WO2017098542A1 - Omnidirectional image generation device, omnidirectional image generation method, and omnidirectional image generation program - Google Patents

Omnidirectional image generation device, omnidirectional image generation method, and omnidirectional image generation program Download PDF

Info

Publication number
WO2017098542A1
WO2017098542A1 PCT/JP2015/006177 JP2015006177W WO2017098542A1 WO 2017098542 A1 WO2017098542 A1 WO 2017098542A1 JP 2015006177 W JP2015006177 W JP 2015006177W WO 2017098542 A1 WO2017098542 A1 WO 2017098542A1
Authority
WO
WIPO (PCT)
Prior art keywords
omnidirectional image
vertex
image generation
medium
sheet
Prior art date
Application number
PCT/JP2015/006177
Other languages
French (fr)
Japanese (ja)
Inventor
光雄 林
Original Assignee
光雄 林
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 光雄 林 filed Critical 光雄 林
Priority to JP2017554665A priority Critical patent/JP6762677B2/en
Priority to PCT/JP2015/006177 priority patent/WO2017098542A1/en
Publication of WO2017098542A1 publication Critical patent/WO2017098542A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H33/00Other toys
    • A63H33/16Models made by folding paper
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image

Definitions

  • the present invention relates to an omnidirectional image generation apparatus, an omnidirectional image generation method, and an omnidirectional image generation program.
  • an omnidirectional image a planar image on a sheet-like medium made of paper, cloth, plastic, or the like (hereinafter referred to as an omnidirectional image) that covers an omnidirectional background of an operator or an observer It is necessary to perform coordinate conversion from 3D coordinates to 2D coordinates.
  • Examples of the conversion method from the three-dimensional coordinates to the two-dimensional coordinates include an equirectangular projection and a method using a three-dimensional development view.
  • images using equirectangular projection include photographing with a dedicated omnidirectional digital camera (for example, THETA (registered trademark) manufactured by Ricoh Co., Ltd.) and computer graphics images provided by volunteers (for example, , Skydome, etc.). Note that the images themselves obtained by these methods are two-dimensional planes, but can be displayed on a spherical model or a computer display device as a background image by using dedicated software.
  • a dedicated omnidirectional digital camera for example, THETA (registered trademark) manufactured by Ricoh Co., Ltd.
  • computer graphics images provided by volunteers
  • a three-dimensional object to which the omnidirectional image is applied is preferably a three-dimensional object having few depressions and protrusions, and for example, a shape close to a sphere like an earth globe is ideal.
  • JP 2012-73766 A Utility Model Registration No. 3089936 JP 2002-332162 A JP 2003-33569 A JP-A-5-342313
  • origami for the field of origami with an infinite number of shapes, omnidirectional images are applied so that the three-dimensional continuity, that is, the surfaces are continuous and the images are continuous on all adjacent surfaces. This has not been assumed conventionally.
  • origami since normal origami is square, it may start to be folded in a state rotated by 90 degrees or 180 degrees, but when using origami on which an image is printed, by starting folding from an unexpected direction, The image layout may not be correct when completed.
  • the degree of freedom of shape is higher than that of origami, for example, a development view for working a three-dimensional object close to a sphere such as a truncated icosahedron, and generation of an omnidirectional image suitable for it Has been implemented conventionally.
  • origami for example, a development view for working a three-dimensional object close to a sphere such as a truncated icosahedron, and generation of an omnidirectional image suitable for it has been implemented conventionally.
  • the closer to the sphere the more complicated the shape of the developed view tends to become, and tools and labor are required in the process of the work after image printing.
  • the present invention has been made in view of such a situation, and an object of the present invention is to provide an omnidirectional image generation apparatus and an omnidirectional image generation apparatus capable of generating an omnidirectional image suitable for origami that can be easily worked.
  • An image generation method and an omnidirectional image generation program are provided.
  • the omnidirectional image generation apparatus is a three-dimensional object that is completed by folding a sheet-like medium from an original omnidirectional image according to a predetermined folding order.
  • An omnidirectional image generation apparatus for generating an omnidirectional image formed on a surface, wherein a central control unit and a surface corresponding to the surface of the three-dimensional object are formed in a three-dimensional space of the original omnidirectional image
  • a vertex setting unit for providing a vertex group
  • a storage unit for storing coordinate information in which a vector representing a direction from the origin of the three-dimensional space for each vertex and a positional coordinate on the sheet-like medium are associated with each other,
  • the central control unit generates pixel information located in each plane based on the coordinate information read from the storage unit.
  • the omnidirectional image generation method is formed on the surface of a three-dimensional object completed by folding a sheet-like medium according to a predetermined folding order from the original omnidirectional image.
  • a generating method for generating an omnidirectional image, a vertex setting step of providing a vertex group constituting a surface corresponding to the surface of the three-dimensional object in the three-dimensional space of the original omnidirectional image, and for each vertex An association step for associating a vector representing the direction from the origin of the three-dimensional space with the position coordinates on the sheet-like medium, and generating pixel information located in each plane based on the coordinate information associated with each vertex. And a generation process.
  • the omnidirectional image generation program provides a computer with a group of vertices constituting a surface corresponding to the surface of the three-dimensional object in the three-dimensional space of the original omnidirectional image.
  • a vector representing the direction from the origin of the three-dimensional space is associated with the position coordinates on the sheet-like medium, and pixel information located in each plane is generated based on the coordinate information associated with each vertex.
  • an omnidirectional image generation apparatus an omnidirectional image generation method, and an omnidirectional image generation program capable of realizing generation of an omnidirectional image suitable for origami that can be easily worked.
  • (B) It is an example of the original omnidirectional image whose image format is a development view of an icosahedron. It is a figure explaining the vertex group which comprises the surface set to the three-dimensional space of the original omnidirectional image which concerns on one Embodiment of this invention. It is a figure explaining the position coordinates of the vertex on the origami before work concerning one embodiment of the present invention. It is a figure explaining the production
  • (B) It is the figure which showed the origami balloon completed by folding the printed origami according to the predetermined folding order.
  • (A) It is a figure explaining the state which printed the omnidirectional image after conversion on square origami.
  • B) It is the figure which showed the origami balloon completed by folding the printed origami according to the predetermined folding order.
  • (A) It is a figure explaining the state which printed the omnidirectional image after conversion on square origami.
  • (B) It is the figure which showed the origami balloon completed by folding the printed origami according to the predetermined folding order.
  • origami balloon generation of an omnidirectional image suitable for a traditional origami “balloon” (hereinafter referred to as an origami balloon), which is one of the final three-dimensional shapes of origami, will be described.
  • origami balloons are completed by folding a sheet-like medium made of square paper in a predetermined procedure, and in that process, it is not necessary to cut the sheet-like medium with scissors or to bond it with an adhesive or the like.
  • the shape at the time of completion of an origami balloon contains a part of a hollow and protrusion, but the whole becomes rounder than a general cube.
  • the original planar shape corresponding to the completed surface of the origami balloon is a shape unique to origami unlike the general development of a three-dimensional object.
  • an origami balloon is regarded as a cube, there are places (in this case, a portion where a square is separated into a plurality of triangles) different from a developed view of a normal cube.
  • there are also portions that do not appear on the surface when the origami balloon is completed overlapping portions or portions facing back). Note that these elements are factors that make it difficult to generate an omnidirectional image, unlike shapes such as intentional developments and glue margins in paper craft.
  • FIG. 1 is a block diagram illustrating a configuration of an omnidirectional image generation apparatus 1 according to an embodiment of the present invention.
  • the omnidirectional image generation apparatus 1 includes a personal computer 10, a display device 20, a pointing device 30, and a printing device 60.
  • the omnidirectional image generation apparatus 1 corresponds to an aspect of a computer program product in which an omnidirectional image generation program that implements functions to be described later is installed.
  • the personal computer 10 includes a multitasking processor and the like, and includes a central control unit 11 that also functions as a vertex setting unit, and a main memory 12 having a built-in volatile storage medium such as a RAM (Random Access Memory) as a temporary storage device. And an image control unit 13 such as a graphic card, an input / output control unit 14, a built-in nonvolatile storage medium 15 such as an HDD (Hard Disk Drive) or a flash memory, and a media read / write interface 16.
  • a multitasking processor and the like includes a central control unit 11 that also functions as a vertex setting unit, and a main memory 12 having a built-in volatile storage medium such as a RAM (Random Access Memory) as a temporary storage device.
  • an image control unit 13 such as a graphic card
  • an input / output control unit 14 a built-in nonvolatile storage medium 15 such as an HDD (Hard Disk Drive) or a flash memory
  • the image control unit 13 includes a video memory 13a. Similar to the main memory 12 of the personal computer 10 main body, the video memory 13a temporarily stores data, and the memory provided in the graphic card is also referred to as VRAM (Video RAM). Data that has been processed by the image control unit 13 is temporarily stored in the video memory 13a and used as needed. For example, when 3D graphics is displayed on the display device 20, the amount of data required becomes large. Therefore, in order to display a fine 3D graphics image smoothly and without defects, the video memory 13a has a larger capacity. Is good. In recent years, the speed of VRAM has increased, and a memory standard dedicated to high-speed processing called GDDR (Graphics Double Data Rate) has also appeared, and high-speed transfer of enormous data in three-dimensional graphics drawing has been realized.
  • GDDR Graphics Double Data Rate
  • the display device 20 is an image display device such as a liquid crystal display, for example.
  • the pointing device 30 is a device that can accept coordinate input and / or button input, such as a mouse, a touch panel, and a pen tablet.
  • the cover device 20 and the pointing device 30 function as a selection unit that accepts the image format of the original omnidirectional image and accepts selection of the type of surface shape corresponding to the surface of the origami balloon as a three-dimensional object at the time of completion.
  • the printing apparatus 60 is an image forming apparatus that includes a print engine such as an ink jet method or an electrophotographic method, and can print a generated omnidirectional image on a sheet-like medium as origami.
  • the shape of the sheet-like medium is not limited to a conventional square, but may be a rectangle such as A4 paper, for example.
  • the program data 40, the omnidirectional image input data 50, and the coordinate association data 52 are input via the media read / write interface 16, and the omnidirectional image output data 51 is output via the media read / write interface 16.
  • the program data 40 is software that enables the omnidirectional image generation apparatus according to the present invention, particularly the central control unit 11, to operate, and the omnidirectional image generation program according to the present invention corresponds to this.
  • the program data 40 may be configured to be read from a computer-readable recording medium via the medium read / write interface 16 as described above, or may be recorded in advance in the built-in nonvolatile storage medium 15. May be provided by
  • the omnidirectional image input data 50 and the omnidirectional image output data 51 are an image group handled by the central control unit 11 that operates based on the program data 40.
  • the omnidirectional image input data 50 according to the present embodiment has a three-dimensional space by being provided with coordinate association data 52 described below.
  • coordinate association data 52 described below.
  • the omnidirectional image input data 50 A texture image group corresponds to the data 50 and the omnidirectional image output data 51.
  • the input texture image group is temporarily stored in the main memory 12.
  • the omnidirectional image input data 50 As the omnidirectional image input data 50, a picture created in an omnidirectional image editing apparatus (International Publication Number: WO / 2012/147303) previously filed by the applicant of the present application is used for equirectangular projection and equirectangular azimuth projection. You may use what was produced
  • the omnidirectional image output data 51 is an omnidirectional image suitable for an image formed on the origami balloon surface at the time of completion generated based on the original original omnidirectional image input.
  • the omnidirectional image output data 51 may be output to an external recording medium (not shown) in a predetermined file format so that exchange or transfer in units of files is easy. There may be a form in which a printed matter in which the omnidirectional image to be expressed is directly printed on origami by the printing apparatus 60 is provided.
  • the coordinate association data 52 is based on the type of the surface shape corresponding to the surface of the origami balloon received via the omnidirectional image selection screen described later, and the surface set in the three-dimensional space of the original omnidirectional image.
  • the table is stored in a storage unit such as the main memory 12 and the built-in nonvolatile storage medium 15.
  • the position coordinates (u, v) are (0, 0) for the upper left vertex of the sheet-like medium, (8, 0) for the upper right vertex, (0, 8) for the lower left vertex,
  • the coordinates of the lower vertex are defined and expressed as (8, 8).
  • the coordinate association data 52 may accompany the program data 40 or may read externally defined data.
  • the coordinate association data 52 can also be applied to coordinate association of an image formed in a conventional image format such as equirectangular projection, equirectangular orientation projection, etc. Is not limited.
  • each pixel of the input image provided as the omnidirectional image input data 50 and the output image provided as the omnidirectional output image data 51 has a color (r: red, g: green, b: blue).
  • a color r: red, g: green, b: blue
  • the opacity of each pixel can be recorded in 256 steps of 8-bit type.
  • An alpha value of zero means completely transparent, 255 means completely opaque.
  • a format in which density values are expanded to 65536 levels of 16-bit type, a format represented by a floating-point type, or the like may be used.
  • FIG. 5 is a diagram for explaining a configuration example of the omnidirectional image selection screen 100 according to the present embodiment.
  • 6 is an example of an original omnidirectional image formed in an image format that can be selected via the omnidirectional image selection screen 100
  • FIG. 7 is set in the three-dimensional space of the original omnidirectional image. It is a figure explaining the vertex group which comprises the surface.
  • FIG. 8 is a diagram for explaining the position coordinates of the vertexes on the origami before work.
  • FIG. 9 is a diagram for explaining the generation processing of pixel information located in the plane, and represents the two-dimensional coordinates related to the original omnidirectional image using the equirectangular projection.
  • this series of operations corresponds to the omnidirectional image generation method according to the embodiment of the present invention.
  • the central control unit 11 In the omnidirectional image generation device 1, when this omnidirectional image generation program is read from the storage medium, loaded in the main memory 12 and executed by the central control unit 11, the central control unit 11 generates the omnidirectional image generation program. Start processing.
  • the central control unit 11 displays the omnidirectional image selection screen 100 shown in FIG.
  • the omnidirectional image selection screen 100 shown in FIG. 5 generates an omnidirectional image 51 ′ suitable for an image formed on the origami balloon surface at the completion from the original omnidirectional image 50 ′ using equirectangular projection.
  • An example in which a series of processing is completed in one window is shown.
  • the user designates the file storage position of the original omnidirectional image 50 ′ in the “Import” column in the omnidirectional image selection screen 100, and the original omnidirectional image 50 ′ in the “Made From” column.
  • the image format is selected using the pointing device 30 from the pre-conversion image format selection pull-down menu 101.
  • the image format of the original omnidirectional image 50 ′ is “Equirectangular: equirectangular projection”.
  • the original omnidirectional image 50b ′ which is a developed view of the image format “Icosahedron: icosahedron”, may be selected.
  • the user designates the image format of the converted omnidirectional image 51 ′ from the converted image format selection pull-down menu 102 in the “Panorama Type” column.
  • an example of “Origami Balloon A_Top” is shown when the surface shape is a triangle or a quadrangle as the type of the surface shape after conversion and 15 surfaces having the number of surfaces A0 to A14 are selected.
  • Topic following “OrigamiBalloonA_” is selected when generating the omnidirectional image 51 ′ with the hole portion of the origami balloon at the top being the top, and similarly, “Horizontal” “Bottom” is selected when generating an omnidirectional image 51 'in which the hole portion of the origami balloon is in the horizontal direction, and “Bottom” is the omnidirectional image 51' in which the hole portion of the origami balloon is completed at the bottom. is there.
  • the user can generate the converted omnidirectional image 51 ′ by designating the converted data storage position in the “Export” field and pressing the “OK” button.
  • the image format of the original omnidirectional image 50 ′ is automatically determined by predetermined image recognition or limited to one type, and the image format of the converted omnidirectional image 51 ′ is limited to one type, It is not necessary for the user to select each of them.
  • the original omnidirectional image 50 ′ file and the converted omnidirectional image 51 ′ file may be automatically determined according to a predetermined rule.
  • a storage position existing in a predetermined folder may be specified as a file storage position of the original omnidirectional image, and a character string with a suffix added to the storage position may be specified as a storage position of the converted omnidirectional image.
  • This is suitable for implementation in an environment where a simple procedure is preferred, such as when the personal computer 10 is a smartphone, or when batch conversion of a large number of omnidirectional images.
  • step S10 when the surface shape corresponding to the surface of the origami balloon is selected by the user as “Origami Balloon A_Top”, the surface shape is a triangle or a quadrangle and the number of surfaces is A0 to A14, the central controller 11 defines surfaces A0 to A14 corresponding to the respective surfaces of the origami balloon shown below, selects all the surfaces related to the defined surface list (step S11 branches to No, step S12), and FIG. As shown in FIG. 5, all vertices relating to the surface selected in step S12 are set. Each surface is formed of a triangle or a quadrangle.
  • A0 (a0-a4-a1) A1: (a1 -a4 -a5 -a2) A2: (a2 -a5 -a3) A3: (a4 -a6 -a8) A4: (a4 -a8 -a9 -a5) A5: (a5-a9-a7) A6: (a8-a10-a12) A7: (a8-a12-a13-a9) A8: (a9-a13-a11) A9: (a12-a14-a16) A10: (a12-a16-a17-a13) A11: (a13-a17-a15) A12: (a16-a18-a19) A13: (a16-a19-a20-a17) A14: (a17-a20-a21)
  • the central control unit 11 reads out the coordinate association data 52 shown below from the storage unit such as the main memory 12 and the built-in nonvolatile storage medium 15, and from the origin (viewpoint) in the three-dimensional space with respect to the vertex group.
  • the component (x, y, z) representing the direction as a vector is associated with the position coordinates (u, v) on the origami before the work (branch to step S13, step S14, step S15, FIG. 8).
  • the component (x, y, z) is a vector for expressing a direction, it is important to maintain the ratio (x: y: z) between the axes, but the magnitude (origin) It is not essential that the distance is maintained. Further, the range “0 to 8” of the position coordinates (u, v) may be normalized to “0.0 to 1.0” when implemented using the texture of the polygon model.
  • arbitrary rotation or inversion may be performed within a range in which the positional relationship (that is, similarity) of each vertex is maintained.
  • a small amount of coordinates can be set for an arbitrary coordinate group for the purpose of correcting the positional deviation of the omnidirectional image generated when the origami balloon is completed due to the thickness of the origami. Adjustment (for example, change of ⁇ 15 degree range with respect to (x, y, z) direction or ⁇ 0.5 with respect to (0, 8, 0 to 8) of position coordinates (u, v) You may change the range).
  • the definition of the position coordinates (u, v) can be changed as long as the original planar shape of the origami balloon is similar.
  • a quadrilateral that is one of the surface shapes may be divided into two triangles.
  • the surface A1 can be divided into (a1-a4-a5) and (a1-a5-a2).
  • the central control unit 11 selects all pixels surrounded by the vertex group related to the selected surface in the converted omnidirectional image 51 ′ (step S16, branch to No, step S17), and the acquired vertex group
  • the direction (vector) is calculated using the coordinates of the selected pixel and the coordinates of the selected pixel (step S18), and pixel information of the converted omnidirectional image 51 ′ is generated using the obtained direction (step S19).
  • step S18 of FIG. 3 the central control unit 11 calculates the coordinates in the original omnidirectional image 50 ′ based on the direction calculated using the coordinates of the acquired vertex group and the coordinates of the selected pixel ( Step S20).
  • the central control unit 11 acquires pixel information of the original omnidirectional image 50 ′ based on the coordinates calculated in step S20 (step S21), and converts the omnidirectional image 51 after conversion based on the acquired pixel information. 'Is generated (step S22), and the process returns.
  • steps S16 to S19 in FIG. 3 steps S20 to S22 in FIG. 4
  • steps S16 to S19 in FIG. 3 steps S20 to S22 in FIG. 4
  • steps S16 to S19 in FIG. 3 steps S20 to S22 in FIG. 4
  • steps S16 to S19 in FIG. 3 steps S20 to S22 in FIG. 4
  • steps S16 to S19 in FIG. 3 steps S20 to S22 in FIG. 4
  • steps S16 to S19 in FIG. 3 steps S20 to S22 in FIG. 4
  • an omnidirectional image 51a ′ suitable for an image formed on the origami balloon surface upon completion as shown in FIG. 10 is generated from the original omnidirectional image 50 ′ using equirectangular projection.
  • the image generated in the present embodiment is an omnidirectional image, but is not the entire range of origami (square). For this reason, in addition to the generated omnidirectional image, it is desirable to add trim marks or the like representing the four corners of the origami.
  • a crease may be formed on each of the straight line a0-a3, the straight line a18-a21, the straight line a6-a15, and the straight line a7-a14, and the four corners of the origami may be derived from these intersections.
  • an unnecessary area is cut off or the sheet-like medium of the origami balloon can be made square by folding the sheet-like medium on the opposite side of the printing surface.
  • the surface shape corresponding to the surface of the origami balloon is a triangle or a quadrangle, and the number of surfaces is B0.
  • the central control unit 11 defines the following surfaces B0 to B24 corresponding to the respective surfaces of the origami balloon and relates to the list of defined surfaces All the faces are selected (step S11: branch to No, step S12), and as shown in FIG. 11, all vertices related to the face selected in step S12 are set. Each surface is formed of a triangle or a quadrangle.
  • B0 (b0-b4-b1) B1: (b1-b4-b5-b2) B2: (b2-b5-b3) B3: (b4 -b6 -b14) B4: (b4-b14-b15-b5) B5: (b5-b15-b7) B6: (b8-b12-b13) B7: (b9-b13-b14) B8: (b10-b15-b16) B9: (b11-b16-b17) B10: (b12-b18-b19-b13) B11: (b13-b19-b20-b14) B12: (b14-b20-b21-b15) B13: (b15-b21-b22-b16) B14: (b16-b22-b23-b17) B15: (b18-b24-b19) B16: (b19-b25-b20) B17: (b21-b26-b22) B18: (b
  • the central control unit 11 reads out the coordinate association data 52 shown below from the storage unit such as the main memory 12 and the built-in nonvolatile storage medium 15, and from the origin (viewpoint) in the three-dimensional space with respect to the vertex group.
  • the component (x, y, z) whose direction is represented by a vector is associated with the position coordinates (u, v) on the origami before the work (branch to step S13, step S14, step S15, FIG. 12).
  • b0 (-1, 0, 0) (2, 0) b1: (-1, 1, 0) (3, 0) b2: (1, 1, 0) (5, 0) b3: (1, 0, 0) (6, 0) b4: (-1, 1, 1) (3, 1) b5: (1, 1, 1) (5, 1) b6: (-1, 0, 0) (2, 2) b7: (1, 0, 0) (6, 2) b8: (0, 0, 1) (0, 2) b9: (0, 0, 1) (2, 2) b10: (0, 0, 1) (6, 2) b11: (0, 0, 1) (8, 2) b12: (0, 1, 1) (0, 3) b13: (-1, 1, 1) (1, 3) b14: (-1, -1, 1) (3, 3) b15: (1, -1, 1) (5,3) b16: (1, 1, 1) (7, 3) b17: (0, 1, 1) (8, 3) b18: (0, 1, -1) (0, 5) b19: (-1, 1,
  • step S16 of FIG. 3 which concerns on this embodiment can be performed similarly to 1st Embodiment, description here is abbreviate
  • an omnidirectional image 51b ′ suitable for an image formed on the surface of the origami balloon upon completion as shown in FIG. 13 is generated from the original omnidirectional image 50 ′ using equirectangular projection.
  • the image generated in the present embodiment is an omnidirectional image, but is not the entire range of origami (square). For this reason, in addition to the generated omnidirectional image, it is desirable to add trim marks or the like representing the four corners of the origami.
  • a crease may be formed on each of the straight line b0-b3, the straight line b8-b24, the straight line b11-b27, and the straight line b32-b35, and the four corners of the origami may be derived from these intersection points.
  • an unnecessary area is cut off or the sheet-like medium of the origami balloon can be made square by folding the sheet-like medium on the opposite side of the printing surface.
  • the surface shape is a triangle or a quadrangle, and the number of surfaces is C0.
  • the central control unit 11 defines the following planes C0 to C40 corresponding to the respective surfaces of the origami balloon, and relates to the list of defined planes. All the faces are selected (step S11: branch to No, step S12), and as shown in FIG. 14, all vertices related to the face selected in step S12 are set. Each surface is formed of a triangle or a quadrangle.
  • the central control unit 11 reads out the coordinate association data 52 shown below from the storage unit such as the main memory 12 and the built-in nonvolatile storage medium 15, and from the origin (viewpoint) in the three-dimensional space with respect to the vertex group.
  • the component (x, y, z) representing the direction as a vector is associated with the position coordinates (u, v) on the origami before work (step S13, branch to No, step S14, step S15, FIG. 15).
  • step S16 of FIG. 3 which concerns on this embodiment can be performed similarly to 1st Embodiment, description here is abbreviate
  • an omnidirectional image 51 ′ suitable for an image formed on the surface of the origami balloon when completed can be generated from the original omnidirectional image 50 ′ using the equirectangular projection.
  • the omnidirectional image generated in the present embodiment is the entire range of origami (square) unless the position coordinates (u, v) are arbitrarily moved.
  • the original origami of the origami balloon can be made square by cutting out unnecessary areas or folding origami on the opposite side of the printing surface.
  • an original omnidirectional image using equirectangular projection is converted into an omnidirectional image suitable for an origami balloon, and an origami balloon is converted from a printed square origami.
  • the state of completion will be described.
  • FIG. 16 is a diagram illustrating an example of an original omnidirectional image using equirectangular projection, that is, an image before conversion, in which the upper part of the image represents the sky and the lower part represents the ground.
  • FIG. 17A shows a state in which the converted omnidirectional image is printed on a square origami.
  • FIG. 17B shows an origami balloon completed by folding the printed origami according to a predetermined folding order. As shown in FIG. 17B, in this example, it can be seen that the hole portion of the origami balloon when completed is the upper part.
  • FIG. 18A shows a state in which the converted omnidirectional image is printed on a square origami.
  • FIG. 18B shows an origami balloon completed by folding the printed origami according to a predetermined folding order.
  • a vector representing the direction from the origin of the three-dimensional space with respect to the vertices constituting each surface so that the hole portion of the origami balloon at the time of completion is in the horizontal direction.
  • (X, y, z) is defined by rotation, and the folding paper on which the omnidirectional image obtained by the conversion is printed is started to be folded in a state of being rotated by 90 degrees and completed.
  • FIG. 19A shows a state in which the converted omnidirectional image is printed on a square origami.
  • FIG. 19B shows an origami balloon completed by folding the printed origami according to a predetermined folding order.
  • a vector (3) representing the direction from the origin of the three-dimensional space with respect to the vertices constituting each surface so that the hole portion of the origami balloon when completed is at the bottom. x, y, z) are rotated and defined, and the origami on which the omnidirectional image obtained by the conversion is printed is folded and completed.
  • an omnidirectional image generation apparatus As described above, according to an embodiment of the present invention, an omnidirectional image generation apparatus, an omnidirectional image generation method, and an omnidirectional image that can realize generation of an omnidirectional image suitable for origami that can be easily worked.
  • a generation program can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Toys (AREA)
  • Processing Or Creating Images (AREA)
  • Image Processing (AREA)

Abstract

Provided are an omnidirectional image generation device, an omnidirectional image generation method, and an omnidirectional image generation program whereby it is possible to generate an omnidirectional image suitable for an origami object that can be easily created. The omnidirectional image generation device, the omnidirectional image generation method, and the omnidirectional image generation program are designed to generate, from an original omnidirectional image, an omnidirectional image that is to be formed on the surfaces of a three-dimensional object that is completed by folding a sheet-like medium in a predetermined folding order, wherein: groups of vertices constituting surfaces, each surface corresponding to one of the surfaces of the three-dimensional object, are provided in the three-dimensional space represented by the original omnidirectional image; vectors, each representing the direction from an origin in the three-dimensional space toward one vertex of the group of vertices, are associated with position coordinates on the sheet-like medium; and information about pixels on each of the surfaces constituted by the groups of vertices is generated on the basis of the coordinate information associated with each vertex.

Description

全方位画像生成装置、全方位画像生成方法、及び全方位画像生成プログラムOmnidirectional image generation apparatus, omnidirectional image generation method, and omnidirectional image generation program
 本発明は、全方位画像生成装置、全方位画像生成方法、及び全方位画像生成プログラムに関する。 The present invention relates to an omnidirectional image generation apparatus, an omnidirectional image generation method, and an omnidirectional image generation program.
 従来、作業者や観察者等の全方位を覆う背景に見立てた画像(以下、全方位画像という)を紙、布、又はプラスチック等からなるシート状媒体に対して平面的に印刷するためには、3次元座標から2次元座標へ座標変換を行う必要がある。 Conventionally, in order to print a planar image on a sheet-like medium made of paper, cloth, plastic, or the like (hereinafter referred to as an omnidirectional image) that covers an omnidirectional background of an operator or an observer It is necessary to perform coordinate conversion from 3D coordinates to 2D coordinates.
 3次元座標から2次元座標への変換方法としては、正距円筒図法や、立体形状の展開図を利用する方法等を挙げることができる。 Examples of the conversion method from the three-dimensional coordinates to the two-dimensional coordinates include an equirectangular projection and a method using a three-dimensional development view.
 正距円筒図法が用いられた画像としては、専用の全天球型デジタルカメラ(例えば、株式会社リコー社製 THETA(登録商標))による撮影や、有志らにより提供されるコンピュータグラフィックス画像(例えば、スカイドーム等)により入手可能となっている。なお、これらの方法で得られる画像自体は2次元の平面であるが、専用のソフトを用いることで、球状モデルや、背景画像としてコンピュータのディスプレイ装置等に表示させることができる。 Examples of images using equirectangular projection include photographing with a dedicated omnidirectional digital camera (for example, THETA (registered trademark) manufactured by Ricoh Co., Ltd.) and computer graphics images provided by volunteers (for example, , Skydome, etc.). Note that the images themselves obtained by these methods are two-dimensional planes, but can be displayed on a spherical model or a computer display device as a background image by using dedicated software.
 一方、立体形状の展開図を利用する方法としては、例えば、ペーパークラフトに代表されるように、平面の紙から立体形状物を工作するための画像を展開図として生成する技術が知られている(例えば、特許文献1参照)。そして、展開図として生成した画像や、当該展開図に基づき実際に工作して得られた完成品を商品として販売することを生業とする事業も存在する。 On the other hand, as a method of using a development view of a three-dimensional shape, for example, as represented by paper craft, a technique for generating an image for developing a three-dimensional shape object from a flat paper as a development view is known ( For example, see Patent Document 1). There is also a business whose business is to sell images generated as development views and finished products actually obtained based on the development views as products.
 なお、全方位画像が適用される立体形状物としては、窪みや突起が少ないものが好まれ、例えば、地球儀のように球体に近い形状が理想とされている。 It should be noted that a three-dimensional object to which the omnidirectional image is applied is preferably a three-dimensional object having few depressions and protrusions, and for example, a shape close to a sphere like an earth globe is ideal.
 ところで、立体形状物に対し部分的な画像を付加する技術として、特許文献2乃至5に示すように、折り紙を利用する方法も存在する。 By the way, as a technique for adding a partial image to a three-dimensional object, there is a method using origami as shown in Patent Documents 2 to 5.
特開2012-73766号公報JP 2012-73766 A 実用新案登録第3089936号公報Utility Model Registration No. 3089936 特開2002-332162号公報JP 2002-332162 A 特開2003-33569号公報JP 2003-33569 A 特開平5-342313号公報JP-A-5-342313
 折り紙を用いて表面に全方位画像が付された立体形状物を工作する場合、完成状態を確認又は推測しながら全方位画像の変形を調整する必要があるため、工作前の折り紙に印刷される全方位前画像を自動的に生成させることは困難である。 When making a three-dimensional object with an omnidirectional image on the surface using origami, it is necessary to adjust the deformation of the omnidirectional image while confirming or estimating the completed state, so it is printed on the origami before the work. It is difficult to automatically generate a pre-omnidirectional image.
 このことから、従来技術では、予め用意された画像又はデザイナー等の専門知識を有する者により作成された画像を用いるしかなかった。 For this reason, in the prior art, there is no choice but to use images prepared in advance or images created by a person with specialized knowledge such as a designer.
 まして、形状の種類が無数に存在する折り紙の分野に対して、立体的な連続性、すなわち、面が途切れることなく、且つすべての隣り合う面で画像が連続するように全方位画像を適用させることは従来から想定されていない。また、通常の折り紙は正方形であるため、90度や180度回転させた状態で折り始める可能性があるが、画像が印刷された折り紙を用いる場合、想定されていない向きから折り始めることにより、完成時に画像の配置が正しくならないことがある。 Furthermore, for the field of origami with an infinite number of shapes, omnidirectional images are applied so that the three-dimensional continuity, that is, the surfaces are continuous and the images are continuous on all adjacent surfaces. This has not been assumed conventionally. In addition, since normal origami is square, it may start to be folded in a state rotated by 90 degrees or 180 degrees, but when using origami on which an image is printed, by starting folding from an unexpected direction, The image layout may not be correct when completed.
 一方、ペーパークラフトの場合は、折り紙よりも形状の自由度が高く、例えば、切頂二十面体のような球体に近い立体形状物を工作するための展開図や、それに適した全方位画像の生成は従来から実施されている。しかしながら、球体に近くなるほど展開図の形状が煩雑になる傾向があり、画像印刷後の工作の過程において、工具や手間を要することになる。 On the other hand, in the case of paper craft, the degree of freedom of shape is higher than that of origami, for example, a development view for working a three-dimensional object close to a sphere such as a truncated icosahedron, and generation of an omnidirectional image suitable for it Has been implemented conventionally. However, the closer to the sphere, the more complicated the shape of the developed view tends to become, and tools and labor are required in the process of the work after image printing.
 本発明はこのような実状に鑑みてなされたものであり、本発明の課題は、容易に工作が可能な折り紙に適した全方位画像の生成を実現可能とする全方位画像生成装置、全方位画像生成方法、及び全方位画像生成プログラムを提供することである。 The present invention has been made in view of such a situation, and an object of the present invention is to provide an omnidirectional image generation apparatus and an omnidirectional image generation apparatus capable of generating an omnidirectional image suitable for origami that can be easily worked. An image generation method and an omnidirectional image generation program are provided.
 上記課題を解決するために、本発明の第1の態様に係る全方位画像生成装置は、元の全方位画像から、シート状媒体を所定の折り順に従って折り進むことにより完成する立体形状物の表面に対して形成される全方位画像を生成する全方位画像生成装置であって、中央制御部と、元の全方位画像の3次元空間に前記立体形状物の表面に対応する面を構成する頂点群を設ける頂点設定部と、各頂点に対して3次元空間の原点からの方向を表すベクトルと前記シート状媒体上における位置座標とを関連付けた座標情報を記憶する記憶部とを備え、前記中央制御部は、前記記憶部から読み出した前記座標情報に基づき、各面内に位置する画素情報を生成することを特徴としている。 In order to solve the above-described problem, the omnidirectional image generation apparatus according to the first aspect of the present invention is a three-dimensional object that is completed by folding a sheet-like medium from an original omnidirectional image according to a predetermined folding order. An omnidirectional image generation apparatus for generating an omnidirectional image formed on a surface, wherein a central control unit and a surface corresponding to the surface of the three-dimensional object are formed in a three-dimensional space of the original omnidirectional image A vertex setting unit for providing a vertex group; and a storage unit for storing coordinate information in which a vector representing a direction from the origin of the three-dimensional space for each vertex and a positional coordinate on the sheet-like medium are associated with each other, The central control unit generates pixel information located in each plane based on the coordinate information read from the storage unit.
 また、本発明の第2の態様に係る全方位画像生成方法は、元の全方位画像から、シート状媒体を所定の折り順に従って折り進むことにより完成する立体形状物の表面に対して形成される全方位画像を生成する生成方法であって、元の全方位画像の3次元空間に前記立体形状物の表面に対応する面を構成する頂点群を設ける頂点設定工程と、各頂点に対して3次元空間の原点からの方向を表すベクトルと前記シート状媒体上における位置座標とを関連付ける関連付け工程と、各頂点に対して関連付けられた座標情報に基づき、各面内に位置する画素情報を生成する生成工程とを備えることを特徴としている。 In addition, the omnidirectional image generation method according to the second aspect of the present invention is formed on the surface of a three-dimensional object completed by folding a sheet-like medium according to a predetermined folding order from the original omnidirectional image. A generating method for generating an omnidirectional image, a vertex setting step of providing a vertex group constituting a surface corresponding to the surface of the three-dimensional object in the three-dimensional space of the original omnidirectional image, and for each vertex An association step for associating a vector representing the direction from the origin of the three-dimensional space with the position coordinates on the sheet-like medium, and generating pixel information located in each plane based on the coordinate information associated with each vertex. And a generation process.
 さらに、本発明の第3の態様に係る全方位画像生成プログラムは、コンピュータを、元の全方位画像の3次元空間に立体形状物の表面に対応する面を構成する頂点群を設け、各頂点に対して3次元空間の原点からの方向を表すベクトルと前記シート状媒体上における位置座標とを関連付け、各頂点に対して関連付けられた座標情報に基づき、各面内に位置する画素情報を生成することにより、元の全方位画像から、シート状媒体を所定の折り順に従って折り進むことにより完成する立体形状物の表面に対して形成される全方位画像を生成するよう機能させることを特徴としている。 Furthermore, the omnidirectional image generation program according to the third aspect of the present invention provides a computer with a group of vertices constituting a surface corresponding to the surface of the three-dimensional object in the three-dimensional space of the original omnidirectional image. A vector representing the direction from the origin of the three-dimensional space is associated with the position coordinates on the sheet-like medium, and pixel information located in each plane is generated based on the coordinate information associated with each vertex. By doing so, it is possible to function to generate an omnidirectional image formed on the surface of a three-dimensional object completed by folding a sheet-like medium in accordance with a predetermined folding order from the original omnidirectional image. Yes.
 本発明によれば、容易に工作が可能な折り紙に適した全方位画像の生成を実現可能とする全方位画像生成装置、全方位画像生成方法、及び全方位画像生成プログラムを提供することができる。 According to the present invention, it is possible to provide an omnidirectional image generation apparatus, an omnidirectional image generation method, and an omnidirectional image generation program capable of realizing generation of an omnidirectional image suitable for origami that can be easily worked. .
本発明の一実施形態に係る全方位画像生成装置1の構成を説明するブロック図である。It is a block diagram explaining the structure of the omnidirectional image generation apparatus 1 which concerns on one Embodiment of this invention. 本実施形態に係る全方位画像生成プログラムの実行時に使用されるメインメモリ12のメモリマップの一例を説明する図である。It is a figure explaining an example of the memory map of the main memory 12 used at the time of execution of the omnidirectional image generation program which concerns on this embodiment. 本発明の一実施形態に係る全方位画像生成装置1の動作を説明するフローチャートである。It is a flowchart explaining operation | movement of the omnidirectional image generation apparatus 1 which concerns on one Embodiment of this invention. 本発明の一実施形態に係る全方位画像生成装置1の動作を説明するフローチャートである。It is a flowchart explaining operation | movement of the omnidirectional image generation apparatus 1 which concerns on one Embodiment of this invention. 本発明の一実施形態に係る全方位画像選択画面100の一構成例を説明する図である。It is a figure explaining the example of 1 structure of the omnidirectional image selection screen 100 which concerns on one Embodiment of this invention. (a)画像形式が正距方位図法である元の全方位画像の例である。(b)画像形式が正二十面体の展開図である元の全方位画像の例である。(A) It is an example of the original omnidirectional image whose image format is equirectangular projection. (B) It is an example of the original omnidirectional image whose image format is a development view of an icosahedron. 本発明の一実施形態に係る元の全方位画像の3次元空間に設定された面を構成する頂点群を説明する図である。It is a figure explaining the vertex group which comprises the surface set to the three-dimensional space of the original omnidirectional image which concerns on one Embodiment of this invention. 本発明の一実施形態に係る工作前の折り紙上における頂点の位置座標を説明する図である。It is a figure explaining the position coordinates of the vertex on the origami before work concerning one embodiment of the present invention. 面内に位置する画素情報の生成処理を説明する図である。It is a figure explaining the production | generation process of the pixel information located in a surface. 本発明の一実施形態によって生成された全方位画像の例を説明する図である。It is a figure explaining the example of the omnidirectional image produced | generated by one Embodiment of this invention. 本発明の一実施形態に係る元の全方位画像の3次元空間に設定された面を構成する頂点群を説明する図である。It is a figure explaining the vertex group which comprises the surface set to the three-dimensional space of the original omnidirectional image which concerns on one Embodiment of this invention. 本発明の一実施形態に係る工作前の折り紙上における頂点の位置座標を説明する図である。It is a figure explaining the position coordinates of the vertex on the origami before work concerning one embodiment of the present invention. 本発明の一実施形態によって生成された全方位画像の例を説明する図である。It is a figure explaining the example of the omnidirectional image produced | generated by one Embodiment of this invention. 本発明の一実施形態に係る元の全方位画像の3次元空間に設定された面を構成する頂点群を説明する図である。It is a figure explaining the vertex group which comprises the surface set to the three-dimensional space of the original omnidirectional image which concerns on one Embodiment of this invention. 本発明の一実施形態に係る工作前の折り紙上における頂点の位置座標を説明する図である。It is a figure explaining the position coordinates of the vertex on the origami before work concerning one embodiment of the present invention. 正距円筒図法を用いた元の全方位画像の一例を示す図である。It is a figure which shows an example of the original omnidirectional image using equirectangular projection. (a)変換後の全方位画像を正方形の折り紙に印刷した状態を説明する図である。(b)印刷した折り紙を所定の折り順に従って折り進むことにより完成させた折り紙風船を示した図である。(A) It is a figure explaining the state which printed the omnidirectional image after conversion on square origami. (B) It is the figure which showed the origami balloon completed by folding the printed origami according to the predetermined folding order. (a)変換後の全方位画像を正方形の折り紙に印刷した状態を説明する図である。(b)印刷した折り紙を所定の折り順に従って折り進むことにより完成させた折り紙風船を示した図である。(A) It is a figure explaining the state which printed the omnidirectional image after conversion on square origami. (B) It is the figure which showed the origami balloon completed by folding the printed origami according to the predetermined folding order. (a)変換後の全方位画像を正方形の折り紙に印刷した状態を説明する図である。(b)印刷した折り紙を所定の折り順に従って折り進むことにより完成させた折り紙風船を示した図である。(A) It is a figure explaining the state which printed the omnidirectional image after conversion on square origami. (B) It is the figure which showed the origami balloon completed by folding the printed origami according to the predetermined folding order.
 以下、本発明の好適な実施形態について図面を用いて説明する。なお、本発明は以下の記述に限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In addition, this invention is not limited to the following description, In the range which does not deviate from the summary of this invention, it can change suitably.
 以下の説明では、数ある折り紙の最終立体形状物の1つである伝承折り紙の「風船」(以下、折り紙風船と称する)を用い、これに適した全方位画像の生成について説明する。通常、折り紙風船は、正方形の紙からなるシート状媒体を所定の手順で折り進むことにより完成し、その過程ではシート状媒体をハサミで切ったり、接着剤等で張り合わせる必要はない。そして、折り紙風船の完成時の形状は、窪みや突起が一部含まれるが、全体としては一般的な立方体よりは丸みを帯びたものとなる。 In the following description, generation of an omnidirectional image suitable for a traditional origami “balloon” (hereinafter referred to as an origami balloon), which is one of the final three-dimensional shapes of origami, will be described. Usually, origami balloons are completed by folding a sheet-like medium made of square paper in a predetermined procedure, and in that process, it is not necessary to cut the sheet-like medium with scissors or to bond it with an adhesive or the like. And the shape at the time of completion of an origami balloon contains a part of a hollow and protrusion, but the whole becomes rounder than a general cube.
 なお、折り紙風船の完成時の表面に対応する元の平面形状は、立体形状物の一般的な展開図とは異なり、折り紙特有な形状である。例えば、仮に折り紙風船を立方体に見立てたとしても、通常の立方体の展開図とは異なる箇所(この場合、正方形が複数の三角形に分離した部分)が存在する。さらには、折り紙風船の完成時に表面に現れない部分(重なる部分や裏向きの部分)も存在する。これらの要素は、ペーパークラフトにおける意図的な展開図や糊代等の形状とは異なり、全方位画像の生成を困難にする要因であることに留意する。 Note that the original planar shape corresponding to the completed surface of the origami balloon is a shape unique to origami unlike the general development of a three-dimensional object. For example, even if an origami balloon is regarded as a cube, there are places (in this case, a portion where a square is separated into a plurality of triangles) different from a developed view of a normal cube. Furthermore, there are also portions that do not appear on the surface when the origami balloon is completed (overlapping portions or portions facing back). Note that these elements are factors that make it difficult to generate an omnidirectional image, unlike shapes such as intentional developments and glue margins in paper craft.
 [第1の実施形態]
 図1は、本発明の一実施形態に係る全方位画像生成装置1の構成を説明するブロック図である。図1に示されるように、全方位画像生成装置1は、パーソナルコンピュータ10と、表示装置20と、ポインティング装置30と、印刷装置60とを備える。
[First Embodiment]
FIG. 1 is a block diagram illustrating a configuration of an omnidirectional image generation apparatus 1 according to an embodiment of the present invention. As shown in FIG. 1, the omnidirectional image generation apparatus 1 includes a personal computer 10, a display device 20, a pointing device 30, and a printing device 60.
 なお、全方位画像生成装置1は、後述する機能を実現する全方位画像生成プログラムが実装されたコンピュータプログラムプロダクトの一態様に相当する。 The omnidirectional image generation apparatus 1 corresponds to an aspect of a computer program product in which an omnidirectional image generation program that implements functions to be described later is installed.
 パーソナルコンピュータ10は、マルチタスク対応プロセッサ等からなり、頂点設定部としても機能する中央制御部11と、一時記憶装置としてのRAM(Random Access Memory)等の内蔵揮発性記憶媒体を有するメインメモリ12と、グラフィックカード等の画像制御部13と、入出力制御部14と、HDD(Hard Disk Drive)やフラッシュメモリ等の内蔵不揮発性記憶媒体15と、メディア読み書きインターフェイス16とを備える。 The personal computer 10 includes a multitasking processor and the like, and includes a central control unit 11 that also functions as a vertex setting unit, and a main memory 12 having a built-in volatile storage medium such as a RAM (Random Access Memory) as a temporary storage device. And an image control unit 13 such as a graphic card, an input / output control unit 14, a built-in nonvolatile storage medium 15 such as an HDD (Hard Disk Drive) or a flash memory, and a media read / write interface 16.
 画像制御部13はビデオメモリ13aを備える。ビデオメモリ13aは、パーソナルコンピュータ10本体のメインメモリ12と同様に、一時的にデータを保存するものでありグラフィックカードに設けられたメモリはVRAM(Video RAM)とも称される。画像制御部13で処理を終えたデータはビデオメモリ13aに一時的に保存され、随時使用される。例えば、表示装置20に対して3Dグラフィックスを表示させる場合、必要となるデータ量は大きくなるため、細かい3Dグラフィックス画像でもスムーズに不良無く表示させるためには、ビデオメモリ13aの容量は多い方がよい。昨今では、VRAMの高速化が進み、GDDR(Graphics Double Data Rate)と称される高速処理専用のメモリ規格も登場し、3次元グラフィックス描画における膨大なデータの高速転送が実現されている。 The image control unit 13 includes a video memory 13a. Similar to the main memory 12 of the personal computer 10 main body, the video memory 13a temporarily stores data, and the memory provided in the graphic card is also referred to as VRAM (Video RAM). Data that has been processed by the image control unit 13 is temporarily stored in the video memory 13a and used as needed. For example, when 3D graphics is displayed on the display device 20, the amount of data required becomes large. Therefore, in order to display a fine 3D graphics image smoothly and without defects, the video memory 13a has a larger capacity. Is good. In recent years, the speed of VRAM has increased, and a memory standard dedicated to high-speed processing called GDDR (Graphics Double Data Rate) has also appeared, and high-speed transfer of enormous data in three-dimensional graphics drawing has been realized.
 表示装置20は、例えば、液晶ディスプレイ等の画像表示装置である。ポインティング装置30は、例えば、マウスやタッチパネル、ペンタブレット等に代表される、座標入力及び/又はボタン入力を受付けることが可能な装置である。表紙装置20及びポインティング装置30は、元の全方位画像の画像形式を受け付けたり、完成時における立体形状物としての折り紙風船の表面に対応する面形状の種類の選択を受付ける選択部として機能する。印刷装置60は、例えば、インクジェット方式、電子写真方式等の印刷エンジンを備え、生成された全方位画像を折り紙としてのシート状媒体に印刷可能な画像形成装置である。なお、シート状媒体の形状としては、従来からある正方形のみでなく、例えば、A4用紙の様な長方形等であってもかまわない。 The display device 20 is an image display device such as a liquid crystal display, for example. The pointing device 30 is a device that can accept coordinate input and / or button input, such as a mouse, a touch panel, and a pen tablet. The cover device 20 and the pointing device 30 function as a selection unit that accepts the image format of the original omnidirectional image and accepts selection of the type of surface shape corresponding to the surface of the origami balloon as a three-dimensional object at the time of completion. The printing apparatus 60 is an image forming apparatus that includes a print engine such as an ink jet method or an electrophotographic method, and can print a generated omnidirectional image on a sheet-like medium as origami. The shape of the sheet-like medium is not limited to a conventional square, but may be a rectangle such as A4 paper, for example.
 プログラムデータ40、全方位画像入力データ50、及び座標対応付けデータ52は、メディア読み書きインターフェイス16を介して入力され、全方位画像出力データ51はメディア読み書きインターフェイス16を介して出力される。 The program data 40, the omnidirectional image input data 50, and the coordinate association data 52 are input via the media read / write interface 16, and the omnidirectional image output data 51 is output via the media read / write interface 16.
 プログラムデータ40は、本発明に係る全方位画像生成装置、特に中央制御部11を動作可能とするソフトウェアであり、本発明に係る全方位画像生成プログラム等がこれに相当する。なお、プログラムデータ40は、前述したように、メディア読み書きインターフェイス16を介してコンピュータが読み取り可能な記録媒体から読み出されるように構成してもよいし、内蔵不揮発性記憶媒体15に予め記録された状態で提供されてもかまわない。 The program data 40 is software that enables the omnidirectional image generation apparatus according to the present invention, particularly the central control unit 11, to operate, and the omnidirectional image generation program according to the present invention corresponds to this. The program data 40 may be configured to be read from a computer-readable recording medium via the medium read / write interface 16 as described above, or may be recorded in advance in the built-in nonvolatile storage medium 15. May be provided by
 全方位画像入力データ50及び全方位画像出力データ51は、プログラムデータ40に基づき動作する中央制御部11が扱う画像群である。本実施形態に係る全方位画像入力データ50は以下で説明する座標対応付けデータ52が与えられることで3次元空間を有し、例えば、全方位画像としてポリゴンモデルが用いられる場合、全方位画像入力データ50及び全方位画像出力データ51としてはテクスチャ画像群がこれに相当する。そして、入力されたテクスチャ画像群はメインメモリ12に一時的に記憶される。なお、全方位画像入力データ50としては、本願出願人が先に出願した全方位画像編集装置(国際公開番号:WO/2012/147303)において作成した絵画を正距円筒図法や正距方位図法の全方位画像として生成させたものを用いてもよい(なお、全方位画像入力データ50は以下の説明において、元の全方位画像と称することがある)。全方位画像出力データ51は、入力された元の全方位画像に基づき生成された完成時の折り紙風船表面に形成される画像に適した全方位画像である。全方位画像出力データ51としては、ファイル単位での交換や譲渡等が容易となるように所定のファイル形式で不図示の外部記録媒体に出力する形態であっても、全方位画像出力データ51で表現される全方位画像を印刷装置60にて折り紙に直接印刷した印刷物を提供する形態であってもかまわない。 The omnidirectional image input data 50 and the omnidirectional image output data 51 are an image group handled by the central control unit 11 that operates based on the program data 40. The omnidirectional image input data 50 according to the present embodiment has a three-dimensional space by being provided with coordinate association data 52 described below. For example, when a polygon model is used as the omnidirectional image, the omnidirectional image input data 50 A texture image group corresponds to the data 50 and the omnidirectional image output data 51. The input texture image group is temporarily stored in the main memory 12. As the omnidirectional image input data 50, a picture created in an omnidirectional image editing apparatus (International Publication Number: WO / 2012/147303) previously filed by the applicant of the present application is used for equirectangular projection and equirectangular azimuth projection. You may use what was produced | generated as an omnidirectional image (In addition, the omnidirectional image input data 50 may be called the original omnidirectional image in the following description.). The omnidirectional image output data 51 is an omnidirectional image suitable for an image formed on the origami balloon surface at the time of completion generated based on the original original omnidirectional image input. As the omnidirectional image output data 51, the omnidirectional image output data 51 may be output to an external recording medium (not shown) in a predetermined file format so that exchange or transfer in units of files is easy. There may be a form in which a printed matter in which the omnidirectional image to be expressed is directly printed on origami by the printing apparatus 60 is provided.
 座標対応付けデータ52は、後出する全方位画像選択画面を介して受付けた折り紙風船の表面に対応する面形状の種類に基づき、元の全方位画像の3次元空間に設定された当該面を構成する頂点群に対し、3次元空間における原点(視点)からの方向をベクトルで表した成分(x,y,z)と、工作前の折り紙上における位置座標(u,v)とを対応付けたテーブルであり、メインメモリ12、内蔵不揮発性記憶媒体15等の記憶部に記憶される。ここで、位置座標(u,v)は、シート状媒体の左上頂点の座標を(0,0)、右上頂点の座標を(8,0)、左下頂点の座標を(0,8)、右下頂点の座標を(8,8)と定義して表したものである。なお、座標対応付けデータ52は、プログラムデータ40に付随してもよいし、外部で定義されたデータを読み込んでもよい。ところで、座標対応付けデータ52は、正距円筒図法、正距方位図法等の従来の画像形式で形成された画像の座標対応付けにも適用可能であり、折り紙用の座標対応付けのみにその用途が限定されるものではない。 The coordinate association data 52 is based on the type of the surface shape corresponding to the surface of the origami balloon received via the omnidirectional image selection screen described later, and the surface set in the three-dimensional space of the original omnidirectional image. Corresponding components (x, y, z) that represent the direction from the origin (viewpoint) in the three-dimensional space to position coordinates (u, v) on the origami before work for the vertex group that constitutes The table is stored in a storage unit such as the main memory 12 and the built-in nonvolatile storage medium 15. Here, the position coordinates (u, v) are (0, 0) for the upper left vertex of the sheet-like medium, (8, 0) for the upper right vertex, (0, 8) for the lower left vertex, The coordinates of the lower vertex are defined and expressed as (8, 8). Note that the coordinate association data 52 may accompany the program data 40 or may read externally defined data. By the way, the coordinate association data 52 can also be applied to coordinate association of an image formed in a conventional image format such as equirectangular projection, equirectangular orientation projection, etc. Is not limited.
 次に、本実施形態に係る全方位画像生成プログラムの実行時に使用されるメインメモリ12のメモリマップの一例について図2を用いて説明する。 Next, an example of a memory map of the main memory 12 used when executing the omnidirectional image generation program according to the present embodiment will be described with reference to FIG.
 本実施形態では、全方位画像入力データ50として提供される入力用画像、全方位出力画像データ51として提供される出力画像の各画素は、色(r:赤,g:緑,b:青)を2次元的な配列として持つ。例としてパーソナルコンピュータは、1つのピクセルの色を24ビット(1色につき8ビット、赤・緑・青の3色で8×3=24ビット)という単位で記録している。赤・緑・青のような値は、それぞれ「濃度値」とも称され、8ビット型では256段階の記録ができる。なお、グレースケール画像のような場合、濃度値は1つ持てばよい。 In this embodiment, each pixel of the input image provided as the omnidirectional image input data 50 and the output image provided as the omnidirectional output image data 51 has a color (r: red, g: green, b: blue). As a two-dimensional array. As an example, a personal computer records the color of one pixel in units of 24 bits (8 bits per color, 8 × 3 = 24 bits for three colors of red, green, and blue). Values such as red, green, and blue are also called “density values”, and 256-bit recording is possible with the 8-bit type. In the case of a gray scale image, it is sufficient to have one density value.
 また、アルファ付きPNG(32ビットPNG;32bit Portable Network Graphics)形式では色情報の他に、各ピクセルの不透明度も8ビット型の256段階で記録できる。アルファ値がゼロで完全な透明、255で完全な不透明であることを意味する。なお、画像処理で色を精度良く扱う用途の例として、濃度値が16ビット型の65536段階に拡張された形式や浮動小数点型で表された形式等が用いられる場合もある。 In addition, in the PNG with alpha (32-bit PNG: 32-bit Portable Network Graphics) format, in addition to color information, the opacity of each pixel can be recorded in 256 steps of 8-bit type. An alpha value of zero means completely transparent, 255 means completely opaque. As an example of an application for accurately handling colors in image processing, a format in which density values are expanded to 65536 levels of 16-bit type, a format represented by a floating-point type, or the like may be used.
 次に、図3、図4のフローチャート、図5、図6、図7、図8、及び図9を参照して、本発明の一実施形態に係る全方位画像生成装置1の動作について説明する。なお、図5は、本実施形態に係る全方位画像選択画面100の一構成例を説明する図である。また、図6は、全方位画像選択画面100を介して選択可能な画像形式で形成された元の全方位画像の例であり、図7は、元の全方位画像の3次元空間に設定された面を構成する頂点群を説明する図である。図8は、工作前の折り紙上における頂点の位置座標を説明する図である。図9は面内に位置する画素情報の生成処理を説明する図であり、正距円筒図法が用いられた元の全方位画像に関する2次元座標を表している。ところで、この一連の動作の少なくとも一部は、本発明の一実施形態に係る全方位画像生成方法にも相当する。 Next, the operation of the omnidirectional image generation apparatus 1 according to an embodiment of the present invention will be described with reference to the flowcharts of FIGS. 3 and 4 and FIGS. 5, 6, 7, 8, and 9. . FIG. 5 is a diagram for explaining a configuration example of the omnidirectional image selection screen 100 according to the present embodiment. 6 is an example of an original omnidirectional image formed in an image format that can be selected via the omnidirectional image selection screen 100, and FIG. 7 is set in the three-dimensional space of the original omnidirectional image. It is a figure explaining the vertex group which comprises the surface. FIG. 8 is a diagram for explaining the position coordinates of the vertexes on the origami before work. FIG. 9 is a diagram for explaining the generation processing of pixel information located in the plane, and represents the two-dimensional coordinates related to the original omnidirectional image using the equirectangular projection. By the way, at least a part of this series of operations corresponds to the omnidirectional image generation method according to the embodiment of the present invention.
 なお、ここで説明する処理は、折り紙風船の表面に対応する面形状の種類としてユーザにより面形状が三角形又は四角形であり、面数がA0~A14からなる15面が選択された場合について説明する。 The process described here will be described for the case where the user selects 15 planes having a triangular or quadrangular surface shape and the number of surfaces A0 to A14 as the surface shape type corresponding to the surface of the origami balloon. .
 全方位画像生成装置1において、この全方位画像生成プログラムが記憶媒体当から読み出され、メインメモリ12に展開され、中央制御部11により実行されると、中央制御部11は、全方位画像生成処理を開始する。 In the omnidirectional image generation device 1, when this omnidirectional image generation program is read from the storage medium, loaded in the main memory 12 and executed by the central control unit 11, the central control unit 11 generates the omnidirectional image generation program. Start processing.
 まず、ステップS10において、中央制御部11は、図5に示す全方位画像選択画面100を表示装置20に表示させる。図5に示す全方位画像選択画面100は、正距円筒図法が用いられた元の全方位画像50'から完成時の折り紙風船表面に形成される画像に適した全方位画像51'を生成する一連の処理を1つのウィンドウで完結させる例を示している。具体的には、ユーザは、全方位画像選択画面100内の「Import」欄において元の全方位画像50'のファイル格納位置を指定し、「Made From」欄において元の全方位画像50'の画像形式を変換前画像形式選択プルダウンメニュー101からポインティング装置30を用いて選択する。ここでは、元の全方位画像50'の画像形式が「Equirectangular:正距円筒図法」である例を示している。なお、「Import」欄においては、例えば、図6(a)に示すような画像形式が「AzimuthalEquidistant:正距方位図法」である元の全方位画像50a'、図6(b)で示すような画像形式が「Icosahedron:正二十面体」の展開図である元の全方位画像50b'等も無論選択可能であってよい。 First, in step S10, the central control unit 11 displays the omnidirectional image selection screen 100 shown in FIG. The omnidirectional image selection screen 100 shown in FIG. 5 generates an omnidirectional image 51 ′ suitable for an image formed on the origami balloon surface at the completion from the original omnidirectional image 50 ′ using equirectangular projection. An example in which a series of processing is completed in one window is shown. Specifically, the user designates the file storage position of the original omnidirectional image 50 ′ in the “Import” column in the omnidirectional image selection screen 100, and the original omnidirectional image 50 ′ in the “Made From” column. The image format is selected using the pointing device 30 from the pre-conversion image format selection pull-down menu 101. Here, an example is shown in which the image format of the original omnidirectional image 50 ′ is “Equirectangular: equirectangular projection”. In the “Import” column, for example, the original omnidirectional image 50a ′ in which the image format as shown in FIG. 6A is “AzimuthalEquidistant: equirectangular projection”, as shown in FIG. 6B. Of course, the original omnidirectional image 50b ′, which is a developed view of the image format “Icosahedron: icosahedron”, may be selected.
 次に、ユーザは、「Panorama Type」欄において、変換後の(すなわち、これから生成する)全方位画像51'の画像形式を変換後画像形式選択プルダウンメニュー102から指定する。ここでは、変換後の面形状の種類として、面形状が三角形又は四角形であり、面数がA0~A14からなる15面が選択された場合「OrigamiBalloonA_Top」の例を示している。なお、「OrigamiBalloonA_」に続く「Top」は、完成時の折り紙風船の穴部分が上部となる全方位画像51'を生成する際に選択されるものであり、同様に「Horizontal」は、完成時の折り紙風船の穴部分が水平方向となる全方位画像51'を、「Bottom」は、完成時の折り紙風船の穴部分が下部となる全方位画像51'を生成する際に選択されるものである。 Next, the user designates the image format of the converted omnidirectional image 51 ′ from the converted image format selection pull-down menu 102 in the “Panorama Type” column. Here, an example of “Origami Balloon A_Top” is shown when the surface shape is a triangle or a quadrangle as the type of the surface shape after conversion and 15 surfaces having the number of surfaces A0 to A14 are selected. Note that “Top” following “OrigamiBalloonA_” is selected when generating the omnidirectional image 51 ′ with the hole portion of the origami balloon at the top being the top, and similarly, “Horizontal” "Bottom" is selected when generating an omnidirectional image 51 'in which the hole portion of the origami balloon is in the horizontal direction, and "Bottom" is the omnidirectional image 51' in which the hole portion of the origami balloon is completed at the bottom. is there.
 そして、ユーザは、「Export」欄において、変換後のデータ格納位置を指定し、「OK」ボタンを押下することで変換後の全方位画像51'を生成させることができる。なお、元の全方位画像50'の画像形式を所定の画像認識により自動的に決定若しくは1種類に限定し、かつ、変換後の全方位画像51'の画像形式を1種類に限定する場合、それぞれをユーザにより選択させることは不要である。さらに、元の全方位画像50'のファイル及び変換後の全方位画像51'のファイルを所定のルールで自動的に決定してもよい。例えば、所定のフォルダに存在する格納位置を元の全方位画像のファイル格納位置として指定し、当該格納位置にサフィックスを付加した文字列を変換後の全方位画像の格納位置として指定してもよい。この場合、表示装置20に全方位画像選択画面100を表示させることなく、ステップS11の処理に進むことができる。これは、パーソナルコンピュータ10がスマートフォンである場合のような簡略な手順が好まれる環境で実施したり、バッチ処理により大量の全方位画像を一括で変換する場合等に適している。 The user can generate the converted omnidirectional image 51 ′ by designating the converted data storage position in the “Export” field and pressing the “OK” button. In addition, when the image format of the original omnidirectional image 50 ′ is automatically determined by predetermined image recognition or limited to one type, and the image format of the converted omnidirectional image 51 ′ is limited to one type, It is not necessary for the user to select each of them. Furthermore, the original omnidirectional image 50 ′ file and the converted omnidirectional image 51 ′ file may be automatically determined according to a predetermined rule. For example, a storage position existing in a predetermined folder may be specified as a file storage position of the original omnidirectional image, and a character string with a suffix added to the storage position may be specified as a storage position of the converted omnidirectional image. . In this case, it is possible to proceed to step S11 without displaying the omnidirectional image selection screen 100 on the display device 20. This is suitable for implementation in an environment where a simple procedure is preferred, such as when the personal computer 10 is a smartphone, or when batch conversion of a large number of omnidirectional images.
 以下に、折り紙風船の表面に対応する面形状の種類がユーザにより選択された後から変換後の全方位画像が生成されまでの内部処理について引き続き図3及び図4のフローチャートを用いて説明する。 Hereinafter, the internal processing from when the type of the surface shape corresponding to the surface of the origami balloon is selected by the user until the converted omnidirectional image is generated will be described with reference to the flowcharts of FIGS.
 ステップS10において、折り紙風船の表面に対応する面形状の種類として、面形状が三角形又は四角形であり、面数がA0~A14からなる15面「OrigamiBalloonA_Top」がユーザにより選択されると、中央制御部11は、以下に示す、折り紙風船の各表面に対応する面A0~A14を定義し、定義された面のリストに関する全ての面を選択すると共に(ステップS11 Noに分岐、ステップS12)、図7に示すように、ステップS12において選択された面に関する全ての頂点を設定する。なお、各表面は、三角形又は四角形で構成される。 In step S10, when the surface shape corresponding to the surface of the origami balloon is selected by the user as “Origami Balloon A_Top”, the surface shape is a triangle or a quadrangle and the number of surfaces is A0 to A14, the central controller 11 defines surfaces A0 to A14 corresponding to the respective surfaces of the origami balloon shown below, selects all the surfaces related to the defined surface list (step S11 branches to No, step S12), and FIG. As shown in FIG. 5, all vertices relating to the surface selected in step S12 are set. Each surface is formed of a triangle or a quadrangle.
 A0 :(a0 -a4 -a1 )
 A1 :(a1 -a4 -a5 -a2 )
 A2 :(a2 -a5 -a3 )
 A3 :(a4 -a6 -a8 )
 A4 :(a4 -a8 -a9 -a5 )
 A5 :(a5 -a9 -a7 )
 A6 :(a8 -a10-a12)
 A7 :(a8 -a12-a13-a9 )
 A8 :(a9 -a13-a11)
 A9 :(a12-a14-a16)
 A10:(a12-a16-a17-a13)
 A11:(a13-a17-a15)
 A12:(a16-a18-a19)
 A13:(a16-a19-a20-a17)
 A14:(a17-a20-a21)
A0: (a0-a4-a1)
A1: (a1 -a4 -a5 -a2)
A2: (a2 -a5 -a3)
A3: (a4 -a6 -a8)
A4: (a4 -a8 -a9 -a5)
A5: (a5-a9-a7)
A6: (a8-a10-a12)
A7: (a8-a12-a13-a9)
A8: (a9-a13-a11)
A9: (a12-a14-a16)
A10: (a12-a16-a17-a13)
A11: (a13-a17-a15)
A12: (a16-a18-a19)
A13: (a16-a19-a20-a17)
A14: (a17-a20-a21)
 そして、中央制御部11は、メインメモリ12、内蔵不揮発性記憶媒体15等の記憶部から以下に示す座標対応付けデータ52を読み出し、上記頂点群に対して3次元空間における原点(視点)からの方向をベクトルで表した成分(x,y,z)と、工作前の折り紙上における位置座標(u,v)とを対応付ける(ステップS13 Noに分岐、ステップS14、ステップS15、図8)。 Then, the central control unit 11 reads out the coordinate association data 52 shown below from the storage unit such as the main memory 12 and the built-in nonvolatile storage medium 15, and from the origin (viewpoint) in the three-dimensional space with respect to the vertex group. The component (x, y, z) representing the direction as a vector is associated with the position coordinates (u, v) on the origami before the work (branch to step S13, step S14, step S15, FIG. 8).
 a0 :(-1, 0, 0)(2,0)
 a1 :(-1, 1, 0)(3,0)
 a2 :( 1, 1, 0)(5,0)
 a3 :( 1, 0, 0)(6,0)
 a4 :(-1, 1, 1)(3,1)
 a5 :( 1, 1, 1)(5,1)
 a6 :(-1, 0, 0)(2,2)
 a7 :( 1, 0, 0)(6,2)
 a8 :(-1,-1, 1)(3,3)
 a9 :( 1,-1, 1)(5,3)
 a10:(-1, 0, 0)(2,4)
 a11:( 1, 0, 0)(6,4)
 a12:(-1,-1,-1)(3,5)
 a13:( 1,-1,-1)(5,5)
 a14:(-1, 0, 0)(2,6)
 a15:( 1, 0, 0)(6,6)
 a16:(-1, 1,-1)(3,7)
 a17:( 1, 1,-1)(5,7)
 a18:(-1, 0, 0)(2,8)
 a19:(-1, 1, 0)(3,8)
 a20:( 1, 1, 0)(5,8)
 a21:( 1, 0, 0)(6,8)
a0: (-1, 0, 0) (2, 0)
a1: (-1, 1, 0) (3, 0)
a2: (1, 1, 0) (5, 0)
a3: (1, 0, 0) (6, 0)
a4: (-1, 1, 1) (3, 1)
a5: (1, 1, 1) (5, 1)
a6: (-1, 0, 0) (2, 2)
a7: (1, 0, 0) (6, 2)
a8: (-1, -1, 1) (3, 3)
a9: (1, -1, 1) (5, 3)
a10: (-1, 0, 0) (2, 4)
a11: (1, 0, 0) (6, 4)
a12: (-1, -1, -1) (3, 5)
a13: (1, -1, -1) (5,5)
a14: (-1, 0, 0) (2, 6)
a15: (1, 0, 0) (6, 6)
a16: (-1, 1, -1) (3, 7)
a17: (1, 1, -1) (5, 7)
a18: (-1, 0, 0) (2, 8)
a19: (-1, 1, 0) (3, 8)
a20: (1, 1, 0) (5, 8)
a21: (1, 0, 0) (6, 8)
 なお、成分(x,y,z)は、方向を表すためのベクトルであるため、各軸間の比率(x:y:z)が保たれていることを重視するが、その大きさ(原点からの距離)が保たれていることは必須ではない。また、位置座標(u,v)の範囲「0~8」は、ポリゴンモデルのテクスチャを利用して実装する場合、「0.0~1.0」に正規化してもよい。 Since the component (x, y, z) is a vector for expressing a direction, it is important to maintain the ratio (x: y: z) between the axes, but the magnitude (origin) It is not essential that the distance is maintained. Further, the range “0 to 8” of the position coordinates (u, v) may be normalized to “0.0 to 1.0” when implemented using the texture of the polygon model.
 また、成分(x,y,z)や位置座標(u,v)に関して、各頂点の位置関係(すなわち、相似)が保たれる範囲で任意の回転や反転を行ってもよい。さらに、成分(x,y,z)や位置座標(u,v)に関して、折り紙の厚みにより折り紙風船の完成時に生じる全方位画像の位置ずれを補正する目的で、任意の座標群に対して微調整(例えば、(x,y,z)の方向に対して±15度の範囲の変更や、位置座標(u,v)の(0~8,0~8)に対して±0.5の範囲の変更等)を行ってもかまわない。 In addition, regarding the component (x, y, z) and the position coordinates (u, v), arbitrary rotation or inversion may be performed within a range in which the positional relationship (that is, similarity) of each vertex is maintained. Further, with respect to the component (x, y, z) and the position coordinates (u, v), a small amount of coordinates can be set for an arbitrary coordinate group for the purpose of correcting the positional deviation of the omnidirectional image generated when the origami balloon is completed due to the thickness of the origami. Adjustment (for example, change of ± 15 degree range with respect to (x, y, z) direction or ± 0.5 with respect to (0, 8, 0 to 8) of position coordinates (u, v) You may change the range).
 なお、折り紙風船の元の平面形状が相似となる条件であれば、位置座標(u,v)の定義は変更可能である。また、ポリゴンモデルのテクスチャを利用して実装する場合は、面形状の1つである四角形を2つの三角形に分割してもよい。この場合、例えば、面A1を(a1-a4-a5)と、(a1-a5-a2)とに分割することができる。 Note that the definition of the position coordinates (u, v) can be changed as long as the original planar shape of the origami balloon is similar. Further, when mounting using the texture of the polygon model, a quadrilateral that is one of the surface shapes may be divided into two triangles. In this case, for example, the surface A1 can be divided into (a1-a4-a5) and (a1-a5-a2).
 次に、中央制御部11は、変換後の全方位画像51'において選択された面に関する頂点群に囲まれるすべての画素を選択し(ステップS16 Noに分岐、ステップS17)、取得された頂点群の座標及び選択された画素の座標を用いて方向(ベクトル)を計算後(ステップS18)、得られた方向を用いて変換後の全方位画像51'の画素情報を生成する(ステップS19)。 Next, the central control unit 11 selects all pixels surrounded by the vertex group related to the selected surface in the converted omnidirectional image 51 ′ (step S16, branch to No, step S17), and the acquired vertex group The direction (vector) is calculated using the coordinates of the selected pixel and the coordinates of the selected pixel (step S18), and pixel information of the converted omnidirectional image 51 ′ is generated using the obtained direction (step S19).
 ここで、図4に示すフローチャートは、図3のステップS19における動作を説明するものである。図3のステップS18において、取得された頂点群の座標及び選択された画素の座標を用いて計算された方向に基づき、中央制御部11は、元の全方位画像50'における座標を計算する(ステップS20)。 Here, the flowchart shown in FIG. 4 explains the operation in step S19 in FIG. In step S18 of FIG. 3, the central control unit 11 calculates the coordinates in the original omnidirectional image 50 ′ based on the direction calculated using the coordinates of the acquired vertex group and the coordinates of the selected pixel ( Step S20).
 次に、中央制御部11は、ステップS20において計算した座標に基づき、元の全方位画像50'の画素情報を取得し(ステップS21)、取得した画素情報に基づいて変換後の全方位画像51'の画素情報を生成し(ステップS22)、処理をリターンする。 Next, the central control unit 11 acquires pixel information of the original omnidirectional image 50 ′ based on the coordinates calculated in step S20 (step S21), and converts the omnidirectional image 51 after conversion based on the acquired pixel information. 'Is generated (step S22), and the process returns.
 なお、図3のステップS16~ステップS19(図4のステップS20~ステップS22)における処理は、例えば、正距円筒図法が用いられた元の全方位画像を変換する場合、図9に示す正距円筒図法による変換と射影変換とを組み合わせることにより実現することができる。 Note that the processing in steps S16 to S19 in FIG. 3 (steps S20 to S22 in FIG. 4) is performed, for example, when converting an original omnidirectional image using equirectangular projection, as shown in FIG. This can be realized by combining cylindrical transformation and projective transformation.
 このようにして、正距円筒図法が用いられた元の全方位画像50'から、図10に示すような完成時の折り紙風船表面に形成される画像に適した全方位画像51a'を生成することができる。なお、本実施形態で生成される画像は全方位画像であるが、折り紙(正方形)の全範囲ではない。このため、生成される全方位画像に加えて、折り紙の4隅を表すトリムマーク等を付記することが望ましい。 In this way, an omnidirectional image 51a ′ suitable for an image formed on the origami balloon surface upon completion as shown in FIG. 10 is generated from the original omnidirectional image 50 ′ using equirectangular projection. be able to. Note that the image generated in the present embodiment is an omnidirectional image, but is not the entire range of origami (square). For this reason, in addition to the generated omnidirectional image, it is desirable to add trim marks or the like representing the four corners of the origami.
 あるいは、工作時に、直線a0-a3、直線a18-a21、直線a6-a15、直線a7-a14のそれぞれに折り目を付け、これらの交点から折り紙の4隅を導出する形態としてもよい。これを利用し、不要な領域を切り取るか、印刷面の反対側にシート状媒体を折り込むことにより折り紙風船の元のシート状媒体を正方形とすることができる。 Alternatively, at the time of machining, a crease may be formed on each of the straight line a0-a3, the straight line a18-a21, the straight line a6-a15, and the straight line a7-a14, and the four corners of the origami may be derived from these intersections. By using this, an unnecessary area is cut off or the sheet-like medium of the origami balloon can be made square by folding the sheet-like medium on the opposite side of the printing surface.
 [第2の実施形態]
 第2の実施形態では、折り紙を折る向きに依存することなく、立体的な連続性を保つ全方位画像の生成について説明する。第2の実施形態は、第1の実施形態に加え、折り紙を90度回転させた状態で折り始めた場合であっても、完成時の画像配置が正しくなるように頂点の定義を改良したものである。
[Second Embodiment]
In the second embodiment, generation of an omnidirectional image that maintains three-dimensional continuity without depending on the direction of folding origami will be described. In the second embodiment, in addition to the first embodiment, the definition of vertices is improved so that the image layout at the time of completion is correct even when the origami is started to be folded after being rotated 90 degrees. It is.
 第2の実施形態においても、第1の実施形態と同様に、図3のステップS10において、折り紙風船の表面に対応する面形状の種類として、面形状が三角形又は四角形であり、面数がB0~B24からなる25面「OrigamiBalloonB_Top」がユーザにより選択されると、中央制御部11は、以下に示す、折り紙風船の各表面に対応する面B0~B24を定義し、定義された面のリストに関する全ての面を選択するとともに(ステップS11 Noに分岐、ステップS12)、図11に示すように、ステップS12において選択された面に関する全ての頂点を設定する。なお、各表面は、三角形又は四角形で構成される。 Also in the second embodiment, as in the first embodiment, in step S10 in FIG. 3, the surface shape corresponding to the surface of the origami balloon is a triangle or a quadrangle, and the number of surfaces is B0. When the 25 “Origami Balloon B_Top” consisting of B24 to B24 is selected by the user, the central control unit 11 defines the following surfaces B0 to B24 corresponding to the respective surfaces of the origami balloon and relates to the list of defined surfaces All the faces are selected (step S11: branch to No, step S12), and as shown in FIG. 11, all vertices related to the face selected in step S12 are set. Each surface is formed of a triangle or a quadrangle.
 B0 :(b0 -b4 -b1 )
 B1 :(b1 -b4 -b5 -b2 )
 B2 :(b2 -b5 -b3 )
 B3 :(b4 -b6 -b14)
 B4 :(b4 -b14-b15-b5 )
 B5 :(b5 -b15-b7 )
 B6 :(b8 -b12-b13)
 B7 :(b9 -b13-b14)
 B8 :(b10-b15-b16)
 B9 :(b11-b16-b17)
 B10:(b12-b18-b19-b13)
 B11:(b13-b19-b20-b14)
 B12:(b14-b20-b21-b15)
 B13:(b15-b21-b22-b16)
 B14:(b16-b22-b23-b17)
 B15:(b18-b24-b19)
 B16:(b19-b25-b20)
 B17:(b21-b26-b22)
 B18:(b22-b27-b23)
 B19:(b20-b28-b30)
 B20:(b20-b30-b31-b21)
 B21:(b21-b31-b29)
 B22:(b30-b32-b33)
 B23:(b30-b33-b34-b31)
 B24:(b31-b34-b35)
B0: (b0-b4-b1)
B1: (b1-b4-b5-b2)
B2: (b2-b5-b3)
B3: (b4 -b6 -b14)
B4: (b4-b14-b15-b5)
B5: (b5-b15-b7)
B6: (b8-b12-b13)
B7: (b9-b13-b14)
B8: (b10-b15-b16)
B9: (b11-b16-b17)
B10: (b12-b18-b19-b13)
B11: (b13-b19-b20-b14)
B12: (b14-b20-b21-b15)
B13: (b15-b21-b22-b16)
B14: (b16-b22-b23-b17)
B15: (b18-b24-b19)
B16: (b19-b25-b20)
B17: (b21-b26-b22)
B18: (b22-b27-b23)
B19: (b20-b28-b30)
B20: (b20-b30-b31-b21)
B21: (b21-b31-b29)
B22: (b30-b32-b33)
B23: (b30-b33-b34-b31)
B24: (b31-b34-b35)
 そして、中央制御部11は、メインメモリ12、内蔵不揮発性記憶媒体15等の記憶部から以下に示す座標対応付けデータ52を読み出し、上記頂点群に対して3次元空間における原点(視点)からの方向をベクトルで表した成分(x,y,z)と、工作前の折り紙上における位置座標(u,v)とを対応付ける(ステップS13 Noに分岐、ステップS14、ステップS15、図12)。 Then, the central control unit 11 reads out the coordinate association data 52 shown below from the storage unit such as the main memory 12 and the built-in nonvolatile storage medium 15, and from the origin (viewpoint) in the three-dimensional space with respect to the vertex group. The component (x, y, z) whose direction is represented by a vector is associated with the position coordinates (u, v) on the origami before the work (branch to step S13, step S14, step S15, FIG. 12).
 b0 :(-1, 0, 0)(2,0)
 b1 :(-1, 1, 0)(3,0)
 b2 :( 1, 1, 0)(5,0)
 b3 :( 1, 0, 0)(6,0)
 b4 :(-1, 1, 1)(3,1)
 b5 :( 1, 1, 1)(5,1)
 b6 :(-1, 0, 0)(2,2)
 b7 :( 1, 0, 0)(6,2)
 b8 :( 0, 0, 1)(0,2)
 b9 :( 0, 0, 1)(2,2)
 b10:( 0, 0, 1)(6,2)
 b11:( 0, 0, 1)(8,2)
 b12:( 0, 1, 1)(0,3)
 b13:(-1, 1, 1)(1,3)
 b14:(-1,-1, 1)(3,3)
 b15:( 1,-1, 1)(5,3)
 b16:( 1, 1, 1)(7,3)
 b17:( 0, 1, 1)(8,3)
 b18:( 0, 1,-1)(0,5)
 b19:(-1, 1,-1)(1,5)
 b20:(-1,-1,-1)(3,5)
 b21:( 1,-1,-1)(5,5)
 b22:( 1, 1,-1)(7,5)
 b23:( 0, 1,-1)(8,5)
 b24:( 0, 0,-1)(0,6)
 b25:( 0, 0,-1)(2,6)
 b26:( 0, 0,-1)(6,6)
 b27:( 0, 0,-1)(8,6)
 b28:(-1, 0, 0)(2,6)
 b29:( 1, 0, 0)(6,6)
 b30:(-1, 1,-1)(3,7)
 b31:( 1, 1,-1)(5,7)
 b32:(-1, 0, 0)(2,8)
 b33:(-1, 1, 0)(3,8)
 b34:( 1, 1, 0)(5,8)
 b35:( 1, 0, 0)(6,8)
b0: (-1, 0, 0) (2, 0)
b1: (-1, 1, 0) (3, 0)
b2: (1, 1, 0) (5, 0)
b3: (1, 0, 0) (6, 0)
b4: (-1, 1, 1) (3, 1)
b5: (1, 1, 1) (5, 1)
b6: (-1, 0, 0) (2, 2)
b7: (1, 0, 0) (6, 2)
b8: (0, 0, 1) (0, 2)
b9: (0, 0, 1) (2, 2)
b10: (0, 0, 1) (6, 2)
b11: (0, 0, 1) (8, 2)
b12: (0, 1, 1) (0, 3)
b13: (-1, 1, 1) (1, 3)
b14: (-1, -1, 1) (3, 3)
b15: (1, -1, 1) (5,3)
b16: (1, 1, 1) (7, 3)
b17: (0, 1, 1) (8, 3)
b18: (0, 1, -1) (0, 5)
b19: (-1, 1, -1) (1, 5)
b20: (-1, -1, -1) (3, 5)
b21: (1, -1, -1) (5,5)
b22: (1, 1, -1) (7, 5)
b23: (0, 1, -1) (8, 5)
b24: (0, 0, -1) (0, 6)
b25: (0, 0, -1) (2, 6)
b26: (0, 0, -1) (6, 6)
b27: (0, 0, -1) (8, 6)
b28: (-1, 0, 0) (2, 6)
b29: (1, 0, 0) (6, 6)
b30: (-1, 1, -1) (3, 7)
b31: (1, 1, -1) (5, 7)
b32: (-1, 0, 0) (2, 8)
b33: (-1, 1, 0) (3, 8)
b34: (1, 1, 0) (5, 8)
b35: (1, 0, 0) (6, 8)
 なお、本実施形態に係る図3のステップS16以降の処理は第1の実施形態と同様に行うことができるため、ここでの説明は省略する。 In addition, since the process after step S16 of FIG. 3 which concerns on this embodiment can be performed similarly to 1st Embodiment, description here is abbreviate | omitted.
 このようにして、正距円筒図法が用いられた元の全方位画像50'から、図13に示すような完成時の折り紙風船表面に形成される画像に適した全方位画像51b'を生成することができる。なお、本実施形態で生成される画像は全方位画像であるが、折り紙(正方形)の全範囲ではない。このため、生成される全方位画像に加えて、折り紙の4隅を表すトリムマーク等を付記することが望ましい。 In this way, an omnidirectional image 51b ′ suitable for an image formed on the surface of the origami balloon upon completion as shown in FIG. 13 is generated from the original omnidirectional image 50 ′ using equirectangular projection. be able to. Note that the image generated in the present embodiment is an omnidirectional image, but is not the entire range of origami (square). For this reason, in addition to the generated omnidirectional image, it is desirable to add trim marks or the like representing the four corners of the origami.
 あるいは、工作時に、直線b0-b3、直線b8-b24、直線b11-b27、直線b32-b35のそれぞれに折り目を付け、これらの交点から折り紙の4隅を導出する形態としてもよい。これを利用し、不要な領域を切り取るか、印刷面の反対側にシート状媒体を折り込むことにより折り紙風船の元のシート状媒体を正方形とすることができる。 Alternatively, at the time of machining, a crease may be formed on each of the straight line b0-b3, the straight line b8-b24, the straight line b11-b27, and the straight line b32-b35, and the four corners of the origami may be derived from these intersection points. By using this, an unnecessary area is cut off or the sheet-like medium of the origami balloon can be made square by folding the sheet-like medium on the opposite side of the printing surface.
 [第3の実施形態]
 第3の実施形態では、工作によって生じる恐れのある空白を少なくする全方位画像の生成について説明する。第3の実施形態は、第2の実施形態に加え、折り紙風船の完成時に空白が生じる恐れがある箇所(折り紙風船の完成時に折り紙が重なる箇所の付近)に対して適切な画像を補填できるように頂点の定義を改良したものである。
[Third Embodiment]
In the third embodiment, generation of an omnidirectional image that reduces the blank space that may be generated by work will be described. In the third embodiment, in addition to the second embodiment, an appropriate image can be compensated for a portion where a blank space may be generated when the origami balloon is completed (near the portion where the origami overlaps when the origami balloon is completed). The definition of vertices is improved.
 第3の実施形態においても、第1の実施形態と同様に、図3のステップS10において、折り紙風船の表面に対応する面形状の種類として、面形状が三角形又は四角形であり、面数がC0~C40からなる41面「OrigamiBalloonC_Top」がユーザにより選択されると、中央制御部11は、以下に示す、折り紙風船の各表面に対応する面C0~C40を定義し、定義された面のリストに関する全ての面を選択すると共に(ステップS11 Noに分岐、ステップS12)、図14に示すように、ステップS12において選択された面に関する全ての頂点を設定する。なお、各表面は、三角形又は四角形で構成される。 Also in the third embodiment, as in the first embodiment, in step S10 of FIG. 3, as the type of surface shape corresponding to the surface of the origami balloon, the surface shape is a triangle or a quadrangle, and the number of surfaces is C0. When the user selects “Origami Balloon C_Top”, which is a 41-plane consisting of C40 to C40, the central control unit 11 defines the following planes C0 to C40 corresponding to the respective surfaces of the origami balloon, and relates to the list of defined planes. All the faces are selected (step S11: branch to No, step S12), and as shown in FIG. 14, all vertices related to the face selected in step S12 are set. Each surface is formed of a triangle or a quadrangle.
 C0 :(c0 -c16-c12)
 C1 :(c1 -c12-c2 )
 C2 :(c2 -c12-c3 )
 C3 :(c4 -c12-c13-c5 )
 C4 :(c5 -c13-c14-c6 )
 C5 :(c6 -c14-c15-c7 )
 C6 :(c8 -c15-c9 )
 C7 :(c9 -c15-c10)
 C8 :(c11-c15-c21)
 C9 :(c16-c22-c12)
 C10:(c12-c23-c26-c27)
 C11:(c17-c27-c28)
 C12:(c18-c28-c13)
 C13:(c13-c28-c29-c14)
 C14:(c14-c29-c19)
 C15:(c20-c29-c30)
 C16:(c15-c30-c31-c24)
 C17:(c15-c25-c21)
 C18:(c26-c32-c33-c27)
 C19:(c27-c33-c34-c28)
 C20:(c28-c34-c35-c29)
 C21:(c29-c35-c36-c30)
 C22:(c30-c36-c37-c31)
 C23:(c38-c42-c48)
 C24:(c32-c39-c48-c33)
 C25:(c33-c43-c34)
 C26:(c34-c44-c49)
 C27:(c34-c49-c50-c35)
 C28:(c35-c50-c45)
 C29:(c35-c46-c36)
 C30:(c36-c51-c40-c37)
 C31:(c41-c51-c47)
 C32:(c42-c52-c48)
 C33:(c48-c53-c54)
 C34:(c48-c54-c55)
 C35:(c48-c56-c57-c49)
 C36:(c49-c57-c58-c50)
 C37:(c50-c58-c59-c51)
 C38:(c51-c60-c61)
 C39:(c51-c61-c62)
 C40:(c51-c63-c47)
C0: (c0-c16-c12)
C1: (c1-c12-c2)
C2: (c2-c12-c3)
C3: (c4-c12-c13-c5)
C4: (c5-c13-c14-c6)
C5: (c6-c14-c15-c7)
C6: (c8-c15-c9)
C7: (c9-c15-c10)
C8: (c11-c15-c21)
C9: (c16-c22-c12)
C10: (c12-c23-c26-c27)
C11: (c17-c27-c28)
C12: (c18-c28-c13)
C13: (c13-c28-c29-c14)
C14: (c14-c29-c19)
C15: (c20-c29-c30)
C16: (c15-c30-c31-c24)
C17: (c15-c25-c21)
C18: (c26-c32-c33-c27)
C19: (c27-c33-c34-c28)
C20: (c28-c34-c35-c29)
C21: (c29-c35-c36-c30)
C22: (c30-c36-c37-c31)
C23: (c38-c42-c48)
C24: (c32-c39-c48-c33)
C25: (c33-c43-c34)
C26: (c34-c44-c49)
C27: (c34-c49-c50-c35)
C28: (c35-c50-c45)
C29: (c35-c46-c36)
C30: (c36-c51-c40-c37)
C31: (c41-c51-c47)
C32: (c42-c52-c48)
C33: (c48-c53-c54)
C34: (c48-c54-c55)
C35: (c48-c56-c57-c49)
C36: (c49-c57-c58-c50)
C37: (c50-c58-c59-c51)
C38: (c51-c60-c61)
C39: (c51-c61-c62)
C40: (c51-c63-c47)
 そして、中央制御部11は、メインメモリ12、内蔵不揮発性記憶媒体15等の記憶部から以下に示す座標対応付けデータ52を読み出し、上記頂点群に対して3次元空間における原点(視点)からの方向をベクトルで表した成分(x,y,z)と、工作前の折り紙上における位置座標(u,v)とを対応付ける(ステップS13 Noに分岐、ステップS14、ステップS15、図15)。 Then, the central control unit 11 reads out the coordinate association data 52 shown below from the storage unit such as the main memory 12 and the built-in nonvolatile storage medium 15, and from the origin (viewpoint) in the three-dimensional space with respect to the vertex group. The component (x, y, z) representing the direction as a vector is associated with the position coordinates (u, v) on the origami before work (step S13, branch to No, step S14, step S15, FIG. 15).
 c0 :( 0, 0, 1)(0,0)
 c1 :(-1, 0, 0)(0,0)
 c2 :(-1, 0, 1)(1,0)
 c3 :( 0, 0, 1)(2,0)
 c4 :(-1, 0, 0)(2,0)
 c5 :(-1, 1, 0)(3,0)
 c6 :( 1, 1, 0)(5,0)
 c7 :( 1, 0, 0)(6,0)
 c8 :( 0, 0, 1)(6,0)
 c9 :( 1, 0, 1)(7,0)
 c10:( 1, 0, 0)(8,0)
 c11:( 0, 0, 1)(8,0)
 c12:(-1,-1, 1)(1,1)
 c13:(-1, 1, 1)(3,1)
 c14:( 1, 1, 1)(5,1)
 c15:( 1,-1, 1)(7,1)
 c16:(-1, 0, 1)(0,1)
 c17:( 1, 1, 1)(1,1)
 c18:(-1, 1,-1)(1,1)
 c19:( 1, 1,-1)(7,1)
 c20:(-1, 1, 1)(7,1)
 c21:( 1, 0, 1)(8,1)
 c22:(-1, 0, 0)(0,2)
 c23:( 0, 0, 1)(0,2)
 c24:( 0, 0, 1)(8,2)
 c25:( 1, 0, 0)(8,2)
 c26:( 0, 1, 1)(0,3)
 c27:(-1, 1, 1)(1,3)
 c28:(-1,-1, 1)(3,3)
 c29:( 1,-1, 1)(5,3)
 c30:( 1, 1, 1)(7,3)
 c31:( 0, 1, 1)(8,3)
 c32:( 0, 1,-1)(0,5)
 c33:(-1, 1,-1)(1,5)
 c34:(-1,-1,-1)(3,5)
 c35:( 1,-1,-1)(5,5)
 c36:( 1, 1,-1)(7,5)
 c37:( 0, 1,-1)(8,5)
 c38:(-1, 0, 0)(0,6)
 c39:( 0, 0,-1)(0,6)
 c40:( 0, 0,-1)(8,6)
 c41:( 1, 0, 0)(8,6)
 c42:(-1, 0,-1)(0,7)
 c43:( 1, 1,-1)(1,7)
 c44:(-1, 1, 1)(1,7)
 c45:( 1, 1, 1)(7,7)
 c46:(-1, 1,-1)(7,7)
 c47:( 1, 0,-1)(8,7)
 c48:(-1,-1,-1)(1,7)
 c49:(-1, 1,-1)(3,7)
 c50:( 1, 1,-1)(5,7)
 c51:( 1,-1,-1)(7,7)
 c52:( 0, 0,-1)(0,8)
 c53:(-1, 0, 0)(0,8)
 c54:(-1, 0,-1)(1,8)
 c55:( 0, 0,-1)(2,8)
 c56:(-1, 0, 0)(2,8)
 c57:(-1, 1, 0)(3,8)
 c58:( 1, 1, 0)(5,8)
 c59:( 1, 0, 0)(6,8)
 c60:( 0, 0,-1)(6,8)
 c61:( 1, 0,-1)(7,8)
 c62:( 1, 0, 0)(8,8)
 c63:( 0, 0,-1)(8,8)
c0: (0, 0, 1) (0, 0)
c1: (-1, 0, 0) (0, 0)
c2: (-1, 0, 1) (1, 0)
c3: (0, 0, 1) (2, 0)
c4: (-1, 0, 0) (2, 0)
c5: (-1, 1, 0) (3, 0)
c6: (1, 1, 0) (5, 0)
c7: (1, 0, 0) (6, 0)
c8: (0, 0, 1) (6, 0)
c9: (1, 0, 1) (7, 0)
c10: (1, 0, 0) (8, 0)
c11: (0, 0, 1) (8, 0)
c12: (-1, -1, 1) (1, 1)
c13: (-1, 1, 1) (3, 1)
c14: (1, 1, 1) (5, 1)
c15: (1, -1, 1) (7, 1)
c16: (-1, 0, 1) (0, 1)
c17: (1, 1, 1) (1, 1)
c18: (-1, 1, -1) (1, 1)
c19: (1, 1, -1) (7, 1)
c20: (-1, 1, 1) (7, 1)
c21: (1, 0, 1) (8, 1)
c22: (-1, 0, 0) (0, 2)
c23: (0, 0, 1) (0, 2)
c24: (0, 0, 1) (8, 2)
c25: (1, 0, 0) (8, 2)
c26: (0, 1, 1) (0, 3)
c27: (-1, 1, 1) (1, 3)
c28: (-1, -1, 1) (3, 3)
c29: (1, -1, 1) (5,3)
c30: (1, 1, 1) (7, 3)
c31: (0, 1, 1) (8, 3)
c32: (0, 1, -1) (0, 5)
c33: (-1, 1, -1) (1, 5)
c34: (-1, -1, -1) (3, 5)
c35: (1, -1, -1) (5,5)
c36: (1, 1, -1) (7, 5)
c37: (0, 1, -1) (8, 5)
c38: (-1, 0, 0) (0, 6)
c39: (0, 0, -1) (0, 6)
c40: (0, 0, -1) (8, 6)
c41: (1, 0, 0) (8, 6)
c42: (-1, 0, -1) (0, 7)
c43: (1, 1, -1) (1, 7)
c44: (-1, 1, 1) (1, 7)
c45: (1, 1, 1) (7, 7)
c46: (-1, 1, -1) (7, 7)
c47: (1, 0, -1) (8, 7)
c48: (-1, -1, -1) (1, 7)
c49: (-1, 1, -1) (3, 7)
c50: (1, 1, -1) (5, 7)
c51: (1, -1, -1) (7,7)
c52: (0, 0, -1) (0, 8)
c53: (-1, 0, 0) (0, 8)
c54: (-1, 0, -1) (1, 8)
c55: (0, 0, -1) (2, 8)
c56: (-1, 0, 0) (2, 8)
c57: (-1, 1, 0) (3, 8)
c58: (1, 1, 0) (5, 8)
c59: (1, 0, 0) (6, 8)
c60: (0, 0, -1) (6, 8)
c61: (1, 0, -1) (7, 8)
c62: (1, 0, 0) (8, 8)
c63: (0, 0, -1) (8, 8)
 なお、本実施形態に係る図3のステップS16以降の処理は第1の実施形態と同様に行うことができるため、ここでの説明は省略する。 In addition, since the process after step S16 of FIG. 3 which concerns on this embodiment can be performed similarly to 1st Embodiment, description here is abbreviate | omitted.
 このようにして、正距円筒図法が用いられた元の全方位画像50'から完成時の折り紙風船表面に形成される画像に適した全方位画像51'を生成することができる。なお、本実施形態で生成される全方位画像は、位置座標(u,v)を任意に移動しない限りは折り紙(正方形)の全範囲となる。 In this manner, an omnidirectional image 51 ′ suitable for an image formed on the surface of the origami balloon when completed can be generated from the original omnidirectional image 50 ′ using the equirectangular projection. Note that the omnidirectional image generated in the present embodiment is the entire range of origami (square) unless the position coordinates (u, v) are arbitrarily moved.
 これを利用し、不要な領域を切り取るか、印刷面の反対側に折り紙を折り込むことにより折り紙風船の元の折り紙を正方形とすることができる。 Using this, the original origami of the origami balloon can be made square by cutting out unnecessary areas or folding origami on the opposite side of the printing surface.
 次に、第3の実施形態を適用した例として、正距円筒図法が用いられた元の全方位画像を折り紙風船に適した全方位画像に変換し、印刷された正方形の折り紙から折り紙風船を完成させる様子について説明する。 Next, as an example to which the third embodiment is applied, an original omnidirectional image using equirectangular projection is converted into an omnidirectional image suitable for an origami balloon, and an origami balloon is converted from a printed square origami. The state of completion will be described.
 図16は、正距円筒図法を用いた元の全方位画像、すなわち、変換前の画像の一例を示す図であり、画像の上部は空、下部は地面を表している。 FIG. 16 is a diagram illustrating an example of an original omnidirectional image using equirectangular projection, that is, an image before conversion, in which the upper part of the image represents the sky and the lower part represents the ground.
 図16に示す元の全方位画像に対し、図5で示した全方位画像選択画面100の「Panorama Type」欄において「OrigamiBalloonC_Top」がユーザにより選択され、「OK」ボタンが押下されることによって生成した変換後の全方位画像を正方形の折り紙に印刷した状態のものが図17(a)である。そして、印刷した折り紙を所定の折り順に従って折り進むことにより完成させた折り紙風船を示したのが図17(b)である。図17(b)に示すように、この例においては、完成時の折り紙風船の穴部分が上部となっていることが分かる。 The original omnidirectional image shown in FIG. 16 is generated by the user selecting “OrigamiBallonC_Top” in the “Panarama Type” column of the omnidirectional image selection screen 100 shown in FIG. 5 and pressing the “OK” button. FIG. 17A shows a state in which the converted omnidirectional image is printed on a square origami. FIG. 17B shows an origami balloon completed by folding the printed origami according to a predetermined folding order. As shown in FIG. 17B, in this example, it can be seen that the hole portion of the origami balloon when completed is the upper part.
 図16に示す元の全方位画像に対し、図5で示した全方位画像選択画面100の「Panorama Type」欄において「OrigamiBalloonC_Horizontal」がユーザにより選択され、「OK」ボタンが押下されることによって生成した変換後の全方位画像を正方形の折り紙に印刷した状態のものが図18(a)である。そして、印刷した折り紙を所定の折り順に従って折り進むことにより完成させた折り紙風船を示したのが図18(b)である。図18(b)に示すように、この例においては、完成時の折り紙風船の穴部分が水平方向となるよう、各面を構成する頂点に対して3次元空間の原点からの方向を表すベクトル(x,y,z)を回転させて定義し、変換して得られた全方位画像が印刷された折り紙を90度回転させた状態で折り始めて完成させている。 The original omnidirectional image shown in FIG. 16 is generated when “OrigamiBallonC_Horizontal” is selected by the user in the “Panarama Type” column of the omnidirectional image selection screen 100 shown in FIG. 5 and the “OK” button is pressed. FIG. 18A shows a state in which the converted omnidirectional image is printed on a square origami. FIG. 18B shows an origami balloon completed by folding the printed origami according to a predetermined folding order. As shown in FIG. 18B, in this example, a vector representing the direction from the origin of the three-dimensional space with respect to the vertices constituting each surface so that the hole portion of the origami balloon at the time of completion is in the horizontal direction. (X, y, z) is defined by rotation, and the folding paper on which the omnidirectional image obtained by the conversion is printed is started to be folded in a state of being rotated by 90 degrees and completed.
 図16に示す元の全方位画像に対し、図5で示した全方位画像選択画面100の「Panorama Type」欄において「OrigamiBalloonC_Bottom」がユーザにより選択され、「OK」ボタンが押下されることによって生成した変換後の全方位画像を正方形の折り紙に印刷した状態のものが図19(a)である。そして、印刷した折り紙を所定の折り順に従って折り進むことにより完成させた折り紙風船を示したのが図19(b)である。図19(b)に示すように、この例においては、完成時の折り紙風船の穴部分が下部となるよう、各面を構成する頂点に対して3次元空間の原点からの方向を表すベクトル(x,y,z)を回転させて定義し、変換して得られた全方位画像が印刷された折り紙を折り進めて完成させている。 The original omnidirectional image shown in FIG. 16 is generated by the user selecting “OrigamiBallonC_Bottom” in the “Panarama Type” column of the omnidirectional image selection screen 100 shown in FIG. 5 and pressing the “OK” button. FIG. 19A shows a state in which the converted omnidirectional image is printed on a square origami. FIG. 19B shows an origami balloon completed by folding the printed origami according to a predetermined folding order. As shown in FIG. 19B, in this example, a vector (3) representing the direction from the origin of the three-dimensional space with respect to the vertices constituting each surface so that the hole portion of the origami balloon when completed is at the bottom. x, y, z) are rotated and defined, and the origami on which the omnidirectional image obtained by the conversion is printed is folded and completed.
 図17乃至図19のいずれに示す例においても、折り紙風船の完成時に折り紙が重なる箇所の付近に空白は存在せず、適切な方向の全方位画像が折り紙風船表面に補填されていることが分かる。 In any of the examples shown in FIGS. 17 to 19, it can be seen that there is no blank near the place where the origami overlaps when the origami balloon is completed, and that the omnidirectional image in the appropriate direction is compensated on the surface of the origami balloon. .
 以上のように、本発明の一実施形態によれば、容易に工作が可能な折り紙に適した全方位画像の生成を実現可能とする全方位画像生成装置、全方位画像生成方法、全方位画像生成プログラムを提供することができる。 As described above, according to an embodiment of the present invention, an omnidirectional image generation apparatus, an omnidirectional image generation method, and an omnidirectional image that can realize generation of an omnidirectional image suitable for origami that can be easily worked. A generation program can be provided.
 1 全方位画像生成装置
10 パーソナルコンピュータ
11 中央制御部
12 メインメモリ
13 画像制御部
13a ビデオメモリ
14 入出力制御部
15 内蔵性不揮発性記憶媒体
16 メディア読み書きインターフェイス
20 表示装置
30 ポインティング装置
40 プログラムデータ
50 全方位画像入力データ
50',50a',50b' 元の全方位画像
51 全方位画像出力データ
51',51a',51b' 折り紙風船に適した全方位画像
52 座標対応付けデータ
60 印刷装置
100 全方位画像選択画面
101 変換前画像形式選択プルダウンメニュー
102 変換後画像形式選択プルダウンメニュー
DESCRIPTION OF SYMBOLS 1 Omnidirectional image generation apparatus 10 Personal computer 11 Central control part 12 Main memory 13 Image control part 13a Video memory 14 Input / output control part 15 Built-in non-volatile storage medium 16 Media read / write interface 20 Display device 30 Pointing device 40 Program data 50 All Orientation image input data 50 ', 50a', 50b 'Original omnidirectional image 51 Omnidirectional image output data 51', 51a ', 51b' Omnidirectional image suitable for origami balloons 52 Coordinate mapping data 60 Printing device 100 Omnidirectional Image selection screen 101 Image format selection pull-down menu before conversion 102 Image format selection pull-down menu after conversion

Claims (34)

  1.  元の全方位画像から、シート状媒体を所定の折り順に従って折り進むことにより完成する立体形状物の表面に対して形成される全方位画像を生成する全方位画像生成装置であって、
     中央制御部と、
     元の全方位画像の3次元空間に前記立体形状物の表面に対応する面を構成する頂点群を設ける頂点設定部と、
     各頂点に対して3次元空間の原点からの方向を表すベクトルと前記シート状媒体上における位置座標とを関連付けた座標情報を記憶する記憶部とを備え、
     前記中央制御部は、前記記憶部から読み出した前記座標情報に基づき、各面内に位置する画素情報を生成すること
     を特徴とする全方位画像生成装置。
    An omnidirectional image generating device that generates an omnidirectional image formed on a surface of a three-dimensional object completed by folding a sheet-like medium according to a predetermined folding order from an original omnidirectional image,
    A central control unit;
    A vertex setting unit for providing a vertex group constituting a surface corresponding to the surface of the three-dimensional object in the three-dimensional space of the original omnidirectional image;
    A storage unit for storing coordinate information that associates a vector representing a direction from the origin of the three-dimensional space with respect to each vertex and a position coordinate on the sheet-like medium;
    The omnidirectional image generation apparatus, wherein the central control unit generates pixel information located in each plane based on the coordinate information read from the storage unit.
  2.  前記シート状媒体は折り紙であって、当該折り紙を所定の折り順に従って折り進むことにより完成する立体形状物は折り紙風船であること
     を特徴とする請求項1に記載の全方位画像生成装置。
    The omnidirectional image generating apparatus according to claim 1, wherein the sheet-like medium is origami, and the three-dimensional object that is completed by folding the origami according to a predetermined folding order is an origami balloon.
  3.  面形状が三角形又は四角形であり、面数がA0~A14からなる15面である場合、前記頂点群をa0~a21、前記3次元空間の原点からの方向を表すベクトルを成分(x,y,z)、前記シート状媒体上における位置座標(u,v)とすると、
     A0 :(a0 -a4 -a1 )
     A1 :(a1 -a4 -a5 -a2 )
     A2 :(a2 -a5 -a3 )
     A3 :(a4 -a6 -a8 )
     A4 :(a4 -a8 -a9 -a5 )
     A5 :(a5 -a9 -a7 )
     A6 :(a8 -a10-a12)
     A7 :(a8 -a12-a13-a9 )
     A8 :(a9 -a13-a11)
     A9 :(a12-a14-a16)
     A10:(a12-a16-a17-a13)
     A11:(a13-a17-a15)
     A12:(a16-a18-a19)
     A13:(a16-a19-a20-a17)
     A14:(a17-a20-a21)
     a0 :(-1, 0, 0)(2,0)
     a1 :(-1, 1, 0)(3,0)
     a2 :( 1, 1, 0)(5,0)
     a3 :( 1, 0, 0)(6,0)
     a4 :(-1, 1, 1)(3,1)
     a5 :( 1, 1, 1)(5,1)
     a6 :(-1, 0, 0)(2,2)
     a7 :( 1, 0, 0)(6,2)
     a8 :(-1,-1, 1)(3,3)
     a9 :( 1,-1, 1)(5,3)
     a10:(-1, 0, 0)(2,4)
     a11:( 1, 0, 0)(6,4)
     a12:(-1,-1,-1)(3,5)
     a13:( 1,-1,-1)(5,5)
     a14:(-1, 0, 0)(2,6)
     a15:( 1, 0, 0)(6,6)
     a16:(-1, 1,-1)(3,7)
     a17:( 1, 1,-1)(5,7)
     a18:(-1, 0, 0)(2,8)
     a19:(-1, 1, 0)(3,8)
     a20:( 1, 1, 0)(5,8)
     a21:( 1, 0, 0)(6,8)
     の関係を満たすこと
     を特徴とする請求項2に記載の全方位画像生成装置。
    (なお、位置座標(u,v)は、シート状媒体の左上頂点の座標を(0,0)、右上頂点の座標を(8,0)、左下頂点の座標を(0,8)、右下頂点の座標を(8,8)と定義して表すものとする。)
    When the surface shape is a triangle or a quadrangle and the number of surfaces is 15 surfaces consisting of A0 to A14, the vertex group is a0 to a21, and a vector representing the direction from the origin of the three-dimensional space is a component (x, y, z), the position coordinates (u, v) on the sheet-like medium,
    A0: (a0-a4-a1)
    A1: (a1 -a4 -a5 -a2)
    A2: (a2 -a5 -a3)
    A3: (a4 -a6 -a8)
    A4: (a4 -a8 -a9 -a5)
    A5: (a5-a9-a7)
    A6: (a8-a10-a12)
    A7: (a8-a12-a13-a9)
    A8: (a9-a13-a11)
    A9: (a12-a14-a16)
    A10: (a12-a16-a17-a13)
    A11: (a13-a17-a15)
    A12: (a16-a18-a19)
    A13: (a16-a19-a20-a17)
    A14: (a17-a20-a21)
    a0: (-1, 0, 0) (2, 0)
    a1: (-1, 1, 0) (3, 0)
    a2: (1, 1, 0) (5, 0)
    a3: (1, 0, 0) (6, 0)
    a4: (-1, 1, 1) (3, 1)
    a5: (1, 1, 1) (5, 1)
    a6: (-1, 0, 0) (2, 2)
    a7: (1, 0, 0) (6, 2)
    a8: (-1, -1, 1) (3, 3)
    a9: (1, -1, 1) (5, 3)
    a10: (-1, 0, 0) (2, 4)
    a11: (1, 0, 0) (6, 4)
    a12: (-1, -1, -1) (3, 5)
    a13: (1, -1, -1) (5,5)
    a14: (-1, 0, 0) (2, 6)
    a15: (1, 0, 0) (6, 6)
    a16: (-1, 1, -1) (3, 7)
    a17: (1, 1, -1) (5, 7)
    a18: (-1, 0, 0) (2, 8)
    a19: (-1, 1, 0) (3, 8)
    a20: (1, 1, 0) (5, 8)
    a21: (1, 0, 0) (6, 8)
    The omnidirectional image generation apparatus according to claim 2, wherein the relationship is satisfied.
    (Note that the position coordinates (u, v) are (0, 0) for the upper left vertex of the sheet-like medium, (8, 0) for the upper right vertex, (0, 8) for the lower left vertex, (The coordinates of the lower vertex are defined as (8, 8).)
  4.  元の全方位画像の画像形式を受け付ける選択部を備えること
     を特徴とする請求項3に記載の全方位画像生成装置。
    The omnidirectional image generation apparatus according to claim 3, further comprising a selection unit that receives an image format of the original omnidirectional image.
  5.  前記選択部は、完成時における前記立体形状物の表面に対応する面形状の種類の選択を受付けること
     を特徴とする請求項4に記載の全方位画像生成装置。
    The omnidirectional image generation apparatus according to claim 4, wherein the selection unit receives selection of a surface shape type corresponding to the surface of the three-dimensional object at the time of completion.
  6.  面形状が三角形又は四角形であり、面数がB0~B24からなる25面である場合、前記頂点群をb0~b35、前記3次元空間の原点からの方向を表すベクトルを成分(x,y,z)、前記シート状媒体上における位置座標(u,v)とすると、
     B0 :(b0 -b4 -b1 )
     B1 :(b1 -b4 -b5 -b2 )
     B2 :(b2 -b5 -b3 )
     B3 :(b4 -b6 -b14)
     B4 :(b4 -b14-b15-b5 )
     B5 :(b5 -b15-b7 )
     B6 :(b8 -b12-b13)
     B7 :(b9 -b13-b14)
     B8 :(b10-b15-b16)
     B9 :(b11-b16-b17)
     B10:(b12-b18-b19-b13)
     B11:(b13-b19-b20-b14)
     B12:(b14-b20-b21-b15)
     B13:(b15-b21-b22-b16)
     B14:(b16-b22-b23-b17)
     B15:(b18-b24-b19)
     B16:(b19-b25-b20)
     B17:(b21-b26-b22)
     B18:(b22-b27-b23)
     B19:(b20-b28-b30)
     B20:(b20-b30-b31-b21)
     B21:(b21-b31-b29)
     B22:(b30-b32-b33)
     B23:(b30-b33-b34-b31)
     B24:(b31-b34-b35)
     b0 :(-1, 0, 0)(2,0)
     b1 :(-1, 1, 0)(3,0)
     b2 :( 1, 1, 0)(5,0)
     b3 :( 1, 0, 0)(6,0)
     b4 :(-1, 1, 1)(3,1)
     b5 :( 1, 1, 1)(5,1)
     b6 :(-1, 0, 0)(2,2)
     b7 :( 1, 0, 0)(6,2)
     b8 :( 0, 0, 1)(0,2)
     b9 :( 0, 0, 1)(2,2)
     b10:( 0, 0, 1)(6,2)
     b11:( 0, 0, 1)(8,2)
     b12:( 0, 1, 1)(0,3)
     b13:(-1, 1, 1)(1,3)
     b14:(-1,-1, 1)(3,3)
     b15:( 1,-1, 1)(5,3)
     b16:( 1, 1, 1)(7,3)
     b17:( 0, 1, 1)(8,3)
     b18:( 0, 1,-1)(0,5)
     b19:(-1, 1,-1)(1,5)
     b20:(-1,-1,-1)(3,5)
     b21:( 1,-1,-1)(5,5)
     b22:( 1, 1,-1)(7,5)
     b23:( 0, 1,-1)(8,5)
     b24:( 0, 0,-1)(0,6)
     b25:( 0, 0,-1)(2,6)
     b26:( 0, 0,-1)(6,6)
     b27:( 0, 0,-1)(8,6)
     b28:(-1, 0, 0)(2,6)
     b29:( 1, 0, 0)(6,6)
     b30:(-1, 1,-1)(3,7)
     b31:( 1, 1,-1)(5,7)
     b32:(-1, 0, 0)(2,8)
     b33:(-1, 1, 0)(3,8)
     b34:( 1, 1, 0)(5,8)
     b35:( 1, 0, 0)(6,8)
     の関係を満たすこと
     を特徴とする請求項2に記載の全方位画像生成装置。
    (なお、位置座標(u,v)は、シート状媒体の左上頂点の座標を(0,0)、右上頂点の座標を(8,0)、左下頂点の座標を(0,8)、右下頂点の座標を(8,8)と定義して表すものとする。)
    When the surface shape is a triangle or a quadrangle and the number of surfaces is 25 surfaces consisting of B0 to B24, the vertex groups are b0 to b35, and a vector representing the direction from the origin of the three-dimensional space is a component (x, y, z), the position coordinates (u, v) on the sheet-like medium,
    B0: (b0-b4-b1)
    B1: (b1-b4-b5-b2)
    B2: (b2-b5-b3)
    B3: (b4 -b6 -b14)
    B4: (b4-b14-b15-b5)
    B5: (b5-b15-b7)
    B6: (b8-b12-b13)
    B7: (b9-b13-b14)
    B8: (b10-b15-b16)
    B9: (b11-b16-b17)
    B10: (b12-b18-b19-b13)
    B11: (b13-b19-b20-b14)
    B12: (b14-b20-b21-b15)
    B13: (b15-b21-b22-b16)
    B14: (b16-b22-b23-b17)
    B15: (b18-b24-b19)
    B16: (b19-b25-b20)
    B17: (b21-b26-b22)
    B18: (b22-b27-b23)
    B19: (b20-b28-b30)
    B20: (b20-b30-b31-b21)
    B21: (b21-b31-b29)
    B22: (b30-b32-b33)
    B23: (b30-b33-b34-b31)
    B24: (b31-b34-b35)
    b0: (-1, 0, 0) (2, 0)
    b1: (-1, 1, 0) (3, 0)
    b2: (1, 1, 0) (5, 0)
    b3: (1, 0, 0) (6, 0)
    b4: (-1, 1, 1) (3, 1)
    b5: (1, 1, 1) (5, 1)
    b6: (-1, 0, 0) (2, 2)
    b7: (1, 0, 0) (6, 2)
    b8: (0, 0, 1) (0, 2)
    b9: (0, 0, 1) (2, 2)
    b10: (0, 0, 1) (6, 2)
    b11: (0, 0, 1) (8, 2)
    b12: (0, 1, 1) (0, 3)
    b13: (-1, 1, 1) (1, 3)
    b14: (-1, -1, 1) (3, 3)
    b15: (1, -1, 1) (5,3)
    b16: (1, 1, 1) (7, 3)
    b17: (0, 1, 1) (8, 3)
    b18: (0, 1, -1) (0, 5)
    b19: (-1, 1, -1) (1, 5)
    b20: (-1, -1, -1) (3, 5)
    b21: (1, -1, -1) (5,5)
    b22: (1, 1, -1) (7, 5)
    b23: (0, 1, -1) (8, 5)
    b24: (0, 0, -1) (0, 6)
    b25: (0, 0, -1) (2, 6)
    b26: (0, 0, -1) (6, 6)
    b27: (0, 0, -1) (8, 6)
    b28: (-1, 0, 0) (2, 6)
    b29: (1, 0, 0) (6, 6)
    b30: (-1, 1, -1) (3, 7)
    b31: (1, 1, -1) (5, 7)
    b32: (-1, 0, 0) (2, 8)
    b33: (-1, 1, 0) (3, 8)
    b34: (1, 1, 0) (5, 8)
    b35: (1, 0, 0) (6, 8)
    The omnidirectional image generation apparatus according to claim 2, wherein the relationship is satisfied.
    (Note that the position coordinates (u, v) are (0, 0) for the upper left vertex of the sheet-like medium, (8, 0) for the upper right vertex, (0, 8) for the lower left vertex, (The coordinates of the lower vertex are defined as (8, 8).)
  7.  元の全方位画像の画像形式を受け付ける選択部を備えること
     を特徴とする請求項6に記載の全方位画像生成装置。
    The omnidirectional image generation apparatus according to claim 6, further comprising a selection unit that receives an image format of the original omnidirectional image.
  8.  前記選択部は、完成時における前記立体形状物の表面に対応する面形状の種類の選択を受付けること
     を特徴とする請求項7に記載の全方位画像生成装置。
    The omnidirectional image generation apparatus according to claim 7, wherein the selection unit receives selection of a surface shape type corresponding to the surface of the three-dimensional object at the time of completion.
  9.  面形状が三角形又は四角形であり、面数がC0~C40からなる41面である場合、前記頂点群をc0~c63、前記3次元空間の原点からの方向を表すベクトルを成分(x,y,z)、前記シート状媒体上における位置座標(u,v)とすると、
     C0 :(c0 -c16-c12)
     C1 :(c1 -c12-c2 )
     C2 :(c2 -c12-c3 )
     C3 :(c4 -c12-c13-c5 )
     C4 :(c5 -c13-c14-c6 )
     C5 :(c6 -c14-c15-c7 )
     C6 :(c8 -c15-c9 )
     C7 :(c9 -c15-c10)
     C8 :(c11-c15-c21)
     C9 :(c16-c22-c12)
     C10:(c12-c23-c26-c27)
     C11:(c17-c27-c28)
     C12:(c18-c28-c13)
     C13:(c13-c28-c29-c14)
     C14:(c14-c29-c19)
     C15:(c20-c29-c30)
     C16:(c15-c30-c31-c24)
     C17:(c15-c25-c21)
     C18:(c26-c32-c33-c27)
     C19:(c27-c33-c34-c28)
     C20:(c28-c34-c35-c29)
     C21:(c29-c35-c36-c30)
     C22:(c30-c36-c37-c31)
     C23:(c38-c42-c48)
     C24:(c32-c39-c48-c33)
     C25:(c33-c43-c34)
     C26:(c34-c44-c49)
     C27:(c34-c49-c50-c35)
     C28:(c35-c50-c45)
     C29:(c35-c46-c36)
     C30:(c36-c51-c40-c37)
     C31:(c41-c51-c47)
     C32:(c42-c52-c48)
     C33:(c48-c53-c54)
     C34:(c48-c54-c55)
     C35:(c48-c56-c57-c49)
     C36:(c49-c57-c58-c50)
     C37:(c50-c58-c59-c51)
     C38:(c51-c60-c61)
     C39:(c51-c61-c62)
     C40:(c51-c63-c47)
     c0 :( 0, 0, 1)(0,0)
     c1 :(-1, 0, 0)(0,0)
     c2 :(-1, 0, 1)(1,0)
     c3 :( 0, 0, 1)(2,0)
     c4 :(-1, 0, 0)(2,0)
     c5 :(-1, 1, 0)(3,0)
     c6 :( 1, 1, 0)(5,0)
     c7 :( 1, 0, 0)(6,0)
     c8 :( 0, 0, 1)(6,0)
     c9 :( 1, 0, 1)(7,0)
     c10:( 1, 0, 0)(8,0)
     c11:( 0, 0, 1)(8,0)
     c12:(-1,-1, 1)(1,1)
     c13:(-1, 1, 1)(3,1)
     c14:( 1, 1, 1)(5,1)
     c15:( 1,-1, 1)(7,1)
     c16:(-1, 0, 1)(0,1)
     c17:( 1, 1, 1)(1,1)
     c18:(-1, 1,-1)(1,1)
     c19:( 1, 1,-1)(7,1)
     c20:(-1, 1, 1)(7,1)
     c21:( 1, 0, 1)(8,1)
     c22:(-1, 0, 0)(0,2)
     c23:( 0, 0, 1)(0,2)
     c24:( 0, 0, 1)(8,2)
     c25:( 1, 0, 0)(8,2)
     c26:( 0, 1, 1)(0,3)
     c27:(-1, 1, 1)(1,3)
     c28:(-1,-1, 1)(3,3)
     c29:( 1,-1, 1)(5,3)
     c30:( 1, 1, 1)(7,3)
     c31:( 0, 1, 1)(8,3)
     c32:( 0, 1,-1)(0,5)
     c33:(-1, 1,-1)(1,5)
     c34:(-1,-1,-1)(3,5)
     c35:( 1,-1,-1)(5,5)
     c36:( 1, 1,-1)(7,5)
     c37:( 0, 1,-1)(8,5)
     c38:(-1, 0, 0)(0,6)
     c39:( 0, 0,-1)(0,6)
     c40:( 0, 0,-1)(8,6)
     c41:( 1, 0, 0)(8,6)
     c42:(-1, 0,-1)(0,7)
     c43:( 1, 1,-1)(1,7)
     c44:(-1, 1, 1)(1,7)
     c45:( 1, 1, 1)(7,7)
     c46:(-1, 1,-1)(7,7)
     c47:( 1, 0,-1)(8,7)
     c48:(-1,-1,-1)(1,7)
     c49:(-1, 1,-1)(3,7)
     c50:( 1, 1,-1)(5,7)
     c51:( 1,-1,-1)(7,7)
     c52:( 0, 0,-1)(0,8)
     c53:(-1, 0, 0)(0,8)
     c54:(-1, 0,-1)(1,8)
     c55:( 0, 0,-1)(2,8)
     c56:(-1, 0, 0)(2,8)
     c57:(-1, 1, 0)(3,8)
     c58:( 1, 1, 0)(5,8)
     c59:( 1, 0, 0)(6,8)
     c60:( 0, 0,-1)(6,8)
     c61:( 1, 0,-1)(7,8)
     c62:( 1, 0, 0)(8,8)
     c63:( 0, 0,-1)(8,8)
     の関係を満たすこと
     を特徴とする請求項2に記載の全方位画像生成装置。
    (なお、位置座標(u,v)は、シート状媒体の左上頂点の座標を(0,0)、右上頂点の座標を(8,0)、左下頂点の座標を(0,8)、右下頂点の座標を(8,8)と定義して表すものとする。)
    When the surface shape is a triangle or a quadrangle and the number of surfaces is 41 surfaces consisting of C0 to C40, the vertex groups are c0 to c63, and a vector representing the direction from the origin of the three-dimensional space is a component (x, y, z), the position coordinates (u, v) on the sheet-like medium,
    C0: (c0-c16-c12)
    C1: (c1-c12-c2)
    C2: (c2-c12-c3)
    C3: (c4-c12-c13-c5)
    C4: (c5-c13-c14-c6)
    C5: (c6-c14-c15-c7)
    C6: (c8-c15-c9)
    C7: (c9-c15-c10)
    C8: (c11-c15-c21)
    C9: (c16-c22-c12)
    C10: (c12-c23-c26-c27)
    C11: (c17-c27-c28)
    C12: (c18-c28-c13)
    C13: (c13-c28-c29-c14)
    C14: (c14-c29-c19)
    C15: (c20-c29-c30)
    C16: (c15-c30-c31-c24)
    C17: (c15-c25-c21)
    C18: (c26-c32-c33-c27)
    C19: (c27-c33-c34-c28)
    C20: (c28-c34-c35-c29)
    C21: (c29-c35-c36-c30)
    C22: (c30-c36-c37-c31)
    C23: (c38-c42-c48)
    C24: (c32-c39-c48-c33)
    C25: (c33-c43-c34)
    C26: (c34-c44-c49)
    C27: (c34-c49-c50-c35)
    C28: (c35-c50-c45)
    C29: (c35-c46-c36)
    C30: (c36-c51-c40-c37)
    C31: (c41-c51-c47)
    C32: (c42-c52-c48)
    C33: (c48-c53-c54)
    C34: (c48-c54-c55)
    C35: (c48-c56-c57-c49)
    C36: (c49-c57-c58-c50)
    C37: (c50-c58-c59-c51)
    C38: (c51-c60-c61)
    C39: (c51-c61-c62)
    C40: (c51-c63-c47)
    c0: (0, 0, 1) (0, 0)
    c1: (-1, 0, 0) (0, 0)
    c2: (-1, 0, 1) (1, 0)
    c3: (0, 0, 1) (2, 0)
    c4: (-1, 0, 0) (2, 0)
    c5: (-1, 1, 0) (3, 0)
    c6: (1, 1, 0) (5, 0)
    c7: (1, 0, 0) (6, 0)
    c8: (0, 0, 1) (6, 0)
    c9: (1, 0, 1) (7, 0)
    c10: (1, 0, 0) (8, 0)
    c11: (0, 0, 1) (8, 0)
    c12: (-1, -1, 1) (1, 1)
    c13: (-1, 1, 1) (3, 1)
    c14: (1, 1, 1) (5, 1)
    c15: (1, -1, 1) (7, 1)
    c16: (-1, 0, 1) (0, 1)
    c17: (1, 1, 1) (1, 1)
    c18: (-1, 1, -1) (1, 1)
    c19: (1, 1, -1) (7, 1)
    c20: (-1, 1, 1) (7, 1)
    c21: (1, 0, 1) (8, 1)
    c22: (-1, 0, 0) (0, 2)
    c23: (0, 0, 1) (0, 2)
    c24: (0, 0, 1) (8, 2)
    c25: (1, 0, 0) (8, 2)
    c26: (0, 1, 1) (0, 3)
    c27: (-1, 1, 1) (1, 3)
    c28: (-1, -1, 1) (3, 3)
    c29: (1, -1, 1) (5,3)
    c30: (1, 1, 1) (7, 3)
    c31: (0, 1, 1) (8, 3)
    c32: (0, 1, -1) (0, 5)
    c33: (-1, 1, -1) (1, 5)
    c34: (-1, -1, -1) (3, 5)
    c35: (1, -1, -1) (5,5)
    c36: (1, 1, -1) (7, 5)
    c37: (0, 1, -1) (8, 5)
    c38: (-1, 0, 0) (0, 6)
    c39: (0, 0, -1) (0, 6)
    c40: (0, 0, -1) (8, 6)
    c41: (1, 0, 0) (8, 6)
    c42: (-1, 0, -1) (0, 7)
    c43: (1, 1, -1) (1, 7)
    c44: (-1, 1, 1) (1, 7)
    c45: (1, 1, 1) (7, 7)
    c46: (-1, 1, -1) (7, 7)
    c47: (1, 0, -1) (8, 7)
    c48: (-1, -1, -1) (1, 7)
    c49: (-1, 1, -1) (3, 7)
    c50: (1, 1, -1) (5, 7)
    c51: (1, -1, -1) (7,7)
    c52: (0, 0, -1) (0, 8)
    c53: (-1, 0, 0) (0, 8)
    c54: (-1, 0, -1) (1, 8)
    c55: (0, 0, -1) (2, 8)
    c56: (-1, 0, 0) (2, 8)
    c57: (-1, 1, 0) (3, 8)
    c58: (1, 1, 0) (5, 8)
    c59: (1, 0, 0) (6, 8)
    c60: (0, 0, -1) (6, 8)
    c61: (1, 0, -1) (7, 8)
    c62: (1, 0, 0) (8, 8)
    c63: (0, 0, -1) (8, 8)
    The omnidirectional image generation apparatus according to claim 2, wherein the relationship is satisfied.
    (Note that the position coordinates (u, v) are (0, 0) for the upper left vertex of the sheet-like medium, (8, 0) for the upper right vertex, (0, 8) for the lower left vertex, (The coordinates of the lower vertex are defined as (8, 8).)
  10.  元の全方位画像の画像形式を受け付ける選択部を備えること
     を特徴とする請求項9に記載の全方位画像生成装置。
    The omnidirectional image generation apparatus according to claim 9, further comprising a selection unit that receives an image format of an original omnidirectional image.
  11.  前記選択部は、完成時における前記立体形状物の表面に対応する面形状の種類の選択を受付けること
     を特徴とする請求項10に記載の全方位画像生成装置。
    The omnidirectional image generation apparatus according to claim 10, wherein the selection unit receives selection of a surface shape type corresponding to the surface of the three-dimensional object at the time of completion.
  12.  生成された前記画素情報に基づき、前記シート状媒体に全方位画像を印刷する印刷手段を備えること
     を特徴とする請求項1又は請求項2に記載の全方位画像生成装置。
    The omnidirectional image generation apparatus according to claim 1, further comprising: a printing unit that prints an omnidirectional image on the sheet-like medium based on the generated pixel information.
  13.  元の全方位画像から、シート状媒体を所定の折り順に従って折り進むことにより完成する立体形状物の表面に対して形成される全方位画像を生成する生成方法であって、
     元の全方位画像の3次元空間に前記立体形状物の表面に対応する面を構成する頂点群を設ける頂点設定工程と、
     各頂点に対して3次元空間の原点からの方向を表すベクトルと前記シート状媒体上における位置座標とを関連付ける関連付け工程と、
     各頂点に対して関連付けられた座標情報に基づき、各面内に位置する画素情報を生成する生成工程とを備えること
     を特徴とする全方位画像の生成方法。
    A generation method for generating an omnidirectional image formed on a surface of a three-dimensional object completed by folding a sheet-like medium according to a predetermined folding order from an original omnidirectional image,
    A vertex setting step for providing a vertex group constituting a surface corresponding to the surface of the three-dimensional object in the three-dimensional space of the original omnidirectional image;
    Associating a vector representing a direction from the origin of the three-dimensional space with each vertex and a position coordinate on the sheet-like medium;
    An omnidirectional image generation method comprising: a generation step of generating pixel information located in each plane based on coordinate information associated with each vertex.
  14.  前記シート状媒体は折り紙であって、当該折り紙を所定の折り順に従って折り進むことにより完成する立体形状物は折り紙風船であること
     を特徴とする請求項13に記載の全方位画像の生成方法。
    The omnidirectional image generation method according to claim 13, wherein the sheet-like medium is origami, and the three-dimensional object completed by folding the origami according to a predetermined folding order is an origami balloon.
  15.  面形状が三角形又は四角形であり、面数がA0~A14からなる15面である場合、前記頂点群をa0~a21、前記3次元空間の原点からの方向を表すベクトルを成分(x,y,z)、前記シート状媒体上における位置座標(u,v)とすると、
     A0 :(a0 -a4 -a1 )
     A1 :(a1 -a4 -a5 -a2 )
     A2 :(a2 -a5 -a3 )
     A3 :(a4 -a6 -a8 )
     A4 :(a4 -a8 -a9 -a5 )
     A5 :(a5 -a9 -a7 )
     A6 :(a8 -a10-a12)
     A7 :(a8 -a12-a13-a9 )
     A8 :(a9 -a13-a11)
     A9 :(a12-a14-a16)
     A10:(a12-a16-a17-a13)
     A11:(a13-a17-a15)
     A12:(a16-a18-a19)
     A13:(a16-a19-a20-a17)
     A14:(a17-a20-a21)
     a0 :(-1, 0, 0)(2,0)
     a1 :(-1, 1, 0)(3,0)
     a2 :( 1, 1, 0)(5,0)
     a3 :( 1, 0, 0)(6,0)
     a4 :(-1, 1, 1)(3,1)
     a5 :( 1, 1, 1)(5,1)
     a6 :(-1, 0, 0)(2,2)
     a7 :( 1, 0, 0)(6,2)
     a8 :(-1,-1, 1)(3,3)
     a9 :( 1,-1, 1)(5,3)
     a10:(-1, 0, 0)(2,4)
     a11:( 1, 0, 0)(6,4)
     a12:(-1,-1,-1)(3,5)
     a13:( 1,-1,-1)(5,5)
     a14:(-1, 0, 0)(2,6)
     a15:( 1, 0, 0)(6,6)
     a16:(-1, 1,-1)(3,7)
     a17:( 1, 1,-1)(5,7)
     a18:(-1, 0, 0)(2,8)
     a19:(-1, 1, 0)(3,8)
     a20:( 1, 1, 0)(5,8)
     a21:( 1, 0, 0)(6,8)
     の関係を満たすこと
     を特徴とする請求項14に記載の全方位画像の生成方法。
    (なお、位置座標(u,v)は、シート状媒体の左上頂点の座標を(0,0)、右上頂点の座標を(8,0)、左下頂点の座標を(0,8)、右下頂点の座標を(8,8)と定義して表すものとする。)
    When the surface shape is a triangle or a quadrangle and the number of surfaces is 15 surfaces consisting of A0 to A14, the vertex group is a0 to a21, and a vector representing the direction from the origin of the three-dimensional space is a component (x, y, z), the position coordinates (u, v) on the sheet-like medium,
    A0: (a0-a4-a1)
    A1: (a1 -a4 -a5 -a2)
    A2: (a2 -a5 -a3)
    A3: (a4 -a6 -a8)
    A4: (a4 -a8 -a9 -a5)
    A5: (a5-a9-a7)
    A6: (a8-a10-a12)
    A7: (a8-a12-a13-a9)
    A8: (a9-a13-a11)
    A9: (a12-a14-a16)
    A10: (a12-a16-a17-a13)
    A11: (a13-a17-a15)
    A12: (a16-a18-a19)
    A13: (a16-a19-a20-a17)
    A14: (a17-a20-a21)
    a0: (-1, 0, 0) (2, 0)
    a1: (-1, 1, 0) (3, 0)
    a2: (1, 1, 0) (5, 0)
    a3: (1, 0, 0) (6, 0)
    a4: (-1, 1, 1) (3, 1)
    a5: (1, 1, 1) (5, 1)
    a6: (-1, 0, 0) (2, 2)
    a7: (1, 0, 0) (6, 2)
    a8: (-1, -1, 1) (3, 3)
    a9: (1, -1, 1) (5, 3)
    a10: (-1, 0, 0) (2, 4)
    a11: (1, 0, 0) (6, 4)
    a12: (-1, -1, -1) (3, 5)
    a13: (1, -1, -1) (5,5)
    a14: (-1, 0, 0) (2, 6)
    a15: (1, 0, 0) (6, 6)
    a16: (-1, 1, -1) (3, 7)
    a17: (1, 1, -1) (5, 7)
    a18: (-1, 0, 0) (2, 8)
    a19: (-1, 1, 0) (3, 8)
    a20: (1, 1, 0) (5, 8)
    a21: (1, 0, 0) (6, 8)
    The omnidirectional image generation method according to claim 14, wherein the relationship is satisfied.
    (Note that the position coordinates (u, v) are (0, 0) for the upper left vertex of the sheet-like medium, (8, 0) for the upper right vertex, (0, 8) for the lower left vertex, (The coordinates of the lower vertex are defined as (8, 8).)
  16.  元の全方位画像の画像形式を受け付ける選択工程を備えること
     を特徴とする請求項15に記載の全方位画像の生成方法。
    The omnidirectional image generation method according to claim 15, further comprising a selection step of receiving an image format of the original omnidirectional image.
  17.  前記選択工程では、完成時における前記立体形状物の表面に対応する面形状の種類の選択を受付けること
     を特徴とする請求項16に記載の全方位画像の生成方法。
    The method for generating an omnidirectional image according to claim 16, wherein in the selection step, selection of a surface shape type corresponding to the surface of the three-dimensional object at the time of completion is accepted.
  18.  面形状が三角形又は四角形であり、面数がB0~B24からなる25面である場合、前記頂点群をb0~b35、前記3次元空間の原点からの方向を表すベクトルを成分(x,y,z)、前記シート状媒体上における位置座標(u,v)とすると、
     B0 :(b0 -b4 -b1 )
     B1 :(b1 -b4 -b5 -b2 )
     B2 :(b2 -b5 -b3 )
     B3 :(b4 -b6 -b14)
     B4 :(b4 -b14-b15-b5 )
     B5 :(b5 -b15-b7 )
     B6 :(b8 -b12-b13)
     B7 :(b9 -b13-b14)
     B8 :(b10-b15-b16)
     B9 :(b11-b16-b17)
     B10:(b12-b18-b19-b13)
     B11:(b13-b19-b20-b14)
     B12:(b14-b20-b21-b15)
     B13:(b15-b21-b22-b16)
     B14:(b16-b22-b23-b17)
     B15:(b18-b24-b19)
     B16:(b19-b25-b20)
     B17:(b21-b26-b22)
     B18:(b22-b27-b23)
     B19:(b20-b28-b30)
     B20:(b20-b30-b31-b21)
     B21:(b21-b31-b29)
     B22:(b30-b32-b33)
     B23:(b30-b33-b34-b31)
     B24:(b31-b34-b35)
     b0 :(-1, 0, 0)(2,0)
     b1 :(-1, 1, 0)(3,0)
     b2 :( 1, 1, 0)(5,0)
     b3 :( 1, 0, 0)(6,0)
     b4 :(-1, 1, 1)(3,1)
     b5 :( 1, 1, 1)(5,1)
     b6 :(-1, 0, 0)(2,2)
     b7 :( 1, 0, 0)(6,2)
     b8 :( 0, 0, 1)(0,2)
     b9 :( 0, 0, 1)(2,2)
     b10:( 0, 0, 1)(6,2)
     b11:( 0, 0, 1)(8,2)
     b12:( 0, 1, 1)(0,3)
     b13:(-1, 1, 1)(1,3)
     b14:(-1,-1, 1)(3,3)
     b15:( 1,-1, 1)(5,3)
     b16:( 1, 1, 1)(7,3)
     b17:( 0, 1, 1)(8,3)
     b18:( 0, 1,-1)(0,5)
     b19:(-1, 1,-1)(1,5)
     b20:(-1,-1,-1)(3,5)
     b21:( 1,-1,-1)(5,5)
     b22:( 1, 1,-1)(7,5)
     b23:( 0, 1,-1)(8,5)
     b24:( 0, 0,-1)(0,6)
     b25:( 0, 0,-1)(2,6)
     b26:( 0, 0,-1)(6,6)
     b27:( 0, 0,-1)(8,6)
     b28:(-1, 0, 0)(2,6)
     b29:( 1, 0, 0)(6,6)
     b30:(-1, 1,-1)(3,7)
     b31:( 1, 1,-1)(5,7)
     b32:(-1, 0, 0)(2,8)
     b33:(-1, 1, 0)(3,8)
     b34:( 1, 1, 0)(5,8)
     b35:( 1, 0, 0)(6,8)
     の関係を満たすこと
     を特徴とする請求項14に記載の全方位画像の生成方法。
    (なお、位置座標(u,v)は、シート状媒体の左上頂点の座標を(0,0)、右上頂点の座標を(8,0)、左下頂点の座標を(0,8)、右下頂点の座標を(8,8)と定義して表すものとする。)
    When the surface shape is a triangle or a quadrangle and the number of surfaces is 25 surfaces consisting of B0 to B24, the vertex groups are b0 to b35, and a vector representing the direction from the origin of the three-dimensional space is a component (x, y, z), the position coordinates (u, v) on the sheet-like medium,
    B0: (b0-b4-b1)
    B1: (b1-b4-b5-b2)
    B2: (b2-b5-b3)
    B3: (b4 -b6 -b14)
    B4: (b4-b14-b15-b5)
    B5: (b5-b15-b7)
    B6: (b8-b12-b13)
    B7: (b9-b13-b14)
    B8: (b10-b15-b16)
    B9: (b11-b16-b17)
    B10: (b12-b18-b19-b13)
    B11: (b13-b19-b20-b14)
    B12: (b14-b20-b21-b15)
    B13: (b15-b21-b22-b16)
    B14: (b16-b22-b23-b17)
    B15: (b18-b24-b19)
    B16: (b19-b25-b20)
    B17: (b21-b26-b22)
    B18: (b22-b27-b23)
    B19: (b20-b28-b30)
    B20: (b20-b30-b31-b21)
    B21: (b21-b31-b29)
    B22: (b30-b32-b33)
    B23: (b30-b33-b34-b31)
    B24: (b31-b34-b35)
    b0: (-1, 0, 0) (2, 0)
    b1: (-1, 1, 0) (3, 0)
    b2: (1, 1, 0) (5, 0)
    b3: (1, 0, 0) (6, 0)
    b4: (-1, 1, 1) (3, 1)
    b5: (1, 1, 1) (5, 1)
    b6: (-1, 0, 0) (2, 2)
    b7: (1, 0, 0) (6, 2)
    b8: (0, 0, 1) (0, 2)
    b9: (0, 0, 1) (2, 2)
    b10: (0, 0, 1) (6, 2)
    b11: (0, 0, 1) (8, 2)
    b12: (0, 1, 1) (0, 3)
    b13: (-1, 1, 1) (1, 3)
    b14: (-1, -1, 1) (3, 3)
    b15: (1, -1, 1) (5,3)
    b16: (1, 1, 1) (7, 3)
    b17: (0, 1, 1) (8, 3)
    b18: (0, 1, -1) (0, 5)
    b19: (-1, 1, -1) (1, 5)
    b20: (-1, -1, -1) (3, 5)
    b21: (1, -1, -1) (5,5)
    b22: (1, 1, -1) (7, 5)
    b23: (0, 1, -1) (8, 5)
    b24: (0, 0, -1) (0, 6)
    b25: (0, 0, -1) (2, 6)
    b26: (0, 0, -1) (6, 6)
    b27: (0, 0, -1) (8, 6)
    b28: (-1, 0, 0) (2, 6)
    b29: (1, 0, 0) (6, 6)
    b30: (-1, 1, -1) (3, 7)
    b31: (1, 1, -1) (5, 7)
    b32: (-1, 0, 0) (2, 8)
    b33: (-1, 1, 0) (3, 8)
    b34: (1, 1, 0) (5, 8)
    b35: (1, 0, 0) (6, 8)
    The omnidirectional image generation method according to claim 14, wherein the relationship is satisfied.
    (Note that the position coordinates (u, v) are (0, 0) for the upper left vertex of the sheet-like medium, (8, 0) for the upper right vertex, (0, 8) for the lower left vertex, (The coordinates of the lower vertex are defined as (8, 8).)
  19.  元の全方位画像の画像形式を受け付ける選択工程を備えること
     を特徴とする請求項18に記載の全方位画像の生成方法。
    The omnidirectional image generation method according to claim 18, further comprising a selection step of receiving an image format of the original omnidirectional image.
  20.  前記選択工程では、完成時における前記立体形状物の表面に対応する面形状の種類の選択を受付けること
     を特徴とする請求項19に記載の全方位画像の生成方法。
    The omnidirectional image generation method according to claim 19, wherein in the selection step, selection of a surface shape type corresponding to the surface of the three-dimensional object at the time of completion is accepted.
  21.  面形状が三角形又は四角形であり、面数がC0~C40からなる41面である場合、前記頂点群をc0~c63、前記3次元空間の原点からの方向を表すベクトルを成分(x,y,z)、前記シート状媒体上における位置座標(u,v)とすると、
     C0 :(c0 -c16-c12)
     C1 :(c1 -c12-c2 )
     C2 :(c2 -c12-c3 )
     C3 :(c4 -c12-c13-c5 )
     C4 :(c5 -c13-c14-c6 )
     C5 :(c6 -c14-c15-c7 )
     C6 :(c8 -c15-c9 )
     C7 :(c9 -c15-c10)
     C8 :(c11-c15-c21)
     C9 :(c16-c22-c12)
     C10:(c12-c23-c26-c27)
     C11:(c17-c27-c28)
     C12:(c18-c28-c13)
     C13:(c13-c28-c29-c14)
     C14:(c14-c29-c19)
     C15:(c20-c29-c30)
     C16:(c15-c30-c31-c24)
     C17:(c15-c25-c21)
     C18:(c26-c32-c33-c27)
     C19:(c27-c33-c34-c28)
     C20:(c28-c34-c35-c29)
     C21:(c29-c35-c36-c30)
     C22:(c30-c36-c37-c31)
     C23:(c38-c42-c48)
     C24:(c32-c39-c48-c33)
     C25:(c33-c43-c34)
     C26:(c34-c44-c49)
     C27:(c34-c49-c50-c35)
     C28:(c35-c50-c45)
     C29:(c35-c46-c36)
     C30:(c36-c51-c40-c37)
     C31:(c41-c51-c47)
     C32:(c42-c52-c48)
     C33:(c48-c53-c54)
     C34:(c48-c54-c55)
     C35:(c48-c56-c57-c49)
     C36:(c49-c57-c58-c50)
     C37:(c50-c58-c59-c51)
     C38:(c51-c60-c61)
     C39:(c51-c61-c62)
     C40:(c51-c63-c47)
     c0 :( 0, 0, 1)(0,0)
     c1 :(-1, 0, 0)(0,0)
     c2 :(-1, 0, 1)(1,0)
     c3 :( 0, 0, 1)(2,0)
     c4 :(-1, 0, 0)(2,0)
     c5 :(-1, 1, 0)(3,0)
     c6 :( 1, 1, 0)(5,0)
     c7 :( 1, 0, 0)(6,0)
     c8 :( 0, 0, 1)(6,0)
     c9 :( 1, 0, 1)(7,0)
     c10:( 1, 0, 0)(8,0)
     c11:( 0, 0, 1)(8,0)
     c12:(-1,-1, 1)(1,1)
     c13:(-1, 1, 1)(3,1)
     c14:( 1, 1, 1)(5,1)
     c15:( 1,-1, 1)(7,1)
     c16:(-1, 0, 1)(0,1)
     c17:( 1, 1, 1)(1,1)
     c18:(-1, 1,-1)(1,1)
     c19:( 1, 1,-1)(7,1)
     c20:(-1, 1, 1)(7,1)
     c21:( 1, 0, 1)(8,1)
     c22:(-1, 0, 0)(0,2)
     c23:( 0, 0, 1)(0,2)
     c24:( 0, 0, 1)(8,2)
     c25:( 1, 0, 0)(8,2)
     c26:( 0, 1, 1)(0,3)
     c27:(-1, 1, 1)(1,3)
     c28:(-1,-1, 1)(3,3)
     c29:( 1,-1, 1)(5,3)
     c30:( 1, 1, 1)(7,3)
     c31:( 0, 1, 1)(8,3)
     c32:( 0, 1,-1)(0,5)
     c33:(-1, 1,-1)(1,5)
     c34:(-1,-1,-1)(3,5)
     c35:( 1,-1,-1)(5,5)
     c36:( 1, 1,-1)(7,5)
     c37:( 0, 1,-1)(8,5)
     c38:(-1, 0, 0)(0,6)
     c39:( 0, 0,-1)(0,6)
     c40:( 0, 0,-1)(8,6)
     c41:( 1, 0, 0)(8,6)
     c42:(-1, 0,-1)(0,7)
     c43:( 1, 1,-1)(1,7)
     c44:(-1, 1, 1)(1,7)
     c45:( 1, 1, 1)(7,7)
     c46:(-1, 1,-1)(7,7)
     c47:( 1, 0,-1)(8,7)
     c48:(-1,-1,-1)(1,7)
     c49:(-1, 1,-1)(3,7)
     c50:( 1, 1,-1)(5,7)
     c51:( 1,-1,-1)(7,7)
     c52:( 0, 0,-1)(0,8)
     c53:(-1, 0, 0)(0,8)
     c54:(-1, 0,-1)(1,8)
     c55:( 0, 0,-1)(2,8)
     c56:(-1, 0, 0)(2,8)
     c57:(-1, 1, 0)(3,8)
     c58:( 1, 1, 0)(5,8)
     c59:( 1, 0, 0)(6,8)
     c60:( 0, 0,-1)(6,8)
     c61:( 1, 0,-1)(7,8)
     c62:( 1, 0, 0)(8,8)
     c63:( 0, 0,-1)(8,8)
     の関係を満たすこと
     を特徴とする請求項14に記載の全方位画像の生成方法。
    (なお、位置座標(u,v)は、シート状媒体の左上頂点の座標を(0,0)、右上頂点の座標を(8,0)、左下頂点の座標を(0,8)、右下頂点の座標を(8,8)と定義して表すものとする。)
    When the surface shape is a triangle or a quadrangle and the number of surfaces is 41 surfaces consisting of C0 to C40, the vertex groups are c0 to c63, and a vector representing the direction from the origin of the three-dimensional space is a component (x, y, z), the position coordinates (u, v) on the sheet-like medium,
    C0: (c0-c16-c12)
    C1: (c1-c12-c2)
    C2: (c2-c12-c3)
    C3: (c4-c12-c13-c5)
    C4: (c5-c13-c14-c6)
    C5: (c6-c14-c15-c7)
    C6: (c8-c15-c9)
    C7: (c9-c15-c10)
    C8: (c11-c15-c21)
    C9: (c16-c22-c12)
    C10: (c12-c23-c26-c27)
    C11: (c17-c27-c28)
    C12: (c18-c28-c13)
    C13: (c13-c28-c29-c14)
    C14: (c14-c29-c19)
    C15: (c20-c29-c30)
    C16: (c15-c30-c31-c24)
    C17: (c15-c25-c21)
    C18: (c26-c32-c33-c27)
    C19: (c27-c33-c34-c28)
    C20: (c28-c34-c35-c29)
    C21: (c29-c35-c36-c30)
    C22: (c30-c36-c37-c31)
    C23: (c38-c42-c48)
    C24: (c32-c39-c48-c33)
    C25: (c33-c43-c34)
    C26: (c34-c44-c49)
    C27: (c34-c49-c50-c35)
    C28: (c35-c50-c45)
    C29: (c35-c46-c36)
    C30: (c36-c51-c40-c37)
    C31: (c41-c51-c47)
    C32: (c42-c52-c48)
    C33: (c48-c53-c54)
    C34: (c48-c54-c55)
    C35: (c48-c56-c57-c49)
    C36: (c49-c57-c58-c50)
    C37: (c50-c58-c59-c51)
    C38: (c51-c60-c61)
    C39: (c51-c61-c62)
    C40: (c51-c63-c47)
    c0: (0, 0, 1) (0, 0)
    c1: (-1, 0, 0) (0, 0)
    c2: (-1, 0, 1) (1, 0)
    c3: (0, 0, 1) (2, 0)
    c4: (-1, 0, 0) (2, 0)
    c5: (-1, 1, 0) (3, 0)
    c6: (1, 1, 0) (5, 0)
    c7: (1, 0, 0) (6, 0)
    c8: (0, 0, 1) (6, 0)
    c9: (1, 0, 1) (7, 0)
    c10: (1, 0, 0) (8, 0)
    c11: (0, 0, 1) (8, 0)
    c12: (-1, -1, 1) (1, 1)
    c13: (-1, 1, 1) (3, 1)
    c14: (1, 1, 1) (5, 1)
    c15: (1, -1, 1) (7, 1)
    c16: (-1, 0, 1) (0, 1)
    c17: (1, 1, 1) (1, 1)
    c18: (-1, 1, -1) (1, 1)
    c19: (1, 1, -1) (7, 1)
    c20: (-1, 1, 1) (7, 1)
    c21: (1, 0, 1) (8, 1)
    c22: (-1, 0, 0) (0, 2)
    c23: (0, 0, 1) (0, 2)
    c24: (0, 0, 1) (8, 2)
    c25: (1, 0, 0) (8, 2)
    c26: (0, 1, 1) (0, 3)
    c27: (-1, 1, 1) (1, 3)
    c28: (-1, -1, 1) (3, 3)
    c29: (1, -1, 1) (5,3)
    c30: (1, 1, 1) (7, 3)
    c31: (0, 1, 1) (8, 3)
    c32: (0, 1, -1) (0, 5)
    c33: (-1, 1, -1) (1, 5)
    c34: (-1, -1, -1) (3, 5)
    c35: (1, -1, -1) (5,5)
    c36: (1, 1, -1) (7, 5)
    c37: (0, 1, -1) (8, 5)
    c38: (-1, 0, 0) (0, 6)
    c39: (0, 0, -1) (0, 6)
    c40: (0, 0, -1) (8, 6)
    c41: (1, 0, 0) (8, 6)
    c42: (-1, 0, -1) (0, 7)
    c43: (1, 1, -1) (1, 7)
    c44: (-1, 1, 1) (1, 7)
    c45: (1, 1, 1) (7, 7)
    c46: (-1, 1, -1) (7, 7)
    c47: (1, 0, -1) (8, 7)
    c48: (-1, -1, -1) (1, 7)
    c49: (-1, 1, -1) (3, 7)
    c50: (1, 1, -1) (5, 7)
    c51: (1, -1, -1) (7,7)
    c52: (0, 0, -1) (0, 8)
    c53: (-1, 0, 0) (0, 8)
    c54: (-1, 0, -1) (1, 8)
    c55: (0, 0, -1) (2, 8)
    c56: (-1, 0, 0) (2, 8)
    c57: (-1, 1, 0) (3, 8)
    c58: (1, 1, 0) (5, 8)
    c59: (1, 0, 0) (6, 8)
    c60: (0, 0, -1) (6, 8)
    c61: (1, 0, -1) (7, 8)
    c62: (1, 0, 0) (8, 8)
    c63: (0, 0, -1) (8, 8)
    The omnidirectional image generation method according to claim 14, wherein the relationship is satisfied.
    (Note that the position coordinates (u, v) are (0, 0) for the upper left vertex of the sheet medium, (8, 0) for the upper right vertex, (0, 8) for the lower left vertex, (The coordinates of the lower vertex are defined as (8, 8).)
  22.  元の全方位画像の画像形式を受け付ける選択工程を備えること
     を特徴とする請求項21に記載の全方位画像の生成方法。
    The method for generating an omnidirectional image according to claim 21, further comprising a selection step of receiving an image format of the original omnidirectional image.
  23.  前記選択工程では、完成時における前記立体形状物の表面に対応する面形状の種類の選択を受付けること
     を特徴とする請求項22に記載の全方位画像の生成方法。
    The method for generating an omnidirectional image according to claim 22, wherein, in the selection step, selection of a surface shape type corresponding to the surface of the three-dimensional object at the time of completion is accepted.
  24.  コンピュータを、
     元の全方位画像の3次元空間に立体形状物の表面に対応する面を構成する頂点群を設け、
     各頂点に対して3次元空間の原点からの方向を表すベクトルと前記シート状媒体上における位置座標とを関連付け、
     各頂点に対して関連付けられた座標情報に基づき、各面内に位置する画素情報を生成することにより、
     元の全方位画像から、シート状媒体を所定の折り順に従って折り進むことにより完成する立体形状物の表面に対して形成される全方位画像を生成するよう機能させること
     を特徴とする全方位画像生成プログラム。
    Computer
    A vertex group constituting a surface corresponding to the surface of the three-dimensional object is provided in the three-dimensional space of the original omnidirectional image,
    Associating each vertex with a vector representing the direction from the origin of the three-dimensional space and position coordinates on the sheet-like medium,
    Based on the coordinate information associated with each vertex, by generating pixel information located in each plane,
    An omnidirectional image that functions to generate an omnidirectional image formed on the surface of a three-dimensional object completed by folding a sheet-like medium according to a predetermined folding order from an original omnidirectional image. Generation program.
  25.  前記シート状媒体は折り紙であって、当該折り紙を所定の折り順に従って折り進むことにより完成する立体形状物は折り紙風船であること
     を特徴とする請求項24に記載の全方位画像生成プログラム。
    25. The omnidirectional image generation program according to claim 24, wherein the sheet-like medium is origami, and the three-dimensional object completed by folding the origami according to a predetermined folding order is an origami balloon.
  26.  面形状が三角形又は四角形であり、面数がA0~A14からなる15面である場合、前記頂点群をa0~a21、前記3次元空間の原点からの方向を表すベクトルを成分(x,y,z)、前記シート状媒体上における位置座標(u,v)とすると、
     A0 :(a0 -a4 -a1 )
     A1 :(a1 -a4 -a5 -a2 )
     A2 :(a2 -a5 -a3 )
     A3 :(a4 -a6 -a8 )
     A4 :(a4 -a8 -a9 -a5 )
     A5 :(a5 -a9 -a7 )
     A6 :(a8 -a10-a12)
     A7 :(a8 -a12-a13-a9 )
     A8 :(a9 -a13-a11)
     A9 :(a12-a14-a16)
     A10:(a12-a16-a17-a13)
     A11:(a13-a17-a15)
     A12:(a16-a18-a19)
     A13:(a16-a19-a20-a17)
     A14:(a17-a20-a21)
     a0 :(-1, 0, 0)(2,0)
     a1 :(-1, 1, 0)(3,0)
     a2 :( 1, 1, 0)(5,0)
     a3 :( 1, 0, 0)(6,0)
     a4 :(-1, 1, 1)(3,1)
     a5 :( 1, 1, 1)(5,1)
     a6 :(-1, 0, 0)(2,2)
     a7 :( 1, 0, 0)(6,2)
     a8 :(-1,-1, 1)(3,3)
     a9 :( 1,-1, 1)(5,3)
     a10:(-1, 0, 0)(2,4)
     a11:( 1, 0, 0)(6,4)
     a12:(-1,-1,-1)(3,5)
     a13:( 1,-1,-1)(5,5)
     a14:(-1, 0, 0)(2,6)
     a15:( 1, 0, 0)(6,6)
     a16:(-1, 1,-1)(3,7)
     a17:( 1, 1,-1)(5,7)
     a18:(-1, 0, 0)(2,8)
     a19:(-1, 1, 0)(3,8)
     a20:( 1, 1, 0)(5,8)
     a21:( 1, 0, 0)(6,8)
     の関係を満たすこと
     を特徴とする請求項25に記載の全方位画像生成プログラム。
    (なお、位置座標(u,v)は、シート状媒体の左上頂点の座標を(0,0)、右上頂点の座標を(8,0)、左下頂点の座標を(0,8)、右下頂点の座標を(8,8)と定義して表すものとする。)
    When the surface shape is a triangle or a quadrangle and the number of surfaces is 15 surfaces consisting of A0 to A14, the vertex group is a0 to a21, and a vector representing the direction from the origin of the three-dimensional space is a component (x, y, z), the position coordinates (u, v) on the sheet-like medium,
    A0: (a0-a4-a1)
    A1: (a1 -a4 -a5 -a2)
    A2: (a2 -a5 -a3)
    A3: (a4 -a6 -a8)
    A4: (a4 -a8 -a9 -a5)
    A5: (a5-a9-a7)
    A6: (a8-a10-a12)
    A7: (a8-a12-a13-a9)
    A8: (a9-a13-a11)
    A9: (a12-a14-a16)
    A10: (a12-a16-a17-a13)
    A11: (a13-a17-a15)
    A12: (a16-a18-a19)
    A13: (a16-a19-a20-a17)
    A14: (a17-a20-a21)
    a0: (-1, 0, 0) (2, 0)
    a1: (-1, 1, 0) (3, 0)
    a2: (1, 1, 0) (5, 0)
    a3: (1, 0, 0) (6, 0)
    a4: (-1, 1, 1) (3, 1)
    a5: (1, 1, 1) (5, 1)
    a6: (-1, 0, 0) (2, 2)
    a7: (1, 0, 0) (6, 2)
    a8: (-1, -1, 1) (3, 3)
    a9: (1, -1, 1) (5, 3)
    a10: (-1, 0, 0) (2, 4)
    a11: (1, 0, 0) (6, 4)
    a12: (-1, -1, -1) (3, 5)
    a13: (1, -1, -1) (5,5)
    a14: (-1, 0, 0) (2, 6)
    a15: (1, 0, 0) (6, 6)
    a16: (-1, 1, -1) (3, 7)
    a17: (1, 1, -1) (5, 7)
    a18: (-1, 0, 0) (2, 8)
    a19: (-1, 1, 0) (3, 8)
    a20: (1, 1, 0) (5, 8)
    a21: (1, 0, 0) (6, 8)
    The omnidirectional image generation program according to claim 25, wherein the relationship is satisfied.
    (Note that the position coordinates (u, v) are (0, 0) for the upper left vertex of the sheet-like medium, (8, 0) for the upper right vertex, (0, 8) for the lower left vertex, (The coordinates of the lower vertex are defined as (8, 8).)
  27.  コンピュータを元の全方位画像の画像形式を受け付けるよう機能させること
     を特徴とする請求項26に記載の全方位画像生成プログラム。
    27. The omnidirectional image generation program according to claim 26, wherein the computer is caused to function to accept an image format of an original omnidirectional image.
  28.  コンピュータを完成時における前記立体形状物の表面に対応する面形状の種類の選択を受付けるよう機能させること
     を特徴とする請求項27に記載の全方位画像生成プログラム。
    28. The omnidirectional image generation program according to claim 27, wherein the computer is caused to function to accept selection of a surface shape type corresponding to the surface of the three-dimensional object at the time of completion.
  29.  面形状が三角形又は四角形であり、面数がB0~B24からなる25面である場合、前記頂点群をb0~b35、前記3次元空間の原点からの方向を表すベクトルを成分(x,y,z)、前記シート状媒体上における位置座標(u,v)とすると、
     B0 :(b0 -b4 -b1 )
     B1 :(b1 -b4 -b5 -b2 )
     B2 :(b2 -b5 -b3 )
     B3 :(b4 -b6 -b14)
     B4 :(b4 -b14-b15-b5 )
     B5 :(b5 -b15-b7 )
     B6 :(b8 -b12-b13)
     B7 :(b9 -b13-b14)
     B8 :(b10-b15-b16)
     B9 :(b11-b16-b17)
     B10:(b12-b18-b19-b13)
     B11:(b13-b19-b20-b14)
     B12:(b14-b20-b21-b15)
     B13:(b15-b21-b22-b16)
     B14:(b16-b22-b23-b17)
     B15:(b18-b24-b19)
     B16:(b19-b25-b20)
     B17:(b21-b26-b22)
     B18:(b22-b27-b23)
     B19:(b20-b28-b30)
     B20:(b20-b30-b31-b21)
     B21:(b21-b31-b29)
     B22:(b30-b32-b33)
     B23:(b30-b33-b34-b31)
     B24:(b31-b34-b35)
     b0 :(-1, 0, 0)(2,0)
     b1 :(-1, 1, 0)(3,0)
     b2 :( 1, 1, 0)(5,0)
     b3 :( 1, 0, 0)(6,0)
     b4 :(-1, 1, 1)(3,1)
     b5 :( 1, 1, 1)(5,1)
     b6 :(-1, 0, 0)(2,2)
     b7 :( 1, 0, 0)(6,2)
     b8 :( 0, 0, 1)(0,2)
     b9 :( 0, 0, 1)(2,2)
     b10:( 0, 0, 1)(6,2)
     b11:( 0, 0, 1)(8,2)
     b12:( 0, 1, 1)(0,3)
     b13:(-1, 1, 1)(1,3)
     b14:(-1,-1, 1)(3,3)
     b15:( 1,-1, 1)(5,3)
     b16:( 1, 1, 1)(7,3)
     b17:( 0, 1, 1)(8,3)
     b18:( 0, 1,-1)(0,5)
     b19:(-1, 1,-1)(1,5)
     b20:(-1,-1,-1)(3,5)
     b21:( 1,-1,-1)(5,5)
     b22:( 1, 1,-1)(7,5)
     b23:( 0, 1,-1)(8,5)
     b24:( 0, 0,-1)(0,6)
     b25:( 0, 0,-1)(2,6)
     b26:( 0, 0,-1)(6,6)
     b27:( 0, 0,-1)(8,6)
     b28:(-1, 0, 0)(2,6)
     b29:( 1, 0, 0)(6,6)
     b30:(-1, 1,-1)(3,7)
     b31:( 1, 1,-1)(5,7)
     b32:(-1, 0, 0)(2,8)
     b33:(-1, 1, 0)(3,8)
     b34:( 1, 1, 0)(5,8)
     b35:( 1, 0, 0)(6,8)
     の関係を満たすこと
     を特徴とする請求項25に記載の全方位画像生成プログラム。
    (なお、位置座標(u,v)は、シート状媒体の左上頂点の座標を(0,0)、右上頂点の座標を(8,0)、左下頂点の座標を(0,8)、右下頂点の座標を(8,8)と定義して表すものとする。)
    When the surface shape is a triangle or a quadrangle and the number of surfaces is 25 surfaces consisting of B0 to B24, the vertex groups are b0 to b35, and a vector representing the direction from the origin of the three-dimensional space is a component (x, y, z), the position coordinates (u, v) on the sheet-like medium,
    B0: (b0-b4-b1)
    B1: (b1-b4-b5-b2)
    B2: (b2-b5-b3)
    B3: (b4 -b6 -b14)
    B4: (b4-b14-b15-b5)
    B5: (b5-b15-b7)
    B6: (b8-b12-b13)
    B7: (b9-b13-b14)
    B8: (b10-b15-b16)
    B9: (b11-b16-b17)
    B10: (b12-b18-b19-b13)
    B11: (b13-b19-b20-b14)
    B12: (b14-b20-b21-b15)
    B13: (b15-b21-b22-b16)
    B14: (b16-b22-b23-b17)
    B15: (b18-b24-b19)
    B16: (b19-b25-b20)
    B17: (b21-b26-b22)
    B18: (b22-b27-b23)
    B19: (b20-b28-b30)
    B20: (b20-b30-b31-b21)
    B21: (b21-b31-b29)
    B22: (b30-b32-b33)
    B23: (b30-b33-b34-b31)
    B24: (b31-b34-b35)
    b0: (-1, 0, 0) (2, 0)
    b1: (-1, 1, 0) (3, 0)
    b2: (1, 1, 0) (5, 0)
    b3: (1, 0, 0) (6, 0)
    b4: (-1, 1, 1) (3, 1)
    b5: (1, 1, 1) (5, 1)
    b6: (-1, 0, 0) (2, 2)
    b7: (1, 0, 0) (6, 2)
    b8: (0, 0, 1) (0, 2)
    b9: (0, 0, 1) (2, 2)
    b10: (0, 0, 1) (6, 2)
    b11: (0, 0, 1) (8, 2)
    b12: (0, 1, 1) (0, 3)
    b13: (-1, 1, 1) (1, 3)
    b14: (-1, -1, 1) (3, 3)
    b15: (1, -1, 1) (5,3)
    b16: (1, 1, 1) (7, 3)
    b17: (0, 1, 1) (8, 3)
    b18: (0, 1, -1) (0, 5)
    b19: (-1, 1, -1) (1, 5)
    b20: (-1, -1, -1) (3, 5)
    b21: (1, -1, -1) (5,5)
    b22: (1, 1, -1) (7, 5)
    b23: (0, 1, -1) (8, 5)
    b24: (0, 0, -1) (0, 6)
    b25: (0, 0, -1) (2, 6)
    b26: (0, 0, -1) (6, 6)
    b27: (0, 0, -1) (8, 6)
    b28: (-1, 0, 0) (2, 6)
    b29: (1, 0, 0) (6, 6)
    b30: (-1, 1, -1) (3, 7)
    b31: (1, 1, -1) (5, 7)
    b32: (-1, 0, 0) (2, 8)
    b33: (-1, 1, 0) (3, 8)
    b34: (1, 1, 0) (5, 8)
    b35: (1, 0, 0) (6, 8)
    The omnidirectional image generation program according to claim 25, wherein the relationship is satisfied.
    (Note that the position coordinates (u, v) are (0, 0) for the upper left vertex of the sheet-like medium, (8, 0) for the upper right vertex, (0, 8) for the lower left vertex, (The coordinates of the lower vertex are defined as (8, 8).)
  30.  コンピュータを元の全方位画像の画像形式を受け付けるよう機能させること
     を特徴とする請求項29に記載の全方位画像生成プログラム。
    30. The omnidirectional image generation program according to claim 29, wherein the computer is caused to function to accept an image format of an original omnidirectional image.
  31.  コンピュータを完成時における前記立体形状物の表面に対応する面形状の種類の選択を受付けるよう機能させること
     を特徴とする請求項30に記載の全方位画像生成プログラム。
    31. The omnidirectional image generation program according to claim 30, wherein the computer functions to accept selection of a surface shape type corresponding to the surface of the three-dimensional object at the time of completion.
  32.  面形状が三角形又は四角形であり、面数がC0~C40からなる41面である場合、前記頂点群をc0~c63、前記3次元空間の原点からの方向を表すベクトルを成分(x,y,z)、前記シート状媒体上における位置座標(u,v)とすると、
     C0 :(c0 -c16-c12)
     C1 :(c1 -c12-c2 )
     C2 :(c2 -c12-c3 )
     C3 :(c4 -c12-c13-c5 )
     C4 :(c5 -c13-c14-c6 )
     C5 :(c6 -c14-c15-c7 )
     C6 :(c8 -c15-c9 )
     C7 :(c9 -c15-c10)
     C8 :(c11-c15-c21)
     C9 :(c16-c22-c12)
     C10:(c12-c23-c26-c27)
     C11:(c17-c27-c28)
     C12:(c18-c28-c13)
     C13:(c13-c28-c29-c14)
     C14:(c14-c29-c19)
     C15:(c20-c29-c30)
     C16:(c15-c30-c31-c24)
     C17:(c15-c25-c21)
     C18:(c26-c32-c33-c27)
     C19:(c27-c33-c34-c28)
     C20:(c28-c34-c35-c29)
     C21:(c29-c35-c36-c30)
     C22:(c30-c36-c37-c31)
     C23:(c38-c42-c48)
     C24:(c32-c39-c48-c33)
     C25:(c33-c43-c34)
     C26:(c34-c44-c49)
     C27:(c34-c49-c50-c35)
     C28:(c35-c50-c45)
     C29:(c35-c46-c36)
     C30:(c36-c51-c40-c37)
     C31:(c41-c51-c47)
     C32:(c42-c52-c48)
     C33:(c48-c53-c54)
     C34:(c48-c54-c55)
     C35:(c48-c56-c57-c49)
     C36:(c49-c57-c58-c50)
     C37:(c50-c58-c59-c51)
     C38:(c51-c60-c61)
     C39:(c51-c61-c62)
     C40:(c51-c63-c47)
     c0 :( 0, 0, 1)(0,0)
     c1 :(-1, 0, 0)(0,0)
     c2 :(-1, 0, 1)(1,0)
     c3 :( 0, 0, 1)(2,0)
     c4 :(-1, 0, 0)(2,0)
     c5 :(-1, 1, 0)(3,0)
     c6 :( 1, 1, 0)(5,0)
     c7 :( 1, 0, 0)(6,0)
     c8 :( 0, 0, 1)(6,0)
     c9 :( 1, 0, 1)(7,0)
     c10:( 1, 0, 0)(8,0)
     c11:( 0, 0, 1)(8,0)
     c12:(-1,-1, 1)(1,1)
     c13:(-1, 1, 1)(3,1)
     c14:( 1, 1, 1)(5,1)
     c15:( 1,-1, 1)(7,1)
     c16:(-1, 0, 1)(0,1)
     c17:( 1, 1, 1)(1,1)
     c18:(-1, 1,-1)(1,1)
     c19:( 1, 1,-1)(7,1)
     c20:(-1, 1, 1)(7,1)
     c21:( 1, 0, 1)(8,1)
     c22:(-1, 0, 0)(0,2)
     c23:( 0, 0, 1)(0,2)
     c24:( 0, 0, 1)(8,2)
     c25:( 1, 0, 0)(8,2)
     c26:( 0, 1, 1)(0,3)
     c27:(-1, 1, 1)(1,3)
     c28:(-1,-1, 1)(3,3)
     c29:( 1,-1, 1)(5,3)
     c30:( 1, 1, 1)(7,3)
     c31:( 0, 1, 1)(8,3)
     c32:( 0, 1,-1)(0,5)
     c33:(-1, 1,-1)(1,5)
     c34:(-1,-1,-1)(3,5)
     c35:( 1,-1,-1)(5,5)
     c36:( 1, 1,-1)(7,5)
     c37:( 0, 1,-1)(8,5)
     c38:(-1, 0, 0)(0,6)
     c39:( 0, 0,-1)(0,6)
     c40:( 0, 0,-1)(8,6)
     c41:( 1, 0, 0)(8,6)
     c42:(-1, 0,-1)(0,7)
     c43:( 1, 1,-1)(1,7)
     c44:(-1, 1, 1)(1,7)
     c45:( 1, 1, 1)(7,7)
     c46:(-1, 1,-1)(7,7)
     c47:( 1, 0,-1)(8,7)
     c48:(-1,-1,-1)(1,7)
     c49:(-1, 1,-1)(3,7)
     c50:( 1, 1,-1)(5,7)
     c51:( 1,-1,-1)(7,7)
     c52:( 0, 0,-1)(0,8)
     c53:(-1, 0, 0)(0,8)
     c54:(-1, 0,-1)(1,8)
     c55:( 0, 0,-1)(2,8)
     c56:(-1, 0, 0)(2,8)
     c57:(-1, 1, 0)(3,8)
     c58:( 1, 1, 0)(5,8)
     c59:( 1, 0, 0)(6,8)
     c60:( 0, 0,-1)(6,8)
     c61:( 1, 0,-1)(7,8)
     c62:( 1, 0, 0)(8,8)
     c63:( 0, 0,-1)(8,8)
     の関係を満たすこと
     を特徴とする請求項25に記載の全方位画像生成プログラム。
    (なお、位置座標(u,v)は、シート状媒体の左上頂点の座標を(0,0)、右上頂点の座標を(8,0)、左下頂点の座標を(0,8)、右下頂点の座標を(8,8)と定義して表すものとする。)
    When the surface shape is a triangle or a quadrangle and the number of surfaces is 41 surfaces consisting of C0 to C40, the vertex groups are c0 to c63, and a vector representing the direction from the origin of the three-dimensional space is a component (x, y, z), the position coordinates (u, v) on the sheet-like medium,
    C0: (c0-c16-c12)
    C1: (c1-c12-c2)
    C2: (c2-c12-c3)
    C3: (c4-c12-c13-c5)
    C4: (c5-c13-c14-c6)
    C5: (c6-c14-c15-c7)
    C6: (c8-c15-c9)
    C7: (c9-c15-c10)
    C8: (c11-c15-c21)
    C9: (c16-c22-c12)
    C10: (c12-c23-c26-c27)
    C11: (c17-c27-c28)
    C12: (c18-c28-c13)
    C13: (c13-c28-c29-c14)
    C14: (c14-c29-c19)
    C15: (c20-c29-c30)
    C16: (c15-c30-c31-c24)
    C17: (c15-c25-c21)
    C18: (c26-c32-c33-c27)
    C19: (c27-c33-c34-c28)
    C20: (c28-c34-c35-c29)
    C21: (c29-c35-c36-c30)
    C22: (c30-c36-c37-c31)
    C23: (c38-c42-c48)
    C24: (c32-c39-c48-c33)
    C25: (c33-c43-c34)
    C26: (c34-c44-c49)
    C27: (c34-c49-c50-c35)
    C28: (c35-c50-c45)
    C29: (c35-c46-c36)
    C30: (c36-c51-c40-c37)
    C31: (c41-c51-c47)
    C32: (c42-c52-c48)
    C33: (c48-c53-c54)
    C34: (c48-c54-c55)
    C35: (c48-c56-c57-c49)
    C36: (c49-c57-c58-c50)
    C37: (c50-c58-c59-c51)
    C38: (c51-c60-c61)
    C39: (c51-c61-c62)
    C40: (c51-c63-c47)
    c0: (0, 0, 1) (0, 0)
    c1: (-1, 0, 0) (0, 0)
    c2: (-1, 0, 1) (1, 0)
    c3: (0, 0, 1) (2, 0)
    c4: (-1, 0, 0) (2, 0)
    c5: (-1, 1, 0) (3, 0)
    c6: (1, 1, 0) (5, 0)
    c7: (1, 0, 0) (6, 0)
    c8: (0, 0, 1) (6, 0)
    c9: (1, 0, 1) (7, 0)
    c10: (1, 0, 0) (8, 0)
    c11: (0, 0, 1) (8, 0)
    c12: (-1, -1, 1) (1, 1)
    c13: (-1, 1, 1) (3, 1)
    c14: (1, 1, 1) (5, 1)
    c15: (1, -1, 1) (7, 1)
    c16: (-1, 0, 1) (0, 1)
    c17: (1, 1, 1) (1, 1)
    c18: (-1, 1, -1) (1, 1)
    c19: (1, 1, -1) (7, 1)
    c20: (-1, 1, 1) (7, 1)
    c21: (1, 0, 1) (8, 1)
    c22: (-1, 0, 0) (0, 2)
    c23: (0, 0, 1) (0, 2)
    c24: (0, 0, 1) (8, 2)
    c25: (1, 0, 0) (8, 2)
    c26: (0, 1, 1) (0, 3)
    c27: (-1, 1, 1) (1, 3)
    c28: (-1, -1, 1) (3, 3)
    c29: (1, -1, 1) (5,3)
    c30: (1, 1, 1) (7, 3)
    c31: (0, 1, 1) (8, 3)
    c32: (0, 1, -1) (0, 5)
    c33: (-1, 1, -1) (1, 5)
    c34: (-1, -1, -1) (3, 5)
    c35: (1, -1, -1) (5,5)
    c36: (1, 1, -1) (7, 5)
    c37: (0, 1, -1) (8, 5)
    c38: (-1, 0, 0) (0, 6)
    c39: (0, 0, -1) (0, 6)
    c40: (0, 0, -1) (8, 6)
    c41: (1, 0, 0) (8, 6)
    c42: (-1, 0, -1) (0, 7)
    c43: (1, 1, -1) (1, 7)
    c44: (-1, 1, 1) (1, 7)
    c45: (1, 1, 1) (7, 7)
    c46: (-1, 1, -1) (7, 7)
    c47: (1, 0, -1) (8, 7)
    c48: (-1, -1, -1) (1, 7)
    c49: (-1, 1, -1) (3, 7)
    c50: (1, 1, -1) (5, 7)
    c51: (1, -1, -1) (7,7)
    c52: (0, 0, -1) (0, 8)
    c53: (-1, 0, 0) (0, 8)
    c54: (-1, 0, -1) (1, 8)
    c55: (0, 0, -1) (2, 8)
    c56: (-1, 0, 0) (2, 8)
    c57: (-1, 1, 0) (3, 8)
    c58: (1, 1, 0) (5, 8)
    c59: (1, 0, 0) (6, 8)
    c60: (0, 0, -1) (6, 8)
    c61: (1, 0, -1) (7, 8)
    c62: (1, 0, 0) (8, 8)
    c63: (0, 0, -1) (8, 8)
    The omnidirectional image generation program according to claim 25, wherein the relationship is satisfied.
    (Note that the position coordinates (u, v) are (0, 0) for the upper left vertex of the sheet-like medium, (8, 0) for the upper right vertex, (0, 8) for the lower left vertex, (The coordinates of the lower vertex are defined as (8, 8).)
  33.  コンピュータを元の全方位画像の画像形式を受け付けるよう機能させること
     を特徴とする請求項32に記載の全方位画像生成プログラム。
    The omnidirectional image generation program according to claim 32, wherein the computer is caused to function to accept an image format of an original omnidirectional image.
  34.  コンピュータを完成時における前記立体形状物の表面に対応する面形状の種類の選択を受付けるよう機能させること
     を特徴とする請求項33に記載の全方位画像生成プログラム。
    34. The omnidirectional image generation program according to claim 33, wherein the computer is caused to function to accept selection of a surface shape type corresponding to the surface of the three-dimensional object at the time of completion.
PCT/JP2015/006177 2015-12-10 2015-12-10 Omnidirectional image generation device, omnidirectional image generation method, and omnidirectional image generation program WO2017098542A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017554665A JP6762677B2 (en) 2015-12-10 2015-12-10 Omnidirectional image generator, omnidirectional image generation method, and omnidirectional image generation program
PCT/JP2015/006177 WO2017098542A1 (en) 2015-12-10 2015-12-10 Omnidirectional image generation device, omnidirectional image generation method, and omnidirectional image generation program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/006177 WO2017098542A1 (en) 2015-12-10 2015-12-10 Omnidirectional image generation device, omnidirectional image generation method, and omnidirectional image generation program

Publications (1)

Publication Number Publication Date
WO2017098542A1 true WO2017098542A1 (en) 2017-06-15

Family

ID=59013864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/006177 WO2017098542A1 (en) 2015-12-10 2015-12-10 Omnidirectional image generation device, omnidirectional image generation method, and omnidirectional image generation program

Country Status (2)

Country Link
JP (1) JP6762677B2 (en)
WO (1) WO2017098542A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06176168A (en) * 1992-12-08 1994-06-24 Dainippon Printing Co Ltd Computer graphics preparing device
JP2006527883A (en) * 2003-06-16 2006-12-07 スリーディーペーパー カンパニー リミテッド A development drawing generation system, a development drawing generation method, and a computer-readable recording medium on which a program for executing the method is recorded.
JP2013020447A (en) * 2011-07-11 2013-01-31 Canon Inc Image processing system, image processing method and program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06176168A (en) * 1992-12-08 1994-06-24 Dainippon Printing Co Ltd Computer graphics preparing device
JP2006527883A (en) * 2003-06-16 2006-12-07 スリーディーペーパー カンパニー リミテッド A development drawing generation system, a development drawing generation method, and a computer-readable recording medium on which a program for executing the method is recorded.
JP2013020447A (en) * 2011-07-11 2013-01-31 Canon Inc Image processing system, image processing method and program

Also Published As

Publication number Publication date
JP6762677B2 (en) 2020-09-30
JPWO2017098542A1 (en) 2018-11-08

Similar Documents

Publication Publication Date Title
US9692965B2 (en) Omnidirectional image editing program and omnidirectional image editing apparatus
US5805168A (en) Apparatus and method for converting line segment data to three-dimensional data
CN102005059B (en) Image processing apparatus and image processing method
GB2559446A (en) Generating a three-dimensional model from a scanned object
JP2000090289A (en) Device and method for processing image and medium
JP2000090290A (en) Device and method for processing image and medium
JP2005149512A (en) Method and system for selecting and manipulating multiple objects
JPH06503663A (en) Video creation device
JPH1049704A (en) Image conversion method
US11651556B2 (en) Virtual exhibition space providing method for efficient data management
US10614633B2 (en) Projecting a two-dimensional image onto a three-dimensional graphical object
KR101726184B1 (en) Method And Apparatus For 3-Dimensional Showing Animation Of Packing Box
AU2019213452B2 (en) Unorthobox: automatic package dieline folding
US9639924B2 (en) Adding objects to digital photographs
WO2017098542A1 (en) Omnidirectional image generation device, omnidirectional image generation method, and omnidirectional image generation program
JP4201359B2 (en) Design creation device
JP2009093287A (en) Image processor, image processing method, and program
JPH07234949A (en) Method and system for supporting preparation of perspective drawing
US20040164982A1 (en) Method and apparatus for editing three-dimensional model, and computer readable medium
JP4269951B2 (en) 3D computer graphics modeling system
JP2000057377A (en) Image processor, image processing method and medium
JP2006309363A (en) Program for drawing three-dimensional body, and its system
JP2000057378A (en) Image processor, image processing method, medium, and device and method for extracting contour
US7042453B2 (en) Apparatus and method for processing three-dimensional graphic images
JP2000057376A (en) Method for generating new viewpoint image

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15910160

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017554665

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15910160

Country of ref document: EP

Kind code of ref document: A1