WO2017095252A1 - Способ определения давления смыкания трещины в пласте - Google Patents

Способ определения давления смыкания трещины в пласте Download PDF

Info

Publication number
WO2017095252A1
WO2017095252A1 PCT/RU2015/000829 RU2015000829W WO2017095252A1 WO 2017095252 A1 WO2017095252 A1 WO 2017095252A1 RU 2015000829 W RU2015000829 W RU 2015000829W WO 2017095252 A1 WO2017095252 A1 WO 2017095252A1
Authority
WO
WIPO (PCT)
Prior art keywords
crack
substance
capsule
label substance
capsules
Prior art date
Application number
PCT/RU2015/000829
Other languages
English (en)
French (fr)
Inventor
Артём Валерьевич КАБАННИК
Original Assignee
Шлюмберже Текнолоджи Корпорейшн
Шлюмберже Канада Лимитед
Сервисес Петролиерс Шлюмберже
Шлюмберже Текнолоджи Б.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Шлюмберже Текнолоджи Корпорейшн, Шлюмберже Канада Лимитед, Сервисес Петролиерс Шлюмберже, Шлюмберже Текнолоджи Б.В. filed Critical Шлюмберже Текнолоджи Корпорейшн
Priority to PCT/RU2015/000829 priority Critical patent/WO2017095252A1/ru
Priority to US15/780,191 priority patent/US10655466B2/en
Priority to ARP160103658A priority patent/AR106856A1/es
Publication of WO2017095252A1 publication Critical patent/WO2017095252A1/ru

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/08Obtaining fluid samples or testing fluids, in boreholes or wells
    • E21B49/087Well testing, e.g. testing for reservoir productivity or formation parameters
    • E21B49/088Well testing, e.g. testing for reservoir productivity or formation parameters combined with sampling
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/92Compositions for stimulating production by acting on the underground formation characterised by their form or by the form of their components, e.g. encapsulated material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/70Compositions for forming crevices or fractures characterised by their form or by the form of their components, e.g. foams
    • C09K8/706Encapsulated breakers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/80Compositions for reinforcing fractures, e.g. compositions of proppants used to keep the fractures open
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/80Compositions for reinforcing fractures, e.g. compositions of proppants used to keep the fractures open
    • C09K8/805Coated proppants
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/267Methods for stimulating production by forming crevices or fractures reinforcing fractures by propping
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/006Measuring wall stresses in the borehole

Definitions

  • the present invention relates to the field of hydrocarbon production, in particular to determining the closure pressure of a fracture in a formation intersected by a wellbore using tag substances.
  • a hydraulic fracturing method (Fracturing) is disclosed in which sand is removed from the fracture by an adhesive component encapsulated and pumped together with a proppant (proppant).
  • the crack is filled with proppant mixed with the encapsulated adhesive component.
  • the content of the adhesive component is from 0.01 to 20% of the proppant volume.
  • the encapsulated adhesive component and proppant can be mixed in advance, or in the process, and then embedded in an underground formation.
  • the crack closure pressure leads to the destruction of the capsules and the release of the adhesive component.
  • Materials used to make the shell for encapsulating the adhesive component include polyesters, polyolefins, high and low density polyethylene, and polypropylene.
  • the shell can also be made of insoluble polymer components, such as polyesters, polyarylates, polyamides, phenol-aldehyde resins and mixtures of these materials.
  • Suitable capsule shell thicknesses are in the range of 0.01 to 1 mm.
  • Suitable sizes for the capsules themselves containing adhesive components are in the range of 0.25 to 3.36 mm.
  • the above known solution is intended to prevent proppant from being removed from the fracture.
  • WO2012155045A3 “Destructible containers for downhole material and chemical delivery” describes a method for treating an underground area including a well with a substance, including: delivering a substance enclosed in one or more destructible capsules to the well site; one or more breakable capsules into a liquid for injection into a well; and mechanical breakdown of one or more breakable capsules in a well or rock to release a treatment substance.
  • a method in which processing of the underground area, including the well, with the help of a solid plugging material consisting of particles in the form of fibers, flakes or specially selected mixtures of particles of various sizes including delivery to the drilling site of a solid plugging material enclosed in one or more crushable capsules, placing one or more destructible capsules in the liquid for injection into the well; and breaking one or more breakable capsules in the well to release solid plugging material in the well.
  • an arrangement is disclosed using a shell material (B) and a substance (A), said substance being enclosed in the aforementioned shell material (B).
  • the system also includes a carrier fluid (C) transferring said shell material (B) and the substance (A) enclosed therein, said shell material (B) being capable of breaking and releasing said substance (A) under the influence of a sufficient stress state.
  • the shell (B) used may be in the form of a flexible capsule made of gelatin, pectin, cellulose derivatives, gum arabic, guar gum, locust bean gum, packaging gum, cassia gum, agar or n-octenyl succinate, starch, porous starch, pectin, alginates, carrageenans, xanthan gum, chitosan, scleroglucan, diutan, and mixtures thereof.
  • the shell material is a mixture of gelatin and gum arabic.
  • the mass ratio of gelatin to gum arabic is from 9: 1 to 1: 9, more acceptable from 5: 1 to 1: 5, even more acceptable from 2: 1 to 1: 2, and the most acceptable is 1: 1.
  • capsule size is preferred a diameter of from 1 to 5000 microns, and a most preferred size is from 10 to 2000 microns.
  • the present disclosure provides a method for determining fracture closure pressure in a formation intersected by a wellbore.
  • determining the fracture closure pressure in a formation intersected by a wellbore in which: providing a wellbore; pumped into the wellbore fracturing fluid that does not contain a proppant with the formation of a fracture in the formation; pumping the fracturing fluid into the well, the fracturing fluid containing a mixture of proppant and one or more groups of capsules containing capsules having a predetermined range of strength values and containing a predetermined label substance corresponding to each given range of strength values; wherein the capsules from different groups contain different label substances and are capable of settling in the crack and releasing the label material with increasing crack closure pressure caused by crack closure above a predetermined range of strength values; ensure the release of the label substance to the surface detect a label substance on the surface; and determine the crack closure pressure corresponding to the detected label substance, based on the range of values strength capsules in the
  • a method is provided that is used during hydrocarbon production from a well.
  • Figure 1 illustrates the release of the tag substance from the capsule if the pressure b from closing the crack caused by the closure of the crack exceeds the strength of the corresponding capsule, while tag substances embedded in capsules with greater strength remain in the crack.
  • Figure 2 illustrates examples of capsules with a hard shell: a) a spherical form of execution, b) a cylindrical form of execution.
  • Fig. 3 illustrates examples of capsules with a soft shell and a solid skeleton.
  • Figure 4 illustrates the determination of the crack closure pressure corresponding to the detected label substance, based on the value of the strength of the capsule in the corresponding group of capsules using the pressure profile b from closure of the crack by comparing the strengths ⁇ 5 "of the capsules with the times tn of detection of the corresponding label substances, according to their concentrations C p - DETAILED DESCRIPTION OF EMBODIMENTS
  • Hydraulic fracturing is called the intensification of hydrocarbon production from the well by creating a zone with high permeability, filled with a proppant (proppant). Proppant packaging prevents crack closure and also allows passage hydrocarbon flow during production. Information on the main stresses in the formation is very important at all stages of well operation with hydraulic fracturing: at the stage of stimulation, it determines the strength of the proppant, fracture pressure and direction of the fracture, and during production, it predicts the stability and sand formation of the well.
  • the present disclosