WO2017099224A1 - Heavy oil emulsion production method, heavy oil emulsion transport method, and heavy oil emulsion - Google Patents

Heavy oil emulsion production method, heavy oil emulsion transport method, and heavy oil emulsion Download PDF

Info

Publication number
WO2017099224A1
WO2017099224A1 PCT/JP2016/086751 JP2016086751W WO2017099224A1 WO 2017099224 A1 WO2017099224 A1 WO 2017099224A1 JP 2016086751 W JP2016086751 W JP 2016086751W WO 2017099224 A1 WO2017099224 A1 WO 2017099224A1
Authority
WO
WIPO (PCT)
Prior art keywords
heavy oil
oil emulsion
group
surfactant
carbon steel
Prior art date
Application number
PCT/JP2016/086751
Other languages
French (fr)
Japanese (ja)
Inventor
健夫 ▲高▼橋
慎弥 高橋
良太 黒須
Original Assignee
株式会社クレハ
日本乳化剤株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クレハ, 日本乳化剤株式会社 filed Critical 株式会社クレハ
Publication of WO2017099224A1 publication Critical patent/WO2017099224A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
    • C09K8/584Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids characterised by the use of specific surfactants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/32Liquid carbonaceous fuels consisting of coal-oil suspensions or aqueous emulsions or oil emulsions

Definitions

  • the present invention relates to a method for producing a heavy oil emulsion, a method for transporting a heavy oil emulsion, and a heavy oil emulsion.
  • Heavy oil such as bitumen is considered to have several times the initial reserves of ordinary light medium oil and is being developed to meet future crude oil demand.
  • heavy oil has a higher viscosity than light medium oil, it cannot be recovered from the formation by conventional methods such as self-injection or pumping by well drilling, so a sandstone layer containing heavy oil (oil sand or tar) Retrieval by the open pit mining method (also called sand) or direct recovery from the formation by in-situ methods.
  • Recovery by open pit mining is performed, for example, by the following process. That is, a relatively shallow formation containing heavy oil is cut and oil sand is mined, finely pulverized with a pulverizer, then mixed with warm water or steam in a mixer to form a slurry, and the slurry is applied to a separator Heavy oil is recovered through a step of separating heavy oil-containing components and solid sand, and a step of separating heavy oil and moisture.
  • an enhanced recovery method a method of reducing the viscosity of heavy oil using steam is known.For example, two vertical wells are drilled, steam is injected from one of them, and heated with steam to form a formation.
  • heavy oil such as bitumen mined at the mining site is transported to a predetermined place by a pipeline or the like. Since heavy oil generally has a high viscosity, it is transported by a pipeline or the like after emulsifying the heavy oil to reduce the viscosity.
  • Patent Document 1 describes a method of emulsifying heavy oil with a surfactant.
  • Patent Document 2 describes a method of emulsifying heavy oil using a mixture of polyisobutylene, polyethylene glycol and nonylphenol.
  • Patent Document 3 describes a method in which heavy oil and hydrocarbon solids are reduced in viscosity with water, light oil, and a specific surfactant, and then transported.
  • Patent Document 4 describes an invention related to an emulsion of heavy oil.
  • a method of adding water to emulsify heavy oil is conceivable. Compared to the case where light oil is used for emulsification, water has advantages such as being inexpensive and available in many places. However, when the pipeline is made of a material such as carbon steel, there is a problem that the heavy oil emulsified with water is transported through the pipeline or the like, which may corrode the pipeline.
  • the present invention is an invention made in view of such a problem, even when heavy oil is emulsified using water and transported using a pipeline made of a material that rusts with water.
  • a method for producing a heavy oil emulsion capable of suppressing corrosion is provided.
  • the method for producing a heavy oil emulsion according to the present invention includes a mixing step of mixing a heavy oil with a surfactant to obtain a heavy oil emulsion, and the surfactant is 0.5% by weight.
  • the color difference ( ⁇ L * ab) of the carbon steel after the carbon steel is immersed in the aqueous solution in a 60 ° C. constant temperature bath for 3 days is less than 14.
  • the heavy oil emulsion according to the present invention is an emulsion containing heavy oil and a surfactant, and when the surfactant is a 0.5 wt% aqueous solution, carbon steel is added to the aqueous solution.
  • the color difference ( ⁇ L * ab) of the carbon steel after being immersed in a 60 ° C. constant temperature bath for 3 days is less than 14.
  • the manufacturing method of the heavy oil emulsion which concerns on one Embodiment of this invention includes the mixing process which mixes surfactant with heavy oil, and obtains heavy oil emulsion, Surfactant is 0.5 weight % Color solution ( ⁇ L * ab) of carbon steel after the carbon steel is immersed in the aqueous solution in a 60 ° C. constant temperature bath for 3 days.
  • Heavy oil emulsions obtained using such surfactants are less likely to rust materials that rust with water, such as carbon steel. Therefore, even when heavy oil is emulsified with water and transported using a pipeline made of a material that rusts with water, corrosion of the pipeline can be suppressed.
  • “heavy oil emulsion” means an emulsion obtained by emulsifying heavy oil, and is emulsified by a surfactant described later.
  • Heavy oil In general, if the viscosity measured at the oil phase temperature exceeds 10,000 cP, it is classified as bitumen, and if the viscosity is 10,000 cP or less, it is classified as crude oil. In addition, crude oil is further classified according to API specific gravity, and those exceeding 20 ° API are classified as medium light oil. In the present specification, heavy oil includes those of the above-mentioned bitumen and crude oil having an API specific gravity of 20 ° API or less.
  • the surfactant When the surfactant is a 0.5% by weight aqueous solution, the color difference ( ⁇ L * ab) of the carbon steel after the carbon steel is immersed in the aqueous solution in a 60 ° C. constant temperature bath for 3 days is less than 14. If it is.
  • the heavy oil emulsion obtained by using such a surfactant has a property of preventing rusting with water such as carbon steel.
  • Specific examples of the surfactant include those represented by the following formula (1).
  • R 1 O (AO) n R 2 ⁇ M + or R 1 R 3 ⁇ M + (1)
  • R 1 is a polycyclic phenyl group, an alkylphenyl group, an alkyl group or an alkenyl group
  • R 2 is a CH 2 COO group, an SO 3 group, a CH 2 CH 2 SO 3 group, or a CH 2 CH 2 group.
  • M is ammonium, alkanolamine, alkylamine or alkali metal
  • A is composed of ethylene, propylene and butylene.
  • R 3 is a COO group, SO 3 group or PO 3 group, and n is an integer of 0 to 100.
  • the polycyclic phenyl group include a distyrylphenol group and a cumylphenol group.
  • alkylphenyl group examples include a cresol group, an octylphenol group, a nonylphenol group, a distyrylalkylphenyl group, and the like.
  • alkyl group examples include octyl group, nonyl group, decyl group and the like.
  • alkenyl groups include oleyl, linole and linolein groups.
  • alkanolamine, alkylamine and ammonium examples include those represented by the following formula (2).
  • R 5 R 6 R 7 N (2) (Wherein R 5 , R 6 and R 7 are each independently or independently of each other, hydrogen, a linear or branched alkyl group having 1 to 8 carbon atoms, or a straight chain having 2 to 4 carbon atoms. Or a branched hydroxyalkyl group.)
  • alkali metal examples include Li, Na and K.
  • alkanolamine is more preferable. Thereby, the more excellent rust prevention effect is acquired.
  • Examples of the surfactant represented by the formula (1) include polyoxyalkylene polycyclic phenyl ether sulfate alkanolamine salts such as polyoxyethylene polycyclic phenyl ether sulfate triethanolamine salts, and polyoxyethylene tridecyl. And polyoxyalkylene alkyl ether sulfate alkanolamine salts such as ether sulfate triethanolamine salts.
  • the polyoxyethylene polycyclic phenyl ether sulfate NH 4 salt and the polyoxyethylene polycyclic phenyl ether sulfate triethanolamine are preferred because the resulting heavy oil emulsion is less likely to rust the carbon steel pipeline.
  • a salt is preferable, and among them, a polyoxyalkylene polycyclic phenyl ether sulfate alkanolamine salt is more preferable because the resulting heavy oil emulsion has high stability over time.
  • polyoxyethylene alkyl ether sulfate triethanolamine salt and polyoxyethylene polycyclic phenyl ether sulfate ester tri A mixture of at least one of ethanolamine salt and polyoxyethylene alkyl ether is used, and polyoxyethylene polycyclic phenyl ether sulfate triethanol with respect to 1 part by weight of polyoxyethylene alkyl ether sulfate triethanolamine salt. More preferably, the amount of at least one of the amine salt and the polyoxyethylene alkyl ether is 0.5 to 4 parts by weight.
  • the other dispersoid or the dispersion medium, the heavy oil, and the surfactant may be stirred in a container or the like.
  • the dispersant or dispersoid to be mixed with the heavy oil may be anything that can be emulsified with the surfactant to be mixed, but water is preferable. Since water is cheap and has many places where it can be obtained, it is possible to more easily produce a heavy oil emulsion. Moreover, when using water, it is feared that the pipeline etc. which are used for transportation of heavy oil emulsion will be rusted. However, according to one embodiment of the present invention, even if the pipeline or the like is made of a material that rusts with water, it is difficult to rust. Therefore, water can be used as a dispersant or a dispersoid.
  • the amount of water to be mixed with the heavy oil may be appropriately set according to the viscosity of the intended heavy oil emulsion, and is preferably 10% by weight or more based on the whole heavy oil emulsion to be produced. More preferably, it is more than wt%. Moreover, 40 weight% or less is preferable, 30 weight% or less is more preferable, and 20 weight% or less is further more preferable. If it is 10 weight% or more, a viscosity can fully be made low and it can emulsify easily. By making the amount as small as 40% by weight or less, pipelines and the like can be made more difficult to rust.
  • the amount of the surfactant to be mixed with the heavy oil and water may be appropriately set according to the target viscosity and the like, preferably 0.1% by weight or more based on the whole heavy oil emulsion to be produced, 0.2 weight% or more is more preferable. Moreover, 10 weight% or less is preferable and 5 weight% or less is more preferable.
  • the temperature at the time of stirring is preferably 0 ° C. or higher and 100 ° C. or lower. If it is the temperature of this range, it can mix and emulsify easily. For example, it can be easily emulsified in a short time of 5 minutes or less and with a weak force with a peripheral speed of 20 m / s or less during stirring.
  • the stirring method may be carried out using a conventionally known mixing device or the like, and devices such as a homomixer and a homogenizer with particularly high shearing force are not required.
  • the viscosity of the heavy oil emulsion obtained by the mixing step is preferably 5000 cP or less, and more preferably 1000 cP or less. If the said viscosity will be 5000 cP or less, since the viscosity of a heavy oil emulsion is low enough, it will become easy to collect
  • the pH of the heavy oil emulsion may be adjusted.
  • the pH is preferably 8 or more and 10 or less. If it is this range, the pipeline etc. which are used for transportation can be made hard to rust.
  • the pH may be adjusted using an amine corresponding to the counter ion of the emulsifier, and examples of the amine include an aqueous ammonia solution and triethanolamine.
  • additives may be added as necessary in addition to heavy oil, water and surfactant.
  • examples of the additive include light oil and rust preventive agent.
  • the transportation method of the heavy oil emulsion which concerns on one Embodiment of this invention transports the heavy oil emulsion obtained by the manufacturing method of the heavy oil emulsion which concerns on one embodiment of the above-mentioned this invention.
  • a pipeline As a means for transporting, a pipeline is mentioned, for example.
  • the material of the pipeline include carbon steel such as API-5L and stainless steel (SUS).
  • the pipeline may be corroded by water.
  • the above-mentioned surfactant is used, a heavy oil emulsion that hardly rusts water-rusting materials such as carbon steel can be obtained. That is, inexpensive and easily available water can be used to emulsify the heavy oil.
  • the heavy oil emulsion according to one embodiment of the present invention is an emulsion containing heavy oil and a surfactant, and the surfactant is an aqueous solution of 0.5% by weight.
  • the color difference of the carbon steel after dipping the carbon steel in a 60 ° C. constant temperature bath for 3 days is less than 14.
  • the heavy oil emulsion further contains water.
  • the weight of water relative to the total amount of the heavy oil emulsion is more preferably 10% by weight or more and 40% by weight or less.
  • the heavy dispersion diameter is 0.01 to 100 ⁇ m, and the growth of the dispersion diameter is 0.01 to 500 ⁇ m.
  • the heavy oil emulsion can be suitably transported by the heavy oil emulsion manufacturing method according to one embodiment of the present invention, but the heavy oil emulsion manufacturing method according to the present invention can be carried out.
  • the specific embodiment is not limited to this.
  • extraction of a heavy oil emulsion from a place buried in the ground can be suitably performed.
  • the mixing step may be performed by mixing the above-described surfactant with a raw material containing heavy oil, and may further include an extraction step of extracting the heavy oil emulsion from the raw material.
  • the raw material includes soil, and more specifically, the soil where heavy oil is buried.
  • the mixing step is a step of mixing the surfactant with the soil at the buried location in the buried location of heavy oil,
  • the heavy oil is extracted from the soil at the buried location.
  • Examples of the method of mixing the surfactant with the soil in the buried location include a method of adding the surfactant as an aqueous solution and a method of spraying the surfactant as a powder. Moreover, you may mix by adding melted surfactant. Furthermore, a method of mixing a supported surfactant is also included.
  • Examples of the method for extracting the heavy oil emulsion from the soil containing the heavy oil emulsion formed by mixing with the surfactant at the buried location include precipitation separation, centrifugation, filtration and the like.
  • the pipeline used for transportation is an emulsion that hardly rusts, and can be transported while inhibiting corrosion of the pipeline.
  • the manufacturing method of the heavy oil emulsion which concerns on this embodiment includes the mixing process which mixes surfactant with heavy oil, and obtains heavy oil emulsion,
  • the said surfactant is 0.5 weight%.
  • the color difference ( ⁇ L * ab) of the carbon steel after the carbon steel is immersed in the aqueous solution in a 60 ° C. constant temperature bath for 3 days is less than 14.
  • the said surfactant is following formula (1).
  • R 1 is a polycyclic phenyl group, an alkylphenyl group, an alkyl group or an alkenyl group
  • R 2 is a CH 2 COO group, a SO 3 group, a CH 2 CH 2 SO 3 group, or a CH 2 CH 2 group.
  • CH 2 SO 3 group CH 2 CH 2 CH 2 CH 2 SO 3 group or PO 3 group
  • M is ammonium, alkanolamine, alkylamine or alkali metal
  • A is composed of ethylene, propylene and butylene.
  • R 3 is a COO group, SO 3 group or PO 3 group
  • n is an integer of 0 to 100). More preferably.
  • the surfactant is more preferably a polyoxyalkylene polycyclic phenyl ether sulfate alkanolamine salt.
  • the surfactant is preferably a polyoxyalkylene alkyl ether sulfate alkanolamine salt.
  • water is mixed so that it may become 10 to 40 weight% with respect to the said heavy oil emulsion whole. Is more preferable.
  • the manufacturing method of the heavy oil emulsion which concerns on this embodiment, at the said mixing process, it is 10 to 40 weight% with respect to the said heavy oil emulsion at the temperature of 0 degreeC or more and 100 degrees C or less. It is more preferable to emulsify with the following amount of water.
  • the surfactant is a polyoxyethylene alkyl ether sulfate triethanolamine salt, a polyoxyethylene polycyclic phenyl ether sulfate triethanolamine salt, and A mixture of at least one of polyoxyethylene alkyl ethers with respect to 1 part by weight of polyoxyethylene alkyl ether sulfate triethanolamine salt and polyoxyethylene polycyclic phenyl ether sulfate triethanolamine salt and polyoxyethylene alkyl ether More preferably, the amount of at least one of the ethylene alkyl ethers is 0.5 to 4 parts by weight.
  • the mixing step is performed by mixing the surfactant with a raw material containing heavy oil, and the heavy oil emulsion is obtained from the raw material. You may further include the extraction process to extract.
  • the raw material may be soil.
  • the said mixing process is the process of mixing the said surfactant with respect to the said soil in the said embedded location in the said embedded location of the heavy oil.
  • the extraction step may be a step of extracting the heavy oil from the soil at the reserve.
  • the transport method of the heavy oil emulsion according to the present embodiment transports the heavy oil emulsion obtained by the method of manufacturing the heavy oil emulsion according to the present embodiment.
  • the heavy oil emulsion may be transported by a pipeline.
  • the material of the pipeline may be carbon steel.
  • the heavy oil emulsion according to the present embodiment is an emulsion containing heavy oil and a surfactant, and the surfactant is carbon steel in an aqueous solution of 0.5% by weight.
  • the color difference ( ⁇ L * ab) of the carbon steel after being immersed in a 60 ° C. constant temperature bath for 3 days is less than 14.
  • the heavy oil emulsion according to the present embodiment further contains water, the water content in the heavy oil emulsion as a whole is 10 wt% or more and 40 wt% or less, and the dispersion diameter is 0.01 to The growth of the dispersion diameter is 0.01 to 500 ⁇ m.
  • Example 1 (Preparation of aqueous surfactant solution) POE (polyoxyethylene) polycyclic phenyl ether sulfate NH 4 salt (manufactured by Nippon Emulsifier Co., Ltd., Newcol 714-SF) and hard water are mixed to prepare 0.5 wt% POE polycyclic phenyl ether sulfate NH 4 salt aqueous solution. did. Next, using 0.5% aqueous solution of POE polycyclic phenyl ether sulfate NH 4 salt having a pH of 8, 9, 10 using 25% aqueous ammonia (Wako Pure Chemical Industries, Ltd., Wako First Grade) Prepared.
  • POE polyoxyethylene
  • phenyl ether sulfate NH 4 salt manufactured by Nippon Emulsifier Co., Ltd., Newcol 714-SF
  • hard water 0.5 wt% POE polycyclic phenyl ether sulfate NH 4 salt
  • Carbon steel pieces (carbon steel piping material API-5L (manufactured by Sumitomo Metals Co., Ltd.) ⁇ 73.0 ⁇ 5.16t ⁇ 30L obtained by cutting vertically) sulfuric acid (manufactured by Wako Pure Chemical Industries, Ltd., (Special grade reagent) was immersed in a 15% aqueous sulfuric acid solution diluted with pure water for 10 minutes. Next, this carbon steel piece was neutralized by immersing it in a 5% NaOH aqueous solution in which granular NaOH (manufactured by Wako Pure Chemical Industries, Ltd., reagent grade) was diluted with pure water for 5 minutes. Next, this carbon steel piece was washed with pure water.
  • this carbon steel piece was washed with acetone (made by Wako Pure Chemical Industries, Ltd., reagent grade), then polished with water-resistant abrasive paper 150, and again washed with acetone. Then, after wiping off the surface moisture of this carbon steel piece, the carbon steel piece was dried, and then the carbon steel piece was immersed in the above-described surfactant aqueous solution in a 60 ° C. constant temperature bath for 3 days.
  • the pure water manufacturing apparatus Merck Co., Ltd. product: Elix Advantage3 was used for manufacture of the pure water mentioned above.
  • ⁇ L * ab represents a color difference.
  • Main light source Auxiliary Illuminite C Daylight / However, the relative value of the spectral distribution in the ultraviolet region is small, the color temperature 6774K
  • Example 2 The 0.5 wt% POE polycyclic phenyl ether sulfate NH 4 salt aqueous solution in Example 1 was used as the 0.5 wt% POE polycyclic phenyl ether sulfate triethanolamine salt aqueous solution (FN-63D06, manufactured by Nippon Emulsifier Co., Ltd.).
  • FN-63D06 manufactured by Nippon Emulsifier Co., Ltd.
  • the brightness and chromaticity of the steel was measured. From these measured values, the color difference was measured in the same manner as in Example 1. The results are shown in Table 2.
  • Example 3 The 0.5 wt% POE polycyclic phenyl ether sulfate NH 4 salt aqueous solution in Example 1 was converted to a 0.5 wt% POE tridecyl ether sulfate triethanolamine salt aqueous solution (FN-63G17, manufactured by Nippon Emulsifier Co., Ltd.). Except for the change, the carbon steel pieces were subjected to the same procedure as in Example 1 before and after immersing the carbon steel pieces in 0.5 wt% POE tridecyl ether sulfate triethanolamine salt aqueous solutions at pH 8, 9 and 10. The brightness and chromaticity were measured. From these measured values, the color difference was measured in the same manner as in Example 1. The results are shown in Table 3, and after immersion, the occurrence of rust on the carbon steel pieces was not visually confirmed.
  • Example 4 The 0.5 wt% POE polycyclic phenyl ether sulfate NH 4 salt aqueous solution in Example 1 was used as the 0.5 wt% POE polycyclic phenyl ether sulfate triethanolamine salt aqueous solution (FN-63G18, manufactured by Nippon Emulsifier Co., Ltd.).
  • FN-63G18 manufactured by Nippon Emulsifier Co., Ltd.
  • the brightness and chromaticity of the steel was measured. From these measured values, the color difference was measured in the same manner as in Example 1. The results are shown in Table 4.
  • Example 1 Except that the 0.5 wt% POE polycyclic phenyl ether sulfate NH 4 salt aqueous solution in Example 1 was replaced with an aqueous solution of 0.5 wt% POE alkyl ether (New Emulsifier Co., Ltd., Newcol 2305) having a pH of 5.8, In the same manner as in Example 1, the brightness and chromaticity of the carbon steel before and after immersing the carbon steel pieces in a 0.5 wt% POE alkyl ether aqueous solution having a pH of 5.8 were measured. From these measured values, the color difference was measured in the same manner as in Example 1. The results are shown in Table 6. In addition, after immersion, generation
  • Example 2 A carbon steel piece was prepared in the same manner as in Example 1 except that the 0.5 wt% POE polycyclic phenyl ether sulfate NH 4 salt aqueous solution in Example 1 was replaced with hard water having a pH of 5.7 and a hardness of 50 mg / L. The brightness and chromaticity of the carbon steel before and after being immersed in hard water having a hardness of 50 mg / L were measured. From these measured values, the color difference was measured in the same manner as in Example 1. The results are shown in Table 7. In addition, after immersion, generation
  • Example 1 except that the 0.5 wt% POE polycyclic phenyl ether sulfate NH 4 salt aqueous solution in Example 1 was replaced with a triethanolamine (manufactured by Nippon Shokubai) aqueous solution, pH 10 and hard water with a hardness of 300 mg / L. Similarly, the brightness and chromaticity of carbon steel before and after immersing the carbon pieces in hard water having a pH of 10 and a hardness of 300 mg / L were measured. From these measured values, the color difference was measured in the same manner as in Example 1. The results are shown in Table 8. In addition, after immersion, generation
  • surfactants C and D By using at least one of surfactants C and D in combination with surfactant B, the emulsifiability and fluidity were improved. It was shown that it is possible to emulsify with low shear force. Note that the surfactant D had a lower viscosity when used in combination with the surfactant B than the surfactant C.
  • the present invention can be suitably used for the purpose of reducing the viscosity of heavy oil, for example, for transportation from a heavy oil excavation site to a refinery.

Abstract

Provided is a heavy oil emulsion that can suppress corrosion in a pipeline and the like. The present invention includes a mixing step, wherein a surfactant is mixed into heavy oil to obtain a heavy oil emulsion. When the surfactant is made into a 0.5 wt% aqueous solution, after immersing carbon steel in the aqueous solution in a 60°C thermostatic bath for three days, the color difference (ΔL*ab) of the carbon steel is less than 14.

Description

重質油乳化物の製造方法、重質油乳化物の輸送方法及び重質油乳化物Method for producing heavy oil emulsion, method for transporting heavy oil emulsion, and heavy oil emulsion
 本発明は、重質油乳化物の製造方法、重質油乳化物の輸送方法及び重質油乳化物に関する。 The present invention relates to a method for producing a heavy oil emulsion, a method for transporting a heavy oil emulsion, and a heavy oil emulsion.
 ビチューメン等の重質油はその原始埋蔵量が通常の軽中質油の数倍あると考えられており、将来の原油需要を満たすため、開発が進められている。 Heavy oil such as bitumen is considered to have several times the initial reserves of ordinary light medium oil and is being developed to meet future crude oil demand.
 重質油の回収及び輸送は、従来次の通り行われている。まず、重質油は軽中質油と比較して粘度が高いことから、坑井掘削による自噴又はポンピングといった従来の方法では地層から回収できないため、重質油を含む砂岩層(オイルサンドあるいはタールサンドとも呼ばれる)の露天掘り採掘法による回収、あるいは増進回収法(in-situ)による地層からの直接回収が行われている。 The collection and transportation of heavy oil has been performed as follows. First, because heavy oil has a higher viscosity than light medium oil, it cannot be recovered from the formation by conventional methods such as self-injection or pumping by well drilling, so a sandstone layer containing heavy oil (oil sand or tar) Retrieval by the open pit mining method (also called sand) or direct recovery from the formation by in-situ methods.
 露天掘り採掘による回収は、例えば以下の工程により行われている。すなわち、重質油を含む比較的浅い地層を切り崩してオイルサンドを採掘し、それを粉砕機にかけて細かく粉砕した後、混合器で温水あるいは蒸気と混ぜ合わせてスラリーにする工程、スラリーを分離器にかけて重質油を含む成分と固形分である砂を分離する工程、重質油と水分を分離する工程を経て重質油が回収される。 Recovery by open pit mining is performed, for example, by the following process. That is, a relatively shallow formation containing heavy oil is cut and oil sand is mined, finely pulverized with a pulverizer, then mixed with warm water or steam in a mixer to form a slurry, and the slurry is applied to a separator Heavy oil is recovered through a step of separating heavy oil-containing components and solid sand, and a step of separating heavy oil and moisture.
 50m以深などの比較的深い地層では、露天掘りが困難であるため、増進回収法による地層からの直接回収が用いられることがある。増進回収法としては水蒸気を使用して重質油を低粘度化する方法が知られており、例えば二本の垂直井戸を掘削してその一方から水蒸気を圧入し、水蒸気で加熱して地層に含まれる重質油の粘度を低下させ、水蒸気のフロントを隣接する生産井に水平移動させて、その生産井から重質油を回収する水蒸気攻法、一本の井戸を掘削して、その井戸に水蒸気を圧入した後ある一定期間密閉して、水蒸気を圧入した井戸から低粘度化された重質油を回収するCyclic Steam Stimulation (CSS) 法、及び上下ペアの水平井を掘削し、上部の水平井から水蒸気を圧入し、下部の水平井から低粘度化された重質油を回収するSteam Assisted Gravity Drainage (SAGD) 法などが知られている。現在、SAGD法が最も一般的な重質油の回収方法であるが、水蒸気を利用するため大量のエネルギーを用いる必要がある。 In the deeper strata such as 50m or deeper, it is difficult to open-pit mining, so direct recovery from the strata by the enhanced recovery method may be used. As an enhanced recovery method, a method of reducing the viscosity of heavy oil using steam is known.For example, two vertical wells are drilled, steam is injected from one of them, and heated with steam to form a formation. Reduce the viscosity of the heavy oil contained, move the front of the steam horizontally to the adjacent production well, steam attack that recovers heavy oil from that production well, drilling one well, the well After injecting water vapor into the well, seal it for a certain period of time, drill the Cyclic Steam Stimulation (CSS) method that recovers heavy oil with low viscosity from the well in which water vapor is injected, and the upper and lower horizontal wells. Steam Assisted Gravity Drainage (SAGD) す る method is known, in which steam is injected from a horizontal well and heavy oil with reduced viscosity is recovered from the lower horizontal well. Currently, the SAGD method is the most common heavy oil recovery method, but it requires a large amount of energy to use steam.
 また、採掘現場で採掘されたビチューメン等の重質油は、パイプライン等で所定の場所に輸送されている。重質油は一般的に粘度が高いため、重質油を乳化して粘度を低下させた後に、パイプライン等で輸送する。 In addition, heavy oil such as bitumen mined at the mining site is transported to a predetermined place by a pipeline or the like. Since heavy oil generally has a high viscosity, it is transported by a pipeline or the like after emulsifying the heavy oil to reduce the viscosity.
 重質油の乳化方法として、例えば特許文献1には、重質油を界面活性剤により乳化する方法が記載されている。特許文献2には、ポリイソブチレン、ポリエチレングリコール及びノニルフェノールの混合物を用いて重質油を乳化させる方法が記載されている。特許文献3には、水、軽質油及び特定の界面活性剤で重質油及び炭化水素固形物を低粘度化して、輸送する方法が記載されている。特許文献4には、重質油の乳化物に関する発明が記載されている。 As a method for emulsifying heavy oil, for example, Patent Document 1 describes a method of emulsifying heavy oil with a surfactant. Patent Document 2 describes a method of emulsifying heavy oil using a mixture of polyisobutylene, polyethylene glycol and nonylphenol. Patent Document 3 describes a method in which heavy oil and hydrocarbon solids are reduced in viscosity with water, light oil, and a specific surfactant, and then transported. Patent Document 4 describes an invention related to an emulsion of heavy oil.
米国特許出願公開第2007/066493号US Patent Application Publication No. 2007/066493 カナダ国特許出願公開第2326288号Canadian Patent Application Publication No. 2326288 国際公開公報第1992/003521号International Publication No. 1992/003521 国際公開公報第1999/006139号International Publication No. 1999/006139
 重質油を乳化させるために水を加える方法が考えられる。乳化させるために軽質油を用いる場合に比べると、水は安価であることや、入手できる場所が多いなどの利点がある。しかし、パイプラインが炭素鋼などの材質である場合には、水を用いて乳化した重質油をパイプライン等で輸送するとパイプラインを腐食する虞があるという問題が生じる。 A method of adding water to emulsify heavy oil is conceivable. Compared to the case where light oil is used for emulsification, water has advantages such as being inexpensive and available in many places. However, when the pipeline is made of a material such as carbon steel, there is a problem that the heavy oil emulsified with water is transported through the pipeline or the like, which may corrode the pipeline.
 本発明はこのような問題に鑑みて成された発明であり、水を用いて重質油を乳化して、水で錆びる材質のパイプラインを用いて輸送する場合であっても、パイプラインの腐食を抑制できる、重質油乳化物の製造方法を提供する。 The present invention is an invention made in view of such a problem, even when heavy oil is emulsified using water and transported using a pipeline made of a material that rusts with water. A method for producing a heavy oil emulsion capable of suppressing corrosion is provided.
 本発明者は、上記の課題を解決するために鋭意研究を重ねた結果、特定の界面活性剤を用いることで、得られる重質油乳化物が炭素鋼等を腐食させ難くすることを見出し、本発明に想到した。 As a result of intensive studies to solve the above problems, the present inventor has found that using a specific surfactant makes the obtained heavy oil emulsion difficult to corrode carbon steel and the like, The present invention has been conceived.
 すなわち、本発明に係る重質油乳化物の製造方法は、重質油に界面活性剤を混合して重質油乳化物を得る混合工程を含み、上記界面活性剤は、0.5重量%の水溶液としたとき、当該水溶液に炭素鋼を60℃恒温槽にて3日間浸漬した後の当該炭素鋼の色差(ΔLab)が14未満である。 That is, the method for producing a heavy oil emulsion according to the present invention includes a mixing step of mixing a heavy oil with a surfactant to obtain a heavy oil emulsion, and the surfactant is 0.5% by weight. In this case, the color difference (ΔL * ab) of the carbon steel after the carbon steel is immersed in the aqueous solution in a 60 ° C. constant temperature bath for 3 days is less than 14.
 また、本発明に係る重質油乳化物は、重質油及び界面活性剤を含む乳化物であり、上記界面活性剤は、0.5重量%の水溶液としたときに当該水溶液に炭素鋼を60℃恒温槽にて3日間浸漬した後の当該炭素鋼の色差(ΔLab)が14未満である。 Further, the heavy oil emulsion according to the present invention is an emulsion containing heavy oil and a surfactant, and when the surfactant is a 0.5 wt% aqueous solution, carbon steel is added to the aqueous solution. The color difference (ΔL * ab) of the carbon steel after being immersed in a 60 ° C. constant temperature bath for 3 days is less than 14.
 本発明に係る重質油乳化物の製造方法によれば、水を用いて重質油を乳化して、水で錆びる材質のパイプラインを用いて輸送する場合であっても、パイプラインの腐食を抑制できるという効果を奏する。 According to the method for producing a heavy oil emulsion according to the present invention, even when a heavy oil is emulsified with water and transported using a pipeline made of a material that rusts with water, the pipeline is corroded. There is an effect that can be suppressed.
 <本発明に係る重質油乳化物の製造方法>
 本発明の一実施形態に係る重質油乳化物の製造方法は、重質油に界面活性剤を混合して重質油乳化物を得る混合工程を含み、界面活性剤は、0.5重量%の水溶液としたときに当該水溶液に炭素鋼を60℃恒温槽にて3日間浸漬した後の当該炭素鋼の色差(ΔLab)が14未満となる。
<Method for producing heavy oil emulsion according to the present invention>
The manufacturing method of the heavy oil emulsion which concerns on one Embodiment of this invention includes the mixing process which mixes surfactant with heavy oil, and obtains heavy oil emulsion, Surfactant is 0.5 weight % Color solution (ΔL * ab) of carbon steel after the carbon steel is immersed in the aqueous solution in a 60 ° C. constant temperature bath for 3 days.
 このような界面活性剤を用いて得られる重質油乳化物は、炭素鋼等の水で錆びる材質のものを錆びさせにくい。従って、水を用いて重質油を乳化して、水で錆びる材質のパイプラインを用いて輸送する場合であっても、パイプラインの腐食を抑制できる。 重 Heavy oil emulsions obtained using such surfactants are less likely to rust materials that rust with water, such as carbon steel. Therefore, even when heavy oil is emulsified with water and transported using a pipeline made of a material that rusts with water, corrosion of the pipeline can be suppressed.
 本明細書において「重質油乳化物」とは、重質油を乳化させたものを意味し、後述する界面活性剤によって乳化されている。 In the present specification, “heavy oil emulsion” means an emulsion obtained by emulsifying heavy oil, and is emulsified by a surfactant described later.
 〔重質油〕
 一般的に、油相温度で測定したときの粘度が1万cPを超えればビチューメン、粘度が1万cP以下であれば原油として分類される。また、原油は、API比重によってさらに分類され、20°超APIのものは中軽質油に区分される。本明細書において、重質油とは、上述したビチューメン及び原油のうちAPI比重20°API以下のものを含む。
[Heavy oil]
In general, if the viscosity measured at the oil phase temperature exceeds 10,000 cP, it is classified as bitumen, and if the viscosity is 10,000 cP or less, it is classified as crude oil. In addition, crude oil is further classified according to API specific gravity, and those exceeding 20 ° API are classified as medium light oil. In the present specification, heavy oil includes those of the above-mentioned bitumen and crude oil having an API specific gravity of 20 ° API or less.
 〔界面活性剤〕
 界面活性剤は、0.5重量%の水溶液としたとき、当該水溶液に炭素鋼を60℃恒温槽にて3日間浸漬した後の当該炭素鋼の色差(ΔLab)が14未満になるものであればよい。このような界面活性剤を用いて得られる重質油乳化物は、炭素鋼等の水で錆びるものを、錆びさせにくい性質を有する。界面活性剤の具体例としては、例えば、下記式(1)で示されるものが挙げられる。
[Surfactant]
When the surfactant is a 0.5% by weight aqueous solution, the color difference (ΔL * ab) of the carbon steel after the carbon steel is immersed in the aqueous solution in a 60 ° C. constant temperature bath for 3 days is less than 14. If it is. The heavy oil emulsion obtained by using such a surfactant has a property of preventing rusting with water such as carbon steel. Specific examples of the surfactant include those represented by the following formula (1).
 RO(AO) 、又は、R ・・・(1)
 (式中、Rは、多環フェニル基、アルキルフェニル基、アルキル基又はアルケニル基であり、Rは、CHCOO基、SO基、CHCHSO基、CHCHCHSO基、CHCHCHCHSO基又はPO基であり、Mは、アンモニウム、アルカノールアミン、アルキルアミン又はアルカリ金属であり、Aは、エチレン、プロピレン及びブチレンよりなる群から選ばれる少なくとも一種の分枝または直鎖の官能基であり、RはCOO基、SO基又はPO基であり、nは0~100の整数である。)
 多環フェニル基の例としては、ジスチリルフェノール基及びクミルフェノール基等が挙げられる。
R 1 O (AO) n R 2 M + or R 1 R 3 M + (1)
(In the formula, R 1 is a polycyclic phenyl group, an alkylphenyl group, an alkyl group or an alkenyl group, and R 2 is a CH 2 COO group, an SO 3 group, a CH 2 CH 2 SO 3 group, or a CH 2 CH 2 group. CH 2 SO 3 group, CH 2 CH 2 CH 2 CH 2 SO 3 group or PO 3 group, M is ammonium, alkanolamine, alkylamine or alkali metal, and A is composed of ethylene, propylene and butylene. And at least one branched or straight-chain functional group selected from the group, R 3 is a COO group, SO 3 group or PO 3 group, and n is an integer of 0 to 100.)
Examples of the polycyclic phenyl group include a distyrylphenol group and a cumylphenol group.
 アルキルフェニル基の例としては、クレゾール基、オクチルフェノール基、ノニルフェノール基及びジスチリルアルキルフェニル基等が挙げられる。 Examples of the alkylphenyl group include a cresol group, an octylphenol group, a nonylphenol group, a distyrylalkylphenyl group, and the like.
 アルキル基の例としては、オクチル基、ノニル基及びデシル基等が挙げられる。 Examples of the alkyl group include octyl group, nonyl group, decyl group and the like.
 アルケニル基の例としては、オレイル基、リノール基及びリノレイン基等が挙げられる。 Examples of alkenyl groups include oleyl, linole and linolein groups.
 アルカノールアミン、アルキルアミン及びアンモニウムの例としては、下記式(2)で示されるもの等が挙げられる。 Examples of alkanolamine, alkylamine and ammonium include those represented by the following formula (2).
 RN (2)
 (式中、R、R及びRは、互いにあるいはそれぞれ独立して、水素、炭素数1から8の直鎖状もしくは分枝状のアルキル基、または炭素数2から4の直鎖状もしくは分枝状のヒドロキシアルキル基、である。)
 アルカリ金属の例としては、Li、Na及びK等が挙げられる。
R 5 R 6 R 7 N (2)
(Wherein R 5 , R 6 and R 7 are each independently or independently of each other, hydrogen, a linear or branched alkyl group having 1 to 8 carbon atoms, or a straight chain having 2 to 4 carbon atoms. Or a branched hydroxyalkyl group.)
Examples of the alkali metal include Li, Na and K.
 また、Mとしては、アルカノールアミンがより好ましい。これにより、より優れた防錆効果が得られる。 Further, as M, alkanolamine is more preferable. Thereby, the more excellent rust prevention effect is acquired.
 式(1)で示される界面活性剤としては、例えば、ポリオキシエチレン多環フェニルエーテル硫酸エステルトリエタノールアミン塩等の、ポリオキシアルキレン多環フェニルエーテル硫酸エステルアルカノールアミン塩、及びポリオキシエチレントリデシルエーテル硫酸エステルトリエタノールアミン塩等の、ポリオキシアルキレンアルキルエーテル硫酸エステルアルカノールアミン塩、等が挙げられる。 Examples of the surfactant represented by the formula (1) include polyoxyalkylene polycyclic phenyl ether sulfate alkanolamine salts such as polyoxyethylene polycyclic phenyl ether sulfate triethanolamine salts, and polyoxyethylene tridecyl. And polyoxyalkylene alkyl ether sulfate alkanolamine salts such as ether sulfate triethanolamine salts.
 中でも、得られる重質油乳化物が炭素鋼のパイプライン等をより錆びさせ難いという理由から、ポリオキシエチレン多環フェニルエーテル硫酸エステルNH塩及びポリオキシエチレン多環フェニルエーテル硫酸エステルトリエタノールアミン塩が好ましく、中でも得られる重質油乳化物の経時安定性が高いことから、ポリオキシアルキレン多環フェニルエーテル硫酸エステルアルカノールアミン塩がより好ましい。 Among them, the polyoxyethylene polycyclic phenyl ether sulfate NH 4 salt and the polyoxyethylene polycyclic phenyl ether sulfate triethanolamine are preferred because the resulting heavy oil emulsion is less likely to rust the carbon steel pipeline. A salt is preferable, and among them, a polyoxyalkylene polycyclic phenyl ether sulfate alkanolamine salt is more preferable because the resulting heavy oil emulsion has high stability over time.
 また、低せんだん力で乳化させることができ、且つ、乳化状態を長期間維持できるという観点からは、ポリオキシエチレンアルキルエーテル硫酸エステルトリエタノールアミン塩と、ポリオキシエチレン多環フェニルエーテル硫酸エステルトリエタノールアミン塩及びポリオキシエチレンアルキルエーテルのうち少なくとも一方と、を混合して用い、ポリオキシエチレンアルキルエーテル硫酸エステルトリエタノールアミン塩1重量部に対して、ポリオキシエチレン多環フェニルエーテル硫酸エステルトリエタノールアミン塩及びポリオキシエチレンアルキルエーテルのうち少なくとも一方の量が0.5重量部~4重量部とすることがより好ましい。 Further, from the viewpoint of being able to be emulsified with a low shearing force and maintaining the emulsified state for a long period of time, polyoxyethylene alkyl ether sulfate triethanolamine salt and polyoxyethylene polycyclic phenyl ether sulfate ester tri A mixture of at least one of ethanolamine salt and polyoxyethylene alkyl ether is used, and polyoxyethylene polycyclic phenyl ether sulfate triethanol with respect to 1 part by weight of polyoxyethylene alkyl ether sulfate triethanolamine salt. More preferably, the amount of at least one of the amine salt and the polyoxyethylene alkyl ether is 0.5 to 4 parts by weight.
 〔混合工程〕
 混合工程では、重質油に上述した界面活性剤を混合して重質油乳化物を得る。
[Mixing process]
In the mixing step, the above-described surfactant is mixed with heavy oil to obtain a heavy oil emulsion.
 混合する方法としては、重質油を分散媒及び分散質のいずれとなる場合でも、他方の分散質又は分散媒と重質油と界面活性剤とを容器等の中で撹拌すればよい。 As a method of mixing, in the case where the heavy oil becomes either the dispersion medium or the dispersoid, the other dispersoid or the dispersion medium, the heavy oil, and the surfactant may be stirred in a container or the like.
 重質油に混合する分散剤又は分散質としては、混合する界面活性剤で乳化できるものであればよいが、水が好ましい。水は、安価であり、また、入手できる場所が多いため、重質油乳化物の製造をより容易に行なうことができる。また、水を用いる場合、重質油乳化物の輸送に用いるパイプライン等を錆びさせることが危惧される。しかし、本発明の一実施形態によれば、パイプライン等が水で錆びる材質のものであっても、これを錆びさせ難い。よって、水を分散剤又は分散質として利用できる。 The dispersant or dispersoid to be mixed with the heavy oil may be anything that can be emulsified with the surfactant to be mixed, but water is preferable. Since water is cheap and has many places where it can be obtained, it is possible to more easily produce a heavy oil emulsion. Moreover, when using water, it is feared that the pipeline etc. which are used for transportation of heavy oil emulsion will be rusted. However, according to one embodiment of the present invention, even if the pipeline or the like is made of a material that rusts with water, it is difficult to rust. Therefore, water can be used as a dispersant or a dispersoid.
 重質油に混合する水の量は、目的とする重質油乳化物の粘度等に応じて適宜設定すればよく、製造する重質油乳化物全体に対して10重量%以上が好ましく、15重量%以上がより好ましい。また、40重量%以下が好ましく、30重量%以下がより好ましく、20重量%以下がさらに好ましい。10重量%以上であれば、十分に粘度を低くすることができ、また、容易に乳化させることができる。40重量%以下という少量にすることで、パイプライン等をより錆びさせ難くすることができる。 The amount of water to be mixed with the heavy oil may be appropriately set according to the viscosity of the intended heavy oil emulsion, and is preferably 10% by weight or more based on the whole heavy oil emulsion to be produced. More preferably, it is more than wt%. Moreover, 40 weight% or less is preferable, 30 weight% or less is more preferable, and 20 weight% or less is further more preferable. If it is 10 weight% or more, a viscosity can fully be made low and it can emulsify easily. By making the amount as small as 40% by weight or less, pipelines and the like can be made more difficult to rust.
 重質油及び水に混合する界面活性剤の量については、目的とする粘度等に応じて適宜設定すればよく、製造する重質油乳化物全体に対して0.1重量%以上が好ましく、0.2重量%以上がより好ましい。また、10重量%以下が好ましく、5重量%以下がより好ましい。 The amount of the surfactant to be mixed with the heavy oil and water may be appropriately set according to the target viscosity and the like, preferably 0.1% by weight or more based on the whole heavy oil emulsion to be produced, 0.2 weight% or more is more preferable. Moreover, 10 weight% or less is preferable and 5 weight% or less is more preferable.
 また、撹拌するときの温度は0℃以上、100℃以下であることが好ましい。この範囲の温度であれば、容易に混合して乳化させることができる。例えば、5分以下という短時間で、撹拌の際の周速度が20m/s以下という弱い力で、容易に乳化させることができる。 Further, the temperature at the time of stirring is preferably 0 ° C. or higher and 100 ° C. or lower. If it is the temperature of this range, it can mix and emulsify easily. For example, it can be easily emulsified in a short time of 5 minutes or less and with a weak force with a peripheral speed of 20 m / s or less during stirring.
 撹拌する方法としては、従来公知の混合装置等を用いて行えばよく、特にせん断力の高いホモミキサー及びホモジナイザー等の装置等は必要としない。 The stirring method may be carried out using a conventionally known mixing device or the like, and devices such as a homomixer and a homogenizer with particularly high shearing force are not required.
 上記混合工程によって得られる重質油乳化物の粘度は、5000cP以下が好ましく、1000cP以下がより好ましい。当該粘度が5000cP以下となれば、重質油乳化物の粘度は十分に低いため、例えばその後に重質油乳化物を回収しやすくなる。 The viscosity of the heavy oil emulsion obtained by the mixing step is preferably 5000 cP or less, and more preferably 1000 cP or less. If the said viscosity will be 5000 cP or less, since the viscosity of a heavy oil emulsion is low enough, it will become easy to collect | recover a heavy oil emulsion after that, for example.
 本発明の一実施形態によれば、上述した界面活性剤を用いることで、このように低い粘度にすることが容易となる。 According to one embodiment of the present invention, it is easy to achieve such a low viscosity by using the surfactant described above.
 混合工程では、重質油乳化物のpHを調製してもよい。pHとしては、8以上、10以下が好ましい。この範囲であれば輸送に用いるパイプライン等を錆びさせ難くすることができる。pHは、乳化剤の対イオンに対応したアミンを用いて調整すればよく、アミンとしては、例えば、アンモニア水溶液及びトリエタノールアミン等が挙げられる。 In the mixing step, the pH of the heavy oil emulsion may be adjusted. The pH is preferably 8 or more and 10 or less. If it is this range, the pipeline etc. which are used for transportation can be made hard to rust. The pH may be adjusted using an amine corresponding to the counter ion of the emulsifier, and examples of the amine include an aqueous ammonia solution and triethanolamine.
 混合工程では、重質油、水及び界面活性剤のほかに、必要に応じて様々な添加剤を加えてもよい。添加剤としては、軽質油及び防錆剤等が挙げられる。 In the mixing step, various additives may be added as necessary in addition to heavy oil, water and surfactant. Examples of the additive include light oil and rust preventive agent.
 <本発明に係る重質油乳化物の輸送方法>
 本発明の一実施形態に係る重質油乳化物の輸送方法は、上述の本発明の一実施形態に係る重質油乳化物の製造方法により得られる重質油乳化物を輸送する。
<Method for transporting heavy oil emulsion according to the present invention>
The transportation method of the heavy oil emulsion which concerns on one Embodiment of this invention transports the heavy oil emulsion obtained by the manufacturing method of the heavy oil emulsion which concerns on one embodiment of the above-mentioned this invention.
 〔パイプライン〕
 輸送するための手段としては、例えば、パイプラインが挙げられる。パイプラインの材質としては、例えば、API-5L等の炭素鋼及びステンレス鋼(SUS)等が挙げられる。通常、水で乳化した重質油を炭素鋼等の材質のパイプラインで輸送するときには、パイプラインが水によって腐食する虞がある。しかしながら、上述の界面活性剤を用いれば、炭素鋼等の水で錆びる材質のものを錆びさせにくい重質油乳化物が得られる。つまり、重質油を乳化させるために、安価で入手の容易な水を用いることができる。
〔pipeline〕
As a means for transporting, a pipeline is mentioned, for example. Examples of the material of the pipeline include carbon steel such as API-5L and stainless steel (SUS). Usually, when heavy oil emulsified with water is transported through a pipeline made of a material such as carbon steel, the pipeline may be corroded by water. However, when the above-mentioned surfactant is used, a heavy oil emulsion that hardly rusts water-rusting materials such as carbon steel can be obtained. That is, inexpensive and easily available water can be used to emulsify the heavy oil.
 <本発明に係る重質油乳化物>
 本発明の一実施形態に係る重質油乳化物は、重質油及び界面活性剤を含む乳化物であって、界面活性剤は、0.5重量%の水溶液としたときに、この水溶液に炭素鋼を60℃恒温槽にて3日間浸漬した後の、炭素鋼の色差が14未満である。
<Heavy oil emulsion according to the present invention>
The heavy oil emulsion according to one embodiment of the present invention is an emulsion containing heavy oil and a surfactant, and the surfactant is an aqueous solution of 0.5% by weight. The color difference of the carbon steel after dipping the carbon steel in a 60 ° C. constant temperature bath for 3 days is less than 14.
 重質油乳化物は、水をさらに含んでいることが好ましい。重質油乳化物全量に対する水の重量は10重量%以上、40重量%以下であることがより好ましい。 It is preferable that the heavy oil emulsion further contains water. The weight of water relative to the total amount of the heavy oil emulsion is more preferably 10% by weight or more and 40% by weight or less.
 また、重分散径が0.01~100μmであり、分散径の成長が0.01~500μmであることがより好ましい。 More preferably, the heavy dispersion diameter is 0.01 to 100 μm, and the growth of the dispersion diameter is 0.01 to 500 μm.
 <本発明に係る重質油乳化物の製造方法の別の実施形態>
 以上のように本発明の一実施形態に係る重質油乳化物の製造方法によって、好適に重質油乳化物の輸送を行なうことができるが、本発明に係る重質油乳化物の製造方法の具体的な実施形態はこれに限定されない。例えば、地中に埋蔵されている箇所からの重質油乳化物の抽出も好適に行なうことができる。
<Another embodiment of the method for producing a heavy oil emulsion according to the present invention>
As described above, the heavy oil emulsion can be suitably transported by the heavy oil emulsion manufacturing method according to one embodiment of the present invention, but the heavy oil emulsion manufacturing method according to the present invention can be carried out. The specific embodiment is not limited to this. For example, extraction of a heavy oil emulsion from a place buried in the ground can be suitably performed.
 つまり、混合工程は、重質油を含む原料に前述した界面活性剤を混合することによって行ない、当該原料から重質油乳化物を抽出する抽出工程をさらに含んでもよい。 That is, the mixing step may be performed by mixing the above-described surfactant with a raw material containing heavy oil, and may further include an extraction step of extracting the heavy oil emulsion from the raw material.
 原料としては土壌が挙げられ、より具体的には、重質油が埋蔵されている箇所の土壌が挙げられる。原料として重質油を含む土壌を用いて、埋蔵箇所で抽出を行なう場合、混合工程は、重質油の埋蔵箇所において、埋蔵箇所にある土壌に対して前記界面活性剤を混合する工程となり、抽出工程は埋蔵箇所において前記土壌から前記重質油を抽出することとなる。 The raw material includes soil, and more specifically, the soil where heavy oil is buried. When extracting at a buried location using soil containing heavy oil as a raw material, the mixing step is a step of mixing the surfactant with the soil at the buried location in the buried location of heavy oil, In the extraction step, the heavy oil is extracted from the soil at the buried location.
 埋蔵箇所にある土壌に対して界面活性剤を混合する方法としては、例えば、当該界面活性剤を水溶液として添加する方法及び当該界面活性剤を紛体として散布する方法が挙げられる。また、溶融した界面活性剤を添加することで混合してもよい。さらに、担持型の界面活性剤を混合する方法も挙げられる。 Examples of the method of mixing the surfactant with the soil in the buried location include a method of adding the surfactant as an aqueous solution and a method of spraying the surfactant as a powder. Moreover, you may mix by adding melted surfactant. Furthermore, a method of mixing a supported surfactant is also included.
 埋蔵箇所において界面活性剤と混合されて形成された重質油乳化物を含む土壌から、重質油乳化物を抽出する方法として、例えば、沈殿分離、遠心分離及び濾過等が挙げられる。 Examples of the method for extracting the heavy oil emulsion from the soil containing the heavy oil emulsion formed by mixing with the surfactant at the buried location include precipitation separation, centrifugation, filtration and the like.
 以上の方法により重質油乳化物を得た後は、上述した輸送方法で好適に輸送できる。予め、輸送で用いるパイプラインを錆びさせ難い乳化物となっているため、パイプラインの腐食を抑制しつつ輸送できるからである。 After obtaining a heavy oil emulsion by the above method, it can be suitably transported by the transport method described above. This is because the pipeline used for transportation is an emulsion that hardly rusts, and can be transported while inhibiting corrosion of the pipeline.
 (まとめ)
 本実施形態に係る重質油乳化物の製造方法は、重質油に界面活性剤を混合して重質油乳化物を得る混合工程を含み、上記界面活性剤は、0.5重量%の水溶液としたとき、当該水溶液に炭素鋼を60℃恒温槽にて3日間浸漬した後の当該炭素鋼の色差(ΔLab)が14未満である。
(Summary)
The manufacturing method of the heavy oil emulsion which concerns on this embodiment includes the mixing process which mixes surfactant with heavy oil, and obtains heavy oil emulsion, The said surfactant is 0.5 weight%. When the aqueous solution is used, the color difference (ΔL * ab) of the carbon steel after the carbon steel is immersed in the aqueous solution in a 60 ° C. constant temperature bath for 3 days is less than 14.
 また、本実施形態に係る重質油乳化物の製造方法では、上記界面活性剤は下記式(1)
 RO(AO) 、又は、R ・・・(1)
 (式中、Rは、多環フェニル基、アルキルフェニル基、アルキル基又はアルケニル基であり、Rは、CHCOO基,SO基、CHCHSO基、CHCHCHSO基、CHCHCHCHSO基又はPO基であり、Mは、アンモニウム、アルカノールアミン、アルキルアミン又はアルカリ金属であり、Aは、エチレン、プロピレン及びブチレンよりなる群から選ばれる少なくとも一種の分枝または直鎖の官能基であり、RはCOO基、SO基又はPO基であり、nは0~100の整数である。)で示されるものであることがより好ましい。
Moreover, in the manufacturing method of the heavy oil emulsion which concerns on this embodiment, the said surfactant is following formula (1).
R 1 O (AO) n R 2 M + or R 1 R 3 M + (1)
(In the formula, R 1 is a polycyclic phenyl group, an alkylphenyl group, an alkyl group or an alkenyl group, and R 2 is a CH 2 COO group, a SO 3 group, a CH 2 CH 2 SO 3 group, or a CH 2 CH 2 group. CH 2 SO 3 group, CH 2 CH 2 CH 2 CH 2 SO 3 group or PO 3 group, M is ammonium, alkanolamine, alkylamine or alkali metal, and A is composed of ethylene, propylene and butylene. And at least one branched or straight chain functional group selected from the group, R 3 is a COO group, SO 3 group or PO 3 group, and n is an integer of 0 to 100). More preferably.
 また、本実施形態に係る重質油乳化物の製造方法では、上記界面活性剤はポリオキシアルキレン多環フェニルエーテル硫酸エステルアルカノールアミン塩であることがより好ましい。 In the method for producing a heavy oil emulsion according to this embodiment, the surfactant is more preferably a polyoxyalkylene polycyclic phenyl ether sulfate alkanolamine salt.
 また、本実施形態に係る重質油乳化物の製造方法では、上記界面活性剤は、ポリオキシアルキレンアルキルエーテル硫酸エステルアルカノールアミン塩であることが好ましい。 In the method for producing a heavy oil emulsion according to this embodiment, the surfactant is preferably a polyoxyalkylene alkyl ether sulfate alkanolamine salt.
 また、本実施形態に係る重質油乳化物の製造方法では、上記混合工程では、上記重質油乳化物全体に対して10重量%以上、40重量%以下となるように水を混合することがより好ましい。 Moreover, in the manufacturing method of the heavy oil emulsion which concerns on this embodiment, in the said mixing process, water is mixed so that it may become 10 to 40 weight% with respect to the said heavy oil emulsion whole. Is more preferable.
 また、本実施形態に係る重質油乳化物の製造方法では、上記混合工程では、温度0℃以上、100℃以下で、上記重質油乳化物全体に対して10重量%以上、40重量%以下となる量の水を用いて乳化させることがより好ましい。 Moreover, in the manufacturing method of the heavy oil emulsion which concerns on this embodiment, at the said mixing process, it is 10 to 40 weight% with respect to the said heavy oil emulsion at the temperature of 0 degreeC or more and 100 degrees C or less. It is more preferable to emulsify with the following amount of water.
 また、本実施形態に係る重質油乳化物の製造方法では、上記界面活性剤は、ポリオキシエチレンアルキルエーテル硫酸エステルトリエタノールアミン塩と、ポリオキシエチレン多環フェニルエーテル硫酸エステルトリエタノールアミン塩及びポリオキシエチレンアルキルエーテルのうち少なくとも一方と、の混合物であり、ポリオキシエチレンアルキルエーテル硫酸エステルトリエタノールアミン塩1重量部に対して、ポリオキシエチレン多環フェニルエーテル硫酸エステルトリエタノールアミン塩及びポリオキシエチレンアルキルエーテルのうち少なくとも一方の量が0.5重量部~4重量部であることがより好ましい。 In the method for producing a heavy oil emulsion according to the present embodiment, the surfactant is a polyoxyethylene alkyl ether sulfate triethanolamine salt, a polyoxyethylene polycyclic phenyl ether sulfate triethanolamine salt, and A mixture of at least one of polyoxyethylene alkyl ethers with respect to 1 part by weight of polyoxyethylene alkyl ether sulfate triethanolamine salt and polyoxyethylene polycyclic phenyl ether sulfate triethanolamine salt and polyoxyethylene alkyl ether More preferably, the amount of at least one of the ethylene alkyl ethers is 0.5 to 4 parts by weight.
 また、本実施形態に係る重質油乳化物の製造方法では、前記混合工程は、重質油を含む原料に前記界面活性剤を混合することによって行ない、前記原料から前記重質油乳化物を抽出する抽出工程をさらに含んでもよい。 In the method for producing a heavy oil emulsion according to this embodiment, the mixing step is performed by mixing the surfactant with a raw material containing heavy oil, and the heavy oil emulsion is obtained from the raw material. You may further include the extraction process to extract.
 また、本実施形態に係る重質油乳化物の製造方法では、前記原料は土壌であってもよい。 In the method for producing a heavy oil emulsion according to this embodiment, the raw material may be soil.
 また、本実施形態に係る重質油乳化物の製造方法では、前記混合工程は、前記重質油の埋蔵箇所において、当該埋蔵箇所にある前記土壌に対して前記界面活性剤を混合する工程であり、前記抽出工程は前記埋蔵箇所において前記土壌から前記重質油を抽出する工程であってもよい。 Moreover, in the manufacturing method of the heavy oil emulsion which concerns on this embodiment, the said mixing process is the process of mixing the said surfactant with respect to the said soil in the said embedded location in the said embedded location of the heavy oil. Yes, the extraction step may be a step of extracting the heavy oil from the soil at the reserve.
 また、本実施形態に係る重質油乳化物の輸送方法は、本実施形態に係る重質油乳化物の製造方法により得られる重質油乳化物を輸送する。 Moreover, the transport method of the heavy oil emulsion according to the present embodiment transports the heavy oil emulsion obtained by the method of manufacturing the heavy oil emulsion according to the present embodiment.
 また、本実施形態に係る重質油乳化物の輸送方法では、パイプラインで輸送してもよい。 Further, in the heavy oil emulsion transportation method according to the present embodiment, the heavy oil emulsion may be transported by a pipeline.
 また、本実施形態に係る重質油乳化物の輸送方法では、上記パイプラインの材質が炭素鋼であってもよい。 Further, in the method for transporting heavy oil emulsion according to this embodiment, the material of the pipeline may be carbon steel.
 また、本実施形態に係る重質油乳化物は、重質油及び界面活性剤を含む乳化物であり、上記界面活性剤は、0.5重量%の水溶液としたときに当該水溶液に炭素鋼を60℃恒温槽にて3日間浸漬した後の当該炭素鋼の色差(ΔLab)が14未満である。 In addition, the heavy oil emulsion according to the present embodiment is an emulsion containing heavy oil and a surfactant, and the surfactant is carbon steel in an aqueous solution of 0.5% by weight. The color difference (ΔL * ab) of the carbon steel after being immersed in a 60 ° C. constant temperature bath for 3 days is less than 14.
 また、本実施形態に係る重質油乳化物は、水をさらに含み、重質油乳化物全体に対する水の含有量が10重量%以上、40重量%以下であり、分散径が0.01~100μmであり、分散径の成長が0.01~500μmである。 Further, the heavy oil emulsion according to the present embodiment further contains water, the water content in the heavy oil emulsion as a whole is 10 wt% or more and 40 wt% or less, and the dispersion diameter is 0.01 to The growth of the dispersion diameter is 0.01 to 500 μm.
 以下、実施例及び比較例により本発明をさらに具体的に説明する。なお、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. The present invention is not limited to these.
 <実施例1>
 〔界面活性剤水溶液の調製〕
 POE(ポリオキシエチレン)多環フェニルエーテル硫酸エステルNH塩(日本乳化剤株式会社製、Newcol714‐SF)と硬水を混合し、0.5重量%POE多環フェニルエーテル硫酸エステルNH塩水溶液を調製した。次に、25%アンモニア水(和光純薬工業株式会社製、和光一級)を用いて、pHが、8、9、10の各POE多環フェニルエーテル硫酸エステルNH塩0.5重量%水溶液を調製した。
<Example 1>
(Preparation of aqueous surfactant solution)
POE (polyoxyethylene) polycyclic phenyl ether sulfate NH 4 salt (manufactured by Nippon Emulsifier Co., Ltd., Newcol 714-SF) and hard water are mixed to prepare 0.5 wt% POE polycyclic phenyl ether sulfate NH 4 salt aqueous solution. did. Next, using 0.5% aqueous solution of POE polycyclic phenyl ether sulfate NH 4 salt having a pH of 8, 9, 10 using 25% aqueous ammonia (Wako Pure Chemical Industries, Ltd., Wako First Grade) Prepared.
 〔硬水の調製〕
 塩化マグネシウム六水和物(和光純薬工業株式会社製、試薬特級)15.24g及び塩化カルシウム二水和物(和光純薬工業株式会社製、試薬特級)33.31gを純水1Lに溶解した。これをホールピペットで20mLを分取し、純水1984gに加えて、アメリカ硬度300mg/Lの硬水を得た。
[Preparation of hard water]
Magnesium chloride hexahydrate (Wako Pure Chemical Industries, Ltd., reagent grade) 15.24 g and calcium chloride dihydrate (Wako Pure Chemical Industries, reagent grade) 33.31 g were dissolved in 1 L of pure water. . 20 mL of this was fractionated with a whole pipette and added to 1984 g of pure water to obtain hard water with an American hardness of 300 mg / L.
 〔浸漬工程〕
 炭素鋼片(炭素鋼配管材API‐5L(住友金属社製)φ73.0×5.16t×30Lを縦割りに切断して得られたもの)を、硫酸(和光純薬工業株式会社製、試薬特級)を純水にて希釈した15%硫酸水溶液に10分間浸漬した。次に、この炭素鋼片を、粒状NaOH(和光純薬工業株式会社製、試薬特級)を純水で希釈した5%NaOH水溶液に5分浸漬して中和した。次に、この炭素鋼片を、純水で洗浄した。次に、この炭素鋼片をアセトン(和光純薬工業株式会社製、試薬特級)にて洗浄後、耐水研磨紙150で研磨し、再びアセトンにて洗浄した。その後、この炭素鋼片の表面水分をふき取ってから炭素鋼片を乾燥させた後、60℃の恒温槽にて炭素鋼片を上述した界面活性剤水溶液に60℃恒温槽3日間、浸漬した。なお、上述した純水の製造には、純水製造装置(メルク株式会社製:Elix Advantage3)を使用した。
[Immersion process]
Carbon steel pieces (carbon steel piping material API-5L (manufactured by Sumitomo Metals Co., Ltd.) φ73.0 × 5.16t × 30L obtained by cutting vertically) sulfuric acid (manufactured by Wako Pure Chemical Industries, Ltd., (Special grade reagent) was immersed in a 15% aqueous sulfuric acid solution diluted with pure water for 10 minutes. Next, this carbon steel piece was neutralized by immersing it in a 5% NaOH aqueous solution in which granular NaOH (manufactured by Wako Pure Chemical Industries, Ltd., reagent grade) was diluted with pure water for 5 minutes. Next, this carbon steel piece was washed with pure water. Next, this carbon steel piece was washed with acetone (made by Wako Pure Chemical Industries, Ltd., reagent grade), then polished with water-resistant abrasive paper 150, and again washed with acetone. Then, after wiping off the surface moisture of this carbon steel piece, the carbon steel piece was dried, and then the carbon steel piece was immersed in the above-described surfactant aqueous solution in a 60 ° C. constant temperature bath for 3 days. In addition, the pure water manufacturing apparatus (Merck Co., Ltd. product: Elix Advantage3) was used for manufacture of the pure water mentioned above.
 〔防錆性の評価〕
 (目視による錆の発生の確認)
 上述した浸漬後、炭素鋼片に対する錆の発生は目視では確認されなかった。
[Rust prevention evaluation]
(Confirmation of occurrence of rust by visual inspection)
After the immersion described above, the occurrence of rust on the carbon steel pieces was not visually confirmed.
 (明度及び色度の測定)
 上述した各pHでの、上記浸漬工程の前後における、上記炭素鋼片の明度及び色度(L、a、b)を測定した。結果を表1に示す。
(Measurement of brightness and chromaticity)
The brightness and chromaticity (L * , a * , b * ) of the carbon steel pieces before and after the immersion step at each pH described above were measured. The results are shown in Table 1.
 (色差の測定)
 上記明度及び色度の測定結果から、上記浸漬前後における色差を求めた。結果を表1に示す。なお、色差の測定条件の詳細は以下の通りである。
分析装置:コニカミノルタオプティクス株式会社製 色彩色差計CR-5
測定方法:反射測定
測定径:φ30mm
視野:2°
測定値:L表色系
    Lは明度を示し、Lの数値が大きいほど明るい。
(Measurement of color difference)
From the measurement results of the lightness and chromaticity, the color difference before and after the immersion was determined. The results are shown in Table 1. The details of the color difference measurement conditions are as follows.
Analyzer: Konica Minolta Optics Co., Ltd. color difference meter CR-5
Measuring method: Reflection measurement Measuring diameter: φ30mm
Field of view: 2 °
Measured value: L * a * b * color system L * indicates lightness, and the larger the value of L * , the brighter it is.
    aとbは色度で、赤はa、緑は-a、黄はb、青は-bにそれぞれ対応する。また、ΔLabは色差を示す。
主光源:補助イルミナイトC
    昼光/ただし、紫外部での分光分布の相対値が小さい、色温度6774K
a * and b * are chromaticities, red corresponds to a * , green corresponds to -a * , yellow corresponds to b * , and blue corresponds to -b * . ΔL * ab represents a color difference.
Main light source: Auxiliary Illuminite C
Daylight / However, the relative value of the spectral distribution in the ultraviolet region is small, the color temperature 6774K
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 <実施例2>
 実施例1における0.5重量%POE多環フェニルエーテル硫酸エステルNH塩水溶液を、0.5重量%POE多環フェニルエーテル硫酸エステルトリエタノールアミン塩(日本乳化剤株式会社製、FN-63D06)水溶液に代えた以外は、実施例1と同様にして、炭素鋼片をpH8、9及び10の各0.5重量%POE多環フェニルエーテル硫酸エステルトリエタノールアミン塩水溶液に浸漬する前後での、炭素鋼の明度及び色度を測定した。そしてこれらの測定値から、実施例1と同様にして、色差を測定した。その結果を表2に示す。なお、浸漬後では、炭素鋼片に対する錆の発生は目視では確認されなかった。
<Example 2>
The 0.5 wt% POE polycyclic phenyl ether sulfate NH 4 salt aqueous solution in Example 1 was used as the 0.5 wt% POE polycyclic phenyl ether sulfate triethanolamine salt aqueous solution (FN-63D06, manufactured by Nippon Emulsifier Co., Ltd.). In the same manner as in Example 1, except that the carbon steel piece was immersed in a 0.5 wt% POE polycyclic phenyl ether sulfate triethanolamine salt aqueous solution at pH 8, 9 and 10, respectively. The brightness and chromaticity of the steel was measured. From these measured values, the color difference was measured in the same manner as in Example 1. The results are shown in Table 2. In addition, after immersion, generation | occurrence | production of the rust with respect to a carbon steel piece was not confirmed visually.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 <実施例3>
 実施例1における0.5重量%POE多環フェニルエーテル硫酸エステルNH塩水溶液を、0.5重量%POEトリデシルエーテル硫酸エステルトリエタノールアミン塩(日本乳化剤株式会社製、FN-63G17)水溶液に代えた以外は、実施例1と同様にして、炭素鋼片をpH8、9及び10の各0.5重量%POEトリデシルエーテル硫酸エステルトリエタノールアミン塩水溶液に浸漬する前後での、炭素鋼の明度及び色度を測定した。そしてこれらの測定値から、実施例1と同様にして、色差を測定した。その結果を表3に示す、なお、浸漬後では、炭素鋼片に対する錆の発生は目視では確認されなかった。
<Example 3>
The 0.5 wt% POE polycyclic phenyl ether sulfate NH 4 salt aqueous solution in Example 1 was converted to a 0.5 wt% POE tridecyl ether sulfate triethanolamine salt aqueous solution (FN-63G17, manufactured by Nippon Emulsifier Co., Ltd.). Except for the change, the carbon steel pieces were subjected to the same procedure as in Example 1 before and after immersing the carbon steel pieces in 0.5 wt% POE tridecyl ether sulfate triethanolamine salt aqueous solutions at pH 8, 9 and 10. The brightness and chromaticity were measured. From these measured values, the color difference was measured in the same manner as in Example 1. The results are shown in Table 3, and after immersion, the occurrence of rust on the carbon steel pieces was not visually confirmed.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 <実施例4>
 実施例1における0.5重量%POE多環フェニルエーテル硫酸エステルNH塩水溶液を、0.5重量%POE多環フェニルエーテル硫酸エステルトリエタノールアミン塩(日本乳化剤株式会社製、FN-63G18)水溶液に代えた以外は、実施例1と同様にして、炭素鋼片をpH8、9及び10の各0.5重量%POE多環フェニルエーテル硫酸エステルトリエタノールアミン塩水溶液に浸漬する前後での、炭素鋼の明度及び色度を測定した。そしてこれらの測定値から、実施例1と同様にして、色差を測定した。その結果を表4に示す。なお、浸漬後では、炭素鋼片に対する錆の発生は目視では確認されなかった。
<Example 4>
The 0.5 wt% POE polycyclic phenyl ether sulfate NH 4 salt aqueous solution in Example 1 was used as the 0.5 wt% POE polycyclic phenyl ether sulfate triethanolamine salt aqueous solution (FN-63G18, manufactured by Nippon Emulsifier Co., Ltd.). In the same manner as in Example 1, except that the carbon steel piece was immersed in a 0.5 wt% POE polycyclic phenyl ether sulfate triethanolamine salt aqueous solution at pH 8, 9 and 10, respectively. The brightness and chromaticity of the steel was measured. From these measured values, the color difference was measured in the same manner as in Example 1. The results are shown in Table 4. In addition, after immersion, generation | occurrence | production of the rust with respect to a carbon steel piece was not confirmed visually.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 <実施例5>
 〔ビチューメンエマルションの調製〕
 100mLのデスカップに、70℃湯浴にて加熱したビチューメン80.0g、POE多環フェニルエーテル硫酸エステルトリエタノールアミン塩1.0g及び硬水20.0gを入れた。そして、スリーワンモータ(300rpm、プロペラ型撹拌翼)を使用して、常温(25℃)においてデスカップの内容物を5分間撹拌した。これにより、ビチューメンエマルションを得た。
<Example 5>
[Preparation of bitumen emulsion]
In a 100 mL death cup, 80.0 g of bitumen heated in a 70 ° C. hot water bath, 1.0 g of POE polycyclic phenyl ether sulfate triethanolamine salt and 20.0 g of hard water were added. The contents of the descup were stirred for 5 minutes at room temperature (25 ° C.) using a three-one motor (300 rpm, propeller type stirring blade). Thereby, a bitumen emulsion was obtained.
 〔浸漬工程及び防錆性の評価〕
 実施例1におけるpHが、8、9、10の各POE多環フェニルエーテル硫酸エステルNH塩0.5重量%水溶液をビチューメンエマルションに代えた。また、ビチューメンエマルションに浸漬後の炭素鋼片の表面付着物をトルエンで除去した。これらのこと以外は、実施例1と同様にして、炭素鋼片の浸漬前後での明度及び色度を測定した。そしてこれらの測定値から、実施例1と同様にして、色差を測定した。その結果を表5に示す。なお、浸漬後では、炭素鋼片に対する錆の発生は目視では確認されなかった。
[Evaluation of immersion process and rust prevention]
The POE polycyclic phenyl ether sulfate NH 4 salt 0.5 wt% aqueous solution having a pH of 8, 9, and 10 in Example 1 was replaced with a bitumen emulsion. Moreover, the surface deposit | attachment of the carbon steel piece after being immersed in a bitumen emulsion was removed with toluene. Except for these, the brightness and chromaticity of carbon steel pieces before and after immersion were measured in the same manner as in Example 1. From these measured values, the color difference was measured in the same manner as in Example 1. The results are shown in Table 5. In addition, after immersion, generation | occurrence | production of the rust with respect to a carbon steel piece was not confirmed visually.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 <比較例1>
 実施例1における0.5重量%POE多環フェニルエーテル硫酸エステルNH塩水溶液を、pH5.8の0.5重量%POEアルキルエーテル(日本乳化剤株式会社製、Newcol2305)水溶液に代えた以外は、実施例1と同様にして、炭素鋼片をpH5.8の0.5重量%POEアルキルエーテル水溶液に浸漬する前後での、炭素鋼の明度及び色度を測定した。そしてこれらの測定値から、実施例1と同様にして、色差を測定した。その結果を表6に示す。なお、浸漬後では、炭素鋼片に対する錆の発生が目視で確認された。
<Comparative Example 1>
Except that the 0.5 wt% POE polycyclic phenyl ether sulfate NH 4 salt aqueous solution in Example 1 was replaced with an aqueous solution of 0.5 wt% POE alkyl ether (New Emulsifier Co., Ltd., Newcol 2305) having a pH of 5.8, In the same manner as in Example 1, the brightness and chromaticity of the carbon steel before and after immersing the carbon steel pieces in a 0.5 wt% POE alkyl ether aqueous solution having a pH of 5.8 were measured. From these measured values, the color difference was measured in the same manner as in Example 1. The results are shown in Table 6. In addition, after immersion, generation | occurrence | production of the rust with respect to a carbon steel piece was confirmed visually.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 <比較例2>
 実施例1における0.5重量%POE多環フェニルエーテル硫酸エステルNH塩水溶液を、pH5.7の硬度50mg/Lの硬水に代えた以外は、実施例1と同様にして、炭素鋼片を硬度50mg/Lの硬水に浸漬する前後での、炭素鋼の明度及び色度を測定した。そしてこれらの測定値から、実施例1と同様にして、色差を測定した。その結果を表7に示す。なお、浸漬後では、炭素鋼片に対する錆の発生が目視で確認された。
<Comparative example 2>
A carbon steel piece was prepared in the same manner as in Example 1 except that the 0.5 wt% POE polycyclic phenyl ether sulfate NH 4 salt aqueous solution in Example 1 was replaced with hard water having a pH of 5.7 and a hardness of 50 mg / L. The brightness and chromaticity of the carbon steel before and after being immersed in hard water having a hardness of 50 mg / L were measured. From these measured values, the color difference was measured in the same manner as in Example 1. The results are shown in Table 7. In addition, after immersion, generation | occurrence | production of the rust with respect to a carbon steel piece was confirmed visually.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 <比較例3>
 実施例1における0.5重量%POE多環フェニルエーテル硫酸エステルNH塩水溶液を、トリエタノールアミン(日本触媒製)水溶液、pH10、硬度300mg/Lの硬水に代えた以外は、実施例1と同様にして、炭素片をpH10、硬度300mg/Lの硬水に浸漬する前後での、炭素鋼の明度及び色度を測定した。そしてこれらの測定値から、実施例1と同様にして、色差を測定した。その結果を表8に示す。なお、浸漬後では、炭素鋼片に対する錆の発生が目視で確認された。
<Comparative Example 3>
Example 1 except that the 0.5 wt% POE polycyclic phenyl ether sulfate NH 4 salt aqueous solution in Example 1 was replaced with a triethanolamine (manufactured by Nippon Shokubai) aqueous solution, pH 10 and hard water with a hardness of 300 mg / L. Similarly, the brightness and chromaticity of carbon steel before and after immersing the carbon pieces in hard water having a pH of 10 and a hardness of 300 mg / L were measured. From these measured values, the color difference was measured in the same manner as in Example 1. The results are shown in Table 8. In addition, after immersion, generation | occurrence | production of the rust with respect to a carbon steel piece was confirmed visually.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 以上、上述の各実施例及び比較例から、色差の値が14未満であると、炭素鋼片に対する防錆効果があることが示された。 As mentioned above, it was shown from the above-mentioned Examples and Comparative Examples that when the value of the color difference is less than 14, there is an antirust effect on the carbon steel piece.
 <実施例6>
 〔重質油の易乳化〕
 表9に示すA~Dの界面活性剤のそれぞれについての乳化性、流動性及び安定性について調べるため、以下の実験を行った。なお、以下において、POEは、ポリオキシエチレンを表すものとする。
<Example 6>
[Easy emulsification of heavy oil]
In order to investigate the emulsifiability, fluidity and stability of each of the surfactants A to D shown in Table 9, the following experiment was conducted. In the following, POE represents polyoxyethylene.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 〔乳化工程〕
 表9における各界面活性剤について、次の処理を行った。
[Emulsification process]
The following treatment was performed for each surfactant in Table 9.
 100mLのデスカップに、80℃にて加熱した表9のビチューメン、硬水、及び表8における各界面活性剤を加えた。次に、スリーワンモータ(500rpm、プロペラ型撹拌翼)を使用して、常温(25℃)において、デスカップ中の各原料を撹拌した。このときのビチューメン、硬水及び各界面活性剤の基本処方及び実施処方は表10に示す通りであった。 To a 100 mL death cup, bitumen in Table 9 heated at 80 ° C., hard water, and each surfactant in Table 8 were added. Next, each raw material in the death cup was stirred at room temperature (25 ° C.) using a three-one motor (500 rpm, propeller type stirring blade). Table 10 shows the basic formulation and practical formulation of bitumen, hard water, and each surfactant at this time.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 〔乳化性の評価〕
 上述した撹拌直後における混合物の乳化状態について、乳化していれば「〇」、分散していれば「△」、乳化・分散不良であれば「×」として評価した。その結果を表11に示す。
(Emulsification evaluation)
The emulsified state of the mixture immediately after stirring was evaluated as “◯” if emulsified, “Δ” if dispersed, and “x” if emulsified / dispersed poorly. The results are shown in Table 11.
 〔流動性の評価〕
 上述した撹拌後の混合物の常温(25℃)での流動性について、流動性があれば「〇」、流動性はあるが一部が凝集していれば「△」、流動性がなければ「×」として評価した。その結果を表11に示す。
[Evaluation of fluidity]
Regarding the fluidity at room temperature (25 ° C.) of the above-mentioned mixture after stirring, “◯” if there is fluidity, “Δ” if there is fluidity but a part of it is agglomerated, “ “×” was evaluated. The results are shown in Table 11.
 〔安定性の評価〕
 上述した撹拌後の混合物を常温(25℃)で3日間静置した後のエマルション安定性について、安定性が良好で流動性が維持されていれば「〇」、安定性不良で一部が凝集していれば「×」として評価した。その結果を表11に示す。
[Evaluation of stability]
As for the emulsion stability after leaving the mixture after stirring at room temperature (25 ° C.) for 3 days, “○” if the stability is good and the fluidity is maintained, partly agglomerated due to poor stability. If it did, it evaluated as "x". The results are shown in Table 11.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 〔所見〕
 表11に示す結果より、次のことが分かった。
[Findings]
From the results shown in Table 11, the following was found.
 界面活性剤Bに界面活性剤C及びDの少なくとも一方を併用することで乳化性及び流動性が良好になった。低せんだん力で乳化させることが可能であることが示された。なお、界面活性剤Dの方が界面活性剤Cよりも界面活性剤Bと併用したときの粘度はより低くなった。 By using at least one of surfactants C and D in combination with surfactant B, the emulsifiability and fluidity were improved. It was shown that it is possible to emulsify with low shear force. Note that the surfactant D had a lower viscosity when used in combination with the surfactant B than the surfactant C.
 なお、表11中、1番と3番それぞれの界面活性剤の組み合わせにおいても、攪拌速度が200rpm以上と十分に高ければ乳化した。 In Table 11, the combinations of No. 1 and No. 3 surfactants were emulsified if the stirring speed was sufficiently high at 200 rpm or more.
 <実施例7>
 〔重質油の低粘度化〕
 水を用いた乳化による重質油の低粘度化を調べるため、界面活性剤として、POE多環フェニルエーテル硫酸エステルNH塩及びPOE多環フェニルエーテル硫酸エステルトリエタノールアミン塩を用いて、以下の実験を行った。
<Example 7>
[Low viscosity of heavy oil]
In order to investigate the lowering of viscosity of heavy oil by emulsification with water, POE polycyclic phenyl ether sulfate NH 4 salt and POE polycyclic phenyl ether sulfate triethanolamine salt were used as surfactants. The experiment was conducted.
 (乳化)
 POE多環フェニルエーテル硫酸エステルNH塩0.14g、ビチューメン(動粘度50℃:6970mm/s)35g及びイオン交換水14.86gをホモジナイザー(IKA製ULTRA TURRAX T25、13,500rpm)に仕込んで乳化物を得た。
(Emulsification)
POE polycyclic phenyl ether sulfate NH 4 salt 0.14 g, bitumen (kinematic viscosity 50 ° C .: 6970 mm 2 / s) 35 g and ion-exchanged water 14.86 g were charged in a homogenizer (ULKA TURATRAX T25, 13,500 rpm manufactured by IKA). An emulsion was obtained.
 また、POE多環フェニルエーテル硫酸エステルトリエタノールアミン塩0.25g、ビチューメン(動粘度50℃:6970mm/s)35g及びイオン交換水14.75gを上記と同様のホモジナイザーに仕込んで乳化物を得た。なお、上述したイオン交換水は、以下の純水製造装置を使用して製造したものである。
純水製造装置:メルク株式会社製:Elix Advantage3
 次に、各乳化物の粘度を、ブルックフィールド式回転粘度計(ブルックフィールド社製、スピンドル62、温度20℃)で測定した。結果を表12に示す。
Further, 0.25 g of POE polycyclic phenyl ether sulfate triethanolamine salt, 35 g of bitumen (kinematic viscosity 50 ° C .: 6970 mm 2 / s) and 14.75 g of ion-exchanged water were charged into a homogenizer similar to the above to obtain an emulsion. It was. In addition, the ion-exchange water mentioned above is manufactured using the following pure water manufacturing apparatuses.
Pure water production equipment: Merck & Co., Ltd .: Elix Advantage 3
Next, the viscosity of each emulsion was measured with a Brookfield rotary viscometer (Brookfield, spindle 62, temperature 20 ° C.). The results are shown in Table 12.
 (経時変化)
 また、上記乳化物を3日間室温(25℃)に静置した後、乳化物の経時安定性について調べた。そして、目視により、乳化物が分離していないと確認されれば「〇」、乳化物が分離していると確認されれば「×」として評価した。それらの結果を表12に示す。
(change over time)
The emulsion was allowed to stand at room temperature (25 ° C.) for 3 days, and then the stability over time of the emulsion was examined. And when it was confirmed by visual observation that the emulsion was not separated, it was evaluated as “◯”, and when it was confirmed that the emulsion was separated, it was evaluated as “x”. The results are shown in Table 12.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 以上の結果から、POE多環フェニルエーテル硫酸エステルNH塩及びPOE多環フェニルエーテル硫酸エステルトリエタノールアミン塩のいずれでも低粘度化は可能であるが、経時安定性の観点からはPOE多環フェニルエーテル硫酸エステルトリエタノールアミン塩が好ましいことが示された。 From the above results, it is possible to reduce the viscosity of both the POE polycyclic phenyl ether sulfate NH 4 salt and the POE polycyclic phenyl ether sulfate triethanolamine salt, but from the viewpoint of stability over time, the POE polycyclic phenyl Ether sulfate triethanolamine salts have been shown to be preferred.
 本発明は、例えば、重質油の発掘現場から製油所への輸送のために、重質油を低粘度化する用途に好適に利用することができる。 The present invention can be suitably used for the purpose of reducing the viscosity of heavy oil, for example, for transportation from a heavy oil excavation site to a refinery.

Claims (15)

  1.  重質油に界面活性剤を混合して重質油乳化物を得る混合工程を含み、
     上記界面活性剤は、0.5重量%の水溶液としたとき、当該水溶液に炭素鋼を60℃恒温槽にて3日間浸漬した後の当該炭素鋼の色差(ΔLab)が14未満である、重質油乳化物の製造方法。
    A mixing step of mixing a heavy oil with a surfactant to obtain a heavy oil emulsion,
    When the surfactant is a 0.5 wt% aqueous solution, the color difference (ΔL * ab) of the carbon steel after the carbon steel is immersed in the aqueous solution in a 60 ° C. constant temperature bath for 3 days is less than 14. The manufacturing method of a heavy oil emulsion.
  2.  上記界面活性剤は下記式(1)
     RO(AO) 、又は、R ・・・(1)
     (式中、Rは、多環フェニル基、アルキルフェニル基、アルキル基又はアルケニル基であり、Rは、CHCOO基、SO基、CHCHSO基、CHCHCHSO基、CHCHCHCHSO基又はPO基であり、Mは、アンモニウム、アルカノールアミン、アルキルアミン又はアルカリ金属であり、Aは、エチレン、プロピレン及びブチレンよりなる群から選ばれる少なくとも一種の分枝または直鎖の官能基であり、RはCOO基、SO基又はPO基であり、nは0~100の整数である。)で示されるものである、請求項1に記載の重質油乳化物の製造方法。
    The surfactant is represented by the following formula (1)
    R 1 O (AO) n R 2 M + or R 1 R 3 M + (1)
    (In the formula, R 1 is a polycyclic phenyl group, an alkylphenyl group, an alkyl group or an alkenyl group, and R 2 is a CH 2 COO group, an SO 3 group, a CH 2 CH 2 SO 3 group, or a CH 2 CH 2 group. CH 2 SO 3 group, CH 2 CH 2 CH 2 CH 2 SO 3 group or PO 3 group, M is ammonium, alkanolamine, alkylamine or alkali metal, and A is composed of ethylene, propylene and butylene. And at least one branched or straight chain functional group selected from the group, R 3 is a COO group, SO 3 group or PO 3 group, and n is an integer of 0 to 100). The manufacturing method of the heavy oil emulsion of Claim 1 which exists.
  3.  上記界面活性剤はポリオキシアルキレン多環フェニルエーテル硫酸エステルアルカノールアミン塩である、請求項1に記載の重質油乳化物の製造方法。 The method for producing a heavy oil emulsion according to claim 1, wherein the surfactant is a polyoxyalkylene polycyclic phenyl ether sulfate alkanolamine salt.
  4.  上記界面活性剤はポリオキシアルキレンアルキルエーテル硫酸エステルアルカノールアミン塩である、請求項1に記載の重質油乳化物の製造方法。 The method for producing a heavy oil emulsion according to claim 1, wherein the surfactant is a polyoxyalkylene alkyl ether sulfate alkanolamine salt.
  5.  上記混合工程では、
     上記重質油乳化物全体に対して10重量%以上、40重量%以下となるように水を混合する、請求項1~4のいずれか1項に記載の重質油乳化物の製造方法。
    In the mixing step,
    The method for producing a heavy oil emulsion according to any one of claims 1 to 4, wherein water is mixed so as to be 10 wt% or more and 40 wt% or less with respect to the entire heavy oil emulsion.
  6.  上記混合工程では、
     温度0℃以上、100℃以下で、上記重質油乳化物全体に対して10重量%以上、40重量%以下となる量の水を用いて乳化させる、請求項1~5のいずれか1項に記載の重質油乳化物の製造方法。
    In the mixing step,
    The emulsification is carried out using water in an amount of 10 wt% or more and 40 wt% or less with respect to the whole heavy oil emulsion at a temperature of 0 ° C or higher and 100 ° C or lower. A method for producing a heavy oil emulsion as described in 1. above.
  7.  上記界面活性剤は、
     ポリオキシエチレンアルキルエーテル硫酸エステルトリエタノールアミン塩と、
     ポリオキシエチレン多環フェニルエーテル硫酸エステルトリエタノールアミン塩及びポリオキシエチレンアルキルエーテルのうち少なくとも一方と、の混合物であり、
     前記ポリオキシエチレンアルキルエーテル硫酸エステルトリエタノールアミン塩1重量部に対して、前記ポリオキシエチレン多環フェニルエーテル硫酸エステルトリエタノールアミン塩及び前記ポリオキシエチレンアルキルエーテルのうち少なくとも一方の量が0.5重量部~4重量部である、
     請求項4に記載の重質油乳化物の製造方法。
    The surfactant is
    Polyoxyethylene alkyl ether sulfate triethanolamine salt,
    A mixture of at least one of polyoxyethylene polycyclic phenyl ether sulfate triethanolamine salt and polyoxyethylene alkyl ether,
    The amount of at least one of the polyoxyethylene polycyclic phenyl ether sulfate triethanolamine salt and the polyoxyethylene alkyl ether is 0.5 with respect to 1 part by weight of the polyoxyethylene alkyl ether sulfate triethanolamine salt. Parts by weight to 4 parts by weight,
    The manufacturing method of the heavy oil emulsion of Claim 4.
  8.  前記混合工程は、重質油を含む原料に前記界面活性剤を混合することによって行ない、
     前記原料から前記重質油乳化物を抽出する抽出工程をさらに含む、請求項1~7のいずれか1項に記載の重質油乳化物の製造方法。
    The mixing step is performed by mixing the surfactant with a raw material containing heavy oil,
    The method for producing a heavy oil emulsion according to any one of claims 1 to 7, further comprising an extraction step of extracting the heavy oil emulsion from the raw material.
  9.  前記原料は土壌である、請求項8に記載の重質油乳化物の製造方法。 The method for producing a heavy oil emulsion according to claim 8, wherein the raw material is soil.
  10.  前記混合工程は、前記重質油の埋蔵箇所において、当該埋蔵箇所にある前記土壌に対して前記界面活性剤を混合する工程であり、
     前記抽出工程は前記埋蔵箇所において前記土壌から前記重質油を抽出する工程である、請求項9に記載の重質油乳化物の製造方法。
    The mixing step is a step of mixing the surfactant with the soil in the buried location in the heavy oil buried location,
    The method for producing a heavy oil emulsion according to claim 9, wherein the extraction step is a step of extracting the heavy oil from the soil at the buried location.
  11.  請求項1~10のいずれか1項に記載の重質油乳化物の製造方法によって重質油乳化物を得た後に、当該重質油乳化物を輸送する、重質油乳化物の輸送方法。 A method for transporting a heavy oil emulsion, wherein a heavy oil emulsion is obtained by the method for producing a heavy oil emulsion according to any one of claims 1 to 10, and then the heavy oil emulsion is transported. .
  12.  パイプラインで輸送する、請求項11に記載の重質油乳化物の輸送方法。 The method for transporting a heavy oil emulsion according to claim 11, wherein the transport method is transported by a pipeline.
  13.  前記パイプラインの材質が炭素鋼である、請求項12に記載の重質油乳化物の輸送方法。 The method for transporting heavy oil emulsion according to claim 12, wherein the material of the pipeline is carbon steel.
  14.  重質油及び界面活性剤を含む乳化物であり、
     前記界面活性剤は、0.5重量%の水溶液としたときに当該水溶液に炭素鋼を60℃恒温槽にて3日間浸漬した後の当該炭素鋼の色差(ΔLab)が14未満である、重質油乳化物。
    An emulsion containing heavy oil and surfactant,
    The surfactant has a color difference (ΔL * ab) of less than 14 after carbon steel is immersed in the aqueous solution in a 60 ° C. constant temperature bath for 3 days when the aqueous solution is 0.5% by weight. , Heavy oil emulsion.
  15.  水をさらに含み、
     重質油乳化物全体に対する水の含有量が10重量%以上、40重量%以下であり、
     分散径が0.01~100μmであり、分散径の成長が0.01~500μmである、
     請求項14に記載の重質油乳化物。
    Further including water,
    The content of water with respect to the entire heavy oil emulsion is 10% by weight or more and 40% by weight or less,
    The dispersion diameter is 0.01 to 100 μm, and the growth of the dispersion diameter is 0.01 to 500 μm.
    The heavy oil emulsion according to claim 14.
PCT/JP2016/086751 2015-12-10 2016-12-09 Heavy oil emulsion production method, heavy oil emulsion transport method, and heavy oil emulsion WO2017099224A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015241631 2015-12-10
JP2015-241631 2015-12-10

Publications (1)

Publication Number Publication Date
WO2017099224A1 true WO2017099224A1 (en) 2017-06-15

Family

ID=59014215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/086751 WO2017099224A1 (en) 2015-12-10 2016-12-09 Heavy oil emulsion production method, heavy oil emulsion transport method, and heavy oil emulsion

Country Status (1)

Country Link
WO (1) WO2017099224A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51143007A (en) * 1975-06-04 1976-12-09 Dai Ichi Kogyo Seiyaku Co Ltd A water-in-oil type heavy-oil emulsion fuel composition
JPH09268296A (en) * 1996-03-29 1997-10-14 Lion Corp High-concentration asphalt-water mixed fuel
JP2002307521A (en) * 2001-04-11 2002-10-23 Nkk Corp Method for manufacturing polyolefin coated
JP2012072395A (en) * 2010-08-30 2012-04-12 Nippon Nyukazai Kk Treating agent
WO2014055213A2 (en) * 2012-10-01 2014-04-10 Huntsman Petrochemical Llc Surfactant formulation for release of underground fossil fluids

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51143007A (en) * 1975-06-04 1976-12-09 Dai Ichi Kogyo Seiyaku Co Ltd A water-in-oil type heavy-oil emulsion fuel composition
JPH09268296A (en) * 1996-03-29 1997-10-14 Lion Corp High-concentration asphalt-water mixed fuel
JP2002307521A (en) * 2001-04-11 2002-10-23 Nkk Corp Method for manufacturing polyolefin coated
JP2012072395A (en) * 2010-08-30 2012-04-12 Nippon Nyukazai Kk Treating agent
WO2014055213A2 (en) * 2012-10-01 2014-04-10 Huntsman Petrochemical Llc Surfactant formulation for release of underground fossil fluids

Similar Documents

Publication Publication Date Title
SA519402385B1 (en) Spacer Fluid Compositions That Include Surfactants
EP1874890B1 (en) Microemulsion containing corrosion inhibitors useful for oil and gas field applications
US4099537A (en) Method for transportation of viscous hydrocarbons by pipeline
US11168244B2 (en) Compositions for enhanced oil recovery
BR112013031449B1 (en) method of inhibiting or controlling the release of well treatment agent
CN103694970B (en) A kind of paraffin wax emulsions and preparation method thereof
CN105255572B (en) A kind of coiled tubing metal drag reducer
EP3475386B1 (en) Composition, method and use for enhanced oil recovery
US20150119300A1 (en) Biodegradable non-acidic oil-in-water nanoemulsion
CN102952526B (en) High-softening point emulsified asphalt water-based drilling fluid additive and preparation method thereof
WO2015085306A1 (en) Lubrication for drilling fluid
CA2963348A1 (en) A polymer composition for use in enhancing the production of oil from a formation
US20140024560A1 (en) Drilling fluid using surfactant package
SA519401363B1 (en) Nanoemulsions for use in subterranean fracturing treatments
WO2016048637A1 (en) Thermally unstable ammonium carboxylates for enhanced oil recovery
CN103897680A (en) Oil-soluble asphaltene dispersing blockage remover
WO2019010179A1 (en) Compositions for enhanced oil recovery
WO2017099224A1 (en) Heavy oil emulsion production method, heavy oil emulsion transport method, and heavy oil emulsion
CN104531096A (en) Cleaning lubricant for drilling fluid and preparation method thereof
US8950481B2 (en) Methods of cleaning wellbores and analyzing wellbore fluids
CA2985806C (en) Reverse emulsions for cavity control
US20190225889A1 (en) Method to extract bitumen from oil sands using aromatic amines
CN111164185B (en) Alkanolamine and glycol ether compositions for enhanced extraction of bitumen
EP3642300B1 (en) Naphthenate inhibition
WO2017099225A1 (en) Heavy oil viscosity depressant, method for lowering viscosity of heavy oil, and method for recovering heavy oil

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16873117

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16873117

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP