WO2017096683A1 - 自动返航方法、系统及无人机 - Google Patents

自动返航方法、系统及无人机 Download PDF

Info

Publication number
WO2017096683A1
WO2017096683A1 PCT/CN2016/070179 CN2016070179W WO2017096683A1 WO 2017096683 A1 WO2017096683 A1 WO 2017096683A1 CN 2016070179 W CN2016070179 W CN 2016070179W WO 2017096683 A1 WO2017096683 A1 WO 2017096683A1
Authority
WO
WIPO (PCT)
Prior art keywords
aircraft
speed
aerial vehicle
angle
vel
Prior art date
Application number
PCT/CN2016/070179
Other languages
English (en)
French (fr)
Inventor
周顺辉
Original Assignee
深圳市道通智能航空技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术有限公司 filed Critical 深圳市道通智能航空技术有限公司
Publication of WO2017096683A1 publication Critical patent/WO2017096683A1/zh
Priority to US16/041,116 priority Critical patent/US10719081B2/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0088Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots characterized by the autonomous decision making process, e.g. artificial intelligence, predefined behaviours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/04Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by terrestrial means
    • G01C21/08Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by terrestrial means involving use of the magnetic field of the earth
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
    • G01C21/1654Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments with electromagnetic compass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/102Simultaneous control of position or course in three dimensions specially adapted for aircraft specially adapted for vertical take-off of aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/10UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]
    • B64U2201/104UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS] using satellite radio beacon positioning systems, e.g. GPS

Definitions

  • the invention relates to the technical field of flight control, in particular to a method, a system and a drone for controlling an automatic return of an aircraft.
  • GNSS Global Navigation Satellite System
  • the Global Navigation Satellite System can accurately determine the direction of movement of objects.
  • the speed information provided by GNSS can be used to estimate the orientation of the machine. .
  • the direction of movement derived from this direction of movement information is referred to as the Track Angle.
  • this assumption is not necessarily correct, because multi-rotor aircraft can fly in any direction in any direction.
  • the user Under the premise of clearing the direction of the aircraft nose, the user can control the front and rear of the aircraft without any adjustment of the nose. Therefore, the speed information of GNSS can only provide the direction of motion of the multi-rotor aircraft, but it cannot be used to correctly judge the direction of the nose of the aircraft.
  • the present invention is directed to overcoming the above problems in the prior art, and provides an automatic returning system, that is, a method for utilizing a low-cost GNSS receiver and a specific design of the present invention without changing existing hardware.
  • the flight action is used to achieve the effect of estimating the heading of the aircraft and safely returning to the air.
  • the present invention provides the following technical solutions:
  • the present invention provides an automatic returning system for use on an aircraft, the aircraft being provided with a magnetometer, the automatic returning system comprising: a determining module for determining whether the magnetometer is ineffective or encountering strong magnetic interference And an acceleration module, configured to accelerate the aircraft toward the nose when the magnetometer fails or encounters strong magnetic interference, the head direction is assumed to be equivalent to a track angle, wherein the determining module is further used for Determining whether the speed of the aircraft after the acceleration reaches a preset value; the processing module, configured to acquire a track angle of the aircraft according to the speed when the speed reaches a preset value; wherein the processing module is further configured to pass A positioning system that provides a global or local coordinate acquires a current position of the aircraft and a return point to obtain a heading angle of the aircraft; the determining module is further configured to determine a heading angle of the aircraft and a navigation of the aircraft Whether the difference between the track angles is less than a fixed value; and the control module is configured to control the aircraft to directly return when the difference is
  • the present invention provides a method for automatically returning an aircraft, wherein the method is provided with a magnetometer.
  • the method includes: when the magnetometer fails or encounters strong magnetic interference, assuming that the track angle is equal to the head direction And accelerating the aircraft toward the nose; determining whether the speed of the aircraft after acceleration reaches a preset value; if the speed reaches a preset value, acquiring a track angle of the aircraft according to the speed;
  • a positioning system that provides a global or local coordinate acquires a current position of the aircraft and a return point to obtain a heading angle of the aircraft; and determines a difference between a heading angle of the aircraft and a track angle of the aircraft Whether it is less than a fixed value; and if the difference is less than a fixed value, the aircraft is controlled to return directly.
  • the invention also provides a drone comprising the above-described automatic returning system.
  • the present invention also provides a fixed-wing UAV, including the above-described automatic returning system.
  • the invention has the beneficial effects that the GNSS receiver determines the head direction of the aircraft to determine the heading of the aircraft and the return point when the magnetometer on the aircraft fails or encounters strong magnetic interference. Position, thereby achieving safe return of the aircraft without increasing the hardware cost of the aircraft.
  • FIG. 1 is a schematic diagram of functional modules of an automatic returning navigation system according to an embodiment of the present invention
  • FIG. 2 is a schematic view of an angle required to adjust a direction of a handpiece according to an embodiment of the present invention
  • FIG. 3 is a flow chart of automatic returning in an embodiment of the present invention.
  • FIG. 1 is a schematic diagram showing the functional modules of the automatic returning system 10 according to an embodiment of the present invention.
  • the automatic returning system 10 is used on an aircraft, the aircraft is provided with a magnetometer and a positioning system capable of providing global or local coordinates, the magnetometer is for receiving magnetic induction, the available The global or local coordinate positioning system is used to obtain the position of the aircraft and the speed of the UAV in the east-west direction (VEL_E) and the speed in the north-south direction (VEL_N).
  • the positioning system includes any one of a global satellite navigation system, a differential global positioning system, a real-time dynamic global positioning system, a radio frequency identification based local positioning system, and an ultra-wideband positioning system.
  • the aircraft may be a fixed wing drone, an unmanned helicopter or a multi-rotor aircraft.
  • the automatic returning system includes: a determining module 130, an acceleration module 140, a processing module 150, and a control module 160.
  • the determining module 130 is configured to determine whether the magnetometer is ineffective or encounters strong magnetic interference. In this embodiment, the determining module 130 determines whether the magnetometer is invalid or encounters strong magnetic interference by determining whether the magnetic induction received by the magnetometer is abnormal.
  • the acceleration module 140 is configured to accelerate the aircraft toward the nose when the magnetometer fails or encounters strong magnetic interference, and the head direction is assumed to be equivalent to the track angle.
  • the determining module 130 is further configured to determine whether the speed of the aircraft after acceleration has reached a preset value.
  • the acceleration module 140 is a motor on the aircraft. The output of the motor is different and the speed is different.
  • the acceleration module 140 is further configured to continue to accelerate the aircraft when the speed does not reach a preset value.
  • the acceleration module 140 needs to maintain the acceleration when the aircraft is accelerated.
  • the left and right inclination angle of the aircraft is zero.
  • the processing module 150 is configured to acquire a track angle of the aircraft according to the speed when the speed reaches a preset value, wherein the processing module 150 is further configured to provide a global or local coordinate
  • the positioning system acquires the current position of the aircraft and the return point to obtain the heading angle of the aircraft.
  • the positioning system is configured to acquire a current position of the aircraft and a return point to obtain a heading angle of the aircraft.
  • the determining module 130 is further configured to determine whether a difference between the track angle and the heading angle is less than a fixed value.
  • the difference is an angle of the aircraft to adjust the direction of the head, and the fixed value may be: 10 degrees, 15 degrees, 20 degrees, and the like.
  • FIG. 2 is a schematic diagram of the angle of the direction of the head to be adjusted. Since the aircraft records the coordinates of the return point and the positioning system provides the coordinates of the current aircraft, a vector can be formed between the two points. In addition, the track angle calculated by the processing module 150 also constitutes a vector. The angle between the two vectors (the difference described above) is the head direction (ie heading) that the aircraft must adjust to achieve accurate return.
  • the heading angle that the aircraft must adjust towards the return point is
  • the control module 160 is configured to control the aircraft to directly return when the difference is less than a fixed value.
  • the control module 160 is further configured to adjust a head direction (ie, a heading) of the aircraft when the difference is not less than a fixed value.
  • the control module 160 adjusts the track angle of the aircraft by: controlling the acceleration module 140 to accelerate the aircraft, and adjusting the east-west speed VEL_E and the north-south direction speed VEL_N, thereby achieving The adjustment of the drone's course.
  • the aircraft in this embodiment can ensure the safe return of the aircraft when the electromagnetic interference from the outside causes the magnetometer to malfunction or when the magnetometer fails. There is no need to add additional hardware and the cost is low.
  • FIG. 3 is a flow chart of controlling the automatic return of the aircraft according to an embodiment of the present invention.
  • the aircraft is provided with a magnetometer and a positioning system.
  • the positioning system is used to acquire the position of the aircraft and the speed of the aircraft in the east-west direction (VEL_E) and the speed in the north-south direction (VEL_N).
  • the positioning system includes any one of a global satellite navigation system, a differential global positioning system, a real-time dynamic global positioning system, a radio frequency identification based local positioning system, and an ultra-wideband positioning system.
  • the aircraft further includes: a determination module 130, an acceleration module 140, a processing module 150, and a control module 160.
  • the method includes the following steps:
  • step S20 the magnetometer receives the magnetic induction.
  • step S21 the determining module 130 determines whether the magnetic induction intensity in the step S20 is abnormal.
  • step S22 the acceleration module 140 accelerates the aircraft.
  • the acceleration module 140 accelerates the aircraft, it is necessary to keep the left and right inclination angle of the aircraft to be zero.
  • step S23 the determining module 130 determines whether the speed after the acceleration of the aircraft reaches a preset value.
  • step S24 the processing module 150 acquires a track angle of the aircraft according to the speed.
  • ⁇ gnss atan2(VEL_E, VEL_N)
  • step S25 the processing module 150 acquires the current position of the aircraft and the return point through the positioning system, thereby obtaining the heading angle of the aircraft.
  • step S26 the determining module 130 determines whether the difference between the angle between the heading angle and the track angle is less than a fixed value.
  • the difference is an angle required for the direction of the nose of the aircraft, and the fixed value may be: 10 degrees, 15 degrees, 20 degrees, or the like.
  • a vector can be formed between the two points.
  • the track angle calculated by the processing module 150 also constitutes a vector.
  • the angle between the two vectors (the difference described above) is the heading that the aircraft must adjust to achieve accurate return.
  • the heading angle that the aircraft must adjust towards the return point is
  • step S27 the control module 160 controls the aircraft to directly return.
  • step S22 the acceleration module 140 continues to accelerate the aircraft.
  • control module 160 adjusts the track angle of the aircraft by: controlling the acceleration module 140 to accelerate the aircraft, and adjusting the east-west speed VEL_E and the north-south direction speed VEL_N, thereby achieving Adjustment of the course of the aircraft.
  • the invention also provides a drone, comprising the above-mentioned automatic returning system, wherein when the magnetometer on the drone is subjected to electromagnetic interference or failure of the outside, the above-mentioned automatic returning method is used for returning.
  • the automatic returning system, the method and the method of the unmanned aerial vehicle of the invention acquire the position of the return point through the GNSS receiver and accelerate the aircraft through the acceleration module when the external electromagnetic interference affects the normal operation of the magnetometer or the magnetometer fails Then, the aircraft's flight path angle is obtained, and the aircraft's heading is adjusted in time to realize the safe return of the aircraft.
  • the problem of safe return of the drone is effectively solved without increasing the hardware, and the cost is low.
  • RFID radio frequency identification
  • Ultra-Wideband ultra-wideband

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Electromagnetism (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Game Theory and Decision Science (AREA)
  • Medical Informatics (AREA)
  • Business, Economics & Management (AREA)
  • Navigation (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Traffic Control Systems (AREA)

Abstract

一种控制飞行器自动返航的方法系统和无人机,所述方法包括:在磁力计失效或遇强磁干扰时,假设航迹角等同于机头方向,对所述飞行器朝机头方向进行加速(S22);判断所述飞行器加速后的速度是否达到预设值(S23);若所述速度达到预设值,则根据所述速度获取所述飞行器的航迹角(S24);通过一可提供全局或局部坐标的定位系统获取所述飞行器的当前位置以及返航点,从而获得所述飞行器的航向角(S25);判断所述飞行器的航向角与所述飞行器的航迹角之间的差值是否小于固定值(S26);以及若所述差值小于固定值,控制所述飞行器直接返航(S27)。上述技术能够在不增加硬件成本的前提下实现飞行器的自动返航。

Description

自动返航方法、系统及无人机 技术领域
本发明涉及飞行控制技术领域,尤其涉及一种控制飞行器自动返航的方法、系统及无人机。
背景技术
在现有的无人机领域,要执行航点飞行(例如使用多旋翼航拍机),必须依靠稳定的卫星定位信号及磁力计。如果飞行过程中磁力计遭遇干扰,则用户只能以手动姿态模式飞行。在此模式下飞行时,如果无法正确判断出机头的方向,将无法正确地操作飞机。而且,在磁力计失效的情况下,飞机也无法执行安全保护措施,并进行自动返航功能。
对于多旋翼飞行器而言,由于其本身是无机头的设计,因此若在飞行时磁力计无效,则很难判断机头的方向,以及飞行器飞行的方向。
目前常用的解决方案是在无人机上加载两个GNSS(Global Navigation Satellite System,全球导航卫星系统)接收机,通过干涉法计算来得出无人机的方位(参考http://www.vectornav.com/products/vn-300 Dual GPS Compassing Algorithm)。但此举无疑会增加无人机的重量及生产成本。
另外也可以使用精准度更高的传感器,即使在磁场干扰下也可以准确估算出无人机的航向和方位,但这又会增加无人机的成本。对于航拍飞行器,基于成本因素,以上所说的更昂贵的传感器方案并不适用。
再者,全球导航卫星系统(GNSS)可以准确判断出物体的移动方向,对于只能往前推动前进的机器(例:汽车,固定翼飞机),GNSS提供的速度信息可以用来估计机器的方位。以此移动方向信息所推算出的移动方向被称为航迹角(Track Angle)。但是对于多旋翼飞机,这个假设并不一定正确,原因是多旋翼飞机可以任意往任何方向直线飞行。用户在清楚飞行器机头的方向前提下,可以在不调整机头的情况下操控飞行器前后左右任意风行。因此,GNSS的速度信息只能提供多旋翼飞机的运动方向,却无法以此正确判断出飞行器的机头方向。
发明内容
本发明旨在克服现有技术中存在的以上问题,提供一种自动返航系统即方法,使得在不改变现有硬件的前提下,利用低成本的全球导航卫星系统接收机及本发明设计的特定飞行动作,来达到估计飞行器航向及安全自主返航的效果。
为解决上述技术问题,本发明提供以下技术方案:
一方面,本发明提供一种自动返航系统,用于飞行器上,所述飞行器上设置有磁力计,所述自动返航系统包括:判断模块,用于判断所述磁力计是否失效或遇强磁干扰;加速模块,用于在所述磁力计失效或遇强磁干扰时,对所述飞行器朝机头方向进行加速,该机头方向假设等同于航迹角,其中,所述判断模块还用于判断所述飞行器加速后的速度是否达到预设值;处理模块,用于在所述速度达到预设值时根据所述速度获取所述飞行器的航迹角;其中所述处理模块还用于通过可提供全局或局部座标的定位系统获取所述飞行器的当前位置以及返航点,从而获得所述飞行器的航向角;所述判断模块,还用于判断所述飞行器的航向角与所述飞行器的航迹角之间的差值是否小于固定值;以及控制模块用于在所述差值小于固定值时控制所述飞行器直接返航。
另一方面,本发明提供一种飞行器自动返航的方法,所述飞行器上设置有磁力计所述方法包括:在所述磁力计失效或遇强磁干扰时,假设航迹角等同于机头方向,对所述飞行器朝机头方向进行加速;判断所述飞行器加速后的速度是否达到预设值;若所述速度达到预设值,则根据所述速度获取所述飞行器的航迹角;通过一可提供全局或局部座标的定位系统获取所述飞行器的当前位置以及返航点,从而获得所述飞行器的航向角;判断所述飞行器的航向角与所述飞行器的航迹角之间的差值是否小于固定值;以及若所述差值小于固定值,控制所述飞行器直接返航。
本发明还提供一种无人机,包括上述自动返航系统。
本发明还提供一种固定翼无人机,包括上述自动返航系统。
与现有技术相比,本发明的有益效果在于:在飞行器上的磁力计失效或遇强磁干扰的情况下,通过GNSS接收机来判断飞行器的机头方向,以确定飞行器航向以及返航点的位置,从而实现飞行器的安全返航,且不增加飞行器的硬件成本。
附图说明
图1为本发明一实施方式中自动返航系统的功能模块示意图;
图2为本发明一实施方式中所需调整机头方向的角度的示意图;
图3为本发明一实施方式中自动返航的流程图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
请参阅图1,图1所示为本发明一实施方式中自动返航系统10的功能模块示意图。
在本实施方式中,所述自动返航系统10用于飞行器上,所述飞行器上设置有磁力计以及可提供全局或局部座标的定位系统,所述磁力计用于接收磁感应强度,所述可提供全局或局部座标的定位系统用于获取飞行器所在的位置以及无人机在飞行过程中东西方向的速度(VEL_E)以及南北方向的速度(VEL_N)。
在本实施方式中,定位系统包括全球卫星导航系统、差分全球定位系统、实时动态全球定位系统、基于射频识别的局部定位系统及超宽带定位系统中的任意一种。
在本实施方式中,所述飞行器可以为固定翼无人机、无人直升机或多旋翼飞行器。
在本实施方式中,所述自动返航系统包括:判断模块130、加速模块140、处理模块150以及控制模块160。
在本实施方式中,判断模块130用于判断所述磁力计是否失效或遇强磁干扰。在本实施方式中,所述判断模块130通过判断所述磁力计所接收到的所述磁感应强度是否异常来判断所述磁力计是否失效或遇强磁干扰。
在本实施方式中,加速模块140用于在所述磁力计失效或遇强磁干扰时对所述飞行器朝着机头方向进行加速,该机头方向假设等同于航迹角。其中,所述判断模块130还用于判断所述飞行器加速后的速度是否达到预设值。在本实施方式中,加速模块140为飞行器上的电机。电机的输出不同,速度就不同。
在本实施方式中,所述加速模块140还用于在所述速度未达到预设值时继续对所述飞行器进行加速。
在本实施方式中,所述加速模块140对所述飞行器进行加速时需要保持所 述飞行器左右倾角为零。
在本实施方式中,处理模块150用于在所述速度达到预设值时根据所述速度获取所述飞行器的航迹角,其中所述处理模块150还用于通过可提供全局或局部座标的定位系统获取所述飞行器的当前位置以及返航点,从而获得所述飞行器的航向角。在本实施方式中,所述处理模块150获取所述飞行器的航迹角的算法为:ψgnss=atan2(VEL_E,VEL_N),其中VEL_E为所述GNSS接收机提供的东西方向速度,VEL_N为所述GNSS接收机提供的南北方向速度。
在本实施方式中,所述定位系统用于获取所述飞行器的当前位置以及返航点,从而获得所述飞行器的航向角。所述判断模块130还用于判断所述航迹角与所述航向角之间的差值是否小于固定值。在本实施方式中,所述差值为飞行器的所需调整机头方向的角度,所述固定值可以为:10度、15度、20度等。
请参阅图2,图2所示为所需调整机头方向的角度的示意图,由于飞行器记录了返航点座标和定位系统提供当前的飞行器所在座标,这两点之间可以形成一个向量
Figure PCTCN2016070179-appb-000001
另外,处理模块150所计算出来航迹角也组成了一个向量
Figure PCTCN2016070179-appb-000002
这两个向量的夹角(即上述的差值)便是飞行器必须调整的机头方向(即航向),以达到实现精准返航。
飞行器须朝返航点调整的航向角为
Figure PCTCN2016070179-appb-000003
Figure PCTCN2016070179-appb-000004
控制模块160用于在所述差值小于固定值时控制所述飞行器直接返航。
所述控制模块160还用于在所述差值不小于固定值时调整所述飞行器的机头方向(即航向)。在本实施方式中,所述控制模块160调整所述飞行器的航迹角的方法为:通过控制所述加速模块140对飞行器进行加速,并调整东西方向速度VEL_E以及南北方向速度VEL_N,从而实现对无人机航向的调整。
本实施方式中的飞行器在外界有电磁干扰导致磁力计不能正常工作时或者是磁力计失效时能确保飞行器安全返航。且不需要增加额外的硬件,成本低。
请参阅图3,图3所示为本发明一实施方式中控制飞行器自动返航的流程图。
在本实施方式中,所述飞行器上设置有磁力计以及定位系统。所述定位系统用于获取飞行器所在的位置以及飞行器在飞行过程中东西方向的速度(VEL_E)以及南北方向的速度(VEL_N)。
在本实施方式中,定位系统包括全球卫星导航系统、差分全球定位系统、实时动态全球定位系统、基于射频识别的局部定位系统及超宽带定位系统中的任意一种。
在本实施方式中,所说飞行器还包括:判断模块130、加速模块140、处理模块150以及控制模块160。
在本实施方式中,所述方法包括以下步骤:
步骤S20,所述磁力计接收磁感应强度。
在步骤S21,所述判断模块130判断所述步骤S20中的所述磁感应强度是否异常。
若所述磁感应强度异常,则表明所述磁力计失效或遇强磁干扰,在步骤S22,所述加速模块140对所述飞行器进行加速。在本实施方式中,所述加速模块140对所述飞行器进行加速时需要保持所述飞行器左右倾角为零。
在步骤S23,所述判断模块130判断所述飞行器加速后的速度是否达到预设值。
若所述速度达到预设值,则在步骤S24,所述处理模块150根据所述速度获取所述飞行器的航迹角。在本实施方式中,所述处理模块150获取所述飞行器的航迹角的算法为:ψgnss=atan2(VEL_E,VEL_N),其中VEL_E为所述GNSS接收机提供的东西方向速度,VEL_N为所述GNSS接收机提供的南北方向速度。事实上,由于存在一些无法控制的因素,例如天然风,飞机本身的不平衡等等,ψgnss和机头方向实际中会有所偏差。
在步骤S25,所述处理模块150通过所述定位系统获取所述飞行器的当前位置以及返航点,从而获得所述飞行器的航向角。
在步骤S26,所述判断模块130判断所述航向角与所述航迹角之间角度的差值是否小于固定值。在本实施方式中,所述差值为为飞行器的机头方向所需调整的角度,所述固定值可以为:10度、15度、20度等。
请参阅图2,由于飞行器记录了返航点座标和GNSS接收机提供当前的飞行器所在座标,这两点之间可以形成一个向量
Figure PCTCN2016070179-appb-000005
另外,处理模块150所计算出来航迹角也组成了一个向量
Figure PCTCN2016070179-appb-000006
这两个向量的夹角(即上述的差值)便是飞行器必须调整的航向,以达到实现精准返航。
飞行器须朝返航点调整的航向角为
Figure PCTCN2016070179-appb-000007
Figure PCTCN2016070179-appb-000008
若所述差值小于固定值,则在步骤S27,所述控制模块160控制所述飞行器直接返航。
若所述速度未达到预设值,则返回步骤S22,所述加速模块140继续对所述飞行器进行加速。
若所述差值不小于固定值时,则返回步骤S22,调整所述飞行器的航向。在本实施方式中,所述控制模块160调整所述飞行器的航迹角的方法为:通过控制所述加速模块140对飞行器进行加速,并调整东西方向速度VEL_E以及南北方向速度VEL_N,从而实现对飞行器航向的调整。
本发明还提供一种无人机,包括上述自动返航系统,在无人机上的磁力计受到外界的电磁干扰或者失效时,使用上述的自动返航方法,进行返航。
本发明中的自动返航系统、方法及无人机的方法,在外界的电磁干扰影响到磁力计的正常工作或者磁力计失效时,通过GNSS接收机获取返航点位置以及通过加速模块对飞行器进行加速,进而获取飞行器的航迹角,并及时调整飞行器的航向以实现飞行器安全返航,在不增加硬件的前提下有效的解决了无人机安全返航的问题,成本低。
需要说明的是,本发明的具体实施方式中还可以采用其他可提供全局或局部座标的定位系统,例如:基于射频识别(Radio Frequency Identification,RFID)的局部定位系统(local positioning system);超宽带(Ultra-Wideband)定位系统。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种飞行器自动返航的方法,所述飞行器上设置有磁力计,其特征在于,所述方法包括:
    在所述磁力计失效或遇强磁干扰时,假设航迹角等同于机头方向,对所述飞行器朝机头方向进行加速;
    判断所述飞行器加速后的速度是否达到预设值;
    若所述速度达到预设值,则根据所述速度获取所述飞行器的航迹角;
    通过一可提供全局或局部座标的定位系统获取所述飞行器的当前位置以及返航点,从而获得所述飞行器的航向角;
    判断所述飞行器的航向角与所述飞行器的航迹角之间的差值是否小于固定值;以及
    若所述差值小于固定值,控制所述飞行器直接返航。
  2. 如权利要求1所述的方法,其特征在于,所述飞行器的航迹角为ψgnss=atan2(VEL_E,VEL_N),其中VEL_E为所述定位系统提供的东西方向速度,VEL_N为所述定位系统提供的南北方向速度。
  3. 如权利要求1所述的方法,其特征在于,所述对所述飞行器进行加速的操作需要保持所述飞行器左右倾角为零。
  4. 如权利要求1所述的方法,其特征在于,当所述差值不小于固定值时,则回到以下步骤:
    在所述磁力计失效或遇强磁干扰时,假设航迹角等同于机头方向,对所述飞行器朝机头方向进行加速。
  5. 一种自动返航系统,用于飞行器上,所述飞行器上设置有磁力计,其特征在于,还包括:
    判断模块,用于判断所述磁力计是否失效或遇强磁干扰;
    加速模块,用于在所述磁力计失效或遇强磁干扰时,对所述飞行器朝机头方向进行加速,该机头方向假设等同于航迹角,其中,所述判断模块还用于判断所述飞行器加速后的速度是否达到预设值;
    处理模块,用于在所述速度达到预设值时根据所述速度获取所述飞行器的航迹角;其中所述处理模块还用于通过可提供全局或局部座标的定位系统获取所述飞行器的当前位置以及返航点,从而获得所述飞行器的航向角;
    所述判断模块,还用于判断所述飞行器的航向角与所述飞行器的航迹角之 间的差值是否小于固定值;以及
    控制模块用于在所述差值小于固定值时控制所述飞行器直接返航。
  6. 如权利要求5所述的自动返航系统,其特征在于,所述飞行器的航迹角为ψgnss=atan2(VEL_E,VEL_N),其中VEL_E为所述定位系统提供的东西方向速度,VEL_N为所述定位系统提供的南北方向速度。
  7. 如权利要求5所述的自动返航系统,其特征在于,所述加速模块对所述飞行器进行加速时需要保持所述飞行器左右倾角为零。
  8. 如权利要求5所述的自动返航系统,其特征在于,所述控制模块还用于在所述差值不小于固定值时,由所述加速模块、所述处理模块以及所述定位系统重新调整所述飞行器的机头方向。
  9. 一种无人机,其特征在于,包括如权利要求5-8所述的自动返航系统。
  10. 一种固定翼无人机,其特征在于,包括如权利要求5-8所述的自动返航系统。
PCT/CN2016/070179 2015-12-10 2016-01-05 自动返航方法、系统及无人机 WO2017096683A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/041,116 US10719081B2 (en) 2015-12-10 2018-07-20 Automatic returning method and system, and unmanned aerial vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510916318.9 2015-12-10
CN201510916318.9A CN105446355B (zh) 2015-12-10 2015-12-10 自动返航方法、系统及无人机

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/041,116 Continuation-In-Part US10719081B2 (en) 2015-12-10 2018-07-20 Automatic returning method and system, and unmanned aerial vehicle

Publications (1)

Publication Number Publication Date
WO2017096683A1 true WO2017096683A1 (zh) 2017-06-15

Family

ID=55556675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/070179 WO2017096683A1 (zh) 2015-12-10 2016-01-05 自动返航方法、系统及无人机

Country Status (3)

Country Link
US (1) US10719081B2 (zh)
CN (1) CN105446355B (zh)
WO (1) WO2017096683A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017084073A1 (zh) * 2015-11-19 2017-05-26 深圳市大疆创新科技有限公司 一种检测磁场干扰的方法、设备及系统
CN105700554A (zh) * 2016-03-31 2016-06-22 中晟启天(深圳)科技有限公司 一种固定翼无人机降落方法及系统
US10671091B2 (en) * 2017-03-03 2020-06-02 Alpine Electronics, Inc. Flight control device and flight control method for unmanned aerial vehicle
WO2018214121A1 (en) * 2017-05-25 2018-11-29 SZ DJI Technology Co., Ltd. Method and apparatus for controlling unmanned aerial vehicle
US11385059B2 (en) 2017-05-26 2022-07-12 Guangzhou Xaircraft Technology Co., Ltd Method for determining heading of unmanned aerial vehicle and unmanned aerial vehicle
CN110568860A (zh) * 2019-09-17 2019-12-13 深圳市道通智能航空技术有限公司 一种无人飞行器的返航方法、装置及无人飞行器
CN112000118B (zh) * 2020-08-21 2023-01-31 深圳市道通智能航空技术股份有限公司 一种无人机保护方法、装置及无人机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4809007A (en) * 1986-03-03 1989-02-28 Litef Gmbh Navigation method
US20040250616A1 (en) * 1999-01-18 2004-12-16 Peter Adebjork Redundant system for the indication of heading and attitude in an aircraft
CN102520728A (zh) * 2011-11-22 2012-06-27 北京空间机电研究所 一种采用双天线gps实现可控翼伞精确定点回收的方法
CN102901977A (zh) * 2012-10-24 2013-01-30 北京航天自动控制研究所 一种飞行器的初始姿态角的确定方法
US20130345972A1 (en) * 2012-06-21 2013-12-26 Shahram Askarpour Method and system for compensating for soft iron magnetic disturbances in a heading reference system
CN104535065A (zh) * 2014-12-23 2015-04-22 广州快飞计算机科技有限公司 无人机飞行器在复杂磁场环境下的航向生成方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4328660B2 (ja) * 2004-04-15 2009-09-09 富士重工業株式会社 航空機の自動離陸装置、自動着陸装置及び自動離着陸装置並びに航空機の自動離陸方法、自動着陸方法及び自動離着陸方法
CN102901997B (zh) 2012-09-14 2014-12-31 华中科技大学 一种曲面复眼的制备方法
CN103411609B (zh) * 2013-07-18 2016-03-02 北京航天自动控制研究所 一种基于在线构图的飞行器返航路线规划方法
CN104714556B (zh) * 2015-03-26 2017-08-11 清华大学 无人机智能航向控制方法
CN104807456B (zh) * 2015-04-29 2018-04-17 深圳市保千里电子有限公司 一种gps无信号时自动返航的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4809007A (en) * 1986-03-03 1989-02-28 Litef Gmbh Navigation method
US20040250616A1 (en) * 1999-01-18 2004-12-16 Peter Adebjork Redundant system for the indication of heading and attitude in an aircraft
CN102520728A (zh) * 2011-11-22 2012-06-27 北京空间机电研究所 一种采用双天线gps实现可控翼伞精确定点回收的方法
US20130345972A1 (en) * 2012-06-21 2013-12-26 Shahram Askarpour Method and system for compensating for soft iron magnetic disturbances in a heading reference system
CN102901977A (zh) * 2012-10-24 2013-01-30 北京航天自动控制研究所 一种飞行器的初始姿态角的确定方法
CN104535065A (zh) * 2014-12-23 2015-04-22 广州快飞计算机科技有限公司 无人机飞行器在复杂磁场环境下的航向生成方法

Also Published As

Publication number Publication date
US10719081B2 (en) 2020-07-21
CN105446355B (zh) 2018-06-26
CN105446355A (zh) 2016-03-30
US20180348765A1 (en) 2018-12-06

Similar Documents

Publication Publication Date Title
WO2017096683A1 (zh) 自动返航方法、系统及无人机
US10656661B2 (en) Methods and apparatus of tracking moving targets from air vehicles
EP3521158B1 (en) Flight control device, unmanned aerial vehicle, flight control method, and computer program
KR102164372B1 (ko) 소형 고정익 무인항공기의 경로 추종 방법 및 이를 이용한 lgvf 경로 추종 제어기
WO2018094583A1 (zh) 无人机避障控制方法、飞行控制器及无人飞行器
Kong et al. A ground-based optical system for autonomous landing of a fixed wing UAV
Garratt et al. Vision‐based terrain following for an unmanned rotorcraft
US10710717B2 (en) Multirotor aircraft and a method for controlling the multirotor aircraft
US20190196474A1 (en) Control method, control apparatus, control device, and movable platform
EP3400493B1 (en) Exploiting or avoiding air drag for an aerial vehicle
WO2018094626A1 (zh) 无人飞行器的避障控制方法及无人飞行器
CN105352495A (zh) 加速度与光流传感器数据融合无人机水平速度控制方法
WO2018187936A1 (zh) 一种无人飞行器及无人飞行器的避障控制方法
US10351230B2 (en) Initial rotor state compensation for a rotorcraft
US11287261B2 (en) Method and apparatus for controlling unmanned aerial vehicle
TWI656325B (zh) UAV navigation obstacle avoidance system and method thereof
Weiss et al. Inertial optical flow for throw-and-go micro air vehicles
CN105786015A (zh) 基于Arkbird A飞控系统的无人机编队控制系统及控制方法
US10459456B2 (en) Autonomous helicopter posture regulation to moving reference frames
US10747237B2 (en) Adjusting load on tethered aircraft
US20230222921A1 (en) Flight formation assistance system for aircraft
CN207809802U (zh) 一种飞行器倾斜飞行自稳定云台
Zhang et al. Multi-sensory motion estimation and control of a mini-quadrotor in an air-ground multi-robot system
KR102212029B1 (ko) 회전 비행체
Bin et al. Control of a quadrotor helicopter using the COMPASS (BeiDou) system and on-board vision system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16871894

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16871894

Country of ref document: EP

Kind code of ref document: A1