figure 1 est une vue en section montrant un mode de réalisation d'un ensemble d'anneau de turbine selon l'invention ;
- la figure 2 montre schématiquement le montage d'un secteur d'anneau dans la structure de support d'anneau de l'ensemble d'anneau de la figure 1 ;
- la figure 3 est une vue schématique en perspective montrant une variante de réalisation de l'ensemble d'anneau de la figure 1 ;
- la figure 4 est une vue en section montrant un autre mode de réalisation d'un ensemble d'anneau de turbine selon l'invention ;
- la figure 5 montre schématiquement le montage d'un secteur d'anneau dans la structure de support d'anneau de l'ensemble d'anneau de la figure 4 ;
- la figure 6 est une vue en section montrant un autre mode de réalisation d'un ensemble d'anneau de turbine selon l'invention ;
- la figure 7 montre schématiquement le montage d'un secteur d'anneau dans la structure de support d'anneau de l'ensemble d'anneau de la figure 6. Description détaillée de modes de réalisation
La figure 1 montre un ensemble d'anneau de turbine haute pression comprenant un anneau de turbine 1 en matériau composite à matrice céramique (CMC) et une structure métallique de support d'anneau 3. L'anneau de turbine 1 entoure un ensemble de pales rotatives 5. L'anneau de turbine 1 est formé d'une pluralité de secteurs d'anneau 10, la figure 1 étant une vue en section radiale. La flèche DA indique la direction axiale par rapport à l'anneau de turbine 1 tandis que la flèche DR indique la direction radiale par rapport à l'anneau de turbine 1.
Chaque secteur d'anneau 10 a une section sensiblement en forme de Pi ou π inversé avec une base annulaire 12 dont la face interne revêtue d'une couche 13 de matériau abradable définit la veine d'écoulement de flux gazeux dans la turbine. Des pattes amont et aval 14, 16 s'étendent à partir de la face externe de la base annulaire 12 dans la direction radiale DR. Les termes "amont" et "aval" sont utilisés ici en référence au sens d'écoulement du flux gazeux dans la turbine (flèche F).
La structure de support d'anneau 3 qui est solidaire d'un carter de turbine 30 comprend un élément ou moyen de maintien élastique 50 comprenant une base 51 fixée sur la face interne de la virole 31 du carter de turbine 30, un premier et un deuxième bras 52 et 53 s'étendent depuis la base 51 respectivement vers l'amont et l'aval. La base 51 peut être fixé sur la face interne de la virole 31 du carter de turbine 30 notamment par soudage, par piontage, par rivetage ou par serrage au moyen d'organe de liaisons de type vis/écrou, des orifices étant percés dans la base 51 et la virole 31 pour permettre le passage des éléments de fixation ou de liaison.
Le premier bras 52 comprend à son extrémité libre 520 une portion d'attache élastique 521 de type C-clip présentant ici un rayon de courbure. La portion d'attache élastique 521 maintien l'extrémité libre 141 de la patte amont 14 de chaque secteur d'anneau 10. L'extrémité libre 141 de la patte amont 14 comporte des rainures interne 142 et externe 143 ménagées de chaque côté de la patte 14 et coopérant avec la portion d'attache élastique 521, les rainures 142 et 143 présentant ici un rayon de courbure similaire au rayon de courbure de la portion d'attache élastique 521. De même, le deuxième bras 53 comprend à son extrémité libre 530 une portion d'attache élastique 531 de type C-clip, présentant ici un rayon de courbure, qui maintien l'extrémité libre 161 de la patte aval 16 de chaque secteur d'anneau 10. L'extrémité libre 161 de la patte aval 16 comporte des rainures interne 162 et externe 163 ménagées de chaque côté de la patte 16 et coopérant avec la portion d'attache élastique 531, les rainures 162 et 163 présentant ici un rayon de courbure similaire au rayon de courbure de la portion d'attache élastique 531.
L'élément de maintien élastique 50 peut être réalisé en matériau métallique tel qu'un alliage Waspaloy®, inconel 718, ou AMI. Il est de préférence réalisé en plusieurs secteurs annulaires afin de faciliter sa fixation sur le carter 30. L'élément de maintien élastique 50 assure le maintien à froid des secteurs d'anneau 10 sur la structure de support d'anneau 3. Par « à froid », on entend dans la présente invention, la température à laquelle se trouve l'ensemble d'anneau lorsque la turbine ne fonctionne pas, c'est-à-dire à une température ambiante qui peut être par exemple d'environ 25°C.
La structure de support d'anneau 3 comprend une bride radiale amont annulaire 32 comportant une première saillie 34 sur sa face interne 32a en regard des pattes amont 14 des secteurs d'anneau 10, la saillie 34 étant logée dans une rainure annulaire 140 présente sur la face externe 14a des pattes amont 14. Un jeu Jl est présent à froid entre la première saillie 34 et la rainure annulaire 140. La dilatation de la première saillie 34 dans la rainure annulaire 140 participe au maintien à chaud des secteurs d'anneau 10 sur la structure de support d'anneau 3. Par « à chaud », on entend ici les températures auxquelles est soumis l'ensemble d'anneau lors du fonctionnement de la turbine, ces températures pouvant être comprises entre 600°C et 900°C.
La bride radiale amont annulaire 32 comporte également une deuxième saillie 35 en regard de la face externe 14a des pattes amont 14, la deuxième saillie 35 s'étendant depuis la face interne 32a de la bride radiale amont 32 sur une distance inférieure à celle de la première saillie 34.
Du côté aval, la structure de support d'anneau comprend une bride radiale aval annulaire 36 comportant une saillie 38 sur sa face interne 36a en regard des pattes aval 16 des secteurs d'anneau 10.
Par ailleurs, dans l'exemple décrit ici, les secteurs d'anneau 10 sont en outre maintenus par des éléments de maintien, ici sous forme de frettes de blocage 40. Les frettes de blocage 40 sont engagées à la fois dans la bride aval amont annulaire 36 de la structure de support d'anneau 3 et dans les pattes aval 16 des secteurs d'anneau 10. A cet effet, chaque frette 40 traverse respectivement un orifice 37 ménagé dans la bride radiale aval annulaire 36 et un orifice 17 ménagé chaque patte aval 16, les orifices 37 et 17 étant alignés lors du montage des secteurs d'anneau 10 sur la structure de support d'anneau 3. Les frettes de blocage 40 sont réalisées en un matériau ayant un coefficient de dilatation thermique supérieur au coefficient de dilatation thermique du matériau composite à matrice céramique des secteurs d'anneau 10. Les frettes de blocage 40 peuvent par exemple être réalisées en matériau métallique. Un jeu J2 est présent à froid entre les frettes de blocage 40 et les orifices 17 présents dans chaque patte aval 16. La dilatation des frettes de blocage 40 dans les orifices 17 participe au maintien à chaud des secteurs d'anneau 10 sur la structure de support d'anneau 3.
En outre, l'étanchéité inter-secteurs est assurée par des languettes d'étanchéité logées dans des rainures se faisant face dans les bords en regard de deux secteurs d'anneau voisin. Une languette 22a s'étend sur presque toute la longueur de la base annulaire 12 dans la partie médiane de celle-ci. Une autre languette 22b s'étend le long de la patte 14 et sur une partie de la base annulaire 12. Une autre languette 22c s'étend le long de la patte 16. A une extrémité, la languette 22c vient en butée sur la languette 22a et sur la languette 22b. Les languettes 22a, 22b, 22c sont par exemple métalliques et sont montées avec jeu à froid dans leurs logements afin d'assurer la fonction d'étanchéité aux températures rencontrées en service.
De façon classique, des orifices de ventilation 33 formés dans la bride 32 permettent d'amener de l'air de refroidissement du côté extérieur de l'anneau de turbine 10.
On décrit maintenant un procédé de réalisation d'un ensemble d'anneau de turbine correspondant à celui représenté sur la figure 1.
Chaque secteur d'anneau 10 décrit ci-avant est réalisé en matériau composite à matrice céramique (CMC) par formation d'une préforme fibreuse ayant une forme voisine de celle du secteur d'anneau et densification du secteur d'anneau par une matrice céramique. Pour la réalisation de la préforme fibreuse, on peut utiliser des fils en fibres céramique, par exemple des fils en fibres SiC tels que ceux commercialisés par la société japonaise Nippon Carbon sous la dénomination "Nicalon", ou des fils en fibres de carbone.
La préforme fibreuse est avantageusement réalisée par tissage tridimensionnel, ou tissage multicouches avec aménagement de zones de déliaison permettant d'écarter les parties de préformes correspondant aux pattes 14 et 16 des secteurs 10.
Le tissage peut être de type interlock, comme illustré. D'autres armures de tissage tridimensionnel ou multicouches peuvent être utilisées comme par exemple des armures multi-toile ou multi-satin. On pourra se référer au document WO 2006/136755.
Après tissage, l'ébauche peut être mise en forme pour obtenir une préforme de secteur d'anneau qui est consolidée et densifiée par une matrice céramique, la densification pouvant être réalisée notamment par infiltration chimique en phase gazeuse (CVI) qui est bien connue en soi.
Un exemple détaillé de fabrication de secteurs d'anneau en CMC est notamment décrit dans le document US 2012/0027572.
La structure de support d'anneau 3 est quant à elle réalisée en un matériau métallique tel qu'un alliage Waspaloy®, inconel 718, ou AMI.
La réalisation de l'ensemble d'anneau de turbine se poursuit par le montage des secteurs d'anneau 10 sur la structure de support d'anneau 3. Dans l'exemple décrit, la structure de support d'anneau comprend au moins une bride, ici la bride radiale aval annulaire 36, qui est élastiquement déformable dans la direction axiale DA de l'anneau. Lors du montage d'un secteur d'anneau 10, la bride radiale aval annulaire 36 est tirée dans la direction DA comme montré sur la figure 2 afin d'augmenter l'écartement entre les brides 32 et 36 et permettre l'insertion de la première saillie 34 présente sur la bride 32 dans la rainure 140 présente sur la patte 14 sans risque d'endommagement du secteur d'anneau 10. Afin de faciliter l'écartement par traction de la bride radiale aval annulaire 36, celle-ci comporte une pluralité de crochets 39 répartis sur sa face 36b, face qui est opposée à la face 36a de la bride 36 en regard des pattes aval 16 des secteurs d'anneau 10. La traction dans la direction axiale DA de l'anneau exercée sur la bride 36 élastiquement déformable est ici réalisée au moyen d'un outil 50 comprenant au moins un bras 51 dont l'extrémité comporte un crochet 510 qui est engagé dans un crochet 39 présent sur la face externe 36a de la bride 36. Le nombre de crochets 39 répartis sur la face 36a de la bride 36 est défini en fonction du nombre de points de traction que l'on souhaite avoir sur la bride 36. Ce nombre dépend principalement du caractère élastique de la bride. D'autres formes et dispositions de moyens permettant d'exercer une traction dans la direction axiale DA sur une des brides de la structure de support d'anneau peuvent bien entendu être envisagées dans le cadre de la présente invention.
Une fois la bride annulaire 36 écartée dans la direction DA, les extrémités libres 141 et 161 des pattes 14 et 16 sont engagées respectivement dans les portions d'attache élastique 521 et 531 de l'élément de maintien élastique 50, d'une part, jusqu'à ce que les rainures 142 et 143 de la patte 14 coopèrent respectivement avec les extrémités courbées 5210 et 5211 de la portion d'attache élastique 521, et, d'autre part, jusqu'à ce que les rainures 162 et 163 de la patte 16 coopèrent respectivement avec les extrémités courbées 5310 et 5311 de la portion d'attache élastique 531. Une fois la saillie 34 de la bride 14 insérée dans la rainure 140 de la patte 14, les extrémités courbées 5210, 5211, 5310, 5311 logées dans les rainures 142, 143, 162, 163 et lesdites pattes 14 et 16 positionnées de manière à aligner les orifices 17 et 37, la bride 36 est relâchée. Une frette 40 est alors engagée dans les orifices alignés 37 et 17 ménagés respectivement dans la bride radiale aval annulaire 36 et dans la patte aval 16. Chaque patte 14 ou 16 de secteur d'anneau peut comporter un ou plusieurs orifices pour le passage d'une ou plusieurs frettes. Les frettes 40 sont frettées dans les orifices 37 de la bride radiale aval annulaire 36 par des montages métalliques connus tels que des ajustements H6-P6 ou autres montages en force qui permettent la tenue de ces éléments à froid. Les frettes 40 peuvent être remplacées par des pions ou tout autre élément équivalent.
A froid, les secteurs d'anneaux 10 sont maintenus par l'élément de maintien élastique 50. A chaud, la dilatation de l'élément de maintien élastique 50 ne permet plus d'assurer le maintien des secteurs d'anneau au niveau des portion d'attache 521 et 531. Le maintien à chaud est assuré à la fois par la dilatation de la saillie 34 dans la rainure 140 de la patte 14 qui comble ou annule le jeu Jl et par la dilatation de la frette 40 dans l'orifice 17 de la patte 16 qui comble ou annule le jeu J2. La figure 3 montre une variante de réalisation de l'ensemble d'anneau de turbine haute pression qui diffère de l'ensemble d'anneau de turbine haute pression décrit précédemment en relation avec les figures 1 et 2 en ce que les rainures interne et externe 1142, 1143 présentes à l'extrémité 1141 de la patte 114 des secteurs d'anneau 110 et les rainures interne et externe 1162, 1163 présentes à l'extrémité 1161 de la patte 116 des secteurs d'anneau 110 présentent une forme rectiligne et en ce que les extrémités courbées 6210, 6211 de la portion d'attache élastique 621 présente à l'extrémité du premier bras 62 de l'élément de maintien élastique 60 et les extrémités courbées 6310, 6311 de la portion d'attache élastique 631 présente à l'extrémité du deuxième bras 63 de l'élément de maintien élastique 60 s'étendent dans une direction rectiligne. Cela permet notamment de simplifier l'usinage des rainures dans les pattes des secteurs d'anneau. Dans ce cas, l'élément de maintien élastique 60 est réalisé en une pluralité de segments. Les autres parties de l'ensemble d'anneau de turbine haute pression sont identiques à celles déjà décrites précédemment en relation avec l'ensemble d'anneau représenté sur les figures 1 et 2.
La figure 4 montre un ensemble d'anneau de turbine haute pression selon un autre mode de réalisation qui diffère de l'ensemble décrit d'anneau ci-avant en relation avec les figures 1 et 2 en ce qu'il utilise un moyen ou élément de maintien élastique différent. Comme l'ensemble d'anneau précédent, l'ensemble d'anneau de la figure 4 comprend un anneau de turbine 201 en matériau composite à matrice céramique (CMC) et une structure métallique de support d'anneau 203. L'anneau de turbine 201 est formé d'une pluralité de secteurs d'anneau 210 et entoure un ensemble de pales rotatives 205. Chaque secteur d'anneau 210 a une section sensiblement en forme de Pi ou π inversé avec une base annulaire 212 dont la face interne revêtue d'une couche 213 de matériau abradable, des pattes amont et aval 214, 216 s'étendent à partir de la face externe de la base annulaire 212 dans la direction radiale DR.
La structure de support d'anneau 203 qui est solidaire d'un carter de turbine 230 comprend un élément ou moyen de maintien élastique 250 comprenant une base 251 fixée sur la face interne de la virole 231 du carter de turbine 230, un premier et un deuxième bras 252 et 253 s'étendent depuis la base 251 respectivement vers l'amont et l'aval. L'élément de maintien élastique 250 forme avec ces deux bras 252 et 253 une attache élastique de type C-clip permettant de maintenir à froid les secteurs d'anneau 210 sur la structure de support d'anneau 203. Le premier bras 252 comprend à son extrémité libre 2520 une portion d'attache courbée 2521 s'étendant ici suivant une direction rectiligne. La portion d'attache courbée 2521 maintien l'extrémité libre 2141 de la patte amont 214 de chaque secteur d'anneau 210. L'extrémité libre 2141 de la patte amont 214 comporte une rainure externe 2143 ménagée sur la face externe 214a de la patte 214 et coopérant avec la portion d'attache courbée 2521, la rainure 2143 présentant ici une forme rectiligne. De même, le deuxième bras 253 comprend à son extrémité libre 2530 une portion d'attache courbée 2531, s'étendant suivant une direction rectiligne, qui maintien l'extrémité libre 2161 de la patte aval 216 de chaque secteur d'anneau 210. L'extrémité libre 2161 de la patte aval 216 comporte une rainure externe 2163 ménagée sur la face externe 216a de la patte 216 et coopérant avec la portion d'attache courbée 2531, la rainure 2163 présentant ici une forme rectiligne.
L'élément de maintien élastique 250 peut être réalisé en matériau métallique tel qu'un alliage Waspaloy®, inconel 718, ou AMI. Il est de préférence réalisé en plusieurs secteurs annulaires afin de faciliter sa fixation sur le carter 230. L'élément de maintien élastique 250 assure le maintien à froid des secteurs d'anneau 210 sur la structure de support d'anneau 203.
De même que décrit ci-avant pour l'ensemble d'anneau des figures 1 et 2, la structure de support d'anneau 203 comprend une bride radiale amont annulaire 232 comportant une première saillie 234 sur sa face interne 232a en regard des pattes amont 214 des secteurs d'anneau 210, la saillie 234 étant logée dans une rainure annulaire 2140 présente sur la face externe 214a des pattes amont 214. Un jeu J21 est présent à froid entre la première saillie 234 et la rainure annulaire 2140. La dilatation de la première saillie 234 dans les rainures annulaires 2140 participe au maintien à chaud des secteurs d'anneau 210 sur la structure de support d'anneau 203. La bride radiale amont annulaire 232 comporte également une deuxième saillie 235 en regard de la face externe 214a des pattes amont 214, la deuxième saillie 235 s'étendant depuis la face interne 232a de la bride radiale amont 232 sur une distance inférieure à celle de la première saillie 234. Du côté aval, la structure de support d'anneau comprend une bride radiale aval annulaire 236 comportant une saillie 238 sur sa face interne 236a en regard des pattes aval 216 des secteurs d'anneau 210.
Par ailleurs, dans l'exemple décrit ici, les secteurs d'anneau 210 sont en outre maintenus par des éléments de maintien, ici sous forme de frettes de blocage 240. Les frettes de blocage 240 sont engagées à la fois dans la bride aval amont annulaire 236 de la structure de support d'anneau 203 et dans les pattes aval 216 des secteurs d'anneau 210. A cet effet, chaque frette 240 traverse respectivement un orifice 237 ménagé dans la bride radiale aval annulaire 236 et un orifice 217 ménagé chaque patte aval 216. Les frettes de blocage 240 sont réalisées en un matériau ayant un coefficient de dilatation thermique supérieur au coefficient de dilatation thermique du matériau composite à matrice céramique des secteurs d'anneau 210. Les frettes de blocage 240 peuvent par exemple être réalisées en matériau métallique. Un jeu J22 est présent à froid entre les frettes de blocage 240 et les orifices 217 présents dans chaque patte aval 216. La dilatation des frettes de blocage 240 dans les orifices 217 participe au maintien à chaud des secteurs d'anneau 210 sur la structure de support d'anneau 203.
En outre, l'étanchéité inter-secteurs est assurée par des languettes d'étanchéité 222a, 222b, 222c comme décrûtes précédemment. De façon classique, des orifices de ventilation 233 formés dans la bride 232 permettent d'amener de l'air de refroidissement du côté extérieur de l'anneau de turbine 210.
Chaque secteur d'anneau 210 est réalisé en matériau composite à matrice céramique (CMC) par formation d'une préforme fibreuse ayant une forme voisine de celle du secteur d'anneau et densification du secteur d'anneau par une matrice céramique. La structure de support d'anneau 203 est quant à elle réalisée en un matériau métallique tel qu'un alliage Waspaloy®, inconel 718, ou AMI.
Lors du montage d'un secteur d'anneau 210, la bride radiale aval annulaire 236 est tirée dans la direction DA comme montré sur la figure 5 afin de permettre l'insertion de la première saillie 234 présente sur la bride 232 dans la rainure 2140 présente sur la patte 214 sans risque d'endommagement du secteur d'anneau 210. Afin de faciliter l'écartement par traction de la bride radiale aval annulaire 236, celle-ci comporte une pluralité de crochets 239 répartis sur sa face 236b, face qui est opposée à la face 236a de la bride 236 en regard des pattes aval 216 des secteurs d'anneau 210. La traction dans la direction axiale DA de l'anneau exercée sur la bride 236 élastiquement déformable est ici réalisée au moyen d'un outil 270 comprenant au moins un bras 271 dont l'extrémité comporte un crochet 2710 qui est engagé dans un crochet 239 présent sur la face externe 236a de la bride 236.
Une fois la bride annulaire 236 écartée dans la direction DA, les extrémités libres 2141 et 2161 des pattes 214 et 216 sont engagées entre les extrémités 2520 et 2530 de l'élément de maintien élastique 250 jusqu'à ce que la rainure 2143 de la patte 214 et la rainure 2163 de la patte 216 coopèrent respectivement avec les portions d'attache courbées 2521 et 2531 de l'élément de maintien élastique 250. Une fois la saillie 234 de la bride 214 insérée dans la rainure 2140 de la patte 214, les portions d'attache courbées 2521 et 2531 positionnées dans les rainures 2143 et 2163 et lesdites pattes 214 et 216 positionnées de manière à aligner les orifices 217 et 237, la bride 236 est relâchée. Une frette 240 est alors engagée dans les orifices alignés 237 et 217 ménagés respectivement dans la bride radiale aval annulaire 236 et dans la patte aval 216. Chaque patte 214 ou 216 de secteur d'anneau peut comporter un ou plusieurs orifices pour le passage d'une ou plusieurs frettes. Les frettes 240 sont frettées dans les orifices 237 de la bride radiale aval annulaire 236 par des montages métalliques connus tels que des ajustements H6-P6 ou autres montages en force qui permettent la tenue de ces éléments à froid. Les frettes 240 peuvent être remplacées par des pions ou tout autre élément équivalent.
A froid, les secteurs d'anneaux 210 sont maintenus par l'élément de maintien élastique 250. A chaud, la dilatation de l'élément de maintien élastique 250 ne permet plus d'assurer le maintien des secteurs d'anneau au niveau des portion d'attache courbées 2521 et 2531. Le maintien à chaud est assuré à la fois par la dilatation de la saillie 234 dans la rainure 2140 de la patte 214 qui comble ou annule le jeu J21 et par la dilatation de la frette 240 dans l'orifice 217 de la patte 16 qui comble ou annule le jeu J22. La figure 6 montre un ensemble d'anneau de turbine haute pression selon un autre mode de réalisation. Comme les ensembles d'anneau décrits précédemment, l'ensemble d'anneau de la figure 6 comprend un anneau de turbine 301 en matériau composite à matrice céramique (CMC) et une structure métallique de support d'anneau 303 solidaire d'un carter de turbine 330. L'anneau de turbine 301 est formé d'une pluralité de secteurs d'anneau 310 et entoure un ensemble de pales rotatives (non représentées sur la figure 6). Chaque secteur d'anneau 310 présente une forme de K avec une base annulaire 312 dont la face interne revêtue d'une couche 313 de matériau abradable définit la veine d'écoulement de flux gazeux dans la turbine. Une première patte 314 et une deuxième patte 316 sensiblement en forme de S s'étendent à partir de la face externe de la base annulaire 312.
