WO2017098838A1 - 組電池 - Google Patents

組電池 Download PDF

Info

Publication number
WO2017098838A1
WO2017098838A1 PCT/JP2016/082729 JP2016082729W WO2017098838A1 WO 2017098838 A1 WO2017098838 A1 WO 2017098838A1 JP 2016082729 W JP2016082729 W JP 2016082729W WO 2017098838 A1 WO2017098838 A1 WO 2017098838A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
short
circuit member
secondary battery
external terminal
Prior art date
Application number
PCT/JP2016/082729
Other languages
English (en)
French (fr)
Inventor
明徳 多田
佐々木 孝
栗原 克利
飯塚 佳士
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2017554974A priority Critical patent/JP6612893B2/ja
Publication of WO2017098838A1 publication Critical patent/WO2017098838A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/291Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/588Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries outside the batteries, e.g. incorrect connections of terminals or busbars
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/593Spacers; Insulating plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/242Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries against vibrations, collision impact or swelling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an assembled battery including a plurality of prismatic secondary batteries.
  • secondary batteries such as lithium ion batteries have been used as power sources for electric vehicles and hybrid electric vehicles.
  • Such an in-vehicle secondary battery is used as a secondary battery module in which an assembled battery in which a plurality of secondary batteries are connected is housed in one housing.
  • an external force such as an impact or a drop is applied, the secondary battery is used.
  • an internal short circuit occurs in the battery and the internal pressure and temperature rise excessively.
  • a technique is disclosed in which a short-circuit member is installed to induce a short-circuit of the connecting member, thereby generating an overcurrent, thereby interrupting charging and discharging of an abnormal battery. (See Patent Document 1 below).
  • the secondary battery module described in Patent Document 1 includes the following components.
  • a plurality of secondary batteries including terminals exposed to the outside of the case.
  • a first connection member having a fuse portion that electrically connects the terminals of the adjacent secondary batteries and interrupts the connection when an overcurrent is generated.
  • the 2nd connection member which electrically connects the terminal in which the 1st connection member is not installed among the terminals of the said adjacent secondary battery.
  • it is a short circuit member which induces a short circuit by controlling the connection between the second connection members.
  • Patent Document 1 describes that an effect of improving safety can be obtained by generating overcurrent as described above and interrupting charging and discharging of an abnormal battery (Patent Document 1, (See paragraphs 0009, 0022, etc.).
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an assembled battery that can improve the safety of a secondary battery against an external force due to an impact or the like as compared with the related art.
  • the assembled battery of the present invention includes a plurality of flat rectangular secondary batteries stacked in the thickness direction, and the positive external terminal and the other two secondary batteries adjacent in the stacking direction.
  • the present invention it is possible to provide an assembled battery that can improve the safety of the secondary battery against an external force due to an impact or the like as compared with the conventional battery.
  • FIG. 1 is a schematic external perspective view of an assembled battery according to Embodiment 1 of the present invention.
  • FIG. The perspective view which shows the secondary battery hold
  • FIG. 4B is a cross-sectional view of the cell holder and the short-circuit member along line BB shown in FIG. 4A.
  • FIG. 5B is a cross-sectional view of the cell holder and the short-circuit member along the line BB shown in FIG. 5A.
  • FIG. 6B is a cross-sectional view of the cell holder and the short-circuit member along line BB shown in FIG. 6A.
  • FIG. 7B is a cross-sectional view of the cell holder and the short-circuit member along line BB shown in FIG. 7A.
  • FIG. 8B is a cross-sectional view of the cell holder and the short-circuit member along the line BB shown in FIG.
  • FIG. 8A Sectional drawing of the cell holder and the short circuit member after a deformation
  • the top view which shows the cell holder and short circuit member of the assembled battery which concern on Embodiment 4 of this invention.
  • the perspective view which shows the cell holder and short circuit member of the assembled battery which concern on Embodiment 6 of this invention.
  • FIG. 1 is a schematic external perspective view of a battery pack 100 according to an embodiment of the present invention.
  • the assembled battery 100 of this embodiment includes a plurality of flat rectangular secondary batteries 10 stacked in the thickness direction.
  • the positive external terminal 16 ⁇ / b> P of one secondary battery 10 adjacent in the stacking direction and the negative external terminal 16 ⁇ / b> N of the other secondary battery 10 are connected and connected in series.
  • the assembled battery 100 according to the present embodiment includes the negative electrode side low potential portion 10L of one secondary battery 10 adjacent in the stacking direction and the other secondary battery when an external force due to impact or the like is applied.
  • the short circuit member 40 which short-circuits the 10 positive electrode side high electric potential part 10H is provided.
  • the negative electrode side low potential portion 10L is simply expressed as a low potential portion 10L
  • the positive electrode side high potential portion 10H is simply expressed as a high potential portion 10H.
  • the assembled battery 100 of the present embodiment includes a plurality of secondary batteries 10, a cell holder 20 that holds the individual secondary batteries 10, a plurality of bus bars 30 that connect the plurality of secondary batteries 10 in series, and conductivity.
  • a short-circuit member 40 As a material of the short-circuit member 40, for example, a metal material having the same conductivity as that of the positive electrode external terminal 16P or the negative electrode external terminal 16N of the secondary battery 10 can be used.
  • the short-circuit member 40 faces the low potential portion 10L including the negative external terminal 16N of one secondary battery 10 adjacent in the stacking direction and the high potential portion 10H including the positive external terminal 16P of the other secondary battery 10. . Further, the short-circuit member 40 has a gap between at least one of the low potential portion 10L and the high potential portion 10H. In the assembled battery 100 of the present embodiment, the short-circuit member 40 has an interval between both the low potential portion 10L and the high potential portion 10H that face each other.
  • the plurality of bus bars 30 sequentially connect the positive external terminal 16P of one secondary battery 10 adjacent in the stacking direction and the negative external terminal 16N of the other secondary battery 10.
  • the low potential portion 10L of the one secondary battery 10 includes a negative electrode external terminal 16N of the secondary battery 10 and a bus bar 30 connected to the negative electrode external terminal 16N.
  • the high potential portion 10H of the other secondary battery 10 includes a positive external terminal 16P of the secondary battery 10 and a bus bar 30 connected to the positive external terminal 16P.
  • FIG. 2 is a perspective view showing a state in which the secondary battery 10 constituting the assembled battery 100 is held by a pair of cell holders 20.
  • FIG. 3 is an exploded perspective view of the secondary battery 10 and the cell holder 20 shown in FIG.
  • Each secondary battery 10 constituting the assembled battery 100 is a square secondary battery including a flat rectangular battery container 11.
  • the material of the battery container 11 is, for example, aluminum or an aluminum alloy.
  • the battery container 11 includes a bottomed rectangular tube-shaped battery can 12 and a rectangular plate-shaped battery lid 13 that seals the opening at the top of the battery can 12.
  • the battery can 12 is formed into a flat rectangular box shape having an opening in the upper part, for example, by deep drawing a plate material.
  • the battery lid 13 is formed into a rectangular flat plate shape by forging or the like, for example, and is joined to the upper portion of the battery can 12 by, for example, laser welding to seal the opening of the battery can 12.
  • the battery container 11 has a flat rectangular shape with a small thickness with respect to the width and height, thereby having wide side surfaces 11w having relatively large areas on both sides in the thickness direction and relatively large areas on both sides in the width direction.
  • an XYZ orthogonal coordinate system is shown in which the thickness direction of the battery case 11 is the X-axis direction, the width direction is the Y-axis direction, and the height direction is the Z-axis direction.
  • the electrode group is, for example, a flat wound electrode group that is wound with a long strip-shaped separator interposed between a long strip-shaped positive electrode and a negative electrode.
  • the positive electrode constituting the electrode group is bonded to a positive current collector plate (not shown) in which the foil exposed portion at one end in the width direction is bundled and accommodated inside the battery container 11.
  • the foil exposed portion at one end in the width direction is bundled on the opposite side of the electrode group in the winding axis direction from the foil exposed portion of the positive electrode, and is shown inside the battery container 11.
  • the positive electrode external terminal 16P and the negative electrode external terminal 16N are disposed on the outer surface of the battery container 11, and are connected to the positive electrode and the negative electrode of the electrode group via the positive electrode current collector plate and the negative electrode current collector plate, respectively.
  • the positive external terminal 16P is arranged at one end in the longitudinal direction of the upper surface 11t of the battery lid 13 constituting the battery container 11, and the negative external terminal 16N is arranged at the other end in the longitudinal direction of the upper surface 11t of the battery lid 13. .
  • a connection portion (not shown) that penetrates the battery lid 13 penetrates the positive current collector plate and the negative current collector base in the battery container 11, and the tip of the connection portion is plastically deformed.
  • a caulking portion is provided.
  • the positive electrode external terminal 16P and the negative electrode external terminal 16N are fixed by crimping the positive electrode current collector plate and the negative electrode current collector plate to the battery lid 13 with an insulating member inside the battery container 11 (not shown) interposed therebetween, respectively. It is electrically connected to the electric plate and the negative electrode current collector plate. Moreover, the positive electrode external terminal 16P and the negative electrode external terminal 16N are electrically insulated from the battery cover 13 by interposing a gasket 17 made of an insulating resin material between the battery cover 13 and the positive electrode external terminal 16P. Yes.
  • the gas discharge valve 18 is formed, for example, by thinning a part of the battery lid 13 to form a slit-like groove, and is cleaved when the internal pressure of the battery container 11 rises above a predetermined value. By discharging the gas inside the container 11, the pressure inside the battery container 11 is reduced.
  • the liquid injection port 19a is used for injecting the electrolyte into the battery container 11, and after the injection of the electrolyte, the liquid injection plug 19b is joined and sealed, for example, by laser welding.
  • the plurality of secondary batteries 10 are stacked in the thickness direction so that the wide side surfaces 11w of the battery containers 11 face each other.
  • the two secondary batteries 10 adjacent to each other in the stacking direction are inverted by 180 ° so that the positive external terminal 16P of one secondary battery 10 and the negative external terminal 16N of the other secondary battery 10 are adjacent to each other in the stacking direction.
  • One end of the bus bar 30 is joined to the positive external terminal 16P of one secondary battery 10 by welding, for example, and the other end of the bus bar 30 is joined to the negative external terminal 16N of the other secondary battery 10 by welding, for example.
  • the plurality of secondary batteries 10 are connected in series.
  • the assembled battery 100 is also connected to the positive external terminal 16P of the secondary battery 10 disposed at one end of the array of the secondary batteries 10 and the negative external terminal 16N of the secondary battery 10 disposed at the other end, respectively. 30 is connected. With these bus bars 30, for example, the assembled battery 100 can be connected to another assembled battery or an external device.
  • the material of the positive electrode external terminal 16P, the positive electrode current collector plate, and the metal foil of the positive electrode is, for example, aluminum or an aluminum alloy.
  • the material of the metal foil of the negative electrode external terminal 16N, the negative electrode current collector plate, and the negative electrode is, for example, copper or a copper alloy.
  • the material of the bus bar 30 is the same material as the positive electrode external terminal 16P or the negative electrode external terminal 16N, a material excellent in weldability and conductivity with respect to the positive electrode external terminal 16P and the negative electrode external terminal 16N, or a metal plate material having a plating layer, etc. Can be appropriately selected.
  • the individual secondary batteries 10 constituting the assembled battery 100 are each held by a cell holder 20.
  • the cell holder 20 includes a pair of end cell holders 20A disposed at both ends in the stacking direction of the plurality of secondary batteries 10 and a plurality of intermediate cell holders 20B disposed between two adjacent secondary batteries 10. Yes.
  • a resin material such as glass epoxy resin, polypropylene, or polybutylene terephthalate resin, or a metal material such as aluminum, copper, or stainless steel can be used.
  • the intermediate cell holder 20 ⁇ / b> B includes a spacer portion 21 that faces the wide side surface 11 w of the flat rectangular battery case 11 of the secondary battery 10 and a side plate portion that faces the narrow side surface 11 n of the battery case 11. 22 and a bottom plate portion 23 that faces the bottom surface 11 b of the battery container 11.
  • the end cell holder 20A has a configuration in which one side of the side plate portion 22 and the bottom plate portion 23 extending on both sides in the thickness direction of the battery container 11 is cut along a plane along the spacer portion 21 in the intermediate cell holder 20B.
  • the cell holder 20 includes the spacer portion 21 that faces the wide side surface 11w of the battery container 11, the side plate portion 22 that faces the narrow side surface 11n of the battery container 11, and the bottom plate portion that faces the bottom surface 11b of the battery container 11. 23.
  • the portion 23 forms a U-shaped holding portion 24 whose upper portion is open.
  • the holding part 24 of the cell holder 20 accommodates about half of the thickness of the battery container 11 with the upper surface 11t of the battery container 11 exposed.
  • the secondary battery 10 is in a state where the upper surface 11t of the battery container 11 is exposed by accommodating approximately half of the thickness of the battery container 11 of the secondary battery 10 in the holding portions 24 of the pair of cell holders 20 facing each other. Thus, it is held between the pair of cell holders 20.
  • a plurality of slits 25 extending in the width direction of the battery container 11 are formed between the plurality of spacer portions 21. Further, the side plate portion 22 is formed with a plurality of openings 26 communicating with the respective slits 25.
  • the cell holder 20 introduces a coolant such as cooling air that cools the wide side surface 11 w of the battery container 11 of the secondary battery 10 from the opening 26 of one side plate portion 22, distributes it through the slit 25, and the other side plate portion 22. It is comprised so that it can derive
  • a pair of end plates are disposed opposite to the flat surfaces outside the pair of end cell holders 20A disposed at both ends in the stacking direction of the plurality of secondary batteries 10.
  • a pair of side plates extending in the stacking direction of the secondary batteries 10 are arranged on both sides of the secondary battery 10 in the width direction so as to face the side plate portions 22 of the plurality of cell holders 20. Both ends in the present direction are fastened to the pair of end plates.
  • interval of a pair of end plate is prescribed
  • FIG. 4A is a plan view showing the cell holder 20 and the short-circuit member 40 between the two secondary batteries 10 of the assembled battery 100 shown in FIG. 4B is a cross-sectional view of the cell holder 20 and the short-circuit member 40 along the line BB shown in FIG. 4A.
  • the assembled battery 100 of the present embodiment includes the plurality of flat rectangular secondary batteries 10 stacked in the thickness direction.
  • Arbitrary two secondary batteries 10 adjacent to each other in the stacking direction of the plurality of secondary batteries 10 include a positive external terminal 16P of one secondary battery 10 and a negative external terminal 16N of the other secondary battery 10 by a bus bar 30. They are sequentially connected and connected in series.
  • the assembled battery 100 includes a short-circuit member 40 having conductivity.
  • the short-circuit member 40 includes the low potential portion 10L including the negative external terminal 16N of one secondary battery 10 and the positive external terminal 16P of the other secondary battery 10. It is opposed to the high potential portion 10H that contains it. Further, the short-circuit member 40 has a gap between at least one of the low potential portion 10L and the high potential portion 10H. In the assembled battery 100 of the present embodiment, the short-circuit member 40 has an interval between both the low potential portion 10L and the high potential portion 10H facing each other.
  • the low potential portion 10L of the one secondary battery 10 includes the negative external terminal 16N of the secondary battery 10 and the bus bar 30 connected thereto.
  • the high potential portion 10H of the other secondary battery 10 includes a positive external terminal 16P of the secondary battery 10 and a bus bar 30 connected thereto.
  • the short-circuit member 40 has a longitudinal direction in the width direction of the battery container 11 of the secondary battery 10 along the space between the low potential part 10L and the high potential part 10H of the two secondary batteries 10 adjacent in the stacking direction. It is formed in a rectangular plate shape or a rectangular parallelepiped column shape.
  • the size of the upper end portion of the short-circuit member 40 in the thickness direction of the battery case 11 is made larger than the size of the lower end portion, and a step is formed between the upper end portion and the lower end portion on both side surfaces in the thickness direction of the battery case 11. Has been.
  • the interval between the upper end portion of the short-circuit member 40 and the low potential portion 10L and the high potential portion 10H is set according to the load acting on the assembled battery 100, as will be described later.
  • the lower end portion of the short-circuit member 40 is fixed to the spacer portion 21 of the cell holder 20.
  • the shape of the short circuit member 40 is not specifically limited, Arbitrary shapes, such as a rhombus, a circle
  • the low potential part 10 ⁇ / b> L and the high potential part 10 ⁇ / b> H of any two secondary batteries 10 adjacent in the stacking direction via the short-circuit member 40 are the two secondary batteries 10. It is determined by the relative potential level of the secondary battery 10. Therefore, the bus bar 30 that is the high potential portion 10H in the two secondary batteries 10 arranged on the low potential side among the plurality of secondary batteries 10 is arranged on the high potential side of the two secondary batteries 10. In the two secondary batteries 10, the low potential portion 10 ⁇ / b> L is obtained.
  • the plurality of flat rectangular secondary batteries 10 alternately invert the positions in the width direction of the positive external terminals 16P and the negative external terminals 16N of the secondary batteries 10. Are stacked in the thickness direction. Accordingly, in any two secondary batteries 10 adjacent in the stacking direction, the positive external terminal 16P of one secondary battery 10 and the negative external terminal 16N of the other secondary battery 10 face each other in the stacking direction. ing.
  • the positive external terminal 16P of the secondary battery 10 disposed at one end in the stacking direction is connected to the negative external terminal 16N of the secondary battery 10 adjacent to the secondary battery 10 via the bus bar 30. Further, the positive electrode external terminal 16P of the secondary battery 10 adjacent to the secondary battery 10 arranged at one end in the stacking direction is further connected to the negative electrode external terminal 16N of the secondary battery 10 adjacent to the secondary battery 10 with the bus bar 30. Connected through. By repeating this up to the secondary battery 10 disposed at the other end in the stacking direction, the plurality of secondary batteries 10 are connected in series.
  • one of the two secondary batteries 10 adjacent in the stacking direction is one of the secondary batteries 10.
  • the positive external terminal 16P of the other and the negative external terminal 16N of the other secondary battery 10 are connected.
  • the negative external terminal 16N of the one secondary battery 10 is the low potential portion 10L
  • the positive external terminal 16P of the other secondary battery 10 is the high potential portion 10H.
  • a short circuit occurs between any two secondary batteries 10 adjacent in the stacking direction.
  • a member 40 is arranged.
  • the positive external terminal 16P of the high-potential side secondary battery 10 facing the short-circuit member 40 and the bus bar 30 connected thereto become the high-potential portion 10H
  • the low-potential-side secondary battery 10 facing the short-circuit member 40 The negative external terminal 16N and the bus bar 30 connected thereto become the low potential portion 10L.
  • the distance between the short-circuit member 40 and the low-potential portion 10L and the high-potential portion 10H is such that the short-circuit member 40 contacts the low-potential portion 10L and the high-potential portion 10H when an external force such as an impact acts on the assembled battery 100.
  • the interval can be set. Specifically, for example, the deformation amount of the assembled battery 100 due to a load assumed when an impact is applied to the assembled battery 100 is calculated, and the short-circuit member 40, the low potential portion 10L, and the high potential are calculated according to the deformation amount.
  • the interval with the part 10H can be set.
  • the distance between the short circuit member 40 and the low potential portion 10L and the high potential portion 10H is increased. Assume that it has been calculated to be 1 mm narrower. In this case, the interval between the short-circuit member 40 and the high potential portion 10H and the interval between the short-circuit member 40 and the low potential portion 10L can be set to 1 mm or less.
  • the distance between the short-circuit member 40 and the low potential portion 10L and the high potential portion 10H is increased.
  • 2 mm narrowing was calculated.
  • the interval between the short-circuit member 40 and the high potential portion 10H and the interval between the short-circuit member 40 and the low potential portion 10L can be set to 2 mm or less.
  • the external force due to the impact acting on the assembled battery 100 can be assumed to be, for example, about 2 to 5 times the compressive force acting when the assembled battery 100 is manufactured.
  • the short-circuit member 40 is fixed to the cell holder 20 that is a casing that holds the secondary battery 10. More specifically, the cell holder 20 has a spacer portion 21 that faces the wide side surface 11 w of the flat rectangular battery case 11, and the short-circuit member 40 is fixed to the spacer portion 21.
  • the short-circuit member 40 can be fixed to the cell holder 20 by insert molding, for example. Further, the short-circuit member 40 may be fixed to the cell holder 20 by a mechanical fastening means such as a bolt or a rivet, or may be fixed to the cell holder 20 by an adhesive tape or an adhesive.
  • the assembled battery 100 includes the plurality of flat rectangular secondary batteries 10 stacked in the thickness direction, and the positive external terminal 16P of one secondary battery 10 adjacent in the stacking direction.
  • the negative electrode external terminal 16N of the other secondary battery 10 is sequentially connected.
  • the positive external terminal 16P of one secondary battery 10 and the negative external terminal 16N of the other secondary battery 10 adjacent to each other in the stacking direction of the plurality of secondary batteries 10 are sequentially connected by the bus bar 30.
  • the assembled battery 100 supplies power supplied from an external device such as a generator to the positive external terminal 16P of the secondary battery 10 at one end in the stacking direction and the secondary battery 10 at the other end in the stacking direction.
  • a plurality of secondary batteries 10 connected in series can be supplied and charged via the negative electrode external terminal 16N.
  • the assembled battery 100 includes power charged in a plurality of secondary batteries 10 connected in series with a bus bar 30 connected to the positive external terminal 16P of the secondary battery 10 at one end in the stacking direction, It can be supplied to an external device such as a motor through the bus bar 30 connected to the negative electrode external terminal 16N of the secondary battery 10 at the other end.
  • the assembled battery 100 includes a short-circuit member 40 having conductivity.
  • the short-circuit member 40 includes a low potential portion 10L including the negative electrode external terminal 16N of one secondary battery 10 of any two secondary batteries 10 adjacent in the stacking direction, and the positive electrode external of the other secondary battery 10. It faces the high potential portion 10H including the terminal 16P.
  • the short-circuit member 40 has a gap between both the low potential portion 10L and the high potential portion 10H. Therefore, during normal use of the assembled battery 100, the low potential portion 10L and the high potential portion 10H are electrically insulated from the short-circuit member 40, and the low potential portion 10L and the high potential portion 10H are short-circuited. It is prevented.
  • the short-circuit member 40 only needs to have a gap between at least one of the low potential portion 10L and the high potential portion 10H. Since the short-circuit member 40 has a gap between at least one of the low potential portion 10L and the high potential portion 10H, the low potential portion 10L and the high potential portion 10H are electrically connected even if they are in contact with either one of them. Insulated. Thereby, a short circuit between the low potential portion 10L and the high potential portion 10H during normal use of the assembled battery 100 can be prevented.
  • FIG. 5A is a plan view showing the cell holder 20 and the short-circuit member 40 after the assembled battery 100 of the present embodiment shown in FIG. 4A is deformed by receiving a load in the stacking direction of the secondary battery 10.
  • FIG. 5B is a cross-sectional view of the cell holder and the short-circuit member taken along line BB shown in FIG. 5A.
  • each member when a load several times larger than the compressive force acting at the time of manufacture is applied due to an impact, the deformation of each member causes the low potential portion of the two secondary batteries 10 adjacent in the stacking direction.
  • interval of 10L and the high electric potential part 10H, and the short circuit member 40 becomes narrow.
  • the spacer portion 21 of the cell holder 20 is compressed and deformed, or the battery container 11 of the secondary battery 10. Is compressed and deformed. Due to the deformation of each member constituting the assembled battery 100, the distance between the short potential member 10 and the low potential portion 10L and the high potential portion 10H of the two secondary batteries 10 adjacent in the stacking direction is narrowed.
  • the low potential portion 10L and the high potential portion 10H can be short-circuited via the short-circuit member 40. Therefore, even if the electrical energy stored in each secondary battery 10 is consumed and an internal short circuit occurs in the secondary battery 10, it is possible to prevent the internal pressure and temperature of the secondary battery 10 from excessively rising. .
  • the safety of the secondary battery 10 against an external force due to an impact or the like can be improved as compared with the related art.
  • the low potential of the two secondary batteries 10 adjacent to each other in the stacking direction with a smaller load or a smaller amount of deformation by bringing one of the low potential portion 10L and the high potential portion 10H into contact with the short-circuit member 40 in advance. It is also possible to short-circuit the part 10L and the high potential part 10H.
  • the assembled battery 100 of the present embodiment includes a plurality of bus bars 30 that sequentially connect the positive electrode external terminal 16P of one secondary battery 10 and the negative electrode external terminal 16N of the other secondary battery 10 that are adjacent in the stacking direction. Yes.
  • the low potential portion 10L includes the bus bar 30 connected to the negative electrode external terminal 16N of the one secondary battery 10
  • the high potential portion 10H includes the other two secondary batteries 10.
  • a bus bar 30 connected to the positive electrode external terminal 16P of the secondary battery 10 is included.
  • the short circuit member 40 and the bus bar 30 are in contact with each other.
  • the low potential portion 10L and the high potential portion 10H of the two secondary batteries 10 adjacent in the stacking direction can be short-circuited.
  • the short-circuit member 40 and the positive external terminal 16P of one secondary battery 10 and the bus bar 30 connected thereto, or the negative external terminal 16N of the other secondary battery and the bus bar 30 connected thereto are simultaneously contacted. It can also be made. Thereby, the low potential part 10L and the high potential part 10H of the two secondary batteries 10 adjacent in the stacking direction can be more easily short-circuited.
  • the assembled battery 100 includes a cell holder 20 that holds the secondary battery 10.
  • the short-circuit member 40 is fixed to the cell holder 20. Thereby, it becomes easy to arrange the short-circuit member 40 to face the low potential portion 10L and the high potential portion 10H of the two secondary batteries 10 adjacent in the stacking direction.
  • the cell holder 20 has a spacer portion 21 that faces the wide side surface 11w of the flat rectangular battery container 11, and the short-circuit member 40 is fixed to the spacer portion 21 of the cell holder 20. Thereby, it is easy to arrange the short-circuit member 40 so as to face the low potential portion 10L and the high potential portion 10H of the two secondary batteries 10 adjacent in the stacking direction in the stacking direction of the secondary battery 10. Become.
  • the short-circuit member is connected to the low potential portion 10L and the high potential portion 10H of the two secondary batteries 10 adjacent in the stacking direction. 40 can be brought into contact. Therefore, when a load due to an impact in the stacking direction of the secondary battery 10 is applied, the two secondary batteries 10 adjacent in the stacking direction can be short-circuited via the short-circuit member 40.
  • the electrical energy stored in the secondary battery 10 can be quickly and safely when a high load is applied due to an impact caused by a vehicle collision or the like. Can be released to prevent secondary disasters. Therefore, according to the assembled battery 100 of the present embodiment, the safety of the secondary battery 10 against an external force due to an impact or the like can be improved as compared with the related art. Therefore, the assembled battery 100 of this embodiment is suitable as an assembled battery for vehicles that require high safety as well as large capacity and high input characteristics.
  • FIG. 6A is a plan view showing the cell holder 20 and the short-circuit member 40A between the two secondary batteries 10 of the assembled battery of the present embodiment corresponding to FIG. 4A.
  • 6B is a cross-sectional view of cell holder 20 and short-circuit member 40A along the line BB shown in FIG. 6A.
  • the assembled battery of this embodiment is different from the assembled battery 100 of Embodiment 1 described above in that the short-circuit member 40A is fixed to the side plate portion 22 of the cell holder 20. Since the other points of the assembled battery of the present embodiment are the same as those of the assembled battery of the first embodiment, the same parts are denoted by the same reference numerals and the description thereof is omitted.
  • the cell holder 20 has the side plate portion 22 that faces the narrow side surface 11n of the flat rectangular battery container 11 of the secondary battery 10.
  • the short-circuit member 40 ⁇ / b> A is fixed to the side plate portion 22 of the cell holder 20. Accordingly, the short-circuit member 40A includes the low potential portion 10L including the negative external terminal 16N of one secondary battery 10 and the external positive electrode of the other secondary battery 10 out of the two secondary batteries 10 adjacent in the stacking direction.
  • the battery container 11 faces the high potential portion 10H including the terminal 16P in the width direction.
  • the short-circuit member 40A has a gap in the width direction of the battery container 11 between both the low potential portion 10L and the high potential portion 10H.
  • FIG. 7A is a plan view showing the cell holder 20 and the short-circuit member 40A after the assembled battery of the present embodiment shown in FIG. 6A is deformed by receiving a load in the width direction of the battery container 11.
  • FIG. 7B is a cross-sectional view of the cell holder 20 and the short-circuit member 40A along the line BB shown in FIG. 7A.
  • an impact in the width direction of the battery container 11 of the secondary battery 10 is applied to the assembled battery of the present embodiment due to a vehicle collision or the like, and the load is several times larger than the load that is applied during normal use of the assembled battery. May act in the width direction of the battery case 11.
  • the side plate portion 22 of the cell holder 20 is compressed and deformed in the width direction of the battery container 11, or the short-circuit member 40A fixed to the side plate portion 22 is The two secondary batteries 10 adjacent in the stacking direction are deformed toward the low potential portion 10L and the high potential portion 10H.
  • interval of the low potential part 10L and the high potential part 10H of the two secondary batteries 10 adjacent to the lamination direction and the short circuit member 40A becomes narrow, and the low potential part 10L and the high potential part 10H, and the short circuit member 40A contacts. Thereby, the low potential part 10L and the high potential part 10H of the secondary battery 10 adjacent to each other in the stacking direction are short-circuited.
  • the low potential portion 10L and the high potential portion 10H can be short-circuited via the short-circuit member 40A. Therefore, even if the electrical energy stored in each secondary battery 10 is consumed and an internal short circuit occurs in the secondary battery 10, it is possible to prevent the internal pressure and temperature of the secondary battery 10 from excessively rising. .
  • the safety of the secondary battery 10 against external force due to the impact in the width direction of the battery container 11 and the like is improved as compared with the related art. be able to.
  • the short-circuit member 40A may be previously brought into contact with either one of the low potential portion 10L and the high potential portion 10H of the two adjacent secondary batteries 10.
  • the shape of the short-circuit member 40A is not limited to a flat plate shape, and may have a rectangular shape with one direction open, such as a U shape or a channel shape.
  • FIG. 8A is a plan view showing the cell holder 20 and the short-circuit member 40B between the two secondary batteries 10 of the assembled battery of the present embodiment corresponding to FIG. 4A.
  • FIG. 8B is a cross-sectional view of the cell holder 20 and the short-circuit member 40B along the line BB shown in FIG. 8A.
  • the assembled battery of this embodiment is different from the assembled battery 100 of Embodiment 1 described above in that it includes a bus bar holder 50 that holds the bus bar 30 and the short-circuit member 40B is fixed to the bus bar holder 50. Since the other points of the assembled battery of the present embodiment are the same as those of the assembled battery 100 of the first embodiment, the same portions are denoted by the same reference numerals and description thereof is omitted.
  • the assembled battery of this embodiment has a bus bar holder 50 that holds the bus bar 30, and the short-circuit member 40 ⁇ / b> B is fixed to the bus bar holder 50.
  • the material of the bus bar holder 50 is, for example, an insulating resin material.
  • the short-circuit member 40B can be fixed to the bus bar holder 50 by insert molding, for example.
  • the short-circuit member 40B may be fixed to the bus bar holder 50 by a mechanical fixing means such as a bolt or a rivet, or an adhesive tape or an adhesive.
  • the short-circuit member 40B is held by the bus bar holder 50 and is connected to the low potential portion L and the high potential portion 10H of any two secondary batteries 10 adjacent to each other in the stacking direction of the plurality of secondary batteries 10. Opposite the height direction. Further, the short-circuit member 40B has an interval in the height direction of the battery case 11 between the low potential portion 10L and the high potential portion 10H.
  • the short-circuit member 40B includes a negative external terminal 16N of one secondary battery 10 constituting the low potential portion 10L of two secondary batteries 10 adjacent to each other in the stacking direction of the plurality of secondary batteries 10, and a high Opposite to the positive external terminal 16P of the other secondary battery 10 constituting the potential unit 10H. Further, the short-circuit member 40B has a space between the negative external terminal 16N of one secondary battery 10 and the positive external terminal 16P of the other secondary battery 10 out of two adjacent secondary batteries 10. is doing.
  • the short-circuit member 40B has a substantially rectangular parallelepiped block shape with the width direction of the battery case 11 as the longitudinal direction.
  • FIG. 8C is a cross-sectional view showing the cell holder 20 and the short-circuit member 40B after the assembled battery of the present embodiment shown in FIG. 8B is deformed by receiving a load in the height direction of the battery container 11.
  • an impact in the height direction of the battery container 11 of the secondary battery 10 is applied to the assembled battery according to the present embodiment due to a vehicle collision or the like, which is several times larger than the load acting during normal use of the assembled battery.
  • the load may act in the height direction of the battery container 11.
  • the bus bar holder 50 is compressed in the height direction of the battery container 11 and the two short-circuit members 40B held by the bus bar holder 50 are adjacent to each other in the stacking direction.
  • the interval between the low potential portion 10L and the high potential portion 10H of the secondary battery 10 is narrowed.
  • the low potential portion 10L and the high potential portion 10H of any two secondary batteries 10 adjacent to each other in the stacking direction of the plurality of secondary batteries 10 and the short-circuit member 40B facing them come into contact with each other, so that the low potential portion 10L and the high potential portion 10H are short-circuited via the short-circuit member 40B.
  • the low potential portion 10L and the high potential portion 10H can be short-circuited via the short-circuit member 40B.
  • the safety of the secondary battery 10 against external force due to the impact in the height direction of the battery container 11 and the like is improved as compared with the related art. Can be made.
  • the short-circuit member 40B may be previously brought into contact with either one of the low potential portion 10L and the high potential portion 10H of the two adjacent secondary batteries 10. Further, the shape of the short-circuit member 40B is not limited to a flat plate shape, and may have a rectangular shape with one direction opened, such as a U shape or a channel shape.
  • FIG. 9 is a plan view showing the cell holder 20 and the short-circuit member 40 ⁇ / b> C between the two secondary batteries 10 of the assembled battery of the present embodiment corresponding to FIG. 6A.
  • the assembled battery of the present embodiment is the above-described in that the short-circuit member 40C faces the low potential portion 10L and the high potential portion 10H of two adjacent secondary batteries 10 in the thickness direction and the width direction of the battery container 11. This is different from the assembled battery of the second embodiment. Since the other points of the assembled battery of the present embodiment are the same as those of the assembled battery of the above-described second embodiment, the same portions are denoted by the same reference numerals and description thereof is omitted.
  • the short-circuit member 40C includes a first portion 41 extending in the width direction of the battery case 11 and a second portion extending from one end of the first portion 41 to both sides in the thickness direction of the battery case 11. It has a generally T-shaped shape.
  • the first portion 41 of the short-circuit member 40C is a portion where, for example, a plate-like short-circuit member 40C is bent in a U shape.
  • the first portion 41 is disposed between the low potential portion 10L and the high potential portion 10H of two adjacent secondary batteries 10, and faces the low potential portion 10L and the high potential portion 10H in the thickness direction of the battery container 11. is doing.
  • the first portion 41 is spaced from the low potential portion 10L and the high potential portion 10H.
  • the first portion 41 is fixed to the spacer portion 21 of the cell holder 20.
  • the second portion 42 of the short-circuit member 40C is, for example, a plate-like portion in which the plate-like short-circuit member 40C is bent in the thickness direction of the battery case 11 at the base end portion of the first portion 41.
  • the second portion 42 faces the low potential portion 10L and the high potential portion 10H of two adjacent secondary batteries 10 in the width direction of the battery container 11.
  • the second portion 42 is spaced from the low potential portion 10L and the high potential portion 10H.
  • the second portion 42 is fixed to the side plate portion 22 of the cell holder 20.
  • an impact in the thickness direction of the battery container 11 of the secondary battery 10 is applied to the assembled battery according to the present embodiment due to a vehicle collision or the like, which is several times larger than the load acting during normal use of the assembled battery.
  • the load may act in the thickness direction of the battery container 11.
  • the battery containers 11 of the two adjacent secondary batteries 10 are compressed and deformed in the thickness direction.
  • a load that is several times larger than the load that is applied during normal use of the assembled battery due to the impact in the width direction of the battery container 11 of the secondary battery 10 applied to the assembled battery of this embodiment due to a vehicle collision or the like. May act in the width direction of the battery case 11.
  • the battery container 11 and the cell holder 20 of the two adjacent secondary batteries 10 are compressed and deformed in the width direction of the battery container 11.
  • the low potential portion 10L and the high potential portion 10H are connected via the short-circuit member 40C to the load caused by the impact in the thickness direction and the width direction of the battery case 11. Can be short-circuited. Thereby, even if the electrical energy stored in each secondary battery 10 is consumed and an internal short circuit occurs in the secondary battery 10, it is possible to prevent the internal pressure and temperature of the secondary battery 10 from excessively rising. .
  • the safety of the secondary battery 10 against the external force due to the impact in the thickness direction and the width direction of the battery container 11 is conventionally improved as in the assembled battery 100 of the first embodiment.
  • the short-circuit member 40C may be brought into contact with either the low potential portion 10L or the high potential portion 10H of two adjacent secondary batteries 10 in advance.
  • FIG. 10 is a cross-sectional view showing the cell holder 20 and the short-circuit member 40D between the two secondary batteries 10 of the battery pack of the present embodiment corresponding to FIG. 8B.
  • the assembled battery according to the present embodiment is described above in that the short-circuit member 40D faces the low potential portion 10L and the high potential portion 10H of two adjacent secondary batteries 10 in the thickness direction and the height direction of the battery container 11. This is different from the assembled battery of the third embodiment. Since the other points of the assembled battery of this embodiment are the same as those of the assembled battery of the above-described embodiment 3, the same portions are denoted by the same reference numerals and description thereof is omitted.
  • the short-circuit member 40D includes a first portion 41 that extends in the height direction of the battery case 11, and a second portion that extends from one end of the first portion 41 to both sides in the thickness direction of the battery case 11. have.
  • the first portion 41 of the short-circuit member 40D is a portion where, for example, a plate-like short-circuit member 40D is bent in a U shape.
  • the first portion 41 is disposed between the low potential portion 10L and the high potential portion 10H of two adjacent secondary batteries 10, and faces the low potential portion 10L and the high potential portion 10H in the thickness direction of the battery container 11. is doing.
  • the first portion 41 is spaced from the low potential portion 10L and the high potential portion 10H.
  • the second portion 42 of the short-circuit member 40D is, for example, a plate-like portion in which the plate-like short-circuit member 40D is bent in the thickness direction of the battery case 11 at the base end portion of the first portion 41.
  • the second portion 42 faces the low potential portion 10L and the high potential portion 10H of the two adjacent secondary batteries 10 in the height direction of the battery container 11.
  • the second portion 42 is fixed to the bus bar holder 50 and has a space between the low potential portion 10L and the high potential portion 10H.
  • an impact in the thickness direction of the battery container 11 of the secondary battery 10 is applied to the assembled battery according to the present embodiment due to a vehicle collision or the like, which is several times larger than the load acting during normal use of the assembled battery.
  • the load may act in the thickness direction of the battery container 11.
  • the battery containers 11 of the two adjacent secondary batteries 10 are compressed and deformed in the thickness direction.
  • the impact in the height direction of the battery container 11 of the secondary battery 10 is applied to the assembled battery of the present embodiment due to a vehicle collision or the like, which is several times larger than the load acting during normal use of the assembled battery.
  • the load may act in the height direction of the battery container 11.
  • the bus bar holder 50 is deformed by being compressed in the height direction of the battery container 11.
  • interval of the low electric potential part 10L and the high electric potential part 10H of the two adjacent secondary batteries 10 and the 2nd part 42 of the short circuit member 40D becomes narrow, and it short-circuits with the low electric potential part 10L and the high electric potential part 10H.
  • the second portion 42 of the member 40D comes into contact. Thereby, the low potential part 10L and the high potential part 10H of the secondary battery 10 adjacent to each other in the stacking direction are short-circuited.
  • the safety of the secondary battery 10 against external forces due to impacts in the thickness direction and the height direction of the battery container 11 is improved. This can be improved compared to the prior art.
  • the short-circuit member 40D may be previously brought into contact with one of the low potential portion 10L and the high potential portion 10H of the two adjacent secondary batteries 10.
  • FIG. 11 is a perspective view showing the cell holder 20 and the short-circuit member 40E between the two secondary batteries 10 of the assembled battery of the present embodiment.
  • the assembled battery of the present embodiment is the above-described in that the short-circuit member 40E faces the low potential portion 10L and the high potential portion 10H of two adjacent secondary batteries 10 in the width direction and the height direction of the battery container 11. This is different from the assembled battery of the second embodiment. Since the other points of the assembled battery of the present embodiment are the same as those of the assembled battery of the second embodiment, the same portions are denoted by the same reference numerals and description thereof is omitted.
  • the short-circuit member 40E is a member having an L-shaped cross-section having a flat first portion 40a and a second portion 40b that are perpendicular to each other.
  • the first portion 40 a is substantially parallel to the upper surface 11 t of the battery case 11 and extends in the width direction and the thickness direction of the battery case 11.
  • the second portion 40b extends from one end of the first portion 40a substantially in parallel with the narrow side surface 11n of the battery container 11 in the height direction and the thickness direction of the battery container 11, and is fixed to the side plate portion 22 of the cell holder 20. ing.
  • the first portion 40a is opposed to the low potential portion 10L and the high potential portion 10H of two adjacent secondary batteries 10 in the height direction of the battery container 11, and is between the low potential portion 10L and the high potential portion 10H. Have an interval.
  • the second portion 40b is opposed to the low potential portion 10L and the high potential portion 10H of two adjacent secondary batteries 10 in the width direction of the battery container 11, and is spaced between the low potential portion 10L and the high potential portion 10H. have.
  • an impact in the height direction of the battery container 11 of the secondary battery 10 is applied to the assembled battery of this embodiment due to a vehicle collision or the like, and is several times larger than the load acting during normal use of the assembled battery.
  • the load may act in the height direction of the battery container 11.
  • the cell holder 20 is compressed and deformed in the height direction of the battery container 11.
  • a load that is several times larger than the load that is applied during normal use of the assembled battery due to the impact in the width direction of the battery container 11 of the secondary battery 10 applied to the assembled battery of this embodiment due to a vehicle collision or the like. May act in the width direction of the battery case 11.
  • the battery container 11 and the cell holder 20 of the two adjacent secondary batteries 10 are compressed and deformed in the width direction of the battery container 11.
  • interval of the low electric potential part 10L and the high electric potential part 10H of the two adjacent secondary batteries 10 and the 2nd part 40b of the short circuit member 40E becomes narrow, and it short-circuits with the low electric potential part 10L and the high electric potential part 10H.
  • the second portion 40b of the member 40E comes into contact. Thereby, the low potential part 10L and the high potential part 10H of the secondary battery 10 adjacent to each other in the stacking direction are short-circuited.
  • the low potential portion 10L and the high potential portion 10H are subjected to the load due to the impact in the thickness direction and the height direction of the battery container 11 via the short-circuit member 40E. Can be short-circuited. Thereby, even if the electrical energy stored in each secondary battery 10 is consumed and an internal short circuit occurs in the secondary battery 10, it is possible to prevent the internal pressure and temperature of the secondary battery 10 from excessively rising. .
  • the safety of the secondary battery 10 against the external force due to the impact in the height direction and the width direction of the battery container 11 is conventionally improved as in the assembled battery 100 of the first embodiment. Can be improved.
  • the short-circuit member 40E may be brought into contact with either the low potential portion 10L or the high potential portion 10H of two adjacent secondary batteries 10 in advance.
  • FIG. 12 is a plan view showing the cell holder 20 and the short-circuit member 40F between the two secondary batteries 10 of the assembled battery of the present embodiment.
  • the short-circuit member 40F faces the low potential portion 10L and the high potential portion 10H of two adjacent secondary batteries 10 in the thickness direction, the width direction, and the height direction of the battery container 11. This is different from the assembled battery of Embodiment 2 described above. Since the other points of the assembled battery of the present embodiment are the same as those of the assembled battery of the second embodiment, the same portions are denoted by the same reference numerals and description thereof is omitted.
  • the short-circuit member 40F includes a flat plate-like first portion 40a and a second portion 40b that are perpendicular to each other, a U-shaped third portion 40c that extends in the width direction of the battery container 11, and a battery. And a columnar fourth portion 40 d extending in the height direction of the container 11.
  • the short-circuit member 40F has a pair of first portion 40a, second portion 40b, and fourth portion 40d on both sides of the base end portion of the U-shaped third portion 40c in the thickness direction of the battery case 11. ing.
  • the first portion 40a has a flat plate shape substantially parallel to the upper surface 11t of the battery case 11 and extends in the width direction and the thickness direction of the battery case 11.
  • the second portion 40b has a flat plate shape extending from one end of the first portion 40a substantially in parallel with the narrow side surface 11n of the battery case 11, and extends in the height direction and the thickness direction of the battery case 11 to form a fourth portion. It is connected to one end of 40d.
  • the pair of first portions 40a are respectively opposed to the low potential portion 10L and the high potential portion 10H of the two adjacent secondary batteries 10 in the height direction of the battery container 11, and the low potential portion 10L and the high potential portion 10H. There is a gap between them.
  • the pair of second portions 40b are respectively opposed to the low potential portion 10L and the high potential portion 10H of two adjacent secondary batteries 10 in the width direction of the battery container 11, and the low potential portion 10L and the high potential portion 10H There is a gap between them.
  • the third portion 40c is, for example, a portion in which a rod-like member having a rectangular cross-sectional shape is bent in a U shape, and is connected to the low potential portion 10L and the high potential portion 10H of two adjacent secondary batteries 10. It arrange
  • the third portion 40c has a base end connected to the pair of second portions 40b, and has a gap between the low potential portion 10L and the high potential portion 10H.
  • the pair of fourth portions 40 d has one end connected to the second portion 40 b and the other end fixed to the side plate portion 22 of the cell holder 20.
  • an impact in the height direction of the battery container 11 of the secondary battery 10 is applied to the assembled battery of this embodiment due to a vehicle collision or the like, and is several times larger than the load acting during normal use of the assembled battery.
  • the load may act in the height direction of the battery container 11.
  • the cell holder 20 is compressed and deformed in the height direction of the battery container 11.
  • a load that is several times larger than the load that is applied during normal use of the assembled battery due to the impact in the width direction of the battery container 11 of the secondary battery 10 applied to the assembled battery of this embodiment due to a vehicle collision or the like. May act in the width direction of the battery case 11.
  • the battery container 11 and the cell holder 20 of the two adjacent secondary batteries 10 are compressed and deformed in the width direction of the battery container 11.
  • the assembled battery of the present embodiment due to a vehicle collision or the like, an impact in the thickness direction of the battery container 11 of the secondary battery 10 is applied to the assembled battery of the present embodiment, which is several times larger than the load acting during normal use of the assembled battery.
  • the load may act in the thickness direction of the battery container 11.
  • the battery container 11 and the cell holder 20 of the two adjacent secondary batteries 10 are compressed and deformed in the thickness direction of the battery container 11.
  • interval of the low electric potential part 10L and the high electric potential part 10H of the two adjacent secondary batteries 10 and the 3rd part 40c of the short circuit member 40F becomes narrow, short circuit with the low electric potential part 10L and the high electric potential part 10H.
  • the third portion 40c of the member 40F comes into contact. Thereby, the low potential part 10L and the high potential part 10H of the secondary battery 10 adjacent to each other in the stacking direction are short-circuited.
  • the low potential portion 10L and the high potential portion 10F are affected via the short-circuit member 40F with respect to the load due to the impact in the thickness direction, the width direction, and the height direction of the battery case 11
  • the potential unit 10H can be short-circuited.
  • the secondary battery 10 against an external force due to an impact or the like of the battery container 11 in the thickness direction, the width direction, and the height direction.
  • the safety can be improved as compared with the prior art.
  • the short-circuit member 40F may be previously brought into contact with one of the low potential portion 10L and the high potential portion 10H of the two adjacent secondary batteries 10.
  • 10 secondary battery 10L low potential part, 10H high potential part, 11 battery container, 11w wide side, 11n narrow side, 16N negative external terminal, 16P positive external terminal, 20 cell holder, 21 spacer part, 22 side plate part, 30 bus bar , 40 short-circuit member, 40A-40F short-circuit member, 50 bus bar holder, 100 assembled battery

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

衝撃等による外力に対する二次電池の安全性を従来よりも向上させることができる組電池を提供する。厚さ方向に積層された扁平角形の複数の二次電池10を備え、積層方向に隣り合う一方の二次電池10の正極外部端子16Pと他方の二次電池10の負極外部端子16Nが接続された組電池100である。組電池100は、導電性を有する短絡部材40を備える。短絡部材40は、前記一方の二次電池10の負極外部端子16Nを含む負極側低電位部10Lと、前記他方の二次電池10の正極外部端子16Pを含む正極側高電位部10Hとに対向するとともに、負極側低電位部10Lと正極側高電位部10Hの少なくとも一方との間に間隙を有する。

Description

組電池
 本発明は、複数の角形二次電池を備えた組電池に関する。
 従来から、例えば電気自動車やハイブリッド電気自動車の電源として、リチウムイオンバッテリー等の二次電池が使用されている。このような車載用の二次電池は、複数の二次電池を接続した組電池を1つの筐体に収容した二次電池モジュールとして用いられるが、衝撃や落下等による外力が加わると、二次電池に内部短絡が発生して内部の圧力や温度が過度に上昇する虞がある。このような問題に対処するために、短絡部材を設置して連結部材の短絡を誘導し、それによって過電流を発生させて、異常のある電池の充電と放電を中断させる技術が開示されている(下記特許文献1を参照)。
 特許文献1に記載された二次電池モジュールは、以下の各構成を含んでいる。ケースの外側に露出された端子を含む複数個の二次電池。隣接する前記二次電池の前記端子を電気的に連結し、過電流が発生するとその連結を遮断するヒューズ部を有する第1連結部材。前記隣接する二次電池の端子のうちの第1連結部材が設置されていない端子を電気的に連結する第2連結部材。そして、前記第2連結部材の間の連結を制御して短絡を誘発する短絡部材である。この構成により、特許文献1では、上記のように過電流を発生させて、異常のある電池の充電と放電を中断させることによって安全性が向上する効果が得られる、としている(特許文献1、段落0009、0022等を参照)。
特開2011-40368号公報
 特許文献1に記載された電池モジュールでは、二次電池の内圧が上昇し、二次電池が膨張することで短絡回路が形成される。しかし、二次電池の内部短絡によって内圧が上昇する場合には、短時間で熱暴走状態に至る虞がある。また、ガス排出弁が開放されて二次電池の内圧が低下すると、膨張した二次電池が元に戻り、短絡回路が形成されない虞がある。
 本発明は、前記課題に鑑みてなされたものであり、衝撃等による外力に対する二次電池の安全性を従来よりも向上させることができる組電池を提供することを目的とする。
 前記目的を達成すべく、本発明の組電池は、厚さ方向に積層された扁平角形の複数の二次電池を備え、積層方向に隣り合う一方の二次電池の正極外部端子と他方の二次電池の負極外部端子が接続された組電池であって、導電性を有する短絡部材を備え、前記短絡部材は、前記一方の二次電池の負極外部端子を含む負極側低電位部と、前記他方の二次電池の正極外部端子を含む正極側高電位部とに対向するとともに、前記負極側低電位部と前記正極側高電位部の少なくとも一方との間に間隙を有する。
 本発明によれば、衝撃等による外力に対する二次電池の安全性を従来よりも向上させることができる組電池を提供することができる。
本発明の実施形態1に係る組電池の模式的な外観斜視図。 図1に示す2つのセルホルダによって保持された二次電池を示す斜視図。 図2に示すセルホルダと二次電池の分解斜視図。 図1に示す2つの二次電池の間のセルホルダ及び短絡部材を示す平面図。 図4Aに示すB-B線に沿うセルホルダ及び短絡部材の断面図。 図4Aに示す組電池の変形後のセルホルダ及び短絡部材を示す平面図。 図5Aに示すB-B線に沿うセルホルダ及び短絡部材の断面図。 本発明の実施形態2に係る組電池のセルホルダ及び短絡部材を示す平面図。 図6Aに示すB-B線に沿うセルホルダ及び短絡部材の断面図。 図6Aに示す組電池の変形後のセルホルダ及び短絡部材を示す平面図。 図7Aに示すB-B線に沿うセルホルダ及び短絡部材の断面図。 本発明の実施形態3に係る組電池のセルホルダ及び短絡部材を示す平面図。 図8Aに示すB-B線に沿うセルホルダ及び短絡部材の断面図。 図8Bに示す組電池の変形後のセルホルダ及び短絡部材の断面図。 本発明の実施形態4に係る組電池のセルホルダ及び短絡部材を示す平面図。 本発明の実施形態5に係る組電池のセルホルダ及び短絡部材を示す断面図。 本発明の実施形態6に係る組電池のセルホルダ及び短絡部材を示す斜視図。 本発明の実施形態7に係る組電池のセルホルダ及び短絡部材を示す斜視図。
 以下、図面を参照して本発明の組電池の実施形態を説明する。
 以下の各図面では、各部の縮尺を適宜変更する場合がある。また、以下の説明における上下左右は、各部材の位置関係を説明する便宜的な方向であり、必ずしも鉛直方向や水平方向に対応するものではない。
[実施形態1]
 図1は、本発明の実施形態に係る組電池100の模式的な外観斜視図である。
 本実施形態の組電池100は、厚さ方向に積層された扁平角形の複数の二次電池10を備えている。複数の二次電池10は、積層方向に隣り合う一方の二次電池10の正極外部端子16Pと他方の二次電池10の負極外部端子16Nとが接続されて直列に接続されている。詳細は後述するが、本実施形態の組電池100は、衝撃等による外力が作用したときに、積層方向に隣り合う一方の二次電池10の負極側低電位部10Lと、他方の二次電池10の正極側高電位部10Hとを短絡させる短絡部材40を備えることを特徴としている。以下では、負極側低電位部10Lを単に低電位部10Lと表記し、正極側高電位部10Hを単に高電位部10Hと表記する。
 本実施形態の組電池100は、複数の二次電池10と、個々の二次電池10を保持するセルホルダ20と、複数の二次電池10を直列に接続する複数のバスバー30と、導電性を有する短絡部材40と、を備えている。短絡部材40の素材としては、例えば、二次電池10の正極外部端子16P又は負極外部端子16Nと同様の導電性を有する金属材料を用いることができる。
 短絡部材40は、積層方向に隣り合う一方の二次電池10の負極外部端子16Nを含む低電位部10Lと、他方の二次電池10の正極外部端子16Pを含む高電位部10Hとに対向する。また、短絡部材40は、低電位部10Lと高電位部10Hの少なくとも一方との間に間隙を有する。本実施形態の組電池100において、短絡部材40は、対向する低電位部10Lと高電位部10Hの双方との間に間隔を有している。
 複数のバスバー30は、積層方向に隣り合う一方の二次電池10の正極外部端子16Pと、他方の二次電池10の負極外部端子16Nとを順次接続している。本実施形態の組電池100おいて、上記一方の二次電池10の低電位部10Lは、当該二次電池10の負極外部端子16Nと、当該負極外部端子16Nに接続されたバスバー30とを含む。さらに、上記他方の二次電池10の高電位部10Hは、当該二次電池10の正極外部端子16Pと、当該正極外部端子16Pに接続されたバスバー30とを含む。
 図2は、組電池100を構成する二次電池10を一対のセルホルダ20によって保持した状態を示す斜視図である。図3は、図2に示す二次電池10とセルホルダ20の分解斜視図である。
 組電池100を構成する個々の二次電池10は、扁平角形の電池容器11を備えた角形二次電池である。電池容器11の材質は、例えば、アルミニウム又はアルミニウム合金等である。電池容器11は、有底角筒状の電池缶12と、電池缶12の上部の開口部を封止する矩形板状の電池蓋13とによって構成されている。電池缶12は、例えば、板材を深絞り加工することによって、上部に開口部を有する扁平な矩形箱型に形成されている。電池蓋13は、例えば、鍛造等によって長方形の平板状に形成され、例えば、レーザ溶接によって電池缶12の上部に接合され、電池缶12の開口部を封止している。
 電池容器11は、幅と高さに対して厚さが小さい扁平角形の形状を有することで、厚さ方向の両側に比較的面積の大きい広側面11wを有し、幅方向両側に比較的面積の小さい狭側面11nを有し、上下に幅方向を長手方向とする長方形の底面11b及び上面11tを有している。なお、各図において、電池容器11の厚さ方向をX軸方向、幅方向をY軸方向、高さ方向をZ軸方向とするXYZ直交座標系を示している。
 電池容器11の内部には、図示を省略する電極群が収容されている。電極群は、例えば、長尺帯状の正極電極及び負極電極の間に長尺帯状のセパレータを介在させて捲回した扁平な捲回電極群である。電極群を構成する正極電極は、幅方向の一端の箔露出部が束ねられて電池容器11の内部に収容された図示を省略する正極集電板に接合されることで、正極集電板を介して正極外部端子16Pに接続されている。電極群を構成する負極電極は、幅方向の一端の箔露出部が正極電極の箔露出部と電極群の捲回軸方向の反対側で束ねられ、電池容器11の内部に収容された図示を省略する負極集電板に接合されることで、負極集電板を介して負極外部端子16Nに接続されている。
 正極外部端子16P及び負極外部端子16Nは、電池容器11の外面に配置され、それぞれ正極集電板及び負極集電板を介して電極群の正極電極及び負極電極に接続されている。正極外部端子16Pは、電池容器11を構成する電池蓋13の上面11tの長手方向の一端に配置され、負極外部端子16Nは、電池蓋13の上面11tの長手方向の他端に配置されている。正極外部端子16P及び負極外部端子16Nは、電池蓋13を貫通する不図示の接続部が電池容器11の内部の正極集電板及び負極集電板基部を貫通し、接続部の先端が塑性変形させられて、かしめ部が設けられている。
 これにより、正極外部端子16P及び負極外部端子16Nは、図示を省略する電池容器11内部の絶縁部材を介在させて電池蓋13に正極集電板及び負極集電板をかしめ固定し、それぞれ正極集電板及び負極集電板に対して電気的に接続されている。また、正極外部端子16P及び負極外部端子16Nは、電池蓋13との間に絶縁性を有する樹脂材料を素材とするガスケット17を介在させることで、電池蓋13に対して電気的に絶縁されている。
 電池蓋13の上面11tの正極外部端子16Pと負極外部端子16Nとの間には、ガス排出弁18と注液口19aが設けられている。ガス排出弁18は、例えば、電池蓋13の一部を薄肉化してスリット状の溝を形成することによって形成され、電池容器11の内部の圧力が所定値よりも上昇したときに開裂し、電池容器11の内部のガスを排出することで、電池容器11の内部の圧力を低下させる。注液口19aは、電池容器11の内部に電解液を注入するために用いられ、電解液の注入後に、例えばレーザ溶接によって注液栓19bが接合されて封止される。
 複数の二次電池10は、互いの電池容器11の広側面11wが対向するように、厚さ方向に積層させて配置される。積層方向に隣接する二つの二次電池10は、一方の二次電池10の正極外部端子16Pと、他方の二次電池10の負極外部端子16Nとが積層方向に隣り合うように、180°反転させて配置される。そして、一方の二次電池10の正極外部端子16Pに、例えば溶接によってバスバー30の一端が接合され、他方の二次電池10の負極外部端子16Nに、例えば溶接によってバスバー30の他端が接合されることで、複数の二次電池10が直列に接続される。
 組電池100は、複数の二次電池10の配列の一端に配置された二次電池10の正極外部端子16Pと、他端に配置された二次電池10の負極外部端子16Nにも、それぞれバスバー30が接続されている。これらのバスバー30によって、例えば、組電池100を他の組電池や外部機器に接続することができる。
 正極外部端子16P、正極集電板及び正極電極の金属箔の素材は、例えば、アルミニウム又はアルミニウム合金である。また、負極外部端子16N、負極集電板及び負極電極の金属箔の素材は、例えば、銅又は銅合金である。バスバー30の素材は、正極外部端子16P又は負極外部端子16Nと同様の素材、正極外部端子16P及び負極外部端子16Nに対する溶接性と導電性に優れた素材、或いはめっき層を有する金属製の板材等を適宜選択することができる。
 組電池100を構成する個々の二次電池10は、それぞれセルホルダ20によって保持されている。セルホルダ20は、複数の二次電池10の積層方向の両端に配置される一対の端部セルホルダ20Aと、2つの隣接する二次電池10の間に配置される複数の中間セルホルダ20Bによって構成されている。セルホルダ20の素材としては、例えば、ガラスエポキシ樹脂、ポリプロピレン、ポリブチレンテレフタレート樹脂などの樹脂材料や、アルミニウム、銅、ステンレスなどの金属材料を用いることができる。
 中間セルホルダ20Bは、図2及び図3に示すように、二次電池10の扁平角形の電池容器11の広側面11wに対向するスペーサ部21と、電池容器11の狭側面11nに対向する側板部22と、電池容器11の底面11bに対向する底板部23とを有している。端部セルホルダ20Aは、中間セルホルダ20Bにおいて、スペーサ部21を中心に電池容器11の厚さ方向の両側に延びる側板部22及び底板部23の片側を、スペーサ部21に沿う平面で切断した構成を有している。そのため、以下では、セルホルダ20の構成として中間セルホルダ20Bの構成を中心に説明し、端部セルホルダ20Aの説明を適宜省略する。
 セルホルダ20は、前述のように、電池容器11の広側面11wに対向するスペーサ部21と、電池容器11の狭側面11nに対向する側板部22と、電池容器11の底面11bに対向する底板部23とを有している。電池容器11の幅方向に間隔を有して対向する一対の長方形の板状の側板部22と、電池容器11の幅方向に延在して一対の側板部22を連結する長方形板状の底板部23とによって、上部が開放されたU字状の保持部24が形成されている。
 セルホルダ20の保持部24は、電池容器11の上面11tを露出させた状態で、電池容器11の厚さの約半分を収容する。対向する一対のセルホルダ20の保持部24に、二次電池10の電池容器11の厚さの約半分ずつを収容することで、二次電池10は、電池容器11の上面11tを露出させた状態で、一対のセルホルダ20の間に保持される。
 複数のスペーサ部21の間には、電池容器11の幅方向に延びる複数のスリット25が形成されている。また、側板部22には、各スリット25に連通する複数の開口部26が形成されている。セルホルダ20は、二次電池10の電池容器11の広側面11wを冷却する冷却空気等の冷媒を、一方の側板部22の開口部26から導入してスリット25に流通させ、他方の側板部22の開口部26から導出することができるように構成されている。
 図示は省略するが、複数の二次電池10の積層方向の両端に配置された一対の端部セルホルダ20Aの外側の平坦な面に対向して一対のエンドプレートが配置される。また、二次電池10の幅方向の両側に、複数のセルホルダ20の側板部22に対向して二次電池10の積層方向に延在する一対のサイドプレートが配置され、一対のサイドプレートの延在方向の両端が一対のエンドプレートに締結される。これにより、一対のエンドプレートの間隔が規定され、セルホルダ20の間に配置された複数の二次電池10は、電池容器11の広側面11wにセルホルダ20のスペーサ部21が当接し、圧縮力が付与された状態で、セルホルダ20によって保持される。
 図4Aは、図1に示す組電池100の2つの二次電池10の間のセルホルダ20及び短絡部材40を示す平面図である。図4Bは、図4Aに示すB-B線に沿うセルホルダ20及び短絡部材40の断面図である。
 前述のように、本実施形態の組電池100は、厚さ方向に積層された扁平角形の複数の二次電池10を備えている。複数の二次電池10の積層方向に隣り合う任意の二つの二次電池10は、一方の二次電池10の正極外部端子16Pと他方の二次電池10の負極外部端子16Nとがバスバー30によって順次接続されて直列に接続されている。組電池100は、導電性を有する短絡部材40を備えることを特徴としている。
 短絡部材40は、積層方向に隣り合う二つの二次電池10のうち、一方の二次電池10の負極外部端子16Nを含む低電位部10Lと、他方の二次電池10の正極外部端子16Pを含む高電位部10Hとに対向している。また、短絡部材40は、これら低電位部10Lと高電位部10Hの少なくとも一方との間に間隙を有する。なお、本実施形態の組電池100において、短絡部材40は、対向する低電位部10Lと高電位部10Hの双方との間に間隔を有している。
 また、前述のように、本実施形態の組電池100において、上記一方の二次電池10の低電位部10Lは、当該二次電池10の負極外部端子16Nとそれに接続されたバスバー30とを含む。さらに、上記他方の二次電池10の高電位部10Hは、当該二次電池10の正極外部端子16Pとそれに接続されたバスバー30とを含む。
 短絡部材40は、積層方向に隣り合う二つの二次電池10の低電位部10Lと高電位部10Hとの間の空間に沿って、二次電池10の電池容器11の幅方向を長手方向とする長方形の板状又は直方体の柱状に形成されている。電池容器11の厚さ方向における短絡部材40の上端部の寸法は、下端部の寸法よりも大きくされ、電池容器11の厚さ方向の両側面において上端部と下端部との間に段差が形成されている。
 短絡部材40の上端部と、低電位部10L及び高電位部10Hとの間隔は、後述するように、組電池100に作用する荷重に応じて設定されている。短絡部材40の下端部は、セルホルダ20のスペーサ部21に固定されている。なお、短絡部材40の形状は、特に限定されず、矩形の平板状又は柱状の形状以外に、例えば、菱形、円形、楕円形等、任意の形状を選択することができる。
 なお、組電池100の複数の二次電池10のうち、短絡部材40を介して積層方向に隣り合う任意の二つの二次電池10の低電位部10Lと高電位部10Hは、これら二つの二次電池10の相対的な電位の高低によって決定される。したがって、複数の二次電池10のうち、低電位側に配置された二つの二次電池10において高電位部10Hであったバスバー30は、その二つの二次電池10の高電位側に配置された二つの二次電池10においては、低電位部10Lとなる。
 より詳細には、本実施形態の組電池100において、複数の扁平角形の二次電池10は、各二次電池10の正極外部端子16Pと負極外部端子16Nの幅方向の位置を交互に反転させて厚さ方向に積層されている。これにより、積層方向に隣り合う任意の二つの二次電池10において、一方の二次電池10の正極外部端子16Pと、他方の二次電池10の負極外部端子16Nとが、積層方向に対向している。
 そして、積層方向の一端に配置された二次電池10の正極外部端子16Pが、その二次電池10に隣り合う二次電池10の負極外部端子16Nにバスバー30を介して接続される。また、積層方向の一端に配置された二次電池10に隣り合う二次電池10の正極外部端子16Pが、さらにその二次電池10に隣り合う二次電池10の負極外部端子16Nにバスバー30を介して接続される。これを積層方向の他端に配置された二次電池10まで繰り返すことで、複数の二次電池10が直列に接続されている。
 このように、複数の二次電池10が厚さ方向に積層されて直列に接続された組電池100では、積層方向に隣り合う任意の二つの二次電池10のうち、一方の二次電池10の正極外部端子16Pと、他方の二次電池10の負極外部端子16Nとが接続されている。この場合、当該一方の二次電池10の負極外部端子16Nは、低電位部10Lであり、当該他方の二次電池10の正極外部端子16Pは、高電位部10Hである。
 換言すると、上記のように、複数の二次電池10が厚さ方向に積層されて直列に接続された組電池100では、積層方向に隣り合う任意の二つの二次電池10の間に、短絡部材40が配置されている。この場合、短絡部材40に対向する高電位側の二次電池10の正極外部端子16P及びそれに接続されたバスバー30が高電位部10Hとなり、短絡部材40に対向する低電位側の二次電池10の負極外部端子16N及びそれに接続されたバスバー30が低電位部10Lとなる。
 短絡部材40と、低電位部10L及び高電位部10Hとの間の間隔は、組電池100に衝撃等による外力が作用したときに、短絡部材40が低電位部10L及び高電位部10Hに接触する間隔に設定することができる。具体的には、例えば、組電池100に衝撃が加わったときに想定される荷重による組電池100の変形量を算出し、その変形量に応じて短絡部材40と、低電位部10L及び高電位部10Hとの間隔を設定することができる。
 例えば、組電池100に衝撃が加わったときに4kNの荷重が作用することが想定され、その荷重による組電池100の変形によって、短絡部材40と低電位部10L及び高電位部10Hとの間隔が1mm狭くなることが算出されたと仮定する。この場合、短絡部材40と高電位部10Hとの間隔、及び、短絡部材40と低電位部10Lとの間隔は、1mm以下に設定することができる。
 また、組電池100に衝撃が加わったときに40kNの荷重が作用することが想定され、その荷重による組電池100の変形によって、短絡部材40と低電位部10L及び高電位部10Hとの間隔が2mm狭くなることが算出されたと仮定する。この場合、短絡部材40と高電位部10Hとの間隔、及び、短絡部材40と低電位部10Lとの間隔は、2mm以下に設定することができる。組電池100に作用する衝撃による外力は、例えば、組電池100の製造時に作用する圧縮力の2倍から5倍程度と想定することができる。
 本実施形態の組電池100において、短絡部材40は、二次電池10を保持する筐体であるセルホルダ20に固定されている。より具体的には、セルホルダ20は、扁平角形の電池容器11の広側面11wに対向するスペーサ部21を有し、短絡部材40は、スペーサ部21に固定されている。短絡部材40は、例えば、インサート成形によってセルホルダ20に固定することができる。また、短絡部材40は、例えば、ボルトやリベット等の機械的な締結手段によってセルホルダ20に固定してもよいし、粘着テープや接着剤によってセルホルダ20に固定することもできる。
 以下、本実施形態の組電池100の作用について説明する。
 前述のように、本実施形態の組電池100は、厚さ方向に積層された扁平角形の複数の二次電池10を備え、積層方向に隣り合う一方の二次電池10の正極外部端子16Pと他方の二次電池10の負極外部端子16Nが順次接続されている。ここで、複数の二次電池10の積層方向に隣り合う一方の二次電池10の正極外部端子16Pと他方の二次電池10の負極外部端子16Nは、バスバー30によって順次接続されている。
 この構成により、組電池100は、例えば発電機等の外部機器から供給された電力を、積層方向の一端の二次電池10の正極外部端子16Pと、積層方向の他端の二次電池10の負極外部端子16Nとを介して、直列に接続された複数の二次電池10に供給して充電することができる。また、組電池100は、直列に接続された複数の二次電池10に充電された電力を、積層方向の一端の二次電池10の正極外部端子16Pに接続されたバスバー30と、積層方向の他端の二次電池10の負極外部端子16Nに接続されたバスバー30とを介して、例えばモータ等の外部機器へ供給することができる。
 また、組電池100は、導電性を有する短絡部材40を備えている。短絡部材40は、積層方向に隣接する任意の二つの二次電池10のうち、一方の二次電池10の負極外部端子16Nを含む低電位部10Lと、前記他方の二次電池10の正極外部端子16Pを含む高電位部10Hとに対向している。また、短絡部材40は、当該低電位部10Lと高電位部10Hの双方との間に間隙を有している。そのため、組電池100の通常の使用時においては、低電位部10L及び高電位部10Hと、短絡部材40との間が電気的に絶縁され、低電位部10Lと高電位部10Hとが短絡することが防止されている。
 なお、短絡部材40は、低電位部10Lと高電位部10Hの少なくとも一方との間に間隙を有していればよい。短絡部材40が低電位部10Lと高電位部10Hの少なくとも一方との間に間隙を有することで、これらのいずれか一方と接していても、低電位部10Lと高電位部10Hとが電気的に絶縁される。これにより、組電池100の通常の使用時における低電位部10Lと高電位部10Hとの短絡を防止することができる。
 例えば、車両の衝突等によって組電池100に衝撃が加わると、組電池100の製造時に作用する圧縮力よりも数倍大きい荷重が組電池100に作用する場合がある。このような場合、例えば前記特許文献1に記載された従来の電池モジュールでは、二次電池に内部短絡が発生して内圧が上昇し、二次電池が膨張して短絡回路が形成され、二次電池に蓄えられたエネルギーが放出される。しかし、二次電池の内部短絡によって内圧が上昇する場合には、短時間で熱暴走状態に至る虞がある。また、ガス排出弁が開放されて二次電池の内圧が低下すると、膨張した二次電池が元に戻り、短絡回路が形成されない虞がある。
 図5Aは、図4Aに示す本実施形態の組電池100が、二次電池10の積層方向の荷重を受けて変形した後のセルホルダ20及び短絡部材40を示す平面図である。図5Bは、図5Aに示すB-B線に沿うセルホルダ及び短絡部材の断面図である。
 本実施形態の組電池100は、衝撃が加わって製造時に作用する圧縮力よりも数倍大きい荷重が作用すると、各部材の変形によって、積層方向に隣り合う二つの二次電池10の低電位部10L及び高電位部10Hと、短絡部材40との間隔が狭まる。
 より具体的には、組電池100に二次電池10の積層方向の衝撃が加わって荷重が作用すると、例えばセルホルダ20のスペーサ部21が圧縮されて変形したり、二次電池10の電池容器11が圧縮されて変形したりする。このような組電池100を構成する各部材の変形により、積層方向に隣り合う二つの二次電池10の低電位部10L及び高電位部10Hと、短絡部材40との間隔が狭まる。
 積層方向に隣り合う二次電池10の低電位部10L及び高電位部10Hと、短絡部材40との間隔がさらに狭まると、互いに対向する短絡部材40と低電位部10L及び高電位部10Hとが接触する。これにより、短絡部材40を介して積層方向に隣り合う二次電池10の低電位部10Lと高電位部10Hとが短絡する。
 このようにして、組電池100のすべての二次電池10において、短絡部材40を介して低電位部10Lと高電位部10Hとを短絡させることができる。これにより、個々の二次電池10に蓄えられていた電気エネルギーが消費され、二次電池10に内部短絡が発生しても、二次電池10の内圧や温度が過度に上昇することを防止できる。
 したがって、本実施形態の組電池100によれば、衝撃等による外力に対する二次電池10の安全性を従来よりも向上させることができる。
 なお、低電位部10L及び高電位部10Hの一方と、短絡部材40とを予め接触させおくことで、より小さい荷重又はより少ない変形量で積層方向に隣り合う二つの二次電池10の低電位部10Lと高電位部10Hとを短絡させることも可能である。
 また、本実施形態の組電池100は、積層方向に隣り合う一方の二次電池10の正極外部端子16Pと他方の二次電池10の負極外部端子16Nを順次接続する複数のバスバー30を備えている。そして、積層方向に隣り合う二つの二次電池10において、低電位部10Lは、一方の二次電池10の負極外部端子16Nに接続されたバスバー30を含み、高電位部10Hは、他方の二次電池10の正極外部端子16Pに接続されたバスバー30を含んでいる。
 そのため、短絡部材40と、一方の二次電池10の正極外部端子16P又は他方の二次電池の負極外部端子16Nとが接触しなくても、短絡部材40とバスバー30とが接触することで、積層方向に隣り合う二つの二次電池10の低電位部10Lと高電位部10Hとを短絡させることができる。また、短絡部材40と、一方の二次電池10の正極外部端子16P及びそれに接続されたバスバー30、又は、他方の二次電池の負極外部端子16N及びそれに接続されたバスバー30とを、同時に接触させることもできる。これにより、積層方向に隣り合う二つの二次電池10の低電位部10Lと高電位部10Hとをより短絡させ易くすることができる。
 また、組電池100は、二次電池10を保持するセルホルダ20を備えている。そして、短絡部材40は、セルホルダ20に固定されている。これにより、積層方向に隣り合う二つ二次電池10の低電位部10Lと高電位部10Hとに、短絡部材40を対向させて配置するのが容易になる。
 本実施形態の組電池100において、セルホルダ20は、扁平角形の電池容器11の広側面11wに対向するスペーサ部21を有し、短絡部材40は、セルホルダ20のスペーサ部21に固定されている。これにより、積層方向に隣り合う二つ二次電池10の低電位部10Lと高電位部10Hとに対して、二次電池10の積層方向に対向させて短絡部材40を配置するのが容易になる。
 これにより、組電池100に、二次電池10の積層方向の衝撃による荷重が作用したときに、積層方向に隣り合う二つの二次電池10の低電位部10Lと高電位部10Hとに短絡部材40を接触させることができる。したがって、二次電池10の積層方向の衝撃による荷重が作用したときに、短絡部材40を介して積層方向に隣り合う二つの二次電池10を短絡させることができる。
 以上説明したように、本実施形態の組電池100によれば、例えば車両の衝突等により衝撃が加わって高い荷重が作用した場合に、二次電池10に蓄えられた電気エネルギーを速やかにかつ安全に放出することができ、二次災害等を防止することができる。したがって、本実施形態の組電池100によれば、衝撃等による外力に対する二次電池10の安全性を従来よりも向上させることができる。よって、本実施形態の組電池100は、大容量、高入力特性とともに、高い安全性が要求される車載用の組電池として適している。
[実施形態2]
 次に、本発明の実施形態2に係る組電池について、図1から図3を援用し、図6A及び図6B、並びに、図7A及び図7Bを用いて説明する。
 図6Aは、図4Aに相当する本実施形態の組電池の2つの二次電池10の間のセルホルダ20及び短絡部材40Aを示す平面図である。図6Bは、図6Aに示すB-B線に沿うセルホルダ20及び短絡部材40Aの断面図である。
 本実施形態の組電池は、短絡部材40Aが、セルホルダ20の側板部22に固定されている点で、前述の実施形態1の組電池100と異なっている。本実施形態の組電池のその他の点は、前述の実施形態1の組電池と同一であるため、同一の部分には同一の符号を付して説明を省略する。
 前述の実施形態1の組電池100で説明したように、セルホルダ20は、二次電池10の扁平角形の電池容器11の狭側面11nに対向する側板部22を有している。短絡部材40Aは、セルホルダ20の側板部22に固定されている。これにより、短絡部材40Aは、積層方向に隣り合う二つの二次電池10のうち、一方の二次電池10の負極外部端子16Nを含む低電位部10Lと、他方の二次電池10の正極外部端子16Pを含む高電位部10Hとに、電池容器11の幅方向に対向している。また、短絡部材40Aは、これら低電位部10Lと高電位部10Hの双方との間に、電池容器11の幅方向に間隙を有している。
 図7Aは、図6Aに示す本実施形態の組電池が、電池容器11の幅方向の荷重を受けて変形した後のセルホルダ20及び短絡部材40Aを示す平面図である。図7Bは、図7Aに示すB-B線に沿うセルホルダ20及び短絡部材40Aの断面図である。
 例えば、車両の衝突等により、本実施形態の組電池に対して二次電池10の電池容器11の幅方向の衝撃が加わって、組電池の通常の使用時に作用する荷重よりも数倍大きい荷重が、電池容器11の幅方向に作用する場合がある。このような場合に、本実施形態の組電池において、例えば、セルホルダ20の側板部22が電池容器11の幅方向に圧縮されて変形し、又は、側板部22に固定された短絡部材40Aが、積層方向に隣り合う二つの二次電池10の低電位部10Lと高電位部10Hへ向けて変形する。
 これにより、積層方向に隣り合う二つの二次電池10の低電位部10L及び高電位部10Hと、短絡部材40Aとの間隔が狭くなって、低電位部10L及び高電位部10Hと、短絡部材40Aとが接触する。これにより、積層方向に隣り合う二次電池10の低電位部10Lと高電位部10Hとが短絡する。
 このようにして、組電池のすべての二次電池10において、短絡部材40Aを介して低電位部10Lと高電位部10Hとを短絡させることができる。これにより、個々の二次電池10に蓄えられていた電気エネルギーが消費され、二次電池10に内部短絡が発生しても、二次電池10の内圧や温度が過度に上昇することを防止できる。
 したがって、本実施形態の組電池によれば、前述の実施形態1の組電池100と同様に、電池容器11の幅方向の衝撃等による外力に対する二次電池10の安全性を従来よりも向上させることができる。
 なお、短絡部材40Aは、予め隣り合う二つの二次電池10の低電位部10L及び高電位部10Hのいずれか一方に接触させておいてもよい。また、短絡部材40Aの形状は、平板状の形状に限定されず、U字形又はチャネル形等、一方向が開放された矩形の形状を有してもよい。
[実施形態3]
 次に、本発明の実施形態3に係る組電池について、図1から図3を援用し、図8Aから図8Cを用いて説明する。
 図8Aは、図4Aに相当する本実施形態の組電池の2つの二次電池10の間のセルホルダ20及び短絡部材40Bを示す平面図である。図8Bは、図8Aに示すB-B線に沿うセルホルダ20及び短絡部材40Bの断面図である。
 本実施形態の組電池は、バスバー30を保持するバスバーホルダ50を有し、短絡部材40Bがバスバーホルダ50に固定されている点で、前述の実施形態1の組電池100と異なっている。本実施形態の組電池のその他の点は、前述の実施形態1の組電池100と同一であるため、同一の部分には同一の符号を付して説明を省略する。
 本実施形態の組電池は、バスバー30を保持するバスバーホルダ50を有し、短絡部材40Bがバスバーホルダ50に固定されている。バスバーホルダ50の素材は、例えば絶縁性を有する樹脂材料である。短絡部材40Bは、例えばインサート成形によってバスバーホルダ50に固定することができる。なお、短絡部材40Bは、ボルトやリベットなどの機械的固定手段、又は粘着テープや接着剤等によってバスバーホルダ50に固定されていてもよい。
 短絡部材40Bは、バスバーホルダ50に保持されて、複数の二次電池10の積層方向に隣り合う任意の二つの二次電池10の低電位部Lと高電位部10Hとに、電池容器11の高さ方向に対向している。また、短絡部材40Bは、これら低電位部10Lと高電位部10Hとの間に、電池容器11の高さ方向に間隔を有している。
 より詳細には、短絡部材40Bは、複数の二次電池10の積層方向に隣り合う二つの二次電池10の低電位部10Lを構成する一方の二次電池10の負極外部端子16Nと、高電位部10Hを構成する他方の二次電池10の正極外部端子16Pに対向している。また、短絡部材40Bは、隣り合う二つの二次電池10のうち、一方の二次電池10の負極外部端子16Nと、他方の二次電池10の正極外部端子16Pとの間に、間隔を有している。短絡部材40Bは、電池容器11の幅方向を長手方向とする概ね直方体のブロック形状を有している。
 図8Cは、図8Bに示す本実施形態の組電池が、電池容器11の高さ方向の荷重を受けて変形した後のセルホルダ20及び短絡部材40Bを示す断面図である。
 例えば、車両の衝突等により、本実施形態の組電池に対し、二次電池10の電池容器11の高さ方向の衝撃が加わって、組電池の通常の使用時に作用する荷重よりも数倍大きい荷重が、電池容器11の高さ方向に作用する場合がある。このような場合に、本実施形態の組電池では、例えばバスバーホルダ50が電池容器11の高さ方向に圧縮され、バスバーホルダ50に保持された短絡部材40Bと、積層方向に隣り合う二つの二次電池10の低電位部10Lと高電位部10Hとの間隔が狭くなる。
 そして、複数の二次電池10の積層方向に隣り合う任意の二つの二次電池10の低電位部10L及び高電位部10Hと、これらに対向する短絡部材40Bとが接触して、低電位部10Lと高電位部10Hとが短絡部材40Bを介して短絡する。このようにして、組電池のすべての二次電池10において、短絡部材40Bを介して低電位部10Lと高電位部10Hとを短絡させることができる。これにより、個々の二次電池10に蓄えられていた電気エネルギーが消費され、二次電池10に内部短絡が発生しても、二次電池10の内圧や温度が過度に上昇することを防止できる。
 したがって、本実施形態の組電池によれば、前述の実施形態1の組電池100と同様に、電池容器11の高さ方向の衝撃等による外力に対する二次電池10の安全性を従来よりも向上させることができる。
 なお、短絡部材40Bは、予め隣り合う二つの二次電池10の低電位部10L及び高電位部10Hのいずれか一方に接触させておいてもよい。また、短絡部材40Bの形状は、平板状の形状に限定されず、U字形又はチャネル形等、一方向が開放された矩形の形状を有してもよい。
[実施形態4]
 次に、本発明の実施形態4に係る組電池について、図1から図3を援用し、図9を用いて説明する。図9は、図6Aに相当する本実施形態の組電池の2つの二次電池10の間のセルホルダ20及び短絡部材40Cを示す平面図である。
 本実施形態の組電池は、隣り合う二つの二次電池10の低電位部10Lと高電位部10Hに、短絡部材40Cが電池容器11の厚さ方向及び幅方向に対向する点で、前述の実施形態2の組電池と異なっている。本実施形態の組電池のその他の点は、前述の実施形態2の組電池と同一であるため、同一の部分には同一の符号を付して説明を省略する。
 本実施形態の組電池において、短絡部材40Cは、電池容器11の幅方向に延びる第1部分41と、第1部分41の一端から電池容器11の厚さ方向の両側へ延びる第2部分とを有する、概ねT字形の形状を有している。
 短絡部材40Cの第1部分41は、例えば板状の短絡部材40CがU字状に湾曲して折り返された部分である。第1部分41は、隣り合う二つの二次電池10の低電位部10Lと高電位部10Hとの間に配置され、低電位部10L及び高電位部10Hに電池容器11の厚さ方向に対向している。第1部分41は、低電位部10L及び高電位部10Hとの間に間隔を有している。第1部分41は、セルホルダ20のスペーサ部21に固定されている。
 短絡部材40Cの第2部分42は、例えば板状の短絡部材40Cが第1部分41の基端部で電池容器11の厚さ方向に曲折された平板状の部分である。第2部分42は、隣り合う二つの二次電池10の低電位部10L及び高電位部10Hに、電池容器11の幅方向に対向している。第2部分42は、低電位部10L及び高電位部10Hとの間に間隔を有している。第2部分42は、セルホルダ20の側板部22に固定されている。
 例えば、車両の衝突等により、本実施形態の組電池に対して二次電池10の電池容器11の厚さ方向の衝撃が加わって、組電池の通常の使用時に作用する荷重よりも数倍大きい荷重が、電池容器11の厚さ方向に作用する場合がある。このような場合に、本実施形態の組電池において、例えば、隣り合う二つの二次電池10の電池容器11が厚さ方向に圧縮されて変形する。
 そして、積層方向に隣り合う二つの二次電池10の低電位部10L及び高電位部10Hと、短絡部材40Cの第1部分41との間隔が狭くなって、低電位部10L及び高電位部10Hと、短絡部材40Cの第1部分41とが接触する。これにより、積層方向に隣り合う二次電池10の低電位部10Lと高電位部10Hとが短絡する。
 また、車両の衝突等により、本実施形態の組電池に対して二次電池10の電池容器11の幅方向の衝撃が加わって、組電池の通常の使用時に作用する荷重よりも数倍大きい荷重が、電池容器11の幅方向に作用する場合がある。このような場合に、本実施形態の組電池において、例えば、隣り合う二つの二次電池10の電池容器11及びセルホルダ20が電池容器11の幅方向に圧縮されて変形する。
 そして、積層方向に隣り合う二つの二次電池10の低電位部10L及び高電位部10Hと、短絡部材40Cの第2部分42との間隔が狭くなって、低電位部10L及び高電位部10Hと、短絡部材40Cの第2部分42とが接触する。これにより、積層方向に隣り合う二次電池10の低電位部10Lと高電位部10Hとが短絡する。
 このようにして、組電池のすべての二次電池10において、電池容器11の厚さ方向及び幅方向の衝撃による荷重に対し、短絡部材40Cを介して低電位部10Lと高電位部10Hとを短絡させることができる。これにより、個々の二次電池10に蓄えられていた電気エネルギーが消費され、二次電池10に内部短絡が発生しても、二次電池10の内圧や温度が過度に上昇することを防止できる。
 したがって、本実施形態の組電池によれば、前述の実施形態1の組電池100と同様に、電池容器11の厚さ方向及び幅方向の衝撃等による外力に対する二次電池10の安全性を従来よりも向上させることができる。なお、短絡部材40Cは、予め隣り合う二つの二次電池10の低電位部10L及び高電位部10Hのいずれか一方に接触させておいてもよい。
[実施形態5]
 次に、本発明の実施形態5に係る組電池について、図1から図3を援用し、図10を用いて説明する。図10は、図8Bに相当する本実施形態の組電池の2つの二次電池10の間のセルホルダ20及び短絡部材40Dを示す断面図である。
 本実施形態の組電池は、隣り合う二つの二次電池10の低電位部10Lと高電位部10Hに、短絡部材40Dが電池容器11の厚さ方向及び高さ方向に対向する点で、前述の実施形態3の組電池と異なっている。本実施形態の組電池のその他の点は、前述の実施形態3の組電池と同様であるため、同一の部分には同一の符号を付して説明を省略する。
 本実施形態の組電池において、短絡部材40Dは、電池容器11の高さ方向に延びる第1部分41と、第1部分41の一端から電池容器11の厚さ方向の両側へ延びる第2部分とを有している。
 短絡部材40Dの第1部分41は、例えば板状の短絡部材40DがU字状に湾曲して折り返された部分である。第1部分41は、隣り合う二つの二次電池10の低電位部10Lと高電位部10Hとの間に配置され、低電位部10L及び高電位部10Hに電池容器11の厚さ方向に対向している。第1部分41は、低電位部10L及び高電位部10Hとの間に間隔を有している。
 短絡部材40Dの第2部分42は、例えば板状の短絡部材40Dが第1部分41の基端部で電池容器11の厚さ方向に曲折された平板状の部分である。第2部分42は、隣り合う二つの二次電池10の低電位部10L及び高電位部10Hに、電池容器11の高さ方向に対向している。第2部分42は、バスバーホルダ50に固定され、低電位部10L及び高電位部10Hとの間に間隔を有している。
 例えば、車両の衝突等により、本実施形態の組電池に対して二次電池10の電池容器11の厚さ方向の衝撃が加わって、組電池の通常の使用時に作用する荷重よりも数倍大きい荷重が、電池容器11の厚さ方向に作用する場合がある。このような場合に、本実施形態の組電池において、例えば、隣り合う二つの二次電池10の電池容器11が厚さ方向に圧縮されて変形する。
 そして、積層方向に隣り合う二つの二次電池10の低電位部10L及び高電位部10Hと、短絡部材40Dの第1部分41との間隔が狭くなって、低電位部10L及び高電位部10Hと、短絡部材40Dの第1部分41とが接触する。これにより、積層方向に隣り合う二次電池10の低電位部10Lと高電位部10Hとが短絡する。
 また、車両の衝突等により、本実施形態の組電池に対して二次電池10の電池容器11の高さ方向の衝撃が加わって、組電池の通常の使用時に作用する荷重よりも数倍大きい荷重が、電池容器11の高さ方向に作用する場合がある。このような場合に、本実施形態の組電池において、例えば、バスバーホルダ50が電池容器11の高さ方向に圧縮されて変形する。
 そして、隣り合う二つの二次電池10の低電位部10L及び高電位部10Hと、短絡部材40Dの第2部分42との間隔が狭くなって、低電位部10L及び高電位部10Hと、短絡部材40Dの第2部分42とが接触する。これにより、積層方向に隣り合う二次電池10の低電位部10Lと高電位部10Hとが短絡する。
 このようにして、組電池のすべての二次電池10において、電池容器11の厚さ方向及び高さ方向の衝撃による荷重に対し、短絡部材40Dを介して低電位部10Lと高電位部10Hとを短絡させることができる。これにより、個々の二次電池10に蓄えられていた電気エネルギーが消費され、二次電池10に内部短絡が発生しても、二次電池10の内圧や温度が過度に上昇することを防止できる。
 したがって、本実施形態の組電池によれば、前述の実施形態1の組電池100と同様に、電池容器11の厚さ方向及び高さ方向の衝撃等による外力に対する二次電池10の安全性を従来よりも向上させることができる。なお、短絡部材40Dは、予め隣り合う二つの二次電池10の低電位部10L及び高電位部10Hのいずれか一方に接触させておいてもよい。
[実施形態6]
 次に、本発明の実施形態6に係る組電池について、図1から図3を援用し、図11を用いて説明する。図11は、本実施形態の組電池の2つの二次電池10の間のセルホルダ20及び短絡部材40Eを示す斜視図である。
 本実施形態の組電池は、隣り合う二つの二次電池10の低電位部10Lと高電位部10Hに、短絡部材40Eが電池容器11の幅方向及び高さ方向に対向する点で、前述の実施形態2の組電池と異なっている。本実施形態の組電池のその他の点は、前述の実施形態2の組電池と同様であるため、同一の部分には同一の符号を付して説明を省略する。
 本実施形態の組電池において、短絡部材40Eは、互いに垂直な平板状の第1部分40aと第2部分40bと有する断面形状がL字形の部材である。第1部分40aは、電池容器11の上面11tと概ね平行であり、電池容器11の幅方向及び厚さ方向に延在している。第2部分40bは、第1部分40aの一端から電池容器11の狭側面11nと概ね平行に、電池容器11の高さ方向及び厚さ方向に延在し、セルホルダ20の側板部22に固定されている。
 第1部分40aは、隣り合う二つの二次電池10の低電位部10L及び高電位部10Hに、電池容器11の高さ方向に対向し、低電位部10L及び高電位部10Hとの間に間隔を有している。第2部分40bは、隣り合う二つの二次電池10の低電位部10L及び高電位部10Hに、電池容器11の幅方向に対向し、低電位部10L及び高電位部10Hとの間に間隔を有している。
 例えば、車両の衝突等により、本実施形態の組電池に対して二次電池10の電池容器11の高さ方向の衝撃が加わって、組電池の通常の使用時に作用する荷重よりも数倍大きい荷重が、電池容器11の高さ方向に作用する場合がある。このような場合に、本実施形態の組電池において、例えば、セルホルダ20が電池容器11の高さ方向に圧縮されて変形する。
 そして、積層方向に隣り合う二つの二次電池10の低電位部10L及び高電位部10Hと、短絡部材40Eの第1部分40aとの間隔が狭くなって、低電位部10L及び高電位部10Hと、短絡部材40Eの第1部分40aとが接触する。これにより、積層方向に隣り合う二次電池10の低電位部10Lと高電位部10Hとが短絡する。
 また、車両の衝突等により、本実施形態の組電池に対して二次電池10の電池容器11の幅方向の衝撃が加わって、組電池の通常の使用時に作用する荷重よりも数倍大きい荷重が、電池容器11の幅方向に作用する場合がある。このような場合に、本実施形態の組電池において、例えば、隣り合う2つの二次電池10の電池容器11及びセルホルダ20が電池容器11の幅方向に圧縮されて変形する。
 そして、隣り合う二つの二次電池10の低電位部10L及び高電位部10Hと、短絡部材40Eの第2部分40bとの間隔が狭くなって、低電位部10L及び高電位部10Hと、短絡部材40Eの第2部分40bとが接触する。これにより、積層方向に隣り合う二次電池10の低電位部10Lと高電位部10Hとが短絡する。
 このようにして、組電池のすべての二次電池10において、電池容器11の厚さ方向及び高さ方向の衝撃による荷重に対し、短絡部材40Eを介して低電位部10Lと高電位部10Hとを短絡させることができる。これにより、個々の二次電池10に蓄えられていた電気エネルギーが消費され、二次電池10に内部短絡が発生しても、二次電池10の内圧や温度が過度に上昇することを防止できる。
 したがって、本実施形態の組電池によれば、前述の実施形態1の組電池100と同様に、電池容器11の高さ方向及び幅方向の衝撃等による外力に対する二次電池10の安全性を従来よりも向上させることができる。なお、短絡部材40Eは、予め隣り合う二つの二次電池10の低電位部10L及び高電位部10Hのいずれか一方に接触させておいてもよい。
[実施形態7]
 次に、本発明の実施形態7に係る組電池について、図1から図3を援用し、図12を用いて説明する。図12は、本実施形態の組電池の2つの二次電池10の間のセルホルダ20及び短絡部材40Fを示す平面図である。
 本実施形態の組電池は、隣り合う二つの二次電池10の低電位部10Lと高電位部10Hに、短絡部材40Fが電池容器11の厚さ方向、幅方向、及び高さ方向に対向する点で、前述の実施形態2の組電池と異なっている。本実施形態の組電池のその他の点は、前述の実施形態2の組電池と同様であるため、同一の部分には同一の符号を付して説明を省略する。
 本実施形態の組電池において、短絡部材40Fは、互いに垂直な平板状の第1部分40aと第2部分40bと有するとともに、電池容器11の幅方向に延びるU字形の第3部分40cと、電池容器11の高さ方向に延びる柱状の第4部分40dとを有している。短絡部材40Fは、電池容器11の厚さ方向において、U字形の第3部分40cの基端部の両側に、それぞれ一対の第1部分40a、第2部分40b、及び第4部分40dを有している。
 第1部分40aは、電池容器11の上面11tと概ね平行な平板状であり、電池容器11の幅方向及び厚さ方向に延在している。第2部分40bは、第1部分40aの一端から電池容器11の狭側面11nと概ね平行に延びる平板状であり、電池容器11の高さ方向及び厚さ方向に延在して、第4部分40dの一端に連結されている。
 一対の第1部分40aは、それぞれ、隣り合う二つの二次電池10の低電位部10L及び高電位部10Hに、電池容器11の高さ方向に対向し、低電位部10L及び高電位部10Hとの間に間隔を有している。一対の第2部分40bは、それぞれ、隣り合う二つの二次電池10の低電位部10L及び高電位部10Hに、電池容器11の幅方向に対向し、低電位部10L及び高電位部10Hとの間に間隔を有している。
 第3部分40cは、例えば断面形状が矩形の棒状の部材がU字状に湾曲して折り返された部分であり、隣り合う二つの二次電池10の低電位部10Lと高電位部10Hとの間に配置され、低電位部10L及び高電位部10Hに、電池容器11の厚さ方向に対向している。第3部分40cは、基端部が一対の第2部分40bに連結され、低電位部10L及び高電位部10Hとの間に間隔を有している。一対の第4部分40dは、一端が第2部分40bに連結され、他端がセルホルダ20の側板部22に固定されている。
 例えば、車両の衝突等により、本実施形態の組電池に対して二次電池10の電池容器11の高さ方向の衝撃が加わって、組電池の通常の使用時に作用する荷重よりも数倍大きい荷重が、電池容器11の高さ方向に作用する場合がある。このような場合に、本実施形態の組電池において、例えば、セルホルダ20が電池容器11の高さ方向に圧縮されて変形する。
 そして、積層方向に隣り合う二つの二次電池10の低電位部10L及び高電位部10Hと、短絡部材40Fの一対の第1部分40aとの間隔が狭くなって、低電位部10L及び高電位部10Hと、短絡部材40Fの一対の第1部分40aとが接触する。これにより、積層方向に隣り合う二次電池10の低電位部10Lと高電位部10Hとが短絡する。
 また、車両の衝突等により、本実施形態の組電池に対して二次電池10の電池容器11の幅方向の衝撃が加わって、組電池の通常の使用時に作用する荷重よりも数倍大きい荷重が、電池容器11の幅方向に作用する場合がある。このような場合に、本実施形態の組電池において、例えば、隣り合う2つの二次電池10の電池容器11及びセルホルダ20が電池容器11の幅方向に圧縮されて変形する。
 そして、隣り合う二つの二次電池10の低電位部10L及び高電位部10Hと、短絡部材40Fの一対の第2部分40bとの間隔が狭くなって、低電位部10L及び高電位部10Hと、短絡部材40Fの一対の第2部分40bとが接触する。これにより、積層方向に隣り合う二次電池10の低電位部10Lと高電位部10Hとが短絡する。
 また、車両の衝突等により、本実施形態の組電池に対して二次電池10の電池容器11の厚さ方向の衝撃が加わって、組電池の通常の使用時に作用する荷重よりも数倍大きい荷重が、電池容器11の厚さ方向に作用する場合がある。このような場合に、本実施形態の組電池において、例えば、隣り合う2つの二次電池10の電池容器11及びセルホルダ20が電池容器11の厚さ方向に圧縮されて変形する。
 そして、隣り合う二つの二次電池10の低電位部10L及び高電位部10Hと、短絡部材40Fの第3部分40cとの間隔が狭くなって、低電位部10L及び高電位部10Hと、短絡部材40Fの第3部分40cとが接触する。これにより、積層方向に隣り合う二次電池10の低電位部10Lと高電位部10Hとが短絡する。
 このようにして、組電池のすべての二次電池10において、電池容器11の厚さ方向、幅方向、及び高さ方向の衝撃による荷重に対し、短絡部材40Fを介して低電位部10Lと高電位部10Hとを短絡させることができる。これにより、個々の二次電池10に蓄えられていた電気エネルギーが消費され、二次電池10に内部短絡が発生しても、二次電池10の内圧や温度が過度に上昇することを防止できる。
 したがって、本実施形態の組電池によれば、前述の実施形態1の組電池100と同様に、電池容器11の厚さ方向、幅方向、及び高さ方向の衝撃等による外力に対する二次電池10の安全性を従来よりも向上させることができる。なお、短絡部材40Fは、予め隣り合う二つの二次電池10の低電位部10L及び高電位部10Hのいずれか一方に接触させておいてもよい。
 以上、図面を用いて本発明の実施の形態を詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本発明に含まれるものである。
10 二次電池、10L 低電位部、10H 高電位部、11 電池容器、11w 広側面、11n 狭側面、16N 負極外部端子、16P 正極外部端子、20 セルホルダ、21 スペーサ部、22 側板部、30 バスバー、40 短絡部材、40A-40F 短絡部材、50 バスバーホルダ、100 組電池

Claims (6)

  1.  厚さ方向に積層された扁平角形の複数の二次電池を備え、積層方向に隣り合う一方の二次電池の正極外部端子と他方の二次電池の負極外部端子が接続された組電池であって、
     導電性を有する短絡部材を備え、
     前記短絡部材は、前記一方の二次電池の負極外部端子を含む負極側低電位部と、前記他方の二次電池の正極外部端子を含む正極側高電位部とに対向するとともに、前記負極側低電位部と前記正極側高電位部の少なくとも一方との間に間隙を有することを特徴とする組電池。
  2.  積層方向に隣り合う一方の二次電池の正極外部端子と他方の二次電池の負極外部端子を接続する複数のバスバーを備え、
     前記負極側低電位部は、前記一方の二次電池の前記負極外部端子に接続されたバスバーを含み、
     前記正極側高電位部は、前記他方の二次電池の前記正極外部端子に接続されたバスバーを含むことを特徴とする請求項1に記載の組電池。
  3.  前記二次電池を保持するセルホルダを備え、
     前記短絡部材は、前記セルホルダに固定されていることを特徴とする請求項1又は請求項2に記載の組電池。
  4.  前記セルホルダは、前記二次電池の電池容器の広側面に対向するスペーサ部を有し、
     前記短絡部材は、前記スペーサ部に固定されていることを特徴とする請求項3に記載の組電池。
  5.  前記セルホルダは、前記二次電池の電池容器の狭側面に対向する側板部を有し、
     前記短絡部材は、前記側板部に固定されていることを特徴とする請求項3に記載の組電池。
  6.  前記バスバーを保持するバスバーホルダを有し、
     前記短絡部材は、前記バスバーホルダに固定されていることを特徴とする請求項2に記載の組電池。
PCT/JP2016/082729 2015-12-07 2016-11-04 組電池 WO2017098838A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017554974A JP6612893B2 (ja) 2015-12-07 2016-11-04 組電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015238257 2015-12-07
JP2015-238257 2015-12-07

Publications (1)

Publication Number Publication Date
WO2017098838A1 true WO2017098838A1 (ja) 2017-06-15

Family

ID=59014047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082729 WO2017098838A1 (ja) 2015-12-07 2016-11-04 組電池

Country Status (2)

Country Link
JP (1) JP6612893B2 (ja)
WO (1) WO2017098838A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3540818A4 (en) * 2017-06-27 2020-01-15 LG Chem, Ltd. BATTERY MODULE AND BATTERY PACK AND VEHICLE THEREFOR
EP4002562A4 (en) * 2019-12-05 2023-03-15 LG Energy Solution, Ltd. BATTERY PACK WITH HEAT DIFFUSION PREVENTION ELEMENT

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013131461A (ja) * 2011-12-22 2013-07-04 Nissan Motor Co Ltd 電池装置
JP2014157722A (ja) * 2013-02-15 2014-08-28 Hitachi Vehicle Energy Ltd 組電池
JP2015002113A (ja) * 2013-06-17 2015-01-05 株式会社豊田自動織機 蓄電モジュールおよび蓄電パック
JP2015053145A (ja) * 2013-09-05 2015-03-19 トヨタ自動車株式会社 二次電池モジュール
JP2015118792A (ja) * 2013-12-18 2015-06-25 トヨタ自動車株式会社 二次電池モジュール
WO2015097875A1 (ja) * 2013-12-27 2015-07-02 日立オートモティブシステムズ株式会社 組電池
JP2015207340A (ja) * 2012-08-30 2015-11-19 三洋電機株式会社 電源装置及び電源装置を備える電動車両並びに蓄電装置、電源装置の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101072955B1 (ko) * 2009-08-14 2011-10-12 에스비리모티브 주식회사 전지 모듈

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013131461A (ja) * 2011-12-22 2013-07-04 Nissan Motor Co Ltd 電池装置
JP2015207340A (ja) * 2012-08-30 2015-11-19 三洋電機株式会社 電源装置及び電源装置を備える電動車両並びに蓄電装置、電源装置の製造方法
JP2014157722A (ja) * 2013-02-15 2014-08-28 Hitachi Vehicle Energy Ltd 組電池
JP2015002113A (ja) * 2013-06-17 2015-01-05 株式会社豊田自動織機 蓄電モジュールおよび蓄電パック
JP2015053145A (ja) * 2013-09-05 2015-03-19 トヨタ自動車株式会社 二次電池モジュール
JP2015118792A (ja) * 2013-12-18 2015-06-25 トヨタ自動車株式会社 二次電池モジュール
WO2015097875A1 (ja) * 2013-12-27 2015-07-02 日立オートモティブシステムズ株式会社 組電池

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3540818A4 (en) * 2017-06-27 2020-01-15 LG Chem, Ltd. BATTERY MODULE AND BATTERY PACK AND VEHICLE THEREFOR
JP2020515002A (ja) * 2017-06-27 2020-05-21 エルジー・ケム・リミテッド バッテリーモジュール、それを含むバッテリーパック及び自動車
US10892468B2 (en) 2017-06-27 2021-01-12 Lg Chem, Ltd. Battery module with short-circuit unit, and battery pack and vehicle including the same
EP4002562A4 (en) * 2019-12-05 2023-03-15 LG Energy Solution, Ltd. BATTERY PACK WITH HEAT DIFFUSION PREVENTION ELEMENT

Also Published As

Publication number Publication date
JPWO2017098838A1 (ja) 2018-09-06
JP6612893B2 (ja) 2019-11-27

Similar Documents

Publication Publication Date Title
EP3282515B1 (en) Battery module, battery pack comprising battery module, and vehicle comprising battery pack
US10115954B2 (en) Battery module
US8932749B2 (en) Battery module
EP3151307B1 (en) Battery module and battery pack comprising same
US9947958B2 (en) Power source module
EP2418710B1 (en) Battery module
EP2562842B1 (en) Battery module
US9905829B2 (en) Energy storage apparatus
US20150079447A1 (en) Battery module
US20130183573A1 (en) Power source unit
JP6606818B2 (ja) 蓄電デバイスモジュール
JP2016189248A (ja) 角形二次電池及びそれを用いた組電池
EP3859816A1 (en) Battery pack
JP2019029225A (ja) 蓄電素子
US20170263901A1 (en) Battery module
JP2013118160A (ja) 電池セル用ホルダ及び電池セル用ホルダを備えた組電池
EP2797138B1 (en) Battery pack
CN105406141A (zh) 蓄电装置
JP5929731B2 (ja) 蓄電装置及び接続部材
US20200136108A1 (en) Energy storage apparatus
JP6612893B2 (ja) 組電池
US20150270525A1 (en) Battery module
KR101957403B1 (ko) 셀 리드 연결 장치 및 이를 포함하는 배터리 모듈
JP2015064971A (ja) 組電池
JP6611820B2 (ja) 組電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16872738

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017554974

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16872738

Country of ref document: EP

Kind code of ref document: A1