WO2017099052A1 - Lubricant oil composition for internal combustion engine - Google Patents

Lubricant oil composition for internal combustion engine Download PDF

Info

Publication number
WO2017099052A1
WO2017099052A1 PCT/JP2016/086160 JP2016086160W WO2017099052A1 WO 2017099052 A1 WO2017099052 A1 WO 2017099052A1 JP 2016086160 W JP2016086160 W JP 2016086160W WO 2017099052 A1 WO2017099052 A1 WO 2017099052A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
lubricating oil
oil composition
less
content
Prior art date
Application number
PCT/JP2016/086160
Other languages
French (fr)
Japanese (ja)
Inventor
耕治 星野
裕充 松田
豊治 金子
山守 一雄
Original Assignee
Jxエネルギー株式会社
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jxエネルギー株式会社, トヨタ自動車株式会社 filed Critical Jxエネルギー株式会社
Priority to US15/777,033 priority Critical patent/US20180334636A1/en
Priority to DE112016005592.7T priority patent/DE112016005592B9/en
Priority to JP2017555065A priority patent/JP6895387B2/en
Priority to CN201680069798.2A priority patent/CN108473905B/en
Publication of WO2017099052A1 publication Critical patent/WO2017099052A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M101/00Lubricating compositions characterised by the base-material being a mineral or fatty oil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/22Compounds containing sulfur, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/26Carboxylic acids; Salts thereof
    • C10M129/48Carboxylic acids; Salts thereof having carboxyl groups bound to a carbon atom of a six-membered aromatic ring
    • C10M129/54Carboxylic acids; Salts thereof having carboxyl groups bound to a carbon atom of a six-membered aromatic ring containing hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M135/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing sulfur, selenium or tellurium
    • C10M135/12Thio-acids; Thiocyanates; Derivatives thereof
    • C10M135/14Thio-acids; Thiocyanates; Derivatives thereof having a carbon-to-sulfur double bond
    • C10M135/18Thio-acids; Thiocyanates; Derivatives thereof having a carbon-to-sulfur double bond thiocarbamic type, e.g. containing the groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M137/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
    • C10M137/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus having no phosphorus-to-carbon bond
    • C10M137/04Phosphate esters
    • C10M137/10Thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M141/00Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
    • C10M141/10Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic phosphorus-containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • C10M169/045Mixtures of base-materials and additives the additives being a mixture of compounds of unknown or incompletely defined constitution and non-macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/08Inorganic acids or salts thereof
    • C10M2201/084Inorganic acids or salts thereof containing sulfur, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/003Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/102Aliphatic fractions
    • C10M2203/1025Aliphatic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/026Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings with tertiary alkyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/26Overbased carboxylic acid salts
    • C10M2207/262Overbased carboxylic acid salts derived from hydroxy substituted aromatic acids, e.g. salicylates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/084Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/26Amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/28Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/02Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds
    • C10M2219/022Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds of hydrocarbons, e.g. olefines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/046Overbasedsulfonic acid salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/06Thio-acids; Thiocyanates; Derivatives thereof
    • C10M2219/062Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
    • C10M2219/066Thiocarbamic type compounds
    • C10M2219/068Thiocarbamate metal salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/10Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
    • C10M2219/104Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon with nitrogen or oxygen in the ring
    • C10M2219/106Thiadiazoles
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/045Metal containing thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/02Viscosity; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/04Molecular weight; Molecular weight distribution
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/04Detergent property or dispersant property
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/10Inhibition of oxidation, e.g. anti-oxidants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/40Low content or no content compositions
    • C10N2030/42Phosphor free or low phosphor content compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/52Base number [TBN]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/255Gasoline engines

Definitions

  • the present invention relates to a lubricating oil composition for an internal combustion engine.
  • LSPI Low Speed Pre-Ignition
  • the Ca content in the engine oil is derived from a metallic detergent that is an additive for keeping the engine clean. Therefore, if Ca content is reduced to suppress LSPI, engine cleanliness will be insufficient this time.
  • An object of the present invention is to provide a lubricating oil composition for an internal combustion engine that has enhanced LSPI suppression capability and has both engine cleanliness and fuel efficiency.
  • a base oil having a kinematic viscosity at 100 ° C. of 2 to 8 mm 2 / s and an aromatic content of 10% by mass or less
  • B (B1) carbonic acid A metal detergent comprising a metal detergent overbased with calcium and (B2) a metal detergent overbased with magnesium carbonate; and (C) molybdenum sulfide dithiocarbamate or sulfurized oxymolybdenum dithiocarbamate;
  • the calcium content is 1500 mass ppm or less
  • the magnesium content is 300 mass ppm or more
  • the molybdenum content is 600 mass ppm or more
  • Is a lubricating oil composition for an internal combustion engine, characterized in that it is 2.7 mPa ⁇ s or less.
  • kinematic viscosity at 100 ° C.” means the kinematic viscosity at 100 ° C. as defined in ASTM D-445.
  • HTHS viscosity at 150 ° C.” means the high temperature and high shear viscosity at 150 ° C. defined in ASTM D4683.
  • an internal combustion engine comprising a step of operating the internal combustion engine while lubricating a cylinder of the internal combustion engine using the lubricating oil composition according to the first aspect of the present invention. This is a method of suppressing LSPI.
  • a lubricating oil composition for an internal combustion engine that has enhanced LSPI suppression capability and has both engine cleanliness and fuel efficiency.
  • the LSPI suppression method for an internal combustion engine according to the second aspect of the present invention uses the lubricating oil composition according to the first aspect of the present invention, it is possible to effectively suppress LSPI in the internal combustion engine.
  • a lubricating base oil having a kinematic viscosity at 100 ° C. of 2 to 8 mm 2 / s and an aromatic content of 10% by mass or less (hereinafter “present”
  • the lubricant base oil according to the embodiment may be used.
  • a lubricating oil fraction obtained by subjecting crude oil to atmospheric distillation and / or vacuum distillation is subjected to solvent removal, solvent extraction, hydrocracking, solvent dewaxing, Paraffinic mineral oil refined by one or a combination of two or more selected from purification processes such as catalytic dewaxing, hydrorefining, sulfuric acid washing, clay treatment, etc., normal paraffinic base oil, isoparaffinic base oil, and these Examples of the mixture include those having a kinematic viscosity at 100 ° C. of 2 to 8 mm 2 / s and an aromatic content of 10% by mass or less.
  • the following base oils (1) to (8) are used as raw materials, and the raw oil and / or the lubricating oil fraction recovered from the raw oil is The base oil obtained by refine
  • recovering lubricating oil fractions can be mentioned.
  • Distilled oil by atmospheric distillation of paraffinic crude oil and / or mixed base crude oil (2) Distilled oil by vacuum distillation of atmospheric distillation residue of paraffinic crude oil and / or mixed base crude oil ( WVGO) (3) Wax (slack wax, etc.) obtained by the lubricant dewaxing process and / or synthetic wax (Fischer-Tropsch wax, GTL wax, etc.) obtained by the gas-to-liquid (GTL) process, etc.
  • the above-mentioned predetermined purification methods include hydrorefining such as hydrocracking and hydrofinishing; solvent refining such as furfural solvent extraction; dewaxing such as solvent dewaxing and catalytic dewaxing; acid clay and activated clay White clay refining; chemical (acid or alkali) cleaning such as sulfuric acid cleaning and caustic soda cleaning are preferred.
  • one of these purification methods may be performed alone, or two or more may be combined.
  • the order in particular is not restrict
  • the lubricating base oil according to the present embodiment is obtained by subjecting a base oil selected from the above base oils (1) to (8) or a lubricating oil fraction recovered from the base oil to a predetermined treatment.
  • the following base oil (9) or (10) is particularly preferred.
  • the base oil selected from the above base oils (1) to (8) or the lubricating oil fraction recovered from the base oil is hydrocracked and recovered from the product or the product by distillation or the like.
  • Hydrocracking base oil (10) obtained by subjecting the lubricating oil fraction to dewaxing treatment such as solvent dewaxing or catalytic dewaxing, or distillation after the dewaxing treatment, and the above base oils (1) to ( The base oil selected from 8) or the lubricating oil fraction recovered from the base oil is hydroisomerized, and the product or the lubricating oil fraction recovered from the product by distillation or the like is subjected to solvent dewaxing or catalytic desorption. Hydroisomerized base oil obtained by performing dewaxing treatment such as wax or by distillation after the dewaxing treatment. As the dewaxing step, a base oil produced through a contact dewaxing step is preferable.
  • a solvent refining treatment and / or a hydrofinishing treatment step may be further performed at an appropriate stage, if necessary.
  • the catalyst used for the hydrocracking / hydroisomerization is not particularly limited, but a composite oxide having cracking activity (for example, silica alumina, alumina boria, silica zirconia, etc.) or one kind of the composite oxide.
  • Hydrogenolysis with a combination of the above combined with a binder and supporting a metal having hydrogenation ability for example, one or more metals such as Group VIa metal or Group VIII metal in the periodic table
  • a hydroisomerization catalyst in which a catalyst or a support containing zeolite (eg, ZSM-5, zeolite beta, SAPO-11, etc.) is loaded with a metal having a hydrogenation ability containing at least one of the Group VIII metals are preferably used.
  • the hydrocracking catalyst and the hydroisomerization catalyst may be used in combination by stacking or mixing.
  • the reaction conditions in the hydrocracking and hydroisomerization are not particularly limited, but the hydrogen partial pressure is 0.1 to 20 MPa, the average reaction temperature is 150 to 450 ° C., the LHSV is 0.1 to 3.0 hr ⁇ 1 , the hydrogen / oil ratio. 50 to 20000 scf / b is preferable.
  • the kinematic viscosity at 100 ° C. of the lubricating base oil according to this embodiment is 2.0 to 8.0 mm 2 / s. Also, preferably not more than 5 mm 2 / s, more preferably 4.5 mm 2 / s or less, more preferably 4.4 mm 2 / s or less, particularly preferably not more than 4.3 mm 2 / s.
  • the kinematic viscosity at 100 ° C. is preferably 3.0 mm 2 / s or more, more preferably 3.5 mm 2 / s or more, still more preferably 3.8 mm 2 / s or more, particularly preferably 4. 0 mm 2 / s or more.
  • the kinematic viscosity at 100 ° C. of the lubricating base oil exceeds 8.0 mm 2 / s, the low-temperature viscosity characteristics of the lubricating oil composition may deteriorate, and sufficient fuel economy may not be obtained. If it is less than 0.0 mm 2 / s, the formation of an oil film at the lubrication site is insufficient, resulting in poor lubricity, and the evaporation loss of the lubricating oil composition may be increased.
  • the kinematic viscosity at 40 ° C. of the lubricating base oil according to the present embodiment is preferably 40 mm 2 / s or less, more preferably 30 mm 2 / s or less, still more preferably 25 mm 2 / s or less, particularly preferably 22 mm 2 / s. Hereinafter, it is most preferably 20 mm 2 / s or less.
  • the kinematic viscosity at 40 ° C. of the lubricating base oil exceeds 40 mm 2 / s, the low-temperature viscosity characteristics of the lubricating oil composition may be deteriorated, and sufficient fuel economy may not be obtained. If it is less than 2 / s, the oil film formation at the lubrication site is insufficient, so that the lubricity is inferior, and the evaporation loss of the lubricating oil composition may increase.
  • kinematic viscosity at 40 ° C means the kinematic viscosity at 40 ° C. as defined in ASTM D-445.
  • the viscosity index of the lubricating base oil according to this embodiment is preferably 100 or more. More preferably, it is 110 or more, More preferably, it is 120 or more, Especially preferably, it is 125 or more, Most preferably, it is 130 or more.
  • the viscosity index is less than 100, not only the viscosity-temperature characteristics, thermal / oxidative stability and volatilization prevention properties of the lubricating oil composition deteriorate, but also the friction coefficient tends to increase, and the wear prevention property It tends to decrease.
  • the viscosity index means a viscosity index measured according to JIS K 2283-1993.
  • the density ( ⁇ 15 ) at 15 ° C. of the lubricating base oil according to this embodiment is preferably 0.860 or less, more preferably 0.850 or less, still more preferably 0.840 or less, and particularly preferably 0.835 or less. It is.
  • the density at 15 ° C. means the density measured at 15 ° C. in accordance with JIS K 2249-1995.
  • the pour point of the lubricating base oil according to this embodiment is preferably ⁇ 10 ° C. or lower, more preferably ⁇ 12.5 ° C. or lower, still more preferably ⁇ 15 ° C. or lower, particularly preferably ⁇ 17.5 ° C. or lower, most preferably Preferably it is ⁇ 20.0 ° C. or lower.
  • the pour point means a pour point measured according to JIS K 2269-1987.
  • the sulfur content in the lubricating base oil according to this embodiment depends on the sulfur content of the raw material.
  • a raw material that does not substantially contain sulfur such as a synthetic wax component obtained by a Fischer-Tropsch reaction or the like
  • a lubricating base oil that does not substantially contain sulfur can be obtained.
  • the sulfur content in the obtained lubricating base oil is usually 100 mass ppm. That's it.
  • the content of sulfur is preferably 100 ppm by mass or less, and 50 ppm by mass or less, from the viewpoint of further improvement in thermal and oxidation stability and low sulfur content. More preferably, it is more preferably 10 ppm by mass or less, and particularly preferably 5 ppm by mass or less.
  • the nitrogen content in the lubricating base oil according to this embodiment is preferably 10 ppm by mass or less, more preferably 5 ppm by mass or less, and even more preferably 3 ppm by mass or less.
  • the nitrogen content means a nitrogen content measured in accordance with JIS K 2609-1990.
  • % C P of the lubricating base oil according to the present embodiment is preferably 70 or more, more preferably 80 or more, more preferably 85 or more, and usually 99 or less, preferably 95 or less, more preferably 94 or less is there.
  • % C P of lubricating base oil is less than the above lower limit value, viscosity-temperature characteristics, thermal / oxidative stability and friction characteristics tend to decrease, and when additives are added to lubricating base oil In addition, the effectiveness of the additive tends to decrease. Further, when the% C p value of the lubricating base oil exceeds the upper limit value, the additive solubility will tend to be lower.
  • % C A of the lubricating base oil according to the present embodiment is preferably 2 or less, more preferably 1 or less, more preferably 0.8 or less, particularly preferably 0.5 or less.
  • % C A of the lubricating base oil exceeds the upper limit value, the viscosity - temperature characteristic, thermal and oxidation stability and fuel efficiency tends to decrease.
  • % C N of the lubricating base oil according to the present embodiment is preferably 30 or less, more preferably 25 or less, more preferably 20 or less, particularly preferably 15 or less.
  • The% C N of the lubricating base oil is preferably 1 or more, more preferably 4 or more. If the% C N value of the lubricating base oil exceeds the upper limit value, the viscosity - temperature characteristic, thermal and oxidation stability and frictional properties will tend to be reduced. Moreover, when% CN is less than the said lower limit, it exists in the tendency for the solubility of an additive to fall.
  • % C P ,% C N and% C A are the percentages of the number of paraffin carbons to the total number of carbons determined by a method (ndM ring analysis) based on ASTM D 3238-85, respectively. Mean the percentage of naphthene carbons to total carbons, and the percentage of aromatic carbons to total carbons.
  • the preferred ranges of% C P ,% C N and% C A described above are based on the values obtained by the above method. For example, even for a lubricating base oil containing no naphthene, it can be obtained by the above method.
  • The% CN that is obtained can exhibit values greater than zero.
  • the content of the saturated component in the lubricating base oil according to this embodiment is preferably 90% by mass or more, preferably 95% by mass or more, more preferably 99% by mass or more, based on the total amount of the lubricating oil base oil. is there.
  • the proportion of the cyclic saturated component in the saturated component is preferably 40% by mass or less, preferably 35% by mass or less, preferably 30% by mass or less, and more preferably 25% by mass or less. More preferably, it is 21% by mass or less.
  • annular saturated part which occupies for the said saturated part becomes like this. Preferably it is 5 mass% or more, More preferably, it is 10 mass% or more.
  • the viscosity-temperature characteristics and thermal / oxidative stability can be improved.
  • the function of the additive can be expressed at a higher level while the additive is sufficiently stably dissolved and held in the lubricating base oil. Furthermore, it is possible to improve the friction characteristics of the lubricating base oil itself, and as a result, it is possible to achieve an improvement in friction reduction effect and an improvement in energy saving.
  • the saturated content means a value measured in accordance with ASTM D 2007-93.
  • a similar method that can obtain the same result can be used for the separation method of the saturated component or the composition analysis of the cyclic saturated component and the non-cyclic saturated component.
  • a similar method that can obtain the same result can be used for the separation method of the saturated component or the composition analysis of the cyclic saturated component and the non-cyclic saturated component.
  • ASTM D 2007-93 the method described in ASTM D 2425-93, the method described in ASTM D 2549-91, the method by high performance liquid chromatography (HPLC), or these methods may be used.
  • HPLC high performance liquid chromatography
  • the aromatic content in the lubricating base oil according to this embodiment is 10% by mass or less, preferably 5% by mass or less, more preferably 4% by mass or less, and even more preferably 3%, based on the total amount of the lubricating base oil.
  • % By mass or less, particularly preferably 2% by mass or less, preferably 0.1% by mass or more, more preferably 0.5% by mass or more, still more preferably 1% by mass or more, particularly preferably 1.5% by mass. % Or more. If the aromatic content exceeds the above upper limit, the viscosity-temperature characteristics, thermal / oxidative stability, friction characteristics, volatilization prevention characteristics and low-temperature viscosity characteristics tend to decrease.
  • the lubricating base oil according to the present embodiment may not contain an aromatic component, but the solubility of the additive is further increased by setting the aromatic content to be equal to or higher than the above lower limit value. be able to.
  • the aromatic content means a value measured according to ASTM D 2007-93.
  • the aromatic component usually includes alkylbenzene, alkylnaphthalene, anthracene, phenanthrene and alkylated products thereof, and compounds having four or more condensed benzene rings, pyridines, quinolines, phenols, naphthols, etc. An aromatic compound having a hetero atom is included.
  • a synthetic base oil may be used as the lubricating base oil according to the present embodiment.
  • Synthetic base oils include poly ⁇ -olefins and their hydrides, isobutene oligomers, having a kinematic viscosity at 100 ° C. of 2.0 to 8.0 mm 2 / s and an aromatic content of 10% by mass or less.
  • poly ⁇ -olefin is preferable.
  • the poly ⁇ -olefin is typically an ⁇ -olefin oligomer or co-oligomer having 2 to 32 carbon atoms, preferably 6 to 16 carbon atoms (1-octene oligomer, decene oligomer, ethylene-propylene co-oligomer, etc.). And their hydrogenation products.
  • the production method of the poly- ⁇ -olefin is not particularly limited.
  • polymerization such as a catalyst containing a complex of aluminum trichloride or boron trifluoride with water, alcohol (ethanol, propanol, butanol, etc.), carboxylic acid or ester.
  • a method of polymerizing ⁇ -olefin in the presence of a catalyst can be mentioned.
  • the lubricating base oil according to the present embodiment has a single base oil as long as the base oil as a whole has a kinematic viscosity at 100 ° C. of 2.0 to 8.0 mm 2 / s and an aromatic content of 10% by mass or less.
  • the base oil component may comprise a plurality of base oil components.
  • the content of the lubricating base oil according to the present embodiment in the lubricating oil composition of the present invention is usually 70% by mass or more based on the total amount of the lubricating oil composition. Yes, preferably 75% by mass or more, more preferably 80% by mass or more, and usually 90% by mass or less.
  • the lubricating oil composition is a single grade oil, it is usually 80% by mass or more, preferably 85% by mass or more, more preferably 90% by mass or more, based on the total amount of the lubricating oil composition. It is 95 mass% or less.
  • the lubricating oil composition of the present invention has (B) a metallic detergent (hereinafter referred to as “component (B)”) as a (B) metallic detergent (hereinafter referred to as “component (B)”). And (B2) a metal detergent overbased with magnesium carbonate (hereinafter also referred to as “(B2) component”).
  • component (B) include phenate detergents, sulfonate detergents, and salicylate detergents.
  • these metal type detergents can be used individually or in combination of 2 or more types.
  • Preferred examples of the phenate detergent include an overbased salt of an alkaline earth metal salt of a compound having a structure represented by the following formula (1).
  • the alkaline earth metal include magnesium, barium, and calcium. Among these, magnesium or calcium is preferable.
  • R 1 represents a linear or branched chain having 6 to 21 carbon atoms, a saturated or unsaturated alkyl group or alkenyl group, m represents the degree of polymerization and represents an integer of 1 to 10, Represents a sulfide (—S—) group or a methylene (—CH 2 —) group, and x represents an integer of 1 to 3.
  • R 1 may be a combination of two or more different groups.
  • the number of carbon atoms of R 1 in the formula (1) is preferably 9-18, more preferably 9-15. If the carbon number of R 1 is less than 6, the solubility in the base oil may be poor. On the other hand, if the carbon number of R 1 exceeds 21, the production may be difficult and the heat resistance may be poor.
  • the degree of polymerization m in the formula (1) is preferably 1 to 4. When the degree of polymerization m is within this range, the heat resistance can be increased.
  • Preferred examples of the sulfonate detergent include an alkaline earth metal salt of an alkyl aromatic sulfonic acid obtained by sulfonating an alkyl aromatic compound, or a basic salt or an overbased salt thereof.
  • the weight average molecular weight of the alkyl aromatic compound is preferably 400 to 1500, more preferably 700 to 1300.
  • Examples of the alkaline earth metal include magnesium, barium, and calcium, and magnesium or calcium is preferable.
  • Examples of the alkyl aromatic sulfonic acid include so-called petroleum sulfonic acid and synthetic sulfonic acid. As petroleum sulfonic acid here, what sulfonated the alkyl aromatic compound of the lubricating oil fraction of mineral oil, what is called mahoganic acid etc.
  • synthetic sulfonic acid linear or branched alkyl obtained by recovering a by-product in an alkylbenzene production plant that is a raw material of a detergent or by alkylating benzene with polyolefin
  • examples include sulfonated alkylbenzene having a group.
  • Another example of the synthetic sulfonic acid is a sulfonated alkyl naphthalene such as dinonylnaphthalene.
  • Preferred examples of the salicylate detergent include metal salicylate or a basic salt or an overbased salt thereof.
  • Preferred examples of the metal salicylate here include compounds represented by the following formula (2).
  • R 2 each independently represents an alkyl group or alkenyl group having 14 to 30 carbon atoms
  • M represents an alkaline earth metal
  • n represents 1 or 2.
  • M is preferably calcium or magnesium.
  • n is preferably 1.
  • R 2 may be a combination of different groups.
  • the production method of the alkaline earth metal salicylate is not particularly limited, and a known production method of monoalkyl salicylate can be used.
  • monoalkyl salicylic acid obtained by alkylation with olefin using phenol as a starting material and then carboxylation with carbon dioxide gas or the like, or alkylation with an equivalent amount of the above olefin using salicylic acid as a starting material.
  • the obtained monoalkyl salicylic acid or the like is reacted with a metal base such as an alkaline earth metal oxide or hydroxide, or these monoalkyl salicylic acid or the like is once converted into an alkali metal salt such as a sodium salt or a potassium salt.
  • Alkaline earth metal salicylate can be obtained by exchanging metal with an alkaline earth metal salt.
  • an alkaline earth metal phenate, sulfonate, or salicylate overbased with calcium carbonate or magnesium carbonate is not particularly limited.
  • the metal ratio of the component (B) is a value calculated according to the following formula, preferably 1 or more, more preferably 2 or more, and particularly preferably 3 or more. Further, it is preferably 50 or less, more preferably 30 or less, and particularly preferably 10 or less.
  • component metal ratio valence of metal element in component (B) ⁇ metal content of component (B) (mol) / soap group content of component (B) (mol)
  • a calcium phenate detergent, a calcium sulfonate detergent, a calcium salicylate detergent, or a combination thereof, which is overbased with calcium carbonate can be used.
  • the component (B1) preferably contains at least a calcium salicylate detergent.
  • a magnesium phenate detergent, a magnesium sulfonate detergent, a magnesium salicylate detergent, or a combination thereof, which is overbased with magnesium carbonate can be used.
  • the component (B2) preferably contains at least a magnesium salicylate detergent or a magnesium sulfonate detergent.
  • the content of the component (B1) in the lubricating oil composition is such that the calcium content in the lubricating oil composition is 1500 ppm by mass or less, preferably 1400-1500 ppm by mass based on the total amount of the lubricating oil composition. .
  • the content of the component (B2) in the lubricating oil composition is such that the magnesium content in the lubricating oil composition is 300 ppm by mass or more, preferably 350 to 600 ppm by mass, based on the total amount of the lubricating oil composition. .
  • the magnesium content is equal to or higher than the lower limit, engine cleanliness can be improved while suppressing LSPI.
  • the raise of a friction coefficient can be suppressed.
  • the lubricating oil composition of the present invention contains molybdenum sulfide dithiocarbamate or sulfurized oxymolybdenum dithiocarbamate (hereinafter sometimes referred to as “component (C)”) as a molybdenum-based friction modifier.
  • component (C) for example, a compound represented by the following formula (3) can be used.
  • R 3 to R 6 may be the same or different, and are each an alkyl group having 2 to 24 carbon atoms or an (alkyl) aryl group having 6 to 24 carbon atoms, preferably 4 carbon atoms. Or an alkyl group having 13 to 13 carbon atoms or an (alkyl) aryl group having 10 to 15 carbon atoms.
  • the alkyl group may be any of a primary alkyl group, a secondary alkyl group, and a tertiary alkyl group, and may be linear or branched.
  • the “(alkyl) aryl group” means “aryl group or alkylaryl group”.
  • Y 1 to Y 4 are each independently a sulfur atom or an oxygen atom, and at least one of Y 1 to Y 4 is a sulfur atom.
  • the content of the component (C) in the lubricating oil composition is such that the molybdenum content in the lubricating oil composition is 600 ppm by mass or more, preferably 700 ppm by mass or more based on the total amount of the lubricating oil composition, and preferably The amount is 1000 mass ppm or less, more preferably 900 mass ppm or less, still more preferably 850 mass ppm or less, and particularly preferably 800 mass ppm or less.
  • the molybdenum content is equal to or higher than the lower limit, fuel economy and LSPI suppression can be improved.
  • the storage stability of a lubricating oil composition can be improved because molybdenum content is always below an upper limit.
  • the lubricating oil composition of the present invention may contain an amine-based antioxidant and / or a phenol-based antioxidant (hereinafter sometimes referred to as “component (D)”) as (D) an antioxidant.
  • component (D) a phenol-based antioxidant
  • the amine-based antioxidant for example, known amine-based antioxidants such as alkylated diphenylamine, alkylated phenyl- ⁇ -naphthylamine, phenyl- ⁇ -naphthylamine, and phenyl- ⁇ -naphthylamine can be used without particular limitation.
  • phenolic antioxidants examples include known phenols such as 2,6-di-tert-butyl-4-methylphenol (DBPC) and 4,4′-methylenebis (2,6-di-tert-butylphenol).
  • DBPC 2,6-di-tert-butyl-4-methylphenol
  • a system antioxidant can be used without particular limitation.
  • the antioxidant is contained in the lubricating oil composition of the present invention, the content is usually 0.1 to 5% by mass based on the total amount of the lubricating oil composition.
  • the lubricating oil composition of the present invention preferably contains an amine-based antioxidant as the component (D).
  • the amine-based antioxidant is contained in the lubricating oil composition of the present invention, the content thereof is preferably 0.01 to 0.1% by mass as the nitrogen amount based on the total amount of the lubricating oil composition.
  • the content of the amine-based antioxidant as the amount of nitrogen is not less than the above lower limit, the life performance of the lubricating oil can be further enhanced. Further, when the content of the amine-based antioxidant as the amount of nitrogen is not more than the above upper limit value, colored stains inside the engine can be suppressed.
  • the lubricating oil composition of the present invention preferably contains (E) zinc dialkyldithiophosphate (ZnDTP; hereinafter sometimes referred to as “component (E)”).
  • component (E) zinc dialkyldithiophosphate
  • component (E) for example, a compound represented by the following formula (4) can be used.
  • R 7 to R 10 each independently represent a linear or branched alkyl group having 1 to 24 carbon atoms, and may be a combination of different groups.
  • the carbon number of R 7 to R 10 is preferably 3 or more, preferably 12 or less, more preferably 8 or less.
  • R 7 to R 10 may be any of a primary alkyl group, a secondary alkyl group, and a tertiary alkyl group, but a primary alkyl group, a secondary alkyl group, or a group thereof.
  • a combination is preferred, and the molar ratio of the primary alkyl group to the secondary alkyl group (primary alkyl group: secondary alkyl group) is preferably 0: 100 to 30:70. .
  • This ratio may be a combination ratio of alkyl chains in the molecule, or a mixture ratio of ZnDTP having only primary alkyl groups and ZnDTP having only secondary alkyl groups. Since the secondary alkyl group is mainly used, it is possible to improve fuel efficiency.
  • the method for producing the zinc dialkyldithiophosphate is not particularly limited.
  • it can be synthesized by reacting an alcohol having an alkyl group corresponding to R 7 to R 10 with diphosphorus pentasulfide to synthesize dithiophosphoric acid and neutralizing it with zinc oxide.
  • the content thereof is preferably 0.03 to 1.0% by mass based on the total amount of the composition.
  • the content of component (E) is preferably such that the phosphorus content in the lubricating oil composition is 750 to 800 ppm by mass based on the total amount of the lubricating oil composition.
  • the phosphorus content in the lubricating oil composition is not less than the above lower limit value, not only the oxidation stability can be enhanced, but also the LSPI suppression ability can be enhanced.
  • the phosphorus content in the lubricating oil composition is not more than the above upper limit, it is possible to avoid a decrease in base number due to hydrolysis of zinc dithiophosphate.
  • the lubricating oil composition of the present invention preferably contains (F) a corrosion inhibitor or a metal deactivator (hereinafter sometimes referred to as “component (F)”).
  • component (F) include known corrosion inhibitors such as benzotriazole, tolyltriazole, thiadiazole, and imidazole compounds, imidazolines, pyrimidine derivatives, alkylthiadiazoles, mercaptobenzothiazoles, benzotriazoles and derivatives thereof.
  • 1,3,4-thiadiazole polysulfide 1,3,4-thiadiazolyl-2,5-bisdialkyldithiocarbamate, 2- (alkyldithio) benzimidazole, ⁇ - (o-carboxybenzylthio) propiononitrile, etc.
  • a known metal deactivator can be used without particular limitation.
  • the component (F) is contained in the lubricating oil composition of the present invention, the content thereof is usually 0.005 to 5% by mass based on the total amount of the composition.
  • a compound containing sulfur as the component (F).
  • the corrosion inhibitor or metal deactivator that is a sulfur-containing compound include, for example, thiadiazole.
  • the content is usually 0.01% by mass or more, preferably 0.05% by mass or more, more preferably Is 0.1% by mass or more, and is usually 1.0% by mass or less, preferably 0.5% by mass or less, more preferably 0.3% by mass or less.
  • the sulfur content in the lubricating oil composition is preferably 0.20 to 0.30 mass%, more preferably 0.23 to 0.28 mass%, based on the total amount of the lubricating oil composition.
  • the sulfur content in the lubricating oil composition is not less than the above lower limit value, the LSPI suppression ability can be further enhanced, and the friction reducing effect of the component (C) which is a molybdenum friction modifier is more effectively achieved. It can be pulled out. Further, when the sulfur content in the lubricating oil composition is not more than the above upper limit value, the engine cleanliness can be kept high.
  • the lubricating oil composition of the present invention may contain (G) a nitrogen-containing ashless dispersant (hereinafter sometimes referred to as “(G) component”).
  • (G) component a nitrogen-containing ashless dispersant
  • (G-1) Succinimide having at least one alkyl group or alkenyl group in the molecule or a derivative thereof (hereinafter sometimes referred to as “component (G-1)”), (G-2) benzylamine or a derivative thereof having at least one alkyl group or alkenyl group in the molecule (hereinafter sometimes referred to as “component (G-2)”), (G-3) A polyamine having at least one alkyl group or alkenyl group in the molecule or a derivative thereof (hereinafter sometimes referred to as “component (G-3)”).
  • the component (G) can be particularly preferably used.
  • examples of the succinimide having at least one alkyl group or alkenyl group in the molecule include compounds represented by the following formula (5) or formula (6).
  • R 11 represents an alkyl group or alkenyl group having 40 to 400 carbon atoms, and h represents an integer of 1 to 5, preferably 2 to 4.
  • R 11 preferably has 60 or more carbon atoms, and more preferably 350 or less.
  • R 12 and R 13 each independently represent an alkyl group or alkenyl group having 40 to 400 carbon atoms, and may be a combination of different groups.
  • R 12 and R 13 are particularly preferably a polybutenyl group.
  • I represents an integer of 0 to 4, preferably 1 to 3.
  • R 12 and R 13 preferably have 60 or more carbon atoms, and more preferably 350 or less.
  • the alkyl group or alkenyl group (R 11 to R 13 ) in the formulas (5) and (6) may be linear or branched, and is preferably an olefin oligomer such as propylene, 1-butene, isobutene, etc. And a branched alkyl group and a branched alkenyl group derived from a co-oligomer of ethylene and propylene. Of these, branched alkyl groups or alkenyl groups derived from oligomers of isobutene conventionally called polyisobutylene, and polybutenyl groups are most preferred.
  • the preferred number average molecular weight of the alkyl group or alkenyl group (R 11 to R 13 ) in the formulas (5) and (6) is 800 to 3500.
  • the succinimide having at least one alkyl group or alkenyl group in the molecule is a so-called monotype succinimide represented by the formula (5) in which succinic anhydride is added only to one end of the polyamine chain.
  • Either the monotype succinimide and the bis type succinimide may be contained in the lubricating oil composition of the present invention, or both of them may be contained as a mixture.
  • the method for producing a succinimide having at least one alkyl group or alkenyl group in the molecule is not particularly limited.
  • a compound having an alkyl group or alkenyl group having 40 to 400 carbon atoms and maleic anhydride and 100 Alkyl succinic acid or alkenyl succinic acid obtained by reaction at ⁇ 200 ° C. can be obtained by reacting with polyamine.
  • the polyamine include diethylenetriamine, triethylenetetramine, tetraethylenepentamine, and pentaethylenehexamine.
  • examples of the benzylamine having at least one alkyl group or alkenyl group in the molecule include compounds represented by the following formula (7).
  • R 14 represents an alkyl group or alkenyl group having 40 to 400 carbon atoms, and j represents an integer of 1 to 5, preferably 2 to 4.
  • R 14 preferably has 60 or more carbon atoms, and more preferably 350 or less.
  • component (G-2) is not particularly limited.
  • a polyolefin such as propylene oligomer, polybutene, or ethylene- ⁇ -olefin copolymer is reacted with phenol to form alkylphenol, and then formaldehyde, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine
  • formaldehyde diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine
  • the method of making it react with polyamines such as a Mannich reaction, is mentioned.
  • Examples of the polyamine having at least one alkyl group or alkenyl group in the component (G-3) include compounds represented by the following formula (8).
  • R 15 represents an alkyl group or an alkenyl group having 40 to 400 carbon atoms
  • k represents an integer of 1 to 5, preferably 2 to 4.
  • R 15 preferably has 60 or more carbon atoms, and more preferably 350 or less.
  • component (G-3) is not particularly limited.
  • a polyolefin such as a propylene oligomer, polybutene or ethylene- ⁇ -olefin copolymer
  • a polyamine such as ammonia, ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine or pentaethylenehexamine.
  • Examples of the derivatives in the component (G-1) to the component (G-3) include (i) succinimide, benzylamine or polyamine (hereinafter referred to as “above-mentioned”) having at least one alkyl group or alkenyl group in the molecule.
  • alkylene oxides having 2 to 6 carbon atoms, or hydroxy (poly) oxyalkylene carbonate some or all of the remaining amino groups and / or imino groups are neutralized.
  • an amidated modified compound with an oxygen-containing organic compound (ii) action of boric acid on the above-mentioned nitrogen-containing compound A boron-modified compound in which part or all of the remaining amino group and / or imino group is neutralized or amidated; (iii) by reacting phosphoric acid with the nitrogen-containing compound described above, A phosphoric acid-modified compound in which a part or all of the amino group and / or imino group is neutralized or amidated; (iv) a sulfur-modified compound obtained by allowing a sulfur compound to act on the nitrogen-containing compound described above And (v) a modified compound obtained by combining the above-mentioned nitrogen-containing compound with two or more kinds of modifications selected from modification with an oxygen-containing organic compound, boron modification, phosphoric acid modification, and sulfur modification.
  • the molecular weight of the component (G) is not particularly limited, but a suitable weight average molecular weight is 1000 to 20000.
  • the content is preferably 0.01% by mass or more, more preferably 0.03 as nitrogen content, based on the total amount of the lubricating oil composition. It is at least 0.1% by mass, preferably at most 0.15% by mass, more preferably at most 0.1% by mass, particularly preferably at most 0.07% by mass.
  • the content of the component (G) is not less than the above lower limit, the coking resistance (heat resistance) of the lubricating oil composition can be sufficiently improved.
  • the content of the component (G) is equal to or less than the above upper limit value, fuel economy can be maintained high.
  • the boron content in the lubricating oil composition is preferably 0 ppm by mass or more, more preferably 100 ppm by mass or more, and particularly preferably 200 ppm by mass or more based on the total amount of the lubricating oil composition. Moreover, Preferably it is less than 400 mass ppm, More preferably, it is 350 mass ppm, Especially preferably, it is 300 mass ppm.
  • the boron content is not more than the above upper limit value, fuel economy can be maintained high, and the ash content of the lubricating oil composition can be kept low.
  • the lubricating oil composition of the present invention preferably contains (H) a viscosity index improver (hereinafter sometimes referred to as “component (H)”).
  • component (H) include non-dispersed or dispersed poly (meth) acrylate viscosity index improvers, (meth) acrylate-olefin copolymers, non-dispersed or dispersed ethylene- ⁇ -olefin copolymers.
  • a hydride thereof polyisobutylene or a hydride thereof, a styrene-diene hydrogenated copolymer, a styrene-maleic anhydride ester copolymer, and a polyalkylstyrene.
  • the component (H) is a poly (meth) acrylate viscosity index improver (hereinafter referred to as the proportion of structural units represented by the following general formula (9) in the total monomer units in the polymer of 10 to 90 mol%) It is preferable to contain “sometimes referred to as a viscosity index improver according to this embodiment”.
  • R 16 represents hydrogen or a methyl group
  • R 17 represents a linear or branched hydrocarbon group having 1 to 5 carbon atoms.
  • the proportion of the (meth) acrylate structural unit represented by the general formula (9) in the polymer is preferably 10 to 90 mol%, more preferably 80 mol% or less. More preferably, it is 70 mol% or less. More preferably, it is 20 mol% or more, More preferably, it is 30 mol% or more, Especially preferably, it is 40 mol% or more.
  • the viscosity index improver according to the present embodiment may be a copolymer having another (meth) acrylate structural unit in addition to the (meth) acrylate structural unit represented by the general formula (9).
  • a copolymer includes one or more monomers represented by the following general formula (10) (hereinafter referred to as “monomer (M-1)”) and other than the monomer (M-1). It can be obtained by copolymerizing with a monomer.
  • R 18 represents a hydrogen atom or a methyl group
  • R 19 represents a linear or branched hydrocarbon group having 6 to 18 carbon atoms.
  • the monomer to be combined with the monomer (M-1) is arbitrary, but for example, a monomer represented by the following general formula (11) (hereinafter referred to as “monomer (M-2)”) is preferable.
  • the copolymer of the monomer (M-1) and the monomer (M-2) is a so-called non-dispersed poly (meth) acrylate viscosity index improver.
  • R 20 represents a hydrogen atom or a methyl group
  • R 21 represents a linear or branched hydrocarbon group having 19 or more carbon atoms.
  • R 21 in the monomer (M-2) represented by the formula (11) is a straight chain or branched hydrocarbon group having 19 or more carbon atoms as described above, and preferably a straight chain having 20 or more carbon atoms. Or it is a branched hydrocarbon, More preferably, it is a linear or branched hydrocarbon with 22 or more carbon atoms, More preferably, it is a branched hydrocarbon group with 24 or more carbon atoms.
  • the upper limit of the carbon number of the hydrocarbon group represented by R 21 is not particularly limited, but is preferably a linear or branched hydrocarbon group having a carbon number of 50,000 or less.
  • it is a linear or branched hydrocarbon group of 500 or less, more preferably a linear or branched hydrocarbon group of 100 or less, particularly preferably 50 or less.
  • a hydrocarbon group most preferably a branched hydrocarbon group of 25 or less.
  • comb-shaped poly (meth) acrylate can be exemplified.
  • the comb-shaped poly (meth) acrylate here is a copolymer of the monomer (M-1) and the monomer (M-2), and the monomer (M-2) is R 21 in the formula (11).
  • Mn number average molecular weight
  • a macromonomer for example, a macromonomer derived from a hydride of polyolefin obtained by copolymerizing butadiene and isoprene can be employed.
  • the number of (meth) acrylate structural units corresponding to the monomer (M-2) represented by the general formula (11) in the polymer may be one, or two A combination of the above may be used.
  • the proportion of the structural unit corresponding to the monomer (M-2) represented by the general formula (11) in the total monomer units in the polymer is preferably 0.5 to 70 mol%, more preferably It is 60 mol% or less, more preferably 50 mol% or less, particularly preferably 40 mol% or less, and most preferably 30 mol% or less.
  • the proportion of the structural unit corresponding to the monomer (M-2) represented by the general formula (11) in the total monomer units in the polymer exceeds 70 mol%, the effect of improving the viscosity temperature characteristics and the low temperature viscosity characteristics If the amount is less than 0.5 mol%, the effect of improving the viscosity temperature characteristic may be inferior.
  • monomers to be combined with the monomer (M-1) include a monomer represented by the following general formula (12) (hereinafter referred to as “monomer (M-3)”) and a general formula (13).
  • One or more selected from monomers (hereinafter referred to as “monomer (M-4)”) are preferred.
  • the copolymer of the monomer (M-1) and the monomer (M-3) and / or (M-4) is a so-called dispersion type poly (meth) acrylate viscosity index improver.
  • the dispersion type poly (meth) acrylate viscosity index improver may further contain a monomer (M-2) as a constituent monomer.
  • R 22 represents a hydrogen atom or a methyl group
  • R 23 represents an alkylene group having 1 to 18 carbon atoms
  • E 1 represents 1 to 2 nitrogen atoms and 0 to 2 oxygen atoms.
  • alkylene group having 1 to 18 carbon atoms represented by R 23 include ethylene group, propylene group, butylene group, pentylene group, hexylene group, heptylene group, octylene group, nonylene group, decylene group, Examples include an undecylene group, a dodecylene group, a tridecylene group, a tetradecylene group, a pentadecylene group, a hexadecylene group, a heptadecylene group, and an octadecylene group (these alkylene groups may be linear or branched).
  • Specific examples of the group represented by E 1 include a dimethylamino group, a diethylamino group, a dipropylamino group, a dibutylamino group, an anilino group, a toluidino group, a xylidino group, an acetylamino group, a benzoylamino group, and a morpholino group.
  • R 24 represents a hydrogen atom or a hydrocarbon group
  • E 2 represents an amine residue or heterocyclic residue containing 1 to 2 hydrocarbon groups or nitrogen atoms and 0 to 2 oxygen atoms. Represents a group.
  • Specific examples of the group represented by E 2 include a dimethylamino group, a diethylamino group, a dipropylamino group, a dibutylamino group, an anilino group, a toluidino group, a xylidino group, an acetylamino group, a benzoylamino group, and a morpholino group.
  • the monomers (M-3) and (M-4) specifically, dimethylaminomethyl methacrylate, diethylaminomethyl methacrylate, dimethylaminoethyl methacrylate, diethylaminoethyl methacrylate, 2-methyl-5-vinylpyridine, Examples thereof include morpholinomethyl methacrylate, morpholinoethyl methacrylate, N-vinylpyrrolidone, and mixtures thereof.
  • the method for producing the viscosity index improver according to the present embodiment is arbitrary.
  • the monomer (M-1) and / or (M-2) and the monomer It can be easily obtained by radical solution polymerization of one or more selected from (M-3) to (M-4).
  • the PSSI (Permanent Shear Stability Index) in the diesel injector method of the viscosity index improver according to this embodiment is preferably 40 or less, more preferably 10 or less, still more preferably 5 or less, particularly preferably 3 or less, most. Preferably it is 1 or less.
  • PSSI Permanent Shear Stability Index
  • the lower limit of PSSI of the viscosity index improver according to this embodiment is not particularly limited, but is usually more than zero.
  • PSSI refers to ASTM D 6022-01 (Standard Practice for Calculation of Permanent Shear Stability Index), and ASTM D 6278-02 (Test Method for Shear Stability of Polymer Containing Fluids European European It means the permanent shear stability index (Permanent ⁇ ⁇ ⁇ Shear Stability Index) calculated based on data measured by Diesel Injector Apparatus.
  • the weight average molecular weight (Mw) of the viscosity index improver is usually 10,000 to 700,000, preferably 20,000 or more, more preferably 50,000 or more, Preferably it is 100,000 or more, Most preferably, it is 120,000 or more. Moreover, it is preferably 500,000 or less, more preferably 400,000 or less, and still more preferably 300,000 or less. If the weight average molecular weight is less than 10,000, the effect of improving the viscosity index when dissolved in a lubricating base oil is small, resulting in poor fuel economy and low temperature viscosity characteristics, and may increase costs.
  • the weight average molecular weight exceeds 700,000, the effect of increasing the viscosity becomes too large, and not only the fuel saving property and the low temperature viscosity property are inferior, but also shear stability, solubility in lubricating base oil, and storage. Stability deteriorates.
  • the ratio (Mw / PSSI) of the weight average molecular weight and the PSSI of the viscosity index improver according to this embodiment is preferably 1.0 ⁇ 10 4 or more, more preferably 2.0 ⁇ 10 4 or more, and still more preferably. Is 5.0 ⁇ 10 4 or more, and particularly preferably 8.0 ⁇ 10 4 or more.
  • Mw / PSSI is less than 1.0 ⁇ 10 4 , fuel economy and low temperature startability, that is, viscosity temperature characteristics and low temperature viscosity characteristics may be deteriorated.
  • the ratio (Mw / Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the viscosity index improver according to this embodiment is preferably 4.0 or less, more preferably 3.5 or less, It is preferably 3.0 or less, particularly preferably 2.0 or less, and most preferably 1.5 or less. Moreover, it is preferable that Mw / Mn is 1.0 or more, More preferably, it is 1.05 or more, More preferably, it is 1.1 or more. When Mw / Mn exceeds 4.0, the effect of improving the solubility and the viscosity-temperature characteristic deteriorates, so that sufficient storage stability and fuel economy may not be maintained.
  • the content of the component (H) in the lubricating oil composition of the present invention is usually 0.1 to 30% by mass, preferably 1% by mass or more, more preferably 3%, based on the total amount of the composition, including diluted oil. It is at least 5 mass%, more preferably at least 5 mass%, preferably at most 20 mass%, more preferably at most 15 mass%.
  • the content is less than 0.1% by mass, the fuel efficiency is deteriorated and the low temperature characteristics may be insufficient.
  • the content exceeds 30% by mass the fuel efficiency of the composition is decreased. May deteriorate and shear stability may deteriorate.
  • the lubricating oil composition of the present invention can contain other additives generally used in lubricating oils depending on the purpose.
  • additives include additives such as friction modifiers other than the component (C), antiwear agents (or extreme pressure agents), rust inhibitors, demulsifiers, antifoaming agents, and the like.
  • the friction modifier other than the component (C) for example, one or more friction modifiers selected from organic molybdenum compounds other than the component (C) and ashless friction modifiers can be used.
  • the content of the friction modifier other than the component (C) is preferably 0.01 to 2.0% by mass based on the total amount of the composition.
  • organic molybdenum compounds other than the component (C) include molybdenum dithiophosphate; molybdenum compounds (for example, molybdenum oxide such as molybdenum dioxide and molybdenum trioxide, orthomolybdic acid, paramolybdic acid, and (poly) sulfurized molybdenum acid).
  • molybdenum dithiophosphate examples include molybdenum dithiophosphate; molybdenum compounds (for example, molybdenum oxide such as molybdenum dioxide and molybdenum trioxide, orthomolybdic acid, paramolybdic acid, and (poly) sulfurized molybdenum acid).
  • Molybdenum acid metal salts of these molybdates, molybdates such as ammonium salts, molybdenum disulfide, molybdenum trisulfide, molybdenum pentasulfide, molybdenum sulfide such as polysulfide molybdenum, molybdenum sulfides, metal salts of molybdenum sulfides or amines Salts, molybdenum halides such as molybdenum chloride, etc.) and sulfur-containing organic compounds (eg alkyl (thio) xanthate, thiadiazole, mercaptothiadiazole, thiocarbonate, tetrahydrocarbyl thiuram disulfide) Bis (di (thio) hydrocarbyl dithiophosphonate) disulfide, organic (poly) sulfide, sulfurized ester, etc.) or other organic compounds, etc .;
  • the organic molybdenum compound may be a mononuclear molybdenum compound or a polynuclear molybdenum compound such as a dinuclear molybdenum compound or a trinuclear molybdenum compound.
  • organic molybdenum compound other than the component (C) an organic molybdenum compound not containing sulfur as a constituent element can be used.
  • organic molybdenum compounds that do not contain sulfur as a constituent element include molybdenum-amine complexes, molybdenum-succinimide complexes, molybdenum salts of organic acids, and molybdenum salts of alcohols. Complexes, molybdenum salts of organic acids and molybdenum salts of alcohols are preferred.
  • the content is preferably 0.01 to 2.0% by mass based on the total amount of the composition.
  • the molybdenum content in the lubricating oil composition is 600 mass ppm or more, preferably 700 mass ppm or more, based on the total amount of the lubricating oil composition. Further, it is preferably 1000 ppm by mass or less, more preferably 900 ppm by mass or less, further preferably 850 ppm by mass or less, and particularly preferably 800 ppm by mass or less.
  • a compound usually used as a friction modifier for lubricating oils can be used without particular limitation.
  • an ashless friction modifier for example, a compound having 6 to 50 carbon atoms containing one or more hetero elements selected from an oxygen atom, a nitrogen atom and a sulfur atom in the molecule can be mentioned. More specifically, at least one alkyl group or alkenyl group having 6 to 30 carbon atoms, particularly a straight chain alkyl group, straight chain alkenyl group, branched alkyl group, or branched alkenyl group having 6 to 30 carbon atoms in the molecule. Examples thereof include ashless friction modifiers such as amine compounds, fatty acid esters, fatty acid amides, fatty acids, aliphatic alcohols, aliphatic ethers, urea compounds, hydrazide compounds, and the like.
  • the content is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and still more preferably, based on the total amount of the lubricating oil composition. Is 0.3% by mass or more, preferably 2% by mass or less, more preferably 1% by mass or less, and particularly preferably 0.8% by mass or less. If the content of the ashless friction modifier is less than 0.01% by mass, the effect of reducing friction due to the addition tends to be insufficient, and if it exceeds 2% by mass, the effect of an anti-wear additive or the like. Tends to be inhibited, or the solubility of the additive tends to deteriorate.
  • the antiwear agent used in the lubricating oil can be used without particular limitation.
  • sulfur-based, phosphorus-based, sulfur-phosphorus extreme pressure agents and the like can be used.
  • the lubricant composition contains an antiwear agent (or extreme pressure agent), the content is preferably 0.01 to 10% by mass based on the total amount of the lubricant composition.
  • rust preventive examples include petroleum sulfonate, alkylbenzene sulfonate, dinonylnaphthalene sulfonate, alkenyl succinate, and polyhydric alcohol ester.
  • the content thereof is preferably 0.01 to 10% by mass based on the total amount of the lubricating oil composition.
  • the demulsifier examples include polyalkylene glycol nonionic surfactants such as polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, and polyoxyethylene alkyl naphthyl ether.
  • the content is preferably 0.01 to 10% by mass based on the total amount of the lubricating oil composition.
  • antifoaming agents examples include silicone oils having a kinematic viscosity at 25 ° C. of 1000 to 100,000 mm 2 / s, alkenyl succinic acid derivatives, esters of polyhydroxy aliphatic alcohols and long chain fatty acids, methyl salicylates, and , O-hydroxybenzyl alcohol and the like.
  • the content is preferably 0.01 to 10% by mass based on the total amount of the lubricating oil composition.
  • the kinematic viscosity at 100 ° C. of the lubricating oil composition of the present invention is preferably 4.0 to 12 mm 2 / s, more preferably 9.3 mm 2 / s or less, and still more preferably 8.2 mm 2 / s or less. Particularly preferably, it is 7.1 mm 2 / s or less, and most preferably 6.8 mm 2 / s or less. Further, it is more preferably 5.0 mm 2 / s or more, further preferably 5.5 mm 2 / s or more, particularly preferably 6.1 mm 2 / s or more, and most preferably 6.3 mm 2 / s or more.
  • the kinematic viscosity at 100 ° C. of the lubricating oil composition is less than 4.0 mm 2 / s, there is a risk of insufficient lubricity. If it exceeds 12 mm 2 / s, the necessary low temperature viscosity and sufficient fuel saving Performance may not be obtained.
  • the kinematic viscosity at 40 ° C. of the lubricating oil composition of the present invention is preferably 4.0 to 50 mm 2 / s, more preferably 40 mm 2 / s or less, still more preferably 35 mm 2 / s or less, further preferably It is 32 mm 2 / s or less, particularly preferably 30 mm 2 / s or less, and most preferably 28 mm 2 / s or less. Further, it is more preferably 15 mm 2 / s or more, further preferably 18 mm 2 / s or more, still more preferably 20 mm 2 / s or more, particularly preferably 22 mm 2 / s or more, and most preferably 25 mm 2 / s or more.
  • the kinematic viscosity at 40 ° C. of the lubricating oil composition is less than 4 mm 2 / s, there is a risk of insufficient lubricity, and when it exceeds 50 mm 2 / s, the necessary low temperature viscosity and sufficient fuel saving performance are obtained. May not be obtained.
  • the viscosity index of the lubricating oil composition of the present invention is preferably 140 to 400, more preferably 160 or more, still more preferably 180 or more, particularly preferably 200 or more, and most preferably 210 or more.
  • the viscosity index of the lubricating oil composition is less than 140, it may be difficult to improve fuel economy while maintaining the HTHS viscosity at 150 ° C., and further, low temperature (for example, the viscosity grade of fuel economy oil) It may be difficult to reduce the viscosity at -35 ° C., which is the CCS viscosity measurement temperature defined in SAE viscosity grade 0W-X, which is known as Further, when the viscosity index of the lubricating oil composition exceeds 400, the evaporability may be deteriorated, and further, there may be a problem due to insufficient solubility of the additive and compatibility with the sealing material. is there.
  • the HTHS viscosity at 100 ° C. of the lubricating oil composition of the present invention is preferably 5.5 mPa ⁇ s or less, more preferably 5.0 mPa ⁇ s or less, still more preferably 4.9 mPa ⁇ s or less, particularly preferably. 4.8 mPa ⁇ s or less, most preferably 4.6 mPa ⁇ s or less. Further, it is preferably 3.5 mPa ⁇ s or more, more preferably 4.0 mPa ⁇ s or more, further preferably 4.4 mPa ⁇ s or more, and particularly preferably 4.5 mPa ⁇ s or more.
  • the HTHS viscosity at 100 ° C. means a high temperature high shear viscosity at 100 ° C. as defined in ASTM D4683.
  • the HTHS viscosity at 100 ° C. is less than 3.5 mPa ⁇ s, there is a risk of insufficient lubricity, and when it exceeds 5.5 mPa ⁇ s, the necessary low temperature viscosity and sufficient fuel saving performance cannot be obtained. There is a fear.
  • the HTHS viscosity at 150 ° C. of the lubricating oil composition of the present invention is 2.7 mPa ⁇ s or less, preferably 2.65 mPa ⁇ s or less, particularly preferably 2.35 mPa ⁇ s or less. Further, it is preferably 1.95 mPa ⁇ s or more, more preferably 2.1 mPa ⁇ s or more, further preferably 2.2 mPa ⁇ s or more, and particularly preferably 2.25 mPa ⁇ s or more.
  • the HTHS viscosity at 150 ° C. means a high temperature and high shear viscosity at 150 ° C. as defined in ASTM D4683.
  • HTHS viscosity at 150 ° C. is less than 1.95 mPa ⁇ s, there is a risk of insufficient lubricity, and if it exceeds 2.7 mPa ⁇ s, sufficient fuel saving performance may not be obtained.
  • the ratio (X 100 / X 150 ) of the HTHS viscosity (X 100 ) at 100 ° C. to the HTHS viscosity (X 150 ) at 150 ° C. of the lubricating oil composition of the present invention is preferably 2.0 or less.
  • the lower limit of the ratio HTHS viscosity X 100 / X 150 is not particularly limited, but is preferably 1.8 or more. Since the ratio of the HTHS viscosity X 100 / X 150 is 1.8 or more, the base oil viscosity can be kept high, which is advantageous in terms of evaporability and wear resistance.
  • the evaporation loss amount of the lubricating oil composition according to the present invention is preferably 20% by mass or less, more preferably 15% by mass or less, and more preferably 14% by mass or less as the NOACK evaporation amount at 250 ° C. Is particularly preferred.
  • the NOACK evaporation amount of the lubricating base oil component exceeds 20% by mass, the evaporation loss of the lubricating oil is large, which causes an increase in viscosity and the like, which is not preferable.
  • the NOACK evaporation amount is a value obtained by measuring the evaporation amount of the lubricating oil measured according to ASTM D 5800.
  • the lower limit of the NOACK evaporation amount at 250 ° C. of the lubricating oil composition is not particularly limited, but is usually 5% by mass or more.
  • the inventors of the present invention have examined a supercharger-equipped test engine under operating conditions where LSPI is likely to occur. As a result, differential scanning calorimetry (LSPI generation frequency in air or oxygen atmosphere at a pressure of 10 atm) DSC) was found to have a negative correlation with the self-ignition point.
  • FIG. 1 shows the occurrence frequency of LSPI in an engine test as a self-ignition point (hereinafter referred to as “DSC (10 atm air atmosphere) self-ignition point) in DSC measurement of an engine oil sample used in the engine test under an air atmosphere at a pressure of 10 atm. Is a scatter plot plotted against. It can be seen that when the DSC (10 atm air atmosphere) self-ignition point rises from 260 ° C. to 270 ° C., for example, the frequency of occurrence of LSPI is reduced to about 1/7.
  • the graph of FIG. 1 shows the correlation between the DSC (10 atm air atmosphere) self-ignition point and the frequency of LSPI generation.
  • the auto-ignition point (hereinafter referred to as “DSC (10 atm) in DSC measurement under an oxygen atmosphere at a pressure of 10 atm is shown. It is considered that the correlation between the oxygen atmosphere) self-ignition point ”) and the LSPI occurrence frequency is even higher.
  • the DSC (10 atm oxygen atmosphere) self-ignition point of the lubricating oil composition of the present invention is preferably 213 ° C. or higher, more preferably 215 ° C. or higher, further preferably 217 ° C. or higher, particularly preferably 220 ° C. or higher.
  • the upper limit is not particularly limited, but is usually 300 ° C. or lower, and typically 280 ° C. or lower.
  • the value of the parameter r S represented by the following mathematical formula (1) is preferably 1.08 or more, more preferably 1.10 or more, and 1.15. More preferably, it is more preferably 1.20 or more.
  • the parameter r S is preferably 3.00 or less, more preferably 2.00 or less, and particularly preferably 1.50 or less.
  • r S ([S] + [Mo] + [Zn]) / ([Mg] + 2 ⁇ [Ca]) (1)
  • [S] represents the sulfur content derived from the additive (unit: mass ppm)
  • [Mo] represents the molybdenum content (unit: mass ppm) in the lubricating oil composition, and [Zn].
  • the value of the parameter r S ′ represented by the following mathematical formula (2) is preferably 1.00 or more, more preferably 1.02 or more, It is more preferably 1.05 or more, particularly preferably 1.10 or more, and most preferably 1.15 or more.
  • the parameter r S ′ is preferably 2.50 or less, more preferably 2.00 or less, and particularly preferably 1.50 or less.
  • [Zn] represents the zinc content (unit: mass ppm) in the lubricating oil composition
  • [Mg] represents the magnesium content (unit: mass ppm) in the lubricating oil composition
  • [Ca] represents the calcium content (unit: mass ppm) in the lubricating oil composition.
  • the LSPI suppression method for an internal combustion engine according to the second aspect of the present invention operates the internal combustion engine while lubricating the cylinder of the internal combustion engine using the lubricating oil composition according to the first aspect of the present invention described above.
  • the lubricating oil composition of the present invention may be used at least for lubricating a cylinder, and portions other than the cylinder of the internal combustion engine may be lubricated with the lubricating oil composition of the present invention together with the cylinder.
  • a known lubricating oil supply mechanism can be employed without any particular limitation.
  • Lubricating oil compositions of the present invention (Examples 1 to 8) and comparative lubricating oil compositions (Comparative Examples 1 to 5) were prepared using the following base oils and additives, respectively.
  • “inmass%” represents mass% based on the total amount of the base oil
  • “mass%” represents mass% based on the total amount of the composition
  • “mass ppm” represents mass based on the total amount of the composition. Represents ppm.
  • Base oil Group III base oil, kinematic viscosity (100 ° C.) 4.15 mm 2 / s, aromatic content 0.2% by mass
  • (Metal-based detergent) B1-1 CaCO 3 overbased Ca salicylate, Ca content 8.0 mass%, metal ratio 3.0, base number (perchloric acid method) 225 mg KOH / g, sulfur content 0.0 mass%
  • B1-2 CaCO 3 overbased Ca sulfonate, Ca content 12.75% by mass, base number (perchloric acid method) 325 mg KOH / g, sulfur content 2.0% by mass
  • B2-1 MgCO 3 overbased Mg sulfonate, Mg content 9.3 mass%, base number (perchloric acid method) 400 mg KOH / g, sulfur content 2.0 mass%
  • (Molybdenum friction modifier) C-1 sulfurized (oxy) molybdenum dithiocarbamate, alkyl group: combination of 8 and 13 carbon atoms, Mo content 10.0% by mass, sulfur content 10.8% by mass
  • D-1 Amine-based antioxidant, nitrogen content 3.6% by mass
  • D-2 Phenolic antioxidant
  • Zinc dithiophosphate E-1: Zinc dialkyldithiophosphate (alkyl group: secondary C6, Zn content 9.25% by mass, phosphorus content 8.5% by mass, sulfur content 17.6% by mass)
  • G-1 polybutenyl succinimide, bistype, polybutenyl group number average molecular weight: 1300, nitrogen content: 1.75% by mass
  • G-2 Number average molecular weight of boric acid-modified polybutenyl succinimide, bistype, polybutenyl group: 1300, nitrogen content 1.5% by mass, boron content 0.78% by mass
  • I-1 alkyldithiothiadiazole, sulfur content 36.0% by mass
  • I-2 Sulfurized olefin, sulfur content 46.0% by mass
  • HTT 290 deposit A hot tube test was conducted at 290 ° C. according to JPI-5S-55-99, and the weight (unit: mg) of the deposit adhered to the inner wall surface of the tube having a predetermined inner diameter and length was determined. It was measured. The less deposits, the higher the engine cleanliness.
  • SRV friction coefficient Using a SRV reciprocating friction and wear tester (manufactured by Optimol Instruments), a cylinder-on-disk test is performed at a temperature of 100 ° C., a load of 400 N, an amplitude of 1.5 mm, and a vibration frequency of 50 Hz, and the friction coefficient is measured. did.
  • HTHS viscosity measured in accordance with ASTM D-4683.
  • Kinematic viscosity Measured according to ASTM D-445.
  • Viscosity index measured in accordance with JIS K 2283-1993.
  • DSC auto-ignition point Using a differential pressure scanning calorimeter (manufactured by TA Instruments), perform differential scanning calorimetry at a pressure of 10 atm, an oxygen atmosphere, and a heating rate of 10 ° C./min. The ignition point was used. The higher the self-ignition point, the lower the LSPI occurrence frequency.
  • the lubricating oil composition of the present invention has an improved LSPI suppression capability, and at the same time, is excellent in engine cleanliness and fuel economy. Therefore, the lubricating oil composition of the present invention can be preferably used for lubrication of a supercharged gasoline engine, particularly a supercharged direct injection engine, in which LSPI tends to be a problem.

Abstract

According to the present invention, a lubricant oil composition for an internal combustion engine contains (A) a base oil having a kinematic viscosity of 2-8 mm2/s at 100°C and 10 mass% or less aromatic content, (B) a metal-based detergent including (B1) a metal-based detergent overbased by calcium carbonate and (B2) a metal-based detergent overbased by magnesium carbonate, and (C) molybdenum dithiocarbamate sulfide or oxymolybdenum dithiocarbamate sulfide; wherein, based on the total amount of the lubricant oil composition, the calcium content is 1500 or less ppm by mass, the magnesium content is 300 or more ppm by mass and the molybdenum content is 600 or more ppm by mass; and wherein the HTHS viscosity at 150°C is 2.7 or less mPa · s.

Description

内燃機関用潤滑油組成物Lubricating oil composition for internal combustion engines
 本発明は内燃機関用潤滑油組成物に関する。 The present invention relates to a lubricating oil composition for an internal combustion engine.
 近年、自動車用内燃機関、特に自動車用ガソリンエンジンの燃費低減を目的として、従来の自然吸気エンジンを、過給機を備えたより排気量の低いエンジン(過給ダウンサイジングエンジン)で置き換えることが提案されている。過給ダウンサイジングエンジンによれば、過給機を備えることにより、出力を維持しながら排気量を低減し、省燃費化を図ることが可能である。 In recent years, it has been proposed to replace the conventional naturally aspirated engine with a lower-displacement engine (supercharged downsizing engine) equipped with a supercharger in order to reduce the fuel consumption of an internal combustion engine for automobiles, particularly an automobile gasoline engine. ing. According to the supercharged downsizing engine, by providing the supercharger, it is possible to reduce the exhaust amount while maintaining the output and to save fuel.
 その一方で、過給ダウンサイジングエンジンにおいては、低回転域でトルクを高めていくと、予定されたタイミングよりも早くシリンダ内で着火が起きる現象(LSPI:Low Speed Pre-Ignition)が起きる場合がある。LSPIが起きるとエネルギー損失が増え、燃費改善および低速トルク向上の制約となる。LSPIの発生にはエンジン油の影響が疑われており、エンジン油中のCa分がLSPIの発生を促進することが報告されている。 On the other hand, in a supercharged downsizing engine, if the torque is increased in the low speed range, a phenomenon (LSPI: Low Speed Pre-Ignition) may occur where ignition occurs in the cylinder earlier than the scheduled timing. is there. When LSPI occurs, energy loss increases and becomes a constraint on fuel efficiency improvement and low-speed torque improvement. The influence of engine oil is suspected in the generation of LSPI, and it has been reported that the Ca content in engine oil promotes the generation of LSPI.
国際公開2015/114920号パンフレットInternational Publication No. 2015/114920 Pamphlet 特開平7-316577号公報Japanese Patent Laid-Open No. 7-316577 特開2014-152301号公報JP 2014-152301 A 特開2015-143304号公報JP 2015-143304 A 特開2015-140354号公報JP 2015-140354 A 特許第5727701号公報Japanese Patent No. 5727701 国際公開2015/111746号パンフレットInternational Publication No. 2015/111746
 しかしながらエンジン油中のCa分は、エンジンを清浄に保つための添加剤である金属系清浄剤に由来している。したがってLSPIを抑制するためにCa分を削減すると、今度はエンジン清浄性が不足することになる。 However, the Ca content in the engine oil is derived from a metallic detergent that is an additive for keeping the engine clean. Therefore, if Ca content is reduced to suppress LSPI, engine cleanliness will be insufficient this time.
 本発明は、高められたLSPI抑制能を有しつつ、エンジン清浄性と省燃費性とを兼ね備えた内燃機関用潤滑油組成物を提供することを課題とする。 An object of the present invention is to provide a lubricating oil composition for an internal combustion engine that has enhanced LSPI suppression capability and has both engine cleanliness and fuel efficiency.
 本発明の第1の態様は、(A)100℃の動粘度が2~8mm/sであり、かつ芳香族含有量が10質量%以下である基油と、(B)(B1)炭酸カルシウムで過塩基化された金属系清浄剤および(B2)炭酸マグネシウムで過塩基化された金属系清浄剤を含む、金属系清浄剤と、(C)硫化モリブデンジチオカーバメート又は硫化オキシモリブデンジチオカーバメートとを含有し、潤滑油組成物全量基準で、カルシウム含有量が1500質量ppm以下であり、マグネシウム含有量が300質量ppm以上であり、モリブデン含有量が600質量ppm以上であり、150℃におけるHTHS粘度が2.7mPa・s以下であることを特徴とする、内燃機関用潤滑油組成物である。 In a first aspect of the present invention, (A) a base oil having a kinematic viscosity at 100 ° C. of 2 to 8 mm 2 / s and an aromatic content of 10% by mass or less, and (B) (B1) carbonic acid A metal detergent comprising a metal detergent overbased with calcium and (B2) a metal detergent overbased with magnesium carbonate; and (C) molybdenum sulfide dithiocarbamate or sulfurized oxymolybdenum dithiocarbamate; , And based on the total amount of the lubricating oil composition, the calcium content is 1500 mass ppm or less, the magnesium content is 300 mass ppm or more, the molybdenum content is 600 mass ppm or more, and the HTHS viscosity at 150 ° C. Is a lubricating oil composition for an internal combustion engine, characterized in that it is 2.7 mPa · s or less.
 本明細書において、「100℃における動粘度」とは、ASTM D-445に規定される100℃での動粘度を意味する。「150℃におけるHTHS粘度」とは、ASTM D4683に規定される150℃での高温高せん断粘度を意味する。 In this specification, “kinematic viscosity at 100 ° C.” means the kinematic viscosity at 100 ° C. as defined in ASTM D-445. “HTHS viscosity at 150 ° C.” means the high temperature and high shear viscosity at 150 ° C. defined in ASTM D4683.
 本発明の第2の態様は、本発明の第1の態様に係る潤滑油組成物を用いて内燃機関のシリンダを潤滑しながら該内燃機関を運転する工程を有することを特徴とする、内燃機関のLSPI抑制方法である。 According to a second aspect of the present invention, there is provided an internal combustion engine comprising a step of operating the internal combustion engine while lubricating a cylinder of the internal combustion engine using the lubricating oil composition according to the first aspect of the present invention. This is a method of suppressing LSPI.
 本発明の第1の態様によれば、高められたLSPI抑制能を有しつつ、エンジン清浄性と省燃費性とを兼ね備えた内燃機関用潤滑油組成物を提供できる。 According to the first aspect of the present invention, it is possible to provide a lubricating oil composition for an internal combustion engine that has enhanced LSPI suppression capability and has both engine cleanliness and fuel efficiency.
 本発明の第2の態様に係る内燃機関のLSPI抑制方法は、本発明の第1の態様に係る潤滑油組成物を用いるので、内燃機関におけるLSPIを効果的に抑制することが可能である。 Since the LSPI suppression method for an internal combustion engine according to the second aspect of the present invention uses the lubricating oil composition according to the first aspect of the present invention, it is possible to effectively suppress LSPI in the internal combustion engine.
エンジン試験におけるLSPIの発生頻度を、該エンジン試験において用いられたエンジン油試料のDSC(10atm)自己着火点に対してプロットした散布図である。It is the scatter diagram which plotted the occurrence frequency of LSPI in an engine test with respect to the DSC (10 atm) auto-ignition point of the engine oil sample used in the engine test.
 以下、本発明について詳述する。なお、特に断らない限り、数値A及びBについて「A~B」という表記は「A以上B以下」を意味するものとする。かかる表記において数値Bのみに単位を付した場合には、当該単位が数値Aにも適用されるものとする。また「又は」及び「若しくは」の語は、特に断りのない限り論理和を意味するものとする。 Hereinafter, the present invention will be described in detail. Unless otherwise specified, the notation “A to B” for the numerical values A and B means “A to B”. In this notation, when a unit is attached to only the numerical value B, the unit is also applied to the numerical value A. Further, the terms “or” and “or” mean logical sums unless otherwise specified.
 <(A)潤滑油基油>
 本発明の潤滑油組成物においては、基油として、100℃における動粘度が2~8mm/sであり、かつ芳香族含有量が10質量%以下である潤滑油基油(以下において「本実施形態に係る潤滑油基油」ということがある。)が用いられる。
<(A) Lubricating base oil>
In the lubricating oil composition of the present invention, as a base oil, a lubricating base oil having a kinematic viscosity at 100 ° C. of 2 to 8 mm 2 / s and an aromatic content of 10% by mass or less (hereinafter “present” The lubricant base oil according to the embodiment ”may be used.
 本実施形態に係る潤滑油基油としては、例えば、原油を常圧蒸留および/または減圧蒸留して得られた潤滑油留分を、溶剤脱れき、溶剤抽出、水素化分解、溶剤脱ろう、接触脱ろう、水素化精製、硫酸洗浄、白土処理等の精製処理から選ばれる1種または2種以上の組み合わせにより精製したパラフィン系鉱油、およびノルマルパラフィン系基油、イソパラフィン系基油、ならびにこれらの混合物などのうち、100℃における動粘度が2~8mm/sであり、かつ芳香族含有量が10質量%以下であるものが挙げられる。 As the lubricating base oil according to the present embodiment, for example, a lubricating oil fraction obtained by subjecting crude oil to atmospheric distillation and / or vacuum distillation is subjected to solvent removal, solvent extraction, hydrocracking, solvent dewaxing, Paraffinic mineral oil refined by one or a combination of two or more selected from purification processes such as catalytic dewaxing, hydrorefining, sulfuric acid washing, clay treatment, etc., normal paraffinic base oil, isoparaffinic base oil, and these Examples of the mixture include those having a kinematic viscosity at 100 ° C. of 2 to 8 mm 2 / s and an aromatic content of 10% by mass or less.
 本実施形態に係る潤滑油基油の好ましい例としては、以下に示す基油(1)~(8)を原料とし、この原料油および/またはこの原料油から回収された潤滑油留分を、所定の精製方法によって精製し、潤滑油留分を回収することによって得られる基油を挙げることができる。
(1)パラフィン基系原油および/または混合基系原油の常圧蒸留による留出油
(2)パラフィン基系原油および/または混合基系原油の常圧蒸留残渣油の減圧蒸留による留出油(WVGO)
(3)潤滑油脱ろう工程により得られるワックス(スラックワックス等)および/またはガストゥリキッド(GTL)プロセス等により得られる合成ワックス(フィッシャートロプシュワックス、GTLワックス等)
(4)基油(1)~(3)から選ばれる1種または2種以上の混合油および/または当該混合油のマイルドハイドロクラッキング処理油
(5)基油(1)~(4)から選ばれる2種以上の混合油
(6)基油(1)、(2)、(3)、(4)または(5)の脱れき油(DAO)
(7)基油(6)のマイルドハイドロクラッキング処理油(MHC)
(8)基油(1)~(7)から選ばれる2種以上の混合油。
As preferable examples of the lubricating base oil according to the present embodiment, the following base oils (1) to (8) are used as raw materials, and the raw oil and / or the lubricating oil fraction recovered from the raw oil is The base oil obtained by refine | purifying with a predetermined refinement | purification method and collect | recovering lubricating oil fractions can be mentioned.
(1) Distilled oil by atmospheric distillation of paraffinic crude oil and / or mixed base crude oil (2) Distilled oil by vacuum distillation of atmospheric distillation residue of paraffinic crude oil and / or mixed base crude oil ( WVGO)
(3) Wax (slack wax, etc.) obtained by the lubricant dewaxing process and / or synthetic wax (Fischer-Tropsch wax, GTL wax, etc.) obtained by the gas-to-liquid (GTL) process, etc.
(4) One or more mixed oils selected from base oils (1) to (3) and / or mild hydrocracked oils of the mixed oils (5) selected from base oils (1) to (4) 2 or more kinds of mixed oils (6) Base oil (1), (2), (3), (4) or (5) debris oil (DAO)
(7) Mild hydrocracking treatment oil (MHC) of base oil (6)
(8) Two or more mixed oils selected from base oils (1) to (7).
 なお、上記所定の精製方法としては、水素化分解、水素化仕上げなどの水素化精製;フルフラール溶剤抽出などの溶剤精製;溶剤脱ろうや接触脱ろうなどの脱ろう;酸性白土や活性白土などによる白土精製;硫酸洗浄、苛性ソーダ洗浄などの薬品(酸またはアルカリ)洗浄などが好ましい。本発明では、これらの精製方法のうちの1種を単独で行ってもよく、2種以上を組み合わせて行ってもよい。また、2種以上の精製方法を組み合わせる場合、その順序は特に制限されず、適宜選定することができる。 The above-mentioned predetermined purification methods include hydrorefining such as hydrocracking and hydrofinishing; solvent refining such as furfural solvent extraction; dewaxing such as solvent dewaxing and catalytic dewaxing; acid clay and activated clay White clay refining; chemical (acid or alkali) cleaning such as sulfuric acid cleaning and caustic soda cleaning are preferred. In the present invention, one of these purification methods may be performed alone, or two or more may be combined. Moreover, when combining 2 or more types of purification methods, the order in particular is not restrict | limited, It can select suitably.
 更に、本実施形態に係る潤滑油基油としては、上記基油(1)~(8)から選ばれる基油または当該基油から回収された潤滑油留分について所定の処理を行うことにより得られる下記基油(9)または(10)が特に好ましい。
(9)上記基油(1)~(8)から選ばれる基油または当該基油から回収された潤滑油留分を水素化分解し、その生成物またはその生成物から蒸留等により回収される潤滑油留分について溶剤脱ろうや接触脱ろうなどの脱ろう処理を行い、または当該脱ろう処理をした後に蒸留することによって得られる水素化分解基油
(10)上記基油(1)~(8)から選ばれる基油または当該基油から回収された潤滑油留分を水素化異性化し、その生成物またはその生成物から蒸留等により回収される潤滑油留分について溶剤脱ろうや接触脱ろうなどの脱ろう処理を行い、または、当該脱ろう処理をしたあとに蒸留することによって得られる水素化異性化基油。脱ろう工程としては接触脱ろう工程を経て製造された基油が好ましい。
Furthermore, the lubricating base oil according to the present embodiment is obtained by subjecting a base oil selected from the above base oils (1) to (8) or a lubricating oil fraction recovered from the base oil to a predetermined treatment. The following base oil (9) or (10) is particularly preferred.
(9) The base oil selected from the above base oils (1) to (8) or the lubricating oil fraction recovered from the base oil is hydrocracked and recovered from the product or the product by distillation or the like. Hydrocracking base oil (10) obtained by subjecting the lubricating oil fraction to dewaxing treatment such as solvent dewaxing or catalytic dewaxing, or distillation after the dewaxing treatment, and the above base oils (1) to ( The base oil selected from 8) or the lubricating oil fraction recovered from the base oil is hydroisomerized, and the product or the lubricating oil fraction recovered from the product by distillation or the like is subjected to solvent dewaxing or catalytic desorption. Hydroisomerized base oil obtained by performing dewaxing treatment such as wax or by distillation after the dewaxing treatment. As the dewaxing step, a base oil produced through a contact dewaxing step is preferable.
 また、上記(9)または(10)の潤滑油基油を得るに際して、必要に応じて溶剤精製処理および/または水素化仕上げ処理工程を適当な段階で更に行ってもよい。 In addition, when obtaining the lubricating base oil of (9) or (10) above, a solvent refining treatment and / or a hydrofinishing treatment step may be further performed at an appropriate stage, if necessary.
 また、上記水素化分解・水素化異性化に使用される触媒は特に制限されないが、分解活性を有する複合酸化物(例えば、シリカアルミナ、アルミナボリア、シリカジルコニアなど)または当該複合酸化物の1種類以上を組み合わせてバインダーで結着させたものを担体とし、水素化能を有する金属(例えば周期律表第VIa族の金属や第VIII族の金属などの1種類以上)を担持させた水素化分解触媒、あるいはゼオライト(例えばZSM-5、ゼオライトベータ、SAPO-11など)を含む担体に第VIII族の金属のうち少なくとも1種類以上を含む水素化能を有する金属を担持させた水素化異性化触媒が好ましく使用される。水素化分解触媒および水素化異性化触媒は、積層または混合などにより組み合わせて用いてもよい。 The catalyst used for the hydrocracking / hydroisomerization is not particularly limited, but a composite oxide having cracking activity (for example, silica alumina, alumina boria, silica zirconia, etc.) or one kind of the composite oxide. Hydrogenolysis with a combination of the above combined with a binder and supporting a metal having hydrogenation ability (for example, one or more metals such as Group VIa metal or Group VIII metal in the periodic table) A hydroisomerization catalyst in which a catalyst or a support containing zeolite (eg, ZSM-5, zeolite beta, SAPO-11, etc.) is loaded with a metal having a hydrogenation ability containing at least one of the Group VIII metals Are preferably used. The hydrocracking catalyst and the hydroisomerization catalyst may be used in combination by stacking or mixing.
 水素化分解・水素化異性化の際の反応条件は特に制限されないが、水素分圧0.1~20MPa、平均反応温度150~450℃、LHSV0.1~3.0hr-1、水素/油比50~20000scf/bとすることが好ましい。 The reaction conditions in the hydrocracking and hydroisomerization are not particularly limited, but the hydrogen partial pressure is 0.1 to 20 MPa, the average reaction temperature is 150 to 450 ° C., the LHSV is 0.1 to 3.0 hr −1 , the hydrogen / oil ratio. 50 to 20000 scf / b is preferable.
 本実施形態に係る潤滑油基油の100℃における動粘度は2.0~8.0mm/sである。また、5mm/s以下であることが好ましく、より好ましくは4.5mm/s以下、さらに好ましくは4.4mm/s以下、特に好ましくは4.3mm/s以下である。一方、当該100℃における動粘度は、3.0mm/s以上であることが好ましく、より好ましくは3.5mm/s以上、さらに好ましくは3.8mm/s以上、特に好ましくは4.0mm/s以上である。潤滑油基油の100℃における動粘度が8.0mm/sを超える場合には、潤滑油組成物の低温粘度特性が悪化し、また十分な省燃費性が得られないおそれがあり、2.0mm/s未満の場合には潤滑箇所での油膜形成が不十分であるため潤滑性に劣り、また潤滑油組成物の蒸発損失が大きくなるおそれがある。 The kinematic viscosity at 100 ° C. of the lubricating base oil according to this embodiment is 2.0 to 8.0 mm 2 / s. Also, preferably not more than 5 mm 2 / s, more preferably 4.5 mm 2 / s or less, more preferably 4.4 mm 2 / s or less, particularly preferably not more than 4.3 mm 2 / s. On the other hand, the kinematic viscosity at 100 ° C. is preferably 3.0 mm 2 / s or more, more preferably 3.5 mm 2 / s or more, still more preferably 3.8 mm 2 / s or more, particularly preferably 4. 0 mm 2 / s or more. When the kinematic viscosity at 100 ° C. of the lubricating base oil exceeds 8.0 mm 2 / s, the low-temperature viscosity characteristics of the lubricating oil composition may deteriorate, and sufficient fuel economy may not be obtained. If it is less than 0.0 mm 2 / s, the formation of an oil film at the lubrication site is insufficient, resulting in poor lubricity, and the evaporation loss of the lubricating oil composition may be increased.
 本実施形態に係る潤滑油基油の40℃における動粘度は、好ましくは40mm/s以下、より好ましくは30mm/s以下、さらに好ましくは25mm/s以下、特に好ましくは22mm/s以下、最も好ましくは20mm/s以下である。一方、当該40℃における動粘度は、好ましくは6.0mm/s以上、より好ましくは8.0mm/s以上、さらに好ましくは10mm/s以上、特に好ましくは12mm/s以上、最も好ましくは14mm/s以上である。潤滑油基油の40℃における動粘度が40mm/sを超える場合には、潤滑油組成物の低温粘度特性が悪化し、また十分な省燃費性が得られないおそれがあり、6.0mm/s未満の場合には潤滑箇所での油膜形成が不十分であるため潤滑性に劣り、また潤滑油組成物の蒸発損失が大きくなるおそれがある。 The kinematic viscosity at 40 ° C. of the lubricating base oil according to the present embodiment is preferably 40 mm 2 / s or less, more preferably 30 mm 2 / s or less, still more preferably 25 mm 2 / s or less, particularly preferably 22 mm 2 / s. Hereinafter, it is most preferably 20 mm 2 / s or less. On the other hand, the kinematic viscosity at 40 ° C. is preferably 6.0 mm 2 / s or more, more preferably 8.0 mm 2 / s or more, further preferably 10 mm 2 / s or more, particularly preferably 12 mm 2 / s or more, most preferably Preferably it is 14 mm < 2 > / s or more. When the kinematic viscosity at 40 ° C. of the lubricating base oil exceeds 40 mm 2 / s, the low-temperature viscosity characteristics of the lubricating oil composition may be deteriorated, and sufficient fuel economy may not be obtained. If it is less than 2 / s, the oil film formation at the lubrication site is insufficient, so that the lubricity is inferior, and the evaporation loss of the lubricating oil composition may increase.
 なお本明細書において「40℃における動粘度」とは、ASTM D-445に規定される40℃での動粘度を意味する。 In this specification, “kinematic viscosity at 40 ° C.” means the kinematic viscosity at 40 ° C. as defined in ASTM D-445.
 本実施形態に係る潤滑油基油の粘度指数は、100以上であることが好ましい。より好ましくは110以上、さらに好ましくは120以上、特に好ましくは125以上、最も好ましくは130以上である。粘度指数が100未満であると、潤滑油組成物の粘度-温度特性および熱・酸化安定性、揮発防止性が悪化するだけでなく、摩擦係数が上昇する傾向にあり、また、摩耗防止性が低下する傾向にある。なお、本明細書において粘度指数とは、JIS K 2283-1993に準拠して測定された粘度指数を意味する。 The viscosity index of the lubricating base oil according to this embodiment is preferably 100 or more. More preferably, it is 110 or more, More preferably, it is 120 or more, Especially preferably, it is 125 or more, Most preferably, it is 130 or more. When the viscosity index is less than 100, not only the viscosity-temperature characteristics, thermal / oxidative stability and volatilization prevention properties of the lubricating oil composition deteriorate, but also the friction coefficient tends to increase, and the wear prevention property It tends to decrease. In the present specification, the viscosity index means a viscosity index measured according to JIS K 2283-1993.
 本実施形態に係る潤滑油基油の15℃における密度(ρ15)は、好ましくは0.860以下、より好ましくは0.850以下、さらに好ましくは0.840以下、特に好ましくは0.835以下である。なお、本明細書において15℃における密度とは、JIS K 2249-1995に準拠して15℃において測定された密度を意味する。 The density (ρ 15 ) at 15 ° C. of the lubricating base oil according to this embodiment is preferably 0.860 or less, more preferably 0.850 or less, still more preferably 0.840 or less, and particularly preferably 0.835 or less. It is. In this specification, the density at 15 ° C. means the density measured at 15 ° C. in accordance with JIS K 2249-1995.
 本実施形態に係る潤滑油基油の流動点は、好ましくは-10℃以下、より好ましくは-12.5℃以下、更に好ましくは-15℃以下、特に好ましくは-17.5℃以下、最も好ましくは-20.0℃以下である。流動点が上記上限値を超えると、潤滑油組成物全体の低温流動性が低下する傾向にある。なお、本明細書において流動点とは、JIS K 2269-1987に準拠して測定された流動点を意味する。 The pour point of the lubricating base oil according to this embodiment is preferably −10 ° C. or lower, more preferably −12.5 ° C. or lower, still more preferably −15 ° C. or lower, particularly preferably −17.5 ° C. or lower, most preferably Preferably it is −20.0 ° C. or lower. When the pour point exceeds the above upper limit, the low temperature fluidity of the entire lubricating oil composition tends to be lowered. In this specification, the pour point means a pour point measured according to JIS K 2269-1987.
 本実施形態に係る潤滑油基油における硫黄分の含有量は、その原料の硫黄分の含有量に依存する。例えば、フィッシャートロプシュ反応等により得られる合成ワックス成分のように実質的に硫黄を含まない原料を用いる場合には、実質的に硫黄を含まない潤滑油基油を得ることができる。また、潤滑油基油の精製過程で得られるスラックワックスや精ろう過程で得られるマイクロワックス等の硫黄を含む原料を用いる場合には、得られる潤滑油基油中の硫黄分は通常100質量ppm以上となる。本実施形態に係る潤滑油基油においては、熱・酸化安定性の更なる向上および低硫黄化の点から、硫黄分の含有量が100質量ppm以下であることが好ましく、50質量ppm以下であることがより好ましく、10質量ppm以下であることが更に好ましく、5質量ppm以下であることが特に好ましい。 The sulfur content in the lubricating base oil according to this embodiment depends on the sulfur content of the raw material. For example, when a raw material that does not substantially contain sulfur such as a synthetic wax component obtained by a Fischer-Tropsch reaction or the like is used, a lubricating base oil that does not substantially contain sulfur can be obtained. In addition, when using raw materials containing sulfur such as slack wax obtained in the refining process of the lubricating base oil and microwax obtained in the refining process, the sulfur content in the obtained lubricating base oil is usually 100 mass ppm. That's it. In the lubricating base oil according to the present embodiment, the content of sulfur is preferably 100 ppm by mass or less, and 50 ppm by mass or less, from the viewpoint of further improvement in thermal and oxidation stability and low sulfur content. More preferably, it is more preferably 10 ppm by mass or less, and particularly preferably 5 ppm by mass or less.
 本実施形態に係る潤滑油基油における窒素分の含有量は、好ましくは10質量ppm以下、より好ましくは5質量ppm以下、更に好ましくは3質量ppm以下である。窒素分の含有量が10質量ppmを超えると、熱・酸化安定性が低下する傾向にある。なお、本明細書において窒素分とは、JIS K 2609-1990に準拠して測定される窒素分を意味する。 The nitrogen content in the lubricating base oil according to this embodiment is preferably 10 ppm by mass or less, more preferably 5 ppm by mass or less, and even more preferably 3 ppm by mass or less. When the content of nitrogen exceeds 10 ppm by mass, the heat / oxidation stability tends to decrease. In the present specification, the nitrogen content means a nitrogen content measured in accordance with JIS K 2609-1990.
 本実施形態に係る潤滑油基油の%Cは、好ましくは70以上、より好ましくは80以上、さらに好ましくは85以上であり、また通常99以下、好ましくは95以下、より好ましくは94以下である。潤滑油基油の%Cが上記下限値未満の場合、粘度-温度特性、熱・酸化安定性および摩擦特性が低下する傾向にあり、更に、潤滑油基油に添加剤が配合された場合に当該添加剤の効き目が低下する傾向にある。また、潤滑油基油の%Cが上記上限値を超えると、添加剤の溶解性が低下する傾向にある。 % C P of the lubricating base oil according to the present embodiment is preferably 70 or more, more preferably 80 or more, more preferably 85 or more, and usually 99 or less, preferably 95 or less, more preferably 94 or less is there. When% C P of lubricating base oil is less than the above lower limit value, viscosity-temperature characteristics, thermal / oxidative stability and friction characteristics tend to decrease, and when additives are added to lubricating base oil In addition, the effectiveness of the additive tends to decrease. Further, when the% C p value of the lubricating base oil exceeds the upper limit value, the additive solubility will tend to be lower.
 本実施形態に係る潤滑油基油の%Cは、2以下であることが好ましく、より好ましくは1以下、更に好ましくは0.8以下、特に好ましくは0.5以下である。潤滑油基油の%Cが上記上限値を超えると、粘度-温度特性、熱・酸化安定性および省燃費性が低下する傾向にある。 % C A of the lubricating base oil according to the present embodiment is preferably 2 or less, more preferably 1 or less, more preferably 0.8 or less, particularly preferably 0.5 or less. When% C A of the lubricating base oil exceeds the upper limit value, the viscosity - temperature characteristic, thermal and oxidation stability and fuel efficiency tends to decrease.
 本実施形態に係る潤滑油基油の%Cは、好ましくは30以下であり、より好ましくは25以下であり、さらに好ましくは20以下であり、特に好ましくは15以下である。また潤滑油基油の%Cは、好ましくは1以上であり、より好ましくは4以上である。潤滑油基油の%Cが上記上限値を超えると、粘度-温度特性、熱・酸化安定性および摩擦特性が低下する傾向にある。また、%Cが上記下限値未満であると、添加剤の溶解性が低下する傾向にある。 % C N of the lubricating base oil according to the present embodiment is preferably 30 or less, more preferably 25 or less, more preferably 20 or less, particularly preferably 15 or less. The% C N of the lubricating base oil is preferably 1 or more, more preferably 4 or more. If the% C N value of the lubricating base oil exceeds the upper limit value, the viscosity - temperature characteristic, thermal and oxidation stability and frictional properties will tend to be reduced. Moreover, when% CN is less than the said lower limit, it exists in the tendency for the solubility of an additive to fall.
 本明細書において%C、%Cおよび%Cとは、それぞれASTM D 3238-85に準拠した方法(n-d-M環分析)により求められる、パラフィン炭素数の全炭素数に対する百分率、ナフテン炭素数の全炭素数に対する百分率、および芳香族炭素数の全炭素数に対する百分率を意味する。つまり、上述した%C、%Cおよび%Cの好ましい範囲は上記方法により求められる値に基づくものであり、例えばナフテン分を含まない潤滑油基油であっても、上記方法により求められる%Cは0を超える値を示し得る。 In the present specification,% C P ,% C N and% C A are the percentages of the number of paraffin carbons to the total number of carbons determined by a method (ndM ring analysis) based on ASTM D 3238-85, respectively. Mean the percentage of naphthene carbons to total carbons, and the percentage of aromatic carbons to total carbons. In other words, the preferred ranges of% C P ,% C N and% C A described above are based on the values obtained by the above method. For example, even for a lubricating base oil containing no naphthene, it can be obtained by the above method. The% CN that is obtained can exhibit values greater than zero.
 本実施形態に係る潤滑油基油における飽和分の含有量は、潤滑油基油全量を基準として、好ましくは90質量%以上であり、好ましくは95質量%以上、より好ましくは99質量%以上である。また、当該飽和分に占める環状飽和分の割合は、好ましくは40質量%以下であり、好ましくは35質量%以下であり、好ましくは30質量%以下であり、より好ましくは25質量%以下であり、更に好ましくは21質量%以下である。また、当該飽和分に占める環状飽和分の割合は、好ましくは5質量%以上であり、より好ましくは10質量%以上である。飽和分の含有量および当該飽和分に占める環状飽和分の割合がそれぞれ上記条件を満たすことにより、粘度-温度特性および熱・酸化安定性を向上させることができ、また、当該潤滑油基油に添加剤が配合された場合には、当該添加剤を潤滑油基油中に十分に安定的に溶解保持しつつ、当該添加剤の機能をより高水準で発現させることができる。更に、潤滑油基油自体の摩擦特性を改善することができ、その結果、摩擦低減効果の向上、ひいては省エネルギー性の向上を達成することができる。なお本明細書において飽和分とは、ASTM D 2007-93に準拠して測定された値を意味する。 The content of the saturated component in the lubricating base oil according to this embodiment is preferably 90% by mass or more, preferably 95% by mass or more, more preferably 99% by mass or more, based on the total amount of the lubricating oil base oil. is there. The proportion of the cyclic saturated component in the saturated component is preferably 40% by mass or less, preferably 35% by mass or less, preferably 30% by mass or less, and more preferably 25% by mass or less. More preferably, it is 21% by mass or less. Moreover, the ratio of the cyclic | annular saturated part which occupies for the said saturated part becomes like this. Preferably it is 5 mass% or more, More preferably, it is 10 mass% or more. When the content of the saturated component and the ratio of the cyclic saturated component in the saturated component satisfy the above conditions, the viscosity-temperature characteristics and thermal / oxidative stability can be improved. When the additive is blended, the function of the additive can be expressed at a higher level while the additive is sufficiently stably dissolved and held in the lubricating base oil. Furthermore, it is possible to improve the friction characteristics of the lubricating base oil itself, and as a result, it is possible to achieve an improvement in friction reduction effect and an improvement in energy saving. In the present specification, the saturated content means a value measured in accordance with ASTM D 2007-93.
 また、飽和分の分離方法、あるいは環状飽和分、非環状飽和分等の組成分析の際には、同様の結果が得られる類似の方法を使用することができる。例えば、上記ASTM D 2007-93に記載された方法の他、ASTM D 2425-93に記載の方法、ASTM D 2549-91に記載の方法、高速液体クロマトグラフィ(HPLC)による方法、あるいはこれらの方法を改良した方法等を挙げることができる。 In addition, a similar method that can obtain the same result can be used for the separation method of the saturated component or the composition analysis of the cyclic saturated component and the non-cyclic saturated component. For example, in addition to the method described in ASTM D 2007-93, the method described in ASTM D 2425-93, the method described in ASTM D 2549-91, the method by high performance liquid chromatography (HPLC), or these methods may be used. The improved method etc. can be mentioned.
 本実施形態に係る潤滑油基油における芳香族分は、潤滑油基油全量を基準として、10質量%以下であり、好ましくは5質量%以下、より好ましくは4質量%以下、更に好ましくは3質量%以下、特に好ましくは2質量%以下であり、また、好ましくは0.1質量%以上、より好ましくは0.5質量%以上、更に好ましくは1質量%以上、特に好ましくは1.5質量%以上である。芳香族分の含有量が上記上限値を超えると、粘度-温度特性、熱・酸化安定性および摩擦特性、更には揮発防止性および低温粘度特性が低下する傾向にあり、更に、潤滑油基油に添加剤が配合された場合に当該添加剤の効き目が低下する傾向にある。また、本実施形態に係る潤滑油基油は芳香族分を含有しないものであってもよいが、芳香族分の含有量を上記下限値以上とすることにより、添加剤の溶解性を更に高めることができる。 The aromatic content in the lubricating base oil according to this embodiment is 10% by mass or less, preferably 5% by mass or less, more preferably 4% by mass or less, and even more preferably 3%, based on the total amount of the lubricating base oil. % By mass or less, particularly preferably 2% by mass or less, preferably 0.1% by mass or more, more preferably 0.5% by mass or more, still more preferably 1% by mass or more, particularly preferably 1.5% by mass. % Or more. If the aromatic content exceeds the above upper limit, the viscosity-temperature characteristics, thermal / oxidative stability, friction characteristics, volatilization prevention characteristics and low-temperature viscosity characteristics tend to decrease. When an additive is blended with the additive, the effectiveness of the additive tends to decrease. Further, the lubricating base oil according to the present embodiment may not contain an aromatic component, but the solubility of the additive is further increased by setting the aromatic content to be equal to or higher than the above lower limit value. be able to.
 なお、本出願において芳香族分とは、ASTM D 2007-93に準拠して測定された値を意味する。芳香族分には、通常、アルキルベンゼン、アルキルナフタレンの他、アントラセン、フェナントレンおよびこれらのアルキル化物、更にはベンゼン環が四環以上縮環した化合物、ピリジン類、キノリン類、フェノール類、ナフトール類等のヘテロ原子を有する芳香族化合物などが含まれる。 In the present application, the aromatic content means a value measured according to ASTM D 2007-93. The aromatic component usually includes alkylbenzene, alkylnaphthalene, anthracene, phenanthrene and alkylated products thereof, and compounds having four or more condensed benzene rings, pyridines, quinolines, phenols, naphthols, etc. An aromatic compound having a hetero atom is included.
 本実施形態に係る潤滑油基油として合成系基油を用いてもよい。合成系基油としては、100℃における動粘度が2.0~8.0mm/sであり且つ芳香族含有量が10質量%以下である、ポリα-オレフィン及びその水素化物、イソブテンオリゴマー及びその水素化物、イソパラフィン、アルキルベンゼン、アルキルナフタレン、ジエステル(ジトリデシルグルタレート、ジ-2-エチルヘキシルアジペート、ジイソデシルアジペート、ジトリデシルアジペート、ジ-2-エチルヘキシルセバケート等)、ポリオールエステル(トリメチロールプロパンカプリレート、トリメチロールプロパンペラルゴネート、ペンタエリスリトール2-エチルヘキサノエート、ペンタエリスリトールペラルゴネート等)、ポリオキシアルキレングリコール、ジアルキルジフェニルエーテル、ポリフェニルエーテル、並びにこれらの混合物等が挙げられ、中でも、ポリα-オレフィンが好ましい。ポリα-オレフィンとしては、典型的には、炭素数2~32、好ましくは炭素数6~16のα-オレフィンのオリゴマーまたはコオリゴマー(1-オクテンオリゴマー、デセンオリゴマー、エチレン-プロピレンコオリゴマー等)およびそれらの水素化生成物が挙げられる。 A synthetic base oil may be used as the lubricating base oil according to the present embodiment. Synthetic base oils include poly α-olefins and their hydrides, isobutene oligomers, having a kinematic viscosity at 100 ° C. of 2.0 to 8.0 mm 2 / s and an aromatic content of 10% by mass or less. Its hydride, isoparaffin, alkylbenzene, alkylnaphthalene, diester (ditridecyl glutarate, di-2-ethylhexyl adipate, diisodecyl adipate, ditridecyl adipate, di-2-ethylhexyl sebacate, etc.), polyol ester (trimethylolpropane caprylate) Trimethylolpropane pelargonate, pentaerythritol 2-ethylhexanoate, pentaerythritol pelargonate, etc.), polyoxyalkylene glycol, dialkyldiphenyl ether, polyphenyl ether, And a mixture thereof. Among them, poly α-olefin is preferable. The poly α-olefin is typically an α-olefin oligomer or co-oligomer having 2 to 32 carbon atoms, preferably 6 to 16 carbon atoms (1-octene oligomer, decene oligomer, ethylene-propylene co-oligomer, etc.). And their hydrogenation products.
 ポリα-オレフィンの製法は特に制限されないが、例えば、三塩化アルミニウムまたは三フッ化ホウ素と、水、アルコール(エタノール、プロパノール、ブタノール等)、カルボン酸またはエステルとの錯体を含む触媒のような重合触媒の存在下、α-オレフィンを重合する方法が挙げられる。 The production method of the poly-α-olefin is not particularly limited. For example, polymerization such as a catalyst containing a complex of aluminum trichloride or boron trifluoride with water, alcohol (ethanol, propanol, butanol, etc.), carboxylic acid or ester. A method of polymerizing α-olefin in the presence of a catalyst can be mentioned.
 本実施形態に係る潤滑油基油は、基油全体として100℃における動粘度が2.0~8.0mm/sであり且つ芳香族含有量が10質量%以下である限りにおいて、単一の基油成分からなってもよく、複数の基油成分を含んでもよい。 The lubricating base oil according to the present embodiment has a single base oil as long as the base oil as a whole has a kinematic viscosity at 100 ° C. of 2.0 to 8.0 mm 2 / s and an aromatic content of 10% by mass or less. The base oil component may comprise a plurality of base oil components.
 本発明の潤滑油組成物における上記本実施形態に係る潤滑油基油の含有量は、潤滑油組成物がマルチグレード油である場合には、潤滑油組成物全量基準で通常70質量%以上であり、好ましくは75質量%以上であり、より好ましくは80質量%以上であり、また通常90質量%以下である。潤滑油組成物がシングルグレード油である場合には、潤滑油組成物全量基準で通常80質量%以上であり、好ましくは85質量%以上であり、より好ましくは90質量%以上であり、また通常95質量%以下である。 When the lubricating oil composition is a multigrade oil, the content of the lubricating base oil according to the present embodiment in the lubricating oil composition of the present invention is usually 70% by mass or more based on the total amount of the lubricating oil composition. Yes, preferably 75% by mass or more, more preferably 80% by mass or more, and usually 90% by mass or less. When the lubricating oil composition is a single grade oil, it is usually 80% by mass or more, preferably 85% by mass or more, more preferably 90% by mass or more, based on the total amount of the lubricating oil composition. It is 95 mass% or less.
 <(B)金属系清浄剤>
 本発明の潤滑油組成物は、(B)金属系清浄剤(以下において「(B)成分」ということがある。)として、(B1)炭酸カルシウムで過塩基化された金属系清浄剤(以下において「(B1)成分」ということがある。)と、(B2)炭酸マグネシウムで過塩基化された金属系清浄剤(以下において「(B2)成分」ということがある。)とを含有する。(B)成分としては例えば、フェネート系清浄剤、スルホネート系清浄剤、サリシレート系清浄剤を挙げることができる。また、これら金属系清浄剤は単独で又は2種以上を組み合わせて用いることができる。
<(B) Metal-based detergent>
The lubricating oil composition of the present invention has (B) a metallic detergent (hereinafter referred to as “component (B)”) as a (B) metallic detergent (hereinafter referred to as “component (B)”). And (B2) a metal detergent overbased with magnesium carbonate (hereinafter also referred to as “(B2) component”). Examples of the component (B) include phenate detergents, sulfonate detergents, and salicylate detergents. Moreover, these metal type detergents can be used individually or in combination of 2 or more types.
 フェネート系清浄剤としては、以下の式(1)で示される構造を有する化合物のアルカリ土類金属塩の過塩基性塩を好ましく例示できる。アルカリ土類金属としては、例えば、マグネシウム、バリウム、カルシウムが挙げられ、これらの中でもマグネシウムまたはカルシウムが好ましい。 Preferred examples of the phenate detergent include an overbased salt of an alkaline earth metal salt of a compound having a structure represented by the following formula (1). Examples of the alkaline earth metal include magnesium, barium, and calcium. Among these, magnesium or calcium is preferable.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式(1)中、Rは炭素数6~21の直鎖もしくは分岐鎖、飽和もしくは不飽和のアルキル基又はアルケニル基を表し、mは重合度であって1~10の整数を表し、Aはスルフィド(-S-)基またはメチレン(-CH-)基を表し、xは1~3の整数を表す。なおRは2種以上の異なる基の組み合わせであってもよい。 In the formula (1), R 1 represents a linear or branched chain having 6 to 21 carbon atoms, a saturated or unsaturated alkyl group or alkenyl group, m represents the degree of polymerization and represents an integer of 1 to 10, Represents a sulfide (—S—) group or a methylene (—CH 2 —) group, and x represents an integer of 1 to 3. R 1 may be a combination of two or more different groups.
 式(1)におけるRの炭素数は、好ましくは9~18、より好ましくは9~15である。Rの炭素数が6未満では基油に対する溶解性が劣るおそれがあり、一方、Rの炭素数が21を超える場合は製造が難しく、また耐熱性が劣るおそれがある。 The number of carbon atoms of R 1 in the formula (1) is preferably 9-18, more preferably 9-15. If the carbon number of R 1 is less than 6, the solubility in the base oil may be poor. On the other hand, if the carbon number of R 1 exceeds 21, the production may be difficult and the heat resistance may be poor.
 式(1)における重合度mは、好ましくは1~4である。重合度mがこの範囲内であることにより、耐熱性を高めることができる。 The degree of polymerization m in the formula (1) is preferably 1 to 4. When the degree of polymerization m is within this range, the heat resistance can be increased.
 スルホネート系清浄剤としては、アルキル芳香族化合物をスルホン化することによって得られるアルキル芳香族スルホン酸のアルカリ土類金属塩またはその塩基性塩もしくは過塩基性塩を好ましく例示できる。アルキル芳香族化合物の重量平均分子量は好ましくは400~1500であり、より好ましくは700~1300である。
 アルカリ土類金属としては、例えば、マグネシウム、バリウム、カルシウムが挙げられ、マグネシウム又はカルシウムが好ましい。アルキル芳香族スルホン酸としては、例えば、いわゆる石油スルホン酸や合成スルホン酸が挙げられる。ここでいう石油スルホン酸としては、鉱油の潤滑油留分のアルキル芳香族化合物をスルホン化したものや、ホワイトオイル製造時に副生する、いわゆるマホガニー酸等が挙げられる。また、合成スルホン酸の一例としては、洗剤の原料となるアルキルベンゼン製造プラントにおける副生成物を回収すること、もしくは、ベンゼンをポリオレフィンでアルキル化することにより得られる、直鎖状または分枝状のアルキル基を有するアルキルベンゼンをスルホン化したものを挙げることができる。合成スルホン酸の他の一例としては、ジノニルナフタレン等のアルキルナフタレンをスルホン化したものを挙げることができる。また、これらアルキル芳香族化合物をスルホン化する際のスルホン化剤としては、特に制限はなく、例えば発煙硫酸や無水硫酸を用いることができる。
Preferred examples of the sulfonate detergent include an alkaline earth metal salt of an alkyl aromatic sulfonic acid obtained by sulfonating an alkyl aromatic compound, or a basic salt or an overbased salt thereof. The weight average molecular weight of the alkyl aromatic compound is preferably 400 to 1500, more preferably 700 to 1300.
Examples of the alkaline earth metal include magnesium, barium, and calcium, and magnesium or calcium is preferable. Examples of the alkyl aromatic sulfonic acid include so-called petroleum sulfonic acid and synthetic sulfonic acid. As petroleum sulfonic acid here, what sulfonated the alkyl aromatic compound of the lubricating oil fraction of mineral oil, what is called mahoganic acid etc. byproduced at the time of white oil manufacture are mentioned. In addition, as an example of synthetic sulfonic acid, linear or branched alkyl obtained by recovering a by-product in an alkylbenzene production plant that is a raw material of a detergent or by alkylating benzene with polyolefin Examples include sulfonated alkylbenzene having a group. Another example of the synthetic sulfonic acid is a sulfonated alkyl naphthalene such as dinonylnaphthalene. Moreover, there is no restriction | limiting in particular as a sulfonating agent at the time of sulfonating these alkyl aromatic compounds, For example, fuming sulfuric acid and anhydrous sulfuric acid can be used.
 サリシレート系清浄剤としては、金属サリシレートまたはその塩基性塩もしくは過塩基性塩を好ましく例示できる。ここでいう金属サリシレートとしては、以下の式(2)で表される化合物を好ましく例示できる。 Preferred examples of the salicylate detergent include metal salicylate or a basic salt or an overbased salt thereof. Preferred examples of the metal salicylate here include compounds represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 上記式(2)中、Rはそれぞれ独立に炭素数14~30のアルキル基またはアルケニル基を表し、Mはアルカリ土類金属を表し、nは1又は2を表す。Mとしてはカルシウムまたはマグネシウムが好ましい。nとしては1が好ましい。なおn=2であるとき、Rは異なる基の組み合わせであってもよい。 In the above formula (2), R 2 each independently represents an alkyl group or alkenyl group having 14 to 30 carbon atoms, M represents an alkaline earth metal, and n represents 1 or 2. M is preferably calcium or magnesium. n is preferably 1. When n = 2, R 2 may be a combination of different groups.
 サリシレート系清浄剤の好ましい一形態としては、上記式(2)においてn=1であるアルカリ土類金属サリシレートまたはその塩基性塩もしくは過塩基性塩を挙げることができる。 As a preferred embodiment of the salicylate detergent, there can be mentioned alkaline earth metal salicylate in which n = 1 in the above formula (2), or a basic salt or an overbased salt thereof.
 アルカリ土類金属サリシレートの製造方法は特に制限されるものではなく、公知のモノアルキルサリシレートの製造方法等を用いることができる。例えば、フェノールを出発原料として、オレフィンを用いてアルキレーションし、次いで炭酸ガス等でカルボキシレーションして得たモノアルキルサリチル酸、あるいは、サリチル酸を出発原料として、当量の上記オレフィンを用いてアルキレーションして得られたモノアルキルサリチル酸等に、アルカリ土類金属の酸化物や水酸化物等の金属塩基を反応させること、又は、これらのモノアルキルサリチル酸等を一旦ナトリウム塩やカリウム塩等のアルカリ金属塩としてからアルカリ土類金属塩と金属交換させること等により、アルカリ土類金属サリシレートを得ることができる。 The production method of the alkaline earth metal salicylate is not particularly limited, and a known production method of monoalkyl salicylate can be used. For example, monoalkyl salicylic acid obtained by alkylation with olefin using phenol as a starting material and then carboxylation with carbon dioxide gas or the like, or alkylation with an equivalent amount of the above olefin using salicylic acid as a starting material. The obtained monoalkyl salicylic acid or the like is reacted with a metal base such as an alkaline earth metal oxide or hydroxide, or these monoalkyl salicylic acid or the like is once converted into an alkali metal salt such as a sodium salt or a potassium salt. Alkaline earth metal salicylate can be obtained by exchanging metal with an alkaline earth metal salt.
 炭酸カルシウム又は炭酸マグネシウムで過塩基化されたアルカリ土類金属フェネート、スルホネート、又はサリシレートを得る方法は特に限定されるものではないが、例えば、炭酸ガスの存在下でアルカリ土類金属フェネート、スルホネート、又はサリシレートを水酸化カルシウム、水酸化マグネシウム等の塩基と反応させることにより得ることができる。 The method for obtaining an alkaline earth metal phenate, sulfonate, or salicylate overbased with calcium carbonate or magnesium carbonate is not particularly limited. For example, an alkaline earth metal phenate, sulfonate, Alternatively, it can be obtained by reacting salicylate with a base such as calcium hydroxide or magnesium hydroxide.
 (B)成分の金属比は以下の式に従って計算される値であり、好ましくは1以上、より好ましくは2以上であり、特に好ましくは3以上である。また好ましくは50以下、より好ましくは30以下であり、特に好ましくは10以下である。
 (B)成分の金属比=(B)成分における金属元素の価数×(B)成分の金属含有量(mol)/(B)成分のせっけん基含有量(mol)
The metal ratio of the component (B) is a value calculated according to the following formula, preferably 1 or more, more preferably 2 or more, and particularly preferably 3 or more. Further, it is preferably 50 or less, more preferably 30 or less, and particularly preferably 10 or less.
(B) component metal ratio = valence of metal element in component (B) × metal content of component (B) (mol) / soap group content of component (B) (mol)
 (B1)成分としては例えば、カルシウムフェネート清浄剤、カルシウムスルホネート清浄剤、若しくはカルシウムサリシレート清浄剤、又はこれらの組み合わせであって、炭酸カルシウムで過塩基化されたものを用いることができる。(B1)成分は少なくともカルシウムサリシレート清浄剤を含むことが好ましい。 As the component (B1), for example, a calcium phenate detergent, a calcium sulfonate detergent, a calcium salicylate detergent, or a combination thereof, which is overbased with calcium carbonate, can be used. The component (B1) preferably contains at least a calcium salicylate detergent.
 (B2)成分としては例えば、マグネシウムフェネート清浄剤、マグネシウムスルホネート清浄剤、若しくはマグネシウムサリシレート清浄剤、又はこれらの組み合わせであって、炭酸マグネシウムで過塩基化されたものを用いることができる。(B2)成分は少なくともマグネシウムサリシレート清浄剤またはマグネシウムスルホネート清浄剤を含むことが好ましい。 As the component (B2), for example, a magnesium phenate detergent, a magnesium sulfonate detergent, a magnesium salicylate detergent, or a combination thereof, which is overbased with magnesium carbonate, can be used. The component (B2) preferably contains at least a magnesium salicylate detergent or a magnesium sulfonate detergent.
 潤滑油組成物中の(B1)成分の含有量は、潤滑油組成物中のカルシウム含有量が、潤滑油組成物全量基準で1500質量ppm以下、好ましくは1400~1500質量ppmとなる量である。カルシウム含有量が1500質量ppmを超えると、LSPIが発生しやすくなる。またカルシウム含有量が上記下限値以上であることにより、エンジン内部の清浄性を高く保つことができるとともに、塩基価維持性も向上する。
 潤滑油組成物中の(B2)成分の含有量は、潤滑油組成物中のマグネシウム含有量が、潤滑油組成物全量基準で300質量ppm以上、好ましくは350~600質量ppmとなる量である。マグネシウム含有量が上記下限値以上であることにより、LSPIを抑制しながらもエンジン清浄性を高めることができる。またマグネシウム含有量が上記上限値以下であることにより、摩擦係数の上昇を抑制できる。
The content of the component (B1) in the lubricating oil composition is such that the calcium content in the lubricating oil composition is 1500 ppm by mass or less, preferably 1400-1500 ppm by mass based on the total amount of the lubricating oil composition. . When the calcium content exceeds 1500 ppm by mass, LSPI tends to occur. Further, when the calcium content is not less than the above lower limit value, the cleanliness inside the engine can be kept high and the base number maintainability is also improved.
The content of the component (B2) in the lubricating oil composition is such that the magnesium content in the lubricating oil composition is 300 ppm by mass or more, preferably 350 to 600 ppm by mass, based on the total amount of the lubricating oil composition. . When the magnesium content is equal to or higher than the lower limit, engine cleanliness can be improved while suppressing LSPI. Moreover, when a magnesium content is below the said upper limit, the raise of a friction coefficient can be suppressed.
 <(C)モリブデン系摩擦調整剤(MoDTC)>
 本発明の潤滑油組成物は、(C)モリブデン系摩擦調整剤として、硫化モリブデンジチオカーバメート又は硫化オキシモリブデンジチオカーバメート(以下において「(C)成分」ということがある。)を含有する。(C)成分としては、例えば次の式(3)で表される化合物を用いることができる。
<(C) Molybdenum friction modifier (MoDTC)>
The lubricating oil composition of the present invention contains molybdenum sulfide dithiocarbamate or sulfurized oxymolybdenum dithiocarbamate (hereinafter sometimes referred to as “component (C)”) as a molybdenum-based friction modifier. As the component (C), for example, a compound represented by the following formula (3) can be used.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 上記一般式(3)中、R~Rは、それぞれ同一でも異なっていてもよく、炭素数2~24のアルキル基又は炭素数6~24の(アルキル)アリール基、好ましくは炭素数4~13のアルキル基又は炭素数10~15の(アルキル)アリール基である。アルキル基は第1級アルキル基、第2級アルキル基、第3級アルキル基のいずれでもよく、また直鎖でも分枝状でもよい。なお「(アルキル)アリール基」は「アリール基若しくはアルキルアリール基」を意味する。アルキルアリール基において、芳香環におけるアルキル基の置換位置は任意である。Y~Yはそれぞれ独立に硫黄原子又は酸素原子であり、Y~Yのうち少なくとも1つは硫黄原子である。 In the general formula (3), R 3 to R 6 may be the same or different, and are each an alkyl group having 2 to 24 carbon atoms or an (alkyl) aryl group having 6 to 24 carbon atoms, preferably 4 carbon atoms. Or an alkyl group having 13 to 13 carbon atoms or an (alkyl) aryl group having 10 to 15 carbon atoms. The alkyl group may be any of a primary alkyl group, a secondary alkyl group, and a tertiary alkyl group, and may be linear or branched. The “(alkyl) aryl group” means “aryl group or alkylaryl group”. In the alkylaryl group, the substitution position of the alkyl group in the aromatic ring is arbitrary. Y 1 to Y 4 are each independently a sulfur atom or an oxygen atom, and at least one of Y 1 to Y 4 is a sulfur atom.
 潤滑油組成物中の(C)成分の含有量は、潤滑油組成物中のモリブデン含有量が、潤滑油組成物全量基準で600質量ppm以上、好ましくは700質量ppm以上であり、また好ましくは1000質量ppm以下、より好ましくは900質量ppm以下、さらに好ましくは850質量ppm以下、特に好ましくは800質量ppm以下となる量である。モリブデン含有量が上記下限値以上であることにより、省燃費性、およびLSPI抑制能を高めることができる。またモリブデン含有量が常時上限値以下であることにより、潤滑油組成物の貯蔵安定性を高めることができる。 The content of the component (C) in the lubricating oil composition is such that the molybdenum content in the lubricating oil composition is 600 ppm by mass or more, preferably 700 ppm by mass or more based on the total amount of the lubricating oil composition, and preferably The amount is 1000 mass ppm or less, more preferably 900 mass ppm or less, still more preferably 850 mass ppm or less, and particularly preferably 800 mass ppm or less. When the molybdenum content is equal to or higher than the lower limit, fuel economy and LSPI suppression can be improved. Moreover, the storage stability of a lubricating oil composition can be improved because molybdenum content is always below an upper limit.
 <(D)酸化防止剤>
 本発明の潤滑油組成物は、(D)酸化防止剤として、アミン系酸化防止剤および/またはフェノール系酸化防止剤(以下において「(D)成分」ということがある。)を含有することが好ましい。アミン系酸化防止剤としては例えば、アルキル化ジフェニルアミン、アルキル化フェニル-α-ナフチルアミン、フェニル-α-ナフチルアミン、フェニル-β-ナフチルアミン等の公知のアミン系酸化防止剤を特に制限なく用いることができる。またフェノール系酸化防止剤としては例えば、2,6-ジ-tert-ブチル-4-メチルフェノール(DBPC)、4,4'-メチレンビス(2,6-ジ-tert-ブチルフェノール)等の公知のフェノール系酸化防止剤を特に制限なく用いることができる。本発明の潤滑油組成物に酸化防止剤を含有させる場合、その含有量は、潤滑油組成物全量基準で、通常0.1~5質量%である。
<(D) Antioxidant>
The lubricating oil composition of the present invention may contain an amine-based antioxidant and / or a phenol-based antioxidant (hereinafter sometimes referred to as “component (D)”) as (D) an antioxidant. preferable. As the amine-based antioxidant, for example, known amine-based antioxidants such as alkylated diphenylamine, alkylated phenyl-α-naphthylamine, phenyl-α-naphthylamine, and phenyl-β-naphthylamine can be used without particular limitation. Examples of phenolic antioxidants include known phenols such as 2,6-di-tert-butyl-4-methylphenol (DBPC) and 4,4′-methylenebis (2,6-di-tert-butylphenol). A system antioxidant can be used without particular limitation. When the antioxidant is contained in the lubricating oil composition of the present invention, the content is usually 0.1 to 5% by mass based on the total amount of the lubricating oil composition.
 本発明の潤滑油組成物は、(D)成分としてアミン系酸化防止剤を含有することが好ましい。本発明の潤滑油組成物にアミン系酸化防止剤を含有させる場合、その含有量は、潤滑油組成物全量基準で、窒素量として0.01~0.1質量%であることが好ましい。アミン系酸化防止剤の窒素量としての含有量が上記下限値以上であることにより、潤滑油の寿命性能をより高めることが可能になる。またアミン系酸化防止剤の窒素量としての含有量が上記上限値以下であることにより、エンジン内部の着色汚れを抑制することができる。 The lubricating oil composition of the present invention preferably contains an amine-based antioxidant as the component (D). When the amine-based antioxidant is contained in the lubricating oil composition of the present invention, the content thereof is preferably 0.01 to 0.1% by mass as the nitrogen amount based on the total amount of the lubricating oil composition. When the content of the amine-based antioxidant as the amount of nitrogen is not less than the above lower limit, the life performance of the lubricating oil can be further enhanced. Further, when the content of the amine-based antioxidant as the amount of nitrogen is not more than the above upper limit value, colored stains inside the engine can be suppressed.
 <(E)ジアルキルジチオリン酸亜鉛>
 本発明の潤滑油組成物は、(E)ジアルキルジチオリン酸亜鉛(ZnDTP;以下において「(E)成分」ということがある。)を含有することが好ましい。(E)成分としては、例えば次の式(4)で表される化合物を用いることができる。
<(E) Zinc dialkyldithiophosphate>
The lubricating oil composition of the present invention preferably contains (E) zinc dialkyldithiophosphate (ZnDTP; hereinafter sometimes referred to as “component (E)”). As the component (E), for example, a compound represented by the following formula (4) can be used.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(4)中、R~R10は、それぞれ独立に炭素数1~24の直鎖状又は分枝状のアルキル基を表し、異なる基の組み合わせであってもよい。また、R~R10の炭素数は好ましくは3以上であり、また好ましくは12以下であり、より好ましくは8以下である。また、R~R10は、第1級アルキル基、第2級アルキル基、及び第3級アルキル基のいずれであってもよいが、第1級アルキル基もしくは第2級アルキル基またはそれらの組み合わせであることが好ましく、さらに第1級アルキル基と第2級アルキル基とのモル比(第1級アルキル基:第2級アルキル基)が、0:100~30:70であることが好ましい。この比は分子内のアルキル鎖の組み合わせ比であっても良く、第1級アルキル基のみを有するZnDTPと第2級アルキル基のみを有するZnDTPとの混合比であっても良い。第2級アルキル基が主であることにより、省燃費性を高めることが可能になる。 In the formula (4), R 7 to R 10 each independently represent a linear or branched alkyl group having 1 to 24 carbon atoms, and may be a combination of different groups. The carbon number of R 7 to R 10 is preferably 3 or more, preferably 12 or less, more preferably 8 or less. R 7 to R 10 may be any of a primary alkyl group, a secondary alkyl group, and a tertiary alkyl group, but a primary alkyl group, a secondary alkyl group, or a group thereof. A combination is preferred, and the molar ratio of the primary alkyl group to the secondary alkyl group (primary alkyl group: secondary alkyl group) is preferably 0: 100 to 30:70. . This ratio may be a combination ratio of alkyl chains in the molecule, or a mixture ratio of ZnDTP having only primary alkyl groups and ZnDTP having only secondary alkyl groups. Since the secondary alkyl group is mainly used, it is possible to improve fuel efficiency.
 上記ジアルキルジチオリン酸亜鉛の製造方法は、特に限定されるものではない。例えば、R~R10に対応するアルキル基を有するアルコールを五硫化二リンと反応させてジチオリン酸を合成し、これを酸化亜鉛で中和することにより合成することができる。 The method for producing the zinc dialkyldithiophosphate is not particularly limited. For example, it can be synthesized by reacting an alcohol having an alkyl group corresponding to R 7 to R 10 with diphosphorus pentasulfide to synthesize dithiophosphoric acid and neutralizing it with zinc oxide.
 本発明の潤滑油組成物(E)成分を含有させる場合、その含有量は、組成物全量基準で、好ましくは0.03~1.0質量%である。また、(E)成分の含有量は、潤滑油組成物中のリン含有量が、潤滑油組成物全量基準で750~800質量ppmとなる量であることが好ましい。潤滑油組成物中のリン含有量が上記下限値以上であることにより、酸化安定性を高めることができるだけでなく、LSPI抑制能を高めることができる。また、潤滑油組成物中のリン含有量が上記上限値以下であることにより、ジチオリン酸亜鉛の加水分解による塩基価の低下を避けることができる。 When the lubricating oil composition (E) component of the present invention is contained, the content thereof is preferably 0.03 to 1.0% by mass based on the total amount of the composition. The content of component (E) is preferably such that the phosphorus content in the lubricating oil composition is 750 to 800 ppm by mass based on the total amount of the lubricating oil composition. When the phosphorus content in the lubricating oil composition is not less than the above lower limit value, not only the oxidation stability can be enhanced, but also the LSPI suppression ability can be enhanced. Moreover, when the phosphorus content in the lubricating oil composition is not more than the above upper limit, it is possible to avoid a decrease in base number due to hydrolysis of zinc dithiophosphate.
 <(F)腐食防止剤または金属不活性化剤>
 本発明の潤滑油組成物は、(F)腐食防止剤または金属不活性化剤(以下において「(F)成分」ということがある。)を含むことが好ましい。(F)成分としては、例えば、ベンゾトリアゾール系、トリルトリアゾール系、チアジアゾール系、及びイミダゾール系化合物等の公知の腐食防止剤や、イミダゾリン、ピリミジン誘導体、アルキルチアジアゾール、メルカプトベンゾチアゾール、ベンゾトリアゾール及びその誘導体、1,3,4-チアジアゾールポリスルフィド、1,3,4-チアジアゾリル-2,5-ビスジアルキルジチオカーバメート、2-(アルキルジチオ)ベンゾイミダゾール、並びにβ-(o-カルボキシベンジルチオ)プロピオンニトリル等の公知の金属不活性化剤を特に制限なく用いることができる。本発明の潤滑油組成物に(F)成分を含有させる場合、その含有量は、組成物全量基準で、通常0.005~5質量%である。
<(F) Corrosion inhibitor or metal deactivator>
The lubricating oil composition of the present invention preferably contains (F) a corrosion inhibitor or a metal deactivator (hereinafter sometimes referred to as “component (F)”). Examples of the component (F) include known corrosion inhibitors such as benzotriazole, tolyltriazole, thiadiazole, and imidazole compounds, imidazolines, pyrimidine derivatives, alkylthiadiazoles, mercaptobenzothiazoles, benzotriazoles and derivatives thereof. 1,3,4-thiadiazole polysulfide, 1,3,4-thiadiazolyl-2,5-bisdialkyldithiocarbamate, 2- (alkyldithio) benzimidazole, β- (o-carboxybenzylthio) propiononitrile, etc. A known metal deactivator can be used without particular limitation. When the component (F) is contained in the lubricating oil composition of the present invention, the content thereof is usually 0.005 to 5% by mass based on the total amount of the composition.
 本発明の潤滑油組成物においては、(F)成分として、硫黄を含む化合物を用いることが好ましい。硫黄含有化合物である腐食防止剤または金属不活性化剤の好ましい例としては、例えばチアジアゾール等を挙げることができる。(F)成分として硫黄含有化合物を用いることにより、LSPI抑制能をより高めることができるとともに、モリブデン系摩擦調整剤である(C)成分の摩擦低減効果をより効果的に引き出すことが可能になる。本発明の潤滑油組成物に腐食防止剤または金属不活性化剤として硫黄含有化合物を含有させる場合、その含有量は、通常0.01質量%以上、好ましくは0.05質量%以上、より好ましくは0.1質量%以上であり、また通常1.0質量%以下、好ましくは0.5質量%以下、より好ましくは0.3質量%以下である。 In the lubricating oil composition of the present invention, it is preferable to use a compound containing sulfur as the component (F). Preferable examples of the corrosion inhibitor or metal deactivator that is a sulfur-containing compound include, for example, thiadiazole. By using a sulfur-containing compound as the component (F), it is possible to further enhance the LSPI suppression ability and to more effectively bring out the friction reduction effect of the component (C) that is a molybdenum-based friction modifier. . When the lubricating oil composition of the present invention contains a sulfur-containing compound as a corrosion inhibitor or metal deactivator, the content is usually 0.01% by mass or more, preferably 0.05% by mass or more, more preferably Is 0.1% by mass or more, and is usually 1.0% by mass or less, preferably 0.5% by mass or less, more preferably 0.3% by mass or less.
 潤滑油組成物中の硫黄含有量は、潤滑油組成物全量基準で好ましくは0.20~0.30質量%であり、より好ましくは0.23~0.28質量%である。潤滑油組成物中の硫黄含有量が上記下限値以上であることにより、LSPI抑制能をより高めることができるとともに、モリブデン系摩擦調整剤である(C)成分の摩擦低減効果をより効果的に引き出すことが可能になる。また潤滑油組成物中の硫黄含有量が上記上限値以下であることにより、エンジン清浄性を高く保つことが可能になる。 The sulfur content in the lubricating oil composition is preferably 0.20 to 0.30 mass%, more preferably 0.23 to 0.28 mass%, based on the total amount of the lubricating oil composition. When the sulfur content in the lubricating oil composition is not less than the above lower limit value, the LSPI suppression ability can be further enhanced, and the friction reducing effect of the component (C) which is a molybdenum friction modifier is more effectively achieved. It can be pulled out. Further, when the sulfur content in the lubricating oil composition is not more than the above upper limit value, the engine cleanliness can be kept high.
 <(G)窒素含有無灰分散剤>
 本発明の潤滑油組成物は、(G)窒素含有無灰分散剤(以下において「(G)成分」ということがある。)を含有してもよい。
 (G)成分としては、例えば、以下の(G-1)~(G-3)から選ばれる1種以上の化合物を用いることができる。
 (G-1)アルキル基もしくはアルケニル基を分子中に少なくとも1個有するコハク酸イミドまたはその誘導体(以下において「成分(G-1)」ということがある。)、
 (G-2)アルキル基もしくはアルケニル基を分子中に少なくとも1個有するベンジルアミンまたはその誘導体(以下において「成分(G-2)」ということがある。)、
 (G-3)アルキル基もしくはアルケニル基を分子中に少なくとも1個有するポリアミンまたはその誘導体(以下において「成分(G-3)」ということがある。)。
<(G) Nitrogen-containing ashless dispersant>
The lubricating oil composition of the present invention may contain (G) a nitrogen-containing ashless dispersant (hereinafter sometimes referred to as “(G) component”).
As the component (G), for example, one or more compounds selected from the following (G-1) to (G-3) can be used.
(G-1) Succinimide having at least one alkyl group or alkenyl group in the molecule or a derivative thereof (hereinafter sometimes referred to as “component (G-1)”),
(G-2) benzylamine or a derivative thereof having at least one alkyl group or alkenyl group in the molecule (hereinafter sometimes referred to as “component (G-2)”),
(G-3) A polyamine having at least one alkyl group or alkenyl group in the molecule or a derivative thereof (hereinafter sometimes referred to as “component (G-3)”).
 (G)成分としては、成分(G-1)を特に好ましく用いることができる。
 成分(G-1)のうち、アルキル基もしくはアルケニル基を分子中に少なくとも1個有するコハク酸イミドとしては、下記式(5)または式(6)で表される化合物を例示できる。
As the component (G), the component (G-1) can be particularly preferably used.
Among the components (G-1), examples of the succinimide having at least one alkyl group or alkenyl group in the molecule include compounds represented by the following formula (5) or formula (6).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(5)中、R11は炭素数40~400のアルキル基またはアルケニル基を示し、hは1~5、好ましくは2~4の整数を示す。R11の炭素数は好ましくは60以上であり、また好ましくは350以下である。 In the formula (5), R 11 represents an alkyl group or alkenyl group having 40 to 400 carbon atoms, and h represents an integer of 1 to 5, preferably 2 to 4. R 11 preferably has 60 or more carbon atoms, and more preferably 350 or less.
 式(6)中、R12及びR13は、それぞれ独立に炭素数40~400のアルキル基又はアルケニル基を示し、異なる基の組み合わせであってもよい。R12及びR13は特に好ましくはポリブテニル基である。また、iは0~4、好ましくは1~3の整数を示す。R12及びR13の炭素数は好ましくは60以上であり、また好ましくは350以下である。 In the formula (6), R 12 and R 13 each independently represent an alkyl group or alkenyl group having 40 to 400 carbon atoms, and may be a combination of different groups. R 12 and R 13 are particularly preferably a polybutenyl group. I represents an integer of 0 to 4, preferably 1 to 3. R 12 and R 13 preferably have 60 or more carbon atoms, and more preferably 350 or less.
 式(5)、式(6)におけるR11~R13の炭素数が上記下限値以上であることにより、潤滑油基油に対する良好な溶解性を得ることができる。一方、R11~R13の炭素数が上記上限値以下であることにより、潤滑油組成物の低温流動性を高めることができる。 When the carbon number of R 11 to R 13 in the formulas (5) and (6) is not less than the above lower limit value, good solubility in the lubricating base oil can be obtained. On the other hand, when the carbon number of R 11 to R 13 is equal to or less than the upper limit, the low temperature fluidity of the lubricating oil composition can be improved.
 式(5)及び式(6)におけるアルキル基またはアルケニル基(R11~R13)は直鎖状でも分枝状でもよく、好ましくは、例えば、プロピレン、1-ブテン、イソブテン等のオレフィンのオリゴマーや、エチレンとプロピレンとのコオリゴマーから誘導される分枝状アルキル基や分枝状アルケニル基を挙げることができる。なかでも慣用的にポリイソブチレンと呼ばれるイソブテンのオリゴマーから誘導される分枝状アルキル基またはアルケニル基や、ポリブテニル基が最も好ましい。
 式(5)及び式(6)におけるアルキル基またはアルケニル基(R11~R13)の好適な数平均分子量は800~3500である。
The alkyl group or alkenyl group (R 11 to R 13 ) in the formulas (5) and (6) may be linear or branched, and is preferably an olefin oligomer such as propylene, 1-butene, isobutene, etc. And a branched alkyl group and a branched alkenyl group derived from a co-oligomer of ethylene and propylene. Of these, branched alkyl groups or alkenyl groups derived from oligomers of isobutene conventionally called polyisobutylene, and polybutenyl groups are most preferred.
The preferred number average molecular weight of the alkyl group or alkenyl group (R 11 to R 13 ) in the formulas (5) and (6) is 800 to 3500.
 アルキル基またはアルケニル基を分子中に少なくとも1個有するコハク酸イミドには、ポリアミン鎖の一方の末端のみに無水コハク酸が付加した、式(5)で表される、いわゆるモノタイプのコハク酸イミドと、ポリアミン鎖の両末端に無水コハク酸が付加した、式(6)で表される、いわゆるビスタイプのコハク酸イミドとが包含される。本発明の潤滑油組成物には、モノタイプのコハク酸イミド及びビスタイプのコハク酸イミドのいずれが含まれていてもよく、それらの両方が混合物として含まれていてもよい。 The succinimide having at least one alkyl group or alkenyl group in the molecule is a so-called monotype succinimide represented by the formula (5) in which succinic anhydride is added only to one end of the polyamine chain. And a so-called bis-type succinimide represented by formula (6) in which succinic anhydride is added to both ends of the polyamine chain. Either the monotype succinimide and the bis type succinimide may be contained in the lubricating oil composition of the present invention, or both of them may be contained as a mixture.
 アルキル基またはアルケニル基を分子中に少なくとも1個有するコハク酸イミドの製法は、特に制限されるものではなく、例えば、炭素数40~400のアルキル基又はアルケニル基を有する化合物を無水マレイン酸と100~200℃で反応させて得たアルキルコハク酸又はアルケニルコハク酸を、ポリアミンと反応させることにより得ることができる。ここで、ポリアミンとしては、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、及びペンタエチレンヘキサミンを例示できる。 The method for producing a succinimide having at least one alkyl group or alkenyl group in the molecule is not particularly limited. For example, a compound having an alkyl group or alkenyl group having 40 to 400 carbon atoms and maleic anhydride and 100 Alkyl succinic acid or alkenyl succinic acid obtained by reaction at ˜200 ° C. can be obtained by reacting with polyamine. Here, examples of the polyamine include diethylenetriamine, triethylenetetramine, tetraethylenepentamine, and pentaethylenehexamine.
 成分(G-2)のうち、アルキル基またはアルケニル基を分子中に少なくとも1個有するベンジルアミンとしては、下記式(7)で表される化合物を例示できる。 Among the components (G-2), examples of the benzylamine having at least one alkyl group or alkenyl group in the molecule include compounds represented by the following formula (7).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(7)中、R14は炭素数40~400のアルキル基またはアルケニル基を表し、jは1~5、好ましくは2~4の整数を表す。R14の炭素数は好ましくは60以上であり、また好ましくは350以下である。 In the formula (7), R 14 represents an alkyl group or alkenyl group having 40 to 400 carbon atoms, and j represents an integer of 1 to 5, preferably 2 to 4. R 14 preferably has 60 or more carbon atoms, and more preferably 350 or less.
 成分(G-2)の製法は特に制限されるものではない。例えば、プロピレンオリゴマー、ポリブテン、又はエチレン-α-オレフィン共重合体等のポリオレフィンを、フェノールと反応させてアルキルフェノールとした後、これにホルムアルデヒドと、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン等のポリアミンとをマンニッヒ反応により反応させる方法が挙げられる。 The production method of component (G-2) is not particularly limited. For example, a polyolefin such as propylene oligomer, polybutene, or ethylene-α-olefin copolymer is reacted with phenol to form alkylphenol, and then formaldehyde, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine The method of making it react with polyamines, such as a Mannich reaction, is mentioned.
 成分(G-3)のうちアルキル基またはアルケニル基を分子中に少なくとも1個有するポリアミンとしては、下記式(8)で表される化合物を例示できる。 Examples of the polyamine having at least one alkyl group or alkenyl group in the component (G-3) include compounds represented by the following formula (8).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式(8)中、R15は炭素数40~400以下のアルキル基またはアルケニル基を表し、kは1~5、好ましくは2~4の整数を表す。R15の炭素数は好ましくは60以上であり、また好ましくは350以下である。 In the formula (8), R 15 represents an alkyl group or an alkenyl group having 40 to 400 carbon atoms, and k represents an integer of 1 to 5, preferably 2 to 4. R 15 preferably has 60 or more carbon atoms, and more preferably 350 or less.
 成分(G-3)の製法は特に制限されるものではない。例えば、プロピレンオリゴマー、ポリブテンまたはエチレン-α-オレフィン共重合体等のポリオレフィンを塩素化した後、これにアンモニアやエチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン等のポリアミンを反応させる方法が挙げられる。 The production method of component (G-3) is not particularly limited. For example, after chlorinating a polyolefin such as a propylene oligomer, polybutene or ethylene-α-olefin copolymer, this is reacted with a polyamine such as ammonia, ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine or pentaethylenehexamine. A method is mentioned.
 成分(G-1)~成分(G-3)における誘導体としては、例えば、(i)上述のアルキル基またはアルケニル基を分子中に少なくとも1個有するコハク酸イミド、ベンジルアミンまたはポリアミン(以下「上述の含窒素化合物」という。)に、脂肪酸等の炭素数1~30のモノカルボン酸、炭素数2~30のポリカルボン酸(例えばシュウ酸、フタル酸、トリメリット酸、ピロメリット酸等。)、これらの無水物もしくはエステル化合物、炭素数2~6のアルキレンオキサイド、又はヒドロキシ(ポリ)オキシアルキレンカーボネートを作用させたことにより、残存するアミノ基および/またはイミノ基の一部又は全部が中和またはアミド化されている、含酸素有機化合物による変性化合物;(ii)上述の含窒素化合物にホウ酸を作用させることにより、残存するアミノ基および/またはイミノ基の一部又は全部が中和またはアミド化されている、ホウ素変性化合物;(iii)上述の含窒素化合物にリン酸を作用させることにより、残存するアミノ基および/またはイミノ基の一部又は全部が中和またはアミド化されている、リン酸変性化合物;(iv)上述の含窒素化合物に硫黄化合物を作用させることにより得られる、硫黄変性化合物;及び、(v)上述の含窒素化合物に含酸素有機化合物による変性、ホウ素変性、リン酸変性、硫黄変性から選ばれた2種以上の変性を組み合わせて施すことにより得られる変性化合物が挙げられる。これら(i)~(v)の誘導体の中でも、アルケニルコハク酸イミドのホウ酸変性化合物、特にビスタイプのアルケニルコハク酸イミドのホウ酸変性化合物を用いることにより、潤滑油組成物の耐熱性を更に向上させることができる。 Examples of the derivatives in the component (G-1) to the component (G-3) include (i) succinimide, benzylamine or polyamine (hereinafter referred to as “above-mentioned”) having at least one alkyl group or alkenyl group in the molecule. A monocarboxylic acid having 1 to 30 carbon atoms, such as a fatty acid, and a polycarboxylic acid having 2 to 30 carbon atoms (for example, oxalic acid, phthalic acid, trimellitic acid, pyromellitic acid, etc.). In addition, by reacting these anhydrides or ester compounds, alkylene oxides having 2 to 6 carbon atoms, or hydroxy (poly) oxyalkylene carbonate, some or all of the remaining amino groups and / or imino groups are neutralized. Or an amidated modified compound with an oxygen-containing organic compound; (ii) action of boric acid on the above-mentioned nitrogen-containing compound A boron-modified compound in which part or all of the remaining amino group and / or imino group is neutralized or amidated; (iii) by reacting phosphoric acid with the nitrogen-containing compound described above, A phosphoric acid-modified compound in which a part or all of the amino group and / or imino group is neutralized or amidated; (iv) a sulfur-modified compound obtained by allowing a sulfur compound to act on the nitrogen-containing compound described above And (v) a modified compound obtained by combining the above-mentioned nitrogen-containing compound with two or more kinds of modifications selected from modification with an oxygen-containing organic compound, boron modification, phosphoric acid modification, and sulfur modification. . Among these derivatives (i) to (v), by using a boric acid-modified compound of alkenyl succinimide, particularly a boric acid-modified compound of bis-type alkenyl succinimide, the heat resistance of the lubricating oil composition can be further improved. Can be improved.
 (G)成分の分子量には特に制限は無いが、好適な重量平均分子量は1000~20000である。 The molecular weight of the component (G) is not particularly limited, but a suitable weight average molecular weight is 1000 to 20000.
 本発明の潤滑油組成物に(G)成分を含有させる場合、その含有量は、潤滑油組成物全量基準で、窒素分として好ましくは0.01質量%以上であり、より好ましくは0.03質量%以上であり、また好ましくは0.15質量%以下、より好ましくは0.1質量%以下、特に好ましくは0.07質量%以下である。(G)成分の含有量が上記下限値以上であることにより、潤滑油組成物の耐コーキング性(耐熱性)を十分に向上させることができる。また(G)成分の含有量が上記上限値以下であることにより、省燃費性を高く維持することができる。 When the component (G) is contained in the lubricating oil composition of the present invention, the content is preferably 0.01% by mass or more, more preferably 0.03 as nitrogen content, based on the total amount of the lubricating oil composition. It is at least 0.1% by mass, preferably at most 0.15% by mass, more preferably at most 0.1% by mass, particularly preferably at most 0.07% by mass. When the content of the component (G) is not less than the above lower limit, the coking resistance (heat resistance) of the lubricating oil composition can be sufficiently improved. Moreover, when the content of the component (G) is equal to or less than the above upper limit value, fuel economy can be maintained high.
 潤滑油組成物中のホウ素含有量は、潤滑油組成物全量基準で好ましくは0質量ppm以上であり、より好ましくは100質量ppm以上であり、特に好ましくは200質量ppm以上である。また、好ましくは400質量ppm未満であり、より好ましくは350質量ppmであり、特に好ましくは300質量ppmである。ホウ素含有量が上記上限値以下であることにより、省燃費性を高く維持することができるとともに、潤滑油組成物の灰分量を低く抑えることができる。 The boron content in the lubricating oil composition is preferably 0 ppm by mass or more, more preferably 100 ppm by mass or more, and particularly preferably 200 ppm by mass or more based on the total amount of the lubricating oil composition. Moreover, Preferably it is less than 400 mass ppm, More preferably, it is 350 mass ppm, Especially preferably, it is 300 mass ppm. When the boron content is not more than the above upper limit value, fuel economy can be maintained high, and the ash content of the lubricating oil composition can be kept low.
 <(H)粘度指数向上剤>
 本発明の潤滑油組成物は、(H)粘度指数向上剤(以下において「(H)成分」ということがある。)を含有することが好ましい。(H)成分の例としては、非分散型もしくは分散型ポリ(メタ)アクリレート系粘度指数向上剤、(メタ)アクリレート-オレフィン共重合体、非分散型もしくは分散型エチレン-α-オレフィン共重合体又はその水素化物、ポリイソブチレン又はその水素化物、スチレン-ジエン水素化共重合体、スチレン-無水マレイン酸エステル共重合体、及びポリアルキルスチレン等を挙げることができる。
<(H) Viscosity index improver>
The lubricating oil composition of the present invention preferably contains (H) a viscosity index improver (hereinafter sometimes referred to as “component (H)”). Examples of component (H) include non-dispersed or dispersed poly (meth) acrylate viscosity index improvers, (meth) acrylate-olefin copolymers, non-dispersed or dispersed ethylene-α-olefin copolymers. Or a hydride thereof, polyisobutylene or a hydride thereof, a styrene-diene hydrogenated copolymer, a styrene-maleic anhydride ester copolymer, and a polyalkylstyrene.
 (H)成分は、ポリマー中の全単量体単位に占める下記一般式(9)で表される構造単位の割合が10~90モル%であるポリ(メタ)アクリレート系粘度指数向上剤(以下において「本実施形態に係る粘度指数向上剤」ということがある。)を含有することが好ましい。 The component (H) is a poly (meth) acrylate viscosity index improver (hereinafter referred to as the proportion of structural units represented by the following general formula (9) in the total monomer units in the polymer of 10 to 90 mol%) It is preferable to contain “sometimes referred to as a viscosity index improver according to this embodiment”.
Figure JPOXMLDOC01-appb-C000008
[式(9)中、R16は水素又はメチル基を表し、R17は炭素数1~5の直鎖状又は分枝状の炭化水素基を表す。]
Figure JPOXMLDOC01-appb-C000008
[In the formula (9), R 16 represents hydrogen or a methyl group, and R 17 represents a linear or branched hydrocarbon group having 1 to 5 carbon atoms. ]
 本実施形態に係る粘度指数向上剤において、ポリマー中の一般式(9)で表される(メタ)アクリレート構造単位の割合は、好ましくは10~90モル%であり、より好ましくは80モル%以下であり、さらに好ましくは70モル%以下である。また、より好ましくは20モル%以上であり、さらに好ましくは30モル%以上であり、特に好ましくは40モル%以上である。ポリマー中の全単量体単位に占める一般式(9)で表される(メタ)アクリレート構造単位の割合が90モル%を超える場合は、基油への溶解性や粘度温度特性の向上効果や低温粘度特性に劣るおそれがあり、10モル%を下回る場合は粘度温度特性の向上効果に劣るおそれがある。 In the viscosity index improver according to this embodiment, the proportion of the (meth) acrylate structural unit represented by the general formula (9) in the polymer is preferably 10 to 90 mol%, more preferably 80 mol% or less. More preferably, it is 70 mol% or less. More preferably, it is 20 mol% or more, More preferably, it is 30 mol% or more, Especially preferably, it is 40 mol% or more. When the proportion of the (meth) acrylate structural unit represented by the general formula (9) in all the monomer units in the polymer exceeds 90 mol%, the effect of improving solubility in the base oil and viscosity temperature characteristics There exists a possibility that it may be inferior to a low temperature viscosity characteristic, and when it is less than 10 mol%, there exists a possibility that it may be inferior to the improvement effect of a viscosity temperature characteristic.
 本実施形態に係る粘度指数向上剤は、一般式(9)で表される(メタ)アクリレート構造単位に加えて、他の(メタ)アクリレート構造単位を有する共重合体であってもよい。このような共重合体は、下記一般式(10)で表されるモノマー(以下、「モノマー(M-1)」という。)の1種または2種以上と、モノマー(M-1)以外のモノマーとを共重合させることによって得ることができる。 The viscosity index improver according to the present embodiment may be a copolymer having another (meth) acrylate structural unit in addition to the (meth) acrylate structural unit represented by the general formula (9). Such a copolymer includes one or more monomers represented by the following general formula (10) (hereinafter referred to as “monomer (M-1)”) and other than the monomer (M-1). It can be obtained by copolymerizing with a monomer.
Figure JPOXMLDOC01-appb-C000009
[式(10)中、R18は水素原子又はメチル基を表し、R19は炭素数6~18の直鎖状又は分枝状の炭化水素基を表す。]
Figure JPOXMLDOC01-appb-C000009
[In the formula (10), R 18 represents a hydrogen atom or a methyl group, and R 19 represents a linear or branched hydrocarbon group having 6 to 18 carbon atoms. ]
 モノマー(M-1)と組み合わせるモノマーは任意であるが、例えば下記一般式(11)で表されるモノマー(以下、「モノマー(M-2)」という。)が好適である。モノマー(M-1)とモノマー(M-2)との共重合体は、いわゆる非分散型ポリ(メタ)アクリレート系粘度指数向上剤である。 The monomer to be combined with the monomer (M-1) is arbitrary, but for example, a monomer represented by the following general formula (11) (hereinafter referred to as “monomer (M-2)”) is preferable. The copolymer of the monomer (M-1) and the monomer (M-2) is a so-called non-dispersed poly (meth) acrylate viscosity index improver.
Figure JPOXMLDOC01-appb-C000010
[式(11)中、R20は水素原子又はメチル基を表し、R21は炭素数19以上の直鎖状又は分枝状の炭化水素基を表す。]
Figure JPOXMLDOC01-appb-C000010
[In the formula (11), R 20 represents a hydrogen atom or a methyl group, and R 21 represents a linear or branched hydrocarbon group having 19 or more carbon atoms. ]
 式(11)で示すモノマー(M-2)中のR21は、上述の通り炭素数19以上の直鎖状又は分枝状の炭化水素基であり、好ましくは炭素数20以上の直鎖状又は分枝状の炭化水素であり、さらに好ましくは炭素数22以上の直鎖状又は分枝状の炭化水素であり、より好ましくは炭素数24以上の分枝状炭化水素基である。また、R21で表される炭化水素基の炭素数の上限は特に制限されないが、炭素数50,000以下の直鎖状又は分枝状の炭化水素基であることが好ましい。より好ましくは500以下の直鎖状又は分枝状の炭化水素基であり、さらに好ましくは100以下の直鎖状又は分枝状の炭化水素基であり、特に好ましくは50以下の分枝状の炭化水素基であり、最も好ましくは25以下の分枝状の炭化水素基である。 R 21 in the monomer (M-2) represented by the formula (11) is a straight chain or branched hydrocarbon group having 19 or more carbon atoms as described above, and preferably a straight chain having 20 or more carbon atoms. Or it is a branched hydrocarbon, More preferably, it is a linear or branched hydrocarbon with 22 or more carbon atoms, More preferably, it is a branched hydrocarbon group with 24 or more carbon atoms. The upper limit of the carbon number of the hydrocarbon group represented by R 21 is not particularly limited, but is preferably a linear or branched hydrocarbon group having a carbon number of 50,000 or less. More preferably, it is a linear or branched hydrocarbon group of 500 or less, more preferably a linear or branched hydrocarbon group of 100 or less, particularly preferably 50 or less. A hydrocarbon group, most preferably a branched hydrocarbon group of 25 or less.
 本実施形態に係る粘度指数向上剤の好ましい一例として、櫛形ポリ(メタ)アクリレートを挙げることができる。ここでいう櫛形ポリ(メタ)アクリレートとは、上記モノマー(M-1)と上記モノマー(M-2)との共重合体であって、モノマー(M-2)が式(11)においてR21の数平均分子量(Mn)が1,000~50,000(好ましくは1,500~20,000、より好ましくは2,000~10,000)であるマクロモノマーである、共重合体を意味する。そのようなマクロモノマーとしては例えば、ブタジエン及びイソプレンを共重合させることにより得られるポリオレフィンの水素化物から誘導されるマクロモノマーを採用できる。 As a preferred example of the viscosity index improver according to the present embodiment, comb-shaped poly (meth) acrylate can be exemplified. The comb-shaped poly (meth) acrylate here is a copolymer of the monomer (M-1) and the monomer (M-2), and the monomer (M-2) is R 21 in the formula (11). Means a copolymer having a number average molecular weight (Mn) of 1,000 to 50,000 (preferably 1,500 to 20,000, more preferably 2,000 to 10,000). . As such a macromonomer, for example, a macromonomer derived from a hydride of polyolefin obtained by copolymerizing butadiene and isoprene can be employed.
 本実施形態に係る粘度指数向上剤において、ポリマー中の一般式(11)で表されるモノマー(M-2)に対応する(メタ)アクリレート構造単位は1種のみであってもよく、2種以上の組み合わせであっても良い。ポリマー中の全単量体単位に占める一般式(11)で表されるモノマー(M-2)に対応する構造単位の割合は、0.5~70モル%であることが好ましく、より好ましくは60モル%以下であり、さらに好ましくは50モル%以下であり、特に好ましくは40モル%以下であり、最も好ましくは30モル%以下である。また、好ましくは1モル%以上であり、より好ましくは3モル%以上であり、さらに好ましくは5モル%以上であり、特に好ましくは10モル%以上である。ポリマー中の全単量体単位に占める一般式(11)で表されるモノマー(M-2)に対応する構造単位の割合が70モル%を超える場合は粘度温度特性の向上効果や低温粘度特性に劣るおそれがあり、0.5モル%を下回る場合は粘度温度特性の向上効果に劣るおそれがある。 In the viscosity index improver according to this embodiment, the number of (meth) acrylate structural units corresponding to the monomer (M-2) represented by the general formula (11) in the polymer may be one, or two A combination of the above may be used. The proportion of the structural unit corresponding to the monomer (M-2) represented by the general formula (11) in the total monomer units in the polymer is preferably 0.5 to 70 mol%, more preferably It is 60 mol% or less, more preferably 50 mol% or less, particularly preferably 40 mol% or less, and most preferably 30 mol% or less. Further, it is preferably 1 mol% or more, more preferably 3 mol% or more, further preferably 5 mol% or more, and particularly preferably 10 mol% or more. When the proportion of the structural unit corresponding to the monomer (M-2) represented by the general formula (11) in the total monomer units in the polymer exceeds 70 mol%, the effect of improving the viscosity temperature characteristics and the low temperature viscosity characteristics If the amount is less than 0.5 mol%, the effect of improving the viscosity temperature characteristic may be inferior.
 モノマー(M-1)と組み合わせるその他のモノマーとしては、下記一般式(12)で表されるモノマー(以下、「モノマー(M-3)」という。)及び下記一般式(13)で表されるモノマー(以下、「モノマー(M-4)」という)から選ばれる1種又は2種以上が好適である。モノマー(M-1)とモノマー(M-3)及び/又は(M-4)との共重合体は、いわゆる分散型ポリ(メタ)アクリレート系粘度指数向上剤である。なお、当該分散型ポリ(メタ)アクリレート系粘度指数向上剤は、構成モノマーとしてモノマー(M-2)をさらに含んでいてもよい。 Other monomers to be combined with the monomer (M-1) include a monomer represented by the following general formula (12) (hereinafter referred to as “monomer (M-3)”) and a general formula (13). One or more selected from monomers (hereinafter referred to as “monomer (M-4)”) are preferred. The copolymer of the monomer (M-1) and the monomer (M-3) and / or (M-4) is a so-called dispersion type poly (meth) acrylate viscosity index improver. The dispersion type poly (meth) acrylate viscosity index improver may further contain a monomer (M-2) as a constituent monomer.
Figure JPOXMLDOC01-appb-C000011
[式(12)中、R22は水素原子又はメチル基を表し、R23は炭素数1~18のアルキレン基を表し、Eは窒素原子を1~2個、酸素原子を0~2個含有するアミン残基又は複素環残基を表し、aは0又は1を表す。]
Figure JPOXMLDOC01-appb-C000011
[In the formula (12), R 22 represents a hydrogen atom or a methyl group, R 23 represents an alkylene group having 1 to 18 carbon atoms, E 1 represents 1 to 2 nitrogen atoms and 0 to 2 oxygen atoms. Represents an amine residue or a heterocyclic residue, and a represents 0 or 1; ]
 R23で表される炭素数1~18のアルキレン基としては、具体的には、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、へプチレン基、オクチレン基、ノニレン基、デシレン基、ウンデシレン基、ドデシレン基、トリデシレン基、テトラデシレン基、ペンタデシレン基、ヘキサデシレン基、ヘプタデシレン基、及びオクタデシレン基(これらアルキレン基は直鎖状でも分枝状でもよい。)等を例示できる。 Specific examples of the alkylene group having 1 to 18 carbon atoms represented by R 23 include ethylene group, propylene group, butylene group, pentylene group, hexylene group, heptylene group, octylene group, nonylene group, decylene group, Examples include an undecylene group, a dodecylene group, a tridecylene group, a tetradecylene group, a pentadecylene group, a hexadecylene group, a heptadecylene group, and an octadecylene group (these alkylene groups may be linear or branched).
 Eで表される基としては、具体的には、ジメチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基、ジブチルアミノ基、アニリノ基、トルイジノ基、キシリジノ基、アセチルアミノ基、ベンゾイルアミノ基、モルホリノ基、ピロリル基、ピロリノ基、ピリジル基、メチルピリジル基、ピロリジニル基、ピペリジニル基、キノニル基、ピロリドニル基、ピロリドノ基、イミダゾリノ基、及びピラジノ基等を例示できる。 Specific examples of the group represented by E 1 include a dimethylamino group, a diethylamino group, a dipropylamino group, a dibutylamino group, an anilino group, a toluidino group, a xylidino group, an acetylamino group, a benzoylamino group, and a morpholino group. Pyrrolyl group, pyrrolino group, pyridyl group, methylpyridyl group, pyrrolidinyl group, piperidinyl group, quinonyl group, pyrrolidonyl group, pyrrolidono group, imidazolino group, pyrazino group and the like.
Figure JPOXMLDOC01-appb-C000012
[式(13)中、R24は水素原子又は炭化水素基を表し、Eは炭化水素基または窒素原子を1~2個、酸素原子を0~2個含有するアミン残基または複素環残基を表す。]
Figure JPOXMLDOC01-appb-C000012
[In the formula (13), R 24 represents a hydrogen atom or a hydrocarbon group, E 2 represents an amine residue or heterocyclic residue containing 1 to 2 hydrocarbon groups or nitrogen atoms and 0 to 2 oxygen atoms. Represents a group. ]
 Eで表される基としては、具体的には、ジメチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基、ジブチルアミノ基、アニリノ基、トルイジノ基、キシリジノ基、アセチルアミノ基、ベンゾイルアミノ基、モルホリノ基、ピロリル基、ピロリノ基、ピリジル基、メチルピリジル基、ピロリジニル基、ピペリジニル基、キノニル基、ピロリドニル基、ピロリドノ基、イミダゾリノ基、及びピラジノ基等を例示できる。 Specific examples of the group represented by E 2 include a dimethylamino group, a diethylamino group, a dipropylamino group, a dibutylamino group, an anilino group, a toluidino group, a xylidino group, an acetylamino group, a benzoylamino group, and a morpholino group. Pyrrolyl group, pyrrolino group, pyridyl group, methylpyridyl group, pyrrolidinyl group, piperidinyl group, quinonyl group, pyrrolidonyl group, pyrrolidono group, imidazolino group, pyrazino group and the like.
 モノマー(M-3)および(M-4)の好ましい例としては、具体的には、ジメチルアミノメチルメタクリレート、ジエチルアミノメチルメタクリレート、ジメチルアミノエチルメタクリレート、ジエチルアミノエチルメタクリレート、2-メチル-5-ビニルピリジン、モルホリノメチルメタクリレート、モルホリノエチルメタクリレート、N-ビニルピロリドン及びこれらの混合物等を例示できる。 As preferable examples of the monomers (M-3) and (M-4), specifically, dimethylaminomethyl methacrylate, diethylaminomethyl methacrylate, dimethylaminoethyl methacrylate, diethylaminoethyl methacrylate, 2-methyl-5-vinylpyridine, Examples thereof include morpholinomethyl methacrylate, morpholinoethyl methacrylate, N-vinylpyrrolidone, and mixtures thereof.
 モノマー(M-1)とモノマー(M-2)~(M-4)との共重合体の共重合モル比については特に制限はないが、モノマー(M-1):モノマー(M-2)~(M-4)=20:80~90:10程度が好ましく、より好ましくは30:70~80:20、さらに好ましくは40:60~70:30である。 There is no particular limitation on the copolymerization molar ratio of the copolymer of monomer (M-1) and monomers (M-2) to (M-4), but monomer (M-1): monomer (M-2) (M-4) = 20: 80 to 90:10 is preferable, more preferably 30:70 to 80:20, and still more preferably 40:60 to 70:30.
 本実施形態に係る粘度指数向上剤の製造法は任意であるが、例えば、ベンゾイルパーオキシド等の重合開始剤の存在下で、モノマー(M-1)及び/又は(M-2)と、モノマー(M-3)~(M-4)から選ばれる1種以上とをラジカル溶液重合させることにより容易に得ることができる。 The method for producing the viscosity index improver according to the present embodiment is arbitrary. For example, in the presence of a polymerization initiator such as benzoyl peroxide, the monomer (M-1) and / or (M-2) and the monomer It can be easily obtained by radical solution polymerization of one or more selected from (M-3) to (M-4).
 本実施形態に係る粘度指数向上剤のディーゼルインジェクター法におけるPSSI(永久せん断安定性指数)は、好ましくは40以下であり、より好ましくは10以下、さらに好ましくは5以下、特に好ましくは3以下、最も好ましくは1以下である。PSSIが40を超える場合にはせん断安定性が悪く、使用後の動粘度やHTHS粘度を一定以上に保つために、初期の省燃費性が悪化するおそれがある。本実施形態に係る粘度指数向上剤のPSSIの下限は特に制限されるものではないが、通常0超である。なお本明細書において、「PSSI」とは、ASTM D 6022-01(Standard Practice for Calculation of Permanent Shear Stability Index)に準拠し、ASTM D 6278-02(Test Method for Shear Stability of Polymer Containing Fluids Using a European Diesel Injector Apparatus)により測定されたデータに基づき計算された、ポリマーの永久せん断安定性指数(Permanent Shear Stability Index)を意味する。 The PSSI (Permanent Shear Stability Index) in the diesel injector method of the viscosity index improver according to this embodiment is preferably 40 or less, more preferably 10 or less, still more preferably 5 or less, particularly preferably 3 or less, most. Preferably it is 1 or less. When PSSI exceeds 40, the shear stability is poor, and the kinematic viscosity after use and the HTHS viscosity are kept at a certain level or more, so that the initial fuel economy may be deteriorated. The lower limit of PSSI of the viscosity index improver according to this embodiment is not particularly limited, but is usually more than zero. In this specification, “PSSI” refers to ASTM D 6022-01 (Standard Practice for Calculation of Permanent Shear Stability Index), and ASTM D 6278-02 (Test Method for Shear Stability of Polymer Containing Fluids European European It means the permanent shear stability index (Permanent 基 づ き Shear Stability Index) calculated based on data measured by Diesel Injector Apparatus.
 本実施形態に係る粘度指数向上剤の重量平均分子量(Mw)は、通常10,000~700,000であり、20,000以上であることが好ましく、より好ましくは50,000以上であり、さらに好ましくは100,000以上であり、特に好ましくは120,000以上である。また好ましくは500,000以下であり、より好ましくは400,000以下であり、さらに好ましくは300,000以下である。重量平均分子量が10,000未満の場合には潤滑油基油に溶解させた場合の粘度指数向上効果が小さく省燃費性や低温粘度特性に劣るだけでなく、コストが上昇するおそれがある。また、重量平均分子量が700,000を超える場合には、粘度増加効果が大きくなりすぎ、省燃費性や低温粘度特性に劣るだけでなく、せん断安定性や潤滑油基油への溶解性、貯蔵安定性が悪くなる。 The weight average molecular weight (Mw) of the viscosity index improver according to this embodiment is usually 10,000 to 700,000, preferably 20,000 or more, more preferably 50,000 or more, Preferably it is 100,000 or more, Most preferably, it is 120,000 or more. Moreover, it is preferably 500,000 or less, more preferably 400,000 or less, and still more preferably 300,000 or less. If the weight average molecular weight is less than 10,000, the effect of improving the viscosity index when dissolved in a lubricating base oil is small, resulting in poor fuel economy and low temperature viscosity characteristics, and may increase costs. Further, when the weight average molecular weight exceeds 700,000, the effect of increasing the viscosity becomes too large, and not only the fuel saving property and the low temperature viscosity property are inferior, but also shear stability, solubility in lubricating base oil, and storage. Stability deteriorates.
 本実施形態に係る粘度指数向上剤の重量平均分子量とPSSIの比(Mw/PSSI)は、1.0×10以上であることが好ましく、より好ましくは2.0×10以上、さらに好ましくは5.0×10以上、特に好ましくは8.0×10以上である。Mw/PSSIが1.0×10未満の場合には、省燃費性や低温始動性、すなわち粘度温度特性や低温粘度特性が悪化するおそれがある。 The ratio (Mw / PSSI) of the weight average molecular weight and the PSSI of the viscosity index improver according to this embodiment is preferably 1.0 × 10 4 or more, more preferably 2.0 × 10 4 or more, and still more preferably. Is 5.0 × 10 4 or more, and particularly preferably 8.0 × 10 4 or more. When Mw / PSSI is less than 1.0 × 10 4 , fuel economy and low temperature startability, that is, viscosity temperature characteristics and low temperature viscosity characteristics may be deteriorated.
 本実施形態に係る粘度指数向上剤の重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)は4.0以下であることが好ましく、より好ましくは3.5以下、さらに好ましくは3.0以下、特に好ましくは2.0以下、最も好ましくは1.5以下である。また、Mw/Mnは1.0以上であることが好ましく、より好ましくは1.05以上、さらに好ましくは1.1以上である。Mw/Mnが4.0を超えると、溶解性と粘度温度特性の向上効果が悪化することにより、十分な貯蔵安定性や、省燃費性が維持できなくなる恐れがある。 The ratio (Mw / Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the viscosity index improver according to this embodiment is preferably 4.0 or less, more preferably 3.5 or less, It is preferably 3.0 or less, particularly preferably 2.0 or less, and most preferably 1.5 or less. Moreover, it is preferable that Mw / Mn is 1.0 or more, More preferably, it is 1.05 or more, More preferably, it is 1.1 or more. When Mw / Mn exceeds 4.0, the effect of improving the solubility and the viscosity-temperature characteristic deteriorates, so that sufficient storage stability and fuel economy may not be maintained.
 本発明の潤滑油組成物中における(H)成分の含有量は希釈油込みで、組成物全量基準で、通常0.1~30質量%であり、好ましくは1質量%以上、より好ましくは3質量%以上、さらに好ましくは5質量%以上であり、また好ましくは20質量%以下、より好ましくは15質量%以下である。含有量が0.1質量%より少ない場合には省燃費性が悪化するとともに、低温特性が不十分となるおそれがあり、また含有量が30質量%を超える場合には組成物の省燃費性が悪化するとともに、せん断安定性が悪化するおそれがある。 The content of the component (H) in the lubricating oil composition of the present invention is usually 0.1 to 30% by mass, preferably 1% by mass or more, more preferably 3%, based on the total amount of the composition, including diluted oil. It is at least 5 mass%, more preferably at least 5 mass%, preferably at most 20 mass%, more preferably at most 15 mass%. When the content is less than 0.1% by mass, the fuel efficiency is deteriorated and the low temperature characteristics may be insufficient. When the content exceeds 30% by mass, the fuel efficiency of the composition is decreased. May deteriorate and shear stability may deteriorate.
 <その他の添加剤>
 本発明の潤滑油組成物には、さらにその性能を向上させるために、その目的に応じて潤滑油に一般的に使用されている他の添加剤を含有させることができる。そのような添加剤としては、例えば、(C)成分以外の摩擦調整剤、摩耗防止剤(または極圧剤)、防錆剤、抗乳化剤、消泡剤等の添加剤等を挙げることができる。
<Other additives>
In order to further improve the performance, the lubricating oil composition of the present invention can contain other additives generally used in lubricating oils depending on the purpose. Examples of such additives include additives such as friction modifiers other than the component (C), antiwear agents (or extreme pressure agents), rust inhibitors, demulsifiers, antifoaming agents, and the like. .
 (C)成分以外の摩擦調整剤としては、例えば、(C)成分以外の有機モリブデン化合物および無灰摩擦調整剤から選ばれる1種以上の摩擦調整剤を用いることができる。(C)成分以外の摩擦調整剤の含有量は、組成物全量基準で好ましくは0.01~2.0質量%である。(C)成分以外の摩擦調整剤を含有することにより、省燃費性能をさらに高めることができる。 As the friction modifier other than the component (C), for example, one or more friction modifiers selected from organic molybdenum compounds other than the component (C) and ashless friction modifiers can be used. The content of the friction modifier other than the component (C) is preferably 0.01 to 2.0% by mass based on the total amount of the composition. By containing a friction modifier other than the component (C), the fuel saving performance can be further enhanced.
 (C)成分以外の有機モリブデン化合物としては、例えば、モリブデンジチオホスフェート;モリブデン化合物(例えば、二酸化モリブデン、三酸化モリブデン等の酸化モリブデン、オルトモリブデン酸、パラモリブデン酸、(ポリ)硫化モリブデン酸等のモリブデン酸、これらモリブデン酸の金属塩、アンモニウム塩等のモリブデン酸塩、二硫化モリブデン、三硫化モリブデン、五硫化モリブデン、ポリ硫化モリブデン等の硫化モリブデン、硫化モリブデン酸、硫化モリブデン酸の金属塩またはアミン塩、塩化モリブデン等のハロゲン化モリブデン等。)と、硫黄含有有機化合物(例えば、アルキル(チオ)キサンテート、チアジアゾール、メルカプトチアジアゾール、チオカーボネート、テトラハイドロカルビルチウラムジスルフィド、ビス(ジ(チオ)ハイドロカルビルジチオホスホネート)ジスルフィド、有機(ポリ)サルファイド、硫化エステル等。)又はその他の有機化合物との錯体等;および、上記硫化モリブデン、硫化モリブデン酸等の硫黄含有モリブデン化合物とアルケニルコハク酸イミドとの錯体等の、硫黄を含有する有機モリブデン化合物を挙げることができる。なお有機モリブデン化合物は、単核モリブデン化合物であってもよく、二核モリブデン化合物や三核モリブデン化合物等の多核モリブデン化合物であってもよい。 Examples of organic molybdenum compounds other than the component (C) include molybdenum dithiophosphate; molybdenum compounds (for example, molybdenum oxide such as molybdenum dioxide and molybdenum trioxide, orthomolybdic acid, paramolybdic acid, and (poly) sulfurized molybdenum acid). Molybdenum acid, metal salts of these molybdates, molybdates such as ammonium salts, molybdenum disulfide, molybdenum trisulfide, molybdenum pentasulfide, molybdenum sulfide such as polysulfide molybdenum, molybdenum sulfides, metal salts of molybdenum sulfides or amines Salts, molybdenum halides such as molybdenum chloride, etc.) and sulfur-containing organic compounds (eg alkyl (thio) xanthate, thiadiazole, mercaptothiadiazole, thiocarbonate, tetrahydrocarbyl thiuram disulfide) Bis (di (thio) hydrocarbyl dithiophosphonate) disulfide, organic (poly) sulfide, sulfurized ester, etc.) or other organic compounds, etc .; and sulfur-containing molybdenum compounds such as molybdenum sulfide and sulfurized molybdate And organic molybdenum compounds containing sulfur, such as a complex of alkenyl succinimide and alkenyl succinimide. The organic molybdenum compound may be a mononuclear molybdenum compound or a polynuclear molybdenum compound such as a dinuclear molybdenum compound or a trinuclear molybdenum compound.
 また、(C)成分以外の有機モリブデン化合物として、構成元素として硫黄を含まない有機モリブデン化合物を用いることもできる。構成元素として硫黄を含まない有機モリブデン化合物としては、具体的には、モリブデン-アミン錯体、モリブデン-コハク酸イミド錯体、有機酸のモリブデン塩、アルコールのモリブデン塩などが挙げられ、中でも、モリブデン-アミン錯体、有機酸のモリブデン塩およびアルコールのモリブデン塩が好ましい。 Also, as the organic molybdenum compound other than the component (C), an organic molybdenum compound not containing sulfur as a constituent element can be used. Specific examples of organic molybdenum compounds that do not contain sulfur as a constituent element include molybdenum-amine complexes, molybdenum-succinimide complexes, molybdenum salts of organic acids, and molybdenum salts of alcohols. Complexes, molybdenum salts of organic acids and molybdenum salts of alcohols are preferred.
 (C)成分以外の摩擦調整剤として有機モリブデン化合物を用いる場合、その含有量は組成物全量基準で0.01~2.0質量%であることが好ましい。(C)成分以外の摩擦調整剤として有機モリブデン化合物を含む場合においても、潤滑油組成物中のモリブデン含有量は潤滑油組成物全量基準で600質量ppm以上、好ましくは700質量ppm以上であり、また好ましくは1000質量ppm以下、より好ましくは900質量ppm以下、さらに好ましくは850質量ppm以下、特に好ましくは800質量ppm以下である。含有量が上記下限値未満の場合、その添加による摩擦低減効果が不十分となる傾向にあり、潤滑油組成物の省燃費性および熱・酸化安定性が不十分となる傾向にある。一方、含有量が上記上限値を超える場合、含有量に見合う効果が得られず、また、潤滑油組成物の貯蔵安定性が低下する傾向にある。 When using an organomolybdenum compound as a friction modifier other than the component (C), the content is preferably 0.01 to 2.0% by mass based on the total amount of the composition. (C) Even when an organomolybdenum compound is included as a friction modifier other than the component, the molybdenum content in the lubricating oil composition is 600 mass ppm or more, preferably 700 mass ppm or more, based on the total amount of the lubricating oil composition. Further, it is preferably 1000 ppm by mass or less, more preferably 900 ppm by mass or less, further preferably 850 ppm by mass or less, and particularly preferably 800 ppm by mass or less. When the content is less than the above lower limit, the friction reducing effect due to the addition tends to be insufficient, and the fuel economy and thermal / oxidation stability of the lubricating oil composition tend to be insufficient. On the other hand, when content exceeds the said upper limit, the effect corresponding to content is not acquired, and it exists in the tendency for the storage stability of a lubricating oil composition to fall.
 無灰摩擦調整剤としては、潤滑油用の摩擦調整剤として通常用いられている化合物を特に制限なく用いることができる。無灰摩擦調整剤としては、例えば、分子中に酸素原子、窒素原子、硫黄原子から選ばれる1種以上のヘテロ元素を含有する、炭素数6~50の化合物が挙げられる。さらに具体的には、炭素数6~30のアルキル基またはアルケニル基、特に炭素数6~30の直鎖アルキル基、直鎖アルケニル基、分岐アルキル基、または分岐アルケニル基を分子中に少なくとも1個有する、アミン化合物、脂肪酸エステル、脂肪酸アミド、脂肪酸、脂肪族アルコール、脂肪族エーテル、ウレア系化合物、ヒドラジド系化合物等の無灰摩擦調整剤等が挙げられる。 As the ashless friction modifier, a compound usually used as a friction modifier for lubricating oils can be used without particular limitation. As an ashless friction modifier, for example, a compound having 6 to 50 carbon atoms containing one or more hetero elements selected from an oxygen atom, a nitrogen atom and a sulfur atom in the molecule can be mentioned. More specifically, at least one alkyl group or alkenyl group having 6 to 30 carbon atoms, particularly a straight chain alkyl group, straight chain alkenyl group, branched alkyl group, or branched alkenyl group having 6 to 30 carbon atoms in the molecule. Examples thereof include ashless friction modifiers such as amine compounds, fatty acid esters, fatty acid amides, fatty acids, aliphatic alcohols, aliphatic ethers, urea compounds, hydrazide compounds, and the like.
 潤滑油組成物に無灰摩擦調整剤を含有させる場合、その含有量は、潤滑油組成物全量を基準として、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、更に好ましくは0.3質量%以上であり、また、好ましくは2質量%以下、より好ましくは1質量%以下、特に好ましくは0.8質量%以下である。無灰摩擦調整剤の含有量が0.01質量%未満であると、その添加による摩擦低減効果が不十分となる傾向にあり、また2質量%を超えると、耐摩耗性添加剤などの効果が阻害されやすく、あるいは添加剤の溶解性が悪化する傾向にある。 When the lubricating oil composition contains an ashless friction modifier, the content is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and still more preferably, based on the total amount of the lubricating oil composition. Is 0.3% by mass or more, preferably 2% by mass or less, more preferably 1% by mass or less, and particularly preferably 0.8% by mass or less. If the content of the ashless friction modifier is less than 0.01% by mass, the effect of reducing friction due to the addition tends to be insufficient, and if it exceeds 2% by mass, the effect of an anti-wear additive or the like. Tends to be inhibited, or the solubility of the additive tends to deteriorate.
 摩耗防止剤(または極圧剤)としては、潤滑油に用いられる摩耗防止剤・極圧剤を特に制限なく使用できる。例えば、硫黄系、リン系、硫黄-リン系の極圧剤等が使用でき、具体的には、亜リン酸エステル類、チオ亜リン酸エステル類、ジチオ亜リン酸エステル類、トリチオ亜リン酸エステル類、リン酸エステル類、チオリン酸エステル類、ジチオリン酸エステル類、トリチオリン酸エステル類、これらのアミン塩、これらの金属塩、これらの誘導体、ジチオカーバメート、亜鉛ジチオカーバメート、ジサルファイド類、ポリサルファイド類、硫化オレフィン類、硫化油脂類等が挙げられる。これらの中では硫黄系極圧剤の添加が好ましく、特に硫化油脂が好ましい。潤滑油組成物に摩耗防止剤(または極圧剤)を含有させる場合、その含有量は、潤滑油組成物全量基準で、0.01~10質量%であることが好ましい。 As the antiwear agent (or extreme pressure agent), the antiwear agent / extreme pressure agent used in the lubricating oil can be used without particular limitation. For example, sulfur-based, phosphorus-based, sulfur-phosphorus extreme pressure agents and the like can be used. Specifically, phosphites, thiophosphites, dithiophosphites, trithiophosphites Esters, phosphate esters, thiophosphate esters, dithiophosphate esters, trithiophosphate esters, amine salts thereof, metal salts thereof, derivatives thereof, dithiocarbamates, zinc dithiocarbamates, disulfides, polysulfides , Sulfurized olefins, sulfurized fats and oils, and the like. Among these, addition of a sulfur-based extreme pressure agent is preferable, and sulfurized fats and oils are particularly preferable. When the lubricant composition contains an antiwear agent (or extreme pressure agent), the content is preferably 0.01 to 10% by mass based on the total amount of the lubricant composition.
 防錆剤としては、例えば、石油スルホネート、アルキルベンゼンスルホネート、ジノニルナフタレンスルホネート、アルケニルコハク酸エステル、および多価アルコールエステル等が挙げられる。潤滑油組成物に防錆剤を含有させる場合、その含有量は、潤滑油組成物全量基準で、0.01~10質量%であることが好ましい。 Examples of the rust preventive include petroleum sulfonate, alkylbenzene sulfonate, dinonylnaphthalene sulfonate, alkenyl succinate, and polyhydric alcohol ester. When the lubricating oil composition contains a rust inhibitor, the content thereof is preferably 0.01 to 10% by mass based on the total amount of the lubricating oil composition.
 抗乳化剤としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、およびポリオキシエチレンアルキルナフチルエーテル等のポリアルキレングリコール系非イオン系界面活性剤等が挙げられる。潤滑油組成物に抗乳化剤を含有させる場合、その含有量は、潤滑油組成物全量基準で、0.01~10質量%であることが好ましい。 Examples of the demulsifier include polyalkylene glycol nonionic surfactants such as polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, and polyoxyethylene alkyl naphthyl ether. When the anti-emulsifier is included in the lubricating oil composition, the content is preferably 0.01 to 10% by mass based on the total amount of the lubricating oil composition.
 消泡剤としては、例えば、25℃における動粘度が1000~100,000mm/sのシリコーンオイル、アルケニルコハク酸誘導体、ポリヒドロキシ脂肪族アルコールと長鎖脂肪酸とのエステル、メチルサリチレート、および、o-ヒドロキシベンジルアルコール等が挙げられる。潤滑油組成物に消泡剤を含有させる場合、その含有量は、潤滑油組成物全量基準で、0.01~10質量%であることが好ましい。 Examples of antifoaming agents include silicone oils having a kinematic viscosity at 25 ° C. of 1000 to 100,000 mm 2 / s, alkenyl succinic acid derivatives, esters of polyhydroxy aliphatic alcohols and long chain fatty acids, methyl salicylates, and , O-hydroxybenzyl alcohol and the like. When the antifoaming agent is included in the lubricating oil composition, the content is preferably 0.01 to 10% by mass based on the total amount of the lubricating oil composition.
 <潤滑油組成物>
 本発明の潤滑油組成物の100℃における動粘度は、4.0~12mm/sであることが好ましく、より好ましくは9.3mm/s以下、さらに好ましくは8.2mm/s以下、特に好ましくは7.1mm/s以下、最も好ましくは6.8mm/s以下である。また、より好ましくは5.0mm/s以上、さらに好ましくは5.5mm/s以上、特に好ましくは6.1mm/s以上、最も好ましくは6.3mm/s以上である。潤滑油組成物の100℃における動粘度が4.0mm/s未満の場合には、潤滑性不足を来たすおそれがあり、12mm/sを超える場合には必要な低温粘度および十分な省燃費性能が得られないおそれがある。
<Lubricating oil composition>
The kinematic viscosity at 100 ° C. of the lubricating oil composition of the present invention is preferably 4.0 to 12 mm 2 / s, more preferably 9.3 mm 2 / s or less, and still more preferably 8.2 mm 2 / s or less. Particularly preferably, it is 7.1 mm 2 / s or less, and most preferably 6.8 mm 2 / s or less. Further, it is more preferably 5.0 mm 2 / s or more, further preferably 5.5 mm 2 / s or more, particularly preferably 6.1 mm 2 / s or more, and most preferably 6.3 mm 2 / s or more. If the kinematic viscosity at 100 ° C. of the lubricating oil composition is less than 4.0 mm 2 / s, there is a risk of insufficient lubricity. If it exceeds 12 mm 2 / s, the necessary low temperature viscosity and sufficient fuel saving Performance may not be obtained.
 本発明の潤滑油組成物の40℃における動粘度は、4.0~50mm/sであることが好ましく、より好ましくは40mm/s以下、さらに好ましくは35mm/s以下、さらに好ましくは32mm/s以下、特に好ましくは30mm/s以下、最も好ましくは28mm/s以下である。また、より好ましくは15mm/s以上、さらに好ましくは18mm/s以上、さらにより好ましくは20mm/s以上、特に好ましくは22mm/s以上、最も好ましくは25mm/s以上である。潤滑油組成物の40℃における動粘度が4mm/s未満の場合には、潤滑性不足を来たすおそれがあり、50mm/sを超える場合には必要な低温粘度および十分な省燃費性能が得られないおそれがある。 The kinematic viscosity at 40 ° C. of the lubricating oil composition of the present invention is preferably 4.0 to 50 mm 2 / s, more preferably 40 mm 2 / s or less, still more preferably 35 mm 2 / s or less, further preferably It is 32 mm 2 / s or less, particularly preferably 30 mm 2 / s or less, and most preferably 28 mm 2 / s or less. Further, it is more preferably 15 mm 2 / s or more, further preferably 18 mm 2 / s or more, still more preferably 20 mm 2 / s or more, particularly preferably 22 mm 2 / s or more, and most preferably 25 mm 2 / s or more. When the kinematic viscosity at 40 ° C. of the lubricating oil composition is less than 4 mm 2 / s, there is a risk of insufficient lubricity, and when it exceeds 50 mm 2 / s, the necessary low temperature viscosity and sufficient fuel saving performance are obtained. May not be obtained.
 本発明の潤滑油組成物の粘度指数は、140~400であることが好ましく、より好ましくは160以上、さらに好ましくは180以上、特に好ましくは200以上、最も好ましくは210以上である。潤滑油組成物の粘度指数が140未満の場合には、150℃におけるHTHS粘度を維持しながら省燃費性を向上させることが困難となるおそれがあり、さらには低温(例えば省燃費油の粘度グレードとして知られるSAE粘度グレード0W-Xに規定されるCCS粘度の測定温度である-35℃。)における粘度を低減させることが困難となるおそれがある。また、潤滑油組成物の粘度指数が400を超える場合には、蒸発性が悪化するおそれがあり、更に添加剤の溶解性やシール材料との適合性が不足することによる不具合が発生するおそれがある。 The viscosity index of the lubricating oil composition of the present invention is preferably 140 to 400, more preferably 160 or more, still more preferably 180 or more, particularly preferably 200 or more, and most preferably 210 or more. When the viscosity index of the lubricating oil composition is less than 140, it may be difficult to improve fuel economy while maintaining the HTHS viscosity at 150 ° C., and further, low temperature (for example, the viscosity grade of fuel economy oil) It may be difficult to reduce the viscosity at -35 ° C., which is the CCS viscosity measurement temperature defined in SAE viscosity grade 0W-X, which is known as Further, when the viscosity index of the lubricating oil composition exceeds 400, the evaporability may be deteriorated, and further, there may be a problem due to insufficient solubility of the additive and compatibility with the sealing material. is there.
 本発明の潤滑油組成物の100℃におけるHTHS粘度は、5.5mPa・s以下であることが好ましく、より好ましくは5.0mPa・s以下、さらに好ましくは4.9mPa・s以下、特に好ましくは4.8mPa・s以下、最も好ましくは4.6mPa・s以下である。また、好ましくは3.5mPa・s以上、より好ましくは4.0mPa・s以上、さらに好ましくは4.4mPa・s以上、特に好ましくは4.5mPa・s以上である。本明細書において、100℃におけるHTHS粘度とは、ASTM D4683に規定される100℃での高温高せん断粘度を意味する。100℃におけるHTHS粘度が3.5mPa・s未満の場合には、潤滑性不足を来たすおそれがあり、5.5mPa・sを超える場合には必要な低温粘度および十分な省燃費性能が得られないおそれがある。 The HTHS viscosity at 100 ° C. of the lubricating oil composition of the present invention is preferably 5.5 mPa · s or less, more preferably 5.0 mPa · s or less, still more preferably 4.9 mPa · s or less, particularly preferably. 4.8 mPa · s or less, most preferably 4.6 mPa · s or less. Further, it is preferably 3.5 mPa · s or more, more preferably 4.0 mPa · s or more, further preferably 4.4 mPa · s or more, and particularly preferably 4.5 mPa · s or more. In the present specification, the HTHS viscosity at 100 ° C. means a high temperature high shear viscosity at 100 ° C. as defined in ASTM D4683. When the HTHS viscosity at 100 ° C. is less than 3.5 mPa · s, there is a risk of insufficient lubricity, and when it exceeds 5.5 mPa · s, the necessary low temperature viscosity and sufficient fuel saving performance cannot be obtained. There is a fear.
 本発明の潤滑油組成物の150℃におけるHTHS粘度は、2.7mPa・s以下であり、好ましくは2.65mPa・s以下であり、特に好ましくは2.35mPa・s以下である。また、好ましくは1.95mPa・s以上、より好ましくは2.1mPa・s以上、さらに好ましくは2.2mPa・s以上、特に好ましくは2.25mPa・s以上である。本明細書において、150℃におけるHTHS粘度とは、ASTM D4683に規定される150℃での高温高せん断粘度を意味する。150℃におけるHTHS粘度が1.95mPa・s未満の場合には、潤滑性不足を来たすおそれがあり、2.7mPa・sを超える場合には十分な省燃費性能が得られないおそれがある。 The HTHS viscosity at 150 ° C. of the lubricating oil composition of the present invention is 2.7 mPa · s or less, preferably 2.65 mPa · s or less, particularly preferably 2.35 mPa · s or less. Further, it is preferably 1.95 mPa · s or more, more preferably 2.1 mPa · s or more, further preferably 2.2 mPa · s or more, and particularly preferably 2.25 mPa · s or more. In the present specification, the HTHS viscosity at 150 ° C. means a high temperature and high shear viscosity at 150 ° C. as defined in ASTM D4683. If the HTHS viscosity at 150 ° C. is less than 1.95 mPa · s, there is a risk of insufficient lubricity, and if it exceeds 2.7 mPa · s, sufficient fuel saving performance may not be obtained.
 本発明の潤滑油組成物の、100℃におけるHTHS粘度(X100)の、150℃におけるHTHS粘度(X150)に対する比(X100/X150)は、好ましくは2.0以下である。HTHS粘度の比X100/X150が2.0以下であることにより、耐摩耗性を支持しつつ高い省燃費性を実現することができる。またHTHS粘度の比X100/X150の下限は特に制限されるものではないが、好ましくは1.8以上である。HTHS粘度の比X100/X150が1.8以上であることにより、基油粘度を高く保つことが可能となるので、蒸発性や耐摩耗性の点で有利である。 The ratio (X 100 / X 150 ) of the HTHS viscosity (X 100 ) at 100 ° C. to the HTHS viscosity (X 150 ) at 150 ° C. of the lubricating oil composition of the present invention is preferably 2.0 or less. When the HTHS viscosity ratio X 100 / X 150 is 2.0 or less, high fuel efficiency can be realized while supporting the wear resistance. The lower limit of the ratio HTHS viscosity X 100 / X 150 is not particularly limited, but is preferably 1.8 or more. Since the ratio of the HTHS viscosity X 100 / X 150 is 1.8 or more, the base oil viscosity can be kept high, which is advantageous in terms of evaporability and wear resistance.
 本発明に係る潤滑油組成物の蒸発損失量は、250℃におけるNOACK蒸発量として、20質量%以下であることが好ましく、15質量%以下であることがさらに好ましく、14質量%以下であることが特に好ましい。潤滑油基油成分のNOACK蒸発量が20質量%を超える場合、潤滑油の蒸発損失が大きく、粘度増加等の原因となるため好ましくない。なお本明細書においてNOACK蒸発量とは、ASTM D 5800に準拠して測定される潤滑油の蒸発量を測定したものである。潤滑油組成物の250℃におけるNOACK蒸発量の下限は特に制限されるものではないが、通常5質量%以上である。 The evaporation loss amount of the lubricating oil composition according to the present invention is preferably 20% by mass or less, more preferably 15% by mass or less, and more preferably 14% by mass or less as the NOACK evaporation amount at 250 ° C. Is particularly preferred. When the NOACK evaporation amount of the lubricating base oil component exceeds 20% by mass, the evaporation loss of the lubricating oil is large, which causes an increase in viscosity and the like, which is not preferable. In this specification, the NOACK evaporation amount is a value obtained by measuring the evaporation amount of the lubricating oil measured according to ASTM D 5800. The lower limit of the NOACK evaporation amount at 250 ° C. of the lubricating oil composition is not particularly limited, but is usually 5% by mass or more.
 本発明者らは、過給機付き試験用エンジンをLSPIの発生しやすい運転条件で運転して検討したところ、LSPIの発生頻度が、圧力10atmの空気または酸素雰囲気下での示差走査熱量測定(DSC)における自己着火点に対して負の相関を有することを見出した。 The inventors of the present invention have examined a supercharger-equipped test engine under operating conditions where LSPI is likely to occur. As a result, differential scanning calorimetry (LSPI generation frequency in air or oxygen atmosphere at a pressure of 10 atm) DSC) was found to have a negative correlation with the self-ignition point.
 当該エンジン試験においては、燃焼室内で発生したデポジットの影響を排除するため、回転数4000rpmで30分間、部分負荷の前条件運転を行った後、スロットル開度、回転数、噴射タイミング、空燃比等をLSPIの発生しやすい運転条件(スロットル全開、回転数1800rpm)に変更した。その後、1時間に発生するLSPIの回数を、エンジンの各気筒に装着された燃焼圧センサーを用いて測定した。 In this engine test, in order to eliminate the influence of deposits generated in the combustion chamber, after performing precondition operation of partial load for 30 minutes at a rotational speed of 4000 rpm, throttle opening, rotational speed, injection timing, air-fuel ratio, etc. Were changed to operating conditions where LSPI is likely to occur (throttle fully open, rotation speed 1800 rpm). Thereafter, the number of LSPI generated in one hour was measured using a combustion pressure sensor mounted on each cylinder of the engine.
 DSC測定においては、5mgのエンジン油試料を、10atmの空気または酸素雰囲気下で、10K/minの昇温速度で基準物質とともに加熱し、得られた入力エネルギーの差と温度の関数において、発熱ピークが立ち上がる最低温度を自己着火点として測定した。 In DSC measurement, a 5 mg engine oil sample is heated with a reference material at a heating rate of 10 K / min in a 10 atm air or oxygen atmosphere, and the exothermic peak is a function of the difference in input energy and temperature obtained. Was measured as the auto-ignition point.
 図1に、エンジン試験におけるLSPIの発生頻度を、該エンジン試験において用いられたエンジン油試料の、圧力10atmの空気雰囲気下でのDSC測定における自己着火点(以下において「DSC(10atm空気雰囲気)自己着火点」ということがある。)に対してプロットした散布図である。DSC(10atm空気雰囲気)自己着火点が例えば260℃から270℃まで上昇すると、LSPIの発生頻度は約1/7に低減されることが読み取れる。図1のグラフには、DSC(10atm空気雰囲気)自己着火点とLSPI発生頻度との相関性が示されているが、圧力10atmの酸素雰囲気下でのDSC測定における自己着火点(以下において「DSC(10atm酸素雰囲気)自己着火点」ということがある。)とLSPI発生頻度との相関性はさらに高いと考えられる。 FIG. 1 shows the occurrence frequency of LSPI in an engine test as a self-ignition point (hereinafter referred to as “DSC (10 atm air atmosphere) self-ignition point) in DSC measurement of an engine oil sample used in the engine test under an air atmosphere at a pressure of 10 atm. Is a scatter plot plotted against. It can be seen that when the DSC (10 atm air atmosphere) self-ignition point rises from 260 ° C. to 270 ° C., for example, the frequency of occurrence of LSPI is reduced to about 1/7. The graph of FIG. 1 shows the correlation between the DSC (10 atm air atmosphere) self-ignition point and the frequency of LSPI generation. The auto-ignition point (hereinafter referred to as “DSC (10 atm) in DSC measurement under an oxygen atmosphere at a pressure of 10 atm is shown. It is considered that the correlation between the oxygen atmosphere) self-ignition point ") and the LSPI occurrence frequency is even higher.
 本発明の潤滑油組成物の、DSC(10atm酸素雰囲気)自己着火点は、好ましくは213℃以上、より好ましくは215℃以上、さらに好ましくは217℃以上、特に好ましくは220℃以上である。上限は特に制限されるものではないが、通常300℃以下であり、典型的には280℃以下である。DSC(10atm酸素雰囲気)自己着火点が上記下限値以上であることにより、LSPIの発生頻度を効果的に抑制することが可能である。 The DSC (10 atm oxygen atmosphere) self-ignition point of the lubricating oil composition of the present invention is preferably 213 ° C. or higher, more preferably 215 ° C. or higher, further preferably 217 ° C. or higher, particularly preferably 220 ° C. or higher. The upper limit is not particularly limited, but is usually 300 ° C. or lower, and typically 280 ° C. or lower. When the DSC (10 atm oxygen atmosphere) self-ignition point is equal to or higher than the lower limit, the occurrence frequency of LSPI can be effectively suppressed.
 本発明の潤滑油組成物において、次の数式(1)で表されるパラメタrの値が、1.08以上であることが好ましく、1.10以上であることがより好ましく、1.15以上であることがさらに好ましく、1.20以上であることが特に好ましい。パラメタrは、好ましくは3.00以下であり、より好ましくは2.00以下、特に好ましくは1.50以下である。
=([S]+[Mo]+[Zn])/([Mg]+2×[Ca])   …(1)
(数式(1)中、[S]は添加剤由来の硫黄分(単位:質量ppm)を表し、[Mo]は潤滑油組成物中のモリブデン含有量(単位:質量ppm)を表し、[Zn]は潤滑油組成物中の亜鉛含有量(単位:質量ppm)を表し、[Mg]は潤滑油組成物中のマグネシウム含有量(単位:質量ppm)を表し、[Ca]は潤滑油組成物中のカルシウム含有量(単位:質量ppm)を表す。)
パラメタrの値が上記範囲内であることにより、省燃費性、エンジン清浄性、LSPI抑制性の全ての性能をバランス良く満たすことが可能となる。
In the lubricating oil composition of the present invention, the value of the parameter r S represented by the following mathematical formula (1) is preferably 1.08 or more, more preferably 1.10 or more, and 1.15. More preferably, it is more preferably 1.20 or more. The parameter r S is preferably 3.00 or less, more preferably 2.00 or less, and particularly preferably 1.50 or less.
r S = ([S] + [Mo] + [Zn]) / ([Mg] + 2 × [Ca]) (1)
(In Formula (1), [S] represents the sulfur content derived from the additive (unit: mass ppm), [Mo] represents the molybdenum content (unit: mass ppm) in the lubricating oil composition, and [Zn]. ] Represents the zinc content (unit: mass ppm) in the lubricating oil composition, [Mg] represents the magnesium content (unit: mass ppm) in the lubricating oil composition, and [Ca] represents the lubricating oil composition. Represents the calcium content in the unit (unit: mass ppm).)
When the value of the parameter r S is within the above range, it is possible to satisfy all the performances of fuel saving, engine cleanliness, and LSPI suppression with a good balance.
 また、本発明の潤滑油組成物において、次の数式(2)で表されるパラメタr’の値が、1.00以上であることが好ましく、1.02以上であることがより好ましく、1.05以上であることがさらに好ましく、1.10以上であることが特に好ましく、1.15以上であることが最も好ましい。パラメタr’は、好ましくは2.50以下であり、より好ましくは2.00以下、特に好ましくは1.50以下である。
’=([S]’+[Mo]+[Zn])/([Mg]+2×[Ca])   …(2)
(数式(2)中、[S]’はスルホネート系清浄剤以外の添加剤に由来する硫黄分(単位:質量ppm)を表し、[Mo]は潤滑油組成物中のモリブデン含有量(単位:質量ppm)を表し、[Zn]は潤滑油組成物中の亜鉛含有量(単位:質量ppm)を表し、[Mg]は潤滑油組成物中のマグネシウム含有量(単位:質量ppm)を表し、[Ca]は潤滑油組成物中のカルシウム含有量(単位:質量ppm)を表す。)
パラメタr’の値が上記範囲内であることにより、省燃費性、エンジン清浄性、LSPI抑制性の全ての性能をバランス良く満たすことが可能となる。
In the lubricating oil composition of the present invention, the value of the parameter r S ′ represented by the following mathematical formula (2) is preferably 1.00 or more, more preferably 1.02 or more, It is more preferably 1.05 or more, particularly preferably 1.10 or more, and most preferably 1.15 or more. The parameter r S ′ is preferably 2.50 or less, more preferably 2.00 or less, and particularly preferably 1.50 or less.
r S ′ = ([S] ′ + [Mo] + [Zn]) / ([Mg] + 2 × [Ca]) (2)
(In Formula (2), [S] ′ represents a sulfur content (unit: mass ppm) derived from additives other than the sulfonate detergent, and [Mo] represents the molybdenum content (unit: in the lubricating oil composition). [Zn] represents the zinc content (unit: mass ppm) in the lubricating oil composition, [Mg] represents the magnesium content (unit: mass ppm) in the lubricating oil composition, [Ca] represents the calcium content (unit: mass ppm) in the lubricating oil composition.)
When the value of the parameter r S ′ is within the above range, it is possible to satisfy all the performances of fuel saving, engine cleanliness, and LSPI suppression with a good balance.
 <内燃機関のLSPI抑制方法>
 本発明の第2の態様に係る内燃機関のLSPI抑制方法は、上記説明した本発明の第1の態様に係る潤滑油組成物を用いて内燃機関のシリンダを潤滑しながら、該内燃機関を運転する工程を有する。本発明のLSPI抑制方法においては、本発明の潤滑油組成物が少なくともシリンダの潤滑に用いられ、内燃機関のシリンダ以外の部位がシリンダとともに本発明の潤滑油組成物によって潤滑されてもよい。上記説明した潤滑油組成物を用いて内燃機関のシリンダを潤滑するにあたっては、公知の潤滑油供給機構を特に制限なく採用することができる。内燃機関のシリンダが本発明の潤滑油組成物で潤滑されることにより、該内燃機関におけるLSPIが効果的に抑制される。
<LSPI suppression method for internal combustion engine>
The LSPI suppression method for an internal combustion engine according to the second aspect of the present invention operates the internal combustion engine while lubricating the cylinder of the internal combustion engine using the lubricating oil composition according to the first aspect of the present invention described above. The process of carrying out. In the LSPI suppressing method of the present invention, the lubricating oil composition of the present invention may be used at least for lubricating a cylinder, and portions other than the cylinder of the internal combustion engine may be lubricated with the lubricating oil composition of the present invention together with the cylinder. In lubricating the cylinder of the internal combustion engine using the lubricating oil composition described above, a known lubricating oil supply mechanism can be employed without any particular limitation. By lubricating the cylinder of the internal combustion engine with the lubricating oil composition of the present invention, LSPI in the internal combustion engine is effectively suppressed.
 以下、実施例及び比較例に基づき、本発明についてさらに具体的に説明する。ただし、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples and comparative examples. However, the present invention is not limited to these examples.
 <実施例1~8、比較例1~5>
 以下に示す基油および添加剤を用いて、本発明の潤滑油組成物(実施例1~8)及び比較用の潤滑油組成物(比較例1~5)をそれぞれ調製した。表中、「inmass%」は基油全量を基準とする質量%を表し、「mass%」は組成物全量を基準とする質量%を表し、「mass ppm」は組成物全量を基準とする質量ppmを表す。
<Examples 1 to 8, Comparative Examples 1 to 5>
Lubricating oil compositions of the present invention (Examples 1 to 8) and comparative lubricating oil compositions (Comparative Examples 1 to 5) were prepared using the following base oils and additives, respectively. In the table, “inmass%” represents mass% based on the total amount of the base oil, “mass%” represents mass% based on the total amount of the composition, and “mass ppm” represents mass based on the total amount of the composition. Represents ppm.
(基油)
 O-1:Group III 基油、動粘度(100℃)4.15mm/s、芳香族含有量0.2質量%
(Base oil)
O-1: Group III base oil, kinematic viscosity (100 ° C.) 4.15 mm 2 / s, aromatic content 0.2% by mass
(金属系清浄剤)
 B1-1:CaCO過塩基化Caサリシレート、Ca含有量8.0質量%、金属比3.0、塩基価(過塩素酸法)225mgKOH/g、硫黄含有量0.0質量%
 B1-2:CaCO過塩基化Caスルホネート、Ca含有量12.75質量%、塩基価(過塩素酸法)325mgKOH/g、硫黄含有量2.0質量%
 B2-1:MgCO過塩基化Mgスルホネート、Mg含有量9.3質量%、塩基価(過塩素酸法)400mgKOH/g、硫黄含有量2.0質量%
(Metal-based detergent)
B1-1: CaCO 3 overbased Ca salicylate, Ca content 8.0 mass%, metal ratio 3.0, base number (perchloric acid method) 225 mg KOH / g, sulfur content 0.0 mass%
B1-2: CaCO 3 overbased Ca sulfonate, Ca content 12.75% by mass, base number (perchloric acid method) 325 mg KOH / g, sulfur content 2.0% by mass
B2-1: MgCO 3 overbased Mg sulfonate, Mg content 9.3 mass%, base number (perchloric acid method) 400 mg KOH / g, sulfur content 2.0 mass%
(モリブデン系摩擦調整剤)
 C-1:硫化(オキシ)モリブデンジチオカーバメート、アルキル基:炭素数8と13の組み合わせ、Mo含有量10.0質量%、硫黄含有量10.8質量%
(Molybdenum friction modifier)
C-1: sulfurized (oxy) molybdenum dithiocarbamate, alkyl group: combination of 8 and 13 carbon atoms, Mo content 10.0% by mass, sulfur content 10.8% by mass
(酸化防止剤)
 D-1:アミン系酸化防止剤、窒素含有量3.6質量%
 D-2:フェノール系酸化防止剤
(Antioxidant)
D-1: Amine-based antioxidant, nitrogen content 3.6% by mass
D-2: Phenolic antioxidant
(ジチオリン酸亜鉛)
 E-1:ジアルキルジチオリン酸亜鉛(アルキル基:第2級C6、Zn含有量9.25質量%、リン含有量8.5質量%、硫黄含有量17.6質量%)
(Zinc dithiophosphate)
E-1: Zinc dialkyldithiophosphate (alkyl group: secondary C6, Zn content 9.25% by mass, phosphorus content 8.5% by mass, sulfur content 17.6% by mass)
(無灰分散剤)
 G-1:ポリブテニルコハク酸イミド、ビスタイプ、ポリブテニル基の数平均分子量:1300、窒素含有量1.75質量%
 G-2:ホウ酸変性ポリブテニルコハク酸イミド、ビスタイプ、ポリブテニル基の数平均分子量:1300、窒素含有量1.5質量%、ホウ素含有量0.78質量%
(Ashless dispersant)
G-1: polybutenyl succinimide, bistype, polybutenyl group number average molecular weight: 1300, nitrogen content: 1.75% by mass
G-2: Number average molecular weight of boric acid-modified polybutenyl succinimide, bistype, polybutenyl group: 1300, nitrogen content 1.5% by mass, boron content 0.78% by mass
(粘度指数向上剤)
 H-1:ポリメタクリレート系粘度指数向上剤、重量平均分子量500,000、PSSI:5
(Viscosity index improver)
H-1: Polymethacrylate viscosity index improver, weight average molecular weight 500,000, PSSI: 5
(その他の硫黄含有添加剤)
 I-1:アルキルジチオチアジアゾール、硫黄含有量36.0質量%
 I-2:硫化オレフィン、硫黄含有量46.0質量%
(Other sulfur-containing additives)
I-1: alkyldithiothiadiazole, sulfur content 36.0% by mass
I-2: Sulfurized olefin, sulfur content 46.0% by mass
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
(潤滑油組成物の評価)
 実施例1~6および比較例1~4の各潤滑油組成物について、ホットチューブ試験におけるデポジット量(HTT290デポジット)の測定、及びSRV摩擦試験機を用いた摩擦係数(SRV摩擦係数)の測定を行った。実施例3~6の潤滑油組成物についてはさらに、100℃及び150℃におけるHTHS粘度、100℃及び40℃における動粘度、および粘度指数の測定を行った。結果を表1~2に示している。また実施例1、7~8、及び比較例4~5の潤滑油組成物については、DSC(10atm酸素雰囲気)自己着火点の測定を行った。結果を表3に示している。測定方法は次の通りである。
(1)HTT290デポジット:JPI-5S-55-99に準拠して290℃においてホットチューブ試験を行い、所定の内径および長さを有するチューブ内壁面に付着した堆積物の重量(単位:mg)を測定した。堆積物が少ないほど、エンジン清浄性が高いことを意味する。
(2)SRV摩擦係数:SRV往復動摩擦摩耗試験機(Optimol Instruments社製)を用いて、温度100℃、荷重400N、振幅1.5mm、振動数50Hzでシリンダーオンディスク試験を行い、摩擦係数を測定した。
(3)HTHS粘度:ASTM D-4683に準拠して測定した。
(4)動粘度:ASTM D-445に準拠して測定した。
(5)粘度指数:JIS K 2283-1993に準拠して測定した。
(6)DSC自己着火点:圧力示差走査熱量計(TA Instruments社製)を用いて、圧力10atm、酸素雰囲気下、昇温速度10℃/分にて示差走査熱量測定を行い、ピーク立ち上がり温度を自己着火点とした。自己着火点が高いほど、LSPI発生頻度が低いことを意味する。
(Evaluation of lubricating oil composition)
For each of the lubricating oil compositions of Examples 1 to 6 and Comparative Examples 1 to 4, measurement of the deposit amount (HTT290 deposit) in the hot tube test and measurement of the friction coefficient (SRV friction coefficient) using an SRV friction tester went. The lubricating oil compositions of Examples 3 to 6 were further measured for HTHS viscosity at 100 ° C. and 150 ° C., kinematic viscosity at 100 ° C. and 40 ° C., and viscosity index. The results are shown in Tables 1-2. For the lubricating oil compositions of Examples 1, 7 to 8 and Comparative Examples 4 to 5, the DSC (10 atm oxygen atmosphere) self-ignition point was measured. The results are shown in Table 3. The measuring method is as follows.
(1) HTT 290 deposit: A hot tube test was conducted at 290 ° C. according to JPI-5S-55-99, and the weight (unit: mg) of the deposit adhered to the inner wall surface of the tube having a predetermined inner diameter and length was determined. It was measured. The less deposits, the higher the engine cleanliness.
(2) SRV friction coefficient: Using a SRV reciprocating friction and wear tester (manufactured by Optimol Instruments), a cylinder-on-disk test is performed at a temperature of 100 ° C., a load of 400 N, an amplitude of 1.5 mm, and a vibration frequency of 50 Hz, and the friction coefficient is measured. did.
(3) HTHS viscosity: measured in accordance with ASTM D-4683.
(4) Kinematic viscosity: Measured according to ASTM D-445.
(5) Viscosity index: measured in accordance with JIS K 2283-1993.
(6) DSC auto-ignition point: Using a differential pressure scanning calorimeter (manufactured by TA Instruments), perform differential scanning calorimetry at a pressure of 10 atm, an oxygen atmosphere, and a heating rate of 10 ° C./min. The ignition point was used. The higher the self-ignition point, the lower the LSPI occurrence frequency.
 本発明の潤滑油組成物は、向上したLSPI抑制能を有すると同時に、エンジン清浄性および省燃費性にも優れている。したがって本発明の潤滑油組成物は、LSPIが問題になりやすい過給ガソリンエンジン、特に過給直噴エンジンの潤滑に好ましく用いることができる。 The lubricating oil composition of the present invention has an improved LSPI suppression capability, and at the same time, is excellent in engine cleanliness and fuel economy. Therefore, the lubricating oil composition of the present invention can be preferably used for lubrication of a supercharged gasoline engine, particularly a supercharged direct injection engine, in which LSPI tends to be a problem.

Claims (8)

  1.  (A)100℃の動粘度が2~8mm/sであり、かつ芳香族含有量が10質量%以下である基油と、
     (B)(B1)炭酸カルシウムで過塩基化された金属系清浄剤および(B2)炭酸マグネシウムで過塩基化された金属系清浄剤を含む、金属系清浄剤と、
     (C)硫化モリブデンジチオカーバメート又は硫化オキシモリブデンジチオカーバメートと
    を含有し、
     潤滑油組成物全量基準で、
      カルシウム含有量が1500質量ppm以下であり、
      マグネシウム含有量が300質量ppm以上であり、
      モリブデン含有量が600質量ppm以上であり、
     150℃におけるHTHS粘度が2.7mPa・s以下であることを特徴とする、内燃機関用潤滑油組成物。
    (A) a base oil having a kinematic viscosity at 100 ° C. of 2 to 8 mm 2 / s and an aromatic content of 10% by mass or less;
    A metal detergent comprising (B) (B1) a metal detergent overbased with calcium carbonate and (B2) a metal detergent overbased with magnesium carbonate;
    (C) containing sulfurized molybdenum dithiocarbamate or sulfurized oxymolybdenum dithiocarbamate,
    Based on the total amount of the lubricating oil composition,
    The calcium content is 1500 mass ppm or less,
    Magnesium content is 300 mass ppm or more,
    Molybdenum content is 600 mass ppm or more,
    A lubricating oil composition for an internal combustion engine, having an HTHS viscosity at 150 ° C. of 2.7 mPa · s or less.
  2.  (D)アミン系酸化防止剤および/またはフェノール系酸化防止剤を含有する、
    請求項1に記載の内燃機関用潤滑油組成物。
    (D) containing an amine-based antioxidant and / or a phenol-based antioxidant,
    The lubricating oil composition for an internal combustion engine according to claim 1.
  3.  (D)アミン系酸化防止剤を含有し、
     潤滑油組成物全量基準で、
      ホウ素含有量が0質量ppm以上400質量ppm未満であり、
     100℃におけるHTHS粘度(X100)の、150℃におけるHTHS粘度(X150)に対する比(X100/X150)が2.0以下である、
    請求項1又は2に記載の内燃機関用潤滑油組成物。
    (D) contains an amine antioxidant,
    Based on the total amount of the lubricating oil composition,
    The boron content is 0 mass ppm or more and less than 400 mass ppm,
    The ratio (X 100 / X 150 ) of the HTHS viscosity (X 100 ) at 100 ° C. to the HTHS viscosity (X 150 ) at 150 ° C. is 2.0 or less.
    The lubricating oil composition for an internal combustion engine according to claim 1 or 2.
  4.  潤滑油組成物全量基準で、
      ホウ素含有量が0~300質量ppmであり、
      カルシウム含有量が1400~1500質量ppmである、
    請求項3に記載の内燃機関用潤滑油組成物。
    Based on the total amount of the lubricating oil composition,
    The boron content is 0 to 300 ppm by mass,
    The calcium content is 1400-1500 ppm by mass,
    The lubricating oil composition for an internal combustion engine according to claim 3.
  5.  潤滑油組成物全量基準で、
      マグネシウム含有量が350~600質量ppmであり、
      モリブデン含有量が700~800質量ppmである、
    請求項3又は4に記載の内燃機関用潤滑油組成物。
    Based on the total amount of the lubricating oil composition,
    Magnesium content is 350-600 mass ppm,
    The molybdenum content is 700 to 800 ppm by mass;
    The lubricating oil composition for internal combustion engines according to claim 3 or 4.
  6.  (E)ジアルキルジチオリン酸亜鉛を含有し、
     硫黄含有量が、潤滑油組成物全量基準で0.20~0.30質量ppmである、
    請求項3~5のいずれかに記載の内燃機関用潤滑油組成物。
    (E) containing zinc dialkyldithiophosphate,
    The sulfur content is 0.20 to 0.30 mass ppm based on the total amount of the lubricating oil composition;
    The lubricating oil composition for an internal combustion engine according to any one of claims 3 to 5.
  7.  100℃におけるHTHS粘度(X100)の、150℃におけるHTHS粘度(X150)に対する比(X100/X150)が1.8~2.0である、
    請求項3~6のいずれかに記載の内燃機関用潤滑油組成物。
    Of HTHS viscosity at 100(X 100), the ratio of HTHS viscosity (X 0.99) at 150 ℃ (X 100 / X 150 ) is 1.8-2.0,
    The lubricating oil composition for an internal combustion engine according to any one of claims 3 to 6.
  8.  請求項1~7のいずれかに記載の潤滑油組成物を用いて内燃機関のシリンダを潤滑しながら該内燃機関を運転する工程
    を有することを特徴とする、内燃機関のLSPI抑制方法。
    An LSPI suppression method for an internal combustion engine, comprising a step of operating the internal combustion engine while lubricating a cylinder of the internal combustion engine using the lubricating oil composition according to any one of claims 1 to 7.
PCT/JP2016/086160 2015-12-07 2016-12-06 Lubricant oil composition for internal combustion engine WO2017099052A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/777,033 US20180334636A1 (en) 2015-12-07 2016-12-06 Lubricating oil composition for internal combustion engine
DE112016005592.7T DE112016005592B9 (en) 2015-12-07 2016-12-06 LUBRICATION OIL COMPOSITION FOR INTERNAL COMBUSTION ENGINE AND METHOD FOR SUPPRESSING LSPI OF AN INTERNAL COMBUSTION ENGINE
JP2017555065A JP6895387B2 (en) 2015-12-07 2016-12-06 Lubricating oil composition for internal combustion engine
CN201680069798.2A CN108473905B (en) 2015-12-07 2016-12-06 Lubricating oil composition for internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-238434 2015-12-07
JP2015238434 2015-12-07

Publications (1)

Publication Number Publication Date
WO2017099052A1 true WO2017099052A1 (en) 2017-06-15

Family

ID=59014155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/086160 WO2017099052A1 (en) 2015-12-07 2016-12-06 Lubricant oil composition for internal combustion engine

Country Status (5)

Country Link
US (1) US20180334636A1 (en)
JP (1) JP6895387B2 (en)
CN (1) CN108473905B (en)
DE (1) DE112016005592B9 (en)
WO (1) WO2017099052A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018003018A (en) * 2016-06-30 2018-01-11 インフィニューム インターナショナル リミテッド Lubricating oil compositions
JP2018021107A (en) * 2016-08-02 2018-02-08 東燃ゼネラル石油株式会社 Lubricating oil composition
EP3279294A4 (en) * 2015-03-31 2018-08-22 Idemitsu Kosan Co.,Ltd. Gasoline engine lubricant oil composition and manufacturing method therefor
EP3461877A1 (en) * 2017-09-27 2019-04-03 Infineum International Limited Improvements in and relating to lubricating compositions
JP2019085491A (en) * 2017-11-07 2019-06-06 Emgルブリカンツ合同会社 Lubricant composition
JP2020533455A (en) * 2017-09-13 2020-11-19 シェブロン ユー.エス.エー. インコーポレイテッド A method to prevent or reduce low-speed early ignition in a direct-injection spark-ignition engine using a cobalt-containing lubricant.
JPWO2019221296A1 (en) * 2018-05-18 2021-05-27 Eneos株式会社 Lubricating oil composition for internal combustion engine
WO2021132518A1 (en) * 2019-12-27 2021-07-01 出光興産株式会社 Lubricating oil composition
US11111453B2 (en) 2016-10-18 2021-09-07 Eneos Corporation Method for lubricating internal combustion engine
US11193080B2 (en) 2019-03-29 2021-12-07 Idemitsu Kosan Co., Ltd. Lubricating oil composition

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11202000337PA (en) * 2017-07-14 2020-02-27 Chevron Oronite Co Lubricating oil compositions containing non-sulfur-phosphorus containing zinc compounds and method for preventing or reducing low speed pre-ignition in direct injected spark-ignited engines
FR3092335B1 (en) * 2019-02-04 2021-04-30 Total Marketing Services Lubricating composition to prevent pre-ignition
FR3092337B1 (en) * 2019-02-04 2021-04-23 Total Marketing Services Lubricating composition to prevent pre-ignition
EP3950904A4 (en) * 2019-03-29 2022-12-07 Idemitsu Kosan Co., Ltd. Lubricating oil composition
CN113574146A (en) * 2019-03-29 2021-10-29 出光兴产株式会社 Lubricating oil composition
US20220064564A1 (en) * 2020-08-31 2022-03-03 Eneos Corporation Lubricating oil composition for internal combustion engine
JP2022090378A (en) 2020-12-07 2022-06-17 Eneos株式会社 Lubricating oil composition
CN113583740A (en) * 2021-07-13 2021-11-02 赵艳闯 Lubricating oil, lubricating oil preparation method and lubricating oil mixing device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013170217A (en) * 2012-02-21 2013-09-02 Jx Nippon Oil & Energy Corp Lubricating oil composition
JP2015163673A (en) * 2014-01-31 2015-09-10 東燃ゼネラル石油株式会社 lubricating oil composition
JP2016180070A (en) * 2015-03-24 2016-10-13 出光興産株式会社 Lubricating oil composition for spark ignition type internal combustion engine, method for producing the lubricating oil composition, spark ignition type internal combustion engine using the lubricating oil composition, and method for lubricating the internal combustion engine

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1337294C (en) * 1987-11-20 1995-10-10 Dale Robert Carroll Lubricant compositions for enhanced fuel economy
JPH07316577A (en) 1994-05-20 1995-12-05 Tonen Corp Lubricant oil composition
GB2423524A (en) * 2005-02-28 2006-08-30 Infineum Int Ltd Crankcase lubricating oil
US7981846B2 (en) * 2005-11-30 2011-07-19 Chevron Oronite Company Llc Lubricating oil composition with improved emission compatibility
JP5431947B2 (en) * 2007-10-16 2014-03-05 出光興産株式会社 Lubricating oil composition
US8703677B2 (en) * 2007-12-21 2014-04-22 Chevron Japan Ltd Lubricating oil compositions for internal combustion engines
WO2009104682A1 (en) * 2008-02-20 2009-08-27 出光興産株式会社 Lubricating oil composition for internal combustion engine
EP2457984B1 (en) * 2010-11-30 2017-03-08 Infineum International Limited A lubricating oil composition
CN102690711B (en) * 2011-03-24 2013-12-25 中国石油化工股份有限公司 Lubricant composition for gasoline engine
WO2013182581A1 (en) * 2012-06-06 2013-12-12 Evonik Oil Additives Gmbh Fuel efficient lubricating oils
JP2014152301A (en) 2013-02-13 2014-08-25 Idemitsu Kosan Co Ltd Lubricant composition for direct-injection turbo mechanism-loaded engine
JP6375117B2 (en) 2014-01-27 2018-08-15 出光興産株式会社 Lubricating oil composition for internal combustion engines
JP5952846B2 (en) 2014-01-31 2016-07-13 出光興産株式会社 Lubricating oil composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013170217A (en) * 2012-02-21 2013-09-02 Jx Nippon Oil & Energy Corp Lubricating oil composition
JP2015163673A (en) * 2014-01-31 2015-09-10 東燃ゼネラル石油株式会社 lubricating oil composition
JP2016180070A (en) * 2015-03-24 2016-10-13 出光興産株式会社 Lubricating oil composition for spark ignition type internal combustion engine, method for producing the lubricating oil composition, spark ignition type internal combustion engine using the lubricating oil composition, and method for lubricating the internal combustion engine

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10793803B2 (en) 2015-03-31 2020-10-06 Idemitsu Kosan Co., Ltd. Gasoline engine lubricant oil composition and manufacturing method therefor
EP3279294A4 (en) * 2015-03-31 2018-08-22 Idemitsu Kosan Co.,Ltd. Gasoline engine lubricant oil composition and manufacturing method therefor
EP3511398A1 (en) * 2015-03-31 2019-07-17 Idemitsu Kosan Co., Ltd. Gasoline engine lubricant oil composition and manufacturing method therefor
JP2018003018A (en) * 2016-06-30 2018-01-11 インフィニューム インターナショナル リミテッド Lubricating oil compositions
JP2018021107A (en) * 2016-08-02 2018-02-08 東燃ゼネラル石油株式会社 Lubricating oil composition
US11111453B2 (en) 2016-10-18 2021-09-07 Eneos Corporation Method for lubricating internal combustion engine
JP2020533455A (en) * 2017-09-13 2020-11-19 シェブロン ユー.エス.エー. インコーポレイテッド A method to prevent or reduce low-speed early ignition in a direct-injection spark-ignition engine using a cobalt-containing lubricant.
JP2019059935A (en) * 2017-09-27 2019-04-18 インフィニューム インターナショナル リミテッド Improvements in and related to lubricant compositions
EP3461877A1 (en) * 2017-09-27 2019-04-03 Infineum International Limited Improvements in and relating to lubricating compositions
JP7096121B2 (en) 2017-09-27 2022-07-05 インフィニューム インターナショナル リミテッド Improvements in and related to the lubricating composition
JP2019085491A (en) * 2017-11-07 2019-06-06 Emgルブリカンツ合同会社 Lubricant composition
JP7021908B2 (en) 2017-11-07 2022-02-17 Emgルブリカンツ合同会社 Lubricating oil composition
JPWO2019221296A1 (en) * 2018-05-18 2021-05-27 Eneos株式会社 Lubricating oil composition for internal combustion engine
JP7314125B2 (en) 2018-05-18 2023-07-25 Eneos株式会社 Lubricating oil composition for internal combustion engine
US11193080B2 (en) 2019-03-29 2021-12-07 Idemitsu Kosan Co., Ltd. Lubricating oil composition
WO2021132518A1 (en) * 2019-12-27 2021-07-01 出光興産株式会社 Lubricating oil composition

Also Published As

Publication number Publication date
CN108473905B (en) 2021-03-09
DE112016005592B4 (en) 2022-07-21
US20180334636A1 (en) 2018-11-22
JP6895387B2 (en) 2021-06-30
CN108473905A (en) 2018-08-31
DE112016005592T5 (en) 2018-09-13
DE112016005592B9 (en) 2022-09-15
JPWO2017099052A1 (en) 2018-09-27

Similar Documents

Publication Publication Date Title
WO2017099052A1 (en) Lubricant oil composition for internal combustion engine
JP6716360B2 (en) Lubricating oil composition for internal combustion engine
JP7198748B2 (en) Lubricating oil composition for internal combustion engine
JP5809582B2 (en) Lubricating oil composition
WO2011083601A1 (en) Lubricant composition
JP7320935B2 (en) lubricating oil composition
WO2016159006A1 (en) Lubricating oil composition
JP7314125B2 (en) Lubricating oil composition for internal combustion engine
WO2011083602A1 (en) Lubricant composition
WO2011027730A1 (en) Lubricant composition
EP3636730B1 (en) Internal combustion engine lubricating oil composition
JP5744771B2 (en) Lubricating oil composition
JP5815809B2 (en) Lubricating oil composition
JP7314124B2 (en) Lubricating oil composition for internal combustion engine
JP2014133902A (en) Lubricant composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16872950

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017555065

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15777033

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016005592

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16872950

Country of ref document: EP

Kind code of ref document: A1