La structure de support d'anneau 303 comprend une bride radiale amont annulaire 332 comportant une première saillie 334 sur sa face interne 332a en regard des pattes amont 314 des secteurs d'anneau 310, la saillie 334 étant logée dans une rainure annulaire 3140 présente à l'extrémité 3141 des pattes amont 314. Un jeu J31 est présent à froid entre la première saillie 334 et la rainure annulaire 3140. La dilatation de la première saillie 334 dans les rainures annulaires 3140 participe au maintien à chaud des secteurs d'anneau 310 sur la structure de support d'anneau 303. La bride radiale amont annulaire 332 comporte également une deuxième saillie 335 qui s'étend sous l'extrémité 3141 des pattes amont 314.
Du côté aval, la structure de support d'anneau comprend une bride radiale aval annulaire 336 comportant une saillie 338 sur sa face externe 336b. La bride radiale annulaire 336 comprend en outre des bras 339, ici au nombre de deux par secteur d'anneau, qui s'étendent radialement du côté de la surface externe de la bride 336. Chaque bras 339 comporte à son extrémité libre 3390 un orifice 3391.
L'ensemble d'anneau comprend en outre des moyens ou éléments de maintien élastiques 350 de type C-clip comprenant chacun une première portion d'attache élastique 352 et une deuxième portion d'attache élastique 353. Les éléments de maintien élastiques 350 permettent de maintenir à froid l'extrémité 3161 de la patte aval 316 des secteurs d'anneau 310 contre la saille 338, une contrainte étant exercée sur ses deux parties par respectivement l'extrémité 3520 de la première portion d'attache élastique 352 et l'extrémité 3530 de la deuxième portion d'attache élastique 353 de chaque élément de maintien élastique 350. L'élément de maintien élastique 350 peut être réalisé en matériau métallique tel qu'un alliage Waspaloy®, inconel 718, ou AMI.
Par ailleurs, dans l'exemple décrit ici, les secteurs d'anneau 310 sont en outre maintenus par des éléments de maintien, ici sous forme pions 340. Les pions 340 sont engagés à la fois dans les bras 339 de la bride aval amont annulaire 336 de la structure de support d'anneau 303, dans les éléments de maintien élastique 350 et dans les pattes aval 316 des secteurs d'anneau 310. A cet effet, chaque pion 340 traverse respectivement un orifice 3391 ménagé dans chaque bras 339 présent sur la bride radiale aval annulaire 3236, un orifice 355 ménagé dans chaque élément de maintien élastique 350 et un orifice 317 ménagé dans chaque patte 316. Les pions 340 sont réalisées en un matériau ayant un coefficient de dilatation thermique supérieur au coefficient de dilatation thermique du matériau composite à matrice céramique des secteurs d'anneau 310. Les pions 340 peuvent par exemple être réalisés en matériau métallique. Un jeu J32 est présent à froid entre les pions 340 et les orifices 317 présents dans chaque patte aval 216. La dilatation des pions 340 dans les orifices 317 participent au maintien à chaud des secteurs d'anneau 310 sur la structure de support d'anneau 303.
Chaque secteur d'anneau 310 est réalisé en matériau composite à matrice céramique (CMC) par formation d'une préforme fibreuse ayant une forme voisine de celle du secteur d'anneau et densification du secteur d'anneau par une matrice céramique. La structure de support d'anneau 303 est quant à elle réalisée en un matériau métallique tel qu'un alliage Waspaloy®, inconel 718, ou AMI.
Lors du montage d'un secteur d'anneau 310 comme montré sur la figure 7, la première saillie 334 présente sur la bride 332 est engagée dans la rainure 3140 présente sur la patte 314. L'extrémité 3161 de la patte 316 de chaque secteur d'anneau 310 est plaquée contre la saillie 338 présente à l'extrémité de la bride annulaire 336. Une fois la saillie 334 insérée dans la rainure 3140 et l'extrémité 3161 plaquée contre la saillie 338, les éléments d'attache élastiques 250 sont positionnées entre l'extrémité 3161 et la saillie 338, l'extrémité 3520 de la première portion d'attache élastique 352 étant en contact avec la saillie 338 et l'extrémité 3530 de la deuxième portion d'attache élastique 353 de chaque élément de maintien élastique 350 étant en contact avec l'extrémité 3161 de la patte 316. Les éléments élastiques 350 assurent le maintien à froid l'extrémité 3161 de la patte 316 de chaque secteur d'anneau 310 contre la saille 338 de la bride annulaire 336.
Un pion 340 est ensuite engagé dans chaque série d'orifices alignés 3391, 355, et 317 ménagés respectivement dans chaque bras 339 présent sur la bride radiale aval annulaire 3236, dans un élément de maintien élastique 350 et dans la patte 316. Les pions 340 sont frettés dans les orifices 3391 de chaque bras 339 par des montages métalliques connus tels que des ajustements H6-P6 ou autres montages en force qui permettent la tenue de ces éléments à froid. Les pions 340 peuvent être remplacées par des frettesou tout autre élément équivalent.
A froid, les secteurs d'anneaux 310 sont maintenus par l'élément de maintien élastique 350. A chaud, la dilatation de l'élément de maintien élastique 350 ne permet plus d'assurer le maintien des secteurs d'anneau au niveau des portions d'attache élastiques 352 et 353. Le maintien à chaud est assuré à la fois par la dilatation de la saillie 334 dans la rainure 3140 de la patte 314 qui comble ou annule le jeu J31 et par la dilatation des pions 340 dans l'orifice 317 de la patte 316 qui comble ou annule le jeu J32.
L'ensemble d'anneau de turbine des figures 6 et 7 a été décrit avec des secteurs d'anneau ayant une section en forme de K. Toutefois, ce mode de réalisation s'applique également à des secteurs d'anneau ayant une section sensiblement en forme de π inversé comme ceux présentés sur les figures 1 à 5. De même, les modes de réalisation de l'ensemble d'anneau de turbine décrits en relation avec les figures 1 à 5 s'appliquent également à des secteurs d'anneau ayant une section en forme de K.

Claims

REVENDICATIONS
1. Ensemble d'anneau de turbine comprenant une pluralité de secteurs d'anneau (10) en matériau composite à matrice céramique formant un anneau de turbine (1) et une structure de support d'anneau (3) comportant une première et une deuxième brides annulaires (32, 36), chaque secteur d'anneau ayant une partie formant base annulaire (12) avec une face interne définissant la face interne de l'anneau de turbine et une face externe à partir de laquelle s'étendent une première et une deuxième pattes (14, 16), les pattes de chaque secteur d'anneau étant maintenues entre les deux brides annulaires (32, 36) de la structure de support d'anneau (3),
caractérisé en ce que la première patte (14) de chaque secteur d'anneau (10) comporte une rainure annulaire (140) sur sa face (14a) en regard de la première bride annulaire (32) de la structure de support d'anneau (3), la première bride annulaire de la structure de support d'anneau comprenant une saillie annulaire (34) sur sa face (32a) en regard de la première patte (14) de chaque secteur d'anneau (10), la saillie annulaire (34) de la première bride (32) étant logée dans la rainure annulaire (140) de la première patte (14) de chaque secteur d'anneau, un jeu (Jl) étant présent à froid entre la saillie annulaire (34) et la rainure annulaire (140),
en ce qu'au moins la deuxième patte (16) de chaque secteur d'anneau (10) est reliée à la structure de support d'anneau (3) par au moins un élément de maintien élastique (50),
et en ce que la deuxième patte (16) de chaque secteur d'anneau (10) comporte au moins une ouverture (17) dans laquelle est logée une partie d'un élément de maintien (40) solidaire de la deuxième bride annulaire (36) de la structure de support d'anneau (3), un jeu (J2) étant présent à froid entre l'ouverture (17) de la deuxième patte (16) et la partie de l'élément de maintien (40) présente dans ladite ouverture, ledit élément de maintien étant en un matériau ayant un coefficient de dilatation thermique supérieur au coefficient de dilatation thermique du matériau composite à matrice céramique des secteurs d'anneau.
2. Ensemble selon la revendication 1, caractérisé en ce que chaque secteur d'anneau (10) présente une forme de Pi en coupe axiale, des première et deuxième pattes (14, 16) s'étendant à partir de la face externe de la partie formant base annulaire (12), et en ce que le moyen de maintien élastique (50) comprend une base (51) fixée sur la structure de support d'anneau (3) à partir de laquelle s'étendent un premier et un deuxième bras (52, 53), chaque bras comportant à son extrémité libre une portion d'attache élastique de type C-clip (521, 531), l'extrémité libre (141) de la première patte (14) de chaque secteur d'anneau (10) étant maintenue par la portion d'attache élastique (521) du premier bras (52) tandis que l'extrémité libre (161) de la deuxième patte (16) de chaque secteur d'anneau est maintenue par la portion d'attache élastique (531) du deuxième bras (53) du moyen de maintien élastique (50).
3. Ensemble selon la revendication 2, caractérisé en ce que la première patte (14) de chaque secteur d'anneau (10) comporte une rainure externe (5211) et une rainure interne (5210) coopérant avec la portion d'attache élastique de type C-clip (521) du premier bras (52) du moyen de maintien élastique (50) et en ce que la deuxième patte (16) de chaque secteur d'anneau (10) comporte une rainure externe (5311) et une rainure interne (5310) coopérant avec la portion d'attache élastique de type C-clip (531) du deuxième bras (53) du moyen de maintien élastique (50).
4. Ensemble selon la revendication 3, caractérisé en ce que les rainures internes et externes (5210, 5310, 5211, 5311) des première et deuxième pattes (14, 16) de chaque secteur d'anneau (10) présentent un rayon de courbure similaire au rayon de courbure des portions d'attache élastiques de type C-clip (521, 531) des premier et deuxième bras (52, 53) du moyen de maintien élastique (50).
5. Ensemble selon la revendication 3, caractérisé en ce que les rainures internes et externes (1142, 1162, 1143, 1163) des première et deuxième pattes (114, 116) de chaque secteur d'anneau (110) présentent une forme rectiligne et en ce que les portions d'attache élastiques de type C-clip (621, 631) des premier et deuxième bras (62, 63) du moyen de maintien élastique (60) s'étendent suivant une direction rectiligne.
6. Ensemble selon la revendication 1, caractérisé en ce que chaque secteur d'anneau (210) présente une forme de Pi en coupe axiale, des première et deuxième pattes (214, 216) s'étendant à partir de la face externe de la partie formant base annulaire (212), et en ce que le moyen de maintien élastique (250) comprend une base (251) fixée sur la structure de support d'anneau (203) à partir de laquelle s'étendent un premier et un deuxième bras (251, 252) formant ensemble une portion d'attache élastique de type C-clip, l'extrémité libre (2141) de la première patte (214) de chaque secteur d'anneau (210) étant maintenue par le premier bras (252) tandis que l'extrémité libre (2161) de la deuxième patte (216) de chaque secteur d'anneau (210) est maintenue par le deuxième bras (253) du moyen de maintien élastique (250).
7. Ensemble selon la revendication 6, caractérisé en ce que la première patte (214) de chaque secteur d'anneau (210) comporte une rainure externe (2143) coopérant avec l'extrémité libre (2520) du premier bras (252) du moyen de maintien élastique (250) et en ce que la deuxième patte (216) de chaque secteur d'anneau (210) comporte une rainure externe (2163) coopérant avec l'extrémité libre (2530) du deuxième bras (253) du moyen de maintien élastique (250).
8. Ensemble selon la revendication 7, caractérisé en ce que les rainures externes (2143, 2163) des première et deuxième pattes (214, 216) de chaque secteur d'anneau (210) présentent une forme rectiligne et en ce que les extrémités libres (2520, 2530) des premier et deuxième bras (252, 253) du moyen de maintien élastique (250) s'étendent suivant une direction rectiligne.
9. Ensemble selon la revendication 1, caractérisé en ce que chaque secteur d'anneau (310) présente en coupe axiale une forme de K, des première et deuxième pattes (314, 316) s'étendant à partir de la face externe de la partie formant base annulaire (312), la première patte (314) comportant à son extrémité (3141) une rainure annulaire (3140) dans laquelle est logée la saillie annulaire (334) de la première bride annulaire (332) et en ce que la deuxième patte (316) de chaque secteur d'anneau (310) est reliée à la deuxième bride (336) par un ou plusieurs éléments de maintien élastiques.
10. Ensemble selon la revendication 9, caractérisé en ce que la deuxième patte (316) de chaque secteur d'anneau (310) est reliée à la deuxième bride annulaire (336) de la structure de support d'anneau (303) par un ou plusieurs éléments de clipsage (350).
PCT/FR2016/053343 2015-12-18 2016-12-12 Ensemble d'anneau de turbine avec maintien élastique a froid. WO2017103411A2 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/063,019 US10378385B2 (en) 2015-12-18 2016-12-12 Turbine ring assembly with resilient retention when cold
CN201680080640.5A CN109072705B (zh) 2015-12-18 2016-12-12 在冷态下弹性保持的涡轮环组件
EP16825829.1A EP3390782B1 (fr) 2015-12-18 2016-12-12 Ensemble d'anneau de turbine avec maintien élastique a froid.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1562745A FR3045716B1 (fr) 2015-12-18 2015-12-18 Ensemble d'anneau de turbine avec maintien elastique a froid
FR1562745 2015-12-18

Publications (2)

Publication Number Publication Date
WO2017103411A2 true WO2017103411A2 (fr) 2017-06-22
WO2017103411A3 WO2017103411A3 (fr) 2017-08-10

Family

ID=55451372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2016/053343 WO2017103411A2 (fr) 2015-12-18 2016-12-12 Ensemble d'anneau de turbine avec maintien élastique a froid.

