WO2017096957A1 - 基于单波长双激光管相位测量的校准方法及其装置 - Google Patents

基于单波长双激光管相位测量的校准方法及其装置 Download PDF

Info

Publication number
WO2017096957A1
WO2017096957A1 PCT/CN2016/096769 CN2016096769W WO2017096957A1 WO 2017096957 A1 WO2017096957 A1 WO 2017096957A1 CN 2016096769 W CN2016096769 W CN 2016096769W WO 2017096957 A1 WO2017096957 A1 WO 2017096957A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
signal
optical path
diode
high frequency
Prior art date
Application number
PCT/CN2016/096769
Other languages
English (en)
French (fr)
Inventor
何刚
Original Assignee
香港深达威仪器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 香港深达威仪器有限公司 filed Critical 香港深达威仪器有限公司
Priority to US15/740,804 priority Critical patent/US10782408B2/en
Priority to EP16872153.8A priority patent/EP3312632A4/en
Priority to CN201680001371.9A priority patent/CN106461764B/zh
Publication of WO2017096957A1 publication Critical patent/WO2017096957A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S17/36Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4911Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4912Receivers
    • G01S7/4915Time delay measurement, e.g. operational details for pixel components; Phase measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4912Receivers
    • G01S7/4918Controlling received signal intensity, gain or exposure of sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating

Definitions

  • the invention relates to the field of photoelectric ranging technology, in particular to a calibration method and a device based on single-wavelength dual laser tube phase measurement.
  • Laser has always been the invention that human beings are proud of. It has the characteristics of precision, quick and convenient use, strong anti-interference, etc.
  • the laser technology developed by this technology solves many technical obstacles that cannot be solved by traditional technology, and utilizes laser technology and
  • the laser range finder assembled by electronic technology has received more and more attention from the civil, military and industrial industries in the fields of length, height, distance, speed and shape. It has been widely used in the following fields: major industrial and mining Enterprise, power petrochemical, water conservancy, communications, environment, construction, address, police, fire, blasting, nautical, railway, anti-terrorism / military, scientific research institutions, agriculture, gardens, real estate, leisure / outdoor sports.
  • the laser ranging device based on the principle of measuring phase difference illuminates the object to be measured with a modulated laser beam, and the beam is reflected back by the object to be measured, and the phase change generated by the beam going back and forth is converted into the distance of the measured object, and is applied to the short Distance measurement with high precision, the accuracy and accuracy of the measurement are affected by the internal part characteristics of the device.
  • the laser range finder is the higher the accuracy requirement, and the complexity of the circuit and the demand for precision devices are greatly improved. Therefore, environmental factors such as temperature and device lifetime have an effect on device performance, resulting in phase drift caused by the device.
  • the prior art mostly utilizes the phase difference compensation principle of the internal and external optical paths to eliminate the additional phase shift of the circuit system, and ensures that the measurement data is not affected by external environmental factors.
  • Single-issue single-receiving system that is, single-channel transmitting beam single-channel receiving optical path signal, switching between internal and external optical paths through a controllable mechanical device, phase correction by calculating phase values of internal and external optical paths before and after switching, eliminating environmental uncertain phase interference. Due to the use of physical and mechanical switches, the mechanical response time is long (generally hundreds of milliseconds), it is not calibrated in real time, and the structure is relatively complicated, which is prone to mechanical wear and failure, and has a short service life, which is not suitable for use as an industrial precision instrument.
  • the traditional dual-issue single-receiving system that is, two channels independently transmit the same wavelength beam and receive the inner and outer optical path signals respectively through the receiving device, and the two received signals are separately processed and the phase difference is calculated, thereby eliminating the environmentally uncertain phase interference.
  • the system uses two independent photoelectric generating devices to generate two optical signals of the same wavelength respectively, and because of the two photoelectric generating devices, especially the laser tube, the working time of the internal and external optical paths is different during operation, and the difference between the two laser performances is extremely easy. The generation of different temperature drifts cannot be eliminated by the above principle, resulting in drift of the measured distance.
  • one light wave emitting device is used to generate one light wave, and the light speed converting device is required to change the optical path to obtain two inner and outer light beams.
  • the multiple conversion of the light beam converting device generates mechanical load, and mechanical wear is unavoidable, and
  • the circuit has a long response time, and the beam conversion device inevitably leads to complicated circuit, large volume and high cost.
  • a light wave transmitting device is used to generate one light wave, and both the inner and outer light waves need to be generated by the splitting lens at the same time. Therefore, the dual APD receiving device is required to receive the light wave transmitted at the same time, because the APD wastes circuit space and the cost is higher than the present scheme. More than 20%.
  • the prior art adopts the traditional double-issue single-receiving mode, that is, two independent laser tubes generate two optical path light wave signals to form internal and external optical paths and respectively receive the signals through the APD to eliminate the phase of the base signal.
  • the working states of the two LDs are different, and the elimination of the substrate signal cannot be completed: in addition, due to the large dispersion of the LD devices, different tubes The difference between them also directly causes a large error.
  • the present invention provides a calibration method and a device based on phase measurement of a single-wavelength dual laser tube, which avoids environmental changes and introduces uncertain noise in the circuit, and improves measurement of laser ranging.
  • Accuracy increases the stability of the system's ranging, reduces the impact of environmental factors on the ranging error, and reduces the system's performance requirements for components, thereby reducing the cost of the system.
  • the present invention provides a calibration method based on single-wavelength dual laser tube phase measurement, comprising the following steps:
  • Step 1 The high-frequency modulation signal generates an external optical path through the laser automatic power control circuit and is transmitted to the target to be measured, and the external optical path is reflected by the measured object and then received by the photoelectric receiving circuit.
  • Step 2 the high-frequency modulation signal is generated by the laser automatic power control circuit to generate an internal optical path and directly sent to the photoelectric receiving circuit to be received;
  • Step 3 The photoelectric receiving circuit compares the two optical waves of the external optical path and the internal optical path received successively with the reference phase signal, calculates a distance phase, and outputs a signal for canceling the base.
  • the step 1 further includes a step 0, wherein the step 0 is: the frequency synthesizer generates a frequency signal and a local oscillator signal, and the frequency signal is subjected to high frequency processing control to obtain a high frequency modulated signal, and the high frequency modulated signal is obtained.
  • the signal is sent to the laser automatic power control circuit; the high frequency modulated signal is switched by the laser automatic power control circuit to obtain the external light path and the inner light path.
  • the internal optical path and the external optical path are mixed with the local oscillator signal to obtain the stable reference phase signal in the step 3.
  • the optical path of the external optical path and the internal optical path received by the photoelectric receiving circuit in the step 3 is first amplified by the low frequency signal and then compared with the reference phase signal.
  • the laser automatic power control circuit is adopted, so that the emitted laser power remains the same in the environment -10 ° C to 50 ° C.
  • the present invention also provides a calibration apparatus based on single-wavelength dual laser tube phase measurement, including a frequency synthesizer, a high frequency processing controller, a laser automatic power control circuit, a photoelectric receiving circuit, a low frequency signal amplifier, and a master control. And mixers;
  • the frequency synthesizer is configured to generate and output a frequency signal and a local oscillator signal;
  • the mixer is configured to mix the inner optical path and the outer optical path with the local oscillator signal to obtain a stable reference phase signal;
  • the laser automatic power control circuit Switching between the external optical path and the internal optical path;
  • the low frequency signal amplifier is configured to amplify the output signal of the photoelectric receiving circuit and send the signal to the main controller;
  • the frequency synthesizer is connected to the high frequency processing controller and outputs a high frequency modulation signal, which is switched by the laser automatic power control circuit to obtain an external optical path and an internal optical path; the external optical path is transmitted to the target to be measured, and the external optical path is After being reflected back by the reflected object, it is received by the photoelectric receiving circuit; the internal light The circuit is directly sent to the photoelectric receiving circuit to be received; the photoelectric receiving circuit amplifies the two optical waves of the external optical path and the internal optical path received successively through the low frequency signal amplifier and outputs to the main controller; the reference phase signal in the mixer The amplified two optical waves are phase-compared, the distance phase is calculated, and the signal for canceling the substrate is output.
  • the signal outputting the cancellation substrate is sent to the speaker through the voice playing circuit and reported by the human voice; and the signal of the output cancellation substrate is sent to the intelligent terminal device through the Bluetooth transmitting circuit, and the measured distance data is transmitted to the smart device in real time. Terminal Equipment.
  • the laser automatic power control circuit comprises a first triode, a second triode, a first laser diode, a second laser diode, a first sampling diode and a second sampling diode; and the working voltage is connected to the first laser diode And a common terminal of the first sampling diode, the working voltage is also connected to the common end of the second laser diode and the second sampling diode, and the first sampling diode is connected to the second sampling diode to form a common end to access the second three pole a base of the tube; the first laser diode is coupled to the high frequency processing controller and receives a high frequency modulation signal generated by the high frequency processing controller, and the collectors of the second laser diode and the first transistor are connected to Between the first laser diode and the high frequency processing controller; the operating voltage is coupled to the base of the first transistor through the first resistor; the emitter of the second transistor is grounded, and the second transistor is set The electrode is connected between the first resistor and the base of the first transistor; when
  • the IC current of the first triode is amplified and deepened, whereby the luminous power of the laser remains unchanged; when the ambient temperature decreases, the current of the first laser diode and the second laser diode decreases, and the first sampling diode and the second sampling diode are sampled.
  • the voltage is increased, the IB bias current to the second transistor is also increased, and the IC current amplification of the second transistor is relatively large, so that the IB bias current of the first transistor is reduced, first The IC current amplification of the triode is reduced, whereby the luminous power of the laser remains unchanged.
  • the emitter of the first transistor is grounded through a second resistor, and a capacitor is connected between the first resistor and the base of the first transistor; the base of the second transistor passes through the third The resistor is grounded.
  • the photo receiving circuit may be one of a photodiode, a phototransistor, an avalanche diode, or a photomultiplier tube.
  • the invention has the beneficial effects that the single-wavelength double-excitation provided by the invention is compared with the prior art.
  • the calibration method and device for the optical tube phase measurement, the high-frequency modulation signal is switched by the laser automatic power control circuit to obtain the external optical path and the internal optical path, and then the return signal and the internal optical path signal of the external optical path signal are respectively received through the photoelectric receiving, and The return signal of the external optical path signal and the internal optical path signal are phase-compared with the reference phase signal, thereby eliminating the additional phase shift and realizing the phase error compensation and calibration.
  • the laser automatic power control circuit is used to control the internal and external optical path switching.
  • phase error compensation and calibration is more stable and high-speed, the influence of environmental factors on the ranging error is reduced, the measurement accuracy of the laser ranging is improved, the stability of the system is increased, and the components of the system are reduced. Performance requirements, thereby reducing the cost of the system, and strengthening the application of laser ranging in various industries.
  • 1 is a flow chart of a calibration method based on single-wavelength dual laser tube phase measurement according to the present invention
  • FIG. 2 is a structural diagram of a calibration apparatus based on single-wavelength dual laser tube phase measurement according to the present invention
  • FIG. 3 is a circuit diagram of a laser automatic power control circuit in the present invention.
  • a calibration method for single-wavelength dual laser tube phase measurement includes the following steps:
  • Step S0 the frequency synthesizer generates a frequency signal and a local oscillator signal, and the frequency signal is subjected to high frequency processing control to obtain a high frequency modulated signal, and the high frequency modulated signal is sent to the laser automatic power control circuit;
  • Step S1 the high-frequency modulation signal is generated by the laser automatic power control circuit to generate an external light path and transmitted to the target to be measured, and the external light path is reflected by the measured object and then received by the photoelectric receiving circuit;
  • Step S2 the high-frequency modulation signal is generated by the laser automatic power control circuit and directly sent to the photoelectric receiving circuit to be received; the high-frequency modulated signal is switched by the laser automatic power control circuit After obtaining the external light path and the internal light path;
  • Step S3 the photoelectric receiving circuit compares the two optical waves of the external optical path and the internal optical path received successively with the reference phase signal, calculates the distance phase and outputs the signal for canceling the base; and mixes the internal optical path and the external optical path with the local oscillator signal. Then, the stable reference phase signal in step S3 is obtained; in step S3, the optical signals of the external optical path and the internal optical path received by the photoelectric receiving circuit are first amplified by the low frequency signal and then compared with the reference phase signal.
  • the present invention provides a calibration method based on single-wavelength dual-laser tube phase measurement. After the high-frequency modulation signal is switched by the laser automatic power control circuit, the external optical path and the internal optical path are obtained, and then respectively received by the photoelectric receiving.
  • the laser automatic power control circuit is used to control the internal and external optical path switching, thereby achieving the purpose of phase error compensation and calibration more stably and at high speed, reducing the influence of environmental factors on the ranging error, improving the measurement accuracy of the laser ranging, and increasing the accuracy.
  • the system's ranging stability reduces the system's performance requirements for components, thereby reducing the cost of the system and enhancing the application of laser ranging in various industries.
  • the laser automatic power control circuit 12 is employed such that the emitted laser power remains the same in the environment -10 ° C to 50 ° C.
  • the measurement accuracy can be changed in a wide working environment without any compensation.
  • the inner optical path and the outer optical path for performing phase comparison may be optical waves that are mixed by the mixed signal, and two high frequency modulated signals having the same phase or having a fixed phase difference.
  • the present invention further provides a calibration apparatus based on single-wavelength dual laser tube phase measurement, including a frequency synthesizer 10, a high-frequency processing controller 11, a laser automatic power control circuit 12, a photoelectric receiving circuit 13, and a low frequency. a signal amplifier 14, a master 15 and a mixer 16;
  • the frequency synthesizer 10 is configured to generate and output a frequency signal and a local oscillator signal; the mixer 16 is configured to mix the internal optical path 21 and the external optical path 22 with the local oscillation signal to obtain a stable reference phase signal; the laser automatic power control circuit 12 external optical path 20 and internal optical path 21 switch; low frequency signal amplifier 14 is used to amplify the output signal of the photoelectric receiving circuit 13 and then sent to the main controller 15;
  • the frequency synthesizer 10 is connected to the high frequency processing controller 11 and outputs a high frequency modulation signal, which is switched by the laser automatic power control circuit 12 to obtain an external optical path 21 and an internal optical path 22; the external optical path 21 is transmitted to the measured Target, the external light path 21 is reflected back by the measured object and is photoelectrically received.
  • the circuit 13 receives; the internal optical path 20 is directly sent to the photo receiving circuit 13 to be received; the photo receiving circuit 13 amplifies the two optical waves of the external optical path 20 and the internal optical path 21 received successively through the low frequency signal amplifier 14 and outputs the same to the main controller. 15; the reference phase signal in the mixer 16 is phase-compared with the amplified two-way optical wave, the distance phase is calculated, and the signal for canceling the substrate is output.
  • the calibration device based on the single-wavelength dual laser tube phase measurement provided by the frequency synthesizer 10 and the high-frequency processing controller 11 generates a high-frequency modulation signal, and the signal passes through the laser automatic power control circuit.
  • the external optical path and the internal optical path are obtained, and then the return signal and the internal optical path signal of the external optical path signal are respectively received by the photoelectric receiving, and the return signal of the external optical path signal and the internal optical path signal are compared with the reference phase signal, thereby eliminating Additional phase shift for phase error compensation and calibration; simultaneous use of laser automatic power control circuit to control internal and external optical path switching, thus achieving more stable and high-speed phase error compensation and calibration, reducing environmental factors to ranging
  • the influence of error improves the measurement accuracy of laser ranging, increases the stability of the system's ranging, reduces the performance requirements of the system, and thus reduces the cost of the system, and strengthens the application of laser ranging in various industries.
  • the signal outputting the cancellation substrate is sent to the speaker 18 through the voice playback circuit 17 to be reported by the human voice; and the signal outputting the cancellation substrate is transmitted to the smart terminal device through the Bluetooth transmission circuit 19, and the measurement is performed in real time wirelessly.
  • the distance data is sent to the smart terminal device.
  • Another highlight of the present invention is that the measured results and the various menus of the operation are respectively controlled by the main controller to control the voice playing circuit, and then the readings and function menus are reported by the speaker in real voice, which greatly improves the work efficiency and is convenient.
  • Fast. Bluetooth function The main controller controls the Bluetooth transmitting circuit, which can wirelessly transmit the measured distance data to PC, mobile phone, ipad and other intelligent terminal devices.
  • the third party can develop an APP system in different fields, which is more intelligent.
  • the laser automatic power control circuit 12 includes a first transistor Q1, a second transistor Q2, a first laser diode LD1, a second laser diode LD2, a first sampling diode PD1 and a second sampling diode PD2;
  • the working voltage VDD is connected to the common end of the first laser diode LD1 and the first sampling diode PD1, and the working voltage VDD is also connected to the common end of the second laser diode LD2 and the second sampling diode PD2, and the first sampling diode PD1 and the second
  • a common terminal is connected to the base of the second transistor Q2;
  • the first laser diode LD1 is connected to the high frequency processing controller 12 and receives the high frequency modulation signal generated by the high frequency processing controller 12, and second Laser diode LD2 and
  • the collector of the first transistor Q1 is connected between the first laser diode LD1 and the high frequency processing controller 12;
  • the operating voltage VDD is connected to the base
  • the emitter of the first transistor Q1 is grounded through the second resistor R2, and a capacitor C is connected between the first resistor R1 and the base of the first transistor Q1; the base of the second transistor Q2 passes through the third Resistor R3 is grounded.
  • the photoreceiving circuit 13 may be one of a photodiode, a phototransistor, an avalanche diode, or a photomultiplier tube.
  • the photoreceiving circuit can also be other devices having a photoelectric conversion function.
  • the laser automatic power control circuit can be used to control the switching or switching of the internal and external optical paths, avoiding the use of mechanical switch control, and the response time controlled by the control circuit is fast, and the interval between receiving the internal and external optical signals is small, and switching The interval is in the millisecond level, and the surrounding environment of the circuit switching device is unchanged, the circuit is not affected, and the measurement accuracy is not affected.
  • the embodiment of the present invention uses a dual-core packaged single-chip dual-wavelength laser tube. Through the internal and external optical path switching and the correction of the two-wavelength laser, the common mode effect of the APD and the LD itself is completely eliminated, achieving higher precision than the dual APD and dual LD schemes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种基于单波长双激光管相位测量的校准方法及其装置,该方法包括如下步骤:高频调制信号经过激光自动功率控制电路产生外光路并发射至被测目标,外光路被被测目标反射折回后经光电接收电路接收(S1);高频调制信号经过激光自动功率控制电路产生内光路并直接发送至光电接收电路被接收(S2);光电接收电路将先后接收外光路和内光路的两路光波与参考相位信号进行相位比较,计算出距离相位并输出消除基底的信号(S3)。本方法实现了相位误差的补偿和校准,减少了环境因素对测距误差的影响,提高了激光测距的测量精度,增加了系统的测距稳定度。

Description

基于单波长双激光管相位测量的校准方法及其装置 技术领域
本发明涉及光电测距技术领域,尤其涉及一种基于单波长双激光管相位测量的校准方法及其装置。
背景技术
激光一直是人类引以为傲的发明,它具有精确、快捷使用方便、抗干扰性强等特点,由此发展的激光技术更是解决了许多传统技术无法解决的技术障碍,而利用激光技术和电子技术集合而成的激光测距仪,在长度、高度、距离、速度、外形等领域愈发收到民用、军用和工业等行业的重视,在国外已经被广泛应用于一下领域:各大工矿企业,电力石化,水利,通讯,环境,建筑,地址,警务,消防,爆破,航海,铁路,反恐/军事,科研机构,农业,园林,房地产,休闲/户外运动等。
基于测量相位差原理的激光测距装置是用调制的激光光束照射被测目标,光束经被测目标反射后折回,将光束往返过程产生的相位变化,换算成被测目标的距离,应用于短距离高精度的距离测量,起测量的准确性和精度受装置内部零件特性的影响。激光测距仪器是精度要求越高,其电路的复杂度与精密器件的需求量就大大提高。因此环境因素,例如温度以及器件使用寿命对器件性能的影响,导致器件产生的相位漂移不可忽视。现有技术多利用内外光路的相位差补偿原理消除电路系统的附加相移,确保测量数据不受外界环境因素的影响。
现有技术采用如下的校准方法:
1)单发单收系统,即单路发送光束单路接收光路信号,通过一个可控制的机械装置实现内外光路的切换,通过计算切换前后内外光路的相位值进行相位校正,消除环境不确定相位干扰。由于采用物理机械开关,机械响应时间长(一般为数百毫秒级别),不可实时校准,且结构相对复杂,容易产生机械磨损和故障,使用寿命短,不适合作为工业精密仪器使用。
2)单发双收系统,即单路发射光束并通过双路分别接收内、外光路信号, 两路接收信号分别进行处理并计算其相位差,从而消除环境不确定相位干扰。该系统采用两个雪崩二极管(Avalanche Photo Diode,APD)分别接收内外光路信号,由于APD价格昂贵,使用两个APD不仅成本高。
3)传统双发单收系统,即双路独立发射同一波长光束并通过接收装置分别先后接收内、外光路信号,两路接收信号分别进行处理并计算其相位差,从而消除环境不确定相位干扰。该系统采用两个独立的光电发生装置分别发生两路相同波长的光波信号,而由于两路光电发生装置,特别是激光管,在工作时由于内外光路工作时间不同且两个激光性能差异极容易产生不同温度漂移无法用上述原理进行消除,从而产生测量距离的漂移。
综上所述,以上三种解决方案在实际应用中均存在缺陷。
另外,现有技术还存在以下缺陷:
1)现有技术中采用一个光波发射装置产生一路光波,需要利用光速转换装置改变光路,得到内、外两路光,光束转换装置的多次转换会产生机械负荷,机械磨损不可以避免,且电路响应时间长,另外带有光束转换装置必然导致电路复杂,体积大,成本高。
2)现有技术采用一个光波发射装置产生一路光波,需要由分光透镜同时产生内外两路光波,因此需采用双APD接收装置接收同时传输的光波,由于APD浪费电路空间、且成本较本方案高20%以上。
3)现有技术采用传统双发单收方式,即两个独立激光管发生两路光路光波信号形成内外光路并通过APD分别接收所述信号达到消除基底信号的相位。该方案在实施过程中,由于双独立激光管在工作过程中,工作时间和工作环境不同而导致两个LD的工作状态不同而无法完成消除基底信号:此外由于LD器件离散性较大,不同管子之间的差异也直接造成较大误差。
综合上述的描述,现有技术无法有效解决相位测量的校准。
发明内容
针对上述技术中存在的不足之处,本发明提供一种基于单波长双激光管相位测量的校准方法及其装置,避免了环境变化在电路中引入不确定的噪音,提高了激光测距的测量精度,增加了系统的测距稳定度,减少了环境因素对测距误差的影响,降低了系统对元器件的性能要求,从而减低了系统的成本, 加强了激光测距在各行业的应用。
为实现上述目的,本发明提供一种基于单波长双激光管相位测量的校准方法,包括以下步骤:
步骤1,高频调制信号经过激光自动功率控制电路产生外光路并发射至被测目标,外光路被被测目标反射折回后经光电接收电路接收;
步骤2,高频调制信号经过激光自动功率控制电路产生内光路并直接发送至光电接收电路被接收;
步骤3,光电接收电路将先后接收的外光路和内光路的两路光波与参考相位信号进行相位比较,计算出距离相位并输出消除基底的信号。
其中,所述步骤1之前还包括一步骤0,所述步骤0为:频率合成器产生频率信号和本振信号,该频率信号经过高频处理控制后得到高频调制信号,该高频调制信号发送至激光自动功率控制电路;该高频调制信号经过激光自动功率控制电路切换后得到外光路和内光路。
其中,内光路及外光路与本振信号进行混频后得到所述步骤3中的稳定的参考相位信号。
其中,所述步骤3中光电接收电路接收的外光路和内光路两路光波是先通过低频信号放大后再与参考相位信号进行相位比较。
其中,采用激光自动功率控制电路,使得发射的激光功率在环境-10℃至50℃中都保持一样。
为实现上述目的,本发明还提供一种基于单波长双激光管相位测量的校准装置,包括频率合成器、高频处理控制器、激光自动功率控制电路、光电接收电路、低频信号放大器、主控器和混频器;
所述频率合成器用于产生并输出频率信号和本振信号;所述混频器用于将内光路及外光路与本振信号进行混频并得到稳定的参考相位信号;所述激光自动功率控制电路对外光路和内光路进行切换;所述低频信号放大器用于将光电接收电路的输出信号进行放大后发送至主控器;
所述频率合成器与高频处理控制器连接并输出高频调制信号,该高频调制信号经过激光自动功率控制电路切换后得到外光路和内光路;该外光路发射至被测目标,外光路被被测目标反射折回后经光电接收电路接收;该内光 路直接发送至光电接收电路被接收;光电接收电路将先后接收的外光路和内光路的两路光波经过低频信号放大器进行放大并输出至主控器;所述混频器中的参考相位信号与放大后的两路光波进行相位比较,计算出距离相位并输出消除基底的信号。
其中,输出消除基底的信号通过语音播放电路发送至喇叭以真人的声音报出;且所述输出消除基底的信号通过蓝牙发射电路发送至智能终端设备,并实时无线传输测量的距离数据发送至智能终端设备。
其中,所述激光自动功率控制电路包括第一三极管、第二三极管、第一激光二极管、第二激光二极管、第一采样二极管和第二采样二极管;工作电压接入第一激光二极管与第一采样二极管的公共端,工作电压也接入第二激光二极管与第二采样二极管的公共端,且所述第一采样二极管与第二采样二极管连接后形成公共端接入第二三极管的基极;所述第一激光二极管与高频处理控制器连接且接收高频处理控制器产生的高频调制信号,所述第二激光二极管和第一三极管的集电极均连接至第一激光二极管与高频处理控制器之间;工作电压通过第一电阻连接至第一三极管的基极;所述第二三极管的发射极接地,且第二三极管的集电极接入第一电阻与第一三极管的基极之间;当环境温度升高时第一激光二极管和第二激光二极管的电流增大,第一采样二极管和第二采样二极管采样到的电压变小,给第二三极管的IB偏置电流也变小,第二三极管的IC电流放大相对的变小,第一三极管的IB偏置电流增大,第一三极管的IC电流放大加深,由此激光的发光功率保持不变;当环境温度降低时第一激光二极管和第二激光二极管的电流减少,第一采样二极管和第二采样二极管采样到的电压变大,给第二三极管的IB偏置电流也变大,第二三极管的IC电流放大相对的变大,那么第一三极管的IB偏置电流减少,第一三极管的IC电流放大减少,由此激光的发光功率也保持不变。
其中,所述第一三极管的发射极通过第二电阻接地,且第一电阻与第一三极管的基极之间连接有电容;所述第二三极管的基极通过第三电阻接地。
其中,所述光电接收电路可以为光电二极管、光电三极管、雪崩二极管或光电倍增管中的一种。
本发明的有益效果是:与现有技术相比,本发明提供的基于单波长双激 光管相位测量的校准方法及其装置,高频调制信号经过激光自动功率控制电路切换后得到外光路和内光路,再通过光电接收分别接收收外光路信号的返回信号和内光路信号,并将外光路信号的返回信号和内光路信号与参考相位信号进行相位比较,从而在消除附加相移,实现相位误差的补偿和校准的目的;同时采用了激光自动功率控制电路控制内、外光路切换,从而更加稳定高速的实现相位误差补偿和校准的目的,减少了环境因素对测距误差的影响,提高了激光测距的测量精度,增加了系统的测距稳定度,降低了系统对元器件的性能要求,从而减低了系统的成本,加强了激光测距在各行业的应用。
附图说明
图1为本发明的基于单波长双激光管相位测量的校准方法流程图;
图2为本发明的基于单波长双激光管相位测量的校准装置的结构图;
图3为本发明中激光自动功率控制电路的电路图。
主要元件符号说明如下:
10、频率合成器              11、高频处理控制器
12、激光自动功率控制电路    13、光电接收电路
14、低频信号放大器          15、主控器
16、混频器                  17、语音播放电路
18、喇叭                    19、蓝牙发射电路
20、外光路                  21、内光路。
具体实施方式
为了更清楚地表述本发明,下面结合附图对本发明作进一步地描述。
请参阅图1,本发明的基于单波长双激光管相位测量的校准方法,包括以下步骤:
步骤S0,频率合成器产生频率信号和本振信号,该频率信号经过高频处理控制后得到高频调制信号,该高频调制信号发送至激光自动功率控制电路;
步骤S1,高频调制信号经过激光自动功率控制电路产生外光路并发射至被测目标,外光路被被测目标反射折回后经光电接收电路接收;
步骤S2,高频调制信号经过激光自动功率控制电路产生内光路并直接发送至光电接收电路被接收;该高频调制信号经过激光自动功率控制电路切换 后得到外光路和内光路;
步骤S3,光电接收电路将先后接收的外光路和内光路的两路光波与参考相位信号进行相位比较,计算出距离相位并输出消除基底的信号;内光路及外光路与本振信号进行混频后得到步骤S3中的稳定的参考相位信号;步骤S3中光电接收电路接收的外光路和内光路两路光波是先通过低频信号放大后再与参考相位信号进行相位比较。
相较于现有技术的情况,本发明提供的基于单波长双激光管相位测量的校准方法,高频调制信号经过激光自动功率控制电路切换后得到外光路和内光路,再通过光电接收分别接收收外光路信号的返回信号和内光路信号,并将外光路信号的返回信号和内光路信号与参考相位信号进行相位比较,从而在消除附加相移,实现相位误差的补偿和校准的目的;同时采用了激光自动功率控制电路控制内、外光路切换,从而更加稳定高速的实现相位误差补偿和校准的目的,减少了环境因素对测距误差的影响,提高了激光测距的测量精度,增加了系统的测距稳定度,降低了系统对元器件的性能要求,从而减低了系统的成本,加强了激光测距在各行业的应用。
在本实施例中,采用激光自动功率控制电路12,使得发射的激光功率在环境-10℃至50℃中都保持一样。不需要任何补偿情况下,可以在宽的工作环境中其测量精度不变。进行相位比较的内光路、外光路可以为混频信号经行混频后的光波,相位相同或具有固定相位差的两路高频调频信号。
请进一步参阅图2,本发明还提供一种基于单波长双激光管相位测量的校准装置,包括频率合成器10、高频处理控制器11、激光自动功率控制电路12、光电接收电路13、低频信号放大器14、主控器15和混频器16;
频率合成器10用于产生并输出频率信号和本振信号;混频器16用于将内光路21及外光路22与本振信号进行混频并得到稳定的参考相位信号;激光自动功率控制电路12对外光路20和内光路21进行切换;低频信号放大器14用于将光电接收电路13的输出信号进行放大后发送至主控器15;
频率合成器10与高频处理控制器11连接并输出高频调制信号,该高频调制信号经过激光自动功率控制电路12切换后得到外光路21和内光路22;该外光路21发射至被测目标,外光路21被被测目标反射折回后经光电接收 电路13接收;该内光路20直接发送至光电接收电路13被接收;光电接收电路13将先后接收的外光路20和内光路21的两路光波经过低频信号放大器14进行放大并输出至主控器15;混频器16中的参考相位信号与放大后的两路光波进行相位比较,计算出距离相位并输出消除基底的信号。
相较于现有技术,本发明提供的基于单波长双激光管相位测量的校准装置,通过频率合成器10和高频处理控制器11配合产生高频调制信号,该信号经过激光自动功率控制电路切换后得到外光路和内光路,再通过光电接收分别接收收外光路信号的返回信号和内光路信号,并将外光路信号的返回信号和内光路信号与参考相位信号进行相位比较,从而在消除附加相移,实现相位误差的补偿和校准的目的;同时采用了激光自动功率控制电路控制内、外光路切换,从而更加稳定高速的实现相位误差补偿和校准的目的,减少了环境因素对测距误差的影响,提高了激光测距的测量精度,增加了系统的测距稳定度,降低了系统对元器件的性能要求,从而减低了系统的成本,加强了激光测距在各行业的应用
在本实施例中,输出消除基底的信号通过语音播放电路17发送至喇叭18以真人的声音报出;且输出消除基底的信号通过蓝牙发射电路19发送至智能终端设备,并实时无线传输测量的距离数据发送至智能终端设备。本发明还有一个亮点就是测量得出的结果和操作的各个菜单分别由主控器控制语音播放电路再通过喇叭以真人的声音报出读数和功能菜单,这样大大的提高了工作的效率,方便快捷。蓝牙功能:主控器控制蓝牙发射电路,可以实时无线传输测量的距离数据给PC、手机、ipad等智能终端设备。同时拿到本发明的蓝牙协议,第三方可开发出不同领域的APP系统,更智能化。
请进一步参阅3,激光自动功率控制电路12包括第一三极管Q1、第二三极管Q2、第一激光二极管LD1、第二激光二极管LD2、第一采样二极管PD1和第二采样二极管PD2;工作电压VDD接入第一激光二极管LD1与第一采样二极管PD1的公共端,工作电压VDD也接入第二激光二极管LD2与第二采样二极管PD2的公共端,且第一采样二极管PD1与第二采样二极管PD2连接后形成公共端接入第二三极管Q2的基极;第一激光二极管LD1与高频处理控制器12连接且接收高频处理控制器12产生的高频调制信号,第二激光二极管LD2和 第一三极管Q1的集电极均连接至第一激光二极管LD1与高频处理控制器12之间;工作电压VDD通过第一电阻R1连接至第一三极管Q1的基极;第二三极管Q2的发射极接地,且第二三极管Q2的集电极接入第一电阻R1与第一三极管Q1的基极之间;当环境温度升高时第一激光二极管LD1和第二激光二极管LD2的电流增大,第一采样二极管PD1和第二采样二极管PD2采样到的电压变小,给第二三极管Q2的IB偏置电流也变小,第二三极管Q2的IC电流放大相对的变小,第一三极管Q1的IB偏置电流增大,第一三极管Q1的IC电流放大加深,由此激光的发光功率保持不变;当环境温度降低时第一激光二极管LD1和第二激光二极管LD2的电流减少,第一采样二极管PD1和第二采样二极管PD2采样到的电压变大,给第二三极管Q2的IB偏置电流也变大,第二三极管Q2的IC电流放大相对的变大,那么第一三极管Q1的IB偏置电流减少,第一三极管Q1的IC电流放大减少,由此激光的发光功率也保持不变。第一三极管Q1的发射极通过第二电阻R2接地,且第一电阻R1与第一三极管Q1的基极之间连接有电容C;第二三极管Q2的基极通过第三电阻R3接地。光电接收电路13可以为光电二极管、光电三极管、雪崩二极管或光电倍增管中的一种。光电接收电路还可以是具有光电转换功能的其他装置。
对比于现有技术,在本发明可以采取激光自动功率控制电路控制内外光路的开关或切换,避免使用机械开关控制,且采用控制电路控制的响应时间快,接收内外光信号的间隔时间小,切换间隔时间为毫秒级别,可认为电路切换器件的周围环境不变,电路未受影响,不影响测量精度相对比上述双APD与双LD方案,本发明实施例采用双核封装的单芯片双波长激光管,通过内外光路切换和两个波长激光的校正完全消除APD和LD自身的共模影响,达到较双APD与双LD方案更高的精度。
以上公开的仅为本发明的几个具体实施例,但是本发明并非局限于此,任何本领域的技术人员能思之的变化都应落入本发明的保护范围。

Claims (10)

  1. 一种基于单波长双激光管相位测量的校准方法,其特征在于,包括以下步骤:
    步骤1,高频调制信号经过激光自动功率控制电路产生外光路并发射至被测目标,外光路被被测目标反射折回后经光电接收电路接收;
    步骤2,高频调制信号经过激光自动功率控制电路产生内光路并直接发送至光电接收电路被接收;
    步骤3,光电接收电路将先后接收的外光路和内光路的两路光波与参考相位信号进行相位比较,计算出距离相位并输出消除基底的信号。
  2. 根据权利要求1所述的基于单波长双激光管相位测量的校准方法,其特征在于,所述步骤1之前还包括一步骤0,所述步骤0为:频率合成器产生频率信号和本振信号,该频率信号经过高频处理控制后得到高频调制信号,该高频调制信号发送至激光自动功率控制电路;该高频调制信号经过激光自动功率控制电路切换后得到外光路和内光路。
  3. 根据权利要求1所述的基于单波长双激光管相位测量的校准方法,其特征在于,内光路及外光路与本振信号进行混频后得到所述步骤3中的稳定的参考相位信号。
  4. 根据权利要求3所述的基于单波长双激光管相位测量的校准方法,其特征在于,所述步骤3中光电接收电路接收的外光路和内光路两路光波是先通过低频信号放大后再与参考相位信号进行相位比较。
  5. 根据权利要求1所述的基于单波长双激光管相位测量的校准方法,其特征在于,采用激光自动功率控制电路,使得发射的激光功率在环境-10℃至50℃中都保持一样。
  6. 一种基于单波长双激光管相位测量的校准装置,其特征在于,包括频率合成器、高频处理控制器、激光自动功率控制电路、光电接收电路、低频信号放大器、主控器和混频器;
    所述频率合成器用于产生并输出频率信号和本振信号;所述混频器用于将内光路及外光路与本振信号进行混频并得到稳定的参考相位信号;所述激光自动功率控制电路对外光路和内光路进行切换;所述低频信号放大器用于 将光电接收电路的输出信号进行放大后发送至主控器;
    所述频率合成器与高频处理控制器连接并输出高频调制信号,该高频调制信号经过激光自动功率控制电路切换后得到外光路和内光路;该外光路发射至被测目标,外光路被被测目标反射折回后经光电接收电路接收;该内光路直接发送至光电接收电路被接收;光电接收电路将先后接收的外光路和内光路的两路光波经过低频信号放大器进行放大并输出至主控器;所述混频器中的参考相位信号与放大后的两路光波进行相位比较,计算出距离相位并输出消除基底的信号。
  7. 根据权利要求6所述的基于单波长双激光管相位测量的校准装置,其特征在于,输出消除基底的信号通过语音播放电路发送至喇叭以真人的声音报出;且所述输出消除基底的信号通过蓝牙发射电路发送至智能终端设备,并实时无线传输测量的距离数据发送至智能终端设备。
  8. 根据权利要求6所述的基于单波长双激光管相位测量的校准装置,其特征在于,所述激光自动功率控制电路包括第一三极管、第二三极管、第一激光二极管、第二激光二极管、第一采样二极管和第二采样二极管;工作电压接入第一激光二极管与第一采样二极管的公共端,工作电压也接入第二激光二极管与第二采样二极管的公共端,且所述第一采样二极管与第二采样二极管连接后形成公共端接入第二三极管的基极;所述第一激光二极管与高频处理控制器连接且接收高频处理控制器产生的高频调制信号,所述第二激光二极管和第一三极管的集电极均连接至第一激光二极管与高频处理控制器之间;工作电压通过第一电阻连接至第一三极管的基极;所述第二三极管的发射极接地,且第二三极管的集电极接入第一电阻与第一三极管的基极之间;当环境温度升高时第一激光二极管和第二激光二极管的电流增大,第一采样二极管和第二采样二极管采样到的电压变小,给第二三极管的IB偏置电流也变小,第二三极管的IC电流放大相对的变小,第一三极管的IB偏置电流增大,第一三极管的IC电流放大加深,由此激光的发光功率保持不变;当环境温度降低时第一激光二极管和第二激光二极管的电流减少,第一采样二极管和第二采样二极管采样到的电压变大,给第二三极管的IB偏置电流也变大,第二三极管的IC电流放大相对的变大,那么第一三极管的IB偏置电流减少, 第一三极管的IC电流放大减少,由此激光的发光功率也保持不变。
  9. 根据权利要求8所述的基于单波长双激光管相位测量的校准装置,其特征在于,所述第一三极管的发射极通过第二电阻接地,且第一电阻与第一三极管的基极之间连接有电容;所述第二三极管的基极通过第三电阻接地。
  10. 根据权利要求5所述的基于单波长双激光管相位测量的校准装置,其特征在于,所述光电接收电路可以为光电二极管、光电三极管、雪崩二极管或光电倍增管中的一种。
PCT/CN2016/096769 2015-12-10 2016-08-25 基于单波长双激光管相位测量的校准方法及其装置 WO2017096957A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/740,804 US10782408B2 (en) 2015-12-10 2016-08-25 Calibration method and device based on single-wavelength double-laser-tube phase measurement
EP16872153.8A EP3312632A4 (en) 2015-12-10 2016-08-25 Calibration method based on single-wavelength and double-laser-tube phase measurement, and device thereof
CN201680001371.9A CN106461764B (zh) 2015-12-10 2016-08-25 基于单波长双激光管相位测量的校准方法及其装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510918222.6 2015-12-10
CN201510918222 2015-12-10

Publications (1)

Publication Number Publication Date
WO2017096957A1 true WO2017096957A1 (zh) 2017-06-15

Family

ID=59013694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/096769 WO2017096957A1 (zh) 2015-12-10 2016-08-25 基于单波长双激光管相位测量的校准方法及其装置

Country Status (3)

Country Link
US (1) US10782408B2 (zh)
EP (1) EP3312632A4 (zh)
WO (1) WO2017096957A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110208775B (zh) * 2018-08-01 2021-12-14 王飞 一种激光雷达接收芯片、激光雷达芯片及激光雷达系统
CN111398978B (zh) * 2019-11-26 2023-11-03 中国矿业大学 一种改进的中远程相位式激光测距仪及测距方法
CN113687377B (zh) * 2021-08-12 2024-04-26 哈尔滨工业大学 一种基于粗精测尺差频调制与解调的协作式相位激光测距装置
CN115372982B (zh) * 2022-10-24 2023-03-24 东莞市森威电子有限公司 基于单个液晶光阀的户外激光测距系统及测距方法
CN116261238B (zh) * 2023-05-15 2023-07-21 上海杰茗科技有限公司 一种ToF光源驱动电路及电子设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5737085A (en) * 1997-03-19 1998-04-07 Systems & Processes Engineering Corporation Precision optical displacement measurement system
US6100540A (en) * 1999-02-22 2000-08-08 Visidyne, Inc. Laser displacement measurement system
CN101581783A (zh) * 2008-05-16 2009-11-18 张俊忠 一种相位测量的校准方法、装置及测距设备
CN201514481U (zh) * 2009-09-23 2010-06-23 伊玛精密电子(苏州)有限公司 激光测距仪
CN202770994U (zh) * 2012-08-06 2013-03-06 深圳市迈测科技有限公司 一种测距系统
CN103472454A (zh) * 2012-06-07 2013-12-25 北京博新精仪科技发展有限公司 相位式测距仪的数字信号处理系统
CN104035099A (zh) * 2013-03-08 2014-09-10 江苏徕兹光电科技有限公司 基于双发双收相位测量的校准方法及其测距装置
CN105093233A (zh) * 2015-08-27 2015-11-25 苏州翌森光电科技有限公司 相位式激光测距系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19643287A1 (de) * 1996-10-21 1998-04-23 Leica Ag Verfahren und Vorrichtung zur Kalibrierung von Entfernungsmeßgeräten
CA2446909A1 (en) * 2001-05-30 2002-12-05 Eagle Ray Corporation Optical sensor for distance measurement
EP1388739A1 (de) * 2002-08-09 2004-02-11 HILTI Aktiengesellschaft Laserdistanzmessgerät mit Phasenlaufzeitmessung
TWI295367B (en) * 2006-04-07 2008-04-01 Asia Optical Co Inc Distance measurement device and method
DE102009024460B4 (de) * 2009-06-10 2017-07-13 Carl Zeiss Ag Auswerteeinrichtung, Messanordnung und Verfahren zur Weglängenmessung
CN102540170B (zh) * 2012-02-10 2016-02-10 江苏徕兹光电科技股份有限公司 基于双波长激光管相位测量的校准方法及其测距装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5737085A (en) * 1997-03-19 1998-04-07 Systems & Processes Engineering Corporation Precision optical displacement measurement system
US6100540A (en) * 1999-02-22 2000-08-08 Visidyne, Inc. Laser displacement measurement system
CN101581783A (zh) * 2008-05-16 2009-11-18 张俊忠 一种相位测量的校准方法、装置及测距设备
CN201514481U (zh) * 2009-09-23 2010-06-23 伊玛精密电子(苏州)有限公司 激光测距仪
CN103472454A (zh) * 2012-06-07 2013-12-25 北京博新精仪科技发展有限公司 相位式测距仪的数字信号处理系统
CN202770994U (zh) * 2012-08-06 2013-03-06 深圳市迈测科技有限公司 一种测距系统
CN104035099A (zh) * 2013-03-08 2014-09-10 江苏徕兹光电科技有限公司 基于双发双收相位测量的校准方法及其测距装置
CN105093233A (zh) * 2015-08-27 2015-11-25 苏州翌森光电科技有限公司 相位式激光测距系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3312632A4 *

Also Published As

Publication number Publication date
US20180203118A1 (en) 2018-07-19
EP3312632A4 (en) 2018-11-07
EP3312632A1 (en) 2018-04-25
US10782408B2 (en) 2020-09-22

Similar Documents

Publication Publication Date Title
CN101581783B (zh) 一种相位测量的校准方法、装置及测距设备
WO2017096957A1 (zh) 基于单波长双激光管相位测量的校准方法及其装置
CN106461764B (zh) 基于单波长双激光管相位测量的校准方法及其装置
CN102540170B (zh) 基于双波长激光管相位测量的校准方法及其测距装置
CN101762809B (zh) 基于液晶光阀原理相位测量的校准方法、校准装置和测距装置
Ngo et al. Wideband receiver for a three-dimensional ranging LADAR system
US9945937B2 (en) Calibration method based on dual-transmitting dual-receiving phase measurement and distance-measuring device thereof
Zheng et al. A linear dynamic range receiver with timing discrimination for pulsed TOF imaging LADAR application
CN105006736A (zh) 基于闭环控制的光调频连续波扫频非线性校准系统及方法
CN209656894U (zh) 一种单激光相位测距仪
CN108896979B (zh) 一种超宽单射测量范围的脉冲激光雷达接收电路及系统
CN107102322A (zh) 微波激光雷达一体化系统
CN111665486A (zh) 激光雷达系统
CN109283546A (zh) 一种新型相位式激光测距装置及方法
CN204044355U (zh) 一种激光测距的校准装置及测量仪器
CN210487989U (zh) 一种测风激光雷达系统
CN106646502A (zh) 一种新型激光测距设备及方法
CN108931782A (zh) 一种激光测距装置及其测距方法
CN101881833A (zh) 光电测距装置
CN107290753A (zh) 一种激光测量系统及方法
CN103983962A (zh) 一种相位测量的校准方法、装置及测量装置
JP2018040656A (ja) 距離測定装置
CN203858361U (zh) 一种相位测量的校准装置及测量装置
CN209640492U (zh) 一种新型相位式激光测距装置
US10003408B2 (en) Receiving method and receiver device for a coherent optical communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16872153

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15740804

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE