WO2017098860A1 - Lubricating oil supplying unit and bearing device - Google Patents

Lubricating oil supplying unit and bearing device Download PDF

Info

Publication number
WO2017098860A1
WO2017098860A1 PCT/JP2016/083566 JP2016083566W WO2017098860A1 WO 2017098860 A1 WO2017098860 A1 WO 2017098860A1 JP 2016083566 W JP2016083566 W JP 2016083566W WO 2017098860 A1 WO2017098860 A1 WO 2017098860A1
Authority
WO
WIPO (PCT)
Prior art keywords
lubricating oil
pump
bearing
unit
time
Prior art date
Application number
PCT/JP2016/083566
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤 浩義
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to CN201680071801.4A priority Critical patent/CN108368966A/en
Priority to DE112016005666.4T priority patent/DE112016005666T5/en
Priority to KR1020187018823A priority patent/KR20180093006A/en
Publication of WO2017098860A1 publication Critical patent/WO2017098860A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N7/00Arrangements for supplying oil or unspecified lubricant from a stationary reservoir or the equivalent in or on the machine or member to be lubricated
    • F16N7/38Arrangements for supplying oil or unspecified lubricant from a stationary reservoir or the equivalent in or on the machine or member to be lubricated with a separate pump; Central lubrication systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/16Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
    • F16C19/163Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls with angular contact
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • F16C33/586Details of specific parts of races outside the space between the races, e.g. end faces or bore of inner ring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/6659Details of supply of the liquid to the bearing, e.g. passages or nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/6659Details of supply of the liquid to the bearing, e.g. passages or nozzles
    • F16C33/6666Details of supply of the liquid to the bearing, e.g. passages or nozzles from an oil bath in the bearing housing, e.g. by an oil ring or centrifugal disc
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/6659Details of supply of the liquid to the bearing, e.g. passages or nozzles
    • F16C33/6674Details of supply of the liquid to the bearing, e.g. passages or nozzles related to the amount supplied, e.g. gaps to restrict flow of the liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • F16C41/004Electro-dynamic machines, e.g. motors, generators, actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N13/00Lubricating-pumps
    • F16N13/20Rotary pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N9/00Arrangements for supplying oil or unspecified lubricant from a moving reservoir or the equivalent
    • F16N9/02Arrangements for supplying oil or unspecified lubricant from a moving reservoir or the equivalent with reservoir on or in a rotary member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N2210/00Applications
    • F16N2210/14Bearings

Definitions

  • the present invention relates to a lubricating oil supply unit and a bearing device, and more particularly to a lubricating oil supply unit and a bearing device that are arranged adjacent to a bearing and supply lubricating oil into the bearing.
  • Patent Document 1 Conventionally, a rolling bearing device in which an oil supply unit is incorporated in a rolling bearing has been known.
  • Patent Document 1 See JP-A-2005-180629 (Patent Document 1) and JP-A-2014-37879 (Patent Document 2)).
  • Patent Document 2 In the bearing device disclosed in Patent Document 1, grease is sealed inside the rolling bearing. Lubricating oil of the same type as the base oil of this grease is accommodated in a spacer adjacent to the rolling bearing. In the oil supply unit, the lubricating oil in the spacer is replenished and supplied to the inside of the rolling bearing by a capillary phenomenon.
  • the bearing device disclosed in Patent Document 2 includes a lubricating oil tank and a pump arranged in a spacer adjacent to the bearing.
  • the lubricating oil can be stably supplied to the bearing for a long period of time by intermittently operating the pump.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a lubricating oil supply unit and a bearing device that can be stably operated for a long period of time. .
  • the lubricating oil supply unit includes a holding unit that holds the lubricating oil supplied to the inside of the bearing, and a supply unit that supplies the lubricating oil from the holding unit to the inside of the bearing.
  • the supply unit sucks the lubricating oil from the holding unit, a pump provided so that a discharge pressure equal to or higher than a reference value can be applied to the lubricating oil, a supply line connected to the pump and extending inside the bearing,
  • An adjustment unit is provided that causes the lubricating oil to which the discharge pressure equal to or higher than the reference value is applied to flow in the supply pipe and prevents the lubricating oil to be supplied with the discharge pressure that is less than the reference value from flowing in the supply pipe.
  • FIG. 3 is a schematic cross-sectional view showing an example of a lubricating oil supply unit of the bearing device according to Embodiment 1.
  • FIG. FIG. 2 is a schematic cross-sectional view taken along line II-II in FIG.
  • FIG. 3 is a schematic cross-sectional view taken along line III-III in FIG. It is a cross-sectional schematic diagram which shows an example of the pump shown in FIG. It is a cross-sectional schematic diagram which shows an example of the lubricating oil supply unit of the bearing apparatus which concerns on a modification.
  • FIG. 6 is a schematic sectional view taken along line VI-VI in FIG.
  • FIG. 6 is a schematic sectional view taken along line VII-VII in FIG.
  • the bearing device 10 according to the present embodiment is a rolling bearing device and includes a bearing 11 (see FIG. 2) that is a rolling bearing and a lubricating oil supply unit 20 (see FIG. 2).
  • the lubricating oil supply unit 20 is incorporated between an outer ring spacer 33 and an inner ring spacer 34 that are abutted against one end of the bearing 11 in the axial direction.
  • the bearing 11 includes, for example, an inner ring 14 which is a rotating raceway ring, a fixed outer ring 13, a plurality of rolling elements 15 interposed between the inner ring 14 and the outer ring 13, and a plurality of rolling elements 15.
  • a retainer 16 that holds a fixed distance at a predetermined interval
  • a seal member that is disposed on the outer peripheral side of the retainer 16.
  • the bearing 11 for example, an angular ball bearing, a deep groove ball bearing, or a cylindrical roller bearing can be used.
  • the bearing 11 is filled with desired grease in advance.
  • the seal member is disposed at the end opposite to the side where the outer ring spacer 33 or the like is disposed.
  • the inner ring spacer 34 and the outer ring spacer 33 constitute a spacer, and the inner ring spacer 34 abuts against one end surface of the inner ring 14.
  • the outer ring spacer 33 is abutted against one end face of the outer ring 13.
  • the lubricating oil supply unit 20 is disposed in an annular housing (housing main body 21 and lid 22), and includes a power generation circuit including a power generation unit 25 and a charging unit in the circumferential direction. 26, a control circuit 27, a drive circuit 28, a pump 29, a lubricating oil tank 30, and a check valve (adjustment unit) 80.
  • the lubricating oil tank 30 stores the same type of lubricating oil as the base oil of the grease sealed in the bearing 11.
  • the power generation unit 25, the power supply circuit 26, the control circuit 27, the drive circuit 28, the pump 29, and the lubricating oil tank 30 are arranged in the circumferential direction in the housing body 21.
  • the power generation unit 25 is connected to the power supply circuit 26.
  • the power supply circuit 26 is connected to the control circuit 27.
  • the control circuit 27 is connected to the drive circuit 28.
  • the drive circuit 28 is a circuit for operating a pump 29 such as a micropump.
  • a suction tube 31 connected to the bag body of the lubricating oil tank 30 and a discharge tube 32 for supplying lubricating oil from the pump 29 to the inside of the bearing 11.
  • a nozzle 37 is connected to the distal end of the discharge tube 32 (the end opposite to the base connected to the pump 29) as shown in FIG.
  • the tip of the nozzle 37 extends to the inside of the bearing 11 (position adjacent to the rolling element 15, for example, between the bearing ring on the fixed side and the bearing ring on the rotating side of the bearing 11).
  • the inner diameter of the nozzle hole of the nozzle 37 is appropriately set according to the relationship between the surface tension resulting from the viscosity of the base oil and the discharge amount.
  • the drive circuit 28, the pump 29, the discharge tube 32, the nozzle 37, and the check valve 80 constitute a supply unit.
  • the discharge tube 32 and the nozzle 37 constitute a supply line.
  • the pump 29 may have any configuration as long as the check valve 80 can discharge the lubricating oil at a discharge pressure equal to or higher than a reference value (opening pressure) through which the lubricating oil flows.
  • the pump 29 is, for example, a rotary pump, for example, a trochoid pump.
  • FIG. 4 is a schematic cross-sectional view showing a pump 29 as a trochoid pump.
  • the pump 29 has an inner rotor 90 and an outer rotor 91 as rotating parts, and a case (not shown) as a fixed part.
  • a suction port 92 and a discharge port 93 are formed in the case.
  • the suction port 92 and the discharge port 93 of the pump 29 are connected to the suction tube 31 and the discharge tube 32, respectively.
  • the inner rotor 90 and the outer rotor 91 can rotate (forward rotation) in the first direction R1.
  • the inner rotor 90 and the outer rotor 91 are in contact with each other at a plurality of locations. Inside the pump 29, a plurality of spaces (for example, five spaces) divided by the contact portions between the inner rotor 90 and the outer rotor 91 are formed.
  • a plurality of spaces for example, five spaces
  • the inner rotor 90 rotates in the first direction R1
  • the outer rotor 91 rotates in the first direction R1 by meshing with the inner rotor 90.
  • the volumes of the plurality of spaces change.
  • interval of the inner rotor 90 and the outer rotor 91 in the said space is, for example, foreign matters (other than lubricating oil that can be mixed into lubricating oil) Or a lubricating oil having a viscosity equal to or higher than a predetermined value).
  • the pump 29 is controlled by the control circuit 27 via the drive circuit 28.
  • the pump 29 When the inner rotor 90 and the outer rotor 91 rotate (forward rotation) in the first direction R1, the pump 29 causes the lubricant sucked from the lubricating oil tank 30 to flow through the discharge tube 32, the check valve 80, and the nozzle 37. It is provided in the inside of the bearing 11 so that discharge is possible.
  • the pump 29 applies a discharge pressure equal to or higher than a reference value (valve opening pressure) of the check valve 80 to the lubricating oil. Can do.
  • the discharge pressure when the pump 29 is driven is, for example, 1 kPa or more and 2 kPa or less.
  • the check valve 80 is provided in the discharge tube 32.
  • the check valve 80 circulates lubricating oil to which a discharge pressure equal to or higher than a reference value (valve opening pressure) is applied toward the bearing 11 in the discharge tube 32.
  • a reference value valve opening pressure
  • the check valve 80 prevents the flow of the lubricating oil to which the discharge pressure less than the reference value is applied in the discharge tube 32.
  • the check valve 80 may have an arbitrary configuration.
  • the check valve 80 may be a duckbill type check valve (model name IMCB8057 or the like) or a diaphragm type check valve (model name IMCD116P or the like). Good.
  • the reference value of the check valve 80 is equal to or lower than the discharge pressure when the pump 29 is driven.
  • the reference value of the check valve 80 exceeds the discharge pressure (for example, less than 1 kPa) of the lubricating oil leaking from the plurality of spaces of the pump 29 when the pump 29 is stopped.
  • the reference value of the check valve 80 is, for example, 2 kPa or less, and preferably 1 kPa or more.
  • the control circuit 27 is capable of acquiring data relating to the lubricating oil supply status in the lubricating oil supply unit 20 and outputting the data to the outside of the control circuit 27 as will be described later.
  • the power generation unit 25 of the lubricating oil supply unit 20 for example, a unit that generates power by the Seebeck effect can be used.
  • the power generation unit 25 includes a heat conductor 23 a connected to the outer ring spacer 33, a heat conductor 23 b disposed with a gap from the inner ring spacer 34, It has a thermoelectric element 24 (an element utilizing the Seebeck effect of a Peltier element) that is disposed so as to connect between the conductor 23a and the heat conductor 23b and is closely fixed to the heat conductors 23a and 23b.
  • the temperature of the inner ring 14 and the outer ring 13 rises due to frictional heat with the rolling elements 15 (see FIG. 2).
  • the outer ring 13 is dissipated by heat conduction because it is incorporated in the housing of the device. Therefore, a temperature difference occurs between the inner ring 14 and the outer ring 13 (the temperature of the inner ring 14 is higher than the temperature of the outer ring 13).
  • the temperature is conducted to each heat conductor 23a, 23b.
  • the heat conductors 23a and 23b are disposed so as to penetrate the inner peripheral surface and the outer peripheral surface of the housing body 21, respectively.
  • thermoelectric element 24 disposed between the heat conductor 23a (heat sink) connected to the outer ring 13 via the outer ring spacer 33 and the heat conductor 23b located on the inner ring spacer 34 side (inner ring 14 side). A temperature difference occurs between both end faces of 24. For this reason, the thermoelectric element 24 can generate power by the Seebeck effect.
  • a power generation unit 25 it is not necessary to supply electric power to the lubricating oil supply unit from the outside, so that it is not necessary to attach an electric wire for supplying electric power to the bearing device 10 from the outside. Therefore, it is more effective to use the lubricating oil supply unit 20 having means for confirming that the lubricating oil has been supplied to the bearing 11 as described above.
  • an adhesive in consideration of thermal conductivity on the surface in contact with the inner peripheral surface of the outer ring spacer 33 in the heat conductor 23a penetrating the outer peripheral surface of the housing body 21.
  • the radius of curvature of the outer peripheral surface of the heat conductor 23 a on the outer ring 13 side is preferably the same as the radius of curvature of the inner peripheral surface of the outer ring spacer 33.
  • the inner peripheral surface (surface facing the inner ring spacer 34) of the heat conductor 23b on the inner ring side is not in contact with the inner ring spacer 34. If possible, it is desirable to make the volume of the heat conductors 23a, 23b on the outer ring side and the inner ring side equal. Further, it is desirable to increase the surface area of the heat conductor 23b on the inner ring side.
  • a heat dissipating grease or the like is mainly composed of silicone.
  • a metal with high heat conductivity is a material of the heat conductors 23a and 23b.
  • silver (Ag), copper (Cu), gold (Au) or the like can be used, but it is preferable to use copper from the viewpoint of cost.
  • the heat conductors 23a and 23b As a material of the heat conductors 23a and 23b, a copper alloy containing copper as a main component may be used, or a sintered alloy containing copper as a main component may be used. Moreover, it is preferable that the heat conductors 23a and 23b are formed by a processing method such as sintering, forging, or casting from the viewpoint of cost. In addition, the heat conductor connected to the thermoelectric element 24 may be disposed only on the high temperature side, and the thermoelectric element 24 may be tightly fixed to the spacer (outer ring spacer 33) on the low temperature side.
  • the electric charge generated (generated) by the power generation unit 25 is stored in the power supply circuit 26.
  • the electric charge is stored in a power storage unit such as a storage battery or a capacitor included in the power supply circuit 26 (also referred to as a power storage circuit).
  • a capacitor it is preferable to use an electric double layer capacitor (capacitor).
  • the power supply circuit 26 is electrically connected to the drive circuit 28 and the pump 29 via the control circuit 27, and is provided so as to be able to supply power thereto.
  • the control circuit 27 is a control unit for controlling the operation of the pump 29 via the drive circuit 28.
  • the control circuit 27 includes a program storage unit that holds a control program, and an arithmetic unit (microcomputer) that is connected to the program storage unit and executes the control program.
  • Various parameters related to the forward rotation operation of the pump 29 by the control circuit 27, for example, the supply start timing of the lubricant to the bearing 11, the supply timing (interval), the drive time of the pump 29 for supplying the lubricant, and the lubricant And the like can be set in advance. And the lubrication life of a bearing apparatus can be extended by maintaining the supply state of lubricating oil appropriately in this way.
  • the drive circuit 28 as a drive unit can rotate (forward rotation) the inner rotor 90 and the outer rotor 91 of the pump 29 in the first direction R1.
  • the drive circuit 28 may include, for example, an arbitrary sensor (a bearing temperature sensor, a bearing rotation sensor, a lubricant remaining amount sensor, a lubricant temperature sensor, etc.). Signals from these sensors may be input to a calculation unit (microcomputer) of the drive circuit 28, and the pump 29 may be automatically controlled in accordance with the temperature of the bearing 11 and its rotation state to adjust the supply amount of the lubricating oil.
  • Lubricating oil tank 30 may be constituted by a plastic bag body having flexibility.
  • the lubricating oil tank 30 may be arranged in an arc shape along the annular housing body 21.
  • the suction tube 31 may be detachably connected to the pump 29. By making the suction tube 31 detachable from the pump 29, when the remaining amount of lubricating oil in the lubricating oil tank 30 runs out, the suction tube 31 is removed from the pump 29 and lubricated from the suction tube 31 into the bag body. Oil can be replenished.
  • a spare bag body filled with lubricating oil can be prepared and the bag body can be exchanged. For example, when the lubricating oil in the used lubricating oil tank 30 runs out, remove the used lubricating oil tank 30 bag and replace it with a spare bag (a bag filled with lubricating oil). By doing so, the lubricating oil supply unit 20 can be replenished in a short time.
  • the housing body 21 has an open surface opposite to the bearing 11 and has a U-shaped cross section.
  • the lid 22 is configured to close the opening of the housing body 21 and be detachable from the housing body 21.
  • the housing body 21 and the lid body 22 may be made of any material, but may be made of, for example, a resin material, more preferably a thermoplastic resin.
  • a material constituting the housing for example, polyphenylene sulfide (PPS) can be used.
  • PPS polyphenylene sulfide
  • the housing body 21 and the lid body 22 may be made of the same kind of material, but may be made of different materials.
  • the housing lid 22 may be fixed to the housing body 21 with screws 39 (see FIG. 6). By fixing the lid body 22 to the housing body 21, the inside of the housing surrounded by the housing body 21 and the lid body 22 can be sealed. The lid 22 can be removed by removing the screw 39 from the tap hole 35 to which the screw 39 is fixed. In this way, the lubricating oil can be replenished to the lubricating oil tank 30 housed in the housing body 21 without removing the entire lubricating oil supply unit 20 from the bearing device 10.
  • the outer peripheral surface of the housing body 21 may be fixed to the inner peripheral surface of the outer ring spacer 33.
  • the outer peripheral surface of the housing main body 21 and the outer ring spacer 33 may be bonded and fixed by, for example, an adhesive.
  • an adhesive for example, an epoxy resin or the like may be used as an adhesive for bonding and fixing the housing body 21.
  • the housing body 21 (that is, the lubricating oil supply unit 20) may be fixed to the stationary ring of the bearing 11.
  • a gap 36 may be formed between the housing main body 21 and the inner ring spacer 34.
  • the lubricating oil can be supplied from the lubricating oil tank 30 to the bearing 11 by controlling the operation of the pump 29 by the control circuit 27.
  • the supply timing of the lubricating oil from the lubricating oil supply unit 20 to the inside of the bearing 11 is controlled as the timing of the forward drive of the pump 29.
  • the forward drive timing of the pump 29 is performed, for example, when power generated in the power generation unit 25 is stored in a power storage unit (for example, a capacitor) in the power supply circuit 26 and the voltage of the power storage unit reaches a certain voltage. Is possible.
  • a power storage unit for example, a capacitor
  • FIGS. 8 to 13 the vertical axis indicates the voltage of the power storage unit, and the horizontal axis indicates time. 8 to 13 show the time change (charging and discharging status) of the voltage of the power storage unit.
  • a charging time 41 is required until the voltage of the power storage unit reaches the voltage (voltage V2 in FIG. 8) required for forward driving of pump 29 (or full charge).
  • a predetermined power storage time (delay time 42) is added.
  • delay time 42 adding a delay time from time t1 to time t2
  • pump 29 is driven to rotate forward by the electric power stored in the power storage unit at time t2. In this way, it is possible to manage the supply interval of the lubricating oil to be longer than the time when the voltage of the power storage unit reaches a predetermined voltage (for example, full charge).
  • the pump 29 is driven to rotate forward, the voltage of the power storage unit decreases to the voltage V1, and then the charging operation is performed again. As a result, the voltage of the power storage unit becomes a predetermined voltage (time point t3). Thereafter, after the delay time described above has elapsed (time t4), the pump 29 is driven to rotate forward again. Such a cycle can be continued thereafter (for example, from time t4 to time t6).
  • the delay time 42 (the time from the time point t1 to the time point t2) can be set long considering the life time of the grease sealed in the bearing 11 from the beginning.
  • the first supply of lubricating oil may be started.
  • any timing such as the time when the charging voltage of the power storage unit reaches a certain value or the time when the output voltage from the thermoelectric element 24 reaches a certain value is adopted. May be.
  • the delay time 42 can be set so that the time from the start of operation to the time point t2 is equivalent to the lubrication life time 43 of the grease.
  • the time t2 may be determined by measuring the time from the operation start time using a timer function in the control circuit 27, and setting the elapsed time of the lubrication life time 43 as the time t2.
  • the delay time time between time t3 and time t4 or time between time t5 and time t6 in the second and subsequent cycles, it is considered that the base oil of the grease in the bearing 11 is considerably reduced. Therefore, it can be set shorter than the first delay time 42 in consideration of the usage status of the bearing device. In this way, by delaying the initial supply of the lubricating oil, the life of the bearing 11 is extended, and the time until maintenance can be extended.
  • the lubricating oil discharge interval (operation interval of the pump 29) may be controlled according to the time until the power storage unit is fully charged. For example, the charge and discharge in the power storage unit may be repeated, and the pump 29 may be driven to rotate forward every predetermined number of cycles. Specifically, at time t1, time t2, and time t3 in FIG. 10, only the discharge from the power storage unit to the resistor or the like is performed, and the pump 29 is not driven. Then, at the time t4 when the battery is fully charged in the fourth charge / discharge cycle (when the voltage of the power storage unit becomes the voltage V2), the pump 29 is driven to rotate forward. In this way, the pump 29 can be driven to rotate forward every predetermined number of charge / discharge cycles, so that the supply interval of the lubricating oil can be increased.
  • the power generation unit 25 of the lubricating oil supply unit 20 generates power using the temperature difference between the inner ring 14 and the outer ring 13 of the bearing 11. Therefore, in an operating situation in which the temperature of the inner ring 14 of the bearing 11 is relatively high, the temperature difference between the inner ring 14 and the outer ring 13 becomes large, and as a result, the amount of power generation per unit time in the power generation unit 25 is large. Become. Therefore, the charging time for the power storage unit of the power supply circuit 26 is shortened. On the other hand, when the difference between the temperature of the inner ring 14 of the bearing 11 and the temperature of the outer ring 13 is not so large, the power generation amount per unit time in the power generation unit 25 is reduced. Therefore, the charging time for the power storage unit of the power supply circuit 26 becomes longer.
  • FIG. 10 is considered to correspond to the case where the temperature difference between the inner ring 14 and the outer ring 13 is large
  • FIG. 11 shows that the temperature difference between the inner ring 14 and the outer ring 13 of the bearing 11 is larger than that shown in FIG. It shows a case where the charging time is relatively small and as a result, the charging time becomes long. Comparing FIG. 10 and FIG. 11, it can be seen that the graph shown in FIG. 11 is longer with respect to the length of the charging time 41 (for example, the time from the start of charging to the time t1). That is, when the charge / discharge cycle is used for determining the drive interval of the pump 29 as shown in FIG. 10, the supply interval of the lubricating oil changes depending on the temperature difference between the inner ring 14 and the outer ring 13 of the bearing 11.
  • the temperature rise inside the bearing 11 becomes relatively small, and there is no problem even if the lubrication oil supply interval is long.
  • the temperature rise inside the bearing 11 becomes relatively large, so it is desirable to shorten the supply interval of the lubricating oil.
  • the lubrication oil supply interval automatically changes according to the load of the bearing 11, so that the lubrication condition inside the bearing 11 is always changed. Can keep good.
  • charging and discharging are repeated until the pump 29 is driven forward. Therefore, the interval of forward rotation of the pump 29 may be managed by the number of times of charging / discharging.
  • the drive interval of the pump 29 may be managed so as to repeat the cycle of driving the pump 29 in the normal direction.
  • a relationship between the time until full charge and the lubrication state inside the bearing 11 may be obtained by, for example, an operation test.
  • the relationship between the time and the lubrication state inside the bearing 11 changes depending on the rotational speed of the bearing 11, the magnitude of the load, the amount of preload, and the like.
  • the voltage drop in the power storage unit may be greater when the pump 29 is driven.
  • the voltage of the power storage unit decreases to the voltage V1
  • the voltage of the power storage unit is Consider a case where the voltage drops to V3.
  • the voltage V1 is lower than the voltage V3.
  • a voltage V4 between the voltage V1 and the voltage V3 is set as a threshold value, and when the voltage of the power storage unit drops to a voltage equal to or lower than the threshold value, the control circuit 27 reduces the voltage (for example, the time point t1).
  • the time point t2 and the voltage value (voltage V1) may be stored.
  • the timing information specific date information may be used.
  • ⁇ Forward driving time of pump 29> The supply amount of the lubricating oil from the lubricating oil supply unit 20 to the inside of the bearing 11 is controlled as the normal rotation driving time of the pump 29. As described above, the forward drive time of the pump 29 is controlled by the control circuit 27 based on, for example, a preset time.
  • the timing and drive time are appropriately controlled by the control circuit 27, so that the lubrication conditions inside the bearing 11 can always be kept good.
  • the check valve 80 Since the above pressure is not applied, supply to the inside of the bearing 11 by the check valve 80 is suppressed. In addition, the check valve 80 is closed for the lubricating oil remaining in the nozzle 37 and the discharge tube 32 located downstream of the check valve 80 when the forward drive of the pump 29 is stopped. This prevents the bearing 11 from flowing out.
  • the pump 29 when the pump 29 is not rotating forward, the lubricating oil remaining in the pump 29, the discharge tube 32, and the nozzle 37 is not supplied into the bearing 11. Therefore, by controlling the normal rotation driving time of the pump 29, the amount of lubricating oil supplied from the lubricating oil supply unit 20 to the inside of the bearing 11 can be accurately controlled. In other words, according to the lubricating oil supply unit 20, the remaining amount of the lubricating oil in the lubricating oil tank 30 can be accurately estimated from the normal rotation driving time of the pump 29.
  • the lubricating oil tank 30 can be supplemented with lubricating oil or replaced with the lubricating oil tank 30 filled with lubricating oil.
  • the lubricating oil supply unit 20 and the bearing device 10 can be stably operated over a long period of time.
  • the lubricating oil supply unit and the bearing device shown in FIGS. 5 to 7 have basically the same configuration as the lubricating oil supply unit 20 and the bearing device 10 (see FIG. 2) shown in FIGS.
  • Each structure of the electric power generation part 25, the control circuit 27, and the drive circuit 28 differs.
  • the thermoelectric element 24 of the power generation unit 25 may be disposed so as to connect between the heat conductor 23 disposed in the inner ring spacer 34 and the outer ring spacer 33.
  • the thermoelectric element 24 is in contact with the inner peripheral surface of the outer ring spacer 33.
  • the thermoelectric element 24 is connected to the power supply circuit 26 via a lead wire 81. Even in this case, a temperature difference is generated between the outer ring 13 and the inner ring 14 of the bearing 11, so that there is a temperature difference between both end faces of the thermoelectric element 24 disposed between the outer ring spacer 33 and the heat conductor 23. Arise.
  • the thermoelectric element 24 can generate power by the Seebeck effect.
  • a capacitor 82 that can store the charge generated by the power generation unit 25 may be further provided.
  • the capacitor 82 is provided so that power can be supplied to the pump 29. Charging / discharging of the capacitor 82 is controlled by a drive control circuit.
  • the drive control circuits 27 and 28 are provided with the control circuit 27 and the drive circuit 28 shown in FIG. 1 as one circuit.
  • the drive control circuits 27 and 28 can control the operation of the pump 29 by controlling charging and discharging of the capacitor 82.
  • the lubricating oil supply unit shown in FIGS. 5 to 7 distributes the lubricating oil to which the discharge pressure equal to or higher than the reference value is circulated in the discharge tube 32 and the nozzle 37 (supply pipe line), so that the reference value is reached. Since a check valve 80 for preventing the flow of the lubricating oil applied to the discharge tube 32 and the nozzle 37 (supply pipe line) to which a discharge pressure of less than is applied is provided, the same as the lubricating oil supply unit shown in FIGS. There is an effect.
  • the lubricating oil supply unit according to the second embodiment has basically the same configuration as that of the lubricating oil supply unit 20 according to the first embodiment, but the pump 29 (see FIG. 1) when the bearing device is driven. ) Is reversed.
  • the inner rotor 90 and the outer rotor 91 of the pump 29 can be rotated (reversed) in the second direction R2 opposite to the first direction R1.
  • the outer rotor 91 rotates in the second direction R2 by meshing with the inner rotor 90.
  • the volumes of the plurality of spaces change.
  • the reversal drive timing (interval from the stop of the normal rotation operation to the start of the reversal operation) and the reversal drive time can be set in advance by the control circuit 27.
  • the drive circuit 28 can rotate (reverse) the inner rotor 90 and the outer rotor 91 of the pump 29 in the second direction R2.
  • the pump 29 remains inside the pump 29 (a space formed between the inner rotor 90 and the outer rotor 91) as the inner rotor 90 and the outer rotor 91 rotate (reverse) in the second direction R2.
  • the lubricating oil is provided in the lubricating oil tank 30 through the suction tube 31 so as to be discharged. If foreign matter is sucked into the pump 29 by the normal operation of the pump 29, the foreign matter can be discharged to the lubricating oil tank 30 through the suction tube 31 by the reversing operation of the pump 29. Note that when the pump 29 is reversed, the discharge tube 32 is closed by the check valve 80 because the lubricant to which the discharge pressure equal to or higher than the reference value is not supplied to the discharge tube 32. Therefore, according to the lubricating oil supply unit 20, it is possible to prevent the gas or the like inside the bearing 11 from being sucked into the pump 29 via the discharge tube 32.
  • the inversion drive timing and inversion drive time of the pump 29 can be arbitrarily set in advance.
  • the pump 29 may be set so as to be reversely driven immediately after the forward drive time has elapsed and stopped. That is, for example, at time t2, t4, t6 shown in FIG. 8 or FIG.
  • the pump 29 may be driven reversely following the normal rotation driving.
  • the pump 29 may be set so as to resume normal rotation driving immediately after the reverse driving time has elapsed and stopped. For example, at time points t2, t4, and t6 shown in FIG. 8 or FIG. 9, the pump 29 may be driven forward after the forward rotation drive and the reverse drive. In addition, at the time points t1, t2, and t4 shown in FIGS. 10 to 13, the pump 29 may be driven forward after the forward drive and the reverse drive.
  • the lubricating oil supply unit 20 can perform the operation for supplying a predetermined amount of lubricating oil into the bearing 11 as a series of processes in which the forward rotation driving and the reverse driving of the pump 29 are alternately repeated. It may be set.
  • the inversion drive timing of the pump 29 may be, for example, a timing when an increasing tendency of the current value supplied from the drive circuit 28 to the pump 29 is confirmed.
  • the increase in the current value occurs, for example, when a foreign object is caught in the minute gap S (see FIG. 4) formed between the inner rotor 90 and the outer rotor 91 of the pump 29. Therefore, the foreign matter can be prevented from being caught by reversing the pump 29 after the increase in the value of the current supplied from the drive circuit 28 to the pump 29 is confirmed.
  • the control circuit 27 includes, for example, a measurement unit that can measure the current value and a determination unit that can detect an increasing tendency of the current value measured by the measurement unit.
  • the pump 29 is reversely driven via the drive circuit 28 when, for example, an increasing tendency of the current value is confirmed by the determination unit of the control circuit 27.
  • the lubricating oil supply unit according to the second embodiment includes the pump 29 that can perform the forward rotation operation and the reversal operation. Therefore, the foreign material mixed in the lubricating oil is pumped into the pump 29 by the reversing operation of the pump 29. 29 can be discharged. Therefore, according to the lubricating oil supply unit according to the second embodiment, the lubricating oil can be stably supplied to the bearing 11 over a long period of time and has high reliability. Further, since the lubricating oil supply unit according to the second embodiment includes the check valve 80, the same effect as the lubricating oil supply unit according to the first embodiment can be achieved.
  • the bearing device according to the third embodiment has basically the same configuration as that of the bearing device according to the first embodiment. However, before the lubricating life of the grease preliminarily sealed in the bearing 11 elapses, the lubricating oil is supplied. Is different in that is started. Specifically, in the bearing device according to the first embodiment, as shown in FIG. 9, the first lubrication oil supply is controlled after the lubrication life by the grease sealed in the bearing 11 has elapsed. obtain. On the other hand, in the bearing device according to the third embodiment, as shown in FIG. 14, the first lubrication oil supply is controlled before the lubrication life due to the grease enclosed in the bearing 11 elapses. The
  • the delay time 42 is set so that the time point t2 when the pump 29 is driven is within the lubrication life time 43 of the grease.
  • the delay time 42 is set so that, for example, the time point t2 when the pump 29 is driven is immediately before the grease lubrication life time 43.
  • the delay time 42 can be set based on the result of the confirmation test by confirming in advance the time until the power storage unit is fully charged and the lubrication state with the grease enclosed in the bearing 11.
  • the lubricating oil supply unit according to the third embodiment is controlled to start supplying the first lubricating oil after the lubricating life by the grease sealed in the bearing 11 has elapsed, the seizure of the bearing 11 can be more reliably performed. Can be prevented. Further, since the lubricating oil supply unit according to the first embodiment includes the check valve 80, the same effect as the lubricating oil supply unit according to the first embodiment can be achieved.
  • the pump 29 is configured as a trochoid pump, but may be another rotary pump.
  • the pump 29 may be a centrifugal pump, for example.
  • it has the impeller (impeller) as a rotation part, and the case (housing) as a fixed part.
  • the impeller can rotate (forward rotation) in the first direction.
  • the impeller is rotatable (inverted) in the second direction.
  • the centrifugal pump in which the impeller is provided so as to be reversible is suitable for the lubricating oil supply unit and the bearing device according to the second embodiment.
  • the lubricating oil supply unit 20 supplies a holding portion (lubricating oil tank 30) that holds the lubricating oil supplied to the inside of the bearing 11, and supplies the lubricating oil to the inside of the bearing 11 from the holding portion.
  • Supply section (drive circuit 28, pump 29, discharge tube 32 and nozzle 37).
  • the supply unit sucks the lubricating oil from the holding unit, and is provided with a pump 29 provided so that a discharge pressure equal to or higher than a reference value can be applied to the lubricating oil, and a supply pipe connected to the pump 29 and extending inside the bearing 11 Lubricating oil to which a discharge pressure equal to or higher than a reference value is circulated in the supply pipe and the lubricating oil to which the discharge pressure less than the reference value is applied is circulated in the supply line (discharge tube 32 and nozzle 37).
  • the adjustment part (check valve 80) to prevent is included.
  • the lubricating oil remaining in the pump 29 when the pump 29 is stopped can be prevented from leaking into the supply pipe and being supplied into the bearing. That is, the lubricating oil can be supplied into the bearing only when the pump 29 is driven. As a result, the remaining amount of the lubricating oil in the holding unit can be accurately estimated from the driving time of the pump 29, and the lubricating oil can be replenished to the holding unit before the lubricating oil in the holding unit runs out. Thereby, the lubricating oil supply unit can be stably operated for a long time.
  • the adjustment unit is preferably a check valve 80 provided on the supply pipeline. In this way, the adjustment unit can be reduced in size.
  • the pump 29 is configured to rotate in the first direction R1 and the second direction R2 opposite to the first direction R1 (inner rotor 90, outer rotor 91, impeller). ) And is provided so that the lubricating oil can be sucked from the holding portion and discharged to the supply pipe line by the rotating operation toward the first direction of the rotating portion.
  • the pump 29 may perform the rotation operation of the rotation unit in the second direction when the rotation operation of the rotation unit in the first direction stops. In this way, it is possible to prevent foreign matters mixed in the lubricating oil from getting caught in the minute gap S (see FIG. 4) formed in the pump 29. As a result, the lubricating oil supply unit can operate stably over a long period of time.
  • the pump 29 has a rotating part rotatable in a first direction and a second direction opposite to the first direction, and sucks lubricating oil from the holding part by a rotating operation of the rotating part in the first direction. It is provided so that it can discharge to a supply pipeline.
  • the pump 29 may further include a drive unit that drives the rotation unit, and may perform a rotation operation of the rotation unit toward the second direction when the current value of the drive unit exceeds a threshold value. In this way, foreign matter caught in the minute gap S (see FIG. 4) formed in the pump 29 can be discharged from the pump 29. As a result, the lubricating oil supply unit can operate stably over a long period of time.
  • the bearing device includes the lubricating oil supply unit and a bearing 11 to which the lubricating oil supply unit is connected. Therefore, the bearing device can stably receive the supply of the lubricating oil from the lubricating oil supply unit for a long period of time, so that the bearing 11 can be prevented from being seized for a long period of time. As a result, the bearing device can operate stably over a long period of time.
  • a bearing device includes the lubricating oil supply unit and a bearing 11 to which the lubricating oil supply unit is connected.
  • the bearing 11 includes pre-sealed grease.
  • the supply unit is provided so that lubricating oil can be supplied before the lubricating life of the grease elapses. In this way, the bearing device can reliably prevent the bearing 11 from being seized, and can operate stably over a long period of time.
  • the present invention is particularly advantageously applied to a lubricating oil supply unit including a holding portion that holds the lubricating oil supplied to the inside of the bearing and a bearing device including the lubricating oil supply unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

Provided are a lubricating oil supplying unit and bearing device that can be operated stably for an extended time. A lubricating oil supplying unit comprises a holding unit (lubricating oil tank (30)) that holds lubricating oil to be supplied to the interior of a bearing (11), and a supplying unit (drive circuit (28), pump (29), delivery tube (32), and nozzle (37)) to supply the lubricating oil from the holding unit to the interior of the bearing. The supplying unit comprises: the pump that draws the lubricating oil from the holding unit and that is provided to allow a delivery pressure that is equal to or greater than a reference value to be applied to the lubricating oil; a supply line (delivery tube and nozzle) that is connected to the pump and that extends into the bearing; and a regulating unit (check valve (80)) that causes the lubricating oil to which a delivery pressure equal to or greater than the reference value is applied to circulate in the supply line and that prevents lubricating oil to which a delivery pressure less than the reference value is applied from circulating in the supply line.

Description

潤滑油供給ユニットおよび軸受装置Lubricating oil supply unit and bearing device
 この発明は、潤滑油供給ユニットおよび軸受装置に関し、より特定的には軸受に隣接して配置され当該軸受内部に潤滑油を供給する潤滑油供給ユニットおよび軸受装置に関する。 The present invention relates to a lubricating oil supply unit and a bearing device, and more particularly to a lubricating oil supply unit and a bearing device that are arranged adjacent to a bearing and supply lubricating oil into the bearing.
 給油ユニットを転がり軸受の内部に組み込んだ転がり軸受装置が従来から知られている。(特開2005-180629号公報(特許文献1)および特開2014-37879号公報(特許文献2)参照)。特許文献1に開示された軸受装置は、転がり軸受の内部にグリースが封入されている。このグリースの基油と同じ種類の潤滑油が、転がり軸受に隣接する間座内に収容されている。給油ユニットでは、この間座内の潤滑油を毛細管現象により、転がり軸受の内部に補充供給している。 Conventionally, a rolling bearing device in which an oil supply unit is incorporated in a rolling bearing has been known. (See JP-A-2005-180629 (Patent Document 1) and JP-A-2014-37879 (Patent Document 2)). In the bearing device disclosed in Patent Document 1, grease is sealed inside the rolling bearing. Lubricating oil of the same type as the base oil of this grease is accommodated in a spacer adjacent to the rolling bearing. In the oil supply unit, the lubricating oil in the spacer is replenished and supplied to the inside of the rolling bearing by a capillary phenomenon.
 また、特許文献2に開示された軸受装置は、軸受に隣接する間座内に配置された潤滑油タンクとポンプとを含む。この軸受装置では、ポンプを間欠的に動作させることにより、軸受に潤滑油を長期間安定して供給できるとしている。 Further, the bearing device disclosed in Patent Document 2 includes a lubricating oil tank and a pump arranged in a spacer adjacent to the bearing. In this bearing device, it is said that the lubricating oil can be stably supplied to the bearing for a long period of time by intermittently operating the pump.
特開2005-180629号公報JP 2005-180629 A 特開2014-37879号公報JP 2014-37879 A
 上述した特許文献1に開示された装置では、軸受内部に予めグリースが封入され潤滑が行われるが、同時に間座内に収容されたグリースの基油も軸受内部へ常時供給されるため、潤滑油の供給が過剰になり易い。特許文献1に開示された装置では、間座内の基油(潤滑油)の消費も早いため長期間安定して軸受へ潤滑油を供給することは難しい。 In the apparatus disclosed in Patent Document 1 described above, grease is preliminarily sealed inside the bearing and lubrication is performed, but at the same time, the base oil of grease contained in the spacer is always supplied to the inside of the bearing. Supply tends to be excessive. In the device disclosed in Patent Document 1, it is difficult to stably supply the lubricating oil to the bearing for a long period of time because the base oil (lubricating oil) in the spacer is consumed quickly.
 また、上記特許文献2に開示された装置では、上記特許文献1に開示された装置よりも潤滑油の供給を長期間実施できると思われるものの、軸受装置の外部から潤滑油の供給状態を確認することができない。そのため、ポンプなどの動作不良といった要因により潤滑油の供給不良などが発生しても、軸受の動作に異常が発生するまで、そのような潤滑油の供給不良といった問題を把握することは難しい。このため、軸受装置を長期に安定して動作させるため、軸受装置の異常を早期に検出してメンテナンスするといった対応を取ることが難しかった。 In addition, although the apparatus disclosed in Patent Document 2 seems to be able to supply the lubricating oil for a longer period of time than the apparatus disclosed in Patent Document 1, the supply state of the lubricating oil is confirmed from the outside of the bearing device. Can not do it. For this reason, even if a lubricant supply failure or the like occurs due to a malfunction such as a pump or the like, it is difficult to grasp a problem such as a lubricant supply failure until an abnormality occurs in the operation of the bearing. For this reason, in order to operate the bearing device stably for a long period of time, it has been difficult to take measures such as detecting an abnormality of the bearing device at an early stage and performing maintenance.
 この発明は、上記のような課題を解決するためになされたものであり、この発明の目的は、長期に安定して動作させることが可能な潤滑油供給ユニットおよび軸受装置を提供することである。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a lubricating oil supply unit and a bearing device that can be stably operated for a long period of time. .
 本発明に係る潤滑油供給ユニットは、軸受の内部に供給される潤滑油を保持する保持部と、保持部から軸受の内部に潤滑油を供給する供給部とを備える。供給部は、保持部から潤滑油を吸引し、基準値以上の吐出圧力を潤滑油に印加可能に設けられているポンプと、ポンプに接続され、軸受の内部に延在する供給管路と、基準値以上の吐出圧力が加えられた潤滑油を供給管路において流通させ、基準値未満の吐出圧力が加えられた潤滑油の供給管路における流通を阻止する調整部を含む。 The lubricating oil supply unit according to the present invention includes a holding unit that holds the lubricating oil supplied to the inside of the bearing, and a supply unit that supplies the lubricating oil from the holding unit to the inside of the bearing. The supply unit sucks the lubricating oil from the holding unit, a pump provided so that a discharge pressure equal to or higher than a reference value can be applied to the lubricating oil, a supply line connected to the pump and extending inside the bearing, An adjustment unit is provided that causes the lubricating oil to which the discharge pressure equal to or higher than the reference value is applied to flow in the supply pipe and prevents the lubricating oil to be supplied with the discharge pressure that is less than the reference value from flowing in the supply pipe.
 本発明によれば、長期に安定して動作させることが可能な潤滑油供給ユニットおよび軸受装置を提供することができる。 According to the present invention, it is possible to provide a lubricating oil supply unit and a bearing device that can be stably operated for a long period of time.
実施の形態1に係る軸受装置の潤滑油供給ユニットの一例を示す断面模式図である。3 is a schematic cross-sectional view showing an example of a lubricating oil supply unit of the bearing device according to Embodiment 1. FIG. 図1中の線分II-IIにおける断面模式図である。FIG. 2 is a schematic cross-sectional view taken along line II-II in FIG. 図1中の線分III-IIIにおける断面模式図である。FIG. 3 is a schematic cross-sectional view taken along line III-III in FIG. 図1に示したポンプの一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example of the pump shown in FIG. 変形例に係る軸受装置の潤滑油供給ユニットの一例を示し断面模式図である。It is a cross-sectional schematic diagram which shows an example of the lubricating oil supply unit of the bearing apparatus which concerns on a modification. 図5中の線分VI-VIにおける断面模式図である。FIG. 6 is a schematic sectional view taken along line VI-VI in FIG. 図5中の線分VII-VIIにおける断面模式図である。FIG. 6 is a schematic sectional view taken along line VII-VII in FIG. 潤滑油供給ユニットの電源部に含まれる蓄電部の蓄電電圧と時間との関係の第1の例を示すグラフである。It is a graph which shows the 1st example of the relationship between the electrical storage voltage of the electrical storage part contained in the power supply part of a lubricating oil supply unit, and time. 潤滑油供給ユニットの電源部に含まれる蓄電部の蓄電電圧と時間との関係の第2の例を示すグラフである。It is a graph which shows the 2nd example of the relationship between the electrical storage voltage of the electrical storage part contained in the power supply part of a lubricating oil supply unit, and time. 潤滑油供給ユニットの電源部に含まれる蓄電部の蓄電電圧と時間との関係の第3の例を示すグラフである。It is a graph which shows the 3rd example of the relationship between the electrical storage voltage of the electrical storage part contained in the power supply part of a lubricating oil supply unit, and time. 潤滑油供給ユニットの電源部に含まれる蓄電部の蓄電電圧と時間との関係の第4の例を示すグラフである。It is a graph which shows the 4th example of the relationship between the electrical storage voltage of the electrical storage part contained in the power supply part of a lubricating oil supply unit, and time. 潤滑油供給ユニットの電源部に含まれる蓄電部の蓄電電圧と時間との関係の第5の例を示すグラフである。It is a graph which shows the 5th example of the relationship between the electrical storage voltage of the electrical storage part contained in the power supply part of a lubricating oil supply unit, and time. 潤滑油供給ユニットの電源部に含まれる蓄電部の蓄電電圧と時間との関係の第6の例を示すグラフである。It is a graph which shows the 6th example of the relationship between the electrical storage voltage of the electrical storage part contained in the power supply part of a lubricating oil supply unit, and time. 実施の形態3において、潤滑油供給ユニットの電源部に含まれる蓄電部の蓄電電圧と時間との関係の第6の例を示すグラフである。In Embodiment 3, it is a graph which shows the 6th example of the relationship between the electrical storage voltage of the electrical storage part contained in the power supply part of a lubricating oil supply unit, and time.
 以下、図面に基づいて本発明の実施の形態を説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付しその説明は繰返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.
 (実施の形態1)
<軸受装置の構成>
 図1~図4を参照して、実施の形態1に係る軸受装置を説明する。本実施形態に係る軸受装置10は、転がり軸受装置であって、転がり軸受である軸受11(図2参照)と、潤滑油供給ユニット20(図2参照)と備える。潤滑油供給ユニット20は、軸受11の軸方向の一端部に突き当てられた外輪間座33と内輪間座34との間に組み込まれている。
(Embodiment 1)
<Configuration of bearing device>
The bearing device according to the first embodiment will be described with reference to FIGS. The bearing device 10 according to the present embodiment is a rolling bearing device and includes a bearing 11 (see FIG. 2) that is a rolling bearing and a lubricating oil supply unit 20 (see FIG. 2). The lubricating oil supply unit 20 is incorporated between an outer ring spacer 33 and an inner ring spacer 34 that are abutted against one end of the bearing 11 in the axial direction.
 軸受11は、たとえば回転側の軌道輪である内輪14と、たとえば固定側の外輪13と、これらの内輪14と外輪13との間に介在された複数の転動体15と、複数の転動体15を一定間隔に保持する保持器16と、当該保持器16の外周側に配置されたシール部材とを主に備える。軸受11としては、たとえば、アンギュラ玉軸受、深溝玉軸受、あるいは円筒ころ軸受などを用いることができる。軸受11には、予め所望のグリースが封入される。上記シール部材は、外輪間座33などが配置された側と反対側の端部に配置される。 The bearing 11 includes, for example, an inner ring 14 which is a rotating raceway ring, a fixed outer ring 13, a plurality of rolling elements 15 interposed between the inner ring 14 and the outer ring 13, and a plurality of rolling elements 15. Is mainly provided with a retainer 16 that holds a fixed distance at a predetermined interval and a seal member that is disposed on the outer peripheral side of the retainer 16. As the bearing 11, for example, an angular ball bearing, a deep groove ball bearing, or a cylindrical roller bearing can be used. The bearing 11 is filled with desired grease in advance. The seal member is disposed at the end opposite to the side where the outer ring spacer 33 or the like is disposed.
 内輪間座34と外輪間座33とから間座が構成されており、内輪間座34は内輪14の一方の端面に突き当てられる。外輪間座33は外輪13の一方の端面に突き当てられる。 The inner ring spacer 34 and the outer ring spacer 33 constitute a spacer, and the inner ring spacer 34 abuts against one end surface of the inner ring 14. The outer ring spacer 33 is abutted against one end face of the outer ring 13.
 潤滑油供給ユニット20は、図1~図3に示すように、円環状のハウジング(ハウジング本体21および蓋体22)内に配置された、円周方向に発電部25、充電部を含む電源回路26、制御回路27、駆動回路28、ポンプ29、潤滑油タンク30、および逆止弁(調整部)80を主に備える。潤滑油タンク30は、軸受11に封入されているグリースの基油と同じ種類の潤滑油を貯留する。発電部25、電源回路26、制御回路27、駆動回路28、ポンプ29、潤滑油タンク30は、ハウジング本体21内部において、円周方向に並ぶように配置されている。発電部25は電源回路26に接続されている。電源回路26は制御回路27に接続されている。制御回路27は駆動回路28に接続されている。駆動回路28はマイクロポンプなどのポンプ29を動作させるための回路である。駆動回路28に接続されたポンプ29には、潤滑油タンク30の袋体に接続された吸込みチューブ31と、当該ポンプ29から軸受11の内部に潤滑油を供給するための吐出チューブ32とが接続されている。吐出チューブ32の先端部(ポンプ29と接続された根元部と反対側の端部)には、図2に示すようにノズル37が接続されている。ノズル37の先端部は軸受11の内部(転動体15に隣接する位置、たとえば軸受11の固定側の軌道輪と回転側の軌道輪との間)にまで延びている。なお、ノズル37のノズル穴の内径寸法は、基油の粘度に起因する表面張力と吐出量との関係により、適宜設定される。駆動回路28、ポンプ29、吐出チューブ32、ノズル37、および逆止弁80は、供給部を構成している。吐出チューブ32およびノズル37は、供給管路を構成している。 As shown in FIGS. 1 to 3, the lubricating oil supply unit 20 is disposed in an annular housing (housing main body 21 and lid 22), and includes a power generation circuit including a power generation unit 25 and a charging unit in the circumferential direction. 26, a control circuit 27, a drive circuit 28, a pump 29, a lubricating oil tank 30, and a check valve (adjustment unit) 80. The lubricating oil tank 30 stores the same type of lubricating oil as the base oil of the grease sealed in the bearing 11. The power generation unit 25, the power supply circuit 26, the control circuit 27, the drive circuit 28, the pump 29, and the lubricating oil tank 30 are arranged in the circumferential direction in the housing body 21. The power generation unit 25 is connected to the power supply circuit 26. The power supply circuit 26 is connected to the control circuit 27. The control circuit 27 is connected to the drive circuit 28. The drive circuit 28 is a circuit for operating a pump 29 such as a micropump. Connected to the pump 29 connected to the drive circuit 28 are a suction tube 31 connected to the bag body of the lubricating oil tank 30 and a discharge tube 32 for supplying lubricating oil from the pump 29 to the inside of the bearing 11. Has been. A nozzle 37 is connected to the distal end of the discharge tube 32 (the end opposite to the base connected to the pump 29) as shown in FIG. The tip of the nozzle 37 extends to the inside of the bearing 11 (position adjacent to the rolling element 15, for example, between the bearing ring on the fixed side and the bearing ring on the rotating side of the bearing 11). Note that the inner diameter of the nozzle hole of the nozzle 37 is appropriately set according to the relationship between the surface tension resulting from the viscosity of the base oil and the discharge amount. The drive circuit 28, the pump 29, the discharge tube 32, the nozzle 37, and the check valve 80 constitute a supply unit. The discharge tube 32 and the nozzle 37 constitute a supply line.
 ポンプ29は、逆止弁80が潤滑油を流通させる基準値(開弁圧力)以上の吐出圧力で潤滑油を吐出可能な限りにおいて、任意の構成を備えていればよい。ポンプ29は、例えば回転式ポンプであり、例えばトロコイドポンプである。図4は、トロコイドポンプとしてのポンプ29を示す断面模式図である。ポンプ29は、回転部としてのインナロータ90およびアウタロータ91と、固定部としてのケース(図示しない)とを有する。ケースには、吸入ポート92および吐出ポート93が形成されている。ポンプ29の吸入ポート92および吐出ポート93は、吸込みチューブ31および吐出チューブ32にそれぞれ接続されている。インナロータ90およびアウタロータ91は、第1方向R1に向かって回転(正転)可能である。 The pump 29 may have any configuration as long as the check valve 80 can discharge the lubricating oil at a discharge pressure equal to or higher than a reference value (opening pressure) through which the lubricating oil flows. The pump 29 is, for example, a rotary pump, for example, a trochoid pump. FIG. 4 is a schematic cross-sectional view showing a pump 29 as a trochoid pump. The pump 29 has an inner rotor 90 and an outer rotor 91 as rotating parts, and a case (not shown) as a fixed part. A suction port 92 and a discharge port 93 are formed in the case. The suction port 92 and the discharge port 93 of the pump 29 are connected to the suction tube 31 and the discharge tube 32, respectively. The inner rotor 90 and the outer rotor 91 can rotate (forward rotation) in the first direction R1.
 インナロータ90とアウタロータ91とは複数箇所で接触し、噛み合わされている。ポンプ29の内部には、インナロータ90とアウタロータ91との各接触部により区分された複数の空間(例えば5つの空間)が形成されている。インナロータ90が第1方向R1に回転すると、インナロータ90との噛合いによってアウタロータ91が第1方向R1に回転する。インナロータ90とアウタロータ91とが正転することにより、上記複数の空間の体積はそれぞれ変化する。なお、図4に示すように、1つの空間の体積が最も小さくなるとき、当該空間(微小隙間S)におけるインナロータ90とアウタロータ91との間隔は、例えば異物(潤滑油に混入され得る潤滑油以外の物、または所定値以上の粘度の潤滑油)の外径よりも小さくなり得る。ポンプ29は、駆動回路28を介して制御回路27により制御される。 The inner rotor 90 and the outer rotor 91 are in contact with each other at a plurality of locations. Inside the pump 29, a plurality of spaces (for example, five spaces) divided by the contact portions between the inner rotor 90 and the outer rotor 91 are formed. When the inner rotor 90 rotates in the first direction R1, the outer rotor 91 rotates in the first direction R1 by meshing with the inner rotor 90. When the inner rotor 90 and the outer rotor 91 rotate normally, the volumes of the plurality of spaces change. In addition, as shown in FIG. 4, when the volume of one space becomes the smallest, the space | interval of the inner rotor 90 and the outer rotor 91 in the said space (micro clearance gap S) is, for example, foreign matters (other than lubricating oil that can be mixed into lubricating oil) Or a lubricating oil having a viscosity equal to or higher than a predetermined value). The pump 29 is controlled by the control circuit 27 via the drive circuit 28.
 ポンプ29は、インナロータ90およびアウタロータ91とが第1方向R1に向かって回転(正転)することにより、潤滑油タンク30から吸引した潤滑油を、吐出チューブ32、逆止弁80およびノズル37を介して軸受11の内部に吐出可能に設けられている。ポンプ29は、インナロータ90およびアウタロータ91とが第1方向R1に向かって回転(正転)したときに、逆止弁80の基準値(開弁圧力)以上の吐出圧力を潤滑油に印加することができる。ポンプ29の駆動時における吐出圧力は、例えば1kPa以上2kPa以下である。 When the inner rotor 90 and the outer rotor 91 rotate (forward rotation) in the first direction R1, the pump 29 causes the lubricant sucked from the lubricating oil tank 30 to flow through the discharge tube 32, the check valve 80, and the nozzle 37. It is provided in the inside of the bearing 11 so that discharge is possible. When the inner rotor 90 and the outer rotor 91 rotate (forward rotation) in the first direction R1, the pump 29 applies a discharge pressure equal to or higher than a reference value (valve opening pressure) of the check valve 80 to the lubricating oil. Can do. The discharge pressure when the pump 29 is driven is, for example, 1 kPa or more and 2 kPa or less.
 逆止弁80は、吐出チューブ32に設けられている。逆止弁80は、基準値(開弁圧力)以上の吐出圧力が加えられた潤滑油を吐出チューブ32において軸受11側に向けて流通させる。一方、逆止弁80は、当該基準値未満の吐出圧力が加えられた潤滑油の吐出チューブ32における流通を阻止する。逆止弁80は、任意の構成を有していればよいが、例えばダックビル式チェックバルブ(型名IMCB8057など)であってもよいし、ダイヤフラム式チェックバルブ(型名IMCD116Pなど)であってもよい。逆止弁80の上記基準値は、ポンプ29の駆動時の吐出圧力以下である。また、逆止弁80の上記基準値は、ポンプ29の停止時においてポンプ29の上記複数の空間から漏出する潤滑油の吐出圧力(例えば1kPa未満)超えである。逆止弁80の上記基準値は、例えば2kPa以下であり、好ましくは1kPa以上である。 The check valve 80 is provided in the discharge tube 32. The check valve 80 circulates lubricating oil to which a discharge pressure equal to or higher than a reference value (valve opening pressure) is applied toward the bearing 11 in the discharge tube 32. On the other hand, the check valve 80 prevents the flow of the lubricating oil to which the discharge pressure less than the reference value is applied in the discharge tube 32. The check valve 80 may have an arbitrary configuration. For example, the check valve 80 may be a duckbill type check valve (model name IMCB8057 or the like) or a diaphragm type check valve (model name IMCD116P or the like). Good. The reference value of the check valve 80 is equal to or lower than the discharge pressure when the pump 29 is driven. Further, the reference value of the check valve 80 exceeds the discharge pressure (for example, less than 1 kPa) of the lubricating oil leaking from the plurality of spaces of the pump 29 when the pump 29 is stopped. The reference value of the check valve 80 is, for example, 2 kPa or less, and preferably 1 kPa or more.
 制御回路27は、後述するように潤滑油供給ユニット20における潤滑油の供給状況に関するデータを取得するとともに、当該データを制御回路27の外部へ出力可能になっている。 The control circuit 27 is capable of acquiring data relating to the lubricating oil supply status in the lubricating oil supply unit 20 and outputting the data to the outside of the control circuit 27 as will be described later.
 潤滑油供給ユニット20の発電部25としては、例えばゼーベック効果によって発電を行うものを使用することができる。具体的には、図1に示すように、発電部25は、外輪間座33に接続された熱伝導体23aと、内輪間座34と隙間を空けて配置された熱伝導体23bと、熱伝導体23aと熱伝導体23bとの間を接続するように配置され、熱伝導体23a、23bと密着固定された熱電素子24(ペルチェ素子のゼーベック効果を利用した素子)とを有する。 As the power generation unit 25 of the lubricating oil supply unit 20, for example, a unit that generates power by the Seebeck effect can be used. Specifically, as shown in FIG. 1, the power generation unit 25 includes a heat conductor 23 a connected to the outer ring spacer 33, a heat conductor 23 b disposed with a gap from the inner ring spacer 34, It has a thermoelectric element 24 (an element utilizing the Seebeck effect of a Peltier element) that is disposed so as to connect between the conductor 23a and the heat conductor 23b and is closely fixed to the heat conductors 23a and 23b.
 ここで、図1に示すように軸受装置10として転がり軸受装置を使用する場合、転動体15(図2参照)との摩擦熱により内輪14と外輪13の温度が上昇する。通常、外輪13は機器のハウジングに組み込まれるため熱伝導により放熱される。そのため、内輪14と外輪13との間で温度差が生じる(外輪13の温度に対して内輪14の温度の方が高い)。その温度が各熱伝導体23a、23bに伝導される。熱伝導体23a、23bは、それぞれハウジング本体21の内周面と外周面とを貫通するように配置されている。そのため、外輪間座33を介して外輪13と接続された熱伝導体23a(ヒートシンク)と、内輪間座34側(内輪14側)に位置する熱伝導体23bとの間に配置された熱電素子24の両端面には温度差が生じる。このため、熱電素子24ではゼーベック効果により発電を行うことができる。このような発電部25を用いることにより、外部から潤滑油供給ユニットに電力を供給する必要がないため、軸受装置10へ外部から電力を供給するための電線を取り付ける必要がない。そのため、上述のように軸受11へ潤滑油が供給されたことを確認する手段を有する潤滑油供給ユニット20を用いることがより効果的である。 Here, when a rolling bearing device is used as the bearing device 10 as shown in FIG. 1, the temperature of the inner ring 14 and the outer ring 13 rises due to frictional heat with the rolling elements 15 (see FIG. 2). Normally, the outer ring 13 is dissipated by heat conduction because it is incorporated in the housing of the device. Therefore, a temperature difference occurs between the inner ring 14 and the outer ring 13 (the temperature of the inner ring 14 is higher than the temperature of the outer ring 13). The temperature is conducted to each heat conductor 23a, 23b. The heat conductors 23a and 23b are disposed so as to penetrate the inner peripheral surface and the outer peripheral surface of the housing body 21, respectively. Therefore, a thermoelectric element disposed between the heat conductor 23a (heat sink) connected to the outer ring 13 via the outer ring spacer 33 and the heat conductor 23b located on the inner ring spacer 34 side (inner ring 14 side). A temperature difference occurs between both end faces of 24. For this reason, the thermoelectric element 24 can generate power by the Seebeck effect. By using such a power generation unit 25, it is not necessary to supply electric power to the lubricating oil supply unit from the outside, so that it is not necessary to attach an electric wire for supplying electric power to the bearing device 10 from the outside. Therefore, it is more effective to use the lubricating oil supply unit 20 having means for confirming that the lubricating oil has been supplied to the bearing 11 as described above.
 ハウジング本体21の外周面を貫通する熱伝導体23aにおいて外輪間座33の内周面に接する面には、熱導電性を考慮した接着剤を使用することが好ましい。なお、外輪13側の熱伝導体23aの外周面の曲率半径は、外輪間座33の内周面の曲率半径と同一にすることが好ましい。このようにすれば、外輪間座33の内周面と熱伝導体23aの外周面とを密着させることができるので、熱伝導体23aと外輪間座33および外輪13との間で熱を効率的に伝えることができる。一方、内輪側の熱伝導体23bの内周面(内輪間座34と対向する面)は、内輪間座34とは接していない。可能であれば、外輪側と内輪側の熱伝導体23a、23bの体積を等しくすることが望ましい。また、内輪側の熱伝導体23bの表面積を大きくすることが望ましい。 It is preferable to use an adhesive in consideration of thermal conductivity on the surface in contact with the inner peripheral surface of the outer ring spacer 33 in the heat conductor 23a penetrating the outer peripheral surface of the housing body 21. The radius of curvature of the outer peripheral surface of the heat conductor 23 a on the outer ring 13 side is preferably the same as the radius of curvature of the inner peripheral surface of the outer ring spacer 33. In this way, since the inner peripheral surface of the outer ring spacer 33 and the outer peripheral surface of the heat conductor 23a can be brought into close contact with each other, heat is efficiently transmitted between the heat conductor 23a and the outer ring spacer 33 and the outer ring 13. Can communicate. On the other hand, the inner peripheral surface (surface facing the inner ring spacer 34) of the heat conductor 23b on the inner ring side is not in contact with the inner ring spacer 34. If possible, it is desirable to make the volume of the heat conductors 23a, 23b on the outer ring side and the inner ring side equal. Further, it is desirable to increase the surface area of the heat conductor 23b on the inner ring side.
 なお、外輪間座33の内周面と熱伝導体23aとの間、熱伝導体23aと熱電素子24との間、熱電素子24と内輪側の熱伝導体23bとの間には、熱伝導率及び密着性を高めるため、放熱グリースなどを塗布することが好ましい。放熱グリースは、一般的にシリコーンが主成分である。また、熱伝導体23a、23bの材料としては、熱伝導率の高い金属を使用することが好ましい。例えば、銀(Ag)、銅(Cu)、金(Au)などを用いることができるが、コスト面から銅を使用することが好ましい。なお、熱伝導体23a、23bの材料として銅を主成分とする銅合金を用いてもよく、銅を主成分とする焼結合金を用いてもよい。また、熱伝導体23a、23bは、コスト面から、例えば焼結、鍛造、鋳造などの加工方法により成形されているのが好ましい。また、熱電素子24に接続される熱伝導体は高温側のみに配置され、低温側については間座(外輪間座33)に熱電素子24を密着固定してもよい。 Note that heat conduction between the inner peripheral surface of the outer ring spacer 33 and the heat conductor 23a, between the heat conductor 23a and the thermoelectric element 24, and between the thermoelectric element 24 and the heat conductor 23b on the inner ring side. In order to increase the rate and adhesion, it is preferable to apply a heat dissipating grease or the like. Generally, the heat dissipating grease is mainly composed of silicone. Moreover, it is preferable to use a metal with high heat conductivity as a material of the heat conductors 23a and 23b. For example, silver (Ag), copper (Cu), gold (Au) or the like can be used, but it is preferable to use copper from the viewpoint of cost. In addition, as a material of the heat conductors 23a and 23b, a copper alloy containing copper as a main component may be used, or a sintered alloy containing copper as a main component may be used. Moreover, it is preferable that the heat conductors 23a and 23b are formed by a processing method such as sintering, forging, or casting from the viewpoint of cost. In addition, the heat conductor connected to the thermoelectric element 24 may be disposed only on the high temperature side, and the thermoelectric element 24 may be tightly fixed to the spacer (outer ring spacer 33) on the low temperature side.
 発電部25によって発生した(発電された)電荷は、電源回路26に蓄電される。具体的には、当該電荷は電源回路26(蓄電回路とも呼ぶ)に含まれる蓄電池やコンデンサなどの蓄電部に蓄電される。コンデンサとしては、電気二重層コンデンサ(キャパシタ)を使用することが好ましい。電源回路26は、制御回路27を介して駆動回路28およびポンプ29に電気的に接続されており、これらに対し電力を供給可能に設けられている。 The electric charge generated (generated) by the power generation unit 25 is stored in the power supply circuit 26. Specifically, the electric charge is stored in a power storage unit such as a storage battery or a capacitor included in the power supply circuit 26 (also referred to as a power storage circuit). As a capacitor, it is preferable to use an electric double layer capacitor (capacitor). The power supply circuit 26 is electrically connected to the drive circuit 28 and the pump 29 via the control circuit 27, and is provided so as to be able to supply power thereto.
 制御回路27は、駆動回路28を介してポンプ29の動作を制御するための制御部である。制御回路27は、制御プログラムが保持されるプログラム記憶部および当該プログラム記憶部と接続され当該制御プログラムを実行する演算部(マイコン)とを含む。制御回路27により、ポンプ29の正転動作に係る各種パラメータ、例えば軸受11への潤滑油の供給開始時期、供給タイミング(インターバル)、潤滑油の供給のためのポンプ29の駆動時間、および潤滑油の供給量など、を予め設定することができる。そして、このように潤滑油の供給状態を適切に保つことにより、軸受装置の潤滑寿命を延ばすことができる。 The control circuit 27 is a control unit for controlling the operation of the pump 29 via the drive circuit 28. The control circuit 27 includes a program storage unit that holds a control program, and an arithmetic unit (microcomputer) that is connected to the program storage unit and executes the control program. Various parameters related to the forward rotation operation of the pump 29 by the control circuit 27, for example, the supply start timing of the lubricant to the bearing 11, the supply timing (interval), the drive time of the pump 29 for supplying the lubricant, and the lubricant And the like can be set in advance. And the lubrication life of a bearing apparatus can be extended by maintaining the supply state of lubricating oil appropriately in this way.
 駆動部としての駆動回路28は、ポンプ29のインナロータ90およびアウタロータ91を第1方向R1に回転(正転)させることができる。駆動回路28は、例えば、任意のセンサ(軸受温度センサ、軸受回転センサ、潤滑油残量センサ、潤滑油温度センサ等)を備えていてもよい。これらのセンサからの信号が駆動回路28の演算部(マイコン)に入力され、軸受11の温度及びその回転状況に応じてポンプ29を自動制御し、潤滑油の供給量を調整してもよい。 The drive circuit 28 as a drive unit can rotate (forward rotation) the inner rotor 90 and the outer rotor 91 of the pump 29 in the first direction R1. The drive circuit 28 may include, for example, an arbitrary sensor (a bearing temperature sensor, a bearing rotation sensor, a lubricant remaining amount sensor, a lubricant temperature sensor, etc.). Signals from these sensors may be input to a calculation unit (microcomputer) of the drive circuit 28, and the pump 29 may be automatically controlled in accordance with the temperature of the bearing 11 and its rotation state to adjust the supply amount of the lubricating oil.
 潤滑油タンク30は、柔軟性を有する樹脂製の袋体により構成してもよい。潤滑油タンク30は、円環状のハウジング本体21に沿って円弧状に配置されていてもよい。 Lubricating oil tank 30 may be constituted by a plastic bag body having flexibility. The lubricating oil tank 30 may be arranged in an arc shape along the annular housing body 21.
 吸込みチューブ31は、ポンプ29に対して取り外し可能に接続されていてもよい。吸込みチューブ31をポンプ29に対して取り外し可能にすることで、潤滑油タンク30内の潤滑油の残量がなくなった場合に、吸込みチューブ31をポンプ29から外し、吸込みチューブ31から袋体内に潤滑油を補充することができる。 The suction tube 31 may be detachably connected to the pump 29. By making the suction tube 31 detachable from the pump 29, when the remaining amount of lubricating oil in the lubricating oil tank 30 runs out, the suction tube 31 is removed from the pump 29 and lubricated from the suction tube 31 into the bag body. Oil can be replenished.
 また、ポンプ29に対して潤滑油タンク30の袋体を取り外し可能にしておくことで、潤滑油を充填した予備の袋体を準備しておき、当該袋体を交換することができる。たとえば、使用中の潤滑油タンク30内の潤滑油がなくなったときに、使用済みの潤滑油タンク30の袋体を取り外し、予備の袋体(潤滑油が内部に充填された袋体)に交換することにより、潤滑油供給ユニット20における潤滑油の補充を短時間で行うことができる。 Further, by making the bag body of the lubricating oil tank 30 removable with respect to the pump 29, a spare bag body filled with lubricating oil can be prepared and the bag body can be exchanged. For example, when the lubricating oil in the used lubricating oil tank 30 runs out, remove the used lubricating oil tank 30 bag and replace it with a spare bag (a bag filled with lubricating oil). By doing so, the lubricating oil supply unit 20 can be replenished in a short time.
 図2に示すように、ハウジング本体21は、軸受11と反対側の面が開放されており、断面形状がコの字形状である。蓋体22は、ハウジング本体21の開口部を閉塞し、ハウジング本体21に対して着脱自在に構成されている。このハウジング本体21と蓋体22とは、任意の材料により構成してもよいが、たとえば樹脂材料、より好ましくは熱可塑性樹脂により構成してもよい。上記ハウジングを構成する材料としては、たとえばポリフェニレンサルファイド(PPS)等を用いることができる。また、ハウジング本体21と蓋体22とは同種の材料により構成されてもよいが、異なる材料により構成してもよい。 As shown in FIG. 2, the housing body 21 has an open surface opposite to the bearing 11 and has a U-shaped cross section. The lid 22 is configured to close the opening of the housing body 21 and be detachable from the housing body 21. The housing body 21 and the lid body 22 may be made of any material, but may be made of, for example, a resin material, more preferably a thermoplastic resin. As a material constituting the housing, for example, polyphenylene sulfide (PPS) can be used. The housing body 21 and the lid body 22 may be made of the same kind of material, but may be made of different materials.
 ハウジングの蓋体22は、ハウジング本体21に対し、ネジ39(図6参照)により固定されてもよい。蓋体22をハウジング本体21に固定することにより、ハウジング本体21と蓋体22とにより囲まれたハウジング内部を密閉することができる。なお、ネジ39が固定されているタップ穴35から当該ネジ39を外して、蓋体22を取り除くことができる。このようにすれば、潤滑油供給ユニット20全体を軸受装置10から取外すことなく、ハウジング本体21内に収納されている潤滑油タンク30に、潤滑油を補充することができる。 The housing lid 22 may be fixed to the housing body 21 with screws 39 (see FIG. 6). By fixing the lid body 22 to the housing body 21, the inside of the housing surrounded by the housing body 21 and the lid body 22 can be sealed. The lid 22 can be removed by removing the screw 39 from the tap hole 35 to which the screw 39 is fixed. In this way, the lubricating oil can be replenished to the lubricating oil tank 30 housed in the housing body 21 without removing the entire lubricating oil supply unit 20 from the bearing device 10.
 ハウジング本体21の外周面は、外輪間座33の内周面に固定されていてもよい。当該ハウジング本体21の外周面と外輪間座33との間はたとえば接着剤によって接着固定されていてもよい。ハウジング本体21を接着固定する接着剤は、たとえばエポキシ樹脂等を使用してもよい。なお、ハウジング本体21(つまり潤滑油供給ユニット20)は軸受11の静止輪に固定されていてもよい。なお、ハウジング本体21と内輪間座34との間には隙間36が形成されていてもよい。 The outer peripheral surface of the housing body 21 may be fixed to the inner peripheral surface of the outer ring spacer 33. The outer peripheral surface of the housing main body 21 and the outer ring spacer 33 may be bonded and fixed by, for example, an adhesive. For example, an epoxy resin or the like may be used as an adhesive for bonding and fixing the housing body 21. The housing body 21 (that is, the lubricating oil supply unit 20) may be fixed to the stationary ring of the bearing 11. A gap 36 may be formed between the housing main body 21 and the inner ring spacer 34.
 <軸受装置の動作>
 軸受11および潤滑油供給ユニット20(図2参照)を含む軸受装置では、制御回路27によりポンプ29の動作を制御することにより、潤滑油タンク30から軸受11に潤滑油を供給することができる。
<Operation of bearing device>
In the bearing device including the bearing 11 and the lubricating oil supply unit 20 (see FIG. 2), the lubricating oil can be supplied from the lubricating oil tank 30 to the bearing 11 by controlling the operation of the pump 29 by the control circuit 27.
 <ポンプ29の正転駆動のタイミング>
 潤滑油供給ユニット20から軸受11の内部への潤滑油の供給タイミングは、ポンプ29の正転駆動のタイミングとして制御される。ポンプ29の正転駆動のタイミングは、例えば発電部25で発生した電力が電源回路26における蓄電部(たとえばコンデンサ)に蓄電され、当該蓄電部の電圧が一定の電圧に達した時点で行なうことが可能である。さらに、グリースを封入した軸受11の潤滑寿命を長くし、メンテナンスまでの時間を長くするために、次のようなインターバルにすることが望ましい。以下、図8~図13を参照して具体的に説明する。図8~図13において、縦軸は蓄電部の電圧を示し、横軸は時間を示す。図8~図13は、蓄電部の電圧の時間変化(充電および放電状況)を示している。
<Timing for forward rotation of pump 29>
The supply timing of the lubricating oil from the lubricating oil supply unit 20 to the inside of the bearing 11 is controlled as the timing of the forward drive of the pump 29. The forward drive timing of the pump 29 is performed, for example, when power generated in the power generation unit 25 is stored in a power storage unit (for example, a capacitor) in the power supply circuit 26 and the voltage of the power storage unit reaches a certain voltage. Is possible. Furthermore, in order to extend the lubrication life of the bearing 11 filled with grease and to increase the time to maintenance, it is desirable to set the following intervals. Hereinafter, a specific description will be given with reference to FIGS. 8 to 13, the vertical axis indicates the voltage of the power storage unit, and the horizontal axis indicates time. 8 to 13 show the time change (charging and discharging status) of the voltage of the power storage unit.
 例えば、図8を参照して、ポンプ29を正転駆動するために必要な電圧(図8の電圧V2)に蓄電部の電圧が達する(あるいは満充電になる)までの充電時間41が、必要とする潤滑油の供給タイミングよりも早い場合には、蓄電部の電圧が電圧V2に達した(満充電に達した)時点t1の後も、所定時間の蓄電時間(遅延時間42)を加えて(つまり時点t1から時点t2までの遅延時間を加えて)、時点t2において蓄電部に蓄積された電力によりポンプ29を正転駆動する。このようにして、蓄電部の電圧が所定の電圧(たとえば満充電)に達する時間より、潤滑油の供給インターバルを長くするように管理できる。 For example, referring to FIG. 8, a charging time 41 is required until the voltage of the power storage unit reaches the voltage (voltage V2 in FIG. 8) required for forward driving of pump 29 (or full charge). When the lubricant supply timing is earlier than the time t1 when the voltage of the power storage unit reaches the voltage V2 (full charge is reached), a predetermined power storage time (delay time 42) is added. (In other words, adding a delay time from time t1 to time t2), pump 29 is driven to rotate forward by the electric power stored in the power storage unit at time t2. In this way, it is possible to manage the supply interval of the lubricating oil to be longer than the time when the voltage of the power storage unit reaches a predetermined voltage (for example, full charge).
 また、図8に示したように、一度ポンプ29を正転駆動することで蓄電部の電圧が電圧V1にまで低下した後、再び充電動作を行なう。この結果、蓄電部の電圧が所定の電圧になる(時点t3)。その後、上述した遅延時間を経過した後(時点t4)、再びポンプ29を正転駆動する。このようなサイクルをその後も(たとえば時点t4~時点t6まで)続けることができる。 Further, as shown in FIG. 8, once the pump 29 is driven to rotate forward, the voltage of the power storage unit decreases to the voltage V1, and then the charging operation is performed again. As a result, the voltage of the power storage unit becomes a predetermined voltage (time point t3). Thereafter, after the delay time described above has elapsed (time t4), the pump 29 is driven to rotate forward again. Such a cycle can be continued thereafter (for example, from time t4 to time t6).
 また、図9に示すように、遅延時間42(時点t1から時点t2までの時間)を、軸受11に最初から封入されているグリースの寿命時間を考慮して長く設定することができる。たとえば、軸受11としてグリース封入型の軸受を用いる場合、稼働当初は軸受11に封入されたグリースにより十分な潤滑が確保できるため、図9に示すように、軸受11に封入されたグリースによる潤滑寿命(例えば、2万時間)が経過した後に、初回の潤滑油の供給を開始するようにしてもよい。また、このとき軸受11の稼働開始時点として、蓄電部の充電電圧が一定の値に達した時点や、熱電素子24からの出力電圧が一定の値に達した時点など、任意のタイミングを採用してもよい。 Further, as shown in FIG. 9, the delay time 42 (the time from the time point t1 to the time point t2) can be set long considering the life time of the grease sealed in the bearing 11 from the beginning. For example, when a grease-filled type bearing is used as the bearing 11, sufficient lubrication can be secured by the grease enclosed in the bearing 11 at the beginning of operation, so that the lubrication life of the grease enclosed in the bearing 11 is as shown in FIG. 9. After the elapse of (for example, 20,000 hours), the first supply of lubricating oil may be started. Further, at this time, as the operation start time of the bearing 11, any timing such as the time when the charging voltage of the power storage unit reaches a certain value or the time when the output voltage from the thermoelectric element 24 reaches a certain value is adopted. May be.
 この場合、たとえば運転開始から時点t2までの時間がグリースの潤滑寿命時間43と同等となるように、遅延時間42を設定することができる。なお、時点t2の決定には、制御回路27におけるタイマー機能により稼働開始時点からの時間を計測し、当該潤滑寿命時間43の経過時点を上記時点t2としてもよい。また、2回目以降のサイクルにおける遅延時間(時点t3~時点t4の間、あるいは時点t5~時点t6の間の時間)については、軸受11内のグリースの基油がかなり少なくなっていることも考えられるため、軸受装置の使用状況なども考慮して1回目の遅延時間42より短く設定することができる。このように、初回の潤滑油の供給を遅延させることにより、軸受11の寿命が長くなり、メンテナンスまでの時間を長くすることができる。 In this case, for example, the delay time 42 can be set so that the time from the start of operation to the time point t2 is equivalent to the lubrication life time 43 of the grease. Note that the time t2 may be determined by measuring the time from the operation start time using a timer function in the control circuit 27, and setting the elapsed time of the lubrication life time 43 as the time t2. In addition, regarding the delay time (time between time t3 and time t4 or time between time t5 and time t6) in the second and subsequent cycles, it is considered that the base oil of the grease in the bearing 11 is considerably reduced. Therefore, it can be set shorter than the first delay time 42 in consideration of the usage status of the bearing device. In this way, by delaying the initial supply of the lubricating oil, the life of the bearing 11 is extended, and the time until maintenance can be extended.
 また、図10に示すように、蓄電部の満充電までの時間に応じて潤滑油の吐出間隔(ポンプ29の動作インターバル)を制御してもよい。たとえば、蓄電部での充電と放電とを繰り返し、当該充放電のサイクル数について所定サイクル数ごとにポンプ29を正転駆動するようにしてもよい。具体的には、図10の時点t1、時点t2、時点t3については、蓄電部から抵抗器などへ放電のみを行ってポンプ29は駆動させない。そして、4回目の充放電サイクルにおいて満充電になったとき(蓄電部の電圧が電圧V2になったとき)である時点t4において、ポンプ29を正転駆動させる。このように充放電サイクルの所定回数ごとにポンプ29を正転駆動させるようにして、潤滑油の供給インターバルを長くするように管理できる。 Also, as shown in FIG. 10, the lubricating oil discharge interval (operation interval of the pump 29) may be controlled according to the time until the power storage unit is fully charged. For example, the charge and discharge in the power storage unit may be repeated, and the pump 29 may be driven to rotate forward every predetermined number of cycles. Specifically, at time t1, time t2, and time t3 in FIG. 10, only the discharge from the power storage unit to the resistor or the like is performed, and the pump 29 is not driven. Then, at the time t4 when the battery is fully charged in the fourth charge / discharge cycle (when the voltage of the power storage unit becomes the voltage V2), the pump 29 is driven to rotate forward. In this way, the pump 29 can be driven to rotate forward every predetermined number of charge / discharge cycles, so that the supply interval of the lubricating oil can be increased.
 ここで、潤滑油供給ユニット20の発電部25は、軸受11の内輪14と外輪13との温度差を利用して発電している。そのため、軸受11の内輪14の温度が相対的に高くなるような運転状況では、内輪14と外輪13との温度差が大きくなり、その結果として発電部25での単位時間当りの発電量が多くなる。したがって、電源回路26の蓄電部への充電時間が短くなる。反対に、軸受11の内輪14の温度と外輪13の温度との差があまり大きくない場合には、発電部25での単位時間当りの発電量が少なくなる。したがって、電源回路26の蓄電部への充電時間が長くなる。 Here, the power generation unit 25 of the lubricating oil supply unit 20 generates power using the temperature difference between the inner ring 14 and the outer ring 13 of the bearing 11. Therefore, in an operating situation in which the temperature of the inner ring 14 of the bearing 11 is relatively high, the temperature difference between the inner ring 14 and the outer ring 13 becomes large, and as a result, the amount of power generation per unit time in the power generation unit 25 is large. Become. Therefore, the charging time for the power storage unit of the power supply circuit 26 is shortened. On the other hand, when the difference between the temperature of the inner ring 14 of the bearing 11 and the temperature of the outer ring 13 is not so large, the power generation amount per unit time in the power generation unit 25 is reduced. Therefore, the charging time for the power storage unit of the power supply circuit 26 becomes longer.
 上述した図10を、上記内輪14と外輪13との温度差が大きい場合に対応すると考えた場合、図11は、図10に示した場合より軸受11の内輪14と外輪13との温度差が相対的に小さく、結果的に充電時間が長くなった場合を示している。図10と図11とを比較すると、充電時間41の長さ(たとえば充電開始から時点t1までの時間)について、図11に示したグラフのほうが長くなっていることが分かる。つまり、図10に示すように充放電サイクルをポンプ29の駆動インターバルの決定に用いると、軸受11の内輪14と外輪13との温度差によって、潤滑油の供給インターバルが変化する。 10 is considered to correspond to the case where the temperature difference between the inner ring 14 and the outer ring 13 is large, FIG. 11 shows that the temperature difference between the inner ring 14 and the outer ring 13 of the bearing 11 is larger than that shown in FIG. It shows a case where the charging time is relatively small and as a result, the charging time becomes long. Comparing FIG. 10 and FIG. 11, it can be seen that the graph shown in FIG. 11 is longer with respect to the length of the charging time 41 (for example, the time from the start of charging to the time t1). That is, when the charge / discharge cycle is used for determining the drive interval of the pump 29 as shown in FIG. 10, the supply interval of the lubricating oil changes depending on the temperature difference between the inner ring 14 and the outer ring 13 of the bearing 11.
 一般的には、軸受11の内部の潤滑条件が良好な場合には、軸受11の内部の温度上昇は相対的に小さくなり、潤滑油の供給間隔が長くても差し支えない。一方、軸受11の内部の潤滑条件があまり良好でない場合には、軸受11の内部の温度上昇が相対的に大きくなるため、潤滑油の供給間隔を短くすることが望ましい。 Generally, when the lubrication conditions inside the bearing 11 are good, the temperature rise inside the bearing 11 becomes relatively small, and there is no problem even if the lubrication oil supply interval is long. On the other hand, when the lubrication conditions inside the bearing 11 are not so good, the temperature rise inside the bearing 11 becomes relatively large, so it is desirable to shorten the supply interval of the lubricating oil.
 したがって、軸受11の内輪14と外輪13との温度差による発電を利用した場合、軸受11の負荷に応じて潤滑油の供給インターバルが自動的に変化するので、軸受11の内部の潤滑条件を常に良好に保つことができる。また、図10および図11に示した制御では、ポンプ29の正転駆動までの間に、充放電が繰り返されることになる。したがって、この充放電の回数でポンプ29の正転駆動のインターバルを管理してもよい。 Therefore, when power generation due to the temperature difference between the inner ring 14 and the outer ring 13 of the bearing 11 is used, the lubrication oil supply interval automatically changes according to the load of the bearing 11, so that the lubrication condition inside the bearing 11 is always changed. Can keep good. In the control shown in FIGS. 10 and 11, charging and discharging are repeated until the pump 29 is driven forward. Therefore, the interval of forward rotation of the pump 29 may be managed by the number of times of charging / discharging.
 たとえば、図12に示すように、1回ポンプ29を正転駆動した(時点t1)後、充放電を8回繰り返し、9回目の満充電となったとき(電圧V2に到達した時点t2)においてポンプ29を正転駆動する、というサイクルを繰り返すようにポンプ29の駆動インターバルを管理してもよい。 For example, as shown in FIG. 12, after the pump 29 has been normally driven once (time t1), charging and discharging are repeated eight times, and when the ninth full charge is reached (time t2 when the voltage V2 is reached). The drive interval of the pump 29 may be managed so as to repeat the cycle of driving the pump 29 in the normal direction.
 また、蓄電部への充電において満充電までの時間が短い場合は、軸受11での外輪13と内輪14との温度差が大きい(内輪温度が高い)事が推測される。逆に、上記満充電までの時間が長い場合は、上述した場合に比べ相対的に内輪温度が低い事が推測される。そのため、充電時間が相対的に短い場合は、一般的に軸受11内部の潤滑状態があまり良好でない傾向にあり、充電時間が長い場合は、一般的に軸受11内部の潤滑状態が良好であると判断しても良い。このように、満充電までの時間を計測する事により、別途、温度センサなどのデバイスを軸受11に設ける事なく、軸受11内部の潤滑状態の変化を間接的に推測する事ができる。このような推測を行うため、たとえば運転試験により、満充電までの時間と軸受11内部の潤滑状態との関係を求めておいてもよい。この場合、軸受11の回転速度,負荷の大小,予圧量などにより上記時間と軸受11内部の潤滑状態との関係は変化する。 Further, when the time until full charge is short in charging the power storage unit, it is estimated that the temperature difference between the outer ring 13 and the inner ring 14 in the bearing 11 is large (the inner ring temperature is high). On the contrary, when the time until full charge is long, it is estimated that the inner ring temperature is relatively low as compared with the case described above. Therefore, when the charging time is relatively short, the lubrication state inside the bearing 11 generally tends not to be very good, and when the charging time is long, the lubrication state inside the bearing 11 is generally good. You may judge. Thus, by measuring the time until full charge, a change in the lubrication state inside the bearing 11 can be indirectly estimated without separately providing a device such as a temperature sensor in the bearing 11. In order to make such an estimation, a relationship between the time until full charge and the lubrication state inside the bearing 11 may be obtained by, for example, an operation test. In this case, the relationship between the time and the lubrication state inside the bearing 11 changes depending on the rotational speed of the bearing 11, the magnitude of the load, the amount of preload, and the like.
 また、ポンプ29を駆動した場合と、抵抗器などを用いて蓄電部から端に放電した場合とではポンプ29を駆動した場合の方が蓄電部での電圧の低下が大きくなる場合がある。たとえば、図13に示すように、時点t1や時点t2においてポンプ29を駆動した場合に蓄電部の電圧は電圧V1まで低下する一方、端に抵抗器などへ放電した場合には蓄電部の電圧は電圧V3まで低下する場合を考える。ここで、電圧V1は電圧V3より低い。この場合、電圧V1と電圧V3との間の電圧V4を閾値として設定し、当該閾値以下の電圧に蓄電部の電圧が下がったときに、制御回路27において当該電圧が下がったタイミング(たとえば時点t1または時点t2)と電圧値(電圧V1)とを記憶してもよい。上記タイミングの情報としては、具体的な日時の情報を用いてもよい。 In addition, when the pump 29 is driven and when the discharge is performed from the power storage unit to the end using a resistor or the like, the voltage drop in the power storage unit may be greater when the pump 29 is driven. For example, as shown in FIG. 13, when the pump 29 is driven at time t1 or time t2, the voltage of the power storage unit decreases to the voltage V1, while when the terminal is discharged to a resistor or the like, the voltage of the power storage unit is Consider a case where the voltage drops to V3. Here, the voltage V1 is lower than the voltage V3. In this case, a voltage V4 between the voltage V1 and the voltage V3 is set as a threshold value, and when the voltage of the power storage unit drops to a voltage equal to or lower than the threshold value, the control circuit 27 reduces the voltage (for example, the time point t1). Alternatively, the time point t2) and the voltage value (voltage V1) may be stored. As the timing information, specific date information may be used.
 <ポンプ29の正転駆動時間>
 潤滑油供給ユニット20から軸受11の内部への潤滑油の供給量は、ポンプ29の正転駆動時間として制御される。ポンプ29の正転駆動時間は、上述のように、例えば予め設定された時間に基づいて制御回路27により制御される。
<Forward driving time of pump 29>
The supply amount of the lubricating oil from the lubricating oil supply unit 20 to the inside of the bearing 11 is controlled as the normal rotation driving time of the pump 29. As described above, the forward drive time of the pump 29 is controlled by the control circuit 27 based on, for example, a preset time.
 このように、ポンプ29の正転駆動に関し、タイミングおよび駆動時間が制御回路27によって適切に制御されることにより、軸受11の内部の潤滑条件を常に良好に保つことができる。 Thus, with respect to the forward drive of the pump 29, the timing and drive time are appropriately controlled by the control circuit 27, so that the lubrication conditions inside the bearing 11 can always be kept good.
 ポンプ29の正転駆動時には、逆止弁80の上記基準値以上の吐出圧力が印加された潤滑油がポンプ29から吐出チューブ32に流入することにより、逆止弁80が開放されて、潤滑油が吐出チューブ32を経て軸受11の内部に供給される。一方、ポンプ29が正転駆動していない時には、逆止弁80の上記基準値以上の吐出圧力が印加された潤滑油が吐出チューブ32に流入しないため、逆止弁80が閉止される。そのため、ポンプ29の正転駆動を停止したときに、ポンプ29の上記複数の空間内および逆止弁80よりも上流側に位置する吐出チューブ32内に残留している潤滑油は、上記基準値以上の圧力が印加されていないため、逆止弁80によって軸受11の内部に供給されることが抑制されている。また、ポンプ29の正転駆動が停止したときにノズル37内および逆止弁80よりも下流側に位置する吐出チューブ32内に残留している潤滑油は、逆止弁80が閉止されていることにより、軸受11の内部に流出することが抑制されている。 When the pump 29 is driven forward, lubricating oil to which a discharge pressure equal to or higher than the reference value of the check valve 80 is applied flows from the pump 29 into the discharge tube 32, whereby the check valve 80 is opened and the lubricating oil. Is supplied into the bearing 11 through the discharge tube 32. On the other hand, when the pump 29 is not normally driven, since the lubricating oil to which the discharge pressure equal to or higher than the reference value of the check valve 80 is applied does not flow into the discharge tube 32, the check valve 80 is closed. Therefore, when the forward drive of the pump 29 is stopped, the lubricating oil remaining in the plurality of spaces of the pump 29 and in the discharge tube 32 positioned on the upstream side of the check valve 80 is the reference value. Since the above pressure is not applied, supply to the inside of the bearing 11 by the check valve 80 is suppressed. In addition, the check valve 80 is closed for the lubricating oil remaining in the nozzle 37 and the discharge tube 32 located downstream of the check valve 80 when the forward drive of the pump 29 is stopped. This prevents the bearing 11 from flowing out.
 つまり、ポンプ29が正転動作していない時には、ポンプ29、吐出チューブ32、およびノズル37内に残留している潤滑油が軸受11の内部に供給されない。そのため、ポンプ29の正転駆動時間を制御することにより、潤滑油供給ユニット20から軸受11の内部への潤滑油の供給量を正確に制御することができる。言い換えると、潤滑油供給ユニット20によれば、潤滑油タンク30内の潤滑油の残存量を、ポンプ29の正転駆動時間から正確に見積もることができる。これにより、潤滑油タンク30内の潤滑油が空になる前に、潤滑油タンク30内に潤滑油を補充、または潤滑油が充填された潤滑油タンク30に交換することができる。その結果、潤滑油供給ユニット20および軸受装置10は、長期に安定して動作させることが可能である。 That is, when the pump 29 is not rotating forward, the lubricating oil remaining in the pump 29, the discharge tube 32, and the nozzle 37 is not supplied into the bearing 11. Therefore, by controlling the normal rotation driving time of the pump 29, the amount of lubricating oil supplied from the lubricating oil supply unit 20 to the inside of the bearing 11 can be accurately controlled. In other words, according to the lubricating oil supply unit 20, the remaining amount of the lubricating oil in the lubricating oil tank 30 can be accurately estimated from the normal rotation driving time of the pump 29. Thereby, before the lubricating oil in the lubricating oil tank 30 becomes empty, the lubricating oil tank 30 can be supplemented with lubricating oil or replaced with the lubricating oil tank 30 filled with lubricating oil. As a result, the lubricating oil supply unit 20 and the bearing device 10 can be stably operated over a long period of time.
 <変形例>
 図5~図7を参照して、実施の形態1に係る潤滑油供給ユニットおよび軸受装置の変形例を説明する。図5~図7に示される潤滑油供給ユニットおよび軸受装置は、図1~図4に示される潤滑油供給ユニット20および軸受装置10(図2参照)と基本的に同様の構成を備えるが、発電部25、制御回路27、および駆動回路28の各構成が異なっている。
<Modification>
A modification of the lubricating oil supply unit and the bearing device according to the first embodiment will be described with reference to FIGS. The lubricating oil supply unit and the bearing device shown in FIGS. 5 to 7 have basically the same configuration as the lubricating oil supply unit 20 and the bearing device 10 (see FIG. 2) shown in FIGS. Each structure of the electric power generation part 25, the control circuit 27, and the drive circuit 28 differs.
 発電部25の熱電素子24は、内輪間座34に配置された熱伝導体23と、外輪間座33との間を接続するように配置されていてもよい。熱電素子24は、外輪間座33の内周面と接触している。熱電素子24は、リード線81を介して電源回路26と接続されている。このようにしても、軸受11の外輪13と内輪14との温度差が生じることにより、外輪間座33と熱伝導体23との間に配置された熱電素子24の両端面には温度差が生じる。その結果、熱電素子24がゼーベック効果により発電を行うことができる。電源回路26に加えて、発電部25により発生された電荷を蓄電可能なコンデンサ82がさらに設けられていてもよい。コンデンサ82はポンプ29に電力を供給可能に設けられている。コンデンサ82の充放電は、駆動制御回路により制御される。 The thermoelectric element 24 of the power generation unit 25 may be disposed so as to connect between the heat conductor 23 disposed in the inner ring spacer 34 and the outer ring spacer 33. The thermoelectric element 24 is in contact with the inner peripheral surface of the outer ring spacer 33. The thermoelectric element 24 is connected to the power supply circuit 26 via a lead wire 81. Even in this case, a temperature difference is generated between the outer ring 13 and the inner ring 14 of the bearing 11, so that there is a temperature difference between both end faces of the thermoelectric element 24 disposed between the outer ring spacer 33 and the heat conductor 23. Arise. As a result, the thermoelectric element 24 can generate power by the Seebeck effect. In addition to the power supply circuit 26, a capacitor 82 that can store the charge generated by the power generation unit 25 may be further provided. The capacitor 82 is provided so that power can be supplied to the pump 29. Charging / discharging of the capacitor 82 is controlled by a drive control circuit.
 駆動制御回路27,28は、図1に示される制御回路27と駆動回路28とが1つの回路として設けられたものである。駆動制御回路27,28は、コンデンサ82の充放電を制御することにより、ポンプ29の動作を制御することができる。 The drive control circuits 27 and 28 are provided with the control circuit 27 and the drive circuit 28 shown in FIG. 1 as one circuit. The drive control circuits 27 and 28 can control the operation of the pump 29 by controlling charging and discharging of the capacitor 82.
 このようにしても、図5~図7に示される潤滑油供給ユニットは、基準値以上の吐出圧力が加えられた潤滑油を吐出チューブ32およびノズル37(供給管路)において流通させ、基準値未満の吐出圧力が加えられた潤滑油の吐出チューブ32およびノズル37(供給管路)における流通を阻止する逆止弁80を備えるため、図1~図4に示される潤滑油供給ユニットと同様の効果を奏することができる。 Even in this case, the lubricating oil supply unit shown in FIGS. 5 to 7 distributes the lubricating oil to which the discharge pressure equal to or higher than the reference value is circulated in the discharge tube 32 and the nozzle 37 (supply pipe line), so that the reference value is reached. Since a check valve 80 for preventing the flow of the lubricating oil applied to the discharge tube 32 and the nozzle 37 (supply pipe line) to which a discharge pressure of less than is applied is provided, the same as the lubricating oil supply unit shown in FIGS. There is an effect.
 (実施の形態2)
 次に、実施の形態2に係る潤滑油供給ユニットについて説明する。実施の形態2に係る潤滑油供給ユニットは、基本的には実施の形態1に係る潤滑油供給ユニット20と基本的に同様の構成を備えるが、軸受装置の駆動時においてポンプ29(図1参照)が反転駆動される点で異なる。
(Embodiment 2)
Next, a lubricating oil supply unit according to Embodiment 2 will be described. The lubricating oil supply unit according to the second embodiment has basically the same configuration as that of the lubricating oil supply unit 20 according to the first embodiment, but the pump 29 (see FIG. 1) when the bearing device is driven. ) Is reversed.
 図4に示すように、ポンプ29のインナロータ90およびアウタロータ91は、第1方向R1とは反対の第2方向R2に向かって回転(反転)可能である。インナロータ90が第2方向R2に回転すると、インナロータ90との噛合いによってアウタロータ91が第2方向R2に回転する。インナロータ90とアウタロータ91とが反転することにより、上記複数の空間の体積はそれぞれ変化する。 As shown in FIG. 4, the inner rotor 90 and the outer rotor 91 of the pump 29 can be rotated (reversed) in the second direction R2 opposite to the first direction R1. When the inner rotor 90 rotates in the second direction R2, the outer rotor 91 rotates in the second direction R2 by meshing with the inner rotor 90. When the inner rotor 90 and the outer rotor 91 are inverted, the volumes of the plurality of spaces change.
 ポンプ29の反転動作に係る各種パラメータ、例えば反転駆動のタイミング(正転動作停止後から反転動作開始までのインターバル)および反転駆動時間などは、制御回路27により予め設定することができる。駆動回路28は、ポンプ29のインナロータ90およびアウタロータ91を第2方向R2に回転(反転)させることができる。 Various parameters relating to the reversal operation of the pump 29, for example, the reversal drive timing (interval from the stop of the normal rotation operation to the start of the reversal operation) and the reversal drive time can be set in advance by the control circuit 27. The drive circuit 28 can rotate (reverse) the inner rotor 90 and the outer rotor 91 of the pump 29 in the second direction R2.
 ポンプ29は、インナロータ90およびアウタロータ91とが第2方向R2に向かって回転(反転)することにより、ポンプ29の内部(インナロータ90とアウタロータ91との間に形成される空間)に残留している潤滑油を、吸込みチューブ31を介して潤滑油タンク30に排出可能に設けられている。仮に、ポンプ29の正転動作により、ポンプ29の内部に異物が吸い込まれた場合には、ポンプ29の反転動作により異物を吸込みチューブ31を介して潤滑油タンク30に排出することができる。なお、ポンプ29の反転時には、吐出チューブ32には上記基準値以上の吐出圧力が印加された潤滑油が供給されないため、吐出チューブ32は逆止弁80により閉じられる。そのため、潤滑油供給ユニット20によれば、軸受11の内部の気体等が吐出チューブ32を介してポンプ29の内部に吸い込まれることを抑制できる。 The pump 29 remains inside the pump 29 (a space formed between the inner rotor 90 and the outer rotor 91) as the inner rotor 90 and the outer rotor 91 rotate (reverse) in the second direction R2. The lubricating oil is provided in the lubricating oil tank 30 through the suction tube 31 so as to be discharged. If foreign matter is sucked into the pump 29 by the normal operation of the pump 29, the foreign matter can be discharged to the lubricating oil tank 30 through the suction tube 31 by the reversing operation of the pump 29. Note that when the pump 29 is reversed, the discharge tube 32 is closed by the check valve 80 because the lubricant to which the discharge pressure equal to or higher than the reference value is not supplied to the discharge tube 32. Therefore, according to the lubricating oil supply unit 20, it is possible to prevent the gas or the like inside the bearing 11 from being sucked into the pump 29 via the discharge tube 32.
 <ポンプ29の反転駆動のタイミングおよび反転駆動時間>
 ポンプ29の反転駆動のタイミングおよび反転駆動時間は、予め任意に設定可能である。例えば、ポンプ29は、上記正転駆動時間が経過して停止した後、速やかに反転駆動するように設定されていてもよい。つまり、例えば図8または図9に示される時点t2,t4,t6において、ポンプ29は正転駆動に引き続いて反転駆動してもよい。また、図10~図13に示される時点t1,t2,t4において、ポンプ29は正転駆動に引き続いて反転駆動してもよい。
<Inversion drive timing and inversion drive time of pump 29>
The inversion drive timing and inversion drive time of the pump 29 can be arbitrarily set in advance. For example, the pump 29 may be set so as to be reversely driven immediately after the forward drive time has elapsed and stopped. That is, for example, at time t2, t4, t6 shown in FIG. 8 or FIG. In addition, at time points t1, t2, and t4 shown in FIGS. 10 to 13, the pump 29 may be driven reversely following the normal rotation driving.
 また、ポンプ29は、反転駆動時間が経過して停止した後、速やかに正転駆動を再開するように設定されていてもよい。例えば図8または図9に示される時点t2,t4,t6において、ポンプ29は正転駆動、反転駆動に引き続いて正転駆動してもよい。また、図10~図13に示される時点t1,t2,t4において、ポンプ29は正転駆動、反転駆動に引き続いて正転駆動してもよい。言い換えると、潤滑油供給ユニット20は、所定量の潤滑油を軸受11の内部に供給するための動作が、ポンプ29の正転駆動と反転駆動とが交互に繰り返される一連のプロセスとして実施可能に設定されていてもよい。 Further, the pump 29 may be set so as to resume normal rotation driving immediately after the reverse driving time has elapsed and stopped. For example, at time points t2, t4, and t6 shown in FIG. 8 or FIG. 9, the pump 29 may be driven forward after the forward rotation drive and the reverse drive. In addition, at the time points t1, t2, and t4 shown in FIGS. 10 to 13, the pump 29 may be driven forward after the forward drive and the reverse drive. In other words, the lubricating oil supply unit 20 can perform the operation for supplying a predetermined amount of lubricating oil into the bearing 11 as a series of processes in which the forward rotation driving and the reverse driving of the pump 29 are alternately repeated. It may be set.
 また、ポンプ29の反転駆動のタイミングは、例えば駆動回路28からポンプ29に供給される電流値の増加傾向が確認されたタイミングとしてもよい。当該電流値の増加は、例えばポンプ29のインナロータ90とアウタロータ91との間に形成される上記微小隙間S(図4参照)に異物が噛み込んだ場合に、発生する。そのため、駆動回路28からポンプ29に供給される電流値の増加が確認された後にポンプ29を反転駆動させることにより、異物の噛み込みを解消することができる。この場合、制御回路27は、例えば上記電流値を測定可能な測定部と、測定部により測定された電流値の増加傾向を検出可能な判定部とを有している。ポンプ29は、例えば制御回路27の判定部により電流値の増加傾向が確認されたときに駆動回路28を介して反転駆動される。 Further, the inversion drive timing of the pump 29 may be, for example, a timing when an increasing tendency of the current value supplied from the drive circuit 28 to the pump 29 is confirmed. The increase in the current value occurs, for example, when a foreign object is caught in the minute gap S (see FIG. 4) formed between the inner rotor 90 and the outer rotor 91 of the pump 29. Therefore, the foreign matter can be prevented from being caught by reversing the pump 29 after the increase in the value of the current supplied from the drive circuit 28 to the pump 29 is confirmed. In this case, the control circuit 27 includes, for example, a measurement unit that can measure the current value and a determination unit that can detect an increasing tendency of the current value measured by the measurement unit. The pump 29 is reversely driven via the drive circuit 28 when, for example, an increasing tendency of the current value is confirmed by the determination unit of the control circuit 27.
 このように、実施の形態2に係る潤滑油供給ユニットは、正転動作および反転動作可能なポンプ29を備えるため、ポンプ29の反転動作によりポンプ29の内部に潤滑油に混入された異物をポンプ29から排出することができる。そのため、実施の形態2に係る潤滑油供給ユニットによれば、軸受11に対し長期に渡って潤滑油を安定供給可能であり、高い信頼性を有している。また、実施の形態2に係る潤滑油供給ユニットは、逆止弁80を備えているため、実施の形態1に係る潤滑油供給ユニットと同様の効果を奏することができる。 As described above, the lubricating oil supply unit according to the second embodiment includes the pump 29 that can perform the forward rotation operation and the reversal operation. Therefore, the foreign material mixed in the lubricating oil is pumped into the pump 29 by the reversing operation of the pump 29. 29 can be discharged. Therefore, according to the lubricating oil supply unit according to the second embodiment, the lubricating oil can be stably supplied to the bearing 11 over a long period of time and has high reliability. Further, since the lubricating oil supply unit according to the second embodiment includes the check valve 80, the same effect as the lubricating oil supply unit according to the first embodiment can be achieved.
 (実施の形態3)
 次に、図14を参照して、実施の形態3に係る軸受装置について説明する。図14において、縦軸は蓄電部の電圧を示し、横軸は時間を示す。実施の形態3に係る軸受装置は、実施の形態1に係る軸受装置と基本的に同様の構成を備えるが、軸受11に予め封入されたグリースの潤滑寿命が経過する前に、潤滑油の供給が開始される点で異なる。具体的には、実施の形態1に係る軸受装置では、図9に示されるように、軸受11に封入されたグリースによる潤滑寿命が経過した後に初回の潤滑油の供給を開始するように制御され得る。これに対し、実施の形態3に係る軸受装置では、図14に示されるように、軸受11に封入されたグリースによる潤滑寿命が経過する前に初回の潤滑油の供給を開始するように制御される。
(Embodiment 3)
Next, a bearing device according to Embodiment 3 will be described with reference to FIG. In FIG. 14, the vertical axis indicates the voltage of the power storage unit, and the horizontal axis indicates time. The bearing device according to the third embodiment has basically the same configuration as that of the bearing device according to the first embodiment. However, before the lubricating life of the grease preliminarily sealed in the bearing 11 elapses, the lubricating oil is supplied. Is different in that is started. Specifically, in the bearing device according to the first embodiment, as shown in FIG. 9, the first lubrication oil supply is controlled after the lubrication life by the grease sealed in the bearing 11 has elapsed. obtain. On the other hand, in the bearing device according to the third embodiment, as shown in FIG. 14, the first lubrication oil supply is controlled before the lubrication life due to the grease enclosed in the bearing 11 elapses. The
 この場合、遅延時間42は、ポンプ29が駆動される時点t2がグリースの潤滑寿命時間43内となるように、設定される。遅延時間42は、例えばポンプ29が駆動される時点t2がグリースの潤滑寿命時間43の直前となるように、設定される。遅延時間42は、蓄電部の満充電までの時間および軸受11に封入されたグリースによる潤滑状態を予め確認しておき、その確認試験の結果から設定され得る。 In this case, the delay time 42 is set so that the time point t2 when the pump 29 is driven is within the lubrication life time 43 of the grease. The delay time 42 is set so that, for example, the time point t2 when the pump 29 is driven is immediately before the grease lubrication life time 43. The delay time 42 can be set based on the result of the confirmation test by confirming in advance the time until the power storage unit is fully charged and the lubrication state with the grease enclosed in the bearing 11.
 実施の形態3に係る潤滑油供給ユニットは、軸受11に封入されたグリースによる潤滑寿命が経過した後に初回の潤滑油の供給を開始するように制御されるため、軸受11の焼き付きをより確実に防止することができる。また、実施の形態1に係る潤滑油供給ユニットは、逆止弁80を備えているため、実施の形態1に係る潤滑油供給ユニットと同様の効果を奏することができる。 Since the lubricating oil supply unit according to the third embodiment is controlled to start supplying the first lubricating oil after the lubricating life by the grease sealed in the bearing 11 has elapsed, the seizure of the bearing 11 can be more reliably performed. Can be prevented. Further, since the lubricating oil supply unit according to the first embodiment includes the check valve 80, the same effect as the lubricating oil supply unit according to the first embodiment can be achieved.
 なお、実施の形態1~3に係る潤滑油供給ユニットおよび軸受装置において、ポンプ29はトロコイドポンプとして構成されているが、他の回転式ポンプであってもよい。ポンプ29は、例えば遠心ポンプであってもよい。この場合、回転部としての羽根車(インペラ)と、固定部としてのケース(ハウジング)とを有する。羽根車は、第1方向に向かって回転(正転)可能である。好ましくは、羽根車は、第2方向に向かって回転(反転)可能である。遠心ポンプの内部には、羽根車とケースとの間に、上記微小隙間が形成される。そのため、羽根車が反転可能に設けられている遠心ポンプは、実施の形態2に係る潤滑油供給ユニットおよび軸受装置に好適である。 In the lubricating oil supply unit and the bearing device according to the first to third embodiments, the pump 29 is configured as a trochoid pump, but may be another rotary pump. The pump 29 may be a centrifugal pump, for example. In this case, it has the impeller (impeller) as a rotation part, and the case (housing) as a fixed part. The impeller can rotate (forward rotation) in the first direction. Preferably, the impeller is rotatable (inverted) in the second direction. Inside the centrifugal pump, the minute gap is formed between the impeller and the case. Therefore, the centrifugal pump in which the impeller is provided so as to be reversible is suitable for the lubricating oil supply unit and the bearing device according to the second embodiment.
 上述した説明と一部重複する部分もあるが、本発明の実施形態の特徴的な構成を列挙する。 Although there are portions that partially overlap with the above description, the characteristic configurations of the embodiment of the present invention are listed.
 実施の形態1~3に係る潤滑油供給ユニット20は、軸受11の内部に供給される潤滑油を保持する保持部(潤滑油タンク30)と、保持部から軸受11の内部に潤滑油を供給する供給部(駆動回路28、ポンプ29、吐出チューブ32およびノズル37)とを備える。供給部は、保持部から潤滑油を吸引し、基準値以上の吐出圧力を潤滑油に印加可能に設けられているポンプ29と、ポンプ29に接続され、軸受11の内部に延在する供給管路(吐出チューブ32およびノズル37)と、基準値以上の吐出圧力が加えられた潤滑油を供給管路において流通させ、基準値未満の吐出圧力が加えられた潤滑油の供給管路における流通を阻止する調整部(逆止弁80)を含む。 The lubricating oil supply unit 20 according to the first to third embodiments supplies a holding portion (lubricating oil tank 30) that holds the lubricating oil supplied to the inside of the bearing 11, and supplies the lubricating oil to the inside of the bearing 11 from the holding portion. Supply section (drive circuit 28, pump 29, discharge tube 32 and nozzle 37). The supply unit sucks the lubricating oil from the holding unit, and is provided with a pump 29 provided so that a discharge pressure equal to or higher than a reference value can be applied to the lubricating oil, and a supply pipe connected to the pump 29 and extending inside the bearing 11 Lubricating oil to which a discharge pressure equal to or higher than a reference value is circulated in the supply pipe and the lubricating oil to which the discharge pressure less than the reference value is applied is circulated in the supply line (discharge tube 32 and nozzle 37). The adjustment part (check valve 80) to prevent is included.
 このようにすれば、基準値未満の吐出圧力が加えられた潤滑油の供給管路における流通を調整部によって阻止することができる。そのため、例えばポンプ29の停止時に当該ポンプ29内に残留した潤滑油が供給管路に漏れ出て軸受の内部に供給されることを防止することができる。つまり、ポンプ29の駆動時にのみ軸受の内部に潤滑油を供給することができる。その結果、ポンプ29の駆動時間などから保持部における潤滑油の残存量を正確に見積もることができ、保持部内の潤滑油が無くなる前に保持部に潤滑油を補充等することができる。これにより、潤滑油供給ユニットは長期に安定して動作させることができる。 In this way, it is possible to prevent the adjusting portion from circulating the lubricating oil to which the discharge pressure less than the reference value is applied. Therefore, for example, the lubricating oil remaining in the pump 29 when the pump 29 is stopped can be prevented from leaking into the supply pipe and being supplied into the bearing. That is, the lubricating oil can be supplied into the bearing only when the pump 29 is driven. As a result, the remaining amount of the lubricating oil in the holding unit can be accurately estimated from the driving time of the pump 29, and the lubricating oil can be replenished to the holding unit before the lubricating oil in the holding unit runs out. Thereby, the lubricating oil supply unit can be stably operated for a long time.
 上記調整部は、供給管路上に設けられている逆止弁80であるのが好ましい。このようにすれば、調整部を小型化することができる。 The adjustment unit is preferably a check valve 80 provided on the supply pipeline. In this way, the adjustment unit can be reduced in size.
 実施の形態2に係る潤滑油供給ユニットにおいて、上記ポンプ29は、第1方向R1および第1方向R1と反対の第2方向R2に向けて回転可能な回転部(インナロータ90、アウタロータ91、羽根車)を有し、回転部の第1方向に向かう回転動作により潤滑油を保持部から吸引して供給管路へ吐出可能に設けられている。上記ポンプ29は、第1方向に向かう回転部の回転動作が停止したときに、第2方向に向かう回転部の回転動作を行ってもよい。このようにすれば、ポンプ29内に形成される微小隙間S(図4参照)に潤滑油中に混入した異物が噛み込むことを予防することができる。その結果、潤滑油供給ユニットは、長期に安定して動作可能である。 In the lubricating oil supply unit according to the second embodiment, the pump 29 is configured to rotate in the first direction R1 and the second direction R2 opposite to the first direction R1 (inner rotor 90, outer rotor 91, impeller). ) And is provided so that the lubricating oil can be sucked from the holding portion and discharged to the supply pipe line by the rotating operation toward the first direction of the rotating portion. The pump 29 may perform the rotation operation of the rotation unit in the second direction when the rotation operation of the rotation unit in the first direction stops. In this way, it is possible to prevent foreign matters mixed in the lubricating oil from getting caught in the minute gap S (see FIG. 4) formed in the pump 29. As a result, the lubricating oil supply unit can operate stably over a long period of time.
 上記ポンプ29は、第1方向および第1方向と反対の第2方向に向けて回転可能な回転部を有し、回転部の第1方向に向かう回転動作により潤滑油を保持部から吸引して供給管路へ吐出可能に設けられている。上記ポンプ29は、回転部を駆動する駆動部をさらに有し、駆動部の電流値が閾値を超えたときに、第2方向に向かう回転部の回転動作を行ってもよい。このようにすれば、ポンプ29内に形成される微小隙間S(図4参照)に噛み込んだ異物を、ポンプ29から排出することができる。その結果、潤滑油供給ユニットは、長期に安定して動作可能である。 The pump 29 has a rotating part rotatable in a first direction and a second direction opposite to the first direction, and sucks lubricating oil from the holding part by a rotating operation of the rotating part in the first direction. It is provided so that it can discharge to a supply pipeline. The pump 29 may further include a drive unit that drives the rotation unit, and may perform a rotation operation of the rotation unit toward the second direction when the current value of the drive unit exceeds a threshold value. In this way, foreign matter caught in the minute gap S (see FIG. 4) formed in the pump 29 can be discharged from the pump 29. As a result, the lubricating oil supply unit can operate stably over a long period of time.
 実施の形態1および2に係る軸受装置は、上記潤滑油供給ユニットと、潤滑油供給ユニットが接続された軸受11とを備える。そのため、軸受装置は、潤滑油供給ユニットから長期に安定して潤滑油の供給を受けることができるため、軸受11の焼き付きを長期に渡って防止することができる。その結果、軸受装置は、長期に安定して動作可能である。 The bearing device according to Embodiments 1 and 2 includes the lubricating oil supply unit and a bearing 11 to which the lubricating oil supply unit is connected. Therefore, the bearing device can stably receive the supply of the lubricating oil from the lubricating oil supply unit for a long period of time, so that the bearing 11 can be prevented from being seized for a long period of time. As a result, the bearing device can operate stably over a long period of time.
 実施の形態3に係る軸受装置は、上記潤滑油供給ユニットと、潤滑油供給ユニットが接続された軸受11とを備える。軸受11は、予め封入されたグリースを含む。供給部は、グリースの潤滑寿命が経過する前に、潤滑油を供給可能に設けられている。このようにすれば、軸受装置は、軸受11の焼き付きを確実に防止することができ、長期に安定して動作可能である。 A bearing device according to Embodiment 3 includes the lubricating oil supply unit and a bearing 11 to which the lubricating oil supply unit is connected. The bearing 11 includes pre-sealed grease. The supply unit is provided so that lubricating oil can be supplied before the lubricating life of the grease elapses. In this way, the bearing device can reliably prevent the bearing 11 from being seized, and can operate stably over a long period of time.
 以上のように本発明の実施の形態について説明を行ったが、上述の実施の形態を様々に変形することも可能である。また、本発明の範囲は上述の実施の形態に限定されるものではない。本発明の範囲は、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更を含むことが意図される。 Although the embodiments of the present invention have been described above, the above-described embodiments can be variously modified. The scope of the present invention is not limited to the above-described embodiment. The scope of the present invention is defined by the terms of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 本発明は、軸受の内部に供給される潤滑油を保持する保持部を備える潤滑油供給ユニットおよび当該潤滑油供給ユニットを備える軸受装置に特に有利に適用される。 The present invention is particularly advantageously applied to a lubricating oil supply unit including a holding portion that holds the lubricating oil supplied to the inside of the bearing and a bearing device including the lubricating oil supply unit.
 10 軸受装置、11 軸受、13 外輪、14 内輪、15 転動体、16 保持器、20 潤滑油供給ユニット、21 ハウジング本体、22 蓋体、23,23a,23b 熱伝導体、24 熱電素子、25 発電部、26 電源回路、27 制御回路、28 駆動回路、29 ポンプ、30 潤滑油タンク、31 チューブ、32 吐出チューブ、33 外輪間座、34 内輪間座、35 タップ穴、36 隙間、37 ノズル、39 ネジ、41 充電時間、42 遅延時間、43 潤滑寿命時間、80 逆止弁、91 インナロータ、92 アウタロータ。 10 bearing device, 11 bearing, 13 outer ring, 14 inner ring, 15 rolling element, 16 cage, 20 lubricant supply unit, 21 housing body, 22 lid, 23, 23a, 23b thermal conductor, 24 thermoelectric element, 25 power generation 26, power supply circuit, 27 control circuit, 28 drive circuit, 29 pump, 30 lubricant tank, 31 tube, 32 discharge tube, 33 outer ring spacer, 34 inner ring spacer, 35 tap hole, 36 gap, 37 nozzle, 39 Screw, 41 charging time, 42 delay time, 43 lubrication life time, 80 check valve, 91 inner rotor, 92 outer rotor.

Claims (5)

  1.  軸受の内部に供給される潤滑油を保持する保持部と、
     前記保持部から前記軸受の内部に前記潤滑油を供給する供給部とを備え、
     前記供給部は、前記保持部から前記潤滑油を吸引し、基準値以上の吐出圧力を前記潤滑油に印加可能に設けられているポンプと、前記ポンプに接続され、前記軸受の内部に延在する供給管路と、前記基準値以上の吐出圧力が加えられた前記潤滑油を前記供給管路において流通させ、前記基準値未満の吐出圧力が加えられた前記潤滑油の前記供給管路における流通を阻止する調整部を含む、潤滑油供給ユニット。
    A holding portion for holding lubricating oil supplied to the inside of the bearing;
    A supply unit for supplying the lubricating oil from the holding unit to the inside of the bearing,
    The supply unit sucks the lubricating oil from the holding unit, and is connected to the pump so as to be able to apply a discharge pressure equal to or higher than a reference value to the lubricating oil, and extends inside the bearing. And supply the lubricating oil to which the discharge pressure equal to or higher than the reference value is circulated in the supply line, and distribute the lubricating oil to which the discharge pressure less than the reference value is applied in the supply line Lubricating oil supply unit including an adjustment unit for preventing
  2.  前記調整部は、前記供給管路上に設けられている逆止弁である、請求項1に記載の潤滑油供給ユニット。 The lubricating oil supply unit according to claim 1, wherein the adjustment unit is a check valve provided on the supply pipeline.
  3.  前記ポンプは、第1方向および前記第1方向と反対の第2方向に向けて回転可能な回転部を有し、前記回転部の前記第1方向に向かう回転動作により前記潤滑油を前記保持部から吸引して前記供給管路へ吐出可能に設けられており、
     前記ポンプは、前記第1方向に向かう前記回転部の回転動作が停止したときに、前記第2方向に向かう前記回転部の回転動作を行う、請求項1または請求項2に記載の潤滑油供給ユニット。
    The pump has a rotating part rotatable in a first direction and a second direction opposite to the first direction, and the holding part holds the lubricating oil by a rotating operation of the rotating part toward the first direction. It is provided so that it can be sucked out and discharged into the supply pipeline,
    3. The lubricating oil supply according to claim 1, wherein the pump performs a rotation operation of the rotation unit toward the second direction when a rotation operation of the rotation unit toward the first direction stops. 4. unit.
  4.  前記ポンプは、第1方向および前記第1方向と反対の第2方向に向けて回転可能な回転部を有し、前記回転部の前記第1方向に向かう回転動作により前記潤滑油を前記保持部から吸引して前記供給管路へ吐出可能に設けられており、
     前記ポンプは、前記回転部を駆動する駆動部をさらに有し、前記駆動部の電流値が閾値を超えたときに、前記第2方向に向かう前記回転部の回転動作を行う、請求項1または請求項2に記載の潤滑油供給ユニット。
    The pump has a rotating part rotatable in a first direction and a second direction opposite to the first direction, and the holding part holds the lubricating oil by a rotating operation of the rotating part toward the first direction. It is provided so that it can be sucked out and discharged into the supply pipeline,
    The said pump further has a drive part which drives the said rotation part, and when the electric current value of the said drive part exceeds a threshold value, the rotation operation of the said rotation part which goes to the said 2nd direction is performed. The lubricating oil supply unit according to claim 2.
  5.  請求項1~請求項4のいずれか1項に記載の潤滑油供給ユニットと、
     前記潤滑油供給ユニットが接続された前記軸受とを備え、
     前記軸受は、予め封入されたグリースを含み、
     前記供給部は、前記グリースの潤滑寿命が経過する前に、前記潤滑油を供給可能に設けられている、軸受装置。
    The lubricating oil supply unit according to any one of claims 1 to 4,
    The bearing to which the lubricating oil supply unit is connected,
    The bearing includes pre-enclosed grease,
    The supply unit is a bearing device provided so that the lubricating oil can be supplied before the lubricating life of the grease elapses.
PCT/JP2016/083566 2015-12-10 2016-11-11 Lubricating oil supplying unit and bearing device WO2017098860A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680071801.4A CN108368966A (en) 2015-12-10 2016-11-11 Lubricating oil feed unit and bearing arrangement
DE112016005666.4T DE112016005666T5 (en) 2015-12-10 2016-11-11 Lubricating oil supply unit and storage device
KR1020187018823A KR20180093006A (en) 2015-12-10 2016-11-11 Lubricant supply unit and bearing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-241052 2015-12-10
JP2015241052A JP2017106564A (en) 2015-12-10 2015-12-10 Lubricating oil supply unit and bearing device

Publications (1)

Publication Number Publication Date
WO2017098860A1 true WO2017098860A1 (en) 2017-06-15

Family

ID=59013048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083566 WO2017098860A1 (en) 2015-12-10 2016-11-11 Lubricating oil supplying unit and bearing device

Country Status (5)

Country Link
JP (1) JP2017106564A (en)
KR (1) KR20180093006A (en)
CN (1) CN108368966A (en)
DE (1) DE112016005666T5 (en)
WO (1) WO2017098860A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7176178B2 (en) * 2017-10-16 2022-11-22 株式会社ジェイテクト Rolling bearing device and lubrication unit
JP7094127B2 (en) * 2018-03-26 2022-07-01 Ntn株式会社 Bearing equipment
JP7447017B2 (en) * 2018-05-02 2024-03-11 ホートン, インコーポレイテッド Energy harvesting clutch assembly and vehicle equipped with the same, and method of operating the clutch assembly
CN110469762A (en) * 2019-09-05 2019-11-19 河南先锋科技发展有限公司 A kind of grease lubricating system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013104529A (en) * 2011-11-16 2013-05-30 Ntn Corp Rolling bearing device
JP2014031810A (en) * 2012-08-01 2014-02-20 Ntn Corp Rolling bearing device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005180629A (en) 2003-12-22 2005-07-07 Ntn Corp Rolling bearing
EP2385248B1 (en) * 2010-05-06 2012-09-05 Siemens Aktiengesellschaft Bearing, in particular for a wind turbine
KR20140060318A (en) * 2011-09-13 2014-05-19 엔티엔 가부시키가이샤 Bearing device
CN202521199U (en) * 2012-01-04 2012-11-07 河南科技大学 Rolling bearing inter-ring jet lubrication device
CN202546199U (en) * 2012-04-09 2012-11-21 成都利君实业股份有限公司 Device for lubricating bearing
JP5989454B2 (en) 2012-08-20 2016-09-07 Ntn株式会社 Rolling bearing device
JP6215569B2 (en) * 2013-05-10 2017-10-18 Ntn株式会社 Rolling bearing device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013104529A (en) * 2011-11-16 2013-05-30 Ntn Corp Rolling bearing device
JP2014031810A (en) * 2012-08-01 2014-02-20 Ntn Corp Rolling bearing device

Also Published As

Publication number Publication date
CN108368966A (en) 2018-08-03
KR20180093006A (en) 2018-08-20
DE112016005666T5 (en) 2018-08-30
JP2017106564A (en) 2017-06-15

Similar Documents

Publication Publication Date Title
WO2017098860A1 (en) Lubricating oil supplying unit and bearing device
JP6446887B2 (en) Rolling bearing device and oil supply unit
US20150240872A1 (en) Rolling bearing device
US20160025137A1 (en) Rolling bearing apparatus and lubrication unit
JP6368170B2 (en) Lubricating oil supply unit and bearing device
US9488225B2 (en) Rolling bearing apparatus and lubrication unit
TW201616002A (en) Lubricating oil supply unit and bearing device
WO2004011817A1 (en) Rolling bearing, grease replenishing device, main shaft device, grease replenishing method, and grease replenishing program
JP2013104529A (en) Rolling bearing device
JP2005036890A (en) Grease feeder and bearing device
KR102599685B1 (en) bearing device
WO2018074313A1 (en) Lubricating oil supply unit, and bearing device provided with same
JP6906294B2 (en) Bearing equipment
CN107614907B (en) Bearing device and mechanical device
KR102655632B1 (en) Bearing devices and mechanical devices
WO2018088226A1 (en) Bearing device
JP6486642B2 (en) Lubricating oil supply unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16872760

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112016005666

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 20187018823

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187018823

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 16872760

Country of ref document: EP

Kind code of ref document: A1