WO2017099313A1 - Surface-enhanced raman scattering (sers) nanoparticles, method for preparing same, and applications thereof - Google Patents

Surface-enhanced raman scattering (sers) nanoparticles, method for preparing same, and applications thereof Download PDF

Info

Publication number
WO2017099313A1
WO2017099313A1 PCT/KR2016/005379 KR2016005379W WO2017099313A1 WO 2017099313 A1 WO2017099313 A1 WO 2017099313A1 KR 2016005379 W KR2016005379 W KR 2016005379W WO 2017099313 A1 WO2017099313 A1 WO 2017099313A1
Authority
WO
WIPO (PCT)
Prior art keywords
sers
nano
core
nanoparticles
raman
Prior art date
Application number
PCT/KR2016/005379
Other languages
French (fr)
Korean (ko)
Inventor
김중현
Original Assignee
재단법인 대구경북첨단의료산업진흥재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 대구경북첨단의료산업진흥재단 filed Critical 재단법인 대구경북첨단의료산업진흥재단
Publication of WO2017099313A1 publication Critical patent/WO2017099313A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G7/00Compounds of gold
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering

Definitions

  • the present invention relates to surface enhanced Raman scattering (SERS) nanoparticles, methods for their preparation and applications thereof.
  • SERS surface enhanced Raman scattering
  • Raman scattering is an inelastic scattering in which the energy of incident light changes, and when light is applied to a specific molecule, light is generated with a slightly different wavelength from that irradiated by the intrinsic vibrational transition. Unlike infrared spectroscopy, Raman spectroscopy is not affected by water molecules, and thus is more suitable for detection of biomolecules such as proteins and genes.
  • Raman spectroscopy has very weak signal strength and low reproducibility.
  • One way to overcome this problem is surface enhanced Raman scattering.
  • Surface-enhanced Raman spectroscopy is a phenomenon in which the Raman signal of a molecule increases greatly when a molecule is present in the vicinity of the metal nanostructure.
  • electromagnetic enhancement effects there are electromagnetic enhancement effects and chemical enhancement effects.
  • surface plasmon In order for Raman emission to be most effectively enhanced, there must be a collective vibration of free electrons on the metal surface between the metal and the laser, which is called surface plasmon, which is the basis of the electromagnetic enhancement effect.
  • Surface plasmon resonance depends on the type of metal nanoparticles (usually Au, Ag, Cu, Pt, etc.), the size and shape, the solvent dispersed, the type of laser.
  • SERS Surface-enhanced Raman scattering
  • metallic nanoparticles capable of surface modification, easy synthesis, and excellent biocompatibility have been widely used as biological detection or contrast SERS substrates.
  • the plasmon coupling effect is synergistically increased in the vicinity of the contact point between the particles, so that the SERS is further enhanced by aggregation between the nanoparticles.
  • the part showing significant enhancement of the electromagnetic field, such as a contact point between the nanoparticles, is called a hot-spot.
  • these Random generation and relatively low frequency of hot spots leads to uncertainty in scatter enhancement.
  • the planar substrate designed as described above can implement a nanostructure that can induce an increase in electromagnetic field with a relatively accurate and reproducible, but the use of the nanoparticle form than the planar substrate for use as a label for detection and image signal in biological medical applications Is high.
  • Nanoparticles that produce highly augmented and reproducible Raman scattering near the surface needed for biological applications exhibit higher field enhancement than simple spherical particles. Nanoparticles include nanocrescent moons, nanorice and nanoshells. ), Nanostars and the like.
  • the total intensity of the Raman signal from a single nanoparticle is as important as the enhancement of the signal.
  • the total intensity of Raman scattering for biological analysis or detection is affected by the number of Raman reporters mounted on the nanoparticles as well as the electromagnetic field.
  • the nanoshell core structure which has a relatively large number of reporter dyes inside the core, is one of the excellent candidates for providing strong Raman signals from a single nanoparticle.
  • the Raman reporter dye may be mounted on the outer surface of the nanoshell and the core of the nanoshell core structure to increase the total SERS intensity.
  • Significant improvement in SERS strength can be expected if the field-enhancing structure can be implemented at a level that does not compromise the ratio of the Raman reporter loading volume to the structure of the conventional nanoshell and the total volume. .
  • the present inventors have made diligent efforts to discover structures and / or materials that can significantly increase the SERS strength based on the particles of the nanoshell core structure, and as a result, nanoconvex on the surface using porous nanoparticles having two or more different sizes.
  • the metal shell has a nano concave portion corresponding to the nano convex portion on the inner surface thereof, thereby forming a hot spot, and the Raman active material is formed in the pores of the nanoparticles. It was confirmed that it can support the excellent SERS effect was completed the present invention.
  • Nanoembosses according to the present invention are an effective approach for generating strong SERS signals, allowing for sensitive and reliable biomedical applications, as well as a platform for fabricating novel structures that produce strong electromagnetic fields.
  • FIG. 1 is a schematic diagram illustrating a method of manufacturing a gold nanoshell having nanoembosses toward an inner surface according to one embodiment.
  • (a) shows a transmission electron microscope (TEM) image of the flat silica core used in Example 1
  • (b) shows a TEM image of a nanoembossed silica core with gold seeds attached
  • (c) An enlarged image of the box indicated by dotted lines in (b)
  • (d) a TEM image of a gold nanoshell fabricated on a flat silica core
  • e a TEM image of a nanoembossed silica core-gold nanoshell.
  • Indicates. Scale bar is 100 nm.
  • FIG. 2 shows UV-Vis extinction spectra of (a) flat silica core-gold nanoshells and (b) nanoembossed silica core-gold nanoshells. Solid lines represent experimentally measured data and dashed lines represent spectra calculated in water using FDTD.
  • 3 is a diagram showing an absorption spectrum of gold nanoshells nanoembossed in water according to the number of nanoembosses attached on the silica core. Spectra were calculated using FDTD.
  • FIG. 4 shows the 3-D FDTD calculation results of nanocore-embossed silica core-gold nanoshells at 633 nm excitation wavelength. Localized electromagnetic field distributions of nanoembossed silica core-gold nanoshells are shown.
  • the radius of the silica core is 61.8 nm.
  • the thickness of the shell is 28.7 nm.
  • Scale bar is 100 nm.
  • Electromagnetic field amplitudes are normalized to incident field amplitudes.
  • FIG. 5 shows a profile of a calculated electromagnetic field formed through nanoembossed silica core-gold nanoshells at 633 nm excitation wavelength.
  • the radius of the silica core is 61.8 nm.
  • the thickness of the shell is 28.7 nm.
  • the field amplitude is normalized to the incident field amplitude.
  • FIG. 6 shows SERS intensity at 633 nm excitation wavelength as a function of shell thickness of nanoembossed silica core-gold nanoshells.
  • FIG. (a) shows the SERS spectrum obtained from a single nanoembossed gold nanoshell and (b) shows the SERS intensity at 1487 cm ⁇ 1 of the single nanoembossed gold nanoshell.
  • FIG. 8 shows the SERS signal at 633 nm excitation wavelength as a function of [Ru (bpy) 3 ] 2+ concentration on a single flat silica core-gold shell.
  • (a) 1487 cm -1 is a SERS spectra obtained after dispersing the dye in various concentrations (0.05 mM, 0.1 mM, 0.5 mM, and 1 mM) on the gold nano-shell,
  • FIG. 9 is a diagram showing the optical emission of the aqueous solution of [Ru (bpy) 3] 2+ has a nano-embossing silica nanoparticles encapsulated.
  • FIG. 11 is a diagram showing a SERS signal of a silica core-gold shell containing [Ru (bpy) 3 ] 2+ .
  • (a) shows the TEM image of the dye-sealed silica core-gold shell,
  • FIG. 12 is a diagram illustrating a comparison of absorption spectra of [Ru (bpy) 3 ] 2+ and silica nanoparticles in a solution.
  • (a) is [Ru (bpy) 3 ] 2+ in water
  • (b) is [Ru (bpy) 3 ] 2+ encapsulated nanoembossed silica nanoparticles
  • (c) is silica core
  • (d) is [ Ru (bpy) 3 ] 2+ nanoembossed silica cores
  • (e) show results for [Ru (bpy) 3 ] 2+ embedded silica cores.
  • FIG. 13 is a view showing a comparison of the SERS signal according to the reporter dye encapsulation position.
  • (a) and (b) represents the intensity at each SERS spectrum and 633 nm 1487 cm -1 for single AuNS according to the enclosed position of the reporter dye upon here.
  • FIG. 14 shows SEM of AuNS prepared on dye doped silica cores (132.4 ⁇ 10.5 nm in diameter) with and without nanoembossing ((a) and (b), respectively) and nanoparticles on silica cores and dye doped silica cores.
  • FIG. 15 is a view showing a structure generated when the shell is formed thinner than the nano-emboss.
  • the right side shows a structure formed when the nanoembosses are densely positioned so that neighboring nanoembosses are in contact with each other, and the left side is formed when the nanoembosses are less densely positioned and the adjacent nanoembosses are spaced at predetermined intervals.
  • a first aspect of the invention provides a core having nanoconvex portions on a surface thereof; And a metal shell having a nano-concave portion corresponding to the nano-convex portion on an inner surface thereof, wherein the Raman active material is also supported on the nano-convex portion of the core, thereby providing surface enhanced Raman scattering (SERS) nanoparticles.
  • SERS surface enhanced Raman scattering
  • a second aspect of the present invention provides a core portion carrying a first Raman active material and having a (+) charge, and a nanoparticle carrying a second Raman active material and having a (-) charge formed on the surface of the core portion.
  • a first core having a convex portion; Or a second carrier having a first Raman active material and having a (-) charged core portion and a nano convex portion having a second Raman active material and having a (+) charge formed thereon on the surface of the core portion.
  • core provides a surface-enhanced Raman scattering (SERS) nanoparticles comprising a metal shell having a nano-concave corresponding to the nano-convex portion on the inner surface side.
  • SERS surface-enhanced Raman scattering
  • the third aspect of the present invention comprises the first step of preparing a silica core loaded with a Raman active material; A second step of modifying the surface of the silica core to carry a (+) or ( ⁇ ) charge; Silica core having nano convexities, having the nano-convex portion assembled by the assembly of the silica nanoparticles doped with the Raman active material on the surface of the silica core formed in the second step through electrostatic interaction, having an opposite charge to the silica core formed in the second step.
  • the method comprises growing a nano seed in a growth solution to form a metal shell having a nano concave portion corresponding to the nano convex portion on an inner surface of the silica core having the nano convex portion. It provides a method for producing a surface surface enhanced Raman scattering (SERS) nanoparticles according.
  • SERS surface surface enhanced Raman scattering
  • a fourth aspect of the invention provides a Raman probe with surface enhanced Raman scattering (SERS) nanoparticles according to the first or second aspect.
  • SERS surface enhanced Raman scattering
  • a fifth aspect of the present invention provides a surface enhanced Raman scattering (SERS) substrate coated with surface enhanced Raman scattering (SERS) nanoparticles according to the first or second aspect on the substrate.
  • SERS surface enhanced Raman scattering
  • a sixth aspect of the present invention provides a process for a) functionalizing a biomolecule or compound capable of binding the surface of the surface enhanced Raman scattering (SERS) nanoparticles according to the first or second aspect with an analyte to be detected. step; b) exposing the functionalized SERS nanoparticles to a sample comprising one or more analytes; And c) identifying the analyte to which the SERS nanoparticles are bound using Raman spectroscopy.
  • SERS surface enhanced Raman scattering
  • the seventh aspect of the invention comprises the steps of: i) functionalizing a surface of the surface enhanced Raman scattering (SERS) nanoparticles according to the first or second aspect with a biomolecule or compound complementary to the nucleic acid to be detected; ii) performing hybridization by reacting the functionalized SERS nanoparticles with a sample that is expected to contain a nucleic acid to be detected; And iii) performing Raman spectroscopy to confirm the presence, amount or both of the nucleic acid to be detected to which the SERS nanoparticles are bound.
  • SERS surface enhanced Raman scattering
  • An eighth aspect of the invention provides a core having nano-convex portions on its surface; And it provides a surface enhanced Raman scattering (SERS) substrate comprising a metal shell having a nano-concave corresponding to the nano-convex portion on the inner surface side.
  • SERS surface enhanced Raman scattering
  • the inner surface of the shell is the first surface of the shell adjacent to the core, and the outer surface of the shell refers to the second surface opposite the first surface.
  • the emboss may provide nano convex portions on the surface of the core, and may provide nano concave portions corresponding to the nano convex portions on the inner surface side of the metal shell. Therefore, in this specification, embossing, a nano convex part, and a nano concave part are mixed.
  • the inventors have fabricated nanoshells with nanoembosses on the inner surface, where the strong field formed in the metal nanoshell layer induces substantial enhancement of Raman scattering, and through the FDTD calculation of these nanoparticles, In the nanoshells, there is a strong induced electromagnetic field.
  • a Raman active material such as a reporter dye can be included in extra space such as inside the nanoemboss and on the outer surface of the nanoparticle.
  • the core may further include a Raman active material.
  • the present invention can provide a nano-embossed silica core-metal nanoshell, with a core-shell structure with novel internal positions that form strong electromagnetic fields.
  • smaller silica nanoparticles are electrostatically assembled around the silica core, followed by a wet process to grow gold nanoseeds on the core, thereby internally nanoembossed gold nanoshell with nanoembosses on the inner surface.
  • max. 55 at 633 nm) at the sharp edges formed by the contact between the nanoembosses and the silica core was confirmed by FDTD calculations.
  • the formation of the electromagnetic field was supported by the SERS signal measured for [Ru (bpy) 3 ] 2+ , a Raman activator encapsulated in nanoembossed silica nanoparticles.
  • SERS signals that are as strong as the corresponding fluorescent signals are obtained.
  • Raman enhancement factors were estimated up to 10 10 at 633 nm excitation, as well as comparable enhancers at 785 nm laser excitation.
  • the total intensity from the nanoshell layer with nanoembosses is sufficiently high compared to the outer surface or the core of the nanoparticles, such that the nanoembossed metal nanoshells are biomedical applications as sensitive and reliable labeling particles.
  • Spherical gold nanoparticles is not suitable as the 830 nm, even though possible to improve the Raman signal to 10: 9 at the excitation wavelength, and because of the poor volatility of the irregularities and outside the effect of hot spots that cause the SERS enhancement reproducible SERS cover material which when agglomerated Is considered not.
  • the SRES signal of a metal shell with nanoembosses is generated from nanoembosses containing Raman activators, protected by a nanoshell layer, thus creating a strong electromagnetic field that creates It is protected against and more stable.
  • Gold is a highly inert substance.
  • the Raman reporter dye encapsulated in SiO 2 nanoembosses can be physically and chemically stable.
  • AuNS nanoembossed gold nanoshell
  • the present invention presents for the first time that a strong electromagnetic field is formed inside the nanoshell layer, thereby obtaining a strong SERS enhancement.
  • structures bearing the Raman activator on the outer surface of the nanoshell, inside the nanoshell layer, and on the inner core of the nanoshell have a very high total SERS signal that can be detected with significantly improved analytical sensitivity without amplifying trace amounts of target biomolecules.
  • an inner surface with nanoconcave in a metal nanoshell can provide a novel location for generating a strong SERS signal as much as the surface or inside the core of the nanoshell. That is, the microstructure of the inner surface of the metal shell creates hot spots in which strong electromagnetic fields are generated in the local region, thereby enabling high SERS buildup.
  • the present invention is in the form of having a nano concave portion on the inner surface of the metal shell, it is possible to place the Raman active material in the nano concave portion, it is possible to exhibit additional SERS by the structure of the nano concave portion of the metal shell It is characteristic. This is based on the discovery that there is a strong induced electromagnetic field due to the inner surface with nano recesses in the metal nanoshells that can cause SERS enhancement.
  • SERS nanoparticles is a core having a nano-convex portion on the surface while carrying a Raman active material; And a metal shell having a nano concave portion corresponding to the nano convex portion on an inner surface side thereof, and the Raman active material may be supported on the nano convex portion of the core.
  • SERS surface-enhanced Raman scattering
  • It may include a metal shell having a nano concave portion corresponding to the nano-convex portion on the inner surface side.
  • the SERS nanoparticles according to the present invention may not only support the Raman active material inside the core having the nano convex portion, but may optionally support the Raman active material on the outer surface of the metal shell.
  • Raman activator refers to a substance that facilitates the detection and measurement of an analyte by a Raman detection device when the metal shell of the present invention adheres to one or more analytes.
  • Raman actives preferably exhibit a distinct Raman spectrum.
  • Raman activators show specific Raman spectra, allowing for more efficient analysis of biomolecules.
  • Raman active materials that can be used in Raman spectroscopy include organic or inorganic molecules, atoms, complexes or synthetic molecules, dyes, naturally occurring dyes (such as picoeryrin), organic nanostructures such as C60, buckyballs, carbon nanotubes, quantum dots, Organic fluorescent molecules and the like.
  • examples of the Raman active substance include FAM, Dabcyl, TRITC (tetramethyl rhodamine-5-isothiocyanate), rhodamine 6G, MGITC (malakit green isothiocyanate), XRITC ( X-Rhodamine-5-isothiocyanate), DTDC (3,3-diethylthiadicarbocyanine iodide), TRIT (tetramethyl rhodamine isothiol), NBD (7-nitrobenz-2-1 , 3-diazole), phthalic acid, terephthalic acid, isophthalic acid, para-aminobenzoic acid, erythrosine, biotin, digoxigenin, 5-carboxy-4 ', 5'-dichloro-2', 7 ' -Dimethoxy, fluorescein, 5-carboxy-2 ', 4', 5 ', 7'-tetrachlorofluorescein, 5-
  • the core having the nano-convex portion on the surface while supporting the Raman active material preferably has an average diameter of 20 nm to 1000 nm, more preferably 50 nm to 500 nm, corresponding to its volume. If the diameter of the core is less than 20 nm, not only the capacity of the Raman activator that can be included, but also the Raman surface enhancement effect is lowered, if it exceeds 1000 nm is limited in biological applications.
  • the shape of the core may be spherical or elliptical without considering the nano-convex portion, but may be any shape or irregular shape.
  • the nano-convex portion included therein has an average diameter of 5 to 50 nm, but is not limited thereto.
  • the thickness of the shell formed on the core having the nano-convex portion on the surface may be determined according to the size of the nano-convex portion, preferably 1 to 50 nm, but is not limited thereto.
  • the core having the nano convex portions on the surface preferably has sharp edges that enable the formation of electromagnetic fields at the bottom edge of the nano convex portions.
  • the core and its nano convex parts It is not limited to the material as long as it can support a Raman active substance.
  • the core and its nano-convex portions are preferably porous so as to support the Raman active material.
  • the material of the core and its nano-convex portion is silica, gold sulfide, titanium dioxide, polymethyl methacrylate (PMMA), polystyrene, hydrogels or non-conductive materials. Combinations thereof, but is not limited thereto.
  • the material of the nano-convex portion may be the same or different from that of the main core portion, and may be the same material but may be modified or unmodified differently.
  • the main core portion and nanoconvex portions each independently have a positively charged silica and a negatively-charged silica.
  • the positively charged silica may be silica modified with amines, or the negatively charged silica may be silica modified with carboxyl groups.
  • the core with nano convexities on the surface is
  • the first Raman active material and the second Raman active material may be the same or different.
  • the core carrying the Raman active material may also serve as a template for forming a nanoscale microstructure of the inner surface of the metal shell. Therefore, the surface plasmon effect can be maximized by the microstructure of the inner surface of the metal shell formed by variously adjusting the size and shape of the core and the like.
  • the microstructure of the inner surface of the metal shell according to the present invention can control the shape of the core used as a mold at the nanometer level, thereby producing a reproducible metal shell.
  • a metal shell having nano recesses on an inner surface side creates a hot spot in which a strong electromagnetic field is generated in a local region corresponding to the nano recesses of the core, thereby providing an increased Raman signal.
  • a metal shell having a nano concave portion on the inner surface side corresponding to the nano convex portion of the core through the nanoembossing technique is not only an alternative for forming a strong field, but also an alternative for supporting a sufficient number of Raman active materials. Can be. Furthermore, metal shells with various nanostructured nanoembosses on the inner surface can be made into various self-assembled molds to form much higher fields than those formed using spherical SiO 2 cores.
  • Nanoembosses according to the present invention are an effective approach for generating strong SERS signals, allowing for sensitive and reliable biomedical applications, as well as a platform for fabricating novel structures that produce strong electromagnetic fields.
  • the thickness of the nanoshells may be 1 nm to 300 nm, more preferably 1 to 50 nm.
  • the material of the metal shell may be gold, silver, copper, platinum or aluminum, but the material is not limited as long as it can function as a small antenna that enhances the effect of concentrating electromagnetic waves.
  • SERS Surface enhanced Raman scattering
  • a manufacturing method comprising a fifth step of growing a nano seed in the growth solution to form a metal shell having a nano concave portion corresponding to the nano convex portion on the inner surface around the silica core having the nano convex portion.
  • FIG. 1 is a schematic diagram illustrating a method of manufacturing a gold nanoshell having nanoembosses toward an inner surface according to one embodiment.
  • the core seeds on the gold forms a gold nano-layer shell around the embossed nano silica core.
  • the self-assembly method can easily adjust the size and number of nanoembosses according to the intended purpose.
  • the first step may be performed by a microemulsion method.
  • the reaction may be performed at 10 to 100 ° C. in the growth solution containing the metal precursor.
  • reaction temperature is less than 10 °C takes too much time to form a metal shell, if it exceeds 100 °C may be a non-uniform metal shell.
  • reaction time may be adjusted to 1 minute to 24 hours depending on the reaction temperature.
  • the silver precursor may be AgNO 3 or AgClO 4
  • the gold precursor may be any compound containing Au ions such as HAuCl 4
  • the copper precursor may be Cu (NO 3 ) 2 , CuSO 4 .
  • Reducing agents required to convert silver ions or gold ions to gold or silver nanoshells include hydroquinone, sodium borohydride (NaBH 4 ), sodium ascorbate, formaldehyde, and the like.
  • the solvent of the growth solution may be purified water, an aqueous solution (eg, phosphate buffer). Additional stabilizers can be added for precise thickness control of the nanoshells.
  • the present invention provides a Raman probe with SERS nanoparticles according to the present invention.
  • the present invention also provides a surface enhanced Raman scattering (SERS) substrate coated with the SERS nanoparticles according to the invention on the substrate.
  • SERS surface enhanced Raman scattering
  • the SERS nanoparticle-containing coating layer may further induce electromagnetic field amplification between adjacent SERS nanoparticles by the access or contact of the SERS nanoparticles.
  • SERS nanoparticles according to the present invention can be used as a Raman probe that can be applied to detect a variety of biomolecules by functionalizing with biomolecules (molecules) or compounds that can recognize the analyte to detect the surface.
  • analytes to be detected include amino acids, peptides, polypeptides, proteins, glycoproteins, lipoproteins, nucleosides, nucleotides, oligonucleotides, nucleic acids, sugars, carbohydrates, oligosaccharides, polysaccharides, fatty acids, lipids, Hormones, metabolites, cytokines, chemokines, receptors, neurotransmitters, antigens, allergens, antibodies, substrates, metabolites, cofactors, inhibitors, drugs, pharmaceuticals, nutrients, prions, toxins, toxins, explosives, pesticides, chemicals Inorganic agents, biohazardous agents, radioisotopes, vitamins, heterocyclic aromatic compounds, carcinogens, mutagens, anesthetics, amphetamines, barbiturates, hallucinogens, wastes or contaminants.
  • the analyte is a nucleic acid
  • the nucleic acid is a gene, viral RNA and DNA, bacterial DNA, fungal DNA, mammalian DNA, cDNA, mRNA, RNA and DNA fragments, oligonucleotides, synthetic oligonucleotides, modified oligonucleotides, single Stranded and double stranded nucleic acids, natural and synthetic nucleic acids.
  • biomolecule refers to small molecules such as primary metabolites, secondary metabolites, and natural products, to macromolecules such as proteins, carbohydrates, lipids, and nucleic acids. It may refer to any molecule present in the living organisms included, and may include all biological materials in a conventional meaning. In addition, in addition to the endogenous material, it may also include all of the exogenous drugs that are natural, semi-synthetic or total synthetic material.
  • Non-limiting examples of biomolecules capable of binding to the surface of SERS nanoparticles according to the present invention that can recognize analytes include antibodies, antibody fragments, genetically engineered antibodies, single chain antibodies, receptor proteins, binding proteins, enzymes , Inhibitor proteins, lectins, cell adhesion proteins, oligonucleotides, polynucleotides, nucleic acids or aptamers.
  • the whole nanoparticles may be further coated with an inorganic material.
  • the structure is less likely to be deformed, so the structure of the nanoparticles can be stably maintained, which is more desirable for storage and use. Aggregation of nanoparticles can ensure reproducibility in inducing electromagnetic amplification between adjacent SERS nanoparticles.
  • the inorganic material is not limited as long as it maintains the structure of the SERS nanoparticles and does not affect the Raman signal, and silica may be used as an example.
  • Raman scattering techniques are basically non-destructive for samples because they use low power lasers.
  • the Raman probe manufacturing technology it can be applied to the diagnosis of diseases in cells and in vivo using a material with excellent biocompatibility.
  • the surface of the Raman probe may be coated with a biocompatible material such as a polymer ligand or silica, but is not limited thereto.
  • specific reactions DNA hybridization, antigen-antibody reactions, etc.
  • biomaterials can be used for high-sensitivity diagnosis for specific diseases in cells and in vivo. It can also be used for identification, kinship, bacterial or cellular identification, or origin of flora and fauna, but its application is not limited thereto.
  • the non-destructive surface enhancement Raman analysis technology using the SERS nanoparticles according to the present invention can be used in the field of real-time monitoring and therapeutic drug for specific diseases in living cells and in vivo.
  • the SERS nanoparticles according to the present invention can secure a reproducible microstructure in which the SERS signal can be maximized, it can be used for a very reliable and useful ultra-high sensitivity biomolecular analysis method, and can also be used as an in vivo imaging technique in addition to in vitro diagnostic methods. Very useful.
  • a method for detecting or imaging an analyte is
  • the sample expected to contain the nucleic acid to be detected may be used as the sample itself, or the nucleic acid to be detected may be separated, purified or amplified therefrom.
  • Raman spectroscopy preferably Surface Enhanced Raman Scattering (SERS), Surface enhanced resonance Raman spectroscopy (SERRS), Hyper-Raman and / or Ratio Coherent anti-Stokes Raman spectroscopy (CARS) can be used.
  • SERS Surface Enhanced Raman Scattering
  • SERRS Surface enhanced resonance Raman spectroscopy
  • CARS Ratio Coherent anti-Stokes Raman spectroscopy
  • SERS Surface Enhancement Raman Scattering
  • SERRS Surface augmented resonance Raman spectroscopy
  • CARS Non-coherent antistock Raman spectroscopy
  • the nucleic acid detection method using the SERS nanoparticles according to the present invention, can detect other information about the nucleic acid, such as one or more single base polymorphisms (SNPs) or other forms of genetic variation present in the sample, furthermore DNA It can also be applied to sequencing.
  • SNPs single base polymorphisms
  • a surface enhanced Raman scattering (SERS) substrate such as a Raman active substrate, coated with surface enhanced Raman scattering (SERS) nanoparticles according to the invention on a substrate may be operatively coupled with one or more Raman detection unit devices.
  • SERS surface enhanced Raman scattering
  • Several methods for the detection of analytes by Raman spectroscopy are known in the art (eg, US Pat. Nos. 6,002,471, 6,040,191, 6,149,868, 6,174,677, 6,313,914).
  • SERS and SERRS the sensitivity of Raman detection is enhanced to 10 6 or higher for molecules absorbed on rough metal surfaces such as silver, gold, platinum, copper or aluminum surfaces.
  • Non-limiting examples of Raman detection devices are disclosed in US Pat. No. 6,002,471.
  • a pulsed laser beam or a continuous laser beam can be used as the excitation beam.
  • the excitation beam passes through confocal optics and a microscope lens and is focused onto a Raman active substrate containing one or more analytes.
  • Raman emission light from the analyte is collected by microscope lenses and confocal optics and combined with monochromators for spectral separation.
  • Confocal optics include a combination of dichroic filters, blocking filters, confocal pinholes, objectives and mirrors to reduce background signals. Not only confocal optics but also standard full field optics can be used.
  • Raman emission signals are detected by a Raman detector comprising a landslide photodiode interfaced with a computer that counts and digitizes the signal.
  • Raman spectroscopy or related techniques can be used for analyte detection, including normal Raman scattering, resonance Raman scattering, surface enhanced Raman scattering, surface enhanced resonance Raman scattering, b. Coherent Vanstock Raman Spectroscopy (CARS), Stimulated Raman Scattering, Inverse Raman Spectroscopy, Stimulus Gain Raman Spectroscopy, Hyper-Raman Scattering, Molecular Optical Laser Examiner (MOLE) or Raman Microprobe or Raman Microscopy Or confocal Raman microspectral, three-dimensional or scanning Raman, Raman saturation spectroscopy, time resolved resonance Raman, Raman dissociation spectroscopy or UV-Raman microscopy.
  • CARS Coherent Vanstock Raman Spectroscopy
  • MOLE Molecular Optical Laser Examiner
  • the Raman detection device can be operatively coupled with the computer.
  • the computer may include a bus for exchanging information and a processor for processing information.
  • the computer may further include RAM or other dynamic storage, ROM or other static storage and data storage, such as a magnetic disk or an optical disk and a corresponding drive.
  • the computer may also include peripheral devices known in the art, such as display devices (e.g., cathode ray tube or liquid crystal displays), alphabet input devices (e.g., keyboards), cursor control devices (e.g., mice, trackballs, or cursor direction keys) and communication devices. (Eg, an interface device used to couple with a modem, network interface card or Ethernet, token ring or other type of network).
  • Data from the detection device may be processed by the processor and the data may be stored in the main memory.
  • the processor can confirm the analyte type of the sample by comparing the emission spectra from the analyte on the Raman active substrate.
  • the processor may analyze data from the detection device to determine the identity and / or concentration of the various analytes. Differently equipped computers can be used for specific implementations.
  • the data After the data collection operation, the data will typically be sent to a data analysis operation. To facilitate the analysis task, the data obtained by the detection device will typically be analyzed using a digital computer as described above.
  • a computer will be suitably programmed for analysis and reporting of collected data as well as for receiving and storing data from detection devices.
  • the present invention is a core having a nano-convex portion on the surface; And it can provide a surface enhanced Raman scattering (SERS) substrate comprising a metal shell having a nano-concave corresponding to the nano-convex portion on the inner surface side.
  • SERS surface enhanced Raman scattering
  • the Raman activity attached to the surface does not include the Raman active molecule therein. Since the signal of the material can be significantly improved, it can be usefully used as a surface enhanced Raman scattering substrate.
  • the structure includes a Raman active molecule in the nanostructure because the structure may have a sharp structure formed not only on the inner surface side but also on the outer surface side of the shell to provide a hot spot with a significantly increased electromagnetic field. Even if not, since it can exhibit an effect of remarkably enhancing the signal of the Raman active molecule located near the tip of the shell formed on the outer surface of the nanostructure can be used as a surface-enhanced Raman scattering substrate as such.
  • a nanoembossed silica core was prepared as a template and the silica core was covered with a gold nanolayer.
  • FIG. 1A a method of producing nanoembosses toward the inner surface of a nanoshell layer is schematically depicted through a wet process that is advantageous for mass production of nanoparticles.
  • Silica cores were synthesized by the Stover method and [Ru (bpy) 3 ] 2+ was loaded as a Raman reporter dye by a modified water-in-oil microemulsion method. Specifically, 1.5 ml of tetraethyl orthosilicate (TEOS, Sigma) is added to 45 ml ethanol containing 2.8 ml of NH 4 OH, and 0.1 M tris (dope) to dope Ru (bpy) to the silica core. 2,2-bipyridyl) dichlororuthenium (II) (Ru (bpy)) was added to the mixture and reacted for 8 hours.
  • TEOS tetraethyl orthosilicate
  • amTESinopropyltrimethoxy silane APTES
  • APTES amTESinopropyltrimethoxy silane
  • the silica core was centrifuged at 2000 g for 30 minutes. After removing the supernatant, the pellet was redispersed in 50 ml of fresh ethanol for 10 minutes using a probe sonicator (VC 750, Sonics). Purification by centrifugation was repeated two more times.
  • the aminated silica cores formed nanoprojected structures with Ru (bpy) doped smaller silica nanoparticles synthesized by the modified water-in-oil microemulsion method.
  • Ru (bpy) 90 ⁇ l 0.1 M to 0.1 M aqueous solution of polyoxyethylene nonyl phenol ether (Sigma) was added to 10 ml, which was added to 29.6 wt% NH 4 OH in 100 ⁇ l TEOS and 60 ⁇ l.
  • TEOS and carboxyethylsilanetriol, sodium salt (25% by weight aqueous solution, Gelest) were added to the mixture.
  • the mixture was further reacted for 24 hours and ethanol was added to break the microemulsion and recover the particles.
  • the final nanoembossed silica nanoparticles were recovered after three centrifugation wash steps. Afterwards, nanoembossed silica nanointeractions were dispersed in ultrapure water.
  • excitation spectra are shown for each of the gold nanoshells (AuNS) having a flat inner surface and the gold nanoshells (AuNS) having a nanoemboss at an inner surface.
  • AuNS flat on the inner surface showed two distinct plasmon resonances (dipole at ⁇ 763 nm and quadrupole plasmon resonance at 615 nm).
  • Plasma resonance observed in AuNS with nanoembosses (FIG. 2b) reduced dipole plasmon resonance compared to AuNS flat toward the inner surface, but with long wavelength shifted (red-shifted) 830 nm compared to AuNS flat toward the inner surface.
  • Characteristic dipole plasmon resonance and quadrupole resonance were shown at 630 nm, respectively. According to the FDTD calculation, the presence of nanoembosses led to the long wavelength shifted excitation spectrum of AuNS (FIG. 3). In addition, the roughness of the surface widened the plasmon spectrum and induced long wavelength shift. As a result, surface roughness and nanoembossing toward the inner surface resulted in a longer wavelength shift than expected spectrum.
  • the FDTD calculation confirmed the electromagnetic field enhancement inside the nanoembosses at the SERS excitation wavelength of 633 nm (FIG. 4).
  • a strong electromagnetic field was formed near the contact point between the nanoembosses and the core.
  • the strongest field is formed by the contact of the nanoembosses with the core. It was obtained at two corners (Fig. 5).
  • the shape of a single nanoemboss in contact with the core SiO 2 NPs was similar to a nanocrescent with sharp rounded corners.
  • the antenna effect is known to cause strong local electromagnetic field enhancement around the sharp rounded corners of the nanocrescent moon.
  • forming a nanoshell layer on the nanoembossed silica core can form sharp features and allow for the formation of strong fields around the contact site.
  • Raman scattering of the reporter dye [Ru (bpy) 3 ] 2+ inside each of the nanoembosses and the core SiO 2 in AuNS synthesized according to Example 1 was measured.
  • Figure 6 shows the Raman spectrum of the dye from AuNS with nanoembosses on the inner surface according to shell thickness.
  • Shell thickness was controlled by varying the amount of nanoembossed SiO 2 NPs while maintaining the amount of HAuCl 4 in the same volume.
  • the synthesized particles were deposited on a glass substrate modified with APTES. After 2 hours, the substrate was washed three times with ultrapure water and the unattached particles were removed and carefully dried with nitrogen gas. Spots of the sample (focusing the 633 nm laser to 1.03 ⁇ m diameter) were scanned 30 times using a 3 second integration time per scan. As shown in FIG. 6, clear Raman scattering bands of the reporter dye were collected. The SERS of each nanoparticle was compared using Raman scattering per particle at 1487 cm ⁇ 1 as the characteristic mode of the dye.
  • the strongest Raman scattering signals were obtained from nanoshells with nanoembosses on the inner surface with a shell of ⁇ 28.7 nm thick. In addition, it was confirmed that the Raman scattering of the reporter dye is reduced when having a thick shell of a certain thickness or more.
  • the Raman signal enhancement Enhancement factor is 10 7 level.
  • ⁇ ex from 633 nm SERS intensity
  • ⁇ ex 2 digits than the intensity at 514 nm
  • the high but 633 nm, since laser output is one digit lower than the 514 nm laser, ⁇ ex from 633 nm EF is at least 10 10 Level Can be.
  • the SERS intensity of the dye doped AuNS with nanoembosses was compared with the SERS intensity of the dye inside the core SiO 2 NP of AuNS without nanoembosses on the inner surface and on the flat outer surface, respectively (FIG. 8).
  • the SERS signal of AuNS with nanoembosses was similar to that of the other two structures.
  • SERS on simple AuNS showed a tendency to saturate at a reporter dye concentration of 0.5 mM.
  • the SERS intensity obtained from AuNS with nanoembosses was about 2 times higher than the signal from the reporter dye at 1 mM concentration on flat AuNS.
  • nanoembosses enable internal Raman signal collection as strong as the signal on the nanoshell outer surface. Similar absorption spectra of the nanoembossed core SiO 2 NP and the reporter dye doped core SiO 2 NP confirmed that there was no significant difference in the number of dyes in the two structures (FIG. 9). Given the number of reporter dye molecules, the inner nanoshell layer was as efficient as the AuNS core to provide strong SERS signals.
  • the nanoembossing technique may be an alternative to carrying a sufficient number of Raman reporter dyes, as well as an alternative to forming a strong field, compared to the other two techniques.
  • the inner shell layer of AuNS could provide a novel location for generating strong SERS signals, as much as on the surface or inside the core of the nanoshell.
  • the internal structure of AuNS with nanoembosses resembles a series of arranged crescents. Similar to the crescent moon, the machined AuNS has a structure that produces a strong field. As a result, the structure was able to achieve 10 10 SERS enhancement at 633 nm excitation wavelength. Similar SERS intensities at 785 nm and 633 nm excitation wavelengths (FIG. 10) indicate that AuNS with nanoembosses can be usefully used for detection and imaging of biological samples.
  • the inventors prepared to include reporter dyes at different locations of the nanoembossing structure and measured the SERS of the reporter dye (FIG. 13).
  • the measured total SERS of the all-in-one structure was higher than three simple sums.
  • the dye-doped silica cores used in the monolithic structures are larger than the dye-doped silica cores, so that a greater number of dye-doped embosses can be attached thereto (FIG. 14D), forming gold nanoshell structures.
  • FIG. 14b surface roughness is larger (Fig. 14b)

Abstract

The present invention relates to surface-enhanced raman scattering (SERS) nanoparticles, a method for preparing the same, and applications thereof. The present invention is characterized by having a nanowell on the inner surface of a metal shell so that a raman active material can be placed in the nanowell whereby it is possible for the structure of the nanowell in the metal shell to cause further SERS. Thus, the nanoembosses according to the present invention are an effective approach for generating strong SERS signals, which allows for a platform for manufacturing novel structures for generating strong electromagnetic fields and also for sensitive and reliable biomedical applications.

Description

표면증강라만산란(SERS) 나노입자, 이의 제조 방법 및 이의 응용Surface-enhanced Raman Scattering (SERS) nanoparticles, preparation method thereof and application thereof
본 발명은 표면증강라만산란(SERS) 나노입자, 이의 제조 방법 및 이의 응용에 관한 것이다.The present invention relates to surface enhanced Raman scattering (SERS) nanoparticles, methods for their preparation and applications thereof.
라만 산란은 입사되는 빛의 에너지가 변하는 비탄성 산란으로 빛을 특정 분자에 가하면 분자 고유의 진동전이에 의해 조사된 빛과는 파장이 약간 다른 빛이 발생하는 현상을 일컫는다. 라만 분광법은 적외선 분광법과는 달리 물 분자에 의한 간섭의 영향을 받지 않으므로, 단백질, 유전자 등의 생체분자(biomolecules)의 검출에 더욱 적합하다.Raman scattering is an inelastic scattering in which the energy of incident light changes, and when light is applied to a specific molecule, light is generated with a slightly different wavelength from that irradiated by the intrinsic vibrational transition. Unlike infrared spectroscopy, Raman spectroscopy is not affected by water molecules, and thus is more suitable for detection of biomolecules such as proteins and genes.
라만 분광법은 신호의 세기가 매우 약하고 재현성이 낮다. 이러한 문제를 극복할 수 있는 방법 중의 하나로 표면증강 라만 산란이 있다. 표면증강 라만 분광은 금속 나노구조의 주변에 분자가 존재할 경우, 그 분자의 라만 신호가 크게 증가하는 현상을 말한다. 표면증강 라만 메커니즘을 이해함에 있어, 전자기적증강 효과 (Electromagnetic enhancement effect)와 화학적 증강효과(Chemical enhancement effect)가 있다. 라만 방출이 가장 효과적으로 향상되기 위해서는 금속과 레이저 사이에서 금속 표면의 자유 전자들이 집단적으로 진동하는 현상이 존재해야 하는데, 이를 전자기적증강 효과의 기초가 되는 표면플라즈몬(Surface Plasmon)이라 한다. 표면 플라즈몬 공명은 금속 나노입자의 종류(일반적으로 Au, Ag, Cu, Pt 등이 사용됨), 크기 및 형태, 분산되어 있는 용매, 레이저의 종류 등에 따라 달라진다.Raman spectroscopy has very weak signal strength and low reproducibility. One way to overcome this problem is surface enhanced Raman scattering. Surface-enhanced Raman spectroscopy is a phenomenon in which the Raman signal of a molecule increases greatly when a molecule is present in the vicinity of the metal nanostructure. In understanding the surface enhancement Raman mechanism, there are electromagnetic enhancement effects and chemical enhancement effects. In order for Raman emission to be most effectively enhanced, there must be a collective vibration of free electrons on the metal surface between the metal and the laser, which is called surface plasmon, which is the basis of the electromagnetic enhancement effect. Surface plasmon resonance depends on the type of metal nanoparticles (usually Au, Ag, Cu, Pt, etc.), the size and shape, the solvent dispersed, the type of laser.
한편, 라만 산란의 현저한 증강은 단일-분자 검출을 가능하게 하며, 이에 따라 가장 민감한 광학적 신호 중 하나를 제공할 수 있다. 표면증강라만산란(Surface-enhanced Raman scattering; SERS)은 금속성 나노구조물들의 근처에 있는 국소화된 표면 플라즈몬들의 여기에 의해 유도되는 전자기장 증강에 주로 기인하므로, 강한 전자기장을 생성하는 금속성 나노구조를 설계 및 합성하려는 많은 노력이 수행되고 있다.On the other hand, the significant enhancement of Raman scattering allows for single-molecule detection, thus providing one of the most sensitive optical signals. Surface-enhanced Raman scattering (SERS) is primarily due to electromagnetic field enhancement induced by excitation of localized surface plasmons in the vicinity of metallic nanostructures, thus designing and synthesizing metallic nanostructures that produce strong electromagnetic fields. Many efforts have been made to do this.
검출 및 시각화를 위한 기능성을 부여하기 위하여 표면 개질이 가능하고 합성이 용이하며 우수한 생체 적합성을 지닌 금속성 나노입자들이 생물학적 검출용 또는 조영용 SERS 기재로 널리 사용되고 있다. 이러한 금속성 나노입자들이 서로 인접하거나 접촉한 경우 플라즈몬 커플링 효과가 입자들 간의 접점 부근에서 시너지적으로 증가하므로 나노입자들 간의 응집에 의해 SERS가 더 증강되기도 한다. 상기 나노입자들 간의 접점과 같이 현저한 전자기장의 증강을 나타내는 부분을 핫스팟(hot-spot)이라고 한다. 그러나, 클러스터에서 이들 핫스팟의 무작위적 생성 및 상대적으로 낮은 빈도수는 산란 향상의 불확실성을 야기한다. 다른 한편으로는 평면 기재 상이나 단일 나노입자에 동공, 예리한 모서리, 나노렌즈, 감소된 대칭성 및 나노 간격을 갖는 접합구조와 같은 전자기장 증강을 유도하는 구조를 형성시킴으로써 강한 전자기장 증강을 유도하여 신뢰할만한 SERS를 얻고자 하는 시도들이 있다.In order to provide functionality for detection and visualization, metallic nanoparticles capable of surface modification, easy synthesis, and excellent biocompatibility have been widely used as biological detection or contrast SERS substrates. When the metallic nanoparticles are adjacent to or in contact with each other, the plasmon coupling effect is synergistically increased in the vicinity of the contact point between the particles, so that the SERS is further enhanced by aggregation between the nanoparticles. The part showing significant enhancement of the electromagnetic field, such as a contact point between the nanoparticles, is called a hot-spot. However, in a cluster these Random generation and relatively low frequency of hot spots leads to uncertainty in scatter enhancement. On the other hand, by inducing strong electromagnetic field enhancement by forming structures that induce electromagnetic field enhancement such as pupils, sharp edges, nanolenses, reduced symmetry, and nanogap junction structures on planar substrates or on single nanoparticles, reliable SERS There are attempts to gain.
상기와 같이 설계된 평면 기재는 전자기장 증가를 유도할 수 있는 나노구조를 비교적 정확하고 재현성 있게 구현할 수 있으나, 생물학적 의학적 응용에 있어서 검출 및 영상 신호용 표지 물질로 사용하기 위해서는 나노입자의 형태가 평면 기재보다 활용도가 높다. 생물학적 응용에 필요한 표면 근처에서 고도로 증강되고 재현성 있는 라만산란을 발생하는 나노입자는 단순 구형 입자 보다 더 높은 장 증강을 나타내는 나노입자는 나노초승달(nanocrescent moons), 나노쌀알(nanorice), 나노쉘(nanoshells), 나노별(nanostars) 등을 포함한다. 바이오 마커, 검출 또는 의료영상용 표지물질로 사용하는데 있어서 단일 나노입자로부터의 라만 신호의 총 세기는 신호의 증강만큼 중요하다. 생물학적 분석 또는 검출을 위한 라만 산란의 총 세기는 전자기장뿐만 아니라 나노입자에 탑재된 라만리포터의 수에 의해 영향을 받는다.The planar substrate designed as described above can implement a nanostructure that can induce an increase in electromagnetic field with a relatively accurate and reproducible, but the use of the nanoparticle form than the planar substrate for use as a label for detection and image signal in biological medical applications Is high. Nanoparticles that produce highly augmented and reproducible Raman scattering near the surface needed for biological applications exhibit higher field enhancement than simple spherical particles. Nanoparticles include nanocrescent moons, nanorice and nanoshells. ), Nanostars and the like. In biomarkers, detection or labeling for medical imaging, the total intensity of the Raman signal from a single nanoparticle is as important as the enhancement of the signal. The total intensity of Raman scattering for biological analysis or detection is affected by the number of Raman reporters mounted on the nanoparticles as well as the electromagnetic field.
코어 내부에 상대적으로 많은 수의 리포터 염료를 탑재할 수 있는 공간을 가지고 있는 나노쉘 코어 구조는 단일 나노입자로부터 강한 라만 신호를 제공할 수 있는 우수한 후보군 중 하나이다. 따라서, 상기 나노쉘 코어 구조의 입자의 나노쉘 바깥 표면과 코어 내부에 라만리포터 염료를 탑재하여 총 SERS 세기를 증가시킬 수 있다. 기존의 나노쉘의 전자기장 증강 구조와 전체 부피에서 라만리포터 탑재 부피의 비율을 훼손하지 않는 수준에서 전자기장 증강 구조를 구현하고, 그 구조에 라만리포터 염료를 탑재할 수 있다면 현저한 SERS 세기 향상을 기대할 수 있다.The nanoshell core structure, which has a relatively large number of reporter dyes inside the core, is one of the excellent candidates for providing strong Raman signals from a single nanoparticle. Thus, the Raman reporter dye may be mounted on the outer surface of the nanoshell and the core of the nanoshell core structure to increase the total SERS intensity. Significant improvement in SERS strength can be expected if the field-enhancing structure can be implemented at a level that does not compromise the ratio of the Raman reporter loading volume to the structure of the conventional nanoshell and the total volume. .
본 발명자들은 나노쉘 코어 구조의 입자를 기초로 SERS 세기를 현저히 증가시킬 수 있는 구조 및/또는 소재를 발굴하고자 예의 연구노력한 결과, 2 이상의 상이한 크기를 갖는 다공성 나노입자를 이용하여 표면상에 나노 볼록부를 가진 코어를 형성한 후 금속 쉘을 도입하는 경우 상기 금속 쉘은 나노 볼록부에 대응되는 나노 오목부를 내부표면쪽에 가지게 되며 이로부터 핫 스팟을 형성할 수 있으며, 나노입자의 기공에는 라만활성물질을 담지할 수 있어 우수한 SERS 효과를 나타낼 수 있음을 확인하고 본 발명을 완성하였다.The present inventors have made diligent efforts to discover structures and / or materials that can significantly increase the SERS strength based on the particles of the nanoshell core structure, and as a result, nanoconvex on the surface using porous nanoparticles having two or more different sizes. In the case of introducing the metal shell after forming the core having the portion, the metal shell has a nano concave portion corresponding to the nano convex portion on the inner surface thereof, thereby forming a hot spot, and the Raman active material is formed in the pores of the nanoparticles. It was confirmed that it can support the excellent SERS effect was completed the present invention.
본 발명의 목적은, 금속 나노쉘에서 강한 SERS를 발휘하는 새로운 위치를 발굴하고 나노쉘에 가능한 많은 라만활성물질을 탑재가능한 SERS 입자를 설계하는 것이다.It is an object of the present invention to discover new locations exerting strong SERS in metal nanoshells and to design SERS particles capable of loading as many Raman active materials as possible in the nanoshells.
본 발명에 따른 나노엠보스들은, 강한 전자기장을 생성하는 신규 구조들을 제조하기 위한 플랫폼으로 뿐만 아니라, 민감하고 신뢰할 만한 생물의학적 응용들을 허용하는, 강한 SERS 신호를 생성하기 위한 효과적인 접근법이다.Nanoembosses according to the present invention are an effective approach for generating strong SERS signals, allowing for sensitive and reliable biomedical applications, as well as a platform for fabricating novel structures that produce strong electromagnetic fields.
도 1은 일구체예에 따라 내부표면쪽으로 나노엠보스를 가진 금 나노쉘을 제조하는 방법을 개략적으로 나타낸 도이다. (a)는 실시예 1에 사용된 편평한 실리카 코어의 투과전자현미경(transmission electron microscope; TEM) 이미지를, (b)는 금 종자가 부착된 나노엠보싱된 실리카 코어의 TEM 이미지를, (c)는 (b)에서 점선으로 표시된 상자의 확대된 이미지를, (d)는 편평한 실리카 코어 상에 제조된 금 나노쉘의 TEM 이미지를, (e)는 나노엠보싱된 실리카 코어-금 나노쉘의 TEM 이미지를 나타낸다. 스케일바는 100 nm이다. 1 is a schematic diagram illustrating a method of manufacturing a gold nanoshell having nanoembosses toward an inner surface according to one embodiment. (a) shows a transmission electron microscope (TEM) image of the flat silica core used in Example 1, (b) shows a TEM image of a nanoembossed silica core with gold seeds attached, and (c) An enlarged image of the box indicated by dotted lines in (b), (d) a TEM image of a gold nanoshell fabricated on a flat silica core, and (e) a TEM image of a nanoembossed silica core-gold nanoshell. Indicates. Scale bar is 100 nm.
도 2는 (a) 편평한 실리카 코어-금 나노쉘 및 (b) 나노엠보싱된 실리카 코어-금 나노쉘의 UV-Vis 흡수(extinction) 스펙트럼을 나타낸 도이다. 실선은 실험적으로 측정된 데이터를 나타내며, 점선은 FDTD를 사용하여 물에서 계산된 스펙트럼을 나타낸다.FIG. 2 shows UV-Vis extinction spectra of (a) flat silica core-gold nanoshells and (b) nanoembossed silica core-gold nanoshells. Solid lines represent experimentally measured data and dashed lines represent spectra calculated in water using FDTD.
도 3은 실리카 코어 상에 부착된 나노엠보스들의 수에 따른 물에서 나노엠보싱된 금 나노쉘의 흡수 스펙트럼을 나타낸 도이다. 스펙트럼은 FDTD를 이용하여 계산하였다.3 is a diagram showing an absorption spectrum of gold nanoshells nanoembossed in water according to the number of nanoembosses attached on the silica core. Spectra were calculated using FDTD.
도 4는 633 nm 여기 파장에서 나노엠보싱된 실리카 코어-금 나노쉘의 3-D FDTD 계산 결과를 나타낸 도이다. 나노엠보싱된 실리카 코어-금 나노쉘의 국소화된 전자기장 분포를 나타낸다. 실리카 코어의 반경은 61.8 nm이다. 쉘의 두께는 28.7 nm이다. 나노엠보스들의 수(d=15.7 nm)는 100이다. 스케일바는 100 nm이다. 전자기장 진폭은 입사 장 진폭(incident field amplitude)에 대해 정상화한다.FIG. 4 shows the 3-D FDTD calculation results of nanocore-embossed silica core-gold nanoshells at 633 nm excitation wavelength. Localized electromagnetic field distributions of nanoembossed silica core-gold nanoshells are shown. The radius of the silica core is 61.8 nm. The thickness of the shell is 28.7 nm. The number of nanoembosses (d = 15.7 nm) is 100. Scale bar is 100 nm. Electromagnetic field amplitudes are normalized to incident field amplitudes.
도 5는 633 nm 여기 파장에서 나노엠보싱된 실리카 코어-금 나노쉘을 통해 형성된 계산된 전자기장의 프로파일을 나타낸 도이다. 실리카 코어의 반경은 61.8 nm이다. 쉘의 두께는 28.7 nm이다. 나노엠보스들(d=15.7 nm)의 수는 100이다. 장 진폭은 입사 장 진폭에 대해 정상화한다.FIG. 5 shows a profile of a calculated electromagnetic field formed through nanoembossed silica core-gold nanoshells at 633 nm excitation wavelength. The radius of the silica core is 61.8 nm. The thickness of the shell is 28.7 nm. The number of nanoembosses (d = 15.7 nm) is 100. The field amplitude is normalized to the incident field amplitude.
도 6은 나노엠보싱된 실리카 코어-금 나노쉘의 쉘 두께의 함수로서 633 nm 여기 파장에서 SERS 세기를 나타낸 도이다. (a)는 단일 나노엠보싱된 금 나노쉘로부터 획득한 SERS 스펙트럼을, (b)는 단일 나노엠보싱된 금 나노쉘의 1487 cm-1에서 SERS 세기를 나타낸다.FIG. 6 shows SERS intensity at 633 nm excitation wavelength as a function of shell thickness of nanoembossed silica core-gold nanoshells. FIG. (a) shows the SERS spectrum obtained from a single nanoembossed gold nanoshell and (b) shows the SERS intensity at 1487 cm −1 of the single nanoembossed gold nanoshell.
도 7은 513 nm 여기 파장에서 획득한 SERS 및 형광을 비교하여 나타낸 도이다. (a)는 단일 나노엠보싱된 금 나노쉘로부터의 SERS 스펙트럼을, (b)는 약 8개 나노엠보싱된 실리카 코어들로부터 획득한 형광 스펙트럼을 나타낸다.7 shows a comparison of SERS and fluorescence obtained at a 513 nm excitation wavelength. (a) shows SERS spectra from a single nanoembossed gold nanoshell and (b) shows fluorescence spectra obtained from about eight nanoembossed silica cores.
도 8은 단일 편평한 실리카 코어-금 쉘 상에서 [Ru(bpy)3]2+ 농도의 함수로서 633 nm 여기 파장에서 SERS 신호를 나타낸 도이다. (a)는 금 나노쉘 상에 다양한 농도(0.05 mM, 0.1 mM, 0.5 mM, and 1 mM )로 염료를 분산시킨 후 획득한 SERS 스펙트럼을, (b)는 염료 농도의 함수로서 1487 cm-1에서 SERS 세기를 나타낸다.FIG. 8 shows the SERS signal at 633 nm excitation wavelength as a function of [Ru (bpy) 3 ] 2+ concentration on a single flat silica core-gold shell. (a) 1487 cm -1 is a SERS spectra obtained after dispersing the dye in various concentrations (0.05 mM, 0.1 mM, 0.5 mM, and 1 mM) on the gold nano-shell, (b) as a function of dye concentration Indicate the SERS intensity.
도 9는 [Ru(bpy)3]2+가 봉입된 나노엠보싱 실리카 나노입자의 수용액에서의 광발광을 나타낸 도이다.9 is a diagram showing the optical emission of the aqueous solution of [Ru (bpy) 3] 2+ has a nano-embossing silica nanoparticles encapsulated.
도 10은 785 nm 여기 파장에서 단일 나노엠보싱된 금 나노쉘의 SERS 스펙트럼을 나타낸 도이다.10 shows the SERS spectrum of a single nanoembossed gold nanoshell at 785 nm excitation wavelength.
도 11은 [Ru(bpy)3]2+가 봉입된 실리카 코어-금 쉘의 SERS 신호를 나타낸 도이다. (a)는 염료가 봉입된 실리카 코어-금 쉘의 TEM 이미지를, (b)는 염료가 봉입된 실리카 코어-금 쉘의 UV/Vis 흡수을, (c)는 염료가 봉입된 실리카 코어-금 쉘의 633 nm 여기 파장에서 SERS 스펙트럼을 나타낸다.FIG. 11 is a diagram showing a SERS signal of a silica core-gold shell containing [Ru (bpy) 3 ] 2+ . (a) shows the TEM image of the dye-sealed silica core-gold shell, (b) the UV / Vis absorption of the dye-sealed silica core-gold shell, and (c) the dye-sealed silica core-gold shell. Shows a SERS spectrum at 633 nm excitation wavelength.
도 12는 용액 중에서 [Ru(bpy)3]2+ 및 실리카 나노입자의 흡수 스펙트럼을 비교하여 나타낸 도이다. (a)는 물에서의 [Ru(bpy)3]2+, (b)는 [Ru(bpy)3]2+ 봉입된 나노엠보싱 실리카 나노입자, (c)는 실리카 코어, (d)는 [Ru(bpy)3]2+ 나노엠보싱된 실리카 코어, 및 (e)는 [Ru(bpy)3]2+ 봉입된 실리카 코어에 대한 결과를 나타낸다.12 is a diagram illustrating a comparison of absorption spectra of [Ru (bpy) 3 ] 2+ and silica nanoparticles in a solution. (a) is [Ru (bpy) 3 ] 2+ in water, (b) is [Ru (bpy) 3 ] 2+ encapsulated nanoembossed silica nanoparticles, (c) is silica core, and (d) is [ Ru (bpy) 3 ] 2+ nanoembossed silica cores, and (e) show results for [Ru (bpy) 3 ] 2+ embedded silica cores.
도 13은 리포터 염료 봉입 위치에 따른 SERS 신호를 비교하여 나타낸 도이다. (a) 및 (b)는 각각 SERS 스펙트럼 및 633 nm 여기시 리포터 염료의 봉입된 위치에 따른 단일 AuNS의 1487 cm-1에서 세기를 나타낸다.13 is a view showing a comparison of the SERS signal according to the reporter dye encapsulation position. (a) and (b) represents the intensity at each SERS spectrum and 633 nm 1487 cm -1 for single AuNS according to the enclosed position of the reporter dye upon here.
도 14는 나노엠보싱을 포함 및 불포함하는 염료 도핑된 실리카 코어(직경 132.4±10.5 nm) 상에 제조된 AuNS의 SEM(각각 (a) 및 (b)) 및 실리카 코어 및 염료 도핑된 실리카 코어 상의 나노엠보싱의 TEM 이미지를 나타낸 도이다. 스케일바는 100 nm임.FIG. 14 shows SEM of AuNS prepared on dye doped silica cores (132.4 ± 10.5 nm in diameter) with and without nanoembossing ((a) and (b), respectively) and nanoparticles on silica cores and dye doped silica cores. A diagram showing a TEM image of embossing. Scale bar is 100 nm.
도 15는 쉘이 나노엠보스보다 얇게 형성되었을 때 생성되는 구조를 나타낸 도이다. 우측은 나노엠보스가 조밀하게 위치하여 이웃한 나노엠보스끼리 서로 접촉된 경우, 좌측은 나노엠보스가 덜 조밀하게 위치하여 이웃한 나노엠보스들이 소정의 간격으로 이격된 경우에 형성되는 구조물을 나타낸다.15 is a view showing a structure generated when the shell is formed thinner than the nano-emboss. The right side shows a structure formed when the nanoembosses are densely positioned so that neighboring nanoembosses are in contact with each other, and the left side is formed when the nanoembosses are less densely positioned and the adjacent nanoembosses are spaced at predetermined intervals.
본 발명의 제1양태는 표면상에 나노 볼록부를 가진 코어; 및 상기 나노 볼록부에 대응되는 나노 오목부를 내부표면쪽에 가진 금속 쉘을 포함하되, 코어의 나노 볼록부에도 라만활성물질이 담지되어 있는 것인, 표면증강라만산란(SERS) 나노입자를 제공한다.A first aspect of the invention provides a core having nanoconvex portions on a surface thereof; And a metal shell having a nano-concave portion corresponding to the nano-convex portion on an inner surface thereof, wherein the Raman active material is also supported on the nano-convex portion of the core, thereby providing surface enhanced Raman scattering (SERS) nanoparticles.
본 발명의 제2양태는 제1라만활성물질을 담지하고 (+) 전하를 띠는 코어부 및 상기 코어부의 표면상에 형성되어 있으면서 제2라만활성물질을 담지하고 (-) 전하를 띠는 나노 볼록부를 구비하는 제1코어; 또는 제1라만활성물질을 담지하고 (-) 전하를 띠는 코어부 및 상기 코어부의 표면상에 형성되어 있으면서 제2라만활성물질을 담지하고 (+) 전하를 띠는 나노 볼록부를 구비하는 제2코어; 및 상기 나노 볼록부에 대응되는 나노 오목부를 내부 표면쪽에 가진 금속 쉘을 포함하는 표면증강라만산란(SERS) 나노입자를 제공한다.A second aspect of the present invention provides a core portion carrying a first Raman active material and having a (+) charge, and a nanoparticle carrying a second Raman active material and having a (-) charge formed on the surface of the core portion. A first core having a convex portion; Or a second carrier having a first Raman active material and having a (-) charged core portion and a nano convex portion having a second Raman active material and having a (+) charge formed thereon on the surface of the core portion. core; And it provides a surface-enhanced Raman scattering (SERS) nanoparticles comprising a metal shell having a nano-concave corresponding to the nano-convex portion on the inner surface side.
본 발명의 제3양태는 라만활성물질이 로딩된 실리카 코어를 준비하는 제1단계; 상기 실리카 코어의 표면이 (+) 또는 (-) 전하를 띠도록 개질하는 제2단계; 제2단계에서 형성된 실리카 코어와 반대 전하를 띠면서, 라만활성물질이 도핑된 실리카 나노입자들을 정전기적 상호작용을 통해 제2단계에서 형성된 실리카 코어 표면상에 조립시켜, 나노 볼록부를 구비하는 실리카 코어를 제조하는 제3단계; 제3단계에서 형성된 실리카 코어에 금속 나노종자들을 부착시키는 제4단계; 성장용액에서 나노종자를 성장시켜 나노 볼록부를 가진 실리카 코어 주위에 상기 나노 볼록부에 대응되는 나노 오목부를 내부 표면쪽에 가진 금속쉘을 형성시키는 제5단계를 포함하여, 제1양태 또는 제2양태에 따른 표 표면증강라만산란(SERS) 나노입자를 제조하는 방법을 제공한다.The third aspect of the present invention comprises the first step of preparing a silica core loaded with a Raman active material; A second step of modifying the surface of the silica core to carry a (+) or (−) charge; Silica core having nano convexities, having the nano-convex portion assembled by the assembly of the silica nanoparticles doped with the Raman active material on the surface of the silica core formed in the second step through electrostatic interaction, having an opposite charge to the silica core formed in the second step. Preparing a third step; Attaching metal nano seeds to the silica core formed in the third step; In a first or second aspect, the method comprises growing a nano seed in a growth solution to form a metal shell having a nano concave portion corresponding to the nano convex portion on an inner surface of the silica core having the nano convex portion. It provides a method for producing a surface surface enhanced Raman scattering (SERS) nanoparticles according.
본 발명의 제4양태는 제1양태 또는 제2양태에 따른 표면증강라만산란(SERS) 나노입자를 구비한 라만 프로브를 제공한다.A fourth aspect of the invention provides a Raman probe with surface enhanced Raman scattering (SERS) nanoparticles according to the first or second aspect.
본 발명의 제5양태는 기재 상에 제1양태 또는 제2양태에 따른 표면증강라만산란(SERS) 나노입자들이 코팅된 표면증강라만산란(SERS) 기재를 제공한다.A fifth aspect of the present invention provides a surface enhanced Raman scattering (SERS) substrate coated with surface enhanced Raman scattering (SERS) nanoparticles according to the first or second aspect on the substrate.
본 발명의 제6양태는 a) 제1양태 또는 제2양태에 따른 표면증강라만산란(SERS) 나노입자의 표면을 검출하고자 하는 분석물과 결합할 수 있는 바이오분자(biomolecule) 또는 화합물로 기능화하는 단계; b) 기능화된 SERS 나노입자를 하나 이상의 분석물을 포함하는 시료에 노출시키는 단계; 및 c) 라만 분광법을 이용하여 SERS 나노입자가 결합된 분석물을 확인하는 단계를 포함하는, 분석물을 검출 또는 영상화하는 방법을 제공한다.A sixth aspect of the present invention provides a process for a) functionalizing a biomolecule or compound capable of binding the surface of the surface enhanced Raman scattering (SERS) nanoparticles according to the first or second aspect with an analyte to be detected. step; b) exposing the functionalized SERS nanoparticles to a sample comprising one or more analytes; And c) identifying the analyte to which the SERS nanoparticles are bound using Raman spectroscopy.
본 발명의 제7양태는 i) 제1양태 또는 제2양태에 따른 표면증강라만산란(SERS) 나노입자의 표면을 검출하고자 하는 핵산에 상보적인 바이오분자 또는 화합물로 기능화하는 단계; ii) 상기 기능화된 SERS 나노입자들을 검출하고자 하는 핵산을 함유하는 것으로 예상되는 시료와 반응시켜 혼성화를 수행하는 단계; 및 iii) 라만 분광법을 수행하여 SERS 나노입자가 결합된 상기 검출하고자 하는 핵산의 존재, 양 또는 둘 모두를 확인하는 단계를 포함하는, 핵산 검출 방법을 제공한다.The seventh aspect of the invention comprises the steps of: i) functionalizing a surface of the surface enhanced Raman scattering (SERS) nanoparticles according to the first or second aspect with a biomolecule or compound complementary to the nucleic acid to be detected; ii) performing hybridization by reacting the functionalized SERS nanoparticles with a sample that is expected to contain a nucleic acid to be detected; And iii) performing Raman spectroscopy to confirm the presence, amount or both of the nucleic acid to be detected to which the SERS nanoparticles are bound.
본 발명의 제8양태는 표면상에 나노 볼록부를 가진 코어; 및 상기 나노 볼록부에 대응되는 나노 오목부를 내부표면쪽에 가진 금속 쉘을 포함하는, 표면증강라만산란(SERS) 기재를 제공한다.An eighth aspect of the invention provides a core having nano-convex portions on its surface; And it provides a surface enhanced Raman scattering (SERS) substrate comprising a metal shell having a nano-concave corresponding to the nano-convex portion on the inner surface side.
이하, 본 발명을 자세히 설명한다.Hereinafter, the present invention will be described in detail.
코어-쉘 구조에서, 쉘의 내부표면은 코어와 인접한 쉘의 제1표면이고, 쉘의 외부표면은 제1표면과 반대 표면에 있는 제2표면을 지칭한다.In a core-shell structure, the inner surface of the shell is the first surface of the shell adjacent to the core, and the outer surface of the shell refers to the second surface opposite the first surface.
본 명세서에서, 엠보스(emboss)는 코어에서는 표면에 나노 볼록부를 제공할 수 있고, 금속 쉘의 내부표면쪽에는 상기 나노 볼록부에 대응되는 나노 오목부를 제공할 수 있다. 따라서, 본 명세서에서는 엠보스, 나노 볼록부 및 나노 오목부를 혼용한다.In the present specification, the emboss may provide nano convex portions on the surface of the core, and may provide nano concave portions corresponding to the nano convex portions on the inner surface side of the metal shell. Therefore, in this specification, embossing, a nano convex part, and a nano concave part are mixed.
본 발명자들은 금속 나노쉘 층에 형성된 강한 장이 라만 산란의 실질적인 증강을 유도하는, 내부표면쪽에 나노엠보스를 가진 나노쉘을 제작하였으며, 이러한 나노입자들의 FDTD 계산을 통해 내부표면에 나노엠보스를 가진 나노쉘에서 강한 유도 전자기장이 존재함을 밝혔다. 한편, 실리카와 같은 코어 주위로 금속 나노층을 형성함으로써 내부 형상을 조작할 수 있기 때문에, 나노엠보스 내부 및 나노입자의 외부 표면 위와 같은 여분의 공간에 리포터 염료와 같은 라만활성물질을 포함시킬 수 있다. 또한, 코어의 내부에도 라만활성물질을 더 포함할 수 있다.The inventors have fabricated nanoshells with nanoembosses on the inner surface, where the strong field formed in the metal nanoshell layer induces substantial enhancement of Raman scattering, and through the FDTD calculation of these nanoparticles, In the nanoshells, there is a strong induced electromagnetic field. On the other hand, since the internal shape can be manipulated by forming a metal nanolayer around a core such as silica, a Raman active material such as a reporter dye can be included in extra space such as inside the nanoemboss and on the outer surface of the nanoparticle. have. In addition, the core may further include a Raman active material.
예컨대, 본 발명은 나노엠보스를 가진(nanoembossed) 실리카 코어 - 금속 나노쉘로서, 강한 전자기장들을 형성하는 신규 내부 위치를 가진 코어-쉘 구조를 제공할 수 있다. For example, the present invention can provide a nano-embossed silica core-metal nanoshell, with a core-shell structure with novel internal positions that form strong electromagnetic fields.
일실시예에서 실리카 코어 주위에 더 작은 실리카 나노입자를 정전기적으로 조립한 후 습식 과정으로 코어 상에 금 나노종자들을 성장시켜, 내부표면쪽에 나노엠보스를 가진 금 나노쉘(internally nanoembossed gold nanoshell)을 제조하였다. 나노엠보스들과 실리카 코어 사이의 접촉에 의해 형성된 예리한 모서리에서 강한 전자기장의 생성(633 nm에서 |E/Ein|max. = 55)을 FDTD 계산으로 확인하였다. 전자기장의 형성은 나노엠보싱된 실리카 나노입자 내에 봉입되어 있는 라만활성물질인 [Ru(bpy)3]2+에 대해 측정된 SERS 신호에 의해 뒷받침되었다. 본 발명에서는 대응되는 형광신호들 만큼 강한 SERS 신호들을 획득하였다. 라만증강인수는 633 nm 여기 시 최대 1010까지 추정될 뿐만 아니라, 785 nm 레이저 여기 시 필적할만한 증강인자를 획득하였다. 나노엠보스를 가진 나노쉘 층으로부터의 총 세기는 외부 표면 또는 나노입자의 코어에 비해 충분히 높아서, 나노엠보스된 금속 나노쉘은 민감하고 신뢰할만한 표지 입자로서 생물의학적 응용이 가능하다.In one embodiment, smaller silica nanoparticles are electrostatically assembled around the silica core, followed by a wet process to grow gold nanoseeds on the core, thereby internally nanoembossed gold nanoshell with nanoembosses on the inner surface. Was prepared. The generation of strong electromagnetic fields (| E / E in | max. = 55 at 633 nm) at the sharp edges formed by the contact between the nanoembosses and the silica core was confirmed by FDTD calculations. The formation of the electromagnetic field was supported by the SERS signal measured for [Ru (bpy) 3 ] 2+ , a Raman activator encapsulated in nanoembossed silica nanoparticles. In the present invention, SERS signals that are as strong as the corresponding fluorescent signals are obtained. Raman enhancement factors were estimated up to 10 10 at 633 nm excitation, as well as comparable enhancers at 785 nm laser excitation. The total intensity from the nanoshell layer with nanoembosses is sufficiently high compared to the outer surface or the core of the nanoparticles, such that the nanoembossed metal nanoshells are biomedical applications as sensitive and reliable labeling particles.
구형 금 나노입자는 응집되었을 때 830 nm 여기 파장에서 라만 신호를 109 까지 향상시킬 수 있음에도 불구하고, SERS 증강을 일으키는 핫스팟의 불규칙성과 외부 효과에 대한 취약한 불안정성으로 인해 재현성 있는 SERS 표지재로서는 적합하지 않은 것으로 간주된다. 금 나노입자 응집체와는 달리, 나노엠보스를 가진 금속 쉘의 SRES 신호는 나노쉘 층으로 보호된, 라만활성물질이 포함된 나노엠보스들로부터 생성되므로, 강한 전자기장을 생성하는 나노특성은 외부 환경으로부터 보호되어 보다 안정적이게 된다.Spherical gold nanoparticles is not suitable as the 830 nm, even though possible to improve the Raman signal to 10: 9 at the excitation wavelength, and because of the poor volatility of the irregularities and outside the effect of hot spots that cause the SERS enhancement reproducible SERS cover material which when agglomerated Is considered not. Unlike gold nanoparticle agglomerates, the SRES signal of a metal shell with nanoembosses is generated from nanoembosses containing Raman activators, protected by a nanoshell layer, thus creating a strong electromagnetic field that creates It is protected against and more stable.
금은 고도의 비활성 물질이다. 따라서, SiO2 나노엠보스들에 봉입된 라만 리포터 염료는 물리적 및 화학적으로 안정할 수 있다. 그 결과, 나노엠보스를 가진 금 나노쉘(nanoembossed gold nanoshell; AuNS)로부터 안정하게 SERS 신호를 생성할 수 있었다. 본 발명은 나노쉘층 내부에서 강한 전자기장이 형성되며 이로 인한 강한 SERS 증강을 얻을 수 있음을 처음으로 제시한다. 그 결과로서 나노쉘 외부 표면, 나노쉘층 내부, 및 나노쉘 내부 코어에 라만활성물질을 담지시킨 구조물은 총 SERS 신호가 매우 높아 미량의 표적 생물분자를 증폭시키거나 하지 않고도 현저히 향상된 분석 민감도로 검출할 수 있으며, 낮은 신호를 측정하기 위한 고사양의 장비의 도움 없이 단순화된 라만 분광기를 이용하여 검출할 수 있는 가능성을 높일 수 있다. 나아가, 구형 SiO2 코어를 이용하여 형성된 것보다 훨씬 더 높은 전자기장을 형성하는, 나노엠보스를 가진 다양한 나노구조물들을, 다양한 구조의 자기조립 주형들로 제조할 수 있다.Gold is a highly inert substance. Thus, the Raman reporter dye encapsulated in SiO 2 nanoembosses can be physically and chemically stable. As a result, it was possible to stably generate the SERS signal from the nanoembossed gold nanoshell (AuNS). The present invention presents for the first time that a strong electromagnetic field is formed inside the nanoshell layer, thereby obtaining a strong SERS enhancement. As a result, structures bearing the Raman activator on the outer surface of the nanoshell, inside the nanoshell layer, and on the inner core of the nanoshell have a very high total SERS signal that can be detected with significantly improved analytical sensitivity without amplifying trace amounts of target biomolecules. It can increase the possibility of detection using a simplified Raman spectrometer without the aid of high-end equipment to measure low signals. Furthermore, various nanostructures with nanoembosses, which form much higher electromagnetic fields than those formed using spherical SiO 2 cores, can be made into self-assembled molds of various structures.
요컨대, 본 발명은 금속 나노쉘에서 나노오목부를 가진 내부표면이, 나노쉘의 표면 또는 코어 내부에서 만큼, 강한 SERS 신호를 생성하기 위한 신규한 위치를 제공할 수 있음을 처음으로 밝혔다. 즉, 금속 쉘의 내부표면의 미세구조는 국소 영역에 강한 전자기장이 발생하는 핫스팟을 만들고, 이로부터 높은 SERS 증강을 가능하게 한다.In sum, the present invention has for the first time found that an inner surface with nanoconcave in a metal nanoshell can provide a novel location for generating a strong SERS signal as much as the surface or inside the core of the nanoshell. That is, the microstructure of the inner surface of the metal shell creates hot spots in which strong electromagnetic fields are generated in the local region, thereby enabling high SERS buildup.
따라서, 본 발명은 금속 쉘의 내부표면에 나노오목부를 가진 형태로, 상기 나노오목부에 라만활성물질을 위치시킬 수 있어서 금속 쉘 중 나노오목부의 구조에 의해 추가의 SERS를 발휘시킬 수 있는 것이 신규 특징이다. 이는 SERS 증강을 유발할 수 있는 금속 나노쉘에서 나노오목부를 가진 내부표면에 의해 강한 유도 전자기장이 존재함을 밝힌 점에 기초한 것이다.Accordingly, the present invention is in the form of having a nano concave portion on the inner surface of the metal shell, it is possible to place the Raman active material in the nano concave portion, it is possible to exhibit additional SERS by the structure of the nano concave portion of the metal shell It is characteristic. This is based on the discovery that there is a strong induced electromagnetic field due to the inner surface with nano recesses in the metal nanoshells that can cause SERS enhancement.
<본 발명에 따른 <In accordance with the present invention 표면증강라만산란Surface Enhancement Raman Scattering (( SERSSERS ) 나노입자>) Nanoparticles>
본 발명에 따른 표면증강라만산란(SERS) 나노입자는 라만활성물질을 담지하면서 표면상에 나노 볼록부를 가진 코어; 및 상기 나노 볼록부에 대응되는 나노 오목부를 내부표면쪽에 가진 금속 쉘을 포함하되, 코어의 나노 볼록부에도 라만활성물질이 담지되어 있는 것일 수 있다.Surface-enhanced Raman scattering (SERS) nanoparticles according to the present invention is a core having a nano-convex portion on the surface while carrying a Raman active material; And a metal shell having a nano concave portion corresponding to the nano convex portion on an inner surface side thereof, and the Raman active material may be supported on the nano convex portion of the core.
또한, 본 발명에 따른 표면증강라만산란(SERS) 나노입자는 In addition, the surface-enhanced Raman scattering (SERS) nanoparticles according to the present invention
제1라만활성물질을 담지하고 (+) 전하를 띠는 코어부 및 상기 코어부의 표면상에 형성되어 있으면서 제2라만활성물질을 담지하고 (-) 전하를 띠는 나노 볼록부를 구비하는 제1코어; 또는 A first core supporting a first Raman active material and having a (+) charge core portion and a nano-convex portion formed on the surface of the core portion and carrying a second Raman active material and having a (−) charge ; or
제1라만활성물질을 담지하고 (-) 전하를 띠는 코어부 및 상기 코어부의 표면상에 형성되어 있으면서 제2라만활성물질을 담지하고 (+) 전하를 띠는 나노 볼록부를 구비하는 제2코어; 및A second core supporting a first Raman active material and having a (-) charge core portion and a nano-convex portion supporting a second Raman active material and having a (+) charge on the surface of the core portion; ; And
상기 나노 볼록부에 대응되는 나노 오목부를 내부 표면쪽에 가진 금속 쉘을 포함할 수 있다.It may include a metal shell having a nano concave portion corresponding to the nano-convex portion on the inner surface side.
본 발명에 따른 SERS 나노입자는 나노 볼록부를 가진 코어 내부에 라만활성물질이 담지되어 있을뿐만아니라, 선택적으로 금속 쉘 외부표면 상에도 라만활성물질이 담지될 수 있다. The SERS nanoparticles according to the present invention may not only support the Raman active material inside the core having the nano convex portion, but may optionally support the Raman active material on the outer surface of the metal shell.
라만활성물질은 본 발명의 금속 쉘이 하나 이상의 분석물에 부착하였을 때 라만 검출 장치에 의한 분석물의 검출 및 측정을 용이하게 하는 물질을 말한다. 라만 활성물질은 뚜렷한 라만 스펙트럼을 나타내는 것이 바람직하다. 라만 활성물질은 특정 라만 스펙트럼을 보여주기 때문에, 이후 생체분자를 보다 효과적으로 분석할 수 있다.Raman activator refers to a substance that facilitates the detection and measurement of an analyte by a Raman detection device when the metal shell of the present invention adheres to one or more analytes. Raman actives preferably exhibit a distinct Raman spectrum. Raman activators show specific Raman spectra, allowing for more efficient analysis of biomolecules.
라만 분광법에 사용될 수 있는 라만활성물질은 유기 또는 무기 분자, 원자, 복합체 또는 합성 분자, 염료, 천연발생 염료(피코에리스린 등), C60과 같은 유기 나노구조체, 벅키볼, 탄소 나노튜브, 양자점, 유기 형광 분자 등을 포함한다. 구체적으로, 라만 활성물질의 예로서, FAM, Dabcyl, TRITC(테트라메틸 로다민-5-아이소티오시아네이트), 로다민 6G(rhodamine 6G), MGITC(말라키트 그린 아이소티오시아네이트), XRITC(X-로다민-5-아이소티오시아네이트), DTDC(3,3-디에틸티아디카보시아닌 아이오다이드), TRIT(테트라메틸 로다민 아이소티올), NBD(7-니트로벤즈-2-1,3-다이아졸), 프탈산, 테레프탈산, 아이소프탈산, 파라-아미노벤조산, 에리트로신, 비오틴, 다이곡시게닌(digoxigenin), 5-카복시-4',5'-다이클로로-2',7'-다이메톡시, 플루오레세인, 5-카복시-2',4',5',7'-테트라클로로플루오레세인, 5-카복시플루오레세인, 5-카복시로다민, 6-카복시로다민, 6-카복시테트라메틸 아미노 프탈로시아닌, 아조메틴, 시아닌(Cy3, Cy3.5, Cy5), 크산틴, 석신일플루오레세인, 아미노아크리딘, 양자점, 탄소동소체, 시아나이드, 티올, 클로린, 브롬, 메틸, 인 또는 황 등이 있으나 이에 제한되지 않는다. 본 실시예에서는 라만 활성물질로 [Ru(bpy)3]2+ 을 사용하였다.Raman active materials that can be used in Raman spectroscopy include organic or inorganic molecules, atoms, complexes or synthetic molecules, dyes, naturally occurring dyes (such as picoeryrin), organic nanostructures such as C60, buckyballs, carbon nanotubes, quantum dots, Organic fluorescent molecules and the like. Specifically, examples of the Raman active substance include FAM, Dabcyl, TRITC (tetramethyl rhodamine-5-isothiocyanate), rhodamine 6G, MGITC (malakit green isothiocyanate), XRITC ( X-Rhodamine-5-isothiocyanate), DTDC (3,3-diethylthiadicarbocyanine iodide), TRIT (tetramethyl rhodamine isothiol), NBD (7-nitrobenz-2-1 , 3-diazole), phthalic acid, terephthalic acid, isophthalic acid, para-aminobenzoic acid, erythrosine, biotin, digoxigenin, 5-carboxy-4 ', 5'-dichloro-2', 7 ' -Dimethoxy, fluorescein, 5-carboxy-2 ', 4', 5 ', 7'-tetrachlorofluorescein, 5-carboxyfluorescein, 5-carboxyrodamine, 6-carboxyrodamine, 6-carboxytetramethyl amino phthalocyanine, azomethine, cyanine (Cy3, Cy3.5, Cy5), xanthine, succinylfluorescein, aminoacrydine, quantum dots, carbon allotropes, cyanide, thiols, chlorine But this, bromine, methyl, phosphorus and sulfur, etc. are not limited. In this example, [Ru (bpy) 3 ] 2+ was used as the Raman active material.
본 발명에서 라만활성물질을 담지하면서 표면상에 나노 볼록부를 가진 코어는 이의 체적에 대응되는 구의 평균 직경이 20 nm 내지 1000 nm인 것이 바람직하고, 50 nm 내지 500 nm인 것이 보다 바람직하다. 코어의 직경이 20 nm 미만이면, 포함할 수 있는 라만활성물질 용량이 작을 뿐만아니라 라만 표면증강 효과가 떨어지고, 1000 nm를 초과하면 생물학적 응용시 많은 제약을 받는다. 나노 볼록부를 고려하지 않은 상태에서 코어의 형상은 구형 또는 타원형일 수 있으나, 임의의 형상 또는 불규칙 형상일 수 있다.In the present invention, the core having the nano-convex portion on the surface while supporting the Raman active material preferably has an average diameter of 20 nm to 1000 nm, more preferably 50 nm to 500 nm, corresponding to its volume. If the diameter of the core is less than 20 nm, not only the capacity of the Raman activator that can be included, but also the Raman surface enhancement effect is lowered, if it exceeds 1000 nm is limited in biological applications. The shape of the core may be spherical or elliptical without considering the nano-convex portion, but may be any shape or irregular shape.
한편, 이에 포함되는 나노 볼록부는 평균 직경 5 내지 50 nm의 크기를 갖는 것이 바람직하나, 이에 제한되지 않는다.On the other hand, it is preferred that the nano-convex portion included therein has an average diameter of 5 to 50 nm, but is not limited thereto.
또한, 상기 표면상에 나노 볼록부를 가진 코어 상에 형성되는 쉘의 두께는 나노 볼록부의 크기에 따라 결정될 수 있고, 1 내지 50 nm인 것이 바람직하나, 이에 제한되지 않는다.In addition, the thickness of the shell formed on the core having the nano-convex portion on the surface may be determined according to the size of the nano-convex portion, preferably 1 to 50 nm, but is not limited thereto.
표면상에 나노 볼록부를 가진 코어는 나노 볼록부의 바닥면 테두리에 전자기장의 형성이 가능한 예리한 모서리를 가지는 것이 바람직하다.The core having the nano convex portions on the surface preferably has sharp edges that enable the formation of electromagnetic fields at the bottom edge of the nano convex portions.
코어 및 이의 나노 볼록부는 라만활성물질을 담지할 수 있는 한 그 재료에 한정되지 아니한다. 코어 및 이의 나노 볼록부는 라만활성물질을 담지할 수 있도록 다공성인 것이 바람직하다.The core and its nano convex parts It is not limited to the material as long as it can support a Raman active substance. The core and its nano-convex portions are preferably porous so as to support the Raman active material.
상기 코어 및 이의 나노 볼록부의 재료는 비전도성 물질인 실리카, 황화금(gold sulfide), 이산화티타늄(titanium dioxide), 폴리메틸메타크릴레이트(polymethyl methacrylate; PMMA), 폴리스티렌 하이드로겔(polystyrene, hydrogels) 또는 이들의 조합일 수 있으나, 이에 제한되지 않는다. 나노 볼록부의 재료는 주요 코어부의 재료와 동일 또는 상이할 수 있으며, 동일한 재료를 사용하나 서로 달리 개질 또는 개질하지 아니한 것을 사용할 수 있다. 예컨대, 표면상에 나노 볼록부를 가진 코어를 정전기력에 의한 자가조립을 통해 형성하기 위해, 주요 코어부와 나노 볼록부는 각각 독립적으로 (+) 전하를 띠는 실리카 및 (-)전하를 띠는 실리카를 사용할 수 있다. (+) 전하를 띠는 실리카는 아민으로 개질된 실리카이거나, (-) 전하를 띠는 실리카는 카르복실기로 개질된 실리카일 수 있다.The material of the core and its nano-convex portion is silica, gold sulfide, titanium dioxide, polymethyl methacrylate (PMMA), polystyrene, hydrogels or non-conductive materials. Combinations thereof, but is not limited thereto. The material of the nano-convex portion may be the same or different from that of the main core portion, and may be the same material but may be modified or unmodified differently. For example, in order to form a core having nanoconvex portions on its surface through self-assembly by electrostatic force, the main core portion and nanoconvex portions each independently have a positively charged silica and a negatively-charged silica. Can be used. The positively charged silica may be silica modified with amines, or the negatively charged silica may be silica modified with carboxyl groups.
본 발명에 따라 표면상에 나노 볼록부를 가진 코어는 According to the invention the core with nano convexities on the surface is
제1라만활성물질을 담지하고 (+) 전하를 띠는 코어부 및 상기 코어부의 표면상에 형성되어 있으면서 제2라만활성물질을 담지하고 (-) 전하를 띠는 나노 볼록부를 구비하는 제1코어; 또는 A first core supporting a first Raman active material and having a (+) charge core portion and a nano-convex portion formed on the surface of the core portion and carrying a second Raman active material and having a (−) charge ; or
제1라만활성물질을 담지하고 (-) 전하를 띠는 코어부 및 상기 코어부의 표면상에 형성되어 있으면서 제2라만활성물질을 담지하고 (+) 전하를 띠는 나노 볼록부를 구비하는 제2코어일 수 있다. A second core supporting a first Raman active material and having a (-) charge core portion and a nano-convex portion supporting a second Raman active material and having a (+) charge on the surface of the core portion; Can be.
이때, 제1라만활성물질 및 제2라만활성물질은 동일 또는 상이할 수 있다.In this case, the first Raman active material and the second Raman active material may be the same or different.
본 발명에서 라만활성물질을 담지하는 코어는 금속 쉘의 내부표면의 나노 스케일의 미세구조를 형성하기 위한 주형으로서 역할도 수행할 수 있다. 따라서, 코어의 크기 및 모양 등을 다양하게 조절하여 이를 주형으로 하여 형성된 금속 쉘의 내부표면의 미세구조에 의해 표면 플라즈몬 효과를 극대화할 수 있다. 본 발명에 따른 금속 쉘의 내부표면의 미세구조는 주형으로 사용되는 코어의 형상을 나노미터 수준에서 제어하여, 재현성 있는 금속 쉘을 제조할 수 있다.In the present invention, the core carrying the Raman active material may also serve as a template for forming a nanoscale microstructure of the inner surface of the metal shell. Therefore, the surface plasmon effect can be maximized by the microstructure of the inner surface of the metal shell formed by variously adjusting the size and shape of the core and the like. The microstructure of the inner surface of the metal shell according to the present invention can control the shape of the core used as a mold at the nanometer level, thereby producing a reproducible metal shell.
본 발명에 따라 나노 오목부를 내부표면쪽에 가진 금속 쉘은 코어의 나노 오목부에 대응되는 국소 영역에 강한 전자기장이 발생하는 핫 스팟을 만들고, 이로부터 증가된 라만 신호를 제공할 수 있다.According to the present invention, a metal shell having nano recesses on an inner surface side creates a hot spot in which a strong electromagnetic field is generated in a local region corresponding to the nano recesses of the core, thereby providing an increased Raman signal.
본 발명에 따라 나노엠보싱 기법을 통해 코어의 나노 볼록부에 대응되는 나노 오목부를 내부표면쪽에 가진 금속 쉘은 강한 장을 형성하기 위한 대안일 뿐만 아니라, 충분한 수의 라만활성물질을 담지하기 위한 대안일 수 있다. 나아가, 구형 SiO2 코어를 이용하여 형성된 것보다 훨씬 더 높은 장을 형성하도록, 다양한 나노구조의 나노엠보스를 내부표면에 가진 금속 쉘을 다양한 자기조립 주형들로, 제조할 수 있다.According to the present invention, a metal shell having a nano concave portion on the inner surface side corresponding to the nano convex portion of the core through the nanoembossing technique is not only an alternative for forming a strong field, but also an alternative for supporting a sufficient number of Raman active materials. Can be. Furthermore, metal shells with various nanostructured nanoembosses on the inner surface can be made into various self-assembled molds to form much higher fields than those formed using spherical SiO 2 cores.
본 발명에 따른 나노엠보스들은, 강한 전자기장을 생성하는 신규 구조들을 제조하기 위한 플랫폼으로 뿐만 아니라, 민감하고 신뢰할 만한 생물의학적 응용들을 허용하는, 강한 SERS 신호를 생성하기 위한 효과적인 접근법이다.Nanoembosses according to the present invention are an effective approach for generating strong SERS signals, allowing for sensitive and reliable biomedical applications, as well as a platform for fabricating novel structures that produce strong electromagnetic fields.
나노쉘의 두께는 1 nm 내지 300 nm일 수 있고, 보다 바람직하게는 1 내지 50 nm일 수 있다.The thickness of the nanoshells may be 1 nm to 300 nm, more preferably 1 to 50 nm.
실험을 통해 상기 범위의 상한을 초과하는 수준으로 쉘의 두께가 증가할 때 라만활성물질인 리포터 염료의 라만 산란이 오히려 감소하는 것을 확인하였다.Experiments confirmed that the Raman scattering of the reporter dye, a Raman active material, rather decreased when the thickness of the shell increased to a level exceeding the upper limit of the above range.
금속쉘의 재료는 금, 은, 구리, 백금 또는 알루미늄일 수 있으나, 전자기파의 집중화 효과를 향상시키는 소형 안테나로서 작용할 수 있는 한 그 재료는 한정되지 아니한다.The material of the metal shell may be gold, silver, copper, platinum or aluminum, but the material is not limited as long as it can function as a small antenna that enhances the effect of concentrating electromagnetic waves.
<본 발명에 따른 <In accordance with the present invention 표면증강라만산란Surface Enhancement Raman Scattering (( SERSSERS ) 나노입자의 제조방법>) Manufacturing method of nanoparticles>
본 발명에 따른 표면증강라만산란(SERS) 나노입자는Surface enhanced Raman scattering (SERS) nanoparticles according to the present invention
라만활성물질이 로딩된 실리카 코어를 준비하는 제1단계;A first step of preparing a silica core loaded with a Raman active material;
상기 실리카 코어의 표면이 (+) 또는 (-) 전하를 띠도록 개질하는 제2단계;A second step of modifying the surface of the silica core to carry a (+) or (−) charge;
제2단계에서 형성된 실리카 코어와 반대 전하를 띠면서, 라만활성물질이 도핑된 실리카 나노입자들을 정전기적 상호작용을 통해 제2단계에서 형성된 실리카 코어 표면상에 조립시켜, 나노 볼록부를 구비하는 실리카 코어를 제조하는 제3단계;Silica core having nano convexities, having the nano-convex portion assembled by the assembly of the silica nanoparticles doped with the Raman active material on the surface of the silica core formed in the second step through electrostatic interaction, having an opposite charge to the silica core formed in the second step. Preparing a third step;
제3단계에서 형성된 실리카 코어에 금속 나노종자들을 부착시키는 제4단계;Attaching metal nano seeds to the silica core formed in the third step;
성장용액에서 나노종자를 성장시켜 나노 볼록부를 가진 실리카 코어 주위에 상기 나노 볼록부에 대응되는 나노 오목부를 내부 표면쪽에 가진 금속쉘을 형성시키는 제5단계를 포함하는 제조방법에 의해 제공될 수 있다.It can be provided by a manufacturing method comprising a fifth step of growing a nano seed in the growth solution to form a metal shell having a nano concave portion corresponding to the nano convex portion on the inner surface around the silica core having the nano convex portion.
도 1은 일구체예에 따라 내부표면쪽으로 나노엠보스를 가진 금 나노쉘을 제조하는 방법을 개략적으로 나타낸 도이다. 먼저, 음으로 하전된 나노돌출 실리카 나노입자를 양으로 하전된 실리카 코어 상에 조립한다. 실리카 코어 상의 금 종자 상에서의 HAuCl4 환원에 의해 나노엠보싱된 실리카 코어 주위에 금 나노쉘 층을 형성한다. 코어 입자들 상에 염료-담지된 SiO2 나노입자들을 배열하여 나노엠보싱을 제작하는데 활용된 자기조립법을 이용하면 적용하고자 하는 목적에 맞게 나노엠보스들의 크기 및 수를 용이하게 조절할 수 있다. 1 is a schematic diagram illustrating a method of manufacturing a gold nanoshell having nanoembosses toward an inner surface according to one embodiment. First, negatively charged nanoprojected silica nanoparticles are assembled on a positively charged silica core. By reducing HAuCl 4 on silica, the core seeds on the gold forms a gold nano-layer shell around the embossed nano silica core. By using dye-supported SiO 2 nanoparticles arranged on the core particles to fabricate nanoembossing, the self-assembly method can easily adjust the size and number of nanoembosses according to the intended purpose.
상기 제1단계는 마이크로에멀젼 방법으로 수행될 수 있다.The first step may be performed by a microemulsion method.
나노 볼록부를 가진 코어 입자 표면에 금속 나노쉘을 형성시키는 제5단계는, 금속 전구체 함유 성장용액에서 10~100℃에서 반응을 수행할 수 있다. In the fifth step of forming the metal nanoshell on the surface of the core particle having the nano convex portions, the reaction may be performed at 10 to 100 ° C. in the growth solution containing the metal precursor.
반응온도가 10℃ 미만이면 금속 쉘을 형성시키는데 너무 많은 시간이 소요되고, 100℃를 초과하면 금속 쉘이 불균일하게 형성될 수 있다. 상기에서 반응시간은 반응온도에 따라 1분~24시간으로 조절될 수 있다.If the reaction temperature is less than 10 ℃ takes too much time to form a metal shell, if it exceeds 100 ℃ may be a non-uniform metal shell. In the above, the reaction time may be adjusted to 1 minute to 24 hours depending on the reaction temperature.
은 전구체는 AgNO3 또는 AgClO4일 수 있고, 금 전구체는 HAuCl4 등의 Au 이온이 포함된 임의의 화합물일 수 있다. 구리 전구체는 Cu(NO3)2, CuSO4일 수 있다. 은 이온이나 금 이온을 금 또는 은 나노쉘로 전환하는데 필요한 환원제로는 하이드로퀴논(hydroquinone), 소듐보로하이드라이드(NaBH4), 아스코르브산 소디움(Sodium Ascorbate), 포름알데하이드 등이 있다. 상기 성장용액의 용매는 정제수, 수용액(예, 인산 완충액)일 수 있다. 나노쉘의 정밀한 두께 조절을 위하여 추가로 안정화제(stabilizer)를 추가할 수 있다.The silver precursor may be AgNO 3 or AgClO 4 , and the gold precursor may be any compound containing Au ions such as HAuCl 4 . The copper precursor may be Cu (NO 3 ) 2 , CuSO 4 . Reducing agents required to convert silver ions or gold ions to gold or silver nanoshells include hydroquinone, sodium borohydride (NaBH 4 ), sodium ascorbate, formaldehyde, and the like. The solvent of the growth solution may be purified water, an aqueous solution (eg, phosphate buffer). Additional stabilizers can be added for precise thickness control of the nanoshells.
<본 발명에 따른 <In accordance with the present invention 표면증강라만산란Surface Enhancement Raman Scattering (( SERSSERS ) 나노입자의 응용>Application of Nanoparticles
본 발명은 본 발명에 따른 SERS 나노입자를 구비한 라만 프로브를 제공한다.The present invention provides a Raman probe with SERS nanoparticles according to the present invention.
또한, 본 발명은 기재 상에 본 발명에 따른 SERS 나노입자들이 코팅된 표면증강라만산란(SERS) 기재를 제공한다. 이때, SERS 나노입자 함유 코팅층은 SERS 나노입자들의 접근 또는 접촉에 의해 인접한 SERS 나노입자들 사이에서 추가로 전자기장 증폭을 유도할 수 있다.The present invention also provides a surface enhanced Raman scattering (SERS) substrate coated with the SERS nanoparticles according to the invention on the substrate. At this time, the SERS nanoparticle-containing coating layer may further induce electromagnetic field amplification between adjacent SERS nanoparticles by the access or contact of the SERS nanoparticles.
본 발명에 따른 SERS 나노입자는 그 표면을 검출하고자 하는 분석물을 인식할 수 있는 바이오분자(molecules) 또는 화합물로 기능화하여, 각종 생체분자들을 검출하는데 응용될 수 있는 라만 프로브로 사용할 수 있다.SERS nanoparticles according to the present invention can be used as a Raman probe that can be applied to detect a variety of biomolecules by functionalizing with biomolecules (molecules) or compounds that can recognize the analyte to detect the surface.
예컨대, 검출하고자 하는 분석물은 아미노산, 펩타이드, 폴리펩타이드, 단백질, 글리코프로테인, 리포프로테인, 뉴클레오시드, 뉴클레오티드, 올리고뉴클레오티드, 핵산, 당, 탄수화물, 올리고사카라이드, 폴리사카라이드, 지방산, 지질, 호르몬, 대사산물, 사이토카인, 케모카인, 수용체, 신경전달물질, 항원, 알레르겐, 항체, 기질, 대사산물, 보조인자, 억제제, 약물, 약학물, 영양물, 프리온, 독소, 독물, 폭발물, 살충제, 화학무기제, 생체유해성 제제, 방사선동위원소, 비타민, 헤테로사이클릭 방향족 화합물, 발암물질, 돌연변이유발요인, 마취제, 암페타민, 바르비투레이트, 환각제, 폐기물 또는 오염물일 수 있다. 또한, 분석물이 핵산일 경우 상기 핵산은 유전자, 바이러스 RNA 및 DNA, 박테리아 DNA, 곰팡이 DNA, 포유동물 DNA, cDNA, mRNA, RNA 및 DNA 단편, 올리고뉴클레오티드, 합성 올리고뉴클레오티드, 개질된 올리고뉴클레오티드, 단일 가닥 및 이중 가닥 핵산, 자연적 및 합성핵산을 포함한다.For example, analytes to be detected include amino acids, peptides, polypeptides, proteins, glycoproteins, lipoproteins, nucleosides, nucleotides, oligonucleotides, nucleic acids, sugars, carbohydrates, oligosaccharides, polysaccharides, fatty acids, lipids, Hormones, metabolites, cytokines, chemokines, receptors, neurotransmitters, antigens, allergens, antibodies, substrates, metabolites, cofactors, inhibitors, drugs, pharmaceuticals, nutrients, prions, toxins, toxins, explosives, pesticides, chemicals Inorganic agents, biohazardous agents, radioisotopes, vitamins, heterocyclic aromatic compounds, carcinogens, mutagens, anesthetics, amphetamines, barbiturates, hallucinogens, wastes or contaminants. In addition, if the analyte is a nucleic acid, the nucleic acid is a gene, viral RNA and DNA, bacterial DNA, fungal DNA, mammalian DNA, cDNA, mRNA, RNA and DNA fragments, oligonucleotides, synthetic oligonucleotides, modified oligonucleotides, single Stranded and double stranded nucleic acids, natural and synthetic nucleic acids.
본 발명의 용어 "바이오분자"는 1차 대사물(primary metabolites), 2차 대사물(secondary metabolites), 천연 생성물(natural products)과 같은 소분자로부터 단백질, 탄수화물, 지질 및 핵산 등의 거대분자까지 모두 포함하는 살아있는 생물에 존재하는 임의의 분자를 총칭할 수 있으며, 통상적인 의미의 생물학적 물질을 모두 포함할 수 있다. 또한, 상기 내생적 물질 이외에 천연, 반합성 또는 전합성(total synthetic) 물질인 외인성 약물도 모두 포함할 수 있다.As used herein, the term "biomolecule" refers to small molecules such as primary metabolites, secondary metabolites, and natural products, to macromolecules such as proteins, carbohydrates, lipids, and nucleic acids. It may refer to any molecule present in the living organisms included, and may include all biological materials in a conventional meaning. In addition, in addition to the endogenous material, it may also include all of the exogenous drugs that are natural, semi-synthetic or total synthetic material.
분석물을 인식할 수 있는, 본 발명에 따른 SERS 나노입자의 표면에 결합될 수 있는 바이오분자의 비제한적인 예는 항체, 항체 단편, 유전조작 항체, 단일 쇄항체, 수용체 단백질, 결합 단백질, 효소, 억제제 단백질, 렉틴, 세포 유착 단백질, 올리고뉴클레오티드, 폴리뉴클레오티드, 핵산 또는 압타머를 들 수 있다.Non-limiting examples of biomolecules capable of binding to the surface of SERS nanoparticles according to the present invention that can recognize analytes include antibodies, antibody fragments, genetically engineered antibodies, single chain antibodies, receptor proteins, binding proteins, enzymes , Inhibitor proteins, lectins, cell adhesion proteins, oligonucleotides, polynucleotides, nucleic acids or aptamers.
또한, 본 발명에 따른 SERS 나노입자는, 표면에 라만활성물질이 결합된 후,추가로 나노입자 전체가 무기물로 코팅될 수 있다. 무기물로 나노입자 전체가 코팅되면 구조가 변형될 가능성이 적어지므로 나노입자의 구조를 안정하게 유지할 수 있어 보관 및 사용에 보다 바람직할 뿐만아니라, 무기물 코팅층에 의해 나노입자들의 간격을 일정하게 유지하여 SERS 나노입자들의 응집에 의해 인접한 SERS 나노입자들 사이에서 추가로 전자기장 증폭 유도 시 재현성을 확보할 수 있다. 상기 무기물은 SERS 나노입자의 구조를 유지하고, 라만 신호에 영향을 주지 않는 물질이면 제한되지 않으며, 일례로 실리카를 사용할 수 있다.In addition, the SERS nanoparticles according to the present invention, after the Raman active material is bonded to the surface, the whole nanoparticles may be further coated with an inorganic material. When the whole nanoparticles are coated with inorganic material, the structure is less likely to be deformed, so the structure of the nanoparticles can be stably maintained, which is more desirable for storage and use. Aggregation of nanoparticles can ensure reproducibility in inducing electromagnetic amplification between adjacent SERS nanoparticles. The inorganic material is not limited as long as it maintains the structure of the SERS nanoparticles and does not affect the Raman signal, and silica may be used as an example.
표면증강 라만 산란 기술은 기본적으로 낮은 power의 레이져를 사용하기 때문에, 시료에 대해 비파괴적이다. 또한, 라만 프로브의 제작 기술 발전과 더불어 생체 적합성이 뛰어난 재료를 이용하여 세포 및 생체 내에서의 질병 진단에 다각도로 적용될 수 있다. 세포 및 생체 내에서 라만 프로브의 이동 및 생체 적합성을 높이기 위해 라만 프로브의 표면을 고분자 리간드나 실리카와 같은 생체 적합성 물질로 코팅할 수 있으나, 이에 제한되지 않는다. 또한, 바이오 물질간의 특이적 반응(DNA hybridization, 항원-항체반응 등)을 이용하여 세포 및 생체 내에서 특정 질병에 대한 고감도 진단이 가능하다. 또한 신원확인, 혈연관계 확인, 세균이나 세포 동정 또는 동식물의 원산지 확인에 사용할 수 있으나, 그 응용 분야는 이에 제한되지 않는다.Surface-enhanced Raman scattering techniques are basically non-destructive for samples because they use low power lasers. In addition, with the development of the Raman probe manufacturing technology, it can be applied to the diagnosis of diseases in cells and in vivo using a material with excellent biocompatibility. In order to increase the mobility and biocompatibility of the Raman probe in cells and in vivo, the surface of the Raman probe may be coated with a biocompatible material such as a polymer ligand or silica, but is not limited thereto. In addition, specific reactions (DNA hybridization, antigen-antibody reactions, etc.) between biomaterials can be used for high-sensitivity diagnosis for specific diseases in cells and in vivo. It can also be used for identification, kinship, bacterial or cellular identification, or origin of flora and fauna, but its application is not limited thereto.
따라서, 본 발명에 따른 SERS 나노입자를 사용한 비파괴 표면증강 라만 분석기술은 살아 있는 세포 및 생체 내에서 특정 질병에 대한 실시간 모니터링 및 치료약물 개발분야에도 활용될 수 있다.Therefore, the non-destructive surface enhancement Raman analysis technology using the SERS nanoparticles according to the present invention can be used in the field of real-time monitoring and therapeutic drug for specific diseases in living cells and in vivo.
나아가, 본 발명에 따른 SERS 나노입자는 SERS 신호가 극대화 될 수 있는 미세구조를 재현성 있게 확보할 수 있으므로, 매우 신뢰도 높은 유용한 초고감도 생체 분자 분석법에 사용될 수 있으며, 체외 진단법 외에도 생체 내 이미징 기술로도 매우 유용하다.Furthermore, since the SERS nanoparticles according to the present invention can secure a reproducible microstructure in which the SERS signal can be maximized, it can be used for a very reliable and useful ultra-high sensitivity biomolecular analysis method, and can also be used as an in vivo imaging technique in addition to in vitro diagnostic methods. Very useful.
일구체예로, 본 발명에 따른 SERS 나노입자를 이용하여, 분석물을 검출 또는 영상화하는 방법은 In one embodiment, using the SERS nanoparticles according to the invention, a method for detecting or imaging an analyte is
a) 본 발명에 따른 SERS 나노입자의 표면을 검출하고자 하는 분석물과 결합할 수 있는 바이오분자 또는 화합물로 기능화하는 단계;a) functionalizing the surface of the SERS nanoparticles according to the invention with a biomolecule or compound capable of binding to the analyte to be detected;
b) 기능화된 SERS 나노입자를 하나 이상의 분석물을 포함하는 시료에 노출시키는 단계; 및 b) exposing the functionalized SERS nanoparticles to a sample comprising one or more analytes; And
c) 라만 분광법을 이용하여 SERS 나노입자가 결합된 분석물을 확인하는 단계를 포함할 수 있다. c) identifying the analyte to which the SERS nanoparticles are bound using Raman spectroscopy.
다른 일구체예로, 본 발명에 따른 SERS 나노입자를 이용하여, 핵산을 검출하는 방법은In another embodiment, using the SERS nanoparticles according to the present invention, a method for detecting a nucleic acid
i) 본 발명에 따른 SERS 나노입자의 표면을 검출하고자 하는 핵산에 상보적인 바이오분자 또는 화합물로 기능화하는 단계;i) functionalizing the surface of the SERS nanoparticles according to the invention with a biomolecule or compound complementary to the nucleic acid to be detected;
ii) 상기 기능화된 SERS 나노입자들을 검출하고자 하는 핵산을 함유하는 것으로 예상되는 시료와 반응시켜 혼성화를 수행하는 단계; 및ii) performing hybridization by reacting the functionalized SERS nanoparticles with a sample that is expected to contain a nucleic acid to be detected; And
iii) 라만 분광법을 수행하여 SERS 나노입자가 결합된 상기 검출하고자 하는 핵산의 존재, 양 또는 둘 모두를 확인하는 단계를 포함할 수 있다.iii) performing Raman spectroscopy to confirm the presence, amount or both of the nucleic acid to be detected to which the SERS nanoparticles are bound.
이때, 상기 검출하고자 하는 핵산을 함유하는 것으로 예상되는 시료는 채취한 시료 자체로 사용하거나, 이로부터 검출하고자 하는 핵산을 분리, 정제 또는 증폭시켜 사용할 수 있다.In this case, the sample expected to contain the nucleic acid to be detected may be used as the sample itself, or the nucleic acid to be detected may be separated, purified or amplified therefrom.
임의의 공지된 라만 분광법을 사용할 수 있으며, 바람직하게는 표면 증강 라만 산란법(SERS, Surface Enhanced Raman Scattering), 표면 증강 공명 라만 분광법(SERRS, Surface enhanced resonance Raman spectroscopy), 하이퍼-라만 및/또는 비간섭성 반스톡스라만 분광법(CARS, coherent anti-Stokes Raman spectroscopy)을 사용할 수 있다.Any known Raman spectroscopy can be used, preferably Surface Enhanced Raman Scattering (SERS), Surface enhanced resonance Raman spectroscopy (SERRS), Hyper-Raman and / or Ratio Coherent anti-Stokes Raman spectroscopy (CARS) can be used.
표면 증강 라만 산란법(SERS)은 거칠게 처리된 특정 금속 표면에 흡착되어 있거나 수 나노미터 이내의 거리(d≤10 nm)에 위치해 있을 때 발생되는 라만 산란의 일종으로 이때 라만 산란의 세기는 일반 라만의 세기와 비교하여 106 ~ 108 배 이상 증가되는 현상을 이용한 분광법이다. 표면 증강 공명라만 분광법(SERRS)은 SERS 활성 표면에서의 흡착물에 대한 레이저 여기 파장의 공명 현상을 이용한 분광법이다. 비간섭성 반스톡스 라만 분광법(CARS)은 라만 활성 매질에 고정가변의 두 레이저 광을 입사시키고, 이들의 결합에 의해 얻어지는 반(反) 스토크스 방사의 스펙트럼을 측정하는 분광법이다.Surface Enhancement Raman Scattering (SERS) is a type of Raman scattering that occurs when adsorbed on a roughened metal surface or is located within a few nanometers (d≤10 nm). It is a spectroscopic method using the phenomenon that 10 6 ~ 10 8 times increase compared with the intensity of Surface augmented resonance Raman spectroscopy (SERRS) is a spectroscopy utilizing the resonance phenomenon of laser excitation wavelengths for adsorbates on SERS active surfaces. Non-coherent antistock Raman spectroscopy (CARS) is a spectroscopy method that injects two fixed laser light into a Raman active medium and measures the spectrum of anti-Stokes radiation obtained by combining them.
본 발명에 따른 SERS 나노입자를 이용한, 핵산 검출 방법은 핵산에 대한 기타 정보, 예컨대, 샘플에 존재하는 1종 이상의 단일 염기 다형성(SNP) 또는 다른 유전적 변이의 형태를 검출할 수 있으며, 나아가 DNA 시퀀싱에도 응용이 가능하다.The nucleic acid detection method, using the SERS nanoparticles according to the present invention, can detect other information about the nucleic acid, such as one or more single base polymorphisms (SNPs) or other forms of genetic variation present in the sample, furthermore DNA It can also be applied to sequencing.
기재 상에 본 발명에 따른 표면증강라만산란(SERS) 나노입자들이 코팅된 표면증강라만산란(SERS) 기재, 예컨대 라만 활성 기판은, 하나 이상의 라만 검출 단위장치와 작동가능하게 결합될 수 있다. 라만 분광법에 의한 분석물의 검출을 위한 여러 방법은 당해 분야에 공지되어 있다(예컨대, 미국특허 제6,002,471호, 제6,040,191호, 제6,149,868호, 제6,174,677호, 제6,313,914호). SERS 및 SERRS에서, 라만 검출의 감도는 거친 금속 표면, 예컨대 은, 금, 백금, 구리 또는 알루미늄 표면 상에 흡수된 분자에 대해 106 이상으로 증강된다.A surface enhanced Raman scattering (SERS) substrate, such as a Raman active substrate, coated with surface enhanced Raman scattering (SERS) nanoparticles according to the invention on a substrate may be operatively coupled with one or more Raman detection unit devices. Several methods for the detection of analytes by Raman spectroscopy are known in the art (eg, US Pat. Nos. 6,002,471, 6,040,191, 6,149,868, 6,174,677, 6,313,914). In SERS and SERRS, the sensitivity of Raman detection is enhanced to 10 6 or higher for molecules absorbed on rough metal surfaces such as silver, gold, platinum, copper or aluminum surfaces.
라만 검출 장치의 비제한적인 예는 미국특허 제6,002,471호에 개시되어 있다. 여기 빔으로, 펄스 레이저 빔 또는 연속 레이저 빔이 사용될 수 있다. 여기 빔은 공초점의 광학기 및 현미경 렌즈를 통과하여 하나 이상의 분석물을 함유하는 라만 활성 기판 상으로 초점이 모아진다. 분석물로부터의 라만 방출 광은 현미경 렌즈 및 공초점 광학기에 의해 모아지고 스펙트럼 분리를 위해 단색광장치와 결합된다. 공초점 광학기로는 배경 신호를 감소시키기 위한 다이크로익 필터(dichroic filter), 차단 필터, 공초점 핀홀, 대물렌즈 및 거울의 조합을 포함한다. 공초점 광학기 뿐만 아니라 표준 풀 필드(full field) 광학기도 사용될 수 있다. 라만 방출 신호는 신호를 카운팅하고 디지털화하는 컴퓨터와 인터페이스로 연결된 사태형 광다이오드를 포함하는 라만 검출기)에 의해 검출된다.Non-limiting examples of Raman detection devices are disclosed in US Pat. No. 6,002,471. As the excitation beam, a pulsed laser beam or a continuous laser beam can be used. The excitation beam passes through confocal optics and a microscope lens and is focused onto a Raman active substrate containing one or more analytes. Raman emission light from the analyte is collected by microscope lenses and confocal optics and combined with monochromators for spectral separation. Confocal optics include a combination of dichroic filters, blocking filters, confocal pinholes, objectives and mirrors to reduce background signals. Not only confocal optics but also standard full field optics can be used. Raman emission signals are detected by a Raman detector comprising a landslide photodiode interfaced with a computer that counts and digitizes the signal.
당해 분야에 공지된 임의의 적절한 형태 또는 구성의 라만 분광법 또는 관련 기법이 분석물 검출에 사용될 수 있으며, 노말 라만 스캐터링, 공명 라만스캐터링, 표면 증강 라만 스캐터링, 표면 증강 공명 라만 스캐터링, 비간섭성 반스톡스 라만 분광법(CARS), 자극 라만 스캐터링, 역 라만 분광법, 자극 게인 라만분광법, 하이퍼-라만 스캐터링, 분자 광학 레이저 시험기(molecular optical laser examiner, MOLE) 또는 라만 마이크로탐침 또는 라만 현미경법 또는 공초점 라만 마이크로분광기, 3차원 또는 스캐닝 라만, 라만 포화 분광법, 시간 분해 공명 라만, 라만 해리 분광법 또는 UV-라만 현미경법을 포함하지만, 이에 한정되지 않는다.Any suitable form or configuration of Raman spectroscopy or related techniques known in the art can be used for analyte detection, including normal Raman scattering, resonance Raman scattering, surface enhanced Raman scattering, surface enhanced resonance Raman scattering, b. Coherent Vanstock Raman Spectroscopy (CARS), Stimulated Raman Scattering, Inverse Raman Spectroscopy, Stimulus Gain Raman Spectroscopy, Hyper-Raman Scattering, Molecular Optical Laser Examiner (MOLE) or Raman Microprobe or Raman Microscopy Or confocal Raman microspectral, three-dimensional or scanning Raman, Raman saturation spectroscopy, time resolved resonance Raman, Raman dissociation spectroscopy or UV-Raman microscopy.
라만 검출 장치는 컴퓨터와 작동가능하게 결합될 수 있다. 상기 컴퓨터의 비제한적인 예는 정보를 상호교환하는 버스 및 정보 처리를 위한 프로세서를 포함할 수 있다. 컴퓨터는 램(RAM) 또는 다른 동적 저장 장치, 롬(ROM) 또는 다른 정적 저장 장치 및 데이터 저장 장치, 예컨대 마그네틱 디스크 또는 광학 디스크 및 이와 상응하는 드라이브를 추가로 포함할 수 있다. 또한, 컴퓨터는 당해 분야에 공지된 주변 장치, 예컨대 표시 장치(예컨대, 음극 선관 또는 액정 표시), 알파벳 입력 장치(예컨대, 키보드), 커서 조절 장치(예컨대, 마우스, 트랙볼 또는 커서 방향키) 및 커뮤니케이션 장치(예컨대, 모뎀, 네트워크 인터페이스 카드 또는 에더넷, 토큰 링 또는 기타 유형의 네트워크와 결합하는데 사용된 인터페이스 장치)를 포함할 수 있다.The Raman detection device can be operatively coupled with the computer. Non-limiting examples of the computer may include a bus for exchanging information and a processor for processing information. The computer may further include RAM or other dynamic storage, ROM or other static storage and data storage, such as a magnetic disk or an optical disk and a corresponding drive. The computer may also include peripheral devices known in the art, such as display devices (e.g., cathode ray tube or liquid crystal displays), alphabet input devices (e.g., keyboards), cursor control devices (e.g., mice, trackballs, or cursor direction keys) and communication devices. (Eg, an interface device used to couple with a modem, network interface card or Ethernet, token ring or other type of network).
검출 장치로부터의 데이터는 프로세서에 의해 처리되고 데이터는 주기억장치에 저장될 수 있다. 프로세서는 라만 활성 기판에서의 분석물로부터의 방출 스펙트럼을 비교하여 샘플의 분석물 유형을 확인할 수 있다. 프로세서는 검출 장치로부터의 데이터를 분석하여 여러 분석물의 정체 및/또는 농도를 측정할 수 있다. 서로 다르게 구비된 컴퓨터는 특정 이행에 사용될 수 있다. 데이터 수집작업 이후, 전형적으로 데이터는 데이터 분석 작업으로 보내질 것이다. 분석 작업을 용이하게 하기 위해, 검출 장치에 의해 수득된 데이터는 상기한 바와 같이 디지털 컴퓨터를 사용하여 전형적으로 분석할 것이다. 전형적으로, 컴퓨터는 검출 장치로부터의 데이터 수용 및 저장 뿐만 아니라 수집된 데이터의 분석 및 보고를 위해 적절히 프로그래밍될 것이다.Data from the detection device may be processed by the processor and the data may be stored in the main memory. The processor can confirm the analyte type of the sample by comparing the emission spectra from the analyte on the Raman active substrate. The processor may analyze data from the detection device to determine the identity and / or concentration of the various analytes. Differently equipped computers can be used for specific implementations. After the data collection operation, the data will typically be sent to a data analysis operation. To facilitate the analysis task, the data obtained by the detection device will typically be analyzed using a digital computer as described above. Typically, a computer will be suitably programmed for analysis and reporting of collected data as well as for receiving and storing data from detection devices.
또한, 본 발명은 표면상에 나노 볼록부를 가진 코어; 및 상기 나노 볼록부에 대응되는 나노 오목부를 내부표면쪽에 가진 금속 쉘을 포함하는, 표면증강라만산란(SERS) 기재를 제공할 수 있다.In addition, the present invention is a core having a nano-convex portion on the surface; And it can provide a surface enhanced Raman scattering (SERS) substrate comprising a metal shell having a nano-concave corresponding to the nano-convex portion on the inner surface side.
예컨대, 상기 금속 쉘의 두께가 나노 볼록부의 직경보다 작은 경우 금속 쉘과 나노 볼록부의 계면 또는 외부로 노출된 쉘의 표면에서 핫스팟이 형성되므로 내부에 라만활성분자를 포함하지 않더라도 표면에 부착된 라만활성물질의 신호를 현저히 향상시킬 수 있으므로, 표면증강라만산란 기재로 유용하게 사용될 수 있다.For example, when the thickness of the metal shell is smaller than the diameter of the nano-convex portion, since hot spots are formed at the interface between the metal shell and the nano-convex portion or the shell exposed to the outside, the Raman activity attached to the surface does not include the Raman active molecule therein. Since the signal of the material can be significantly improved, it can be usefully used as a surface enhanced Raman scattering substrate.
상기와 같이, 나노 볼록부의 직경보다 얇게 쉘이 형성된 경우 제공되는 나노구조물의 예를 도 15에 나타내었다. 도 15에 나타난 바와 같이, 상기 구조물은 내부표면쪽에 뿐만아니라, 쉘의 외부 표면 쪽에도 첨예한 구조가 형성되어 전자기장이 현저히 증가되는 핫스팟을 제공할 수 있으므로, 상기 나노구조물의 내부에 라만활성분자를 포함하지 않더라도 상기 나노구조물의 외부 표면에 형성된 쉘의 첨단부에 가까이 위치한 라만활성분자의 신호를 현저히 증강시키는 효과를 나타낼 수 있으므로 그 자체로서 표면증강라만산란 기재로 사용할 수 있다.As described above, an example of the nanostructure provided when the shell is formed thinner than the diameter of the nano-convex portion is shown in FIG. 15. As shown in FIG. 15, the structure includes a Raman active molecule in the nanostructure because the structure may have a sharp structure formed not only on the inner surface side but also on the outer surface side of the shell to provide a hot spot with a significantly increased electromagnetic field. Even if not, since it can exhibit an effect of remarkably enhancing the signal of the Raman active molecule located near the tip of the shell formed on the outer surface of the nanostructure can be used as a surface-enhanced Raman scattering substrate as such.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention in more detail, it will be apparent to those skilled in the art that the scope of the present invention is not limited by these examples in accordance with the gist of the present invention. .
실시예 1: 내부표면쪽에 나노엠보스를 가진 나노쉘의 합성Example 1 Synthesis of Nanoshells with Nanoembosses on the Inner Surface
먼저 주형으로서 나노엠보스된 실리카 코어를 제조하고 상기 실리카 코어에 금 나노층을 덮었다. 도 1a에는, 나노입자의 대량 생산에 유리한 습식 공정을 통해, 나노쉘층에 내부표면쪽으로 나노엠보스들을 제조하는 방법을 개략적으로 묘사하였다.First, a nanoembossed silica core was prepared as a template and the silica core was covered with a gold nanolayer. In FIG. 1A, a method of producing nanoembosses toward the inner surface of a nanoshell layer is schematically depicted through a wet process that is advantageous for mass production of nanoparticles.
스토버 기법(Stover method)으로 실리카 코어를 합성하고, 변형된 유중수 마이크로에멀젼 방법으로 라만 리포터 염료로서 [Ru(bpy)3]2+를 로딩하였다. 구체적으로 1.5 ml의 테트라에틸 오르소실리케이트(tetraethyl orthosilicate; TEOS, Sigma)를 2.8 ml의 NH4OH를 포함하는 45 ml 에탄올에 첨가하고, 실리카 코어에 Ru(bpy)를 도핑하기 위하여 0.1 M 트리스(2,2-바이피리딜)디클로로루테늄(II)(Ru(bpy))을 상기 혼합물에 첨가하여 8시간 동안 반응시켰다. 이후 126 μl의 APTES(amninopropyltrimethoxy silane)를 상기 혼합물에 첨가하여 8시간 동안 인큐베이션한 후 APTES 처리된 실리카 코어를 2시간 동안 끓였다. 반응하지 않은 시약을 제거하기 위하여, 실리카 코어를 2000 g에서 30분 동안 원심분리하였다. 상층액을 제거한 후, 탐침형 초음파 처리기(VC 750, Sonics)를 이용하여 10분 동안 펠렛을 50 ml의 신선한 에탄올에 재분산시켰다. 원심분리에 의한 정제를 2회 더 반복하였다. 아민화된 실리카 코어를, 상기 변형된 유중수 마이크로에멀젼 방법으로 합성한 Ru(bpy) 도핑된 더 작은 실리카 나노입자로 나노돌출된 구조를 형성하였다. 음으로 하전된 염료 도핑된 실리카 나노입자들(SiO2 NP; 평균 직경: 15.7±2.1 nm, 및 ζ-전위: -17.47±1.73)과 정전기적 상호작용을 통해 조립시킴으로써, 아민으로 개질된 코어(평균 직경: 123.6±12.7 nm, 및 ζ-전위: 43.4±0.76)에 엠보스들을 부여하였다. 나노엠보싱된 실리카 나노입자들 사이의 평균 거리는 ~23.3 nm로 계산되었다. 3회의 원심분리를 통해 정제한 후, 과량의 금 나노종자들와 혼합하여 나노엠보스싱된 실리카 코어에 2 내지 3 nm 직경의 금 나노종자들을 부착시켰다. 도 1b 및 1c의 TEM 이미지는 엠보스 구조 및 실리카 코어 상의 금 나노종자들의 균일한 부착을 명확히 보여주고 있다. 최종적으로 성장 용액에서 30% 포름알데하이드 6.7 μl를 첨가하여 HAuCl4(0.0148%)를 환원시켜, 금 나노종자를 성장시켜 나노엠보싱된 실리카 코어 주위를 덮도록 금 나노층을 형성하였다. 합성된 나노입자의 크기는 TEM으로 측정하였다.Silica cores were synthesized by the Stover method and [Ru (bpy) 3 ] 2+ was loaded as a Raman reporter dye by a modified water-in-oil microemulsion method. Specifically, 1.5 ml of tetraethyl orthosilicate (TEOS, Sigma) is added to 45 ml ethanol containing 2.8 ml of NH 4 OH, and 0.1 M tris (dope) to dope Ru (bpy) to the silica core. 2,2-bipyridyl) dichlororuthenium (II) (Ru (bpy)) was added to the mixture and reacted for 8 hours. After 126 μl of amTESinopropyltrimethoxy silane (APTES) was added to the mixture and incubated for 8 hours, the APTES treated silica core was boiled for 2 hours. To remove unreacted reagent, the silica core was centrifuged at 2000 g for 30 minutes. After removing the supernatant, the pellet was redispersed in 50 ml of fresh ethanol for 10 minutes using a probe sonicator (VC 750, Sonics). Purification by centrifugation was repeated two more times. The aminated silica cores formed nanoprojected structures with Ru (bpy) doped smaller silica nanoparticles synthesized by the modified water-in-oil microemulsion method. Cores modified with amines by assembling through electrostatic interaction with negatively charged dye-doped silica nanoparticles (SiO 2 NP; average diameter: 15.7 ± 2.1 nm, and ζ-potential: -17.47 ± 1.73) Average diameter: 123.6 ± 12.7 nm, and ζ-potential: 43.4 ± 0.76). The average distance between nanoembossed silica nanoparticles was calculated to be ~ 23.3 nm. After purification through three centrifugations, gold nanoseeds of 2-3 nm diameter were attached to the nanoembossed silica core by mixing with excess gold nanoseeds. The TEM images of FIGS. 1B and 1C clearly show the emboss structure and uniform adhesion of the gold nanoseeds on the silica core. Finally 6.7 μl of 30% formaldehyde was added in the growth solution to reduce HAuCl 4 (0.0148%) to grow gold nanoseeds to form a gold nanolayer to cover around the nanoembossed silica core. The size of the synthesized nanoparticles was measured by TEM.
실시예 2: 염료 도핑된 나노엠보싱 실리카 나노입자Example 2: Dye Doped Nanoembossed Silica Nanoparticles
Ru(bpy) 0.1 M 수용액 90 μl를 0.1 M 폴리옥시에틸렌 노닐페놀 에테르(Sigma) 10 ml에 첨가하고, 100 μl TEOS 및 60 μl의 29.6 중량% NH4OH를 첨가하였다. 혼합물을 24시간 동안 교반한 후, TEOS 및 카르복시에틸실란트리올, 나트륨염(25 중량% 수용액, Gelest)을 상기 혼합물에 첨가하였다. 혼합물을 24시간 동안 더 반응시키고 에탄올을 첨가하여 마이크로에멀젼을 파괴하고 입자를 회복하였다. 3회 원심분리 세척 단계 후 최종 나노엠보싱 실리카 나노입자를 회수하였다. 이후 나노엠보싱 실리카 나노이자를 초순수에 분산시켰다.Ru (bpy) 90 μl 0.1 M to 0.1 M aqueous solution of polyoxyethylene nonyl phenol ether (Sigma) was added to 10 ml, which was added to 29.6 wt% NH 4 OH in 100 μl TEOS and 60 μl. After the mixture was stirred for 24 hours, TEOS and carboxyethylsilanetriol, sodium salt (25% by weight aqueous solution, Gelest) were added to the mixture. The mixture was further reacted for 24 hours and ethanol was added to break the microemulsion and recover the particles. The final nanoembossed silica nanoparticles were recovered after three centrifugation wash steps. Afterwards, nanoembossed silica nanointeractions were dispersed in ultrapure water.
비교예 1: 내부표면쪽이 편평한 금 나노쉘(AuNS) 합성Comparative Example 1: Synthesis of gold nanoshell (AuNS) with flat inner surface
실시예 1에서 스토버 기법으로 실리카 코어를 합성하되, 음으로 하전된 염료 도핑된 실리카 나노입자들을 부착하여 나노엠보싱을 부여하지 아니하는 것을 제외하고는, 실시예 1과 동일한 방법으로 내부표면쪽이 편평한 금 나노쉘(AuNS) 합성하였다.Synthesis of the silica core by the stator technique in Example 1, but the inner surface side in the same manner as in Example 1, except that it does not impart nano-embossing by attaching negatively charged dye-doped silica nanoparticles Flat gold nanoshells (AuNS) were synthesized.
실험예 1: 내부표면쪽에 나노엠보스를 가진 나노쉘의 분광학적 특성분석Experimental Example 1: Spectroscopic Characterization of Nanoshells with Nanoembosses on the Inner Surface
도 2에, 내부표면쪽이 편평한 금 나노쉘(AuNS) 및 내부표면쪽에 나노엠보스를 가진 금 나노쉘(AuNS) 각각에 대한 여기 스펙트럼을 나타내었다. 도 2a에 나타난 바와 같이, 내부표면쪽이 편평한 AuNS는 2개의 구별되는 플라즈몬 공명(~763 nm에서 쌍극자 및 ~615 nm에서 사중극자 플라즈몬 공명)을 나타내었다. 나노엠보스를 가진 AuNS에서 관찰된 플라즈마 공명(도 2b)은 내부표면쪽으로 편평한 AuNS에 비해 쌍극자 플라즈몬 공명은 감소되기는 하였으나, 내부표면쪽으로 편평한 AuNS에 대한 것에 비해 장파장 이동(적색편이)된 830 nm 및 630 nm에서 각각 특징적인 쌍극자 플라즈몬 공명 및 사중극자 공명을 나타내었다. FDTD 계산에 따르면, 나노엠보스들의 존재는 AuNS의 장파장 이동된 여기 스펙트럼을 유도하였다(도 3). 또한, 표면의 거칠기는 플라즈몬 스펙트럼의 폭을 넓히고 장파장 이동을 유도하였다. 그 결과 표면 거칠기 및 내부표면쪽의 나노엠보스는 예상되는 스펙트럼보다 더 강한 장파장 이동을 유발하였다.In FIG. 2, excitation spectra are shown for each of the gold nanoshells (AuNS) having a flat inner surface and the gold nanoshells (AuNS) having a nanoemboss at an inner surface. As shown in FIG. 2A, AuNS flat on the inner surface showed two distinct plasmon resonances (dipole at ˜763 nm and quadrupole plasmon resonance at 615 nm). Plasma resonance observed in AuNS with nanoembosses (FIG. 2b) reduced dipole plasmon resonance compared to AuNS flat toward the inner surface, but with long wavelength shifted (red-shifted) 830 nm compared to AuNS flat toward the inner surface. Characteristic dipole plasmon resonance and quadrupole resonance were shown at 630 nm, respectively. According to the FDTD calculation, the presence of nanoembosses led to the long wavelength shifted excitation spectrum of AuNS (FIG. 3). In addition, the roughness of the surface widened the plasmon spectrum and induced long wavelength shift. As a result, surface roughness and nanoembossing toward the inner surface resulted in a longer wavelength shift than expected spectrum.
실험예Experimental Example 2:  2: 내부표면쪽에Inside surface 나노엠보스를Nano Emboss 가진  have 나노쉘Nano Shell 구조에 의한 장 증강 효과 Intestinal reinforcement effect by structure
FDTD 계산에 의해 633 nm의 SERS 여기 파장에서 나노엠보스들 내부의 전자기장 증강(electromagnetic field enhancement)을 확인하였다(도 4). 도 4에 나타난 바와 같이, 나노엠보스들과 코어 사이의 접촉점 근처에 강한 전자기장이 형성되었다. 이웃한 나노엠보스들 사이의 거리에 대응하여, 100개 나노엠보스들을 가진 AuNS의 경우 가장 강한 장(|E/Ein|max.=55)이 나노엠보스들과 코어의 접촉에 의해 형성되는 두개의 모서리에서 얻어졌다(도 5). 코어 SiO2 NP와 접한 단일 나노엠보스의 형상(shape)은 예리한 둥근 모서리를 갖는 나노초승달과 유사하였다. 안테나 효과는 나노초승달의 예리한 둥근 모서리 주위에서 강한 국소 전자기장 증강을 유발한다고 알려져 있다. 유사하게, 나노엠보싱된 실리카 코어 상에 나노쉘 층을 형성하면 예리한 형상(sharp feature)를 형성할 수 있으며, 접촉 부위 주변에서 강한 장의 형성을 허용할 수 있다. 나노엠보스들의 내부 SERS에 대한 기여를 평가하기 위하여, 실시예 1에 따라 합성된 AuNS에서 나노엠보스들 및 코어 SiO2 각각의 내부에 있는 리포터 염료 [Ru(bpy)3]2+의 라만 산란을 측정하였다. 도 6에는 쉘 두께에 따른 내부표면쪽에 나노엠보스들을 가진 AuNS로부터 염료의 라만 스펙트럼을 나타내었다. 동일 부피 내에서 HAuCl4의 양을 유지시키면서 나노엠보싱된 SiO2 NPs의 양을 변화시킴으로써 쉘 두께를 조절하였다. 합성된 입자들을 APTES로 개질된 유리 기재 상에 증착시켰다. 2시간 후, 초순수로 기재를 3회 세척하고 부착되지 않은 입자들을 제거하고 질소 기체로 조심스럽게 건조시켰다. 시료의 스팟(633 nm 레이저를 1.03 μm 직경으로 초점화)을 각 스캔 당 3초 통합 시간을 사용하여 30회 스캔하였다. 도 6에 나타난 바와 같이, 리포터 염료의 선명한 라만 산란 띠를 수집하였다. 염료의 특성 모드로서 1487 cm-1 에서의 입자 당 라만 산란을 사용하여 각 나노입자의 SERS를 비교하였다. ~28.7 nm 두께의 쉘을 갖는 내부표면쪽에 나노엠보스를 가진 나노쉘로부터 가장 강한 라만 산란 신호를 획득하였다. 또한, 일정 두께 이상의 두꺼운 쉘을 가질 때 리포터 염료의 라만 산란이 감소하는 것을 확인하였다.The FDTD calculation confirmed the electromagnetic field enhancement inside the nanoembosses at the SERS excitation wavelength of 633 nm (FIG. 4). As shown in FIG. 4, a strong electromagnetic field was formed near the contact point between the nanoembosses and the core. In response to the distance between neighboring nanoembosses, in the case of AuNS having 100 nanoembosses, the strongest field (| E / E in | max. = 55) is formed by the contact of the nanoembosses with the core. It was obtained at two corners (Fig. 5). The shape of a single nanoemboss in contact with the core SiO 2 NPs was similar to a nanocrescent with sharp rounded corners. The antenna effect is known to cause strong local electromagnetic field enhancement around the sharp rounded corners of the nanocrescent moon. Similarly, forming a nanoshell layer on the nanoembossed silica core can form sharp features and allow for the formation of strong fields around the contact site. To assess the contribution of nanoembosses to the internal SERS, Raman scattering of the reporter dye [Ru (bpy) 3 ] 2+ inside each of the nanoembosses and the core SiO 2 in AuNS synthesized according to Example 1 Was measured. Figure 6 shows the Raman spectrum of the dye from AuNS with nanoembosses on the inner surface according to shell thickness. Shell thickness was controlled by varying the amount of nanoembossed SiO 2 NPs while maintaining the amount of HAuCl 4 in the same volume. The synthesized particles were deposited on a glass substrate modified with APTES. After 2 hours, the substrate was washed three times with ultrapure water and the unattached particles were removed and carefully dried with nitrogen gas. Spots of the sample (focusing the 633 nm laser to 1.03 μm diameter) were scanned 30 times using a 3 second integration time per scan. As shown in FIG. 6, clear Raman scattering bands of the reporter dye were collected. The SERS of each nanoparticle was compared using Raman scattering per particle at 1487 cm −1 as the characteristic mode of the dye. The strongest Raman scattering signals were obtained from nanoshells with nanoembosses on the inner surface with a shell of ˜28.7 nm thick. In addition, it was confirmed that the Raman scattering of the reporter dye is reduced when having a thick shell of a certain thickness or more.
SERS 증강에 대한 나노엠보스들의 기여도를 평가하기 위하여, 514 nm에서 여기시키고, 금 나노쉘이 없는 SiO2 NP 내부에 있는 리포터 염료의 라만 산란은 매우 약하여 측정이 어렵기 때문에 이의 형광을 측정하고, 내부표면쪽으로 나노엠보스들을 가진 AuNS은 SERS 스펙트럼을 측정하여 신호-대-잡음 비를 비교하였다. 도 7에 나타난 바와 같이, 나노엠보스들의 존재시, 단일 나노쉘 당 라만 산란은 나노쉘 층 없이 이에 상응하는 단일 나노입자의 형광 신호만큼 강하였다. 514 nm에서 리포터 염료의 형광 효율(fluorescence cross section, ~2.0×10-19 cm-2) 및 염료의 라만 효율(Raman cross section, ~2.9×10-26 cm- 2)을 고려할 때, 라만 신호 증강 인자(enhancement factor; EF)는 107 수준이다. λex = 633 nm에서 SERS 세기는 λex = 514 nm에서의 세기보다 2자리수 더 높으나 633 nm 레이저 출력이 514 nm 레이저에 비해 1자리수 더 낮으므로, λex = 633 nm에서 EF는 최소한 1010 수준일 수 있다.To assess the contribution of nanoembosses to SERS enhancement, the fluorescence was measured by excitation at 514 nm and the Raman scattering of the reporter dye inside SiO 2 NP without gold nanoshell was very weak and difficult to measure, AuNS with nanoembosses toward the inner surface measured the SERS spectrum and compared the signal-to-noise ratio. As shown in FIG. 7, in the presence of nanoembosses, Raman scattering per single nanoshell was as strong as the fluorescent signal of the corresponding single nanoparticle without the nanoshell layer. In 514 nm fluorescence efficiency (fluorescence cross section, ~ 2.0 × 10 -19 cm -2) and Raman efficiency of the dye of the reporter dye-Considering the (Raman cross section, ~ 2.9 × 10 -26 2 cm), the Raman signal enhancement Enhancement factor (EF) is 10 7 level. λ ex = from 633 nm SERS intensity λ ex = 2 digits than the intensity at 514 nm The high but 633 nm, since laser output is one digit lower than the 514 nm laser, λ ex = from 633 nm EF is at least 10 10 Level Can be.
나아가, 나노엠보스들을 가진, 염료 도핑된 AuNS의 SERS 세기를 내부표면쪽에 나노엠보스들이 없는 AuNS의 코어 SiO2 NP 의 내부에 그리고 편평한 외부 표면 상에 있는 염료의 SERS 세기 각각과 비교하였다(도 8). 도 8에 나타난 바와 같이, 나노엠보스를 가진 AuNS의 SERS 신호는 다른 두개 구조의 SERS 신호와 유사하였다. 단순한 AuNS 상에서 SERS는 0.5 mM의 리포터 염료 농도에서 포화되는 경향을 나타내었다. 나노엠보스를 가진 AuNS로부터 획득한 SERS 세기는 편평한 AuNS 상의 1 mM 농도의 리포터 염료로부터의 신호보다 약 2배 더 높았다. AuNS 표면 상에 그리고 나노엠보스들의 내부에 있는 염료 분자들의 수가 불명확하므로, 현재로서는 2개 구조에 의해 유발되는 SERS 증강의 정확한 비교는 불가능하다. 그러나, 이와 같은 결과는 나노엠보스들이 나노쉘 외부 표면 상의 신호만큼 강한 내부 라만 신호 수집을 가능하게 함을 나타내는 것이다. 나노엠보싱된 코어 SiO2 NP 및 리포터 염료가 도핑된 코어 SiO2 NP의 유사한 흡수 스펙트럼으로부터 상기 2개 구조에서 현저한 염료 수의 차이는 없음을 확인하였다(도 9). 리포터 염료 분자의 수를 고려할 때, 내부 나노쉘 층은 강한 SERS 신호를 제공하는데에 AuNS 코어만큼 효율적이었다. 또한, 나노엠보싱 기법은 다른 2개 기법과 비교하여, 강한 장을 형성하기 위한 대안일 뿐만 아니라 충분한 수의 라만 리포터 염료를 담지하기 위한 대안일 수 있다.Furthermore, the SERS intensity of the dye doped AuNS with nanoembosses was compared with the SERS intensity of the dye inside the core SiO 2 NP of AuNS without nanoembosses on the inner surface and on the flat outer surface, respectively (FIG. 8). As shown in FIG. 8, the SERS signal of AuNS with nanoembosses was similar to that of the other two structures. SERS on simple AuNS showed a tendency to saturate at a reporter dye concentration of 0.5 mM. The SERS intensity obtained from AuNS with nanoembosses was about 2 times higher than the signal from the reporter dye at 1 mM concentration on flat AuNS. Since the number of dye molecules on the AuNS surface and inside the nanoembosses is unclear, an accurate comparison of SERS enhancement caused by the two structures is currently impossible. However, these results indicate that nanoembosses enable internal Raman signal collection as strong as the signal on the nanoshell outer surface. Similar absorption spectra of the nanoembossed core SiO 2 NP and the reporter dye doped core SiO 2 NP confirmed that there was no significant difference in the number of dyes in the two structures (FIG. 9). Given the number of reporter dye molecules, the inner nanoshell layer was as efficient as the AuNS core to provide strong SERS signals. In addition, the nanoembossing technique may be an alternative to carrying a sufficient number of Raman reporter dyes, as well as an alternative to forming a strong field, compared to the other two techniques.
AuNS의 내부 쉘 층이, 나노쉘의 표면 또는 코어 내부에서 만큼, 강한 SERS 신호를 생성하기 위한 신규한 위치를 제공할 수 있음을 확인하였다. 나노엠보스를 가진 AuNS의 내부 구조는 일련의 배열된 초승달과 닮아있다. 초승달과 유사하게, 내부면이 가공된 AuNS는 강한 장을 생성하는 구조를 갖는다. 결과적으로, 상기 구조를 통해 633 nm 여기 파장에서 1010 SERS 증강을 달성할 수 있었다. 785 nm 및 633 nm 여기 파장에서의 유사한 SERS 세기(도 10)는 나노엠보스를 가진 AuNS가 생물학적 시료의 검출 및 영상화에 유용하게 사용될 수 있음을 나타내는 것이다.It was found that the inner shell layer of AuNS could provide a novel location for generating strong SERS signals, as much as on the surface or inside the core of the nanoshell. The internal structure of AuNS with nanoembosses resembles a series of arranged crescents. Similar to the crescent moon, the machined AuNS has a structure that produces a strong field. As a result, the structure was able to achieve 10 10 SERS enhancement at 633 nm excitation wavelength. Similar SERS intensities at 785 nm and 633 nm excitation wavelengths (FIG. 10) indicate that AuNS with nanoembosses can be usefully used for detection and imaging of biological samples.
마지막으로, 본 발명자들은 나노엠보싱 구조물의 각기 다른 위치에 리포터 염료를 포함하도록 제조하고 상기 리포터 염료의 SERS를 측정하였다(도 13). 일체형 구조(all-in-one structure)의 측정된 총 SERS는 3개의 단순 합계보다 더 높았다. 일체형 구조에 사용된, 염료가 도핑된 실리카 코어는 염료가 도핑되지 않은 실리카 코어보다 크기 때문에 보다 많은 수의, 염료가 도핑된 엠보스가 이에 부착될 수 있고(도 14d), 금 나노쉘 구조를 형성하였을 때 표면의 거칠기가 더 크므로(도 14b), 결과적으로, 다른 3개 AuNS에 비해 현저히 높은 SERS를 획득할 수 있었다.Finally, the inventors prepared to include reporter dyes at different locations of the nanoembossing structure and measured the SERS of the reporter dye (FIG. 13). The measured total SERS of the all-in-one structure was higher than three simple sums. The dye-doped silica cores used in the monolithic structures are larger than the dye-doped silica cores, so that a greater number of dye-doped embosses can be attached thereto (FIG. 14D), forming gold nanoshell structures. When the surface roughness is larger (Fig. 14b), as a result, it was possible to obtain a significantly higher SERS than the other three AuNS.

Claims (23)

  1. 표면상에 나노 볼록부를 가진 코어; 및 상기 나노 볼록부에 대응되는 나노 오목부를 내부표면쪽에 가진 금속 쉘을 포함하되, 코어의 나노 볼록부에도 라만활성물질이 담지되어 있는 것인, 표면증강라만산란(SERS) 나노입자.A core having nano convex portions on the surface; And a metal shell having a nano concave portion corresponding to the nano convex portion on an inner surface thereof, wherein the Raman active material is also supported on the nano convex portion of the core, wherein the surface-enhanced Raman scattering (SERS) nanoparticle.
  2. 제1항에 있어서, 표면상에 나노 볼록부를 가진 코어는 나노 볼록부의 바닥면 테두리에 전자기장의 형성이 가능한 예리한 모서리를 가지는 것이 특징인, SERS 나노입자.The SERS nanoparticle of claim 1, wherein the core having the nanoconvex portion on the surface has a sharp edge capable of forming an electromagnetic field at the bottom edge of the nanoconvex portion.
  3. 제1항에 있어서, 나노 오목부를 내부표면쪽에 가진 금속 쉘은 나노 오목부에 대응되는 국소 영역에 강한 전자기장이 발생하는 핫스팟을 만들고, 이로부터 증가된 라만 신호를 제공하는 것이 특징인, SERS 나노입자.2. The SERS nanoparticle of claim 1, wherein the metal shell having the nano recesses on the inner surface creates hot spots in which a strong electromagnetic field is generated in a local region corresponding to the nano recesses, thereby providing an increased Raman signal. .
  4. 제1항에 있어서, 금속 쉘 외부표면 상에도 라만활성물질이 담지되어 있는 것이 특징인, SERS 나노입자.The SERS nanoparticles according to claim 1, wherein the Raman active material is also supported on the outer surface of the metal shell.
  5. 제1항에 있어서, 코어의 평균 직경은 20 ~ 1000 nm인 것이 특징인, SERS 나노입자.The SERS nanoparticles of claim 1, wherein the core has an average diameter of 20 to 1000 nm.
  6. 제1항에 있어서, 나노 볼록부의 평균 직경은 5 ~ 50 nm인 것이 특징인, SERS 나노입자.According to claim 1, SERS nanoparticles, characterized in that the average diameter of the nano-convex portion is 5 ~ 50 nm.
  7. 제1항에 있어서, 나노 쉘의 두께는 1 ~ 50 nm인 것이 특징인, SERS 나노입자.The SERS nanoparticles of claim 1, wherein the nanoshells have a thickness of 1 to 50 nm.
  8. 제1항에 있어서, 코어의 재료는 실리카, 황화금(gold sulfide), 이산화티타늄(titanium dioxide), 폴리메틸메타크릴레이트(polymethyl methacrylate; PMMA), 폴리스티렌 하이드로겔(polystyrene, hydrogels) 및 이들의 조합으로 구성된 군에서 선택된 것이 특징인 SERS 나노입자.The material of claim 1 wherein the core material is silica, gold sulfide, titanium dioxide, polymethyl methacrylate (PMMA), polystyrene, hydrogels, and combinations thereof. SERS nanoparticles characterized in that selected from the group consisting of.
  9. 제1항에 있어서, 표면상에 나노 볼록부를 가진 코어는 (+) 전하를 띠는 실리카 및 (-)전하를 띠는 실리카의 정전기력에 의한 자가조립에 의해 형성된 것이 특징인 SERS 나노입자.The SERS nanoparticles of claim 1, wherein the core having nanoconvex portions on the surface is formed by self-assembly by electrostatic forces of (+)-charged silica and (-)-charged silica.
  10. 제1라만활성물질을 담지하고 (+) 전하를 띠는 코어부 및 상기 코어부의 표면상에 형성되어 있으면서 제2라만활성물질을 담지하고 (-) 전하를 띠는 나노 볼록부를 구비하는 제1코어; 또는 A first core supporting a first Raman active material and having a (+) charge core portion and a nano-convex portion formed on the surface of the core portion and carrying a second Raman active material and having a (−) charge ; or
    제1라만활성물질을 담지하고 (-) 전하를 띠는 코어부 및 상기 코어부의 표면상에 형성되어 있으면서 제2라만활성물질을 담지하고 (+) 전하를 띠는 나노 볼록부를 구비하는 제2코어; 및A second core supporting a first Raman active material and having a (-) charge core portion and a nano-convex portion supporting a second Raman active material and having a (+) charge on the surface of the core portion; ; And
    상기 나노 볼록부에 대응되는 나노 오목부를 내부 표면쪽에 가진 금속 쉘을 포함하는 표면증강라만산란(SERS) 나노입자.Surface-enhanced Raman scattering (SERS) nanoparticles comprising a metal shell having a nano-concave corresponding to the nano-convex portion on the inner surface side.
  11. 제10항에 있어서, 제1라만활성물질 및 제2라만활성물질은 동일 또는 상이한 것이 특징인 SERS 나노입자.The SERS nanoparticle of claim 10, wherein the first Raman activator and the second Raman activator are the same or different.
  12. 제10항에 있어서, (+) 전하를 띠는 실리카는 아민으로 개질된 실리카이거나, (-) 전하를 띠는 실리카는 카르복실기로 개질된 실리카인 것이 특징인 SERS 나노입자.11. The SERS nanoparticle of claim 10, wherein the positively charged silica is silica modified with amine or the negatively charged silica is silica modified with carboxyl groups.
  13. 실리카 코어를 (+) 또는 (-) 전하를 띠도록 개질하는 제1단계;A first step of modifying the silica core to carry a (+) or (−) charge;
    제1단계에서 형성된 실리카 코어와 반대 전하를 띠면서, 라만활성물질이 도핑된 실리카 나노입자들을 정전기적 상호작용을 통해 제1단계에서 형성된 실리카 코어 표면상에 조립시켜, 나노 볼록부를 구비하는 실리카 코어를 제조하는 제2단계;Silica core having nano convex portions by assembling the silica nanoparticles doped with the Raman active material on the surface of the silica core formed in the first step through electrostatic interaction, having opposite charges to the silica core formed in the first step. Preparing a second step;
    라만활성물질을 제2단계에서 형성된 실리카 코어에 로딩하는 제3단계;A third step of loading the Raman active material on the silica core formed in the second step;
    제3단계에서 형성된 실리카 코어에 금속 나노종자들을 부착시키는 제4단계;Attaching metal nano seeds to the silica core formed in the third step;
    성장용액에서 나노종자를 성장시켜 나노 볼록부를 가진 실리카 코어 주위에 상기 나노 볼록부에 대응되는 나노 오목부를 내부 표면쪽에 가진 금속쉘을 형성시키는 제5단계를 포함하여, 제1항 또는 제11항에 기재된 표면증강라만산란(SERS) 나노입자를 제조하는 방법.12. The method of claim 1, further comprising forming a metal shell having nano concave portions corresponding to the nano convex portions on the inner surface of the growth core by growing nano seeds. A method of making the surface enhanced Raman scattering (SERS) nanoparticles described.
  14. 제1항 내지 제12항 중 어느 한 항에 기재된 표면증강라만산란(SERS) 나노입자를 구비한 라만 프로브.The Raman probe provided with the surface-enhanced Raman scattering (SERS) nanoparticle in any one of Claims 1-12.
  15. 기재 상에 제1항 내지 제12항 중 어느 한 항에 기재된 표면증강라만산란(SERS) 나노입자들이 코팅된 표면증강라만산란(SERS) 기재.A surface enhanced Raman scattering (SERS) substrate coated with the surface enhanced Raman scattering (SERS) nanoparticles according to any one of claims 1 to 12 on the substrate.
  16. 제15항에 있어서, SERS 나노입자 함유 코팅층은 SERS 나노입자들의 접근 또는 접촉에 의해 인접한 SERS 나노입자들 사이에서 추가로 전자기장 증폭을 유도하는 것이 특징인 SERS 기재.16. The SERS substrate of claim 15, wherein the SERS nanoparticle containing coating layer further induces electromagnetic field amplification between adjacent SERS nanoparticles by access or contact of the SERS nanoparticles.
  17. a) 제1항 내지 제12항 중 어느 한 항에 기재된 표면증강라만산란(SERS) 나노입자의 표면을 검출하고자 하는 분석물과 결합할 수 있는 바이오분자(biomolecules) 또는 화합물로 기능화하는 단계;a) functionalizing the surface of the surface enhanced Raman scattering (SERS) nanoparticles according to any one of claims 1 to 12 with biomolecules or compounds capable of binding to the analyte to be detected;
    b) 기능화된 SERS 나노입자를 하나 이상의 분석물을 포함하는 시료에 노출시키는 단계; 및 b) exposing the functionalized SERS nanoparticles to a sample comprising one or more analytes; And
    c) 라만 분광법을 이용하여 SERS 나노입자가 결합된 분석물을 확인하는 단계를 포함하는, 분석물을 검출 또는 영상화하는 방법.c) identifying the analyte to which the SERS nanoparticles are bound using Raman spectroscopy.
  18. i) 제1항 내지 제12항 중 어느 한 항에 기재된 표면증강라만산란(SERS) 나노입자의 표면을 검출하고자 하는 핵산에 상보적인 바이오분자 또는 화합물로 기능화하는 단계;i) functionalizing the surface of the surface enhanced Raman scattering (SERS) nanoparticles according to any one of claims 1 to 12 with a biomolecule or compound complementary to the nucleic acid to be detected;
    ii) 상기 기능화된 SERS 나노입자들을 검출하고자 하는 핵산을 함유하는 것으로 예상되는 시료와 반응시켜 혼성화를 수행하는 단계; 및ii) performing hybridization by reacting the functionalized SERS nanoparticles with a sample that is expected to contain a nucleic acid to be detected; And
    iii) 라만 분광법을 수행하여 SERS 나노입자가 결합된 상기 검출하고자 하는 핵산의 존재, 양 또는 둘 모두를 확인하는 단계를 포함하는, 핵산 검출 방법.iii) performing Raman spectroscopy to confirm the presence, amount or both of the nucleic acid to be detected to which the SERS nanoparticles are bound.
  19. 제18항에 있어서,The method of claim 18,
    상기 검출하고자 하는 핵산을 함유하는 것으로 예상되는 시료는 채취한 시료 자체로 사용하거나, 이로부터 검출하고자 하는 핵산을 분리, 정제 또는 증폭시켜 사용하는 것인 핵산 검출 방법.The sample that is expected to contain the nucleic acid to be detected is used as the collected sample itself, or the nucleic acid to be detected therefrom separated, purified or amplified.
  20. 제18항에 있어서, 상기 핵산 검출방법은 질병의 진단, 신원확인, 혈연관계 확인, 세균이나 세포 동정 또는 동식물의 원산지 확인을 위한 핵산 검출방법인 것이 특징인 핵산 검출방법.19. The nucleic acid detection method according to claim 18, wherein the nucleic acid detection method is a nucleic acid detection method for diagnosing a disease, identifying an identity, confirming a kinship relationship, identifying a bacterium or a cell, or confirming the origin of an animal or a plant.
  21. 제18항에 있어서, 상기 핵산 검출방법은 단일 염기 다형성(SNP)의 검출방법인 것이 특징인 핵산 검출방법.19. The nucleic acid detection method according to claim 18, wherein the nucleic acid detection method is a method for detecting single nucleotide polymorphism (SNP).
  22. 표면상에 나노 볼록부를 가진 코어; 및 상기 나노 볼록부에 대응되는 나노 오목부를 내부표면쪽에 가진 금속 쉘을 포함하는, 표면증강라만산란(SERS) 기재.A core having nano convex portions on the surface; And a metal shell having a nano-concave portion corresponding to the nano-convex portion on an inner surface side thereof, surface enhanced Raman scattering (SERS) substrate.
  23. 제22항에 있어서, 상기 금속 쉘의 두께는 나노 볼록부의 직경보다 작아서 금속 쉘과 나노 볼록부의 계면 또는 외부로 노출된 쉘의 표면에서 핫스팟이 형성되는 것인 표면증강라만산란(SERS) 기재.23. The surface enhanced Raman scattering (SERS) substrate of claim 22, wherein the thickness of the metal shell is smaller than the diameter of the nano-convex portion such that a hot spot is formed at the interface of the metal shell and the nano-convex portion or the shell exposed to the outside.
PCT/KR2016/005379 2015-12-11 2016-05-20 Surface-enhanced raman scattering (sers) nanoparticles, method for preparing same, and applications thereof WO2017099313A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0177298 2015-12-11
KR1020150177298A KR101802386B1 (en) 2015-12-11 2015-12-11 A nanoparticle for surface-enhanced resonance scattering, a method for preparing the same, and use thereof

Publications (1)

Publication Number Publication Date
WO2017099313A1 true WO2017099313A1 (en) 2017-06-15

Family

ID=59013465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/005379 WO2017099313A1 (en) 2015-12-11 2016-05-20 Surface-enhanced raman scattering (sers) nanoparticles, method for preparing same, and applications thereof

Country Status (2)

Country Link
KR (1) KR101802386B1 (en)
WO (1) WO2017099313A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019139383A1 (en) * 2018-01-10 2019-07-18 서울대학교 산학협력단 Dealloying-based plasmonic internal nanogap nanoparticles, producing method therefor and use thereof
CN110426385A (en) * 2019-08-14 2019-11-08 山东师范大学 A kind of flexible surface enhancing Raman substrate and preparation method and application
CN111230138A (en) * 2020-01-16 2020-06-05 暨南大学 Pi-Pi directional self-assembly-based three-dimensional gold super particle, preparation and application thereof in SERS substrate
WO2020240077A1 (en) * 2019-05-28 2020-12-03 Tampere University Foundation Sr Gold nanoclusters
CN112496334A (en) * 2020-11-06 2021-03-16 杭州苏铂科技有限公司 Surface enhanced Raman scattering substrate and preparation method thereof

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102071507B1 (en) * 2018-03-26 2020-01-30 국민대학교산학협력단 Hydrogel structure for a biosensor, biosensor including the same, method of preparing the hydrogel structure for the biosensor
KR102088262B1 (en) * 2018-06-21 2020-03-12 재단법인 대구경북첨단의료산업진흥재단 One-step isothermal detection method of gene mutation using hairpins formed on a gold nanoshell
KR102190796B1 (en) 2019-02-12 2020-12-14 건국대학교 산학협력단 Multi-layered core-shell particle comprising SERS signal as internal standard and detection method of target analyte using the same
KR102246333B1 (en) * 2019-09-05 2021-04-29 한국표준과학연구원 Raman-active Particle for Surface Enhanced Raman Scattering and the Fabrication Method Thereof
KR102264468B1 (en) * 2019-11-29 2021-06-16 한국생산기술연구원 Durable SERS substrate and a method for manufacturing the same
KR102318432B1 (en) * 2020-03-13 2021-10-28 광운대학교 산학협력단 Method for fabricating Ag-Au-Pt alloy nanoparticles
KR102318428B1 (en) * 2020-03-13 2021-10-28 광운대학교 산학협력단 Method for fabricating Ag-Pt alloy nanoparticles
KR102393356B1 (en) * 2021-02-19 2022-04-29 전북대학교산학협력단 Methods of preparing metal nano-particles by using carbon quantum dot, metal nano-particles prepared thereby, sensors comprising them
CN113275583B (en) * 2021-05-11 2022-07-01 安徽大学 Preparation method and detection method of SERS substrate for pesticide residues
KR102571090B1 (en) * 2021-05-27 2023-08-29 한국과학기술연구원 Sulfide ion colorimetric detection sensor including gold nanostars, sulfide ion colorimetric detection method using the same, and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130028840A1 (en) * 2008-02-29 2013-01-31 Katholieke Universiteit Leuven, K.U. Leuven R&D Fabrication of conducting open nanoshells
KR101247610B1 (en) * 2009-12-11 2013-03-26 서울대학교산학협력단 Dimeric core-shell nanoparticles labeled with Raman active molecule localized at interparticle junction, use thereof and method for preparing thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2635272T3 (en) 2007-03-20 2017-10-03 Becton, Dickinson And Company Assay using active particles in surface enhanced Raman spectroscopy (SERS)
KR101352342B1 (en) * 2010-11-24 2014-02-17 서울대학교산학협력단 Intra-nanogapped core-shell nanoparticle and preparation method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130028840A1 (en) * 2008-02-29 2013-01-31 Katholieke Universiteit Leuven, K.U. Leuven R&D Fabrication of conducting open nanoshells
KR101247610B1 (en) * 2009-12-11 2013-03-26 서울대학교산학협력단 Dimeric core-shell nanoparticles labeled with Raman active molecule localized at interparticle junction, use thereof and method for preparing thereof

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
CHOI HYUN JI ET AL., JOURNAL OF KOREAN POWDERMETALLURGY INSTITUTE, vol. 21, no. 6, 2014, pages 441 - 446 *
KHURANA, PARUL ET AL.: "Speckled Si02@Au core-shell particles as surface enhanced Raman scattering probes", PLASMONICS, vol. 8, no. 2, 2013, pages 185 - 191, XP055598928, ISSN: 1557-1955, DOI: 10.1007/s11468-012-9374-0 *
KIM, J H: "Nanoembossed gold nanoshell with a fluorescence-like strong SERS signal", NANOTECHNOLOGY, 17 March 2016 (2016-03-17), pages 175704, XP020303541, DOI: doi:10.1088/0957-4484/27/17/175704 *
PARK, SANG-JAE, CONTROLLING THE MORPHOLOGY AND OPTICAL PROPERTIES OF NANOSTRUCTURED MATERIALS: FROM INORGANIC NANOPARTICLES TO CONJUGATED POLYMERS, 2011, pages 1 - 13 4, XP055598931 *
PHAM, TAN: "Preparation and characterization of gold nanoshells coated with self-assembled monolayers", LANGMUIR, 2002, pages 4915 - 4920, XP002377148, DOI: doi:10.1021/la015561y *
PRESTON, THOMAS C.: "Growth and optical properties of gold nanoshells prior to the formation of a continuous metallic layer", ACS NANO, vol. 3, no. 11, 24 November 2009 (2009-11-24), pages 3696 - 3706, XP055598938 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019139383A1 (en) * 2018-01-10 2019-07-18 서울대학교 산학협력단 Dealloying-based plasmonic internal nanogap nanoparticles, producing method therefor and use thereof
WO2020240077A1 (en) * 2019-05-28 2020-12-03 Tampere University Foundation Sr Gold nanoclusters
CN110426385A (en) * 2019-08-14 2019-11-08 山东师范大学 A kind of flexible surface enhancing Raman substrate and preparation method and application
CN111230138A (en) * 2020-01-16 2020-06-05 暨南大学 Pi-Pi directional self-assembly-based three-dimensional gold super particle, preparation and application thereof in SERS substrate
CN111230138B (en) * 2020-01-16 2022-06-21 暨南大学 Pi-Pi directional self-assembly-based three-dimensional gold super particle, preparation and application thereof in SERS substrate
CN112496334A (en) * 2020-11-06 2021-03-16 杭州苏铂科技有限公司 Surface enhanced Raman scattering substrate and preparation method thereof

Also Published As

Publication number Publication date
KR101802386B1 (en) 2017-11-30
KR20170070351A (en) 2017-06-22

Similar Documents

Publication Publication Date Title
WO2017099313A1 (en) Surface-enhanced raman scattering (sers) nanoparticles, method for preparing same, and applications thereof
WO2012070893A2 (en) Single nanoparticle having a nanogap between a core material and a shell material, and manufacturing method thereof
WO2011071343A2 (en) Heterodimer core-shell nanoparticle in which raman-active molecules are located at a binding portion of a nanoparticle heterodimer, use thereof, and method for preparing same
Dipalo et al. 3D plasmonic nanoantennas integrated with MEA biosensors
Hudson et al. Bioanalytical applications of SERS (surface-enhanced Raman spectroscopy)
US20160266104A1 (en) Heterodimeric core-shell nanoparticle in which raman-active molecules are located at a binding portion of a nanoparticle heterodimer, use thereof, and method for preparing same
Jun et al. Surface-enhanced Raman scattering-active nanostructures and strategies for bioassays
Cherukulappurath et al. Rapid and sensitive in situ SERS detection using dielectrophoresis
WO2019139383A1 (en) Dealloying-based plasmonic internal nanogap nanoparticles, producing method therefor and use thereof
WO2021045287A1 (en) Raman active particle for surface-enhanced raman scattering, and preparation method therefor
Vo-Dinh et al. Plasmonics-based nanostructures for surface-enhanced Raman scattering bioanalysis
Brady et al. Self-assembly approach to multiplexed surface-enhanced Raman spectral-encoder beads
US20200385790A1 (en) Heterodimeric core-shell nanoparticle in which raman-active molecules are located at a binding portion of a nanoparticle heterodimer, use thereof, and method for preparing same
Heydari Nanoplasmonic biodetection based on bright-field imaging of resonantly coupled gold-silver nanoparticles
Wilson Nanoparticle-based surface-enhanced Raman spectroscopy
Zhang et al. ISERS microscopy for tissue-based cancer diagnostics with SERS nanotags
Vo-Dinh et al. Surface-enhanced Raman scattering (SERS) for biomedical diagnostics
WO2023211159A1 (en) Core-gap-shell nanoparticle having uniform nanogap therein by virtue of galvanic substitution and reduction reaction, method for producing same, and use thereof
Wu DNA DIRECTED SELF-ASSEMBLED NANOSTRUCTURES FOR SURFACE ENHANCED RAMAN SCATTERING
Deji et al. Surface Enhanced Raman Spectroscopy (SERS) based graphene oxide nanocomposites in biomedical applications
Festag et al. Chip-based molecular diagnostics using metal nanoparticles
Karabıçak Application of Surface-Enhanced Raman Scattering (SERS) method for genetic analyses
Sun Development of SERS based biosensing techniques for multiplexed oligonucleotides and pathogenic bacteria detection
Strelau et al. Easy characterization of SERS substrates of enzymatically produced silver nanoparticles and their applications in the area of bioanalytics
Vo-Dinh et al. Surface-Enhanced Raman Scattering for Biomedical Diagnostics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16873179

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 31.10.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16873179

Country of ref document: EP

Kind code of ref document: A1