WO2017101466A1 - 多模态检测系统和方法 - Google Patents

多模态检测系统和方法 Download PDF

Info

Publication number
WO2017101466A1
WO2017101466A1 PCT/CN2016/094460 CN2016094460W WO2017101466A1 WO 2017101466 A1 WO2017101466 A1 WO 2017101466A1 CN 2016094460 W CN2016094460 W CN 2016094460W WO 2017101466 A1 WO2017101466 A1 WO 2017101466A1
Authority
WO
WIPO (PCT)
Prior art keywords
xrd
detection
multimodal
distributed
detection system
Prior art date
Application number
PCT/CN2016/094460
Other languages
English (en)
French (fr)
Inventor
陈志强
张丽
杨戴天杙
黄清萍
孙运达
金鑫
Original Assignee
清华大学
同方威视技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学, 同方威视技术股份有限公司 filed Critical 清华大学
Priority to CA2987815A priority Critical patent/CA2987815C/en
Priority to KR1020177034778A priority patent/KR102033233B1/ko
Priority to JP2017561701A priority patent/JP6732805B2/ja
Priority to AU2016369726A priority patent/AU2016369726B2/en
Publication of WO2017101466A1 publication Critical patent/WO2017101466A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/083Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the radiation being X-rays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/20083Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials by using a combination of at least two measurements at least one being a transmission measurement and one a scatter measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/207Diffractometry using detectors, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/20Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
    • G01V5/22Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays
    • G01V5/226Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays using tomography
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/03Investigating materials by wave or particle radiation by transmission
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/045Investigating materials by wave or particle radiation combination of at least 2 measurements (transmission and scatter)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/05Investigating materials by wave or particle radiation by diffraction, scatter or reflection
    • G01N2223/051Investigating materials by wave or particle radiation by diffraction, scatter or reflection correcting for scatter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/05Investigating materials by wave or particle radiation by diffraction, scatter or reflection
    • G01N2223/056Investigating materials by wave or particle radiation by diffraction, scatter or reflection diffraction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/316Accessories, mechanical or electrical features collimators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/401Imaging image processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/419Imaging computed tomograph
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/50Detectors
    • G01N2223/501Detectors array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/643Specific applications or type of materials object on conveyor

Definitions

  • the present invention relates to the field of imaging technology, and more particularly to multimodal detection systems and methods.
  • X-ray transmission imaging and X-ray diffraction imaging are two commonly used non-destructive testing methods. These two X-ray imaging techniques can be used alone or in combination to improve the accuracy of the detection.
  • the XRD detection system of "inverted fan beam" proposed in US7787591B2 can perform multi-angle transmission imaging while performing XRD measurement.
  • a set of ray sources is utilized in the system, the system is actually a quasi-3D tomographic detection system, and the distribution angle of the ray source is limited, and it is difficult to achieve the quality effect of CT imaging.
  • a multimodal detection system comprising: a distributed ray source that illuminates a test object; a front collimator that distributes the ray The source ray is divided into two parts, one part for CT detection and the other part for XRD detection; the CT detection device performs CT detection to obtain CT image of the test object; and the XRD detection device, the XRD detection device Perform XRD testing to obtain The XRD image of the sample, wherein the CT detection is performed simultaneously with the XRD detection.
  • the multimodal detection system can include a plurality of distributed ray sources and includes a front collimator, a CT detection device, and an XRD detection device corresponding to each of the distributed ray sources.
  • each of the distributed ray sources is disposed on at least a portion of the inside of the transport channel frame, and the collimator, CT detection device, and XRD detecting device corresponding to each of the distributed ray sources are arranged such that The test object is between the distributed ray source and the corresponding collimator, CT detection device and XRD detection device.
  • each of the distributed ray sources is selected from one of the following: linear, circular, L-shaped, U-shaped, multi-segmented.
  • each of the distributed ray sources has a plurality of ray source focuses that are independently illuminable to illuminate the ray.
  • the multimodal detection system further includes a distributed ray source control device that controls the illuminating form of the ray source focus on each of the distributed ray sources.
  • the plurality of distributed ray sources each have the same number of ray source focuses. In another embodiment, the plurality of distributed ray source modules each have a different number of ray source focuses than one another.
  • the CT detection device includes at least one CT detector that performs CT detection to acquire CT data.
  • the CT detector is selected from the group consisting of an energy deposition detector, a dual energy detector, and an energy spectrum detector.
  • the CT detector has one of the following forms: a one-dimensional line array detector, a two-dimensional array detector.
  • the CT detecting apparatus further includes a CT data processor that performs processing on the CT data acquired by the CT detector to obtain a CT image.
  • the rays used for CT detection are fan beams. In another embodiment, the rays used for CT detection are cone beams.
  • the radiation for XRD detection is scattered via the test object
  • the XRD detecting apparatus includes: a rear collimator that selects rays having the same scattered ray direction from the scattered rays; at least one XRD scattering detector, the at least one XRD scattering detector receives the post collimator Rays with the same direction of scattered rays to obtain XRD data.
  • the radiation for XRD detection penetrates the test object
  • the XRD detecting device further comprises: at least one XRD transmission detector that receives radiation passing through the test object, To obtain XRD transmission data.
  • the XRD detecting apparatus further includes an XRD data processor that processes the XRD scatter data and the XRD transmission data to obtain an XRD image.
  • the rays used for XRD detection are a pencil bundle. In another embodiment, the rays used for XRD detection are fanned. In yet another embodiment, the rays for XRD detection are distributed in parallel. In one embodiment, the portion of the ray may be divided into a plurality of portions for the XRD detection, respectively. In another embodiment, the other portion of the ray is divided into a plurality of portions for the CT detection, respectively.
  • the centerline of the illumination plane of the ray for CT detection has an angle with the centerline of the illumination plane of the ray for XRD detection such that the XRD detection and the CT detection do not interfere with each other.
  • the XRD detecting device and the CT detecting device communicate data of the XRD image and the CT image to perform mutual correction.
  • a multimodal detection method comprising: controlling a distributed ray source to illuminate a ray, the ray illuminating a test object; and distributing the ray source through a front collimator
  • the ray is divided into two parts, one part for CT detection and the other for XRD detection; CT detection by CT detection device to obtain CT image of the test object; and XRD detection by XRD detection device to obtain XRD of the test object Image in which CT detection is performed simultaneously with XRD detection.
  • the CT detecting device and the XRD detecting device can share a set of distributed ray sources, and can simultaneously perform CT detection and XRD detection to obtain CT images and XRD images.
  • the XRD detecting device and the CT detecting device can also exchange data of XRD images and CT images with each other to improve image quality.
  • FIG. 1 is a system block diagram showing a multi-modality detecting system of one embodiment of the present invention
  • FIG. 2 is a schematic view showing a multi-modality detecting system of one embodiment of the present invention.
  • Figure 3 is a longitudinal sectional view showing a multi-modality detecting system of an embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing the principle of multimodal imaging according to an embodiment of the present invention.
  • FIG. 5 is a schematic view showing the principle of CT imaging according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram showing a distributed radiation source of an L-shaped and a U-shaped arrangement according to an embodiment of the present invention
  • Figure 7 is a schematic diagram showing a multi-segment arrangement of distributed radiation sources in accordance with another embodiment of the present invention.
  • Figure 8 is a schematic view showing the form and distribution of a beam of rays detected by an XRD according to an embodiment of the present invention
  • Figure 9 is a schematic view showing the form and distribution of a beam of XRD detection according to another embodiment of the present invention.
  • Figure 10 is a flow chart showing a multimodal detection method of one embodiment of the present invention.
  • Figure 11 is a diagram showing the correction of an XRD image using CT data in accordance with one embodiment of the present invention.
  • FIGS. 1-10 A multimodal detection system and method in accordance with an embodiment of the present invention is described below in conjunction with FIGS. 1-10.
  • a multi-modality detection system 100 may include a distributed ray source 101 that illuminates a test object, a front collimator 102, and a front collimator 102.
  • the radiation of the distributed ray source 101 is divided into two parts, one part for CT detection and the other part for XRD detection; the CT detection device 103 performs CT detection to acquire CT images of the test object; XRD detection The device 104, the XRD detecting device 104 performs XRD detection to acquire an XRD image of the subject, wherein the CT detection is performed simultaneously with the XRD detection.
  • the front collimator can be a front collimator with dual openings to split the radiation of the distributed source into two parts, one for CT detection and the other for XRD detection.
  • the division of the ray of the distributed ray source by the front collimator does not necessarily physically divide the ray of the distributed ray source into two parts, or it may form a larger cone angle by the front collimator.
  • the beam of rays is such that a portion of the radiation is used for CT detection and the other portion is used for XRD detection.
  • the CT detecting apparatus 103 includes at least one CT detector 105, and at least one CT detector 105 performs CT detection to acquire CT data.
  • CT detection device 103 further includes a CT data processor 106 that performs processing on CT data acquired by CT detector 105 to obtain a CT image. It should be understood that although CT detector 105 and CT data processor 106 are described herein as separate devices, they may be integrated together or, alternatively, CT detector 105 may also transmit CT data to the CT. The processing device at the periphery of the detecting device 103 performs processing, and then the processing device returns the processed CT image to the CT detecting device 103.
  • CT detection device 103 may also include a rear collimator (not shown).
  • the rear collimator may be disposed between the front collimator 102 and the CT detector 105 for orientation control of the rays of the CT detecting portion, thereby improving the CT imaging quality of the CT detecting device 103. It should be understood that the rear collimator is not necessary for the CT detecting device 103.
  • the XRD detecting device 104 includes a rear collimator 107 that selects rays having the same direction of scattered rays from the scattered rays; at least one XRD scattering detector 108, the at least one XRD scattering The detector 108 receives rays having the same scattered ray direction through the rear collimator 107 to acquire XRD data.
  • the radiation used for XRD detection also penetrates the test object.
  • the XRD detecting device 104 further includes at least one XRD transmission detector 109 that receives radiation passing through the test object to acquire XRD transmission data.
  • the XRD detecting device 104 further includes an XRD data processor 110 that processes the XRD scatter data and the XRD transmission data to obtain an XRD image.
  • an XRD data processor 110 that processes the XRD scatter data and the XRD transmission data to obtain an XRD image.
  • the XRD scatter detector 108 and/or the XRD transmission detector 109 are described herein as separate devices, they may also be integrated together, or alternatively, the XRD scatter detector 108 And/or the XRD transmission detector 109 may also transmit XRD data to a processing device peripheral to the XRD detection device 104 for processing, and then the processing device returns the processed XRD image to the XRD detection device 104.
  • the CT image obtained by the CT detecting device 103 and the XRD image obtained by the XRD detecting device 104 can be used for substance recognition. Further, as shown in FIG. 1, the CT detecting device 103 and the XRD detecting device 104 can communicate data of a CT image and data of an XRD image to perform mutual correction. Thus, according to the multimodal detection system 100 of the present invention, the CT detecting device 103 and the XRD detecting device 104 can share a set of distributed ray sources 101, which can perform both CT detection and XRD detection.
  • FIG. 2 is a schematic diagram showing a multi-modality detection system 100 in accordance with one embodiment of the present invention.
  • the test object 111 passes through the transport path 112 toward the Z direction at a constant speed V with the conveyor belt.
  • V the transport path
  • XYZ the coordinate system of XYZ is given in FIG. 2, wherein the Z direction is the direction in which the conveyor belt is transported, the Y direction is the direction perpendicular to the plane of the conveyor belt, and the X direction is the direction perpendicular to the plane formed by ZY.
  • the multimodal detection system 100 includes a distributed ray source 101 that illuminates a test object 111.
  • the distributed ray source 101 is shown as two, but it should be understood that the multimodal detection system 100 can include more distributed ray sources 101.
  • the distributed ray source 101 may be disposed on at least a portion of the inside of the conveying passage frame 113. As shown in FIG.
  • one of the two distributed ray sources 101 is located at the top edge of the inside of the transport path frame 113, and the other is located at the side wall edge of the inside of the transport path frame 113, but the location of the distributed ray source 101 is also Without being limited thereto, for example, the distributed ray source 101 may be disposed at any position inside the at least one of the top, the bottom, and the side walls of the conveying path frame 113.
  • the distributed ray source 101 can have at least one ray source focus that can be independently illuminated to illuminate the ray. It should be understood that the form in which these sources are illuminated (e.g., the lighting sequence and combination) may be controlled by a distributed source control device or control program. Further, in the case where there are a plurality of distributed ray sources 101, the number of ray source focal points each of these distributed ray sources 101 may have the same or different from each other. At any time when the focus of the source on the distributed ray source 101 is illuminated, the XRD data and CT data can be acquired simultaneously.
  • the multimodal detection system 100 also includes a front collimator 102, a CT detection device 103, and an XRD detection device 104 (not shown in Figure 2).
  • the front collimator 102 splits the radiation of the distributed ray source 101 into two parts, one for CT detection and the other for XRD detection.
  • the CT detecting device 103 performs CT detection to acquire a CT image of the subject.
  • the XRD detecting device 104 performs XRD detection to acquire an XRD image of the test object. It should be noted that CT detection is performed simultaneously with XRD detection.
  • the system when there are a plurality of distributed ray sources, the system includes a front collimator, a CT detecting device, and an XRD detecting device corresponding to each of the distributed ray sources.
  • a corresponding front collimator for each distributed ray source is disposed at the distributed ray source and the test object
  • the CT detecting device and the XRD detecting device are arranged such that the test object is interposed between the front collimator and the corresponding CT detecting device and the XRD detecting device, that is, the CT detecting device and the XRD detecting device are arranged at The side of the test object opposite the front collimator.
  • a distributed ray source 101 is disposed at a top edge inside the transfer channel frame 113, a front collimator may be disposed under the distributed ray source 101 to split the ray, and the CT detecting device and the XRD detecting device may It is arranged below the conveyor belt.
  • the multi-modality detection system 100 combines a CT detection system and an XRD detection system to organically combine conventional multi-level detection, and the CT detection system and the XRD detection system substantially share a distributed set.
  • a source of radiation to enable simultaneous acquisition of CT images and XRD images.
  • the system scale is reduced, and the detection efficiency and detection accuracy are improved as compared with the multi-level detection system.
  • FIG. 3 is a longitudinal cross-sectional view showing a multi-modality detecting system 100 of an embodiment of the present invention. Also shown in Fig. 3 is an XYZ coordinate system which is the same as the XYZ coordinate system in Fig. 2. Since Fig. 3 is a longitudinal sectional view, the X-direction perpendicular paper faces inward. In addition, the same reference numerals as in FIG. 1 in FIG. 3 denote the same elements. It should be noted that in the following discussion only one distributed ray source is described, in the case of multiple distributed ray sources, corresponding front collimators, CT detection devices and XRDs are arranged for each distributed ray source. The device is tested and a similar test is performed.
  • the test object 111 travels in the Z direction along with the conveyor belt 114.
  • the object 111 passes through the transport path 112, it will be illuminated by the distributed ray source 101.
  • the radiation emitted by the focus of the source on the distributed source 101 is split into two parts, one for illumination by the CT detection device 103 for CT detection and the other for illumination by the XRD detection device 104. Tested by XRD.
  • the division of the above-described rays is actually performed by the front collimator 102 disposed between the distributed ray source 101 and the object 111.
  • the detection plane for XRD detection can be on one side or both sides of the CT detection plane.
  • the multimodal detecting system 100 further includes a CT detecting device 103.
  • the CT detecting device 103 includes at least one CT detector 105, which is at least one CT probe
  • the detector 105 is configured to perform CT detection to acquire CT data.
  • the CT detector 105 can be selected from one of an energy deposition type detector, a dual energy detector, and an energy spectrum detector (ie, a photon counting detector).
  • the CT detector 105 can be in the form of a one-dimensional line array detector or a two-dimensional area array detector, which can be, for example, a flat panel detector or a curved surface detector.
  • the CT detecting device 103 may further include a CT data processor 106 (not shown in the drawing) that performs processing on the CT data acquired by the CT detector 105 to obtain a CT image.
  • the rays used for CT detection may be fan beams or cone beams, which correspond to single-row or multi-row spiral CT imaging methods, respectively.
  • the multimodal detection system 100 also includes an XRD detection device 104. Scattering occurs after the radiation for XRD detection by the front collimator 102 is irradiated onto the object 111. As shown in FIG. 3, the scattered ray will pass through the rear collimator 107 into at least one XRD scatter detector 108 included in the XRD detection device 104. The rear collimator 107 selects rays having the same scattering line direction from the scattered rays. At least one XRD scatter detector 108 receives rays having the same scatter line direction through the rear collimator 107 to obtain XRD scatter data. In FIG.
  • the rear collimator 107 will select scattered rays having a scattering angle of ⁇ to be incident into at least one of the XRD scattering detectors 108.
  • the XRD scatter detector 108 can be a pixel level energy spectrum detector.
  • the rays for XRD detection may also partially penetrate the test object 111. Therefore, in one embodiment, the XRD detecting device may further include an XRD transmission detector 109 to receive the rays penetrating the test object 111 to obtain XRD. Transmission data.
  • the XRD transmission data is capable of correcting the measurement results of the XRD scattering detector 108, resulting in a richer and more accurate information of the object 111.
  • FIG. 4 is a schematic diagram showing the principle of multi-modality detection of an embodiment of the present invention.
  • the same reference numerals in Fig. 4 as those in Figs. 1 to 3 denote the same elements.
  • reference numeral 115 denotes a detection area.
  • the radiation from the source focus on the distributed ray source 101 is limited by the front collimator 102 and is divided into two parts, one for the CT detection device 103 for CT detection and the other for the XRD detection device 104. Used for XRD testing. There may be a certain off angle between the illumination planes of the two partial rays split by the front collimator 102 to enable CT detection and No interference occurs between XRD measurements, so that CT detection and XRD detection can be performed independently at the same time.
  • the CT detector 105 included in the CT detecting device 103 receives a portion of the rays split by the pre-collimator 102 to perform CT detection to acquire CT data.
  • Figure 5 is a schematic diagram showing the principle of CT imaging of one embodiment of the present invention. As shown in FIG. 5, the test object 111 is located between the distributed ray source 101 and the CT detector 105. As described above, the rays used for CT detection may be fan beams or cone beams, respectively corresponding to single-row or multi-row spiral CT imaging.
  • the CT detector 105 obtains the object on the illuminating plane by intercepting an illuminating plane. Projection data of 111. Only the imaging situation in which the rays emitted by the ray source focus of the two edge positions of the distributed ray source 101 pass through the object 111 is shown in FIG. It should be understood that when more of the source focus is illuminated on the distributed ray source 101, the projected image will more accurately reflect the condition of the subject 111 itself.
  • the distributed ray source 101 is shown in a linear arrangement.
  • the distributed ray source is not limited thereto, but in other embodiments, the distributed ray source may be arcuate, L-shaped, U-shaped, or otherwise arranged, for example, a distributed ray source.
  • the 101 can be composed of a plurality of segments distributed on different planes, that is, a multi-segment arrangement.
  • Figure 6 shows a distributed ray source arranged in L-shape and U-shape. This arrangement ensures that projection data of a very large angular range is obtained, thereby improving the accuracy of CT image reconstruction.
  • Figure 7 shows a distributed ray source module in a multi-segment arrangement that is capable of obtaining projection data of sufficient angle.
  • the XRD detecting device 104 receives another portion of the ray split by the front collimator 102 to perform XRD detection to acquire an XRD image.
  • the ray 116 for XRD detection scatters after being irradiated onto the test object. It should be understood that there may be scattered rays in several directions, but the system is configured to select at least one XRD scattering detector included in the XRD detecting device 104 by selecting the rays having the same scattering direction from the various scattered rays by the rear collimator 107. 108. At least one XRD scatter detector 108 performs XRD detection by receiving radiation limited by the rear collimator 107 to obtain XRD scattering numbers. According to (for example, XRD scattering energy spectrum).
  • XRD inspection can be done point by point, so complete data is available for distributed sources in a variety of arrangements. Since CT detection requires a large number of focal points of the ray source, small interval and wide distribution, XRD detection can utilize all or part of the ray source focus, and the corresponding ray is extracted by the front collimator, and each point is obtained under the limitation of the rear collimator. Scattering data for fixed scattering angles.
  • FIG. 8 is a diagram showing the form and distribution of a beam of XRD detection in accordance with one embodiment of the present invention. Also shown in Fig. 8 is an XYZ coordinate system which is the same as the XYZ coordinate system in Fig. 2, and similarly, the X-direction perpendicular paper faces inward. As shown in FIG. 8, under the constraints of the front collimator 102, each source focus on the distributed ray source 101 emits a plurality of beam rays in an XRD detection plane, the beam rays being fanned.
  • Figure 9 is a schematic illustration of the form and distribution of a beam of XRD detection in accordance with another embodiment of the present invention. Also shown in Fig.
  • each of the ray source focuses on the distributed ray source 101 emits a single ray beam in the XRD detection plane, and the pen beams emitted from the focus of all the ray sources are distributed in parallel. .
  • these beams are then incident into each of the XRD scatter detectors 108 via the restriction of the rear collimator 107 such that each XRD scatter detector 108 measures the scattering of the fixed scattering angle at each point on the object. information.
  • the radiation used for XRD detection is not limited to the above form.
  • the ray 115 for XRD detection also penetrates the test object.
  • the XRD detecting device 104 may further include an XRD transmission detector 109 to receive radiation that penetrates the test object to acquire XRD transmission data (eg, an XRD transmission energy spectrum).
  • the XRD transmission data is capable of correcting the measurement results of the XRD scatter detector 108 to obtain a richer and more accurate information of the sample.
  • the illumination plane of the ray for CT detection may be parallel to the XY plane (ie, perpendicular to the direction of travel of the conveyor belt) for XRD
  • the illumination center plane of the detected ray may have a certain angle with the XY plane.
  • the detection plane of the XRD detection may be on one side or both sides of the detection plane of the CT detection.
  • FIG. 10 shows a flow chart of a multimodal detection method 1100 in accordance with one embodiment of the present invention.
  • the multi-modality detecting method 200 includes: S201, controlling a distributed ray source to radiate rays, the ray illuminating the object to be inspected; S202, dividing the ray of the distributed ray source into two parts by the front collimator One part is used for XRD detection, and the other part is used for CT detection; S203, CT detection is performed by CT detection device to obtain CT image of the test object, and XRD detection is performed by XRD detection device to obtain XRD image of the test object, Among them, CT detection and XRD detection are performed simultaneously.
  • the CT detecting device and the XRD detecting device can interwork data of the CT image and data of the XRD image to be corrected to each other.
  • the signal-to-noise ratio of the XRD image is low, and the spatial resolution is not high.
  • the XRD spectrum of different substances may overlap.
  • CT image structure information is clear and spatial resolution is high. Therefore, the data of the CT image can be utilized to sharpen the edges of the XRD image, which can avoid the misidentification of the material due to spectral aliasing to some extent.
  • Figure 11 is a diagram showing the correction of an XRD image using CT data in accordance with one embodiment of the present invention.
  • the spatial resolution of the XRD image is not high, one pixel in the XRD image will be displayed as two material edges in the CT image.
  • the XRD image information of the pixel is considered It is the sum of the information of the two substance XRD images, not the third substance.
  • the XRD information of the two substances can be filled into the respective structures to remove the aliased XRD data.
  • the CT image can be scatter corrected using the image data obtained by XRD detection.
  • the XRD detects the coherent scatter of each point in the object and the distribution of the sum of the incoherent scatters (where the coherent scatter dominates the main part), and the XRD spectrum of each point can obtain a scatter kernel function of the material within a certain range, and the scattering is utilized.
  • the kernel function can perform scatter correction of CT images. Improve the accuracy of CT image data.
  • CT image image structure similarity
  • XRD image material material similarity
  • the attenuation coefficient of each point of the object can be obtained with the energy distribution.
  • the CT data can be used to attenuate the XRD image.
  • the attenuation correction method using the attenuation energy spectrum on the transmission path instead of the attenuation energy spectrum on the scattering path is more accurate than the conventional one, and also saves the transmission detector used in the XRD detection.
  • substance information obtained by two detections can be integrated for substance identification.
  • CT detection and XRD detection can be integrated for substance identification.
  • the system and method according to the embodiments of the present invention simultaneously use the CT detection information and the XRD detection information for substance identification, instead of the “first CT, then XRD” manner, and the XRD detection is also performed on the area considered to be safe by the CT detection, which can reduce the system. False positive rate and missed detection rate.
  • the multimodal detection system and method according to the embodiment of the present invention truly combines the CT and XRD detection systems organically from both the system structure and the physical information.
  • the two share a distributed ray source, reducing costs and reducing the size of the entire inspection system.
  • CT detection and XRD detection are performed simultaneously, the detection plane is close, the multi-modal information position registration and the complexity of multiple interactions are reduced, and the detection efficiency and accuracy of the system are improved.
  • CT detection and XRD detection in the system are fixed measurements, which avoid the complex mechanical movement of the detector, the radiation source and the object, and improve the stability of the system.
  • CT detection and XRD detection data are processed simultaneously, which increases the information interaction between multi-modal imaging data, and truly combines from external (system structure) to internal (data) to improve the detection quality.
  • multi-modality detection system and method according to embodiments of the present invention may be applied to the field of security inspection, but those skilled in the art will also understand that the multi-modality detection system and method according to embodiments of the present invention are not limited to the security inspection field. , but can also be used in other related fields.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Theoretical Computer Science (AREA)
  • Pulmonology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Toxicology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

一种多模态检测系统(100)和方法。多模态检测系统(100)包括:分布式射线源(101),该分布式射线源(101)照射受检物(111);前准直器(102),该前准直器(102)将分布式射线源(101)的射线分成两部分,其中一部分用于XRD检测,另一部分用于CT检测;CT检测设备(103),该CT检测设备(103)进行CT检测以获取受检物(111)的CT图像;XRD检测设备(104),该XRD检测设备(104)进行XRD检测以获取受检物(111)的XRD图像,其中,CT检测与XRD检测同时进行。根据该多模态检测系统(100)和方法,CT检测设备(103)和XRD检测设备(104)可以共用一套分布式射线源(101),能够同时进行CT检测和XRD检测。

Description

多模态检测系统和方法 技术领域
本发明涉及成像技术领域,尤其涉及多模态检测系统和方法。
背景技术
在现有辐射成像技术中,X射线透射成像和X射线衍射成像为两种常用的无损检测手段。这两种X射线成像技术可以单独使用,也可以相互配合以提高检测的准确率。
关于这两种手段的配合使用,在US7924978B2和US7869566B2提出了先执行X射线断层成像技术(Computed Tomography:CT)检测,然后再执行X射线衍射成像技术(X-ray Diffraction:XRD)检测的两级检测系统。然而,这种两级检测系统实际上由两套独立的系统组成,每套系统使用独立的射线源,因此系统体积庞大、射线源利用率低。此外,这种两级检测系统需要在两套系统之间精确控制可疑区域的位置,因而检测效率较低。
另外,在US7787591B2中提出了“倒扇束”的XRD检测系统在进行XRD测量的同时还可进行多角度的透射成像。虽然该系统中利用了一套射线源,但是该系统实际上为准3D层析检测系统,射线源分布角度有限,难以达到CT成像的质量效果。
发明内容
根据本发明的一方面,提供了一种多模态检测系统,该系统包括:分布式射线源,该分布式射线源照射受检物;前准直器,该前准直器将分布式射线源的射线分成两部分,其中一部分用于CT检测,另一部分用于XRD检测;CT检测设备,该CT检测设备进行CT检测以获取受检物的CT图像;以及XRD检测设备,该XRD检测设备进行XRD检测以获取受 检物的XRD图像,其中,CT检测与XRD检测检测同时进行。
在一个实施例中,多模态检测系统可以包括多个分布式射线源,并且包括与每个分布式射线源相对应的前准直器、CT检测设备和XRD检测设备。
在一个实施例中,每个分布式射线源被布置在传送通道框架内侧的至少一部分上,并且与每个分布式射线源相应的准直器、CT检测设备和XRD检测设备被布置为以使得受检物介于分布式射线源与相应的准直器、CT检测设备和XRD检测设备之间。
在一个实施例中,每个分布式射线源选自如下各种中的一种:直线型、圆弧型、L型、U型、多段式。
在一个实施例中,每个分布式射线源上具有多个射线源焦点,这些射线源焦点能够独立点亮来辐射射线。
在一个实施例中,多模态检测系统还包括分布式射线源控制设备,该分布式射线源控制设备控制每个分布式射线源上的射线源焦点的点亮的形式。
在一个实施例中,多个分布式射线源各自具有的射线源焦点的数量彼此相同。在另一个实施例中,多个分布式射线源模块各自具有的射线源焦点的数量彼此不同。
在一个实施例中,CT检测设备包括至少一个CT探测器,该至少一个CT探测器执行CT检测以获取CT数据。
在一个实施例中,CT探测器选自如下各种中的一种:能量沉积型探测器、双能探测器、能谱探测器。在另一个实施例中,CT探测器具有如下形式中的一种:一维线阵列探测器、二维面阵列探测器。
在一个实施例中,CT检测设备还包括CT数据处理器,该CT数据处理器对所述CT探测器所获取的CT数据执行处理以获得CT图像。
在一个实施例中,用于CT检测的射线为扇束。在另一个实施例中,用于CT检测的射线为锥束。
在一个实施例中,用于XRD检测的射线经由受检物而散射,并且其 中,XRD检测设备包括:后准直器,该后准直器从散射射线中选择具有相同散射射线方向的射线;至少一个XRD散射探测器,该至少一个XRD散射探测器接收通过后准直器的具有相同散射射线方向的射线,以获取XRD数据。
在一个实施例中,用于XRD检测的射线穿透受检物,并且其中,XRD检测设备还包括:至少一个XRD透射探测器,该至少一个XRD透射探测器接收穿过受检物的射线,以获取XRD透射数据。
在一个实施例中,XRD检测设备还包括XRD数据处理器,该XRD数据处理器对XRD散射数据和XRD透射数据进行处理以获得XRD图像。
在一个实施例中,用于XRD检测的射线为笔束。在另一个实施例中,用于XRD检测的射线呈扇形分布。在又一个实施例中,用于XRD检测的射线平行分布。在一个实施例中,所述一部分的射线可以被分为多个部分,这多个部分分别用于所述XRD检测。在另一个实施例中,所述另一部分的射线被分为多个部分,这多个部分分别用于所述CT检测。
在一个实施例中,用于CT检测的射线的照射平面的中心线与用于XRD检测的射线的照射平面的中心线之间具有一定夹角,以使得XRD检测和CT检测互不干扰。
在一个实施例中,XRD检测设备和CT检测设备通信XRD图像和CT图像的数据以进行彼此校正。
根据本发明的另一方面,提供了一种多模态检测方法,该方法包括:控制分布式射线源以辐射射线,所述射线照射受检物;通过前准直器将分布式射线源的射线分成两部分,其中一部分用于CT检测,另一部分用于XRD检测;通过CT检测设备进行CT检测以获取受检物的CT图像;以及通过XRD检测设备进行XRD检测以获取受检物的XRD图像,其中,CT检测与XRD检测同时进行。
根据本发明的多模态检测系统和方法,CT检测设备和XRD检测设备可以共用一套分布式射线源,能够同时进行CT检测和XRD检测以获得 CT图像和XRD图像。此外,XRD检测设备和CT检测设备还可以彼此交流XRD图像和CT图像的数据以提高成像质量。
附图说明
通过参考附图会更加清楚地理解本发明的特征和优点,附图是示意性的而不应理解为对本发明进行任何限制,在附图中:
图1是示出了本发明一个实施例的多模态检测系统的系统框图;
图2是示出了本发明一个实施例的多模态检测系统的示意图;
图3是示出了本发明实施例的多模态检测系统的纵剖面图;
图4是示出了本发明一个实施例的多模态成像原理的示意图;
图5是示出了本发明一个实施例的CT成像原理的示意图;
图6是示出了本发明一个实施例的L型和U型排布的分布式射线源的示意图;
图7是示出了本发明另一个实施例的多段式排布的分布式射线源的示意图;
图8是示出了本发明一个实施例XRD检测的射线束形式和分布的示意图;
图9是示出了本发明另一个实施例的XRD检测的射线束形式和分布的示意图;
图10是示出了本发明一个实施例的多模态检测方法的流程图;以及
图11是示出了本发明一个实施例利用CT数据校正XRD图像的示意图。
具体实施方式
下面对本发明的实施例的详细描述涵盖了许多具体细节,以便提供对本发明的全面理解。但是,对于本领域技术人员来说显而易见的是,本发明可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例 的描述仅仅是为了通过示出本发明的示例来提供对本发明更清楚的理解。本发明绝不限于下面所提出的任何具体配置和方法步骤,而是在不脱离本发明的精神的前提下覆盖了相关元素、部件和方法步骤的任何修改、替换和改进。
下面结合图1-10来说明根据本发明实施例的多模态检测系统和方法。
图1是示出了本发明一个实施例的多模态检测系统100的系统框图。如图1所示,根据本发明实施例的多模态检测系统100可以包括:分布式射线源101,该分布式射线源101照射受检物;前准直器102,该前准直器102将分布式射线源101的射线分成两部分,其中一部分用于CT检测,另一部分用于XRD检测;CT检测设备103,该CT检测设备103进行CT检测以获取受检物的CT图像;XRD检测设备104,该XRD检测设备104进行XRD检测以获取受检物的XRD图像,其中,CT检测与XRD检测同时进行。
在一个实施例中,前准直器可以为带有双开口的前准直器,以将分布式射线源的射线分成两部分,一部分射线用于CT检测,另一部分用于XRD检测。然而,应注意,前准直器对分布式射线源的射线的分割并不一定是物理上将分布式射线源的射线分为两部分,也可以是通过前准直器形成一个锥角较大的射线束,使得一部分射线用于CT检测,另一部分用于XRD检测。
在CT检测部分,CT检测设备103包括至少一个CT探测器105,至少一个CT探测器105执行CT检测以获取CT数据。
在一个实施例中,CT检测设备103还包括CT数据处理器106,该CT数据处理器106对CT探测器105所获取的CT数据执行处理以获得CT图像。应理解,虽然在此将CT探测器105和CT数据处理器106描述为分开的装置,但是二者也可以被集成到一起,或者替代地,CT探测器105也可以将CT数据传送给该CT检测设备103外围的处理设备进行处理,然后处理设备再将处理后的CT图像返回给CT检测设备103。
在一个实施例中,CT检测设备103还可以包括后准直器(图中未示出)。该后准直器可以被布置在前准直器102与CT探测器105之间,用于对CT检测部分的射线进行取向控制,从而提高CT检测设备103的CT成像质量。应理解,该后准直器对于CT检测设备103来说并非是必须的。
在XRD检测部分,应理解,用于XRD检测的射线经由受检物而散射。在一个实施例中,XRD检测设备104包括:后准直器107,该后准直器107从散射射线中选择具有相同散射射线方向的射线;至少一个XRD散射探测器108,该至少一个XRD散射探测器108接收通过后准直器107的具有相同散射射线方向的射线,以获取XRD数据。
此外,应理解,用于XRD检测的射线还穿透受检物。在一个实施例中,XRD检测设备104还包括:至少一个XRD透射探测器109,该至少一个XRD透射探测器109接收穿过受检物的射线,以获取XRD透射数据。
在一个实施例中,XRD检测设备104还包括XRD数据处理器110,该XRD数据处理器110对XRD散射数据和XRD透射数据进行处理以获得XRD图像。应理解,与CT检测部分相同,虽然在此将XRD散射探测器108和/或XRD透射探测器109描述为分开的装置,但是他们也可以被集成到一起,或者替代地,XRD散射探测器108和/或XRD透射探测器109也可以将XRD数据传送给该XRD检测设备104外围的处理设备进行处理,然后处理设备再将处理后的XRD图像返回给XRD检测设备104。
CT检测设备103所得到的CT图像以及XRD检测设备104所得到的XRD图像能够被用于物质识别。此外,如图1所示,CT检测设备103和XRD检测设备104可以通信CT图像的数据和XRD图像的数据以进行彼此校正。由此,根据本发明的多模态检测系统100,CT检测设备103和XRD检测设备104可以共用一套分布式射线源101,能够同时进行CT检测和XRD检测。
图2是示出了本发明一个实施例的多模态检测系统100的示意图。如图2所示,受检物111随着传送带以一定速度V朝Z方向通过传送通道112。应理解,为了便于描述,图2中给出了XYZ的坐标系,其中Z方向即传送带传送的方向,Y方向即与传送带的平面垂直的方向,X方向为与ZY构成的平面垂直的方向。
多模态检测系统100包括分布式射线源101,分布式射线源101照射受检物111。在图2中,分布式射线源101被示出为两个,但是应理解多模态检测系统100可以包括更多个分布式射线源101。分布式射线源101可以被布置在传送通道框架113内侧的至少一部分上。如图2所示,两个分布式射线源101中的一个位于传送通道框架113内侧的顶部边缘,另一个位于传送通道框架113内侧的侧壁边缘,但是分布式射线源101的安置位置也并不限于此,例如分布式射线源101可以被布置在传送通道框架113的顶部、底部、侧壁中的至少一者内侧的任何位置。
分布式射线源101上可以具有至少一个射线源焦点,这些射线源焦点可以独立点亮来辐射射线。应理解,这些射线源焦点点亮的形式(例如,点亮顺序和组合形式)可由分布式射线源控制设备或控制程序控制。此外,在有多个分布式射线源101的情况中,这些分布式射线源101各自具有的射线源焦点的数量可以彼此相同,也可以彼此不同。在分布式射线源101上的射线源焦点点亮的任意时刻,XRD数据和CT数据能够被同时获取。
多模态检测系统100还包含前准直器102、CT检测设备103、XRD检测设备104(在图2中未示出)。前准直器102将分布式射线源101的射线分成两部分,其中一部分用于CT检测,另一部分用于XRD检测。CT检测设备103进行CT检测以获取受检物的CT图像。XRD检测设备104进行XRD检测以获取受检物的XRD图像。应注意,CT检测与XRD检测同时进行。
在根据本发明的多模态检测系统中,当有多个分布式射线源时,系统包括与每个分布式射线源相对应的前准直器、CT检测设备和XRD检测设备。每个分布式射线源相应的前准直器被布置在该分布式射线源和受检物 之间,并且CT检测设备和XRD检测设备被布置为使得受检物介于前准直器与相应CT检测设备和XRD检测设备之间,也就是说,CT检测设备和XRD检测设备被布置在受检物的与前准直器相对的一侧。例如,参考图2,分布式射线源101被布置在传送通道框架113内侧的顶部边缘,前准直器可以被布置在分布式射线源101下方以分割射线,而CT检测设备和XRD探测设备可以被布置在传送带下方。
如上,根据本发明实施例的多模态检测系统100融合了CT检测系统和XRD检测系统,将传统的多级检测有机结合在一起,并且CT检测系统和XRD检测系统实质上共用一套分布式射线源,从而能够同时获取CT图像和XRD图像。由此,与多级检测系统相比,系统规模得以减小,检测效率以及检测准确性得以提高。
图3是示出了本发明实施例的多模态检测系统100的纵剖面图。图3中也示出了XYZ坐标系,此坐标系与图2中的XYZ坐标系相同,由于图3是纵剖面图,因此X方向垂直纸面向里。此外,图3中与图1相同的标号指代相同的元素。应注意,在下面的讨论中仅针对一个分布式射线源进行描述,在有多个分布式射线源的情况中,针对每个分布式射线源布置相应的前准直器、CT检测设备和XRD检测设备,执行类似的检测。
如图3所示,受检物111随着传送带114朝Z方向行进。当受检物111经过传送通道112时,将会受到分布式射线源101的照射。如图3所示,由分布式射线源101上的射线源焦点发出的射线被分成两部分,一部分对着CT检测设备103照射以用于CT检测,另一部分对着XRD检测设备104照射以用于XRD检测。上述射线的分割实际上由被布置于分布式射线源101和受检物111之间的前准直器102完成。经由前准直器102分割的两部分射线的照射平面之间可以存在一定偏角以使得CT检测和XRD检测互不干扰,从而CT检测和XRD检测能够同时独立地进行。用于XRD检测的检测平面可以在CT检测平面的一侧或者两侧都有。
如图3所示,在CT检测部分,多模态检测系统100还包括CT检测设备103。CT检测设备103包括至少一个CT探测器105,这至少一个CT探 测器105用于执行CT检测以获取CT数据。在一个实施例中,CT探测器105可以选自能量沉积型探测器、双能探测器、能谱探测器(即光子计数探测器)中的一种。CT探测器105可以具有一维线阵列探测器或二维面阵列探测器的形式,其中二维面阵列探测器例如可以是平板探测器或弧面探测器。CT检测设备103还可以包括CT数据处理器106(在图中未示出),该CT数据处理器106对CT探测器105所获取的CT数据执行处理以获得CT图像。用于CT检测的射线可以为扇束或锥束,分别对应于单排或多排螺旋CT成像方式。
在XRD检测部分,多模态检测系统100还包括XRD检测设备104。经由前准直器102的用于XRD检测的射线照射到受检物111后会发生散射。如图3所示,散射射线将经后准直器107而进入XRD检测设备104中包括的至少一个XRD散射探测器108。后准直器107从散射射线中选择具有相同散射线方向的射线。至少一个XRD散射探测器108接收通过后准直器107的具有相同散射线方向的射线,以获取XRD散射数据。在图3中,后准直器107将选择散射角为θ的散射射线以射入至少一个XRD散射探测器108中。在一个实施例中,XRD散射探测器108可以为像素级能谱探测器。
此外,用于XRD检测的射线也会部分穿透受检物111,因此,在一个实施例中,XRD检测设备还可以包括XRD透射探测器109来接收穿透受检物111的射线以获取XRD透射数据。该XRD透射数据能够校正XRD散射探测器108的测量结果,得到更丰富和准确的受检物111的信息。
图4是示出了本发明实施例的多模态检测原理的示意图。图4中与图1-图3相同的标号指代相同的元素。在图4所示,标号115指代检测区域。分布式射线源101上的射线源焦点辐射的射线经前准直器102限制而被分成两部分,一部分对着CT检测设备103照射以用于CT检测,另一部分对着XRD检测设备104照射以用于XRD检测。经由前准直器102分割的两部分射线的照射平面之间可以存在一定的偏角以使得CT检测和 XRD检测之间不会发生干扰,从而CT检测和XRD检测能够同时独立地进行。
在CT检测部分,CT检测设备103中包括的CT探测器105接收经前准直器102限制所分割出的一部分射线以执行CT检测来获取CT数据。图5是示出了本发明一个实施例的CT成像原理的示意图。如图5所示,受检物111位于分布式射线源101和CT探测器105之间。如上所述,用于CT检测的射线可以为扇束或锥束,分别对应于单排或多排螺旋CT成像方式。当分布式射线源101上的不同射线源焦点点亮时,射线源焦点发出的射线从不同角度照射受检物111,CT探测器105通过截取一个照射平面,在该照射平面上得到受检物111的投影数据。图5中仅示出了分布式射线源101的两个边缘位置的射线源焦点所发出的射线经过受检物111的成像情形。应理解,当分布式射线源101上有更多的射线源焦点被点亮时,投影图像将会更准确地反映受检物111本身的情况。
在图5中,分布式射线源101被示出为直线型排布。然而,分布式射线源并不限于此,而是,在其他实施例中,分布式射线源可以是圆弧型、L型、U型排布或者以其他形式排布,例如,分布式射线源101可以由分布在不同平面上的多段组成,即多段式排布。图6示出了以L型和U型排布的分布式射线源,这种排布形式能保证获得非常大角度范围的投影数据,从而提高CT图像重建的准确性。图7示出了多段式排布形式的分布式射线源模块,这种排布形式能够获得足够角度的投影数据。
继续参考图4,在另一方面中,XRD检测设备104接收经前准直器102限制所分割出的另一部分射线以执行XRD检测来获取XRD图像。如图4所示,用于XRD检测的射线116照射到受检物后会发生散射。应理解,可以存在若干方向的散射射线,但是系统被配置为通过后准直器107从各种散射射线中选择具有相同散射方向的射线而进入XRD检测设备104中包括的至少一个XRD散射探测器108。至少一个XRD散射探测器108通过接收经后准直器107限制的射线而进行XRD检测以获得XRD散射数 据(例如,XRD散射能谱图)。
XRD检测可以做到逐点测量,因此对于各种排布形式的分布式射线源均可获得完整的数据。由于CT检测需要射线源焦点数量大,间隔小,分布广,XRD检测可利用其中全部或者部分射线源焦点,通过前准直器引出相应的射线,并在后准直器的限制下获得各点固定散射角度的散射数据。
图8示出了本发明一个实施例的XRD检测的射线束形式和分布的示意图。图8中也示出了XYZ坐标系,此坐标系与图2中的XYZ坐标系相同,同样,X方向垂直纸面向里。如图8所示,在前准直器102的限制下,分布式射线源101上的每个射线源焦点在XRD检测平面内发射出复数条笔束射线,这些笔束射线成扇形分布。图9示出了本发明另一个实施例的XRD检测的射线束形式和分布的示意图。图9中也示出了XYZ坐标系,此坐标系与图8中的XYZ坐标系相同,同样,X方向垂直纸面向里。如图9所示,在前准直器101的限制下,分布式射线源101上的各个射线源焦点在XRD检测平面内发射出单条笔束射线,由所有射线源焦点发射的笔束平行分布。不论哪种形式的射线分布,随后,这些射线束经由后准直器107的限制而射入各XRD散射探测器108,从而各个XRD散射探测器108测量受检物上各点固定散射角度的散射信息。应理解,用于XRD检测的射线并不限于上述形式。
另外,如图4所示,用于XRD检测的射线115也会穿透受检物。因此,XRD检测设备104还可以包括XRD透射探测器109来接收穿透受检物的射线以获取XRD透射数据(如,XRD透射能谱图)。该XRD透射数据能够校正XRD散射探测器108的测量结果,得到更丰富更准确的受检物的信息。
应理解,用于XRD检测的射线的照射平面与用于CT检测的射线的照射平面之间可以具有一定偏角,以将CT检测和XRD检测更好地隔离开。该夹角可以依据需求变化。在一个实施例中,用于CT检测的射线的照射平面可以平行于XY平面(即与传送带的行进方向相垂直),而用于XRD 检测的射线的照射中心平面可以与XY平面具有一定夹角。此外,XRD检测的检测平面可以在CT检测的检测平面的一侧或者两侧都有。
上面描述了根据本发明实施例的多模态检测系统。本发明还提供了一种多模态检测方法。图10给出了本发明一个实施例的多模态检测方法1100的流程图。如图10所示,多模态检测方法200包括:S201,控制分布式射线源以辐射射线,所述射线照射受检物;S202,通过前准直器将分布式射线源的射线分成两部分,其中一部分用于XRD检测,另一部分用于CT检测;S203,通过CT检测设备进行CT检测以获取受检物的CT图像,以及通过XRD检测设备进行XRD检测以获取受检物的XRD图像,其中,CT检测与XRD检测同时进行。
在根据本发明实施例的多模态检测系统和方法中,CT检测设备和XRD检测设备可以互通CT图像的数据和XRD图像的数据以便彼此校正。具体地,通常,XRD图像信噪比较低,空间分辨率不高,在受检物边缘部分,可能出现不同物质的XRD谱重叠的情况。另一方面,CT图像结构信息清晰,空间分辨率高。因此,可利用CT图像的数据来锐化XRD图像的边缘,这可以一定程度上避免由于谱混叠而造成的物质错误识别。
图11是示出了本发明一个实施例利用CT数据校正XRD图像的示意图。具体地,由于XRD图像空间分辨率不高,对于XRD图像中的一个像素,在CT图像中将被显示为两种物质边缘。此时,通过将两种物质的独立XRD谱加权求和,并与这个可能位于物质边缘的像素的XRD图像信息进行比较,当两者差异在一定范围内的时候,认为该像素的XRD图像信息为两物质XRD图像信息的和,而非第三种物质。之后,可以将两种物质的XRD信息填充到各自的结构中,去掉混叠的XRD数据。
另一方面,可以利用XRD检测得到的图像数据对CT图像进行散射校正。具体地,XRD检测得到物体内各点的相干散射以及非相干散射的和的分布(其中相干散射占主要部分),通过各点的XRD谱可以得到一定范围内的物质散射核函数,利用该散射核函数可进行CT图像的散射校正, 提高CT图像数据的准确性。
此外,利用CT、XRD图像信息,结合图像结构相似性(CT图像)、物质材料相似性(XRD图像)进行Non_Local降噪算法的权重计算,并对两种图像进行降噪,可以提高各自图像的信噪比。
另外,如果采用高分辨率的能谱探测器测量CT图像,可以得到物体各点衰减系数随能量的分布,利用该CT数据可以对XRD图像进行衰减校正。相比传统的利用透射路径上的衰减能谱代替散射路径上的衰减能谱的衰减校正方法更加的准确,同时还节省了XRD检测中所用的透射探测器。
如上所述,根据本发明实施例的多模态检测系统和方法,能够综合两项检测(CT检测和XRD检测)得到的物质信息进行物质识别。根据本发明实施例的系统和方法同时使用CT检测信息和XRD检测信息进行物质识别,而非“先CT,后XRD”的方式,对CT检测认为安全的区域也进行XRD检测,能够降低系统的误报率和漏检率。
另外,根据本发明实施例的多模态检测系统和方法,从系统结构和物理信息两方面,真正地将CT和XRD检测系统有机地结合在了一起。两者共用一套分布式射线源,降低了成本,同时减小了整个检测系统的体积。CT检测和XRD检测同时进行,检测平面接近,降低多模态信息位置配准以及多种交互的复杂度,同时提高了系统的检测效率和准确性。系统中CT检测和XRD检测均为固定式测量,避免了探测器、射线源以及受检物复杂的机械运动,提高了系统的稳定性。此外,CT检测与XRD检测的数据同时处理,增加了多模态成像数据之间的信息交互,真正做到从外部(系统结构)到内部(数据)的结合,提高了检测质量。
应理解,根据本发明实施例的多模态检测系统和方法可以应用于安检领域,但是本领域的技术人员也能够理解,根据本发明实施例的多模态检测系统和方法并不限于安检领域,而是也可以用于其他相关领域。
应当注意,在权利要求中,单词“包含”或“包括”并不排除存在未 列在权利要求中的元件或组件。位于元件或组件之前的冠词“一”或“一个”也并不排除存在多个这样的元件或组件的情况。
此外,还应当注意,本说明书中使用的语言主要是为了可读性和教导的目的而选择的,而不是为了解释或者限定本发明的主题而选择的。因此,在不偏离所附权利要求书的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。关于本发明的范围,说明书中所做的描述都是说明性的,而非限制性的,本发明的范围由所附权利要求书限定。

Claims (21)

  1. 一种多模态检测系统,包括:
    分布式射线源,所述分布式射线源照射受检物;
    前准直器,所述前准直器将所述分布式射线源的射线分成两部分,其中一部分用于CT检测,另一部分用于XRD检测;
    CT检测设备,所述CT检测设备进行所述CT检测以获取受检物的CT图像;以及
    XRD检测设备,所述XRD检测设备进行所述XRD检测以获取受检物的XRD图像,其中,
    所述CT检测与所述XRD检测同时进行。
  2. 根据权利要求1所述的多模态检测系统,其中,所述多模态检测系统包括多个分布式射线源,并且包括与每个分布式射线源相对应的前准直器、CT检测设备和XRD检测设备。
  3. 根据权利要求2所述的多模态检测系统,其中,每个所述分布式射线源被布置在传送通道框架内侧的至少一部分上,并且与每个所述分布式射线源相应的前准直器被布置在该分布式射线源和受检物之间,并且相应的CT检测设备和XRD检测设备被布置为使得受检物介于所述前准直器与该相应的CT检测设备和XRD检测设备之间。
  4. 根据权利要求2所述的多模态检测系统,其中,每个所述分布式射线源选自如下各种中的一种:直线型、圆弧型、L型、U型、多段式。
  5. 根据权利要求2所述的多模态检测系统,其中,每个所述分布式射线源上具有多个射线源焦点,这些射线源焦点能够独立点亮来辐射射线。
  6. 根据权利要求5所述的多模态检测系统,还包括分布式射线源控制设备,所述分布式射线源控制设备控制每个所述分布式射线源上的射线源焦点的点亮的形式。
  7. 根据权利要求5所述的多模态检测系统,其中,所述多个分布式射线源各自具有的射线源焦点的数量彼此相同或不同。
  8. 根据权利要求1所述的多模态检测系统,其中,所述CT检测设备包括至少一个CT探测器,所述至少一个CT探测器执行所述CT检测以获取CT数据。
  9. 根据权利要求8所述的多模态检测系统,其中,所述CT探测器选自如下各种中的一种:能量沉积型探测器、双能探测器、能谱探测器。
  10. 根据权利要求8所述的多模态检测系统,其中,所述CT检测设备还包括CT数据处理器,所述CT数据处理器对所述CT探测器所获取的CT数据执行处理以获得所述CT图像。
  11. 根据权利要求1所述的多模态检测系统,其中,用于所述CT检测的射线为扇束或锥束。
  12. 根据权利要求1所述的多模态检测系统,其中,用于所述XRD检测的射线经由受检物而散射,并且其中,所述XRD检测设备包括:
    后准直器,所述后准直器从散射射线中选择具有相同散射线方向的射线;
    至少一个XRD散射探测器,所述至少一个XRD散射探测器接收通过所述后准直器的具有相同散射线方向的射线,以获取XRD散射数据。
  13. 根据权利要求12所述的多模态检测系统,其中,用于所述XRD检测的射线穿透受检物,并且其中,所述XRD检测设备还包括:
    至少一个XRD透射探测器,所述至少一个XRD透射探测器接收穿过受检物的射线,以获取XRD透射数据。
  14. 根据权利要求13所述的多模态检测系统,其中,所述XRD检测设备还包括XRD数据处理器,所述XRD数据处理器对所述XRD散射数据和所述XRD透射数据进行处理以获得所述XRD图像。
  15. 根据权利要求1所述的多模态检测系统,其中,用于所述XRD检测的射线为笔束。
  16. 根据权利要求15所述的多模态检测系统,其中,用于所述XRD检测的射线呈扇形分布或平行分布。
  17. 根据权利要求1所述的多模态检测系统,其中所述一部分的射线可以被分为多个部分,这多个部分分别用于所述XRD检测。
  18. 根据权利要求1所述的多模态检测系统,其中,所述另一部分的射线被分为多个部分,这多个部分分别用于所述CT检测。
  19. 根据权利要求1、17、18中任一项所述的多模态检测系统,其中,用于所述CT检测的射线的照射平面与用于所述XRD检测的射线的照射中心平面具有一定偏角,以使得所述XRD检测和所述CT检测互不干扰。
  20. 根据权利要求1所述的多模态检测系统,其中,所述XRD检测设备和所述CT检测设备通信所述XRD图像和所述CT图像的数据以进行彼此校正。
  21. 一种多模态检测方法,包括:
    控制分布式射线源以辐射射线,所述射线照射受检物;
    通过前准直器将所述分布式射线源的射线分成两部分,其中一部分用于CT检测,另一部分用于XRD检测;
    通过CT检测设备进行所述CT检测以获取受检物的CT图像;以及
    通过XRD检测设备进行所述XRD检测以获取受检物的XRD图像,其中,所述CT检测与所述XRD检测同时进行。
PCT/CN2016/094460 2015-12-18 2016-08-10 多模态检测系统和方法 WO2017101466A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA2987815A CA2987815C (en) 2015-12-18 2016-08-10 Multi-modality detection system and method
KR1020177034778A KR102033233B1 (ko) 2015-12-18 2016-08-10 멀티 모달 검출 시스템 및 방법
JP2017561701A JP6732805B2 (ja) 2015-12-18 2016-08-10 マルチモーダル検出システムおよび方法
AU2016369726A AU2016369726B2 (en) 2015-12-18 2016-08-10 Multi-modal detection system and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510958891.6 2015-12-18
CN201510958891.6A CN106896120B (zh) 2015-12-18 2015-12-18 多模态检测系统和方法

Publications (1)

Publication Number Publication Date
WO2017101466A1 true WO2017101466A1 (zh) 2017-06-22

Family

ID=56802291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/094460 WO2017101466A1 (zh) 2015-12-18 2016-08-10 多模态检测系统和方法

Country Status (8)

Country Link
US (1) US10338011B2 (zh)
EP (1) EP3182104B1 (zh)
JP (1) JP6732805B2 (zh)
KR (1) KR102033233B1 (zh)
CN (1) CN106896120B (zh)
AU (1) AU2016369726B2 (zh)
CA (1) CA2987815C (zh)
WO (1) WO2017101466A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110907481A (zh) * 2018-09-18 2020-03-24 同方威视技术股份有限公司 一种x射线的检测系统和检测方法
WO2020106036A1 (en) * 2018-11-19 2020-05-28 Samsung Electronics Co., Ltd. Multimodal dust sensor
US11399788B2 (en) 2019-01-15 2022-08-02 Duke University Systems and methods for tissue discrimination via multi-modality coded aperture x-ray imaging
CN111265231B (zh) * 2019-04-15 2021-08-31 清华大学 分布式光源ct图像重建方法与系统
US11058369B2 (en) * 2019-11-15 2021-07-13 GE Precision Healthcare LLC Systems and methods for coherent scatter imaging using a segmented photon-counting detector for computed tomography
CN111380882A (zh) * 2020-04-24 2020-07-07 中国工程物理研究院材料研究所 单源角度分辨式x射线衍射分析与断层成像耦合装置
CN115793077A (zh) * 2021-09-09 2023-03-14 同方威视技术股份有限公司 行李物品智能安检系统和方法
CN115330895A (zh) * 2022-08-16 2022-11-11 迈胜医疗设备有限公司 一种散射校正方法、装置、设备及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005121756A2 (en) * 2004-06-03 2005-12-22 Brondo Joseph H Jr Mult-mode gamma beam detection and imaging system
CN1898581A (zh) * 2003-11-12 2007-01-17 Ge英维森股份有限公司 用于探测违禁品的系统和方法
CN101617247A (zh) * 2007-02-22 2009-12-30 通用电气公司 直线型高吞吐量违禁品检测系统
CN101821647A (zh) * 2007-06-29 2010-09-01 莫弗探测公司 用于爆炸物检测的集成多传感器系统和方法
US7844027B2 (en) * 2008-02-22 2010-11-30 Morpho Detection, Inc. XRD-based false alarm resolution in megavoltage computed tomography systems
US7924978B2 (en) * 2008-02-22 2011-04-12 Morpho Detection Inc. System and method for XRD-based threat detection
CN102253065A (zh) * 2010-02-16 2011-11-23 帕纳科有限公司 X射线衍射和计算机层析成像

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5917880A (en) * 1997-05-29 1999-06-29 Eg&G Astrophysics X-ray inspection apparatus
US6408049B1 (en) * 1999-11-09 2002-06-18 General Electric Company Apparatus, methods, and computer programs for estimating and correcting scatter in digital radiographic and tomographic imaging
US6661866B1 (en) * 2002-08-28 2003-12-09 Ge Medical Systems Global Technology Company, Llc Integrated CT-PET system
US7092485B2 (en) 2003-05-27 2006-08-15 Control Screening, Llc X-ray inspection system for detecting explosives and other contraband
WO2005004722A2 (en) * 2003-07-15 2005-01-20 Koninklijke Philips Electronics N.V. Computed tomography scanner with large gantry bore
CN1946342A (zh) * 2004-04-21 2007-04-11 皇家飞利浦电子股份有限公司 锥束相干散射计算机断层摄影装置
JP2008501463A (ja) * 2004-06-07 2008-01-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 干渉性散乱コンピュータ断層撮影装置及び方法
JP2009512851A (ja) * 2005-10-20 2009-03-26 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 改良されたcsct検出器形状
US7486760B2 (en) * 2006-08-15 2009-02-03 Ge Security, Inc. Compact systems and methods for generating a diffraction profile
US7787591B2 (en) * 2008-12-01 2010-08-31 Morpho Detection, Inc. Primary collimator and systems for x-ray diffraction imaging, and method for fabricating a primary collimator
US7756249B1 (en) * 2009-02-19 2010-07-13 Morpho Detection, Inc. Compact multi-focus x-ray source, x-ray diffraction imaging system, and method for fabricating compact multi-focus x-ray source
EP3686901A1 (en) * 2009-05-26 2020-07-29 Rapiscan Systems, Inc. X-ray tomographic inspection method
US8576988B2 (en) * 2009-09-15 2013-11-05 Koninklijke Philips N.V. Distributed X-ray source and X-ray imaging system comprising the same
US20110188632A1 (en) * 2010-02-03 2011-08-04 Geoffrey Harding Multiple plane multi-inverse fan-beam detection systems and method for using the same
US9285326B2 (en) * 2012-06-19 2016-03-15 Kabushiki Kaisha Toshiba Sparse and energy discriminating collimated detector elements to assist scatter evaluation in CT imaging
US9089266B2 (en) * 2013-04-19 2015-07-28 Kabushiki Kaisha Toshiba Tilted detector array for medical imaging systems including computed tomography
KR101425530B1 (ko) 2013-07-24 2014-08-05 한국과학기술원 X-선 단층 촬영을 이용한 물질 분별 알고리즘 교정 장치
CN104749198B (zh) * 2013-12-30 2019-08-06 同方威视技术股份有限公司 双通道高能x射线透视成像系统
CN203929678U (zh) * 2014-03-04 2014-11-05 清华大学 检查设备和系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1898581A (zh) * 2003-11-12 2007-01-17 Ge英维森股份有限公司 用于探测违禁品的系统和方法
WO2005121756A2 (en) * 2004-06-03 2005-12-22 Brondo Joseph H Jr Mult-mode gamma beam detection and imaging system
CN101617247A (zh) * 2007-02-22 2009-12-30 通用电气公司 直线型高吞吐量违禁品检测系统
CN101821647A (zh) * 2007-06-29 2010-09-01 莫弗探测公司 用于爆炸物检测的集成多传感器系统和方法
US7844027B2 (en) * 2008-02-22 2010-11-30 Morpho Detection, Inc. XRD-based false alarm resolution in megavoltage computed tomography systems
US7924978B2 (en) * 2008-02-22 2011-04-12 Morpho Detection Inc. System and method for XRD-based threat detection
CN102253065A (zh) * 2010-02-16 2011-11-23 帕纳科有限公司 X射线衍射和计算机层析成像

Also Published As

Publication number Publication date
EP3182104B1 (en) 2024-09-18
US10338011B2 (en) 2019-07-02
JP6732805B2 (ja) 2020-07-29
CN106896120B (zh) 2019-07-16
US20170176353A1 (en) 2017-06-22
EP3182104A1 (en) 2017-06-21
JP2018517138A (ja) 2018-06-28
CN106896120A (zh) 2017-06-27
KR20180020143A (ko) 2018-02-27
CA2987815A1 (en) 2017-06-22
AU2016369726A1 (en) 2017-12-07
AU2016369726B2 (en) 2018-05-10
KR102033233B1 (ko) 2019-10-16
CA2987815C (en) 2021-01-05

Similar Documents

Publication Publication Date Title
WO2017101466A1 (zh) 多模态检测系统和方法
US7177391B2 (en) Imaging inspection apparatus
RU2386954C1 (ru) Установка для досмотра грузов
WO2017101471A1 (zh) 液体检测方法和系统
US20180356355A1 (en) Radiographic image generating device
EP2273257A1 (en) Imaging system using a straight-line trajectory scan and method thereof
RU2636810C1 (ru) Устройства обследования, способы обследования и системы обследования
WO2017101483A1 (zh) 检测系统和方法
US20110188632A1 (en) Multiple plane multi-inverse fan-beam detection systems and method for using the same
EP2221847A2 (en) Compact multi-focus x-ray source, x-ray diffraction imaging system, and method for fabricating compact multi-focus x-ray source
US7324627B2 (en) Apparatus for measuring the momentum transfer spectrum of elastically scattered X-ray quanta and method of determining this momentum transfer spectrum
US20080317311A1 (en) Coherent Scatter Imaging
JP2009109499A (ja) 検査システム、検査方法、ct装置及び検出装置
US9134258B2 (en) Systems and methods for imaging and detecting sheet-like material
CN112649451B (zh) 用于大型对象的快速工业计算机断层扫描
US9188551B2 (en) Angle-dependent X-ray diffraction imaging system and method of operating the same
US20060140342A1 (en) Apparatus for measuring the momentum transfer spectrum of elastically scattered X-ray quanta
CN117518284A (zh) 基于单一直线扫描通道的ct扫描成像系统和方法
US20100011863A1 (en) Method and apparatus for computed tomography
US9618462B2 (en) Systems and methods for imaging and determining a signature of an object

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16874526

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017561701

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2987815

Country of ref document: CA

Ref document number: 20177034778

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016369726

Country of ref document: AU

Date of ref document: 20160810

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16874526

Country of ref document: EP

Kind code of ref document: A1