WO2017097242A1 - 玻璃钢、其制备方法及浮空器吊舱 - Google Patents

玻璃钢、其制备方法及浮空器吊舱 Download PDF

Info

Publication number
WO2017097242A1
WO2017097242A1 PCT/CN2016/109107 CN2016109107W WO2017097242A1 WO 2017097242 A1 WO2017097242 A1 WO 2017097242A1 CN 2016109107 W CN2016109107 W CN 2016109107W WO 2017097242 A1 WO2017097242 A1 WO 2017097242A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
layer
frp
film
preparation
Prior art date
Application number
PCT/CN2016/109107
Other languages
English (en)
French (fr)
Inventor
刘若鹏
栾琳
林云燕
李雪
Original Assignee
深圳光启空间技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光启空间技术有限公司 filed Critical 深圳光启空间技术有限公司
Publication of WO2017097242A1 publication Critical patent/WO2017097242A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/02Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising animal or vegetable substances, e.g. cork, bamboo, starch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0008Electrical discharge treatment, e.g. corona, plasma treatment; wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/10Interconnection of layers at least one layer having inter-reactive properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64BLIGHTER-THAN AIR AIRCRAFT
    • B64B1/00Lighter-than-air aircraft
    • B64B1/06Rigid airships; Semi-rigid airships
    • B64B1/22Arrangement of cabins or gondolas
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • B32B2260/023Two or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0253Polyolefin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • B32B2262/0269Aromatic polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/06Vegetal fibres
    • B32B2262/062Cellulose fibres, e.g. cotton
    • B32B2262/065Lignocellulosic fibres, e.g. jute, sisal, hemp, flax, bamboo
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/718Weight, e.g. weight per square meter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/02Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/04Time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/12Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles

Definitions

  • the present invention relates to the field of composite material preparation, and in particular to a glass reinforced plastic, a method of preparing the same, and an aerostat pod.
  • FRP is a fiber reinforced plastic whose properties are light and hard, non-conductive, stable in performance, low in recycling and corrosion-resistant. It can replace steel parts for machine parts and shells for automobiles and ships. At present, FRP, which is used in place of steel for machine parts and housings such as automobiles and ships, needs to have greater mechanical strength to meet the evolving needs of technology.
  • the airship in the aerostat is a lighter-than-air aircraft consisting of a large streamlined cabin, a pod below the cabin, a tailing for stability control and propulsion. Among them, the pods are for people to ride and load goods.
  • the housing of a high-altitude product such as an aerostat pod is usually a metal structure, so that the product has a large weight problem, and it is difficult to meet the product weight requirement in the aerospace industry. Therefore, in the current aerospace industry, the outer casing of a high-altitude product such as aerostat pod requires a lighter weight with a relatively high mechanical strength.
  • a primary object of the present invention is to provide a glass reinforced plastic, a method for preparing the same, and an aerostat pod to solve the problem of the prior art FRP having a large weight on the basis of ensuring greater mechanical strength.
  • a glass reinforced plastic comprising at least two fiber layers and a film layer disposed between each adjacent two fiber layers, and a film layer It is prepared from a raw material including graphene.
  • the weight ratio of graphene to the film layer is 20 to 55%.
  • the weight ratio of graphene to the film layer is 50 to 55%.
  • the weight ratio of each fiber layer to the film layer is 1:2 to 3:4.
  • the graphene is in the form of a sheet, and the thickness of the sheet-like graphene is 0.35 to 35 nm.
  • the raw material of the film layer includes a resin, a curing agent, and the above graphene.
  • a method for preparing a FRP comprising the steps of: Sl, mixing a raw material of a film layer comprising graphene and a resin to form a mixture; S2, preparing the mixture Forming a film preparation layer; S3, curing at least two fiber layers and a film preparation layer disposed between each adjacent two fiber layers to form a film layer of the film preparation layer.
  • the above preparation method further comprises: corona treating the fiber layer.
  • step S1 the weight percentage of graphene in the raw material is 20 to 55%.
  • the graphene is in the form of a sheet, and the thickness of the sheet-like graphene is 0.35 to 35 nm.
  • the raw material further includes a curing agent, and the weight ratio of the curing agent to the resin is 2-15.
  • step S1 the raw material of the film layer including graphene and the resin is mixed at a temperature of 30 to 55 ° C to form a mixture.
  • step S2 the mixture is placed in a film coating machine to prepare a film preparation layer, the drum temperature in the film coating machine is 70 to 95 ° C, and the drum speed is 2.5 to 5.5 m/min. .
  • step S3 the curing temperature is 110 to 150 ° C, the curing time is 1 to 3 hours, and the curing pressure is 0.85 to 1.0 Mpa.
  • an aerostat pod the material forming the pod of the aerostat pod comprising FRP, the FRP being the FRP described above.
  • the present invention provides a glass reinforced plastic comprising at least two fiber layers and a film layer disposed between each adjacent two fiber layers, and the film layer is included
  • the raw materials of graphene are prepared. Since the above-mentioned film layer is prepared by using graphene as a raw material, a very thin film layer can have a large Young's modulus and a breaking strength, and thus the FRP provided with the film layer is small in thickness. It can have a large mechanical strength when the weight is very light; and, since the FRP is transparent, the above-mentioned FRP is used to prepare the aerostat pod, and the person can pass through the aerostat pod. FRP sees the vast landscape on the ground.
  • FIG. 1 is a schematic cross-sectional structural view of a glass reinforced plastic provided by an embodiment of the present invention
  • FIG. 2 is a schematic cross-sectional structural view of another FRP according to an embodiment of the present invention.
  • FIG. 3 is a schematic flow chart showing a method for preparing FRP according to an embodiment of the present invention.
  • spatially relative terms may be used herein, such as “above”, “above”, “on top” , “above”, etc., are used to describe the spatial positional relationship of one device or feature as shown in the figures with other devices or features. It will be understood that the spatially relative terms are intended to encompass different orientations in use or operation in addition to the orientation of the device described. For example, if the device in the figures is inverted, the device described as “above other devices or configurations” or “above other devices or configurations” will be positioned “below other devices or configurations” or “at” Under other devices or configurations.” Thus, the exemplary term “above” can include both “above” and “below”. The device can also be positioned in other different ways (rotated 90 degrees or in other orientations) and the corresponding description of the space used herein is interpreted accordingly.
  • the FRP includes at least two fiber layers 20 and a film layer 10 disposed between each adjacent two fiber layers 20. And the film layer 10 is prepared from a raw material including graphene 110.
  • the film layer is prepared by using graphene as a raw material, a very thin film layer can have a large Young's modulus and breaking strength, and thus a film layer is provided.
  • the FRP is as small as possible in terms of the required mechanical strength, and the thickness and weight are as small as possible; and since the FRP is transparent, the FRP is used to prepare the aerostat pod, and the person can also be in the aerostat pod See the sky or the vast scenery on the ground through the FRP.
  • the weight ratio of graphene 110 to the film layer 10 is 20-55%; more preferably, the weight ratio of graphene 110 to the film layer 10 is 50 ⁇ 55%.
  • the above preferred parameter range enables the graphene 110 to have a suitable specific gravity, thereby further enabling the film layer 10 to have a large Young's modulus and breaking strength, further ensuring the thickness of the FRP provided with the film layer 10 in thickness. In a very small case, it can have a large mechanical strength; and, on the basis of ensuring that the graphene 110 can make the FRP have a large mechanical strength, it is also ensured that the film layer 10 is not caused by the excess of the graphene 110.
  • the viscosity of the glue is poor, so that the film layer 10 can adhere well to the surface of the fiber layer 20.
  • the weight ratio of each of the fiber layers 20 to the film layer 10 is 1:2 to 3:4.
  • the above preferred weight ratio enables the glass reinforced plastic comprising the fibrous layer 20 and the film layer 10 to have a lighter weight.
  • the above-mentioned FRP may include a multi-layered adhesive film layer 10 and a multi-layered fiber layer 20 which are sequentially laminated, and the outermost layer is the fiber layer 20, that is, each layer of the adhesive film layer 10 is provided with a layer of fibers on both sides thereof.
  • Layer 20 the structure of which is shown in Figure 2.
  • the thickness of each of the fiber layers 20 may be 0.1 to 0.3 mm, the thickness of each of the film layers 10 may be 0.1 to 0.2 mm, and the multilayer film layer 10 and the multilayer fiber layer 20 are laminated.
  • the thickness of the FRP formed later may be 5 to 30 mm. Since both the film layer 10 and the fiber layer 20 have a small thickness, the glass reinforced plastic formed by stacking the multilayer film layer 10 and the multilayer fiber layer 20 can be made smaller on the basis of higher mechanical strength. thickness of.
  • the graphene 110 is in the form of a sheet, and the sheet-like graphene 110 has a thickness of 0.35 to 35 nm. Since the sheet-like graphene 110 can be better mixed with the resin to form the film layer 10, the stability of the graphene 110 in the film layer 10 is improved, and the glass layer provided with the film layer 10 is further improved. Glass steel can have great mechanical strength in the case of small thickness.
  • the raw material of the film layer 10 includes a resin, a curing agent, and graphene.
  • the above resin is an epoxy resin. Since the cured epoxy resin has good physical and chemical properties, it has excellent bonding strength to the surface of the metal and non-metal materials, high hardness and good flexibility, so that the subsequently formed film layer 10 can be compared. The high adhesion and mechanical strength, which in turn is better connected to the fibrous layer 20 in subsequent processes, increases the mechanical strength of the final FRP.
  • the curing agent can better mix and solidify the graphene 110 with a raw material such as a resin to form the adhesive layer 10, the stability of the graphene 110 in the adhesive layer 10 is ensured, and the adhesive layer is further provided.
  • the FRP of 10 can have a large mechanical strength with a small thickness.
  • a method of preparing a glass reinforced plastic comprises the steps of: Sl, mixing a raw material of a film layer comprising graphene 110 and a resin to form a mixture; S2, preparing a mixture into a film preparation layer; S3, disposing at least two fiber layers 20 and The film preparation layer between the adjacent two fiber layers 20 is cured to form the film layer 10, and the film layer 10 and the fiber layer 20 are formed into glass fiber reinforced plastic.
  • FIGS. 1 and 2 An exemplary embodiment of a method of preparing a FRP according to the present invention will be described in more detail below with reference to FIGS. 1 and 2.
  • the exemplary embodiments may be embodied in a variety of different forms and should not be construed as being limited to the embodiments set forth herein. It is to be understood that these embodiments are provided so that this disclosure will be thorough and complete, and the concepts of these exemplary embodiments are fully conveyed to those of ordinary skill in the art.
  • step S1 is performed: mixing the raw material of the film layer including the graphene 110 and the resin to form a mixture.
  • the above resin may be an epoxy resin. Since the cured epoxy resin has good physical and chemical properties, it has excellent bonding strength to the surface of the metal and non-metal materials, high hardness and good flexibility, so that the subsequently formed film layer 10 can be compared. High adhesion and mechanical strength, and in subsequent processes Better connection to the fibrous layer 20 increases the mechanical strength of the final FRP.
  • the raw materials including the graphene 110 may be mixed to form a mixture under higher temperature conditions.
  • the raw materials including the graphene 110 and the resin are mixed at a temperature of 30 to 55 ° C to form a mixture. material.
  • the graphene 110 can be better fused with the resin, thereby improving the stability of the graphene 110 in the film layer 10, thereby making the glass reinforced plastic provided with the film layer 10 small in thickness. In this case, it is possible to have a large mechanical strength.
  • the graphene 110 is in the form of a sheet, and the sheet-like graphene 110 has a thickness of 0.35 to 35 nm.
  • the sheet-like graphene 110 can be better mixed with a raw material such as a resin to form the film layer 10, thereby improving the stability of the graphene 110 in the film layer 10, and further increasing the thickness of the glass reinforced plastic provided with the film layer 10. In the small case, it is possible to have a large mechanical strength; the graphene 110 having the above thickness can further improve the stability of the graphene 110 in the film layer 10.
  • the weight percentage of graphene 110 in the raw material is 20 to 55%.
  • the above preferred parameter range enables the graphene 110 to have a suitable specific gravity in the mixture, thereby further enabling the very thin film layer 10 to have a large Young's modulus and breaking strength, further ensuring the provision of glue.
  • the FRP of the film layer 10 can have a large mechanical strength in a small thickness; and, on the basis of ensuring that the graphene 110 can make the FRP have a large mechanical strength, it is also ensured that the graphene 110 is not excessive.
  • the adhesive layer 10 has a poor adhesive viscosity, so that the adhesive layer 10 can adhere well to the surface of the fibrous layer 20.
  • the raw material includes a resin, a curing agent, and graphene, and an acrylamide may be used as a curing agent, and the weight ratio of the curing agent to the resin in the raw material is 2 to 15%.
  • the curing agent enables the graphene 110 to be better mixed and cured with the resin to form the film layer 10, thereby improving the stability of the graphene 110 in the film layer 10, thereby ensuring the setting.
  • the glass reinforced plastic with the film layer 10 can have a large mechanical strength with a small thickness.
  • step S2 is performed: preparing the mixture as a film preparation layer. Since the formed film preparation layer has the graphene 110, the graphene 110 enables the film layer 10 formed by curing the film preparation layer to have a large Young's modulus and fracture at a small thickness. The strength, in turn, enables the subsequently prepared FRP to have a large mechanical strength with a small thickness.
  • the mixture is placed in a film coating machine to prepare a film preparation layer, and the temperature of the drum in the film coater is 70. ⁇ 95°C, the scrolling speed is 2.5 ⁇ 5.5 m/min (m/min).
  • the film preparation layer can be prepared more quickly and efficiently, and the film layer 10 formed by curing the film preparation layer has a uniform thickness and stable properties.
  • step S3 curing at least two fiber layers 20 and a film preparation layer disposed between each adjacent two fiber layers 20 to form a film of the film preparation layer
  • the film layer 10 and the film layer 10 and the fiber layer 20 form a glass reinforced plastic. Since the above FRP is formed by laminating and curing the film preparation layer and the fiber layer 20, the film layer 10 formed by curing the film preparation layer can have a large Young's modulus under the action of the graphene 110. And the breaking strength, so that the prepared FRP can have a large mechanical strength with a small thickness.
  • the fiber layer 20 may be a fiber bundle or a fiber fabric, and the fiber body is any one or more of hemp fiber, carbon fiber, glass fiber, polypropylene fiber, aramid fiber, basalt fiber, and ultrahigh molecular polyethylene. More preferably, the fibrous layer 20 is an ultrahigh molecular polyethylene.
  • the above preferred fibrous layer 20 material has high toughness and mechanical strength, so that the use of the above preferred fibrous layer 20 material enables the formed glass reinforced plastic to have higher mechanical strength.
  • the curing temperature is 110 to 150 ° C
  • the curing time is 1 to 3 hours
  • the curing pressure is 0.85 to 1.0 Mpa.
  • the preparation method further comprises: performing the corona treatment on the fiber layer 20.
  • the corona treatment is an electric shock treatment, it has a higher adhesion to the surface of the substrate, so that the corona-treated fibrous layer 20 can have higher adhesion and thus more firmly adhere to the adhesive layer. 10 to connect.
  • the corona treatment is a corona discharge on the surface of the fiber layer 20 to be joined to the film layer 10 by a high-frequency alternating voltage.
  • the high-frequency AC voltage is 5000 to 15000 V / m 2 .
  • an aerostat pod is provided, and the material of the pod forming the aerostat pod includes glass reinforced plastic, and the glass reinforced plastic is prepared by the above-described preparation method.
  • the above aerostat may include a high air ball and an airship. Since the above FRP comprises a fiber layer and a film layer, and the above film layer is prepared by using graphene as a raw material, the thin film layer can have a large Young's modulus and break. The crack strength, in turn, allows the FRP provided with the film layer to have a large mechanical strength in the case of a small thickness, i.e., a very light weight.
  • the steps of the method for preparing the FRP provided by the embodiment include:
  • an epoxy resin of bisphenol A, graphene, and an acrylamine as a curing agent are mixed at a temperature of 30 ° C to form a mixture, wherein the graphene is in the form of a sheet and has a thickness of 0.35 nm. , and the weight ratio of the curing agent to the resin is 2%;
  • the above mixture is placed in a film coating machine to prepare a film preparation layer, and the temperature of the drum in the film coating machine is 70.
  • the drum speed is 2.5m/min
  • ultra-high molecular polyethylene is selected as the fiber layer, and the fiber layer is subjected to corona treatment under the condition of high frequency AC voltage of 5000 V/m 2 , and the film preparation layer is disposed between the two fiber layers and Curing, forming FRP, the structure is shown in Figure 1, wherein the curing temperature is 110 ° C, the cured crucible is lh, and the curing pressure is 0.85 Mpa.
  • the steps of the method for preparing the FRP provided by the embodiment include:
  • an epoxy resin of bisphenol A, graphene, and an acrylamide as a curing agent are mixed at a temperature of 40 ° C to form a mixture, wherein the graphene is in the form of a sheet and has a thickness of 15 nm. And the weight ratio of the curing agent to the resin is 7%;
  • the above mixture is placed in a film coating machine to prepare a film preparation layer, and the temperature of the drum in the film coating machine is 80.
  • the drum speed is 4m/min
  • ultra-high molecular polyethylene is selected as the fiber layer, and the high frequency AC voltage of the fiber layer is 10000V.
  • Corona treatment under /m2 condition and a layer of film preparation layer is placed between the two layers of fibers and cured
  • FRP is formed, the structure is shown in Figure 1, wherein the curing temperature is 130 ° C, the curing time is 2 h, and the curing pressure is 0.9 Mpa.
  • the steps of the method for preparing the FRP provided by the embodiment include:
  • an epoxy resin of bisphenol A, graphene, and an acrylamine as a curing agent are at a temperature of 55 ° C.
  • the above mixture is placed in a film coating machine to prepare a film preparation layer, and the temperature of the roller in the film coating machine is 95.
  • the drum speed is 5.5m/min
  • ultra-high molecular polyethylene is selected as the fiber layer, and the high-frequency AC voltage of the fiber layer is 15000V.
  • the steps of the method for preparing the FRP provided by the embodiment include:
  • an epoxy resin of bisphenol A, graphene, and an acrylamine as a curing agent are mixed at a temperature of 55 ° C to form a mixture, wherein the graphene is in the form of a sheet and has a thickness of 35 nm. And the weight ratio of the curing agent to the resin is 15%;
  • ultra-high molecular polyethylene is selected as the fiber layer, three fiber layers are provided, and the fiber layer is subjected to corona treatment under the condition of high frequency AC voltage of 15000 V/m 2 , and each film preparation layer is separately It is disposed between two adjacent fiber layers and solidified to form FRP.
  • the structure is shown in Fig. 2, wherein the curing temperature is 150 ° C, the cured crucible is 3 h, and the curing pressure is 1.0 Mpa.
  • the steps of the method for preparing the FRP provided by the present comparative example include:
  • the epoxy resin of bisphenol A and the acrylamine as a curing agent are mixed at 55 ° C to form a mixture, wherein the weight ratio of the curing agent to the resin is 15%;
  • the above mixture is placed in a film coating machine to prepare two film preparation layers of the same weight, the drum temperature in the film coating machine is 95 ° C, and the drum speed is 5.5 m / min;
  • ultra-high molecular polyethylene is selected as the fiber layer, three fiber layers are provided, and the fiber layer is subjected to corona treatment under the condition of high frequency AC voltage of 15000 V/m 2 , and each film preparation layer is separately Set between two adjacent fiber layers and solidified to form FRP, the structure is shown in Figure 2, wherein the curing temperature The degree is 150 ° C, the curing time is 3 h, and the curing pressure is 1.0 Mpa.
  • the steps of the method for preparing the metal layer provided in the present comparative example include:
  • the metal layer was prepared using an aluminum alloy material such that the metal layer had the same dimensions as the glass reinforced plastics of the above Examples 1 to 4.
  • the tensile strength of the FRP in Examples 1 to 4 of the present application can reach 410 to 460 MP a, which is much larger than the tensile strength of the FRP in Comparative Examples 1 and 2; and, and Comparative Examples 1 and 2
  • the glass reinforced plastics of Examples 1 to 4 also had a lighter weight compared to the preparation of the glass reinforced plastics, i.e., the glass reinforced plastics of Examples 1 to 4 had great mechanical strength in the case of very light weight.
  • the film layer in the FRP is prepared by using graphene as a raw material, a very thin film layer can have a large Young's modulus and a breaking strength, thereby providing a film layer.
  • FRP can have great mechanical strength in the case of small thickness, ie light weight;

Abstract

一种玻璃钢、其制备方法及浮空器吊舱,该玻璃钢包括至少两个纤维层(20)以及设置于各相邻的两个纤维层(20)之间的胶膜层(10),且胶膜层(10)由包括石墨烯(110)的原料制备而成。由于上述胶膜层(10)以石墨烯(110)为原料制备而成,使很薄的胶膜层(10)就能够具有较大的杨氏模量和断裂强度,使设置有胶膜层(10)的玻璃钢在厚度很小即重量很轻的情况下具有较大的机械强度。

Description

玻璃钢、 其制备方法及浮空器吊舱 技术领域
[0001] 本发明涉及复合材料制备领域, 具体而言, 涉及一种玻璃钢、 其制备方法及浮 空器吊舱。
背景技术
[0002] 玻璃钢是一种纤维强化塑料, 其性质质轻而硬、 不导电、 性能稳定、 回收利用 少且耐腐蚀, 可以代替钢材制造机器零件和汽车、 船舶等外壳。 目前, 代替钢 材应用于机器零件和汽车、 船舶等外壳的玻璃钢需要具有更大的机械强度, 以 满足技术不断发展的需要。 浮空器中的飞艇是一种轻于空气的航空器, 由巨大 的流线型舱体、 位于舱体下面的吊舱、 起稳定控制作用的尾面和推进装置组成 。 其中, 吊舱供人员乘坐和装载货物。
技术问题
[0003] 目前, 如浮空器吊舱这类高空用产品的壳体通常为金属结构, 从而使产品存在 重量大的问题, 难以满足航天航空领域中对产品重量的要求。 因此, 在目前的 航天航空领域中如浮空器吊舱这类高空用产品的外壳需要在具有较大机械强度 的同吋, 也能够具有更轻的重量。
问题的解决方案
技术解决方案
[0004] 本发明的主要目的在于提供一种玻璃钢、 其制备方法及浮空器吊舱, 以解决现 有技术中的玻璃钢在保证具有较大机械强度的基础上重量较大的问题。
[0005] 为了实现上述目的, 根据本发明的一个方面, 提供了一种玻璃钢, 玻璃钢包括 至少两个纤维层以及设置于各相邻的两个纤维层之间的胶膜层, 且胶膜层由包 括石墨烯的原料制备而成。
[0006] 进一步地, 石墨烯占胶膜层的重量比为 20~55%。
[0007] 进一步地, 石墨烯占胶膜层的重量比为 50~55%。
[0008] 进一步地, 每个纤维层与胶膜层的重量比为 1:2~3:4。 [0009] 进一步地, 石墨烯为片状, 且片状的石墨烯的厚度为 0.35~35nm。
[0010] 进一步地, 胶膜层的原料包括树脂、 固化剂和上述的石墨烯。
[0011] 根据本发明的另一方面, 提供了一种玻璃钢的制备方法, 制备方法包括以下步 骤: Sl、 将包括石墨烯和树脂的胶膜层原料混合形成混料; S2、 将混料制备成 胶膜预备层; S3、 将至少两个纤维层以及设置于各相邻的两个纤维层之间的胶 膜预备层固化, 以将胶膜预备层形成胶膜层。
[0012] 进- 步地, 在步骤 S3之前 ', 上述制备方法还包括: 将纤维层进行电晕处理。
[0013] 进- 步地, 在步骤 S1中, 在原料中石墨烯的重量百分比为 20~55%。
[0014] 进- 步地, 在步骤 S1中, 石墨烯为片状, 且片状的石墨烯的厚度为 0.35~35nm
[0015] 进一步地, 在步骤 S1中, 原料还包括固化剂, 且固化剂占树脂的重量比为 2~15 。
[0016] 进一步地, 在步骤 S1中, 将包括石墨烯和树脂的胶膜层原料在温度为 30~55°C 的条件下混合形成混料。
[0017] 进一步地, 在步骤 S2中, 将混料放入涂膜机以制备成胶膜预备层, 涂膜机中的 滚筒温度为 70~95°C, 滚筒速度为 2.5~5.5m/min。
[0018] 进一步地, 在步骤 S3中, 固化的温度为 110~150°C, 固化的吋间为 l~3h, 固化 的压力为 0.85~1.0Mpa。
[0019] 根据本发明的另一方面, 还提供了一种浮空器吊舱, 形成浮空器吊舱的舱体的 材料包括玻璃钢, 玻璃钢为上述的玻璃钢。
发明的有益效果
有益效果
[0020] 应用本发明的技术方案, 本发明提供了一种玻璃钢, 该玻璃钢包括至少两个纤 维层以及设置于各相邻的两个纤维层之间的胶膜层, 且胶膜层由包括石墨烯的 原料制备而成。 由于上述胶膜层以石墨烯为原料制备而成, 从而使很薄的胶膜 层就能够具有较大的杨氏模量和断裂强度, 进而使设置有胶膜层的玻璃钢在厚 度很小即重量很轻的情况下就能够具有很大的机械强度; 并且, 由于玻璃钢是 透明的, 将上述玻璃钢用于制备浮空器吊舱吋, 人在浮空器吊舱中还能够透过 玻璃钢看到地上广阔的风景。
对附图的简要说明
附图说明
[0021] 构成本申请的一部分的说明书附图用来提供对本发明的进一步理解, 本发明的 示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附 图中:
[0022] 图 1示出了本发明实施方式所提供的一种玻璃钢的剖面结构示意图;
[0023] 图 2示出了本发明实施方式所提供的另一种玻璃钢的剖面结构示意图; 以及
[0024] 图 3示出了本发明实施方式所提供的玻璃钢的制备方法的流程示意图。
本发明的实施方式
[0025] 需要说明的是, 在不冲突的情况下, 本申请中的实施例及实施例中的特征可以 相互组合。 下面将参考附图并结合实施例来详细说明本发明。
[0026] 需要注意的是, 这里所使用的术语仅是为了描述具体实施方式, 而非意图限制 根据本申请的示例性实施方式。 如在这里所使用的, 除非上下文另外明确指出 , 否则单数形式也意图包括复数形式, 此外, 还应当理解的是, 当在本说明书 中使用术语"包含"和 /或"包括"吋, 其指明存在特征、 步骤、 操作、 器件、 组件 和 /或它们的组合。
[0027] 为了便于描述, 在这里可以使用空间相对术语, 如"在 ......之上"、 "在 ......上 方"、 "在 ......上表面"、 "上面的"等, 用来描述如在图中所示的一个器件或特征 与其他器件或特征的空间位置关系。 应当理解的是, 空间相对术语旨在包含除 了器件在图中所描述的方位之外的在使用或操作中的不同方位。 例如, 如果附 图中的器件被倒置, 则描述为"在其他器件或构造上方"或"在其他器件或构造之 上"的器件之后将被定位为"在其他器件或构造下方"或"在其他器件或构造之下" 。 因而, 示例性术语"在 ......上方"可以包括"在 ......上方"和"在 ......下方"两种方 位。 该器件也可以其他不同方式定位 (旋转 90度或处于其他方位) , 并且对这 里所使用的空间相对描述作出相应解释。
[0028] 正如背景技术中所介绍的, 目前如浮空器吊舱这类高空用产品的壳体通常为金 属结构, 从而使产品存在重量大的问题, 难以满足航天航空领域中对产品重量 的要求。 本申请的发明人针对上述问题进行研究, 提出了一种玻璃钢, 如图 1所 示, 玻璃钢包括至少两个纤维层 20以及设置于各相邻的两个纤维层 20之间的胶 膜层 10, 且胶膜层 10由包括石墨烯 110的原料制备而成。
[0029] 本申请的玻璃钢中由于胶膜层以石墨烯为原料制备而成, 从而使很薄的胶膜层 就能够具有较大的杨氏模量和断裂强度, 进而使设置有胶膜层的玻璃钢在达到 所需机械强度的同吋, 厚度和重量尽量地小; 并且, 由于玻璃钢是透明的, 将 上述玻璃钢用于制备浮空器吊舱吋, 人在浮空器吊舱中还能够透过玻璃钢看到 天空或地上广阔的风景。
[0030] 在本申请上述的玻璃钢中, 优选地, 石墨烯 110占胶膜层 10的重量比为 20~55% ; 更为优选地, 石墨烯 110占胶膜层 10的重量比为 50~55%。 上述优选的参数范围 能够使石墨烯 110具有合适的比重, 从而进一步使胶膜层 10就能够具有较大的杨 氏模量和断裂强度, 进一步地保证了设置有胶膜层 10的玻璃钢在厚度很小的情 况下就能够具有很大的机械强度; 并且, 在保证石墨烯 110能够使玻璃钢具有较 大机械强度的基础上, 也保证不会由于石墨烯 110的过量而导致胶膜层 10的胶粘 度较差, 从而使胶膜层 10能够良好地粘附纤维层 20的表面。
[0031] 在本申请上述的玻璃钢中, 优选地, 每个纤维层 20与胶膜层 10的重量比为 1:2~ 3:4。 上述优选的重量比能够使包括纤维层 20与胶膜层 10的玻璃钢能够具有更轻 的重量。 本申请上述的玻璃钢中可以包括依次层叠设置的多层胶膜层 10和多层 纤维层 20, 且最外层均为纤维层 20, 即各层胶膜层 10的两侧均设置有一层纤维 层 20, 其结构如图 2所示。 在上述层叠结构的玻璃钢中, 每层纤维层 20的厚度可 以为 0.1~0.3mm, 每层胶膜层 10的厚度可以为 0.1~0.2mm, 多层胶膜层 10和多层 纤维层 20层叠之后形成的玻璃钢的厚度可以为 5~30mm。 由于胶膜层 10和纤维层 20均具有较小的厚度, 从而使由多层胶膜层 10和多层纤维层 20叠加形成的玻璃 钢能够在具有更高机械强度的基础上, 也具有较小的厚度。
[0032] 在本申请上述的玻璃钢中, 优选地, 石墨烯 110为片状, 且片状的石墨烯 110的 厚度为 0.35~35nm。 由于片状的石墨烯 110能够更好地与树脂混合以形成胶膜层 1 0, 从而提高了石墨烯 110在胶膜层 10中的稳定性, 进而使设置有胶膜层 10的玻 璃钢在厚度很小的情况下就能够具有很大的机械强度。
[0033] 在本申请上述的玻璃钢中, 优选地, 胶膜层 10的原料包括树脂、 固化剂和石墨 烯。 优选地, 上述树脂为环氧树脂。 由于固化后的环氧树脂具有良好的物理、 化学性能, 它对金属和非金属材料的表面具有优异的粘结强度, 硬度高, 柔韧 性好, 从而使后续形成的胶膜层 10能够具有较高的粘附性和机械强度, 进而在 后续工艺中更好地与纤维层 20进行连接, 提高了最终玻璃钢的机械强度。 并且 , 由于固化剂能够使石墨烯 110与树脂等原料更好地混合并固化以形成胶膜层 10 , 从而保证了石墨烯 110在胶膜层 10中的稳定性, 进而使设置有胶膜层 10的玻璃 钢在厚度很小的情况下就能够具有很大的机械强度。
[0034] 根据本发明的另一方面, 提供了一种玻璃钢的制备方法, 如图 3所示。 该制备 方法包括以下步骤: Sl、 将包括石墨烯 110和树脂的胶膜层原料混合形成混料; S2、 将混料制备成胶膜预备层; S3、 将至少两个纤维层 20以及设置于各相邻的 两个纤维层 20之间的胶膜预备层固化, 以将胶膜预备层形成胶膜层 10, 并将胶 膜层 10与纤维层 20形成玻璃钢。
[0035] 上述制备方法中由于将包括石墨烯和树脂的原料混合并制备成胶膜层, 而石墨 烯能够使胶膜层在厚度很小的情况下就具有较大的杨氏模量和断裂强度, 进而 使设置有胶膜层的玻璃钢在厚度很小即重量很轻的情况下就能够具有很大的机 械强度; 并且, 由于制备的玻璃钢是透明的, 将上述玻璃钢用于制备浮空器吊 舱吋, 人在浮空器吊舱中还能够透过玻璃钢看到地上广阔的风景。
[0036] 下面将结合图 1和 2更详细地描述根据本发明提供的玻璃钢的制备方法的示例性 实施方式。 然而, 这些示例性实施方式可以由多种不同的形式来实施, 并且不 应当被解释为只限于这里所阐述的实施方式。 应当理解的是, 提供这些实施方 式是为了使得本申请的公幵彻底且完整, 并且将这些示例性实施方式的构思充 分传达给本领域普通技术人员。
[0037] 首先, 执行步骤 S1 : 将包括石墨烯 110和树脂的胶膜层原料混合形成混料。 上 述树脂可以为环氧树脂。 由于固化后的环氧树脂具有良好的物理、 化学性能, 它对金属和非金属材料的表面具有优异的粘结强度, 硬度高, 柔韧性好, 从而 使后续形成的胶膜层 10能够具有较高的粘附性和机械强度, 进而在后续工艺中 更好地与纤维层 20进行连接, 提高了最终玻璃钢的机械强度。
[0038] 可以在较高的温度条件下将包括有石墨烯 110的原料混合形成混料, 优选地, 将包括石墨烯 110和树脂的原料在温度为 30~55°C的条件下混合形成混料。 在上 述优选的参数范围内, 石墨烯 110能够更好地与树脂进行融合, 从而提高了胶膜 层 10中石墨烯 110的稳定性, 进而使设置有胶膜层 10的玻璃钢在厚度很小的情况 下就能够具有很大的机械强度。
[0039] 在一种优选的实施方式中, 石墨烯 110为片状, 且片状的石墨烯 110的厚度为 0.3 5~35nm。 片状的石墨烯 110能够更好地与树脂等原料混合以形成胶膜层 10, 从而 提高了胶膜层 10中石墨烯 110的稳定性, 进而使设置有胶膜层 10的玻璃钢在厚度 很小的情况下就能够具有很大的机械强度; 具有上述厚度的石墨烯 110能够进一 步提高石墨烯 110在胶膜层 10中的稳定性。
[0040] 优选地, 在原料中石墨烯 110的重量百分比为 20~55%。 上述优选的参数范围能 够使石墨烯 110在混料中具有合适的比重, 从而进一步使很薄的胶膜层 10就能够 具有较大的杨氏模量和断裂强度, 进一步地保证了设置有胶膜层 10的玻璃钢在 厚度很小的情况下就能够具有很大的机械强度; 并且, 在保证石墨烯 110能够使 玻璃钢具有较大机械强度的基础上, 也保证不会由于石墨烯 110的过量而导致胶 膜层 10的胶粘度较差, 从而使胶膜层 10能够良好地粘附纤维层 20的表面。
[0041] 更为优选地, 原料包括树脂、 固化剂和石墨烯, 可以采用丙烯酸胺作为固化剂 , 此吋在原料中固化剂与树脂的重量比为 2~15%。 在上述优选地实施方式中, 固 化剂能够使石墨烯 110与树脂更好地混合并固化以形成胶膜层 10, 从而提高了石 墨烯 110在胶膜层 10中的稳定性, 进而保证了设置有胶膜层 10的玻璃钢在厚度很 小的情况下就能够具有很大的机械强度。
[0042] 在执行完步骤 S1之后, 执行步骤 S2: 将混料制备成胶膜预备层。 由于形成的胶 膜预备层中具有石墨烯 110, 而石墨烯 110能够使由胶膜预备层固化后形成的胶 膜层 10在厚度很小的情况下就具有较大的杨氏模量和断裂强度, 进而使后续制 备而成的玻璃钢在厚度很小的情况下就能够具有很大的机械强度。
[0043] 制备上述胶膜预备层的方法可以有很多种, 在一种优选的实施方式中, 将混料 放入涂膜机以制备成胶膜预备层, 涂膜机中的滚筒温度为 70~95°C, 滚动速度为 2.5~5.5米 /分钟 (m/min)。 采用上述优选的工艺参数能够更为迅速有效地制备出胶 膜预备层, 并且使由胶膜预备层固化而成的胶膜层 10具有均匀的厚度以及稳定 的性质。
[0044] 在执行完步骤 S2之后, 执行步骤 S3: 将至少两个纤维层 20以及设置于各相邻的 两个纤维层 20之间的胶膜预备层固化, 以将胶膜预备层形成胶膜层 10, 并将胶 膜层 10与纤维层 20形成玻璃钢。 由于上述玻璃钢是由胶膜预备层与纤维层 20层 叠并固化后形成的, 而由胶膜预备层固化后形成的胶膜层 10在石墨烯 110的作用 下能够具有较大的杨氏模量和断裂强度, 从而使制备而成的玻璃钢在厚度很小 的情况下就能够具有很大的机械强度。
[0045] 上述纤维层 20可以为纤维束或纤维织物, 且纤维体为麻纤维、 碳纤维、 玻璃纤 维、 丙纶、 芳纶、 玄武岩纤维和超高分子聚乙烯中的任一种或多种。 更为优选 地, 纤维层 20为超高分子聚乙烯。 上述优选的纤维层 20材料具有较高的韧性与 机械强度, 从而采用上述优选的纤维层 20材料能够使形成的玻璃钢具有更高的 机械强度。
[0046] 优选地, 在步骤 S3中, 固化的温度为 110~150°C, 固化的吋间为 l~3h, 固化的 压力为 0.85~1.0Mpa。 采用上述优选的工艺参数能够更为快速有效地对胶膜预备 层与纤维层 20进行固化处理, 从而使玻璃钢快速有效地固化成型, 并且能够进 一步提高玻璃钢的机械性能。
[0047] 在一种优选的实施方式中, 在步骤 S3之前, 制备方法还包括: 将纤维层 20进行 电晕处理。 由于电晕处理是一种电击处理, 它使承印物的表面具有更高的附着 性, 从而使经过电晕处理的纤维层 20能够具有更高的附着性, 进而更为牢固地 与胶膜层 10进行连接。 上述电晕处理是利用高频率交流电压在纤维层 20欲与胶 膜层 10进行连接的表面进行电晕放电, 优选地, 高频率交流电压为 5000~15000V /m2。
[0048] 根据本发明的另一方面, 提供了一种浮空器吊舱, 形成浮空器吊舱的舱体的材 料包括玻璃钢, 玻璃钢由上述的制备方法制备而成。 其中, 上述浮空器可以包 括高空气球和飞艇等。 由于上述玻璃钢包括纤维层和胶膜层, 且上述胶膜层以 石墨烯为原料制备而成, 从而使很薄的胶膜层就能够具有较大的杨氏模量和断 裂强度, 进而使设置有胶膜层的玻璃钢在厚度很小即重量很轻的情况下就能够 具有很大的机械强度。
[0049] 下面将结合实施例进一步说明本申请提供的玻璃钢的制备方法。
[0050] 实施例 1
[0051] 本实施例提供的玻璃钢的制备方法的步骤包括:
[0052] 首先, 将双酚 A的环氧树脂、 石墨烯和作为固化剂的丙烯酸胺在温度为 30°C的 条件下混合形成混料, 其中, 石墨烯为片状, 且厚度为 0.35nm, 且固化剂占树 脂的重量比为 2%;
[0053] 其次, 将上述混料放入涂膜机以制备成胶膜预备层, 涂膜机中的滚筒温度为 70
°C, 滚筒速度为 2.5m/min;
[0054] 最后, 选用超高分子聚乙烯作为纤维层, 对纤维层在高频率交流电压为 5000V/ m2的条件下进行电晕处理, 并将胶膜预备层设置于两层纤维层之间并固化, 形 成玻璃钢, 结构如图 1所示, 其中, 固化的温度为 110°C, 固化的吋间为 lh, 固化 的压力为 0.85Mpa。
[0055] 实施例 2
[0056] 本实施例提供的玻璃钢的制备方法的步骤包括:
[0057] 首先, 将双酚 A的环氧树脂、 石墨烯和作为固化剂的丙烯酸胺在温度为 40°C的 条件下混合形成混料, 其中, 石墨烯为片状, 且厚度为 15nm, 且固化剂占树脂 的重量比为 7%;
[0058] 其次, 将上述混料放入涂膜机以制备成胶膜预备层, 涂膜机中的滚筒温度为 80
°C, 滚筒速度为 4m/min;
[0059] 最后, 选用超高分子聚乙烯作为纤维层, 对纤维层在高频率交流电压为 10000V
/m2的条件下进行电晕处理, 并将一层胶膜预备层设置于两层纤维层之间并固化
, 形成玻璃钢, 结构如图 1所示, 其中, 固化的温度为 130°C, 固化的吋间为 2h, 固化的压力为 0.9Mpa。
[0060] 实施例 3
[0061] 本实施例提供的玻璃钢的制备方法的步骤包括:
[0062] 首先, 将双酚 A的环氧树脂、 石墨烯和作为固化剂的丙烯酸胺在温度为 55°C的 条件下混合形成混料, 其中, 石墨烯为片状, 且厚度为 35nm, 且固化剂占树脂 的重量比为 15% ;
[0063] 其次, 将上述混料放入涂膜机以制备成胶膜预备层, 涂膜机中的滚筒温度为 95
°C, 滚筒速度为 5.5m/min;
[0064] 最后, 选用超高分子聚乙烯作为纤维层, 对纤维层在高频率交流电压为 15000V
/m2的条件下进行电晕处理, 并将胶膜预备层与纤维层层叠并固化, 形成玻璃钢
, 结构如图 1所示, 其中, 固化的温度为 150°C, 固化的吋间为 3h, 固化的压力为
1.0Mpa。
[0065] 实施例 4
[0066] 本实施例提供的玻璃钢的制备方法的步骤包括:
[0067] 首先, 将双酚 A的环氧树脂、 石墨烯和作为固化剂的丙烯酸胺在温度为 55°C的 条件下混合形成混料, 其中, 石墨烯为片状, 且厚度为 35nm, 且固化剂占树脂 的重量比为 15% ;
[0068] 其次, 将上述混料放入涂膜机以制备成重量相同的两个胶膜预备层, 涂膜机中 的滚筒温度为 95°C, 滚筒速度为 5.5m/min;
[0069] 最后, 选用超高分子聚乙烯作为纤维层, 提供三个纤维层并对纤维层在高频率 交流电压为 15000V/m2的条件下进行电晕处理, 并将每个胶膜预备层分别设置于 相邻的两个纤维层之间并固化, 形成玻璃钢, 结构如图 2所示, 其中, 固化的温 度为 150°C, 固化的吋间为 3h, 固化的压力为 1.0Mpa。
[0070] 对比例 1
[0071] 本对比例提供的玻璃钢的制备方法的步骤包括:
[0072] 首先, 将双酚 A的环氧树脂和作为固化剂的丙烯酸胺在 55°C的条件下混合形成 混料, 其中, 固化剂占树脂的重量比为 15% ;
[0073] 其次, 将上述混料放入涂膜机以制备成重量相同的两个胶膜预备层, 涂膜机中 的滚筒温度为 95°C, 滚筒速度为 5.5m/min;
[0074] 最后, 选用超高分子聚乙烯作为纤维层, 提供三个纤维层并对纤维层在高频率 交流电压为 15000V/m2的条件下进行电晕处理, 并将每个胶膜预备层分别设置于 相邻的两个纤维层之间并固化, 形成玻璃钢, 结构如图 2所示, 其中, 固化的温 度为 150°C, 固化的吋间为 3h, 固化的压力为 1.0Mpa。
[0075] 对比例 2
[0076] 本对比例提供的金属层的制备方法的步骤包括:
[0077] 利用铝合金材料制备金属层, 使金属层与上述实施例 1至 4中的玻璃钢具有相同 的尺寸。
[0078] 对上述实施例 1至 4和对比例 1至 2提供的玻璃钢进行拉伸强度和重量的测试, 测 试结果如下表所示。
Figure imgf000011_0001
从上表可以看出, 本申请实施例 1至 4中玻璃钢的拉伸强度可以达到 410~460MP a, 远大于对比例 1和 2中玻璃钢的拉伸强度; 并且, 与对比例 1和 2中制备玻璃钢 相比, 实施例 1至 4中玻璃钢也具有更轻的重量, 即实施例 1至 4中的玻璃钢在重 量很轻的情况下具有很大的机械强度。
[0080] 从以上的描述中, 可以看出, 本发明上述的实施例实现了如下技术效果:
[0081] 1) 由于玻璃钢中的胶膜层以石墨烯为原料制备而成, 从而使很薄的胶膜层就 能够具有较大的杨氏模量和断裂强度, 进而使设置有胶膜层的玻璃钢在厚度很 小即重量很轻的情况下就能够具有很大的机械强度;
[0082] 2) 由于玻璃钢是透明的, 人在浮空器上还能够透过玻璃钢看到天空或地上广 阔的风景。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的 技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内 , 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权利要求书
一种玻璃钢, 其特征在于, 所述玻璃钢包括至少两个纤维层 (20) 以 及设置于各相邻的两个所述纤维层 (20) 之间的胶膜层 (10) , 且所 述胶膜层 (10) 由包括石墨烯 (110) 的原料制备而成。
根据权利要求 1所述的玻璃钢, 其特征在于, 所述石墨烯 (110) 占所 述胶膜层的重量比为 20~55%。
根据权利要求 1所述的玻璃钢, 其特征在于, 所述石墨烯 (110) 占所 述胶膜层的重量比为 50~55%。
根据权利要求 1所述的玻璃钢, 其特征在于, 每个所述纤维层 (20) 与所述胶膜层 (10) 的重量比为 1:2~3:4。
根据权利要求 1所述的玻璃钢, 其特征在于, 所述石墨烯 (110) 为片 状, 且片状的所述石墨烯 (110) 的厚度为 0.35~35nm。
根据权利要求 1所述的玻璃钢, 其特征在于, 所述胶膜层 (10) 的原 料包括树脂、 固化剂和所述石墨烯 (110) 。
一种玻璃钢的制备方法, 其特征在于, 所述制备方法包括以下步骤: S1、 将包括石墨烯和树脂的胶膜层原料混合形成混料;
52、 将所述混料制备成胶膜预备层;
53、 将至少两个纤维层以及设置于各相邻的两个所述纤维层之间的所 述胶膜预备层固化, 以将所述胶膜预备层形成胶膜层。
根据权利要求 7所述的制备方法, 其特征在于, 在所述步骤 S3之前, 所述制备方法还包括:
将所述纤维层进行电晕处理。
根据权利要求 7所述的制备方法, 其特征在于, 在所述步骤 S1中, 在 所述原料中所述石墨烯的重量百分比为 20~55%。
根据权利要求 7所述的制备方法, 其特征在于, 在所述步骤 S1中, 所 述石墨烯为片状, 且片状的所述石墨烯的厚度为 0.35~35nm。
根据权利要求 7所述的制备方法, 其特征在于, 在所述步骤 S1中, 所 述原料还包括固化剂, 且所述固化剂占所述树脂的重量比为 2~15%。 [权利要求 12] 根据权利要求 7所述的制备方法, 其特征在于, 在所述步骤 S1中, 将 包括所述石墨烯和树脂的胶膜层原料在温度为 30~55°C的条件下混合 形成所述混料。
[权利要求 13] 根据权利要求 7所述的制备方法, 其特征在于, 在所述步骤 S2中, 将 所述混料放入涂膜机以制备成所述胶膜预备层, 所述涂膜机中的滚筒 温度为 70~95°C, 滚筒速度为 2.5~5.5m/min。
[权利要求 14] 根据权利要求 7所述的制备方法, 其特征在于, 在所述步骤 S3中, 所 述固化的温度为 110~150°C, 所述固化的吋间为 l~3h, 所述固化的压 力为 0.85~1.0Mpa。
[权利要求 15] —种浮空器吊舱, 形成所述浮空器吊舱的舱体的材料包括玻璃钢, 其 特征在于, 所述玻璃钢为权利要求 1至 6中任一项所述的玻璃钢。
PCT/CN2016/109107 2015-12-11 2016-12-09 玻璃钢、其制备方法及浮空器吊舱 WO2017097242A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510925307.7 2015-12-11
CN201510925307.7A CN106863944A (zh) 2015-12-11 2015-12-11 玻璃钢、其制备方法及浮空器吊舱

Publications (1)

Publication Number Publication Date
WO2017097242A1 true WO2017097242A1 (zh) 2017-06-15

Family

ID=59012696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/109107 WO2017097242A1 (zh) 2015-12-11 2016-12-09 玻璃钢、其制备方法及浮空器吊舱

Country Status (2)

Country Link
CN (1) CN106863944A (zh)
WO (1) WO2017097242A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101182895A (zh) * 2006-11-13 2008-05-21 沙垣 具有轴向纤维的玻璃钢夹砂管及制造方法
CN104194234A (zh) * 2014-08-14 2014-12-10 济南圣泉集团股份有限公司 一种石墨烯玻璃钢板材复合材料及其制备方法
CN204130597U (zh) * 2014-10-22 2015-01-28 苏州市莱赛电车技术有限公司 一种电池箱
CN104772962A (zh) * 2015-03-25 2015-07-15 东莞前沿技术研究院 平流层浮空器蒙皮及其制备方法
CN104972719A (zh) * 2014-04-02 2015-10-14 波音公司 使用聚合物-纳米颗粒共聚物制造的无纺中间层
CN105751659A (zh) * 2014-11-25 2016-07-13 波音公司 制造复合层压物的方法及用于制造复合层压物的物品

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202624625U (zh) * 2012-06-29 2012-12-26 贵州送变电工程公司 高海拔地区电力放线用电动飞艇的机动转向组件
CN104191732A (zh) * 2014-09-03 2014-12-10 广东江龙船舶制造有限公司 一种玻璃钢试板及其制作方法
CN104772963B (zh) * 2015-03-25 2017-02-01 东莞前沿技术研究院 平流层浮空器蒙皮及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101182895A (zh) * 2006-11-13 2008-05-21 沙垣 具有轴向纤维的玻璃钢夹砂管及制造方法
CN104972719A (zh) * 2014-04-02 2015-10-14 波音公司 使用聚合物-纳米颗粒共聚物制造的无纺中间层
CN104194234A (zh) * 2014-08-14 2014-12-10 济南圣泉集团股份有限公司 一种石墨烯玻璃钢板材复合材料及其制备方法
CN204130597U (zh) * 2014-10-22 2015-01-28 苏州市莱赛电车技术有限公司 一种电池箱
CN105751659A (zh) * 2014-11-25 2016-07-13 波音公司 制造复合层压物的方法及用于制造复合层压物的物品
CN104772962A (zh) * 2015-03-25 2015-07-15 东莞前沿技术研究院 平流层浮空器蒙皮及其制备方法

Also Published As

Publication number Publication date
CN106863944A (zh) 2017-06-20

Similar Documents

Publication Publication Date Title
JP5013007B2 (ja) プリプレグおよび炭素繊維強化複合材料
US11407199B2 (en) Metal-coated fabrics for fiber-metal laminates
WO2016090777A1 (zh) 一种储油囊用tpu复合材料
WO2008048705A2 (en) Low density lightning strike protection for use in airplanes
JP2011231331A5 (zh)
JP2010280904A5 (zh)
JP6210007B2 (ja) プリプレグおよびその製造方法、ならびに炭素繊維強化複合材料
JP5967323B1 (ja) プリプレグ
AU2010311192B2 (en) Electromagnetic hazard protector for composite materials
KR20140121019A (ko) 폴리도파민을 이용한 탄소섬유강화플라스틱 복합재 및 이의 제조방법
CN111086283B (zh) 耐高温高韧性预浸料及制备方法
CN106863977A (zh) 一种船体堵漏用囊体复合材料及其制备方法和应用
CN111087756A (zh) 耐高温高韧性预浸料及其制备方法
CN111087757B (zh) 耐高温高韧性预浸料及其制备方法和应用
WO2017097242A1 (zh) 玻璃钢、其制备方法及浮空器吊舱
AU2011348413B2 (en) Improvements in composite materials
WO2017097243A1 (zh) 玻璃钢、其制备方法及浮空器吊舱
JP2009062473A (ja) プリプレグおよび炭素繊維強化複合材料
Studer et al. Local reinforcement of aerospace structures using co-curing RTM of metal foil hybrid composites
CN106468038A (zh) 芳纶蜂窝纤维纸及其制备方法
CN112677602B (zh) 一种用于预浸料的增韧材料、高韧性复合材料及其制备方法
WO2017097244A1 (zh) 玻璃钢、其制备方法及浮空器吊舱
CN108162431A (zh) 一种连续玻璃纤维织物增强聚苯硫醚复合材料及制备方法
CN116619848A (zh) 一种易弯折导电超薄碳纤维层压材料及其制备工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16872431

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19/10/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16872431

Country of ref document: EP

Kind code of ref document: A1