Country Status (5)

Country Link
US (1) US10378385B2 (fr)
EP (1) EP3390782B1 (fr)
CN (1) CN109072705B (fr)
FR (1) FR3045716B1 (fr)
WO (1) WO2017103411A2 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3056636A1 (fr) * 2016-09-27 2018-03-30 Safran Aircraft Engines Ensemble d'anneau de turbine sans jeu de montage a froid
FR3065481A1 (fr) * 2017-04-19 2018-10-26 Safran Aircraft Engines Ensemble pour turbine, notamment pour une turbomachine
FR3068072A1 (fr) * 2017-06-26 2018-12-28 Safran Aircraft Engines Ensemble pour la liaison souple entre un carter de turbine et un element annulaire de turbomachine
EP3587740A1 (fr) * 2018-06-27 2020-01-01 United Technologies Corporation Composant de moteur à turbine à gaz
EP3587751A1 (fr) * 2018-06-27 2020-01-01 United Technologies Corporation Composant de moteur à turbine à gaz
CN110939517A (zh) * 2018-09-24 2020-03-31 通用电气公司 包壳主动间隙控制结构
WO2021191538A1 (fr) * 2020-03-24 2021-09-30 Safran Aircraft Engines Ensemble d'anneau de turbine
FR3113696A1 (fr) * 2020-09-03 2022-03-04 Safran Aircraft Engines Pièce de turbomachine avec bord de liaison en matériau composite à matrice céramique et à fibres courtes et son procédé de fabrication

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3033825B1 (fr) * 2015-03-16 2018-09-07 Safran Aircraft Engines Ensemble d'anneau de turbine en materiau composite a matrice ceramique
FR3049003B1 (fr) * 2016-03-21 2018-04-06 Safran Aircraft Engines Ensemble d'anneau de turbine sans jeu de montage a froid
FR3090732B1 (fr) * 2018-12-19 2021-01-08 Safran Aircraft Engines Ensemble d’anneau de turbine avec flasques indexés.
US11174795B2 (en) * 2019-11-26 2021-11-16 Raytheon Technologies Corporation Seal assembly with secondary retention feature
IT201900023850A1 (it) * 2019-12-12 2021-06-12 Nuovo Pignone Tecnologie Srl Struttura di tenuta composita per una macchina, e metodo per produrre la struttura di tenuta composita
US11066947B2 (en) 2019-12-18 2021-07-20 Rolls-Royce Corporation Turbine shroud assembly with sealed pin mounting arrangement
US11143050B2 (en) * 2020-02-13 2021-10-12 Raytheon Technologies Corporation Seal assembly with reduced pressure load arrangement
US11215064B2 (en) * 2020-03-13 2022-01-04 Raytheon Technologies Corporation Compact pin attachment for CMC components
FR3108867B1 (fr) * 2020-04-07 2022-04-15 Safran Aircraft Engines Moule pour la fabrication d’un carter de soufflante de turbomachine en matériau composite
CN113882910A (zh) * 2020-07-03 2022-01-04 中国航发商用航空发动机有限责任公司 涡轮外环连接组件、燃气涡轮发动机以及连接方法
US11255210B1 (en) 2020-10-28 2022-02-22 Rolls-Royce Corporation Ceramic matrix composite turbine shroud assembly with joined cover plate
US11346251B1 (en) * 2021-05-25 2022-05-31 Rolls-Royce Corporation Turbine shroud assembly with radially biased ceramic matrix composite shroud segments
US11761351B2 (en) * 2021-05-25 2023-09-19 Rolls-Royce Corporation Turbine shroud assembly with radially located ceramic matrix composite shroud segments
US11286812B1 (en) 2021-05-25 2022-03-29 Rolls-Royce Corporation Turbine shroud assembly with axially biased pin and shroud segment
US11629607B2 (en) 2021-05-25 2023-04-18 Rolls-Royce Corporation Turbine shroud assembly with radially and axially biased ceramic matrix composite shroud segments
US11346237B1 (en) 2021-05-25 2022-05-31 Rolls-Royce Corporation Turbine shroud assembly with axially biased ceramic matrix composite shroud segment
US11319828B1 (en) 2021-06-18 2022-05-03 Rolls-Royce Corporation Turbine shroud assembly with separable pin attachment
US11441441B1 (en) 2021-06-18 2022-09-13 Rolls-Royce Corporation Turbine shroud with split pin mounted ceramic matrix composite blade track
US11499444B1 (en) 2021-06-18 2022-11-15 Rolls-Royce Corporation Turbine shroud assembly with forward and aft pin shroud attachment
US11773751B1 (en) 2022-11-29 2023-10-03 Rolls-Royce Corporation Ceramic matrix composite blade track segment with pin-locating threaded insert
US11713694B1 (en) 2022-11-30 2023-08-01 Rolls-Royce Corporation Ceramic matrix composite blade track segment with two-piece carrier
US11840936B1 (en) 2022-11-30 2023-12-12 Rolls-Royce Corporation Ceramic matrix composite blade track segment with pin-locating shim kit
US11732604B1 (en) 2022-12-01 2023-08-22 Rolls-Royce Corporation Ceramic matrix composite blade track segment with integrated cooling passages
US11885225B1 (en) 2023-01-25 2024-01-30 Rolls-Royce Corporation Turbine blade track with ceramic matrix composite segments having attachment flange draft angles

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006136755A2 (fr) 2005-06-24 2006-12-28 Snecma Structure fibreuse de renfort pour piece en materiau composite et piece la comportant
US20120027572A1 (en) 2009-03-09 2012-02-02 Snecma Propulsion Solide, Le Haillan Turbine ring assembly

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4314792A (en) * 1978-12-20 1982-02-09 United Technologies Corporation Turbine seal and vane damper
FR2540939A1 (fr) * 1983-02-10 1984-08-17 Snecma Anneau d'etancheite pour un rotor de turbine d'une turbomachine et installation de turbomachine munie de tels anneaux
FR2580033A1 (en) * 1985-04-03 1986-10-10 Snecma Elastically suspended turbine ring for a turbine machine
US5993150A (en) * 1998-01-16 1999-11-30 General Electric Company Dual cooled shroud
JP4200846B2 (ja) * 2003-07-04 2008-12-24 株式会社Ihi シュラウドセグメント
DE102005013796A1 (de) * 2005-03-24 2006-09-28 Alstom Technology Ltd. Wärmestausegment
US7334980B2 (en) * 2005-03-28 2008-02-26 United Technologies Corporation Split ring retainer for turbine outer air seal
US7726936B2 (en) * 2006-07-25 2010-06-01 Siemens Energy, Inc. Turbine engine ring seal
US7950234B2 (en) * 2006-10-13 2011-05-31 Siemens Energy, Inc. Ceramic matrix composite turbine engine components with unitary stiffening frame
US8047773B2 (en) * 2007-08-23 2011-11-01 General Electric Company Gas turbine shroud support apparatus
US8128343B2 (en) * 2007-09-21 2012-03-06 Siemens Energy, Inc. Ring segment coolant seal configuration
US20130004306A1 (en) * 2011-06-30 2013-01-03 General Electric Company Chordal mounting arrangement for low-ductility turbine shroud
EP2800903B1 (fr) * 2011-12-31 2018-12-05 Rolls-Royce Corporation Dispositif de virole des aubes et procédé d'assemblage d'un dispositif de virole des aubes
JP6010687B2 (ja) * 2012-04-27 2016-10-19 ゼネラル・エレクトリック・カンパニイ ガスタービンエンジンの環状部材の接続
US9188062B2 (en) * 2012-08-30 2015-11-17 Mitsubishi Hitachi Power Systems, Ltd. Gas turbine
WO2014158276A2 (fr) * 2013-03-05 2014-10-02 Rolls-Royce Corporation Structure et procédé permettant de fournir adhésion et étanchéité entre des structures en céramique et des structures métalliques
CN105452610B (zh) * 2013-08-06 2018-11-20 通用电气公司 用于展延性低的涡轮喷嘴的安装设备
EP3033509B1 (fr) * 2013-08-15 2019-05-15 United Technologies Corporation Turbine à gas comprenant un panneau de protection et support à cet effet
US10472989B2 (en) * 2014-01-17 2019-11-12 General Electric Company CMC hanger sleeve for CMC shroud
US9945243B2 (en) * 2014-10-14 2018-04-17 Rolls-Royce Corporation Turbine shroud with biased blade track
BE1022513B1 (fr) * 2014-11-18 2016-05-19 Techspace Aero S.A. Virole interne de compresseur de turbomachine axiale
US20160169033A1 (en) * 2014-12-15 2016-06-16 General Electric Company Apparatus and system for ceramic matrix composite attachment
US10370994B2 (en) * 2015-05-28 2019-08-06 Rolls-Royce North American Technologies Inc. Pressure activated seals for a gas turbine engine
FR3045715B1 (fr) * 2015-12-18 2018-01-26 Safran Aircraft Engines Ensemble d'anneau de turbine avec maintien a froid et a chaud
FR3068071B1 (fr) * 2017-06-26 2019-11-08 Safran Aircraft Engines Ensemble pour la liaison par palonnier entre un carter de turbine et un element annulaire de turbomachine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006136755A2 (fr) 2005-06-24 2006-12-28 Snecma Structure fibreuse de renfort pour piece en materiau composite et piece la comportant
US20120027572A1 (en) 2009-03-09 2012-02-02 Snecma Propulsion Solide, Le Haillan Turbine ring assembly

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3056636A1 (fr) * 2016-09-27 2018-03-30 Safran Aircraft Engines Ensemble d'anneau de turbine sans jeu de montage a froid
FR3065481A1 (fr) * 2017-04-19 2018-10-26 Safran Aircraft Engines Ensemble pour turbine, notamment pour une turbomachine
FR3068072A1 (fr) * 2017-06-26 2018-12-28 Safran Aircraft Engines Ensemble pour la liaison souple entre un carter de turbine et un element annulaire de turbomachine
US10753220B2 (en) 2018-06-27 2020-08-25 Raytheon Technologies Corporation Gas turbine engine component
EP3587751A1 (fr) * 2018-06-27 2020-01-01 United Technologies Corporation Composant de moteur à turbine à gaz
EP3587740A1 (fr) * 2018-06-27 2020-01-01 United Technologies Corporation Composant de moteur à turbine à gaz
US11022002B2 (en) 2018-06-27 2021-06-01 Raytheon Technologies Corporation Attachment body for blade outer air seal
US11421558B2 (en) 2018-06-27 2022-08-23 Raytheon Technologies Corporation Gas turbine engine component
US11661865B2 (en) 2018-06-27 2023-05-30 Raytheon Technologies Corporation Gas turbine engine component
CN110939517A (zh) * 2018-09-24 2020-03-31 通用电气公司 包壳主动间隙控制结构
WO2021191538A1 (fr) * 2020-03-24 2021-09-30 Safran Aircraft Engines Ensemble d'anneau de turbine
FR3108672A1 (fr) * 2020-03-24 2021-10-01 Safran Aircraft Engines Ensemble d'anneau de turbine
FR3113696A1 (fr) * 2020-09-03 2022-03-04 Safran Aircraft Engines Pièce de turbomachine avec bord de liaison en matériau composite à matrice céramique et à fibres courtes et son procédé de fabrication
WO2022049339A1 (fr) * 2020-09-03 2022-03-10 Safran Aircraft Engines Piece de turbomachine avec bord de liaison en materiau composite a matrice ceramique et a fibres courtes et son procede de fabrication

Also Published As

Publication number Publication date
EP3390782B1 (fr) 2019-11-27
WO2017103411A3 (fr) 2017-08-10
CN109072705A (zh) 2018-12-21
US10378385B2 (en) 2019-08-13
US20180363506A1 (en) 2018-12-20
EP3390782A2 (fr) 2018-10-24
CN109072705B (zh) 2021-02-09
FR3045716A1 (fr) 2017-06-23
FR3045716B1 (fr) 2018-01-26

Similar Documents

Publication Publication Date Title
EP3390782B1 (fr) Ensemble d'anneau de turbine avec maintien élastique a froid.
EP3433471B1 (fr) Ensemble d'anneau de turbine avec maintien spécifique à froid
EP3390783B1 (fr) Ensemble d'anneau de turbine et turbine associée
EP3298244B1 (fr) Ensemble d'anneau de turbine avec maintien axial
CA2986663C (fr) Ensemble d'anneau de turbine avec maintien par brides
EP3298245B1 (fr) Ensemble d'anneau de turbine avec maintien par crabotage
EP3298246B1 (fr) Ensemble d'anneau de turbine permettant une dilatation thermique différentielle
EP3596315B1 (fr) Ensemble d'anneau de turbine
EP3271556B1 (fr) Ensemble d'anneau de turbine comprenant une pluralité de secteurs d'anneau en matériau composite à matrice céramique
FR3056637A1 (fr) Ensemble d'anneau de turbine avec calage a froid
FR3064023B1 (fr) Ensemble d'anneau de turbine
FR3055146A1 (fr) Ensemble d'anneau de turbine
FR3080145A1 (fr) Distributeur en cmc avec reprise d'effort par une pince etanche
WO2017194860A1 (fr) Ensemble d'anneau de turbine avec calage a froid
FR3041994A1 (fr) Ensemble d'anneau de turbine
EP3857030A1 (fr) Ensemble pour une turbine de turbomachine et turbomachine associée

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16825829

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE