WO2017101120A1 - 通信方法、装置及系统 - Google Patents

通信方法、装置及系统 Download PDF

Info

Publication number
WO2017101120A1
WO2017101120A1 PCT/CN2015/097957 CN2015097957W WO2017101120A1 WO 2017101120 A1 WO2017101120 A1 WO 2017101120A1 CN 2015097957 W CN2015097957 W CN 2015097957W WO 2017101120 A1 WO2017101120 A1 WO 2017101120A1
Authority
WO
WIPO (PCT)
Prior art keywords
path
base station
serving gateway
mobility management
management entity
Prior art date
Application number
PCT/CN2015/097957
Other languages
English (en)
French (fr)
Inventor
龙思锐
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2015/097957 priority Critical patent/WO2017101120A1/zh
Publication of WO2017101120A1 publication Critical patent/WO2017101120A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/24Connectivity information management, e.g. connectivity discovery or connectivity update

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a communication method, apparatus, and system.
  • LTE long term evolution
  • SAE system architecture evolution
  • EPC Evolved Packet Core
  • the EPC implements the control plane function through the mobility management entity (English: mobility management entity, abbreviation: MME), and the user equipment (English: user equipment, abbreviation: UE) through the service gateway (English: serving gateway, abbreviation: S-GW)
  • MME mobility management entity
  • UE user equipment
  • S-GW serving gateway
  • PGW packet data network gateway
  • the MME In the process of activating the UE, the MME needs to first select an appropriate SGW for the UE.
  • the MME selects the SGW according to a tracking area list (English: tracking area list, abbreviation: TA list).
  • TA list tracking area list
  • the MME since the user plane data of the UE is directly connected to the SGW by the evolved base station (English: eNodeB; abbreviation: eNB) without being transmitted through the S1-U path of the MME, when the S1-U path between the SGW and the eNB occurs In the event of a fault, the MME may still select the SGW on the faulty path, causing the UE to fail to perform normal services even if the data switch is repeatedly restarted.
  • eNodeB evolved base station
  • the embodiment of the invention provides a communication method, device and system for selecting a suitable SGW for the UE to improve the user experience of the UE.
  • the embodiment of the present application provides a method for communication, the method includes: the mobility management entity acquires a message sent by the first serving gateway, where the message carries the identifier information of the first base station and the identifier information of the first serving gateway. And indication information for indicating that the first path between the first base station and the first serving gateway is in a fault state.
  • the mobility management entity obtains, according to the identifier information of the first base station, a service gateway list corresponding to the first base station (for example, obtaining the service gateway list from the domain name server DNS or local configuration information), where the service gateway list includes at least the first base station Identification information of the second service gateway.
  • the second path between the second serving gateway and the first base station is in a normal state.
  • the mobility management entity determines, according to the identifier information of the first base station, the user equipment UE served by the first base station (for example, the UE that is to be activated or the UE to be switched, or the UE on the first path of the fault), and selects the second Service gateway.
  • the MME can detect the path status between the SGW and the eNB. When the MME selects the SGW for the UE, the MME can eliminate the SGW of the path state fault and select the appropriate SGW for the UE to ensure that the data packets of the UE can be forwarded or routed normally. Normally, the user experience of the UE is improved.
  • the mobility management entity when the UE is the UE to be activated or the UE to be switched, the mobility management entity receives the request message that is sent by the UE and carries the identifier information of the first base station, and determines that the UE is the first service. UE served by the base station. When the UE is the UE on the first path of the fault, the mobility management entity searches for the local context according to the identifier information of the first base station and the identifier information of the first serving gateway, and determines that the UE is the UE served by the first serving base station.
  • the mobility management entity receives the first notification message that is sent by the first serving gateway and carries the indication information.
  • the first notification message may optionally include a status of multiple paths between the first serving gateway and a base station connected thereto, or a path status between the first serving gateway and a base station controlled by the mobility management entity, Or a path state whose state has changed (for example, from normal to failure).
  • the mobility management entity first sends a request message (eg, a modify bearer request message or a create session request message) including the identity information of the first base station to the first serving gateway, and then receives the first service gateway to send the request message.
  • a response message carrying the above indication information (for example, modifying a bearer response message or creating a session response message, indicating a letter) The information is used to modify the cause value carried in the bearer response message or the reason value carried in the session response message.
  • the method further includes: the mobility management entity adds the first path to the path blacklist according to the indication information, where the path blacklist includes the identification information of the serving gateway on the path in the fault state and the base station Identification information. Further, the mobility management entity determines, according to the identifier information and the indication information of the first serving gateway, that the first serving gateway is a serving gateway in the path blacklist, and excludes the serving gateway in the path blacklist, and selects from the serving gateway list. And a second serving gateway connected to the first base station (the second path between the second serving gateway and the first base station is in a normal state).
  • the mobility management entity when the mobility management entity adds the first path to the path blacklist, the first timer is started. After the first timer expires, the mobility management entity deletes the first path from the path blacklist.
  • the method further includes: the mobility management entity receives the second notification message sent by the first serving gateway, and the second notification message carries the indication information used to indicate that the first path returns to a normal state. The mobility management entity deletes the first path from the path blacklist according to the path normal notification message. Therefore, the blacklist of paths maintained by the mobility management entity is constantly updated. After the first path is deleted from the path blacklist, the mobility management entity may select the first serving gateway for the user equipment served by the first base station.
  • an embodiment of the present application provides a communication method, the method includes: the serving gateway acquires a base station list (for example, the base station list includes identity information of a base station connected to the serving gateway), and detects and records the service network element. The path status between each base station in the list of base stations. If the serving gateway determines that the first path between the first base station and the serving gateway in the base station list is faulty, the serving gateway sends a message to the mobility management entity, where the message carries the identifier information of the first base station, the identifier information of the serving gateway, and The indication information for indicating that the first path is in a fault state.
  • the serving gateway acquires a base station list (for example, the base station list includes identity information of a base station connected to the serving gateway), and detects and records the service network element. The path status between each base station in the list of base stations. If the serving gateway determines that the first path between the first base station and the serving gateway in the base station list is faulty, the serving gateway sends a message to the
  • the MME may be aware of the path status between the SGW and the eNB, and the MME may exclude the SGW of the path status fault when the SGW is selected by the UE.
  • the UE selects a suitable SGW to ensure that the data packets of the UE can be forwarded or routed normally, and the service can be performed normally to improve the user experience of the UE.
  • the serving gateway receives the general packet radio service tunneling protocol GTP signaling (eg, modifying the bearer request message or creating a session request message) that is sent by the mobility management entity and carrying the identity information of the base station;
  • the signaling acquires identification information of each base station connected to the serving gateway, and generates a base station list according to the identification information.
  • the identification information includes one or more of a network protocol (IP) address of the base station, a number of the base station, or an identification (ID) of the base station.
  • IP network protocol
  • ID identification
  • the serving gateway first receives a request message (eg, a modify bearer request message or a create session request message) sent by the mobility management entity, including the identifier information of the first base station, and then sends the above to the mobility management entity.
  • the response message indicating the information (for example, modifying the bearer response message or creating a session response message, indicating that the information is a cause value carried in the modify bearer response message or a cause value carried in creating the session response message).
  • the serving gateway after detecting that the first path fails, the serving gateway actively sends a path failure notification message carrying the indication information to the mobility management entity. Therefore, the mobility management entity can perceive the path state between the serving gateway and the base station in real time, which can further avoid service loss and improve the user experience of the UE.
  • the path failure notification message may include a status of multiple paths between the serving gateway and a base station connected thereto, or a path status between the serving gateway and a base station controlled by the mobility management entity, or a status change. Path status (for example, from normal to failure).
  • the second timer is started. After the second timer expires, the serving gateway detects the state of the first path again.
  • the serving gateway sends the above path failure notification message to the mobility management entity. Therefore, setting the second timer can prevent the serving gateway from frequently reporting the path state to the mobility management entity due to the frequent change of the path state, thereby reducing the signaling overhead between the serving gateway and the mobility management entity, and further avoiding The false alarm of the path status improves the accuracy of the operation of the mobility management entity.
  • the method further comprises: the serving gateway will be disconnected from the second base station from the list of base stations. For example, when the networking changes, the coverage of the service gateway The range is changed accordingly.
  • the serving gateway finds that the path between the serving gateway and the second base station has no user context information within a preset time period, the serving gateway is no longer connected to the second base station. Therefore, the list of base stations maintained by the Serving Gateway is also constantly updated.
  • an embodiment of the present invention provides a mobility management entity having a function of implementing a mobility management entity behavior in the foregoing method.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the structure of the mobility management entity includes a processor and a receiver configured to support the mobility management entity to perform the corresponding functions in the above methods.
  • the receiver is configured to support communication between the mobility management entity and the serving gateway, and receive information or instructions involved in the foregoing method sent by the serving gateway.
  • the mobility management entity may also include a memory for coupling with the processor that holds the necessary program instructions and data for the mobility management entity.
  • an embodiment of the present invention provides a service gateway, where the service gateway has a function of implementing a service gateway behavior in the foregoing method.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the structure of the serving gateway includes a processor and a transmitter configured to support the serving gateway to perform the corresponding functions in the above methods.
  • the transmitter is configured to support communication between the mobility management entity and the serving gateway, and the information or instructions involved in the above method are sent to the mobility management entity.
  • the serving gateway may also include a memory for coupling with the processor that holds program instructions and data necessary for the serving gateway.
  • an embodiment of the present invention provides a communication system, where the system includes the mobility management entity and the service gateway described in the foregoing aspects.
  • an embodiment of the present invention provides a computer storage medium for storing Computer software instructions for use by the mobility management entity, including programs designed to perform the above aspects.
  • an embodiment of the present invention provides a computer storage medium for storing computer software instructions for use by the service gateway, including a program designed to perform the above aspects.
  • the solution provided by the present invention can select a suitable SGW for the UE to ensure that the data packets of the UE can be forwarded or routed normally, and the service can be performed normally, and the user experience of the UE is improved.
  • 1 is a schematic diagram of a network architecture of an EPC defined in 3GPP;
  • FIG. 2 is a schematic diagram of a communication method according to an embodiment of the present invention.
  • 3A and 3B are respectively a signaling interaction diagram of a communication method according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a communication device (eg, MME) according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a communication device (eg, SGW) in accordance with an embodiment of the present invention.
  • FIG 1 shows the network architecture diagram of the EPC defined in the 3rd generation partnership project (English: 3rd generation partnership project, abbreviation: 3GPP).
  • the EPC includes subcomponents such as an MME, an SGW, a PGW, and a home subscriber server (English: home subscriber server, abbreviation: HSS).
  • the MME is a control node in the LTE access network, and passes through the S1-MME path and the evolved universal terrestrial radio access network (English: evolved universal terrestrial radio access)
  • the base stations in the network abbreviation: E-UTRAN, are connected.
  • the MME is responsible for tracking and paging control of the UE in idle mode. In the process of tracking and paging control of the UE, the MME needs to select different SGWs for the UE to complete the handover of the core network node in the LTE system.
  • the MME exchanges information with the HSS through the S6a path.
  • the function of the HSS is a central database containing information related to the UE and information related to the subscription.
  • the HSS features include: mobility management, support for call and session establishment, user authentication and access authorization.
  • the base station is connected to the SGW through an S1-U path.
  • the SGW is responsible for routing and forwarding of data packets of the UE, and is also responsible for the exchange of user plane data when the UE moves between eNodeBs or between LTE and other 3GPP technologies.
  • the PGW is connected to the SGW through the s5 path to implement interface transmission between the UE and the external service PDN connection point.
  • One UE can access multiple service PDNs through multiple PGWs at the same time.
  • the MME selects the SGW according to the tracking area list.
  • the evolved base station English: eNodeB; abbreviation: eNB
  • eNB evolved base station
  • the MME may still select the SGW on the faulty path, causing the UE to fail to perform services normally.
  • the MME can sense the state of the data plane path between the SGW and the eNB, and select an SGW with a normal data plane path to ensure that the UE can perform services normally and improve the user experience of the UE.
  • FIG. 2 is a schematic diagram of a communication method in accordance with one embodiment of the present invention.
  • the network element involved in the communication method includes an MME and an SGW (e.g., SGW1). as shown in picture 2:
  • step S202 the SGW1 acquires an eNB list of the eNB connected to the SGW1.
  • Step S204 The SGW1 detects each eNB in the eNB list to learn the path status between the SGW1 and each eNB.
  • Step S206 if the SGW1 determines that the first path between the first eNB (eg, eNB1) and the SGW1 in the base station list fails, the SGW1 sends a message to the MME.
  • the message carries the identifier information of the eNB1, the identifier information of the SGW1, and the first path between the eNB1 and the SGW1 is faulty. Status indication. Accordingly, the MME acquires the message sent by SGW1.
  • the identity information of the eNB includes one or more of an eNB's network protocol (English: internet protocol, abbreviation: IP) address, an eNB number, or an eNB identity (information: abbreviation: ID).
  • IP internet protocol
  • ID eNB identity
  • the identifier information of the SGW includes the IP address of the SGW, the number of the SGW, or the identifier of the SGW, or other identifier information that enables the MME to identify the SGW.
  • Step S208 the MME acquires an SGW list connected to the eNB1 according to the identifier information of the eNB1, where the SGW list includes at least the SGW2 connected to the eNB1.
  • the second path between the SGW2 and the eNB1 is in a normal state.
  • the SGW list further includes an SGW1 connected to the eNB1.
  • the MME acquires an SGW list connected to the eNB1 from a domain name server (English: domain name server; abbreviated as DNS) according to the identity information of the eNB1.
  • the SGW list is pre-configured in the MME.
  • step S210 the MME determines the UE served by the eNB1 according to the identifier information of the eNB1, and selects an SGW (for example, SGW2) that is connected to the eNB1 and has a normal path state according to the SGW list and the message.
  • SGW for example, SGW2
  • the SGW1 can acquire the eNB list of the eNB connected to the SGW1, and obtain the path status between the SGW1 and each eNB by detecting.
  • the SGW1 returns a message carrying the indication information indicating that the path status between the SGW1 and the eNB is a failure to the MME.
  • the MME can sense the path status between the SGW1 and the eNB, and select the SGW2 with the normal path status from the SGW list obtained by the DNS.
  • the MME can exclude the SGW of the path state fault when selecting the SGW for the UE, and select an appropriate UE for the UE.
  • the SGW ensures that the data packets of the UE can be forwarded or routed normally, and the service can be performed normally to improve the user experience of the UE.
  • FIG. 3A the existing message carries the path state between the SGW and the eNB by extending the existing message.
  • the method includes:
  • step S302 the SGW1 acquires an eNB list of the eNB connected to the SGW1.
  • the eNB list includes identification information of respective eNBs connected to the SGW 1.
  • the identity information of the eNB includes one or more of an eNB's network protocol (English: internet protocol, abbreviation: IP) address, an eNB number, or an eNB identity (information: abbreviation: ID).
  • the eNB list can be manually configured by the network maintenance personnel on SGW1.
  • the SGW1 can also learn the eNB connected to itself by using a general packet radio service (English: GPRS tunnel protocol, abbreviation: GTP) signaling between the MME and the MME.
  • GTP general packet radio service
  • the identification information is generated, and an eNB list is generated accordingly.
  • GTP signaling includes, but is not limited to, a modify bearer request message or a create session request message.
  • the MME sends a request message (eg, a modify bearer request message or a create session request message) to the SGW1, where the request message carries the identifier information of the eNB1 connected to the SGW1.
  • the SGW1 obtains the identifier information of the eNB1 from the request message.
  • the eNB serving the UE may change as the location of the UE changes.
  • the MME sends a request message to the SGW1.
  • the MME sends a Modify Bearer Request message to the SGW1; if the SGW changes or is reassigned, the MME sends a Create Session Request message to the SGW1.
  • the request message carries the identifier information of the eNB after the UE is switched.
  • the SGW1 obtains the identifier information of the eNB after the handover from the request message.
  • the SGW1 can learn which eNBs are connected (eg, eNB1, eNB2, eNB3, etc.), and maintain the eNB list by recording the identification information of the eNBs connected thereto.
  • eNB The eNB maintained in the list (eg, eNB1, eNB2, or eNB3) does not depend on whether the current SGW1 and the eNB have a bearer. That is to say, regardless of whether the bearer currently exists or not, the MME's identification information is recorded in the eNB list as long as the MME carries the identity information of the eNB through GTP signaling in the previous process.
  • Step S304 the SGW1 detects each eNB in the eNB list to learn the status of the path between the SGW1 and each eNB, and records the path status in the eNB list.
  • FIG. 3A For ease of description, only eNB1 connected to SGW1 is shown in FIG. 3A. However, the present invention is not limited thereto, and the SGW 1 may have other connected eNBs.
  • the SGW 1 can use an echo detection method to learn the path status between the SGW 1 and each eNB. For example, the SGW1 sends an echo probe request to the eNB1 to determine a path state between the SGW1 and the eNB1 according to whether an echo probe response is received within a predetermined time. If the echo probe response sent by the eNB1 is received at the predetermined time, it is determined that the path state between the SGW1 and the eNB1 is normal. If the echo detection response sent by the eNB1 is not received within a predetermined time, the path state between the SGW1 and the eNB1 may be directly determined to be a fault.
  • the SGW1 may send the probe request again according to the predetermined time interval, and if the echo detection response sent by the eNB1 is not received after the preset number of probe requests are sent, It is determined that the path state between SGW1 and eNB1 is a failure.
  • the predetermined time interval and the preset number of transmissions of the probe request may be determined according to actual conditions. For example, if no probe response is received, SGW1 may send a probe request every 3 seconds, and if there is no response for 5 times, the path fault is confirmed.
  • the SGW1 periodically detects each eNB in the eNB list. For example, every 1 minute, SGW1 detects each eNB in the eNB list. In this way, the SGW 1 can sense the state of the path between the SGW 1 and each eNB in time.
  • the SGW1 After detecting the eNBs in the eNB list, the SGW1 records the detected path status in the eNB list. For example, if the detected path is in a normal state, it is recorded as normal; if the detected path is in an abnormal state, it is recorded as a failure. Or, SGW1 can also Only paths that are in an abnormal state are marked.
  • Step S306 the SGW1 receives the request message sent by the MME, parses the identifier information of the eNB carried in the request message, and acquires the state of the path between the SGW1 and the eNB from the locally maintained eNB list.
  • the request message is a modify bearer request message or a create session request message.
  • the MME sends a Modify Bearer Request message or a Create Session Request message carrying the IP address of the eNB to the SGW1; or, in the process of the UE switching the eNB, the MME sends a modified bearer carrying the IP address of the eNB after the handover to the SGW1.
  • Request a message or create a session request message. It is assumed that the request message carries the IP address of eNB1.
  • the SGW1 acquires the state of the path between the SGW1 and the eNB1 from the locally maintained eNB list.
  • Step S308 the SGW1 returns a response message to the MME. If the path status between the SGW1 and the eNB is a fault, the response message carries the identifier information of the SGW1, the identifier information of the eNB1, and the indication information indicating that the path status between the SGW1 and the eNB is a fault. For example, the indication information is used to indicate that the first path state between SGW1 and eNB1 is a failure.
  • the response message is a modify bearer response message for indicating that the bearer modification is failed.
  • the reason for the modification of the bearer response message carried by the bearer response message is the indication information that is used in the response message to indicate that the path status between the SGW1 and the eNB is a fault, where the cause value is a path state between the SGW1 and the eNB. malfunction.
  • the request message is a create session request message
  • the response message is a create session response message indicating that the session creation failed.
  • the reason for the failure to create a session carried in the session response message is the above indication.
  • the response message does not carry the foregoing cause value, and is used to indicate that the modification of the bearer is successful or the session is successfully created.
  • Step S310 the MME adds the path in the fault state (such as the first path between SGW1 and eNB1) to the path blacklist according to the received response message.
  • the MME maintains a path blacklist based on the received response message.
  • the path blacklist includes at least the path is faulty.
  • the MME maintains a path blacklist by maintaining path state information.
  • the path state information includes at least an IP address of the SGW, an IP address of the eNB, and may also include a state of a path connecting the SGW and the eNB.
  • the state of the path connecting the SGW and the eNB may be normal or down.
  • the MME may add the path in the fault state (such as the path between the SGW1 and the eNB1) to the path blacklist by setting the state of the path between the faulty state and the eNB1 to a fault. That is to say, the path whose path status is set to down is the blacklist of the path.
  • the path is in a normal state, and the MME sets the path corresponding to the SGW and the eNB to normal. If the response message carries the indication information, the path is a fault state, and the MME sets the path corresponding to the SGW and the eNB to a fault to maintain it in the path blacklist.
  • the path status information is stored in the MME in the form of a list, as shown in Table 1:
  • SGW IP address IP address of the eNB Path status IP address A IP address C Normal IP address A IP address D Down IP address B IP address E Normal IP address B IP address F Down
  • the path state between the SGW with the IP address A and the eNB with the IP address C in Table 1 is Normal, that is, the path status is normal; between the SGW with the IP address A and the eNB with the IP address D
  • the path status is down, that is, the path status is fault;
  • the path status between the SGW with the IP address B and the eNB with the IP address E is Normal;
  • the path status is down.
  • the path in the fault state belongs to the path blacklist.
  • the path between the SGW with the IP address A and the eNB with the IP address D in Table 1 and the SGW with the IP address B and the eNB with the IP address F The path between. Due to Both paths are in a fault state, so they belong to the path blacklist.
  • the MME parses the IP address of the SGW carried in the response message and the IP address of the eNB.
  • the MME updates the state of the path according to the response message, for example, The path status is updated from normal to down.
  • the MME increases the IP address of the SGW and the eNB according to the response message.
  • the path represented by the IP address and record the status of the path for example, down.
  • the MME may only record the identifier information of the SGW on the path with the status down and the IP address of the eNB to maintain the path blacklist.
  • the MME excludes the SGW indicated in the path blacklist, and selects a second SGW (for example, SGW2) whose path state is normal for the UE under the eNB.
  • SGW2 a second SGW
  • the MME obtains a list of SGWs to be selected from a domain name server (English name: domain name server; DNS) or local configuration information, and selects an SGW according to various factors.
  • the MME selects the path state between the SGW and the eNB as one of the factors for selecting the SGW, and excludes the SGW of the path failure between the SGW and the eNB, and selects from the SGWs with other paths.
  • the MME that the MME obtains from the DNS query includes at least SGW2. It is assumed that at time t1, the first path between SGW1 and eNB1 fails, and the second path between SGW2 and eNB1 remains normal. After the MME sends a request message to the SGW1, the SGW1 sends a response message carrying the indication information indicating that the first path state between the SGW1 and the eNB1 is faulty to the MME. After receiving the response message, the MME adds the first path to the path blacklist, and then excludes the SGW indicated in the path blacklist (such as SGW1 and/or other SGWs with path faults), and selects the path status from the SGW list for the UE. SGW2.
  • the MME may determine, according to the identifier information of the eNB1, the UE served by the eNB1, and may optionally include S312a or S312b according to different states of the UE. If the UE is an existing UE in the first path of the fault state, step S312a is performed; if the UE is a UE to be activated or to be switched, the step S312b is performed.
  • Step S312 The MME searches for the local context according to the identifier information of the eNB1 and the identifier information of the SGW1 to determine that the UE is the UE on the first path. Thereafter, the MME switches the UE to be activated or to be switched to the second SGW (eg, SGW2) according to the indication information. How the MME switches the SGW for the UE is an existing technology, and details are not described herein again.
  • Step S312b The MME receives the request message sent by the UE to be activated or to be switched, and the request message carries the identifier information of the eNB1, and then the MME according to the identifier information of the eNB1 carried in the request message and the eNB1 in the response message returned by the SGW1.
  • the identification information determines the UE that the UE serves for eNB1.
  • the MME selects a second SGW (eg, SGW2) for the UE to be activated or to be switched according to the indication information, and sends a create session request message to the second SGW.
  • SGW2 eg, SGW2
  • the SGW1 may acquire the eNB list of the eNB connected to the SGW1 by means of manual configuration or autonomous learning, and obtain the path status between the SGW1 and each eNB by detecting.
  • the SGW1 returns a second message carrying the indication information indicating that the path status between the SGW1 and the eNB is a fault to the MME.
  • the MME can sense the path status between the SGW1 and the eNB, and select the SGW2 with the normal path status accordingly.
  • the MME can exclude the SGW of the path state fault when selecting the SGW for the UE, and select an appropriate UE for the UE.
  • the SGW ensures that the data packets of the UE can be forwarded or routed normally, and the service can be performed normally to improve the user experience of the UE.
  • the method of FIG. 3A further includes:
  • the MME After the MME detects that the path status between the SGW1 and the eNB is faulty and adds the path to the path blacklist, the MME starts the first timer.
  • Step S314 after the first timer expires, the MME deletes the path between the SGW1 and the eNB (eg, the first path between the SGW1 and the eNB1) from the path blacklist. For example, the MME updates the state of the first path between SGW1 and eNB1 from fault down to normal Normal.
  • the timeout period of the first timer can be manually configured by the operator or network maintenance personnel according to the network conditions. Therefore, after the first timer expires, the MME restores the state of the first path between SGW1 and eNB1 to normal. If the UE under eNB1 needs to activate or switch the associated base station to eNB1, the MME may select SGW1.
  • the SGW1 After the path between the SGW1 and the eNB is updated to the normal Normal, if the SGW1 detects that the path is faulty again by periodically detecting the eNB, the SGW reports the MME again, so that the MME re-adds the MME to the MME. blacklist. Therefore, the blacklist maintained by the MME is constantly updated.
  • the method of FIG. 3A further includes:
  • Step S316 the SGW1 periodically deletes the aging eNB in the eNB list.
  • the aging eNB refers to an eNB that is no longer connected to the SGW1.
  • SGW1 finds that SGW1 is no longer connected to eNB2 through periodic checks, SGW1 deletes the IP address of eNB2 from the list of eNBs it maintains. For example, when SGW1 finds that the path between SGW1 and eNB2 has no user context information within a preset time period, it is considered that SGW1 and eNB2 are no longer connected. Therefore, the list of eNBs maintained by SGW1 is constantly updated.
  • steps S314 and S316 are optional steps.
  • the SGW 1 may choose not to perform, or perform one of the steps S314 or S316, or both.
  • steps S314 and S316 are performed, the execution order of steps S314 and S316 is not limited, and step S314 may be performed first, or step S316 may be performed first, or may be performed simultaneously.
  • FIG. 3B is a signaling interaction diagram of a communication method according to another embodiment of the present invention.
  • the network elements involved in the signaling interaction in FIG. 3B include: eNB, MME, SGW1, and SGW2.
  • SGW1 will be described in detail in FIG. 3B as an example.
  • the method includes:
  • Step S322 the SGW1 acquires an eNB list of the eNB connected to the SGW1.
  • Step S324 the SGW1 detects each eNB in the eNB list to learn the status of the path between the SGW1 and each eNB, and records the path status in the eNB list.
  • Steps S322 and S324 may refer to the description of steps S302 and S304 in FIG. 3A, respectively, and details are not described herein again.
  • Step S326 when the SGW1 detects that the path between the SGW1 and the eNB in the eNB list has failed, the SGW1 actively sends a path failure notification message to the MME.
  • the path failure notification message carries the identification information of the SGW1, the identification information of the eNB on the faulty path, and the indication information used to indicate that the path status between the SGW1 and the eNB is a fault.
  • SGW1 is connected to eNB1, eNB2, eNB3, and eNB4, respectively. It is assumed that the first path, the second path, the third path, and the fourth path respectively represent a path between SGW1 and eNB1, a path between SGW1 and eNB2, a path between SGW1 and eNB3, and a path between SGW1 and eNB4.
  • eNB1 and eNB2 are connected to MME1, and their IP addresses are IP address 1 and IP address 2 respectively; eNB3 and eNB4 are not connected to MME1, and their IP addresses are IP address 3 and IP address 4, respectively.
  • the first path, the second path, the third path, and the fourth path are all in a normal state. At time t1, the first path and the third path fail, while the second path and the fourth path remain normal.
  • the SGW1 When the SGW1 detects that a certain path has failed, it sends a path failure notification message to the MME1.
  • the path failure notification message carries the address list of the eNB connected to the SGW1 and the corresponding current path status.
  • the path failure notification message carries the following information, as shown in Table 2:
  • the path failure notification message carries the address list of the eNB controlled by the MME1 and the corresponding current path state.
  • the path failure notification message carries the following information, as shown in Table 3:
  • the path failure notification message carries an address list of the eNB whose path status changes (ie, the eNB whose path has failed) and the corresponding current path status.
  • the path failure notification message carries the following information, as shown in Table 4:
  • the path fault notification message may only carry the address list of the eNB whose path status changes, and does not need to carry the corresponding path state.
  • the path failure notification message carries the address list of the eNB whose path state changes and is controlled by the MME1 and the corresponding current path state.
  • the path failure notification message carries the following information, as shown in Table 5:
  • the path fault notification message may only carry the address list of the eNB whose path state changes and is controlled by the MME1, and does not need to carry the corresponding path state.
  • the SGW 1 may also transmit indication information indicating that the path state between the SGW 1 and the eNB is a failure to the MME by other forms.
  • Step S328 after receiving the path failure notification message, the MME returns a path failure notification response message to the SGW1.
  • Step S330 the MME adds the path in the fault state (such as the first path between SGW1 and eNB1) to the path blacklist according to the received path failure notification message.
  • Step S332 the MME excludes the SGW1 indicated in the path blacklist, and selects a second SGW (for example, SGW2) whose path state is normal for the UE under the eNB on the fault path.
  • a second SGW for example, SGW2
  • Steps S330 and S332 may refer to the description of steps S310 and S312 in FIG. 3A, respectively, and details are not described herein again.
  • the SGW1 acquires the eNB list of the eNB connected to the SGW1, and learns the path status between the SGW1 and each eNB by detecting.
  • the SGW1 reports to the MME to enable the MME to perceive the S1-U path status between the SGW1 and the eNB, and select the SGW2 with the normal path status accordingly.
  • the MME can exclude the SGW of the path state fault when selecting the SGW for the UE, and select the appropriate for the UE.
  • the SGW is used to ensure that the data packets of the UE can be forwarded or routed normally, and the service can be performed normally to improve the user experience of the UE.
  • the MME can sense the S1-U path status between the SGW1 and the eNB in real time, thereby further avoiding service loss and improving the user of the UE. Experience.
  • the path failure notification message carries only the address list of the eNB controlled by the MME1 and the path status, or the address list of the eNB whose path status changes, and the path status, or the path status changes, and the address list of the eNB controlled by the MME1 And path status, can be reduced
  • the number of eNBs carried in the path failure notification message is reduced, thereby reducing the signaling overhead between the network elements.
  • step S332 the method further includes:
  • Step S334 when the SGW1 detects that the path between the SGW1 and the eNB returns to normal, the SGW1 sends a path normal notification message to the MME in real time.
  • the path normal notification message carries indication information indicating that the path between the SGW1 and the eNB (eg, the first path between the SGW1 and the eNB1) is restored to normal.
  • the path normal notification message may carry the address list of the eNB connected to the SGW1 and the corresponding current path status, or the address list of the eNB controlled by the MME1, and the corresponding current path status, or the eNB whose path status changes. (ie, the eNB whose path returns to normal) and the corresponding current path state, or the address list of the eNB whose eNB1 is controlled by the MME1 and the corresponding current path state.
  • Step S336 after receiving the path normal notification message, the MME returns a path failure notification response message to the SGW1.
  • step S3308 the MME deletes the SGW1 from the path blacklist. For example, the MME updates the path state between SGW1 and eNB1 from fault down to normal Normal. In this way, if the UE under the eNB1 needs to activate or switch the belonging base station to be the eNB1, the MME may select the SGW1.
  • steps S334 to S338 are optional steps.
  • steps S334 to S338 are performed, further optionally, when the SGW1 detects in step S326 that the path between the SGW1 and the eNB has failed, the second timer is started.
  • the SGW1 After the second timer expires, the SGW1 performs step S324 again, that is, detects the path state between the SGW1 and the eNB again. If the fault between the SGW1 and the eNB is still in a fault state, the SGW1 sends a path failure notification message to the MME. If the path between the SGW1 and the eNB returns to the normal state, the SGW1 temporarily does not send a path failure notification message to the MME.
  • the timeout period of the second timer can be manually configured by the operator or network maintenance personnel according to the network conditions.
  • setting the second timer may prevent the SGW1 from frequently reporting the path state to the MME due to frequent changes of the S1-U path state, thereby alleviating the signaling overhead between the SGW1 and the MME. Setting the second timer can also avoid false alarms of the path status and improve the accuracy of the MME operation.
  • the method may further include:
  • step S340 the SGW1 periodically deletes the aging eNB in the eNB list.
  • Step S340 can refer to step S316 in FIG. 3A, and details are not described herein again. Likewise, steps S334 to S338 and S340 may be performed, or only steps S314 to S338, or only steps S340, or steps S334 to S338, and S340 may be performed. In addition, when all of the steps S334 to S338 and S340 are performed, the steps S334 to S338 may be performed first, or the step S340 may be performed first, or may be performed simultaneously.
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution sequence, and the execution order of each process should be determined by its function and internal logic, and should not be implemented in the embodiment of the present invention. Form any limit.
  • each network element such as the mobility management entity MME, the serving gateway SGW, etc.
  • each network element includes hardware structures and/or software modules corresponding to each function.
  • the present invention can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods for implementing the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present invention.
  • FIG. 4 shows a possible structural diagram of a mobility management entity (such as an MME) involved in the foregoing embodiment.
  • a mobility management entity such as an MME
  • the mobility management entity MME includes a transmitter/receiver 401, a controller/processor 402, a memory 403, and a communication unit 404.
  • the transmitter/receiver 401 is configured to support sending and receiving information between the MME and the SGW in the foregoing embodiment, and to support radio communication between the MME and the UE.
  • the controller/processor 402 performs various functions for communicating with an SGW or UE. Control
  • the processor/processor 402 also performs the processes involved in the MME of Figures 2 through 3B and/or other processes for the techniques described herein.
  • the controller/processor 403 is configured to support the MME to perform processes S206 through S210 in FIG. 2, processes S306 through S314 in FIG.
  • the memory 403 is used to store program codes and data of the MME.
  • the communication unit 404 is configured to support the MME to communicate with other network entities. For example, it is used to support the MME and the HSS or eNB located in the core network EPC shown in FIG. 2 and the like.
  • Figure 4 only shows a simplified design of the mobility management entity.
  • the mobility management entity may include any number of transmitters, receivers, processors, controllers, memories, communication units, etc., and all mobility management entities that can implement the present invention are within the scope of the present invention. within.
  • FIG. 5 shows a possible block diagram of a service gateway (such as an SGW) involved in the above embodiment.
  • a service gateway such as an SGW
  • the Serving Gateway SGW includes a Transmitter/Receiver 501, a Controller/Processor 502, a Memory 503, and a Communication Unit 504.
  • the transmitter/receiver 501 is configured to support sending and receiving information between the SGW and the MME in the foregoing embodiment, and support radio communication between the SGW and the eNB.
  • the controller/processor 502 performs various functions for communicating with an MME or eNB.
  • the controller/processor 502 also performs the processes involved in the SGW of Figures 2 through 3B and/or other processes for the techniques described herein.
  • the controller/processor 502 is configured to support the SGW to perform processes S202 through S206 in FIG. 2, processes S302 through S308, S316 in FIG.
  • Memory 501 is used to store program code and data for the core network device.
  • Communication unit 503 is used to support communication with other network entities. For example, it is used to support the MME and the PGW or eNB located in the core network EPC shown in FIG. 2 and the like.
  • Figure 5 only shows a simplified design of the serving gateway.
  • the service gateway can contain any number of transmitters, receivers, processors, controllers, memories, Communication units and the like, and all service gateways that can implement the present invention are within the scope of the present invention.
  • the controller/processor for performing the above mobility management entity or service gateway of the present invention may be a central processing unit (CPU), a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), and field programmable. Gate array (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separate,
  • the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种通信方法和通信装置,用于为UE选择合适的SGW。方法包括:移动性管理实体MME获取第一服务网关SGW发送的消息,消息携带第一eNB的标识信息、第一SGW的标识信息以及用于指示第一eNB与第一SGW之间的路径处于故障的指示信息。MME根据第一eNB的标识信息,获取第一eNB对应的服务网关列表,服务网关列表至少包括与第一eNB相连的第二SGW的标识信息。其中,第二SGW与第一eNB之间的路径正常。MME根据第一eNB的标识信息确定其服务的UE,并为UE选择与第一eNB相连的第二SGW。

Description

通信方法、装置及系统 技术领域
本发明涉及无线通信技术领域,具体涉及一种通信方法、装置及系统。
背景技术
长期系统演进(英文:long term evolution,缩写:LTE)网络中系统架构演进(英文:system architecture evolution,缩写:SAE)体系结构的主要组成部分是核心分组网(英文:Evolved Packet Core,缩写:EPC)。EPC通过移动性管理实体(英文:mobility management entity,缩写:MME)实现控制面功能,通过服务网关(英文:serving gateway,缩写:S-GW)将用户设备(英文:user equipment,缩写:UE)的用户面数据路由或转发至分组数据网网关(英文:PDN Gateway,缩写:PGW),以实现UE与外部分组数据网络(英文,packet data network,缩写:PDN)连接点的接口传输。
在激活UE的过程中,MME需要先为UE选择合适的SGW。现有技术中,MME会根据跟踪区列表(英文:tracking area list,缩写:TA list)来选择SGW。然而,由于UE的用户面数据通过由演进型基站(英文:eNodeB;缩写:eNB)与SGW直接相连而不经过MME的S1-U路径来传输,当SGW和eNB之间的S1-U路径发生故障时,MME仍可能会选择该故障路径上的SGW,导致UE即使反复重启数据开关,也无法正常进行业务。
发明内容
本发明实施例提供了一种通信方法、装置及系统,以为UE选择合适的SGW,提升UE的用户体验。
一方面,本申请的实施例提供了一种通信的方法,该方法包括:移动性管理实体获取第一服务网关发送的消息,该消息携带第一基站的标识信息、第一服务网关的标识信息以及用于指示第一基站与第一服务网关之间的第一路径处于故障状态的指示信息。移动性管理实体根据第一基站的标识信息,获取第一基站对应的服务网关列表(例如从域名服务器DNS或本地配置信息中获取该服务网关列表),该服务网关列表至少包括与第一基站相连的第二服务网关的标识信息。第二服务网关与第一基站之间的第二路径处于正常状态。移动性管理实体根据第一基站的标识信息确定第一基站服务的用户设备UE(例如包括待激活的UE或待切换基站的UE、或故障第一路径上的UE),为UE选择上述第二服务网关。
由于MME可感知到SGW与eNB之间的路径状态,MME为UE选择SGW时可排除掉路径状态故障的SGW,为UE选择合适的SGW,以保证UE的数据包能够正常转发或路由,业务能够正常进行,提升UE的用户体验。
在一个可能的设计中,当UE为待激活的UE或待切换基站的UE,移动性管理实体接收UE发送的携带第一基站的标识信息的请求消息,并据此确定该UE为第一服务基站服务的UE。当UE为处于故障第一路径上的UE,移动性管理实体根据第一基站的标识信息和第一服务网关的标识信息查找本地上下文,确定该UE为第一服务基站服务的UE。
在一个可能的设计中,移动性管理实体接收第一服务网关发送的携带上述指示信息的第一通知消息。此时第一通知消息可选的可包括第一服务网关与与其相连的基站之间的多个路径的状态、或者第一服务网关与受该移动性管理实体控制的基站之间的路径状态、或者状态发生改变的路径状态(例如从正常变为故障)等。在另一个可能的设计中,移动性管理实体先向第一服务网关发送包括第一基站的标识信息的请求消息(例如修改承载请求消息或创建会话请求消息),再接收第一服务网关发送的携带上述指示信息的响应消息(例如修改承载响应消息或创建会话响应消息,指示信 息为修改承载响应消息携带的原因值或创建会话响应消息携带的原因值)。
在一个可能的设计中,该方法还包括:移动性管理实体根据指示信息,将第一路径添加至路径黑名单,该路径黑名单包括处于故障状态的路径上的服务网关的标识信息和基站的标识信息。进一步地,移动性管理实体根据第一服务网关的标识信息和指示信息,确定第一服务网关为路径黑名单中的服务网关,并排除掉路径黑名单中的服务网关,从服务网关列表中选出与第一基站相连的第二服务网关(第二服务网关与第一基站之间的第二路径处于正常状态)。
在一种可能的设计中,当移动性管理实体将第一路径添加至路径黑名单后,开启第一定时器。当第一定时器超时后,移动性管理实体将第一路径从路径黑名单中删除。在另一种可能的设计中,该方法还包括:移动性管理实体接收第一服务网关发送的第二通知消息,第二通知消息携带用于指示所述第一路径恢复正常状态的指示信息。移动性管理实体根据路径正常通知消息将第一路径从路径黑名单中删除。因此,移动性管理实体维护的路径黑名单是不断更新的。当第一路径从路径黑名单中删除后,移动性管理实体又可为第一基站服务的用户设备选择第一服务网关。
另一方面,本申请的实施例提供了一种通信的方法,该方法包括:服务网关获取基站列表(例如,该基站列表包括与服务网关相连的基站的标识信息),检测并记录服务网元与基站列表中各基站之间的路径状态。若服务网关确定基站列表中的第一基站与该服务网关之间的第一路径发生故障,服务网关向移动性管理实体发送消息,该消息携带第一基站的标识信息、服务网关的标识信息以及用于指示第一路径处于故障状态的指示信息。
由于服务网关向移动性管理实体提供了用于指示路径处于故障状态的指示信息,MME可感知到SGW与eNB之间的路径状态,MME为UE选择SGW时可排除掉路径状态故障的SGW,为UE选择合适的SGW,以保证UE的数据包能够正常转发或路由,业务能够正常进行,提升UE的用户体验。
在一种可能的设计中,服务网关接收移动性管理实体发送的携带所述基站的标识信息的通用分组无线业务隧道协议GTP信令(例如,修改承载请求消息或创建会话请求消息);根据GTP信令获取与服务网关相连的各基站的标识信息,并根据所述标识信息生成基站列表。例如,标识信息包括基站的网络协议(IP)地址、基站的编号或基站的标识(ID)中的一项或多项。
在一种可能的设计中,服务网关先接收移动性管理实体发送的包括第一基站的标识信息的请求消息(例如修改承载请求消息或创建会话请求消息),再向移动性管理实体发送携带上述指示信息的响应消息(例如修改承载响应消息或创建会话响应消息,指示信息为修改承载响应消息携带的原因值或创建会话响应消息携带的原因值)。
在另一种可能的设计中,当服务网关检测到第一路径发生故障后,主动向移动性管理实体发送携带指示信息的路径故障通知消息。因此,移动性管理实体能实时感知到服务网关与基站之间的路径状态,可进一步避免业务损失,提高UE的用户体验。可选的,路径故障通知消息可包括服务网关与与其相连的基站之间的多个路径的状态、或者服务网关与受该移动性管理实体控制的基站之间的路径状态、或者状态发生改变的路径状态(例如从正常变为故障)等。进一步可选的,当服务网关检测到第一路径发生故障时,启动第二定时器。当第二定时器超时后,服务网关再次检测第一路径的状态。若第一路径仍处于故障状态,服务网关向移动性管理实体发送上述路径故障通知消息。因此,设置第二定时器可避免因路径状态频繁改变而导致服务网关向移动性管理实体频繁上报路径状态,从而减轻了服务网关和移动性管理实体之间的信令开销,此外,还可避免路径状态的误报,提高了移动性管理实体操作的准确性。
在一种可能的设计中,该方法还包括:服务网关将与其不相连接第二基站从所述基站列表中删除。例如,当组网发生改变时,服务网关的覆盖 范围相应改变,当服务网关发现在预设时间段内该服务网关与第二基站之间的路径无用户上下文信息,则认为该服务网关与第二基站不再相连接。因此,服务网关维护的基站列表也是不断更新的。
另一方面,本发明实施例提供了一种移动性管理实体,该移动性管理实体具有实现上述方法中移动性管理实体行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,移动性管理实体的结构中包括处理器和接收器,所述处理器被配置为支持移动性管理实体执行上述方法中相应的功能。所述接收器用于支持移动性管理实体与服务网关之间的通信,接收服务网关发送的上述方法中所涉及的信息或者指令。所述移动性管理实体还可以包括存储器,所述存储器用于与处理器耦合,其保存移动性管理实体必要的程序指令和数据。
又一方面,本发明实施例提供了一种服务网关,该服务网关具有实现上述方法中服务网关行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,服务网关的结构中包括处理器和发射器,所述处理器被配置为支持服务网关执行上述方法中相应的功能。所述发射器用于支持移动性管理实体与服务网关之间的通信,向移动性管理实体发送的上述方法中所涉及的信息或者指令。所述服务网关还可以包括存储器,所述存储器用于与处理器耦合,其保存服务网关必要的程序指令和数据。
又一方面,本发明实施例提供了一种通信系统,该系统包括上述方面所述的移动性管理实体和服务网关。
再一方面,本发明实施例提供了一种计算机存储介质,用于储存为上 述移动性管理实体所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
再一方面,本发明实施例提供了一种计算机存储介质,用于储存为上述服务网关所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
相较于现有技术,本发明提供的方案可为UE选择合适的SGW,以保证UE的数据包能够正常转发或路由,业务能够正常进行,提升UE的用户体验。
附图说明
图1为3GPP中定义的EPC的网络架构示意图;
图2为根据本发明一个实施例的通信方法的示意图;
图3A和图3B分别为根据本发明一个实施例的通信方法的信令交互图;
图4为根据本发明实施例的通信装置(如,MME)的示意图;及
图5为根据本发明实施例的通信装置(如,SGW)的示意图。
具体实施方式
为使本发明的目的、技术方案、及优点更加清楚明白,下面结合附图并举实施例,对本发明提供的技术方案进一步详细描述。
图1所示为第三代合作伙伴计划(英文:3rd generation partnership project,缩写:3GPP)中定义的EPC的网络架构图。EPC包括MME、SGW、PGW和归属用户服务器(英文:home subscriber server,缩写:HSS)等子组件。
MME是LTE接入网络中的控制节点,通过S1-MME路径与演进型通用陆地无线接入网(英文:evolved universal terrestrial radio access  network,缩写:E-UTRAN)中的基站相连。MME负责对空闲模式下的UE进行跟踪和寻呼控制。在对UE跟踪和寻呼控制的过程中,MME需要为UE选择不同的SGW,以完成LTE系统内核心网节点的切换。MME通过S6a路径与HSS交流信息。
HSS的功能为一个中央数据库,包含与UE相关的信息以及与订阅相关的信息。HSS的功能包括:移动性管理,呼叫和会话建立的支持,用户认证和访问授权。
基站通过S1-U路径与SGW相连。SGW负责UE的数据包的路由和转发,同时也负责UE在eNodeB之间或LTE与其他3GPP技术之间移动时的用户面数据的交换。PGW通过s5路径与SGW相连,实现UE与外部的业务PDN连接点的接口传输。一个UE可以同时通过多个PGW访问多个业务PDN。
现有技术中,当UE激活时,MME会根据跟踪区列表来选择SGW。然而,由于UE的用户面数据通过由演进型基站(英文:eNodeB;缩写:eNB)与SGW直接相连而不经过MME的S1-U路径来传输,当SGW和eNB之间的数据面路径发生故障时,MME仍可能会选择该故障路径上的SGW,导致UE无法正常进行业务。通过本发明的通信方法,MME可感知SGW和eNB之间的数据面路径的状态,相应选择一个数据面路径正常的SGW,从而保证UE能够正常进行业务,提升UE的用户体验。
图2所示为根据本发明一个实施例的通信方法的示意图。该通信方法涉及的网元包括MME和SGW(如,SGW1)。如图2所示:
步骤S202,SGW1获取与SGW1相连的eNB的eNB列表。
步骤S204,SGW1对eNB列表中的各eNB进行探测,以获知SGW1与各eNB间路径状态。
步骤S206,若SGW1确定基站列表中的第一eNB(如,eNB1)与SGW1之间的第一路径发生故障,SGW1向MME发送消息。该消息携带eNB1的标识信息、SGW1的标识信息以及用于指示eNB1与SGW1之间的第一路径处于故障 状态的指示信息。相应地,MME获取SGW1发送的该消息。
例如,eNB的标识信息包括eNB的网络协议(英文:internet protocol,缩写:IP)地址、eNB的编号或eNB的标识(英文:identification,缩写:ID)中的一项或多项。SGW的标识信息包括SGW的IP地址、SGW的编号或SGW的标识,或其他能够使得MME识别该SGW的标识信息。
步骤S208,MME根据eNB1的标识信息获取与eNB1相连的SGW列表,该SGW列表至少包括与eNB1相连的SGW2。其中,SGW2与eNB1之间的第二路径处于正常状态。可选的,该SGW列表还包括与eNB1相连的SGW1。
例如,MME根据eNB1的标识信息,从域名服务器(英文:domain name server;简称:DNS)获取与eNB1相连的SGW列表。或者,MME内预先配置有上述SGW列表。
步骤S210,MME根据eNB1的标识信息确定eNB1服务的UE,并根据上述SGW列表以及上述消息,为该UE选择与eNB1相连的且路径状态正常的SGW(如,SGW2)。
因此,根据本发明一个实施例的通信方法,SGW1可获取与该SGW1相连的eNB的eNB列表,并通过探测获知该SGW1与各eNB之间的路径状态。当SGW1与eNB之间的路径状态为故障,SGW1向MME返回携带用于指示SGW1与eNB之间的路径状态为故障的指示信息的消息。MME接收到消息后可感知到SGW1与eNB之间的路径状态,并据此从DNS获取到的SGW列表中选择路径状态正常的SGW2。相比现有技术中MME根据TA list来选择SGW的方案,由于MME可感知到SGW与eNB之间的路径状态,MME为UE选择SGW时可排除掉路径状态故障的SGW,为UE选择合适的SGW,以保证UE的数据包能够正常转发或路由,业务能够正常进行,提升UE的用户体验。
图3A和图3B将分别结合本发明具体实施例来详细描述。图3A或图3B所示的实施例也可采用图2所描述的方法。图3A中的信令交互涉及的网元包括:eNB1、MME、SGW1和SGW2。图3A中以SGW1为例进行详细说明,即 SGW2的执行动作与SGW1类似,为了简洁,在此不再赘述。在图3A的例子中,通过对现有消息进行扩展,使得现有的消息携带了SGW与eNB之间的路径状态。
如图3A所示,该方法包括:
步骤S302,SGW1获取与SGW1相连的eNB的eNB列表。
例如,该eNB列表包括与SGW1相连的各个eNB的标识信息。例如,eNB的标识信息包括eNB的网络协议(英文:internet protocol,缩写:IP)地址、eNB的编号或eNB的标识(英文:identification,缩写:ID)中的一项或多项。
例如,可由网络维护人员在SGW1上人工配置该eNB列表。
可选的,SGW1也可以通过与MME之间的通用分组无线业务(英文:general packet radio service,缩写:GPRS)隧道协议(英文:GPRS tunnel protocol,缩写:GTP)信令获知与自身相连的eNB的标识信息,并据此生成eNB列表。GTP信令包括但不限于修改承载请求(modify bearer request)消息或创建会话请求(create session request)消息。
举例来说,在激活UE的流程中,MME向SGW1发送请求消息(如,修改承载请求消息或创建会话请求消息),该请求消息中携带与SGW1相连的eNB1的标识信息。SGW1接收到请求消息后,从该请求消息中获取eNB1的标识信息。在另一种场景下,当UE上线后,随着UE位置的变化,服务该UE的eNB可能发生改变。在为UE切换eNB的流程中,MME向SGW1发送请求消息。例如,若SGW不变,MME向SGW1发送修改承载请求消息;若SGW改变或被重分配,MME向SGW1发送创建会话请求消息。请求消息中携带UE切换后的eNB的标识信息。SGW1接收到请求消息后,从该请求消息中获取切换后eNB的标识信息。
激活大量UE后,SGW1可获知与哪些eNB相连(如:eNB1、eNB2、eNB3等),通过记录这些与其相连的eNB的标识信息来维护eNB列表。其中,eNB 列表中维护的eNB(如:eNB1、eNB2、或eNB3)不依赖于当前SGW1与该eNB是否存在承载。也就是说,无论承载当前是否存在,只要MME在之前的流程中通过GTP信令携带过该eNB的标识信息,该eNB的标识信息就被记录在eNB列表中。
步骤S304,SGW1对eNB列表中的各eNB进行探测,以获知SGW1与各eNB之间路径的状态,并在eNB列表中记录路径状态。
应理解,为便于描述,图3A中只示出了与SGW1相连的eNB1。然而,本发明并不限于此,SGW1还可以有其他相连的eNB。
例如,SGW1可采用回波(echo)探测的方式来获知SGW1与各eNB间的路径状态。举例来说,SGW1向该eNB1发送echo探测请求,根据预定时间内是否收到echo探测响应,确定SGW1与eNB1之间的路径状态。如果在预定时间收到eNB1发送的echo探测响应,则确定SGW1与eNB1之间的路径状态为正常。如果在预定时间内未收到eNB1发送的echo探测响应,可直接确定SGW1与eNB1之间的路径状态为故障。或者,如果在预定时间内未收到eNB1发送的echo探测响应,SGW1可按照预定时间间隔再次发送探测请求,如果发送预设次数的探测请求后,仍未收到eNB1发送的echo探测响应,则确定SGW1与eNB1之间的路径状态为故障。该预定时间间隔和探测请求的发送预设次数可根据实际情况而定。例如,在没有收到探测响应的情况下,SGW1可每3s再发送一次探测请求,若发送5次都无响应则确认路径故障。
可选的,SGW1周期性地对eNB列表中的各eNB进行探测。例如,每隔1分钟,SGW1对eNB列表中的各eNB测探测一次。这样,SGW1能够及时地感知到SGW1与各eNB之间路径的状态。
SGW1对eNB列表中的各eNB进行探测后,在eNB列表中记录检测到的路径状态。例如,若检测到的路径处于正常状态,则记录为正常(normal);若检测到的路径处于异常状态,则记录为故障(down)。或者,SGW1也可以 只对处于异常状态的路径进行标记。
步骤S306,SGW1接收MME发送的请求消息,解析该请求消息中携带的eNB的标识信息,并从本地维护的eNB列表中获取SGW1与该eNB间路径的状态。
例如,请求消息为修改承载请求消息或创建会话请求消息。在激活UE过程,MME向SGW1发送携带eNB的IP地址的修改承载请求消息或创建会话请求消息;或者,在UE切换eNB的过程中,MME向SGW1发送携带切换后的eNB的IP地址的修改承载请求消息或创建会话请求消息。假设请求消息中携带eNB1的IP地址。SGW1接收并解析该消息后,从本地维护的eNB列表中获取SGW1与eNB1间路径的状态。
步骤S308,SGW1向MME返回响应消息。若SGW1与eNB之间的路径状态为故障,则响应消息中携带SGW1的标识信息、eNB1的标识信息,以及用于指示SGW1与eNB之间的路径状态为故障的指示信息。例如,指示信息用于指示SGW1与eNB1之间的第一路径状态为故障。
例如,若请求消息为修改承载请求消息,响应消息为用于指示修改承载失败的修改承载响应消息。修改承载响应消息携带的修改承载失败的原因值即为上述响应消息中携带的用于指示SGW1与eNB之间的路径状态为故障的指示信息,其中,原因值为SGW1与eNB之间路径状态为故障。同理,若请求消息为创建会话请求消息,响应消息为用于指示创建会话失败的创建会话响应消息。创建会话响应消息携带的创建会话失败的原因值即为上述指示信息。
若SGW1与eNB之间的路径状态为正常,则响应消息不携带上述原因值,用于指示修改承载成功或创建会话成功。
步骤S310,MME根据接收到的响应消息将处于故障状态的路径(如SGW1与eNB1之间的第一路径)添加至路径黑名单。换句话说,MME根据接收到的响应消息维护路径黑名单。其中,路径黑名单至少包括路径处于故障状 态的SGW的IP地址和对应eNB的IP地址。
例如,在一种实现方式中,MME通过维护路径状态信息来维护路径黑名单。路径状态信息至少包括SGW的IP地址、eNB的IP地址,还可以包括连接该SGW和该eNB的路径的状态。连接SGW和eNB的路径的状态可以为正常(normal)或故障(down)。其中,MME可通过将处于故障状态的路径(如SGW1与eNB1之间的路径)的状态置为故障(down),来将其添加至路径黑名单。也就是说,路径状态被置为故障(down)的路径即属于路径黑名单。
例如,若上述响应消息不携带指示信息,则该路径为正常状态,则MME将该SGW和eNB对应的路径置为正常(normal)。若上述响应消息携带指示信息,则该路径为故障状态,则MME将该SGW和eNB对应的路径置为故障(down),以将其在路径黑名单中维护。
例如,路径状态信息以列表的形式存储在MME中,如表1所示:
表1
SGW的IP地址 eNB的IP地址 路径状态
IP地址A IP地址C Normal
IP地址A IP地址D down
IP地址B IP地址E Normal
IP地址B IP地址F down
举例来说,表1中IP地址为A的SGW与IP地址为C的eNB之间的路径状态为Normal,即表示路径状态为正常;IP地址为A的SGW与IP地址为D的eNB之间的路径状态为down,即表示路径状态为故障;IP地址为B的SGW与IP地址为E的eNB之间的路径状态为Normal;IP地址为B的SGW与IP地址为F的eNB之间的路径状态为down。其中,处于故障状态的路径即属于路径黑名单,例如,表1中IP地址为A的SGW与IP地址为D的eNB之间的路径和IP地址为B的SGW与IP地址为F的eNB之间的路径。由于 这两条路径都处于故障状态,所以属于路径黑名单。
具体地,MME接收到SGW1发送的响应消息后,解析响应消息中携带的SGW的IP地址与eNB的IP地址。
若SGW的IP地址与eNB的IP地址已记录在MME的路径状态信息中,即,SGW已记录过该SGW与eNB之间的路径状态,则MME根据响应消息更新该路径的状态,例如,将路径状态从normal(正常)更新为down(故障)。
若SGW的IP地址与eNB的IP地址未记录在MME的路径状态信息中,即,SGW未记录过该SGW与eNB之间的路径状态,则MME根据响应消息增加该SGW的IP地址与eNB的IP地址所表示的路径,并记录该路径的状态,例如,down(故障)。
作为另一种实现方式,MME可以只记录状态为down的路径上的SGW的标识信息与eNB的IP地址,以维护路径黑名单。
步骤S312,MME排除掉路径黑名单中指示的SGW,为eNB下的UE选择路径状态正常的第二SGW(如,SGW2)。
例如,MME从域名服务器(英文:domain name server;简称:DNS)或本地配置信息中获取待选择的SGW列表,并根据各种因素来选择SGW。根据本发明的实施例,MME将SGW和eNB之间的路径状态也作为选择SGW的因素之一,排除掉SGW和eNB之间的路径故障的SGW,从其他路径正常的SGW进行选择。
在图3A的例子中,MME向DNS查询得到的SGW列表中至少包括SGW2。假设在时刻t1,SGW1与eNB1之间的第一路径发生故障,而SGW2与eNB1之间的第二路径保持正常。在MME向SGW1发送请求消息后,SGW1向MME发送携带用于指示SGW1与eNB1之间的第一路径状态为故障的指示信息的响应消息。MME收到响应消息后,将第一路径加入路径黑名单,然后排除掉路径黑名单中指示的SGW(如SGW1和/或其他路径状态故障的SGW),从SGW列表中为UE选择路径状态正常的SGW2。
步骤S312中,MME可根据eNB1的标识信息确定该eNB1服务的UE,根据UE的不同状态,可选的,具体可包括S312a或S312b。若UE为故障状态的第一路径下已有的UE,则执行步骤S312a;若UE为待激活或待切换基站的UE,则执行步骤S312b。
步骤S312a:MME根据eNB1的标识信息和SGW1的标识信息查找本地上下文,以确定UE为所述第一路径上的UE。之后,MME根据指示信息将待激活或待切换基站的UE切换至第二SGW(如,SGW2)。MME如何为UE切换SGW为现有技术,此处不再赘述。
步骤S312b:MME接收待激活或待切换基站的UE发送的请求消息,所述请求消息携带eNB1的标识信息,然后MME根据请求消息中携带的eNB1的标识信息以及SGW1返回的响应消息中的eNB1的标识信息,确定该UE为eNB1服务的UE。之后,MME根据指示信息为待激活或待切换基站的UE选择第二SGW(如,SGW2),向第二SGW发送创建会话请求消息。为UE选择好SGW后创建会话的过程为现有技术,此处不再赘述。
因此,根据本发明一个实施例的通信方法,SGW1可通过人工配置或自主学习的方式获取与该SGW1相连的eNB的eNB列表,并通过探测获知该SGW1与各eNB之间的路径状态。当SGW1与eNB之间的路径状态为故障,SGW1向MME返回携带用于指示SGW1与eNB之间的路径状态为故障的指示信息的第二消息。MME接收到第二消息后可感知到SGW1与eNB之间的路径状态,并据此选择路径状态正常的SGW2。相比现有技术中MME根据TA list来选择SGW的方案,由于MME可感知到SGW与eNB之间的路径状态,MME为UE选择SGW时可排除掉路径状态故障的SGW,为UE选择合适的SGW,以保证UE的数据包能够正常转发或路由,业务能够正常进行,提升UE的用户体验。
进一步可选的,在步骤S310后,图3A的方法还包括:
当MME感知到SGW1与eNB之间的路径状态为故障并且将该路径加入路径黑名单后,MME开启第一定时器。
步骤S314,当第一定时器超时后,MME将SGW1与eNB之间的路径(如,SGW1与eNB1之间的第一路径)从路径黑名单中删除。例如,MME将SGW1与eNB1之间的第一路径的状态从故障down更新为正常Normal。其中,第一定时器的超时时间可由运营商或网络维护人员根据网络情况手工配置。因此,在第一定时器超时后,MME将SGW1与eNB1之间的第一路径的状态恢复为正常。若该eNB1下有UE需要激活或切换所属基站为eNB1,MME又可以选择SGW1。
当SGW1与eNB之间的路径更新为正常Normal后,若SGW1通过周期性对各eNB进行探测而再次探测到该路径发生故障,则通过上述步骤再次向MME上报,以使MME重新将其添加至黑名单。因此,MME维护的黑名单是不断更新的。
可选的,图3A的方法还包括:
步骤S316,SGW1定期删除eNB列表中老化的eNB。
其中,老化的eNB是指与SGW1不再相连接的eNB。例如,当组网发生改变时,SGW1的覆盖范围相应改变,SGW1与某eNB(如,eNB2)不再相连接。当SGW1通过定期的检查发现SGW1与eNB2不再相连接,则SGW1将eNB2的IP地址从其维护的eNB列表中删除。例如,当SGW1发现在预设时间段内SGW1与eNB2之间的路径无用户上下文信息,则认为SGW1与eNB2不再相连接。因此,SGW1维护的eNB列表是不断更新的。
其中,步骤S314和S316为可选步骤。SGW1可选择不执行、或执行步骤S314或S316中的一项、或都执行。此外,当步骤S314和S316都执行时,步骤S314和S316的执行顺序也不做限定,即可先执行步骤S314,也可先执行步骤S316,也可同时执行。
图3B为根据本发明另一个实施例的通信方法的信令交互图。图3B中的信令交互涉及的网元包括:eNB、MME、SGW1和SGW2。同样地,图3B中也以SGW1为例进行详细说明。
如图3B所示,该方法包括:
步骤S322,SGW1获取与SGW1相连的eNB的eNB列表。
步骤S324,SGW1对eNB列表中的各eNB进行探测,以获知SGW1与各eNB之间路径的状态,并在eNB列表中记录路径状态。
步骤S322和S324可分别参考图3A中步骤S302和S304的描述,在此不再赘述。
步骤S326,当SGW1检测到SGW1与eNB列表中的eNB之间的路径发生故障时,SGW1主动向MME发送路径故障通知消息。该路径故障通知消息携带SGW1的标识信息、该故障路径上的eNB的标识信息,以及用于指示SGW1与该eNB之间的路径状态为故障的指示信息。
举例来说,SGW1分别与eNB1、eNB2、eNB3和eNB4相连。假设第一路径、第二路径、第三路径和第四路径分别表示SGW1与eNB1之间的路径、SGW1与eNB2之间的路径、SGW1与eNB3之间的路径和SGW1与eNB4之间的路径。其中,eNB1和eNB2与MME1相连,其IP地址分别为IP地址1和IP地址2;eNB3和eNB4与MME1不相连,其IP地址分别为IP地址3和IP地址4。在时刻t1前,第一路径、第二路径、第三路径和第四路径均处于正常状态。在时刻t1,第一路径和第三路径发生故障,而第二路径和第四路径保持正常。
当SGW1检测到某个路径发生故障时,向MME1发送路径故障通知消息。举例来说,路径故障通知消息携带与SGW1相连的eNB的地址列表以及对应的当前路径状态,例如,路径故障通知消息携带以下信息,如表2:
表2
Figure PCTCN2015097957-appb-000001
Figure PCTCN2015097957-appb-000002
或者,路径故障通知消息中携带受MME1控制的eNB的地址列表以及对应的当前路径状态,例如,路径故障通知消息携带以下信息,如表3:
表3
eNB的IP地址 当前路径状态
IP地址1 down
IP地址2 normal
或者,路径故障通知消息中携带路径状态发生变化的eNB(即路径发生故障的eNB)的地址列表以及对应的当前路径状态,例如,路径故障通知消息携带以下信息,如表4:
表4
eNB的IP地址 当前路径状态
IP地址1 down
IP地址3 down
进一步可选的,路径故障通知消息中可仅携带路径状态发生变化的eNB的地址列表,无需携带对应的路径状态。
或者,路径故障通知消息中携带路径状态发生变化且受MME1控制的eNB的地址列表以及对应的当前路径状态,例如,路径故障通知消息携带以下信息,如表5:
表5
eNB的IP地址 当前路径状态
IP地址1 down
进一步可选的,路径故障通知消息中可仅携带路径状态发生变化且受MME1控制的eNB的地址列表,无需携带对应的路径状态。
然而,路径故障通知消息的形式并不限于上述表2至表5,SGW1还可通过其他形式来向MME传递用于指示SGW1与该eNB之间的路径状态为故障的指示信息。
步骤S328,MME收到路径故障通知消息后,向SGW1返回一个路径故障通知响应消息。
步骤S330,MME根据接收到的路径故障通知消息将处于故障状态的路径(如SGW1与eNB1之间的第一路径)添加至路径黑名单。
步骤S332,MME排除掉路径黑名单中指示的SGW1,为故障路径上的该eNB下的UE选择路径状态正常的第二SGW(如,SGW2)。
步骤S330和S332可分别参考图3A中步骤S310和S312的描述,在此不再赘述。
因此,根据本发明一个实施例的通信方法,SGW1获取与该SGW1相连的eNB的eNB列表,并通过探测获知该SGW1与各eNB之间的路径状态。当SGW1与eNB之间的路径状态为故障,SGW1向MME上报以使MME能感知到SGW1与eNB之间的S1-U路径状态,并据此选择路径状态正常的SGW2。相比现有技术中MME根据TA list来选择SGW的方案,由于MME可感知到SGW与eNB之间的路径状态,MME为UE选择SGW时都可排除掉路径状态故障的SGW,为UE选择合适的SGW,以保证UE的数据包能够正常转发或路由,业务能够正常进行,提升UE的用户体验。此外,由于SGW1在检测到SGW1与eNB之间的路径状态为故障就主动向MME上报,MME能实时感知到SGW1与eNB之间的S1-U路径状态,可进一步避免业务损失,提高UE的用户体验。
此外,当路径故障通知消息中仅携带受MME1控制的eNB的地址列表以及路径状态、或者路径状态发生变化的eNB的地址列表以及路径状态、或者路径状态发生变化且受MME1控制的eNB的地址列表以及路径状态,可减 少路径故障通知消息中携带的eNB的个数,从而减轻网元间的信令开销。
可选的,在步骤S332之后,该方法还包括:
步骤S334,当SGW1检测到SGW1与eNB之间的路径恢复正常时,SGW1实时向MME发送路径正常通知消息。该路径正常通知消息携带用于指示SGW1与eNB之间的路径(如,SGW1与eNB1之间的第一路径)状态恢复正常的指示信息。
与步骤S326相类似,路径正常通知消息可携带与SGW1相连的eNB的地址列表以及对应的当前路径状态、或者受MME1控制的eNB的地址列表以及对应的当前路径状态、或者路径状态发生变化的eNB(即路径恢复正常的eNB)的地址列表以及对应的当前路径状态、或者路径状态发生变化且受MME1控制的eNB的地址列表以及对应的当前路径状态。
步骤S336,MME收到路径正常通知消息后,向SGW1返回一个路径故障通知响应消息。
步骤S338,MME将SGW1从路径黑名单中删除。例如,MME将SGW1与eNB1之间的路径状态从故障down更新为正常Normal。这样,若后续该eNB1下有UE需要激活或切换所属基站为eNB1,MME可选择SGW1。
需要说明的是,步骤S334至S338为可选步骤。当步骤S334至S338被执行,进一步可选的,在SGW1在步骤S326中检测到SGW1与eNB之间的路径发生故障时,启动第二定时器。
当第二定时器超时后,SGW1再次执行步骤S324,即再次检测SGW1与eNB之间的路径状态。若SGW1与eNB之间的仍处于故障状态,则SGW1向MME发送路径故障通知消息。若SGW1与eNB之间的路径恢复正常状态,则SGW1暂时不向MME发送路径故障通知消息。其中,第二定时器的超时时间可由运营商或网络维护人员根据网络情况手工配置。
因此,设置第二定时器可避免因S1-U路径状态频繁改变而导致SGW1向MME频繁上报路径状态,从而减轻了SGW1和MME之间的信令开销,此外, 设置第二定时器还可避免路径状态的误报,提高了MME操作的准确性。
此外,该方法还可包括:
步骤S340,SGW1定期删除eNB列表中老化的eNB。
步骤S340可参考图3A中的步骤S316,在此不再赘述。同样的,可不执行步骤S334至S338以及S340、或仅执行步骤S314至S338、或仅执行步骤S340、或骤S334至S338以及S340都执行。此外,当步骤S334至S338以及S340都执行时,即可先执行步骤S334至S338,也可先执行步骤S340,也可同时执行。
应理解,在本发明实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
上述主要从各个网元之间交互的角度对本发明实施例提供的方案进行了介绍。可以理解的是,各个网元,例如移动性管理实体MME、服务网关SGW等为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本发明能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
图4示出了上述实施例中所涉及的移动性管理实体(如MME)的一种可能的结构示意图。
移动性管理实体MME包括发射器/接收器401,控制器/处理器402,存储器403以及通信单元404。所述发射器/接收器401用于支持MME与上述实施例中的所述的SGW之间收发信息,以及支持MME与UE之间进行无线电通信。所述控制器/处理器402执行各种用于与SGW或UE通信的功能。控 制器/处理器402还执行图2至图3B中涉及MME的处理过程和/或用于本申请所描述的技术的其他过程。作为示例,控制器/处理器403用于支持MME执行图2中的过程S206至S210、图3A中的过程S306至S314、或图3B中的过程S326至S338。存储器403用于存储MME的程序代码和数据。通信单元404用于支持MME与其他网络实体进行通信。例如,用于支持MME与图2中示出的位于核心网EPC中的HSS或eNB等。
可以理解的是,图4仅仅示出了移动性管理实体的简化设计。在实际应用中,移动性管理实体可以包含任意数量的发射器,接收器,处理器,控制器,存储器,通信单元等,而所有可以实现本发明的移动性管理实体都在本发明的保护范围之内。
图5示出了上述实施例中涉及到的服务网关(如SGW)的一种可能的设计方框图。
服务网关SGW包括发射器/接收器501,控制器/处理器502,存储器503以及通信单元504。所述发射器/接收器501用于支持SGW与上述实施例中的所述的MME之间收发信息,以及支持SGW与eNB之间进行无线电通信。所述控制器/处理器502执行各种用于与MME或eNB通信的功能。控制器/处理器502还执行图2至图3B中涉及SGW的处理过程和/或用于本申请所描述的技术的其他过程。例如,控制器/处理器502用于支持SGW执行图2中的过程S202至S206,图3A中的过程S302至S308、S316,图3B中的过程S322至S328、S334至S336、S340,和/或用于本文所描述的技术的其他过程。存储器501用于存储用于所述和核心网络装置的程序代码和数据。通信单元503用于支持与其他网络实体的通信。例如,用于支持MME与图2中示出的位于核心网EPC中的PGW或eNB等。
可以理解的是,图5仅仅示出了服务网关的简化设计。在实际应用中,服务网关可以包含任意数量的发射器,接收器,处理器,控制器,存储器, 通信单元等,而所有可以实现本发明的服务网关都在本发明的保护范围之内。
用于执行本发明上述移动性管理实体或服务网关的控制器/处理器可以是中央处理器(CPU),通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC),现场可编程门阵列(FPGA)或者其他可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的, 作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (38)

  1. 一种通信方法,其特征在于,包括:
    移动性管理实体获取第一服务网关发送的消息,所述消息携带第一基站的标识信息、所述第一服务网关的标识信息以及用于指示所述第一基站与所述第一服务网关之间的第一路径处于故障状态的指示信息;
    所述移动性管理实体根据所述第一基站的标识信息,获取所述第一基站对应的服务网关列表,所述服务网关列表至少包括与所述第一基站相连的第二服务网关的标识信息,其中,所述第二服务网关与所述第一基站之间的第二路径处于正常状态;
    所述移动性管理实体根据所述第一基站的标识信息确定所述第一基站服务的用户设备UE,并根据所述服务网关列表以及所述消息,为所述UE选择与所述第一基站相连的所述第二服务网关。
  2. 根据权利要求1所述的方法,其特征在于,所述UE包括待激活的UE或待切换基站的UE,所述移动性管理实体根据所述第一基站的标识信息确定所述第一基站服务的UE,包括:
    所述移动性管理实体接收所述UE发送的请求消息,所述请求消息携带所述第一基站的标识信息;
    所述移动性管理实体根据所述第一基站的标识信息,确定所述UE为所述第一服务基站服务的UE。
  3. 根据权利要求1所述的方法,其特征在于,所述UE包括处于故障状态的所述第一路径上的UE,所述移动性管理实体根据所述第一基站的标识信息确定所述第一基站服务的UE,包括:
    所述移动性管理实体根据所述第一基站的标识信息和所述第一服务网关的标识信息查找本地上下文,以确定所述UE为所述第一路径上的UE。
  4. 根据权利要求1至3任一所述的方法,其特征在于,所述移动性管理 实体获取第一服务网关发送的消息,包括:
    所述移动性管理实体接收所述第一服务网关发送的第一通知消息,所述第一通知消息携带所述指示信息。
  5. 根据权利要求1至3任一所述的方法,其特征在于,所述方法还包括:所述移动性管理实体向所述第一服务网关发送第一请求消息,所述第一请求消息包括所述第一基站的标识信息;
    则所述移动性管理实体获取第一服务网关发送的消息包括:所述移动性管理实体接收所述第一服务网关发送的响应消息,所述响应消息携带所述指示信息。
  6. 根据权利要求5所述的方法,其特征在于,所述第一请求消息为修改承载请求消息,所述第一响应消息为修改承载响应消息,所述指示信息为所述修改承载响应消息携带的原因值;
    或,所述第一请求消息为创建会话请求消息,所述第一响应消息为创建会话响应消息,所述指示信息为所述创建会话响应消息携带的原因值。
  7. 根据权利要求1-6任一所述的方法,其特征在于,所述方法还包括:
    所述移动性管理实体根据所述指示信息,将所述第一路径添加至路径黑名单,所述路径黑名单包括处于故障状态的路径上的服务网关的标识信息和基站的标识信息。
  8. 根据权利要求7任一所述的方法,其特征在于,其特征在于,所述移动性管理实体根据所述服务网关列表以及所述消息,为所述UE选择与所述第一基站相连的所述第二服务网关,包括:
    所述移动性管理实体根据所述第一服务网关的标识信息和所述指示信息,确定所述第一服务网关为所述路径黑名单中的服务网关;
    所述移动性管理实体排除掉所述路径黑名单中的服务网关,从所述服务网关列表中选出与所述第一基站相连的所述第二服务网关。
  9. 根据权利要求7或8所述的方法,其特征在于,所述方法还包括:
    当所述移动性管理实体将所述第一路径添加至所述路径黑名单后,开启第一定时器;
    当所述第一定时器超时后,所述移动性管理实体将所述第一路径从所述路径黑名单中删除。
  10. 根据权利要求7至9任一所述的方法,其特征在于,所述方法还包括:
    所述移动性管理实体接收所述第一服务网关发送的第二通知消息,所述第二通知消息携带用于指示所述第一路径恢复正常状态的指示信息;
    所述移动性管理实体根据所述路径正常通知消息将所述第一路径从所述路径黑名单中删除;
    为所述第一基站服务的用户设备选择所述第一服务网关。
  11. 根据权利要求1至10任一所述的方法,其特征在于,所述移动性管理实体根据所述第一基站的标识信息,获取所述第一基站对应的服务网关列表,包括:
    所述移动性管理实体根据所述第一基站的标识信息,从域名服务器DNS获取所述服务网关列表;或
    所述移动性管理实体根据所述第一基站的标识信息,从本地配置信息中获取所述服务网关列表。
  12. 一种通信方法,其特征在于,包括:
    服务网关获取基站列表,所述基站列表包括与所述服务网关相连的基站的标识信息;
    所述服务网关检测所述服务网元与所述基站列表中各基站之间的路径状态,并记录所述路径状态;
    若所述服务网关确定所述基站列表中的第一基站与所述服务网关之间的第一路径发生故障,所述服务网关向移动性管理实体发送消息,所述消息携带所述第一基站的标识信息、所述服务网关的标识信息以及用于指示所述第一路径处于故障状态的指示信息。
  13. 根据权利要求12所述的方法,其特征在于,所述服务网关获取基站列表,包括:
    所述服务网关接收所述移动性管理实体发送的携带所述基站的标识信息的通用分组无线业务隧道协议GTP信令;
    所述服务网关根据所述GTP信令获取与所述服务网关相连的各基站的标识信息,所述标识信息包括所述基站的网络协议(IP)地址、所述基站的编号或所述基站的标识(ID)中的一项或多项;
    所述服务网关根据所述标识信息生成所述基站列表。
  14. 根据权利要求13所述的方法,其特征在于,所述GTP信令包括修改承载请求消息或创建会话请求消息。
  15. 根据权利要求12至14任一所述的方法,其特征在于,在所述服务网关向移动性管理实体发送消息前,所述方法还包括:
    所述服务网关接收所述移动性管理实体发送的请求消息,所述请求消息携带所述第一基站的标识信息;
    其中,所述携带指示信息的消息为响应消息。
  16. 根据权利要求15所述的方法,其特征在于,所述请求消息为修改承载请求消息,所述响应消息为修改承载响应消息,所述指示信息为所述修改承载响应消息中携带的原因值;
    或,所述请求消息为创建会话请求消息,所述响应消息为创建会话响应消息,所述指示信息为所述创建会话响应消息携带的原因值。
  17. 根据权利要求12至14任一所述的方法,其特征在于,所述服务网关向移动性管理实体发送消息,包括:
    当所述服务网关检测到所述第一路径发生故障,所述服务网关主动向所述移动性管理实体发送路径故障通知消息,所述路径故障通知消息携带所述指示信息。
  18. 根据权利要求17所述的方法,其特征在于,所述服务网关向所述移 动性管理实体主动发送路径故障通知消息,包括:
    当所述服务网关检测到所述第一路径发生故障时,启动第二定时器;
    当所述第二定时器超时后,所述服务网关再次检测所述第一路径的状态;
    若所述第一路径仍处于故障状态,所述服务网关向所述移动性管理实体发送所述路径故障通知消息。
  19. 根据权利要求12至18任一所述的方法,其特征在于,所述方法还包括:
    所述服务网关将第二基站从所述基站列表中删除,所述第二基站与所述服务网关不相连接。
  20. 一种移动性管理实体,其特征在于,包括:
    接收器,用于获取第一服务网关发送的消息,所述消息携带第一基站的标识信息、所述第一服务网关的标识信息以及用于指示所述第一基站与所述第一服务网关之间的第一路径处于故障状态的指示信息;
    至少一个处理器,用于根据所述第一基站的标识信息,获取所述第一基站对应的服务网关列表,所述服务网关列表至少包括与所述第一基站相连的第二服务网关的标识信息,其中,所述第二服务网关与所述第一基站之间的第二路径处于正常状态;
    所述至少一个处理器还用于根据所述第一基站的标识信息,确定所述第一基站服务的用户设备UE,并根据所述服务网关列表以及所述消息,为所述UE选择与所述第一基站相连的所述第二服务网关。
  21. 根据权利要求20所述的移动性管理实体,其特征在于,所述UE包括待激活的UE或待切换基站的UE,所述接收器还用于接收所述UE发送的请求消息,所述请求消息携带所述第一基站的标识信息;所述至少一个处理器还用于根据所述第一基站的标识信息,确定所述UE为所述第一服务基站服务的UE。
  22. 根据权利要求20所述的移动性管理实体,其特征在于,所述UE包括 处于故障状态的所述第一路径上的UE,所述至少一个处理器还用于根据所述第一基站的标识信息和所述第一服务网关的标识信息查找本地上下文,以确定所述UE为所述第一路径上的UE。
  23. 根据权利要求20至22任一所述的移动性管理实体,其特征在于,所述接收器用于接收所述第一服务网关发送的第一通知消息,所述第一通知消息携带所述指示信息。
  24. 根据权利要求20至22任一所述的移动性管理实体,其特征在于,还包括发射器,用于向所述第一服务网关发送第一请求消息,所述第一请求消息包括所述第一基站的标识信息;
    所述接收器用于接收所述第一服务网关发送的响应消息,所述响应消息携带所述指示信息。
  25. 根据权利要求24所述的移动性管理实体,其特征在于,所述第一请求消息为修改承载请求消息,所述第一响应消息为修改承载响应消息,所述指示信息为所述修改承载响应消息携带的原因值;
    或,所述第一请求消息为创建会话请求消息,所述第一响应消息为创建会话响应消息,所述指示信息为所述创建会话响应消息携带的原因值。
  26. 根据权利要求20-25任一所述的移动性管理实体,其特征在于,所述至少一个处理器还用于根据所述指示信息,将所述第一路径添加至路径黑名单,所述路径黑名单包括处于故障状态的路径上的服务网关的标识信息和基站的标识信息。
  27. 根据权利要求26任一所述的移动性管理实体,其特征在于,其特征在于,所述至少一个处理器还用于根据所述第一服务网关的标识信息和所述指示信息,确定所述第一服务网关为所述路径黑名单中的服务网关,排除掉所述路径黑名单中的服务网关,从所述服务网关列表中选出与所述第一基站相连的所述第二服务网关。
  28. 根据权利要求26或27所述的移动性管理实体,其特征在于,所述至 少一个处理器还用于:
    当所述第一路径被添加至所述路径黑名单后,开启第一定时器;
    当所述第一定时器超时后,将所述第一路径从所述路径黑名单中删除。
  29. 根据权利要求26至28任一所述的移动性管理实体,其特征在于,所述接收器还用于接收所述第一服务网关发送的第二通知消息,所述第二通知消息携带用于指示所述第一路径恢复正常状态的指示信息;
    所述至少一个处理器还用于根据所述路径正常通知消息,将所述第一路径从所述路径黑名单中删除,为所述第一基站服务的用户设备选择所述第一服务网关。
  30. 根据权利要求20至29任一所述的移动性管理实体,其特征在于,所述至少一个处理器还用于根据所述第一基站的标识信息,从域名服务器DNS获取所述服务网关列表;或从本地配置信息中获取所述服务网关列表。
  31. 一种服务网关,其特征在于,包括:
    至少一个处理器,用于获取基站列表,所述基站列表包括与所述服务网关相连的基站的标识信息;用于检测所述服务网元与所述基站列表中各基站之间的路径状态,并记录所述路径状态;
    发射器,若确定所述基站列表中的第一基站与所述服务网关之间的第一路径发生故障,用于向移动性管理实体发送消息,所述消息携带所述第一基站的标识信息、所述服务网关的标识信息以及用于指示所述第一路径处于故障状态的指示信息。
  32. 根据权利要求31所述的服务网关,其特征在于,还包括接收器,用于接收所述移动性管理实体发送的携带所述基站的标识信息的通用分组无线业务隧道协议GTP信令;
    所述至少一个处理器用于根据所述GTP信令,获取与所述服务网关相连的各基站的标识信息,所述标识信息包括所述基站的网络协议(IP)地址、所述基站的编号或所述基站的标识(ID)中的一项或多项;还用于根据所 述标识信息生成所述基站列表。
  33. 根据权利要求32所述的服务网关,其特征在于,所述GTP信令包括修改承载请求消息或创建会话请求消息。
  34. 根据权利要求31至33任一所述的服务网关,其特征在于,还包括接收器,用于接收所述移动性管理实体发送的请求消息,所述请求消息携带所述第一基站的标识信息;其中,所述携带指示信息的消息为响应消息。
  35. 根据权利要求34所述的服务网关,其特征在于,所述请求消息为修改承载请求消息,所述响应消息为修改承载响应消息,所述指示信息为所述修改承载响应消息中携带的原因值;
    或,所述请求消息为创建会话请求消息,所述响应消息为创建会话响应消息,所述指示信息为所述创建会话响应消息携带的原因值。
  36. 根据权利要求31至33任一所述的服务网关,其特征在于,当所述服务网关检测到所述第一路径发生故障,所述发射器用于主动向所述移动性管理实体发送路径故障通知消息,所述路径故障通知消息携带所述指示信息。
  37. 根据权利要求36所述的服务网关,其特征在于,当所述服务网关检测到所述第一路径发生故障时,所述至少一个处理器还用于启动第二定时器;当所述第二定时器超时后,用于再次检测所述第一路径的状态;若所述第一路径仍处于故障状态,所述发射器用于向所述移动性管理实体发送所述路径故障通知消息。
  38. 根据权利要求31至37任一所述的服务网关,其特征在于,所述所述至少一个处理器还用于将第二基站从所述基站列表中删除,所述第二基站与所述服务网关不相连接。
PCT/CN2015/097957 2015-12-18 2015-12-18 通信方法、装置及系统 WO2017101120A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/097957 WO2017101120A1 (zh) 2015-12-18 2015-12-18 通信方法、装置及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/097957 WO2017101120A1 (zh) 2015-12-18 2015-12-18 通信方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2017101120A1 true WO2017101120A1 (zh) 2017-06-22

Family

ID=59055614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/097957 WO2017101120A1 (zh) 2015-12-18 2015-12-18 通信方法、装置及系统

Country Status (1)

Country Link
WO (1) WO2017101120A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109526010A (zh) * 2019-01-02 2019-03-26 广州汇智通信技术有限公司 一种通信系统切换优化方法和系统
CN113497727A (zh) * 2020-04-01 2021-10-12 中国移动通信集团辽宁有限公司 Sae网关故障处理方法和系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101459928A (zh) * 2008-04-16 2009-06-17 中兴通讯股份有限公司 网元间的过载通知方法
CN103202064A (zh) * 2010-09-15 2013-07-10 瑞典爱立信有限公司 用于重定位和恢复通过故障服务网关的连接及业务卸载的方法和设备
CN103889004A (zh) * 2012-12-19 2014-06-25 思科技术公司 用于由演进节点b选择移动管理实体的系统、方法和介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101459928A (zh) * 2008-04-16 2009-06-17 中兴通讯股份有限公司 网元间的过载通知方法
CN103202064A (zh) * 2010-09-15 2013-07-10 瑞典爱立信有限公司 用于重定位和恢复通过故障服务网关的连接及业务卸载的方法和设备
CN103889004A (zh) * 2012-12-19 2014-06-25 思科技术公司 用于由演进节点b选择移动管理实体的系统、方法和介质

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109526010A (zh) * 2019-01-02 2019-03-26 广州汇智通信技术有限公司 一种通信系统切换优化方法和系统
CN109526010B (zh) * 2019-01-02 2022-03-15 广州汇智通信技术有限公司 一种通信系统切换优化方法和系统
CN113497727A (zh) * 2020-04-01 2021-10-12 中国移动通信集团辽宁有限公司 Sae网关故障处理方法和系统
CN113497727B (zh) * 2020-04-01 2024-02-27 中国移动通信集团辽宁有限公司 Sae网关故障处理方法和系统

Similar Documents

Publication Publication Date Title
US20220014944A1 (en) Ue migration method, apparatus, system, and storage medium
JP5664988B2 (ja) ページング処理方法およびシステム、サービングゲートウェイ
KR101339044B1 (ko) 서빙 코어 네트워크 노드가 변경될 때의 모바일 장치의 접근성의 처리
JP5727055B2 (ja) 地理的冗長ゲートウェイでのセッション復元性のためのシステムおよび方法
WO2016101575A1 (zh) 一种语音业务切换方法及设备
JP6368859B2 (ja) Pdn接続再確立方法、リセット中央サーバ、モビリティ管理ネットワーク要素、およびデータゲートウェイ
EP2139257A1 (en) Synchronization method, communication handover method, radio network and node
US11178000B2 (en) Method and system for processing NF component exception, and device
US20150098448A1 (en) Method and apparatus for supporting rlf reason detection or handover failure reason detection
CN104081808B (zh) Mme恢复
US20210112462A1 (en) Monitoring Event Management Method and Apparatus
US20170289942A1 (en) Radio terminal, network apparatus, and method therefor
KR20160104058A (ko) 서비스 처리 방법 및 장치
CN109196889A (zh) 用户信息获取方法、标识对应关系保存方法及装置与设备
KR20130035143A (ko) 로컬 네트워크에서 로컬 엑세스와 음성 통화를 지원하기 위한 방법 및 장치
US9980182B2 (en) Wireless device, network node, first radio access network node and methods performed thereby
WO2017101120A1 (zh) 通信方法、装置及系统
US10085191B2 (en) Control device and method therefor
EP2862386B1 (en) Methods and radio access node for determining a cell state
WO2012016546A1 (zh) 一种用户设备的寻呼处理方法及设备
WO2015103791A1 (zh) 一种添加邻小区的方法、装置及系统
US20160295479A1 (en) Method for establishing optimal path, mme and gateway, and computer storage medium
WO2018120223A1 (zh) 一种通信方法、移动性管理实体、基站及系统
AU2013337209B2 (en) Short message signalling optimization method, device and system
WO2014205735A1 (zh) 一种通信方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15910589

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15910589

Country of ref document: EP

Kind code of ref document: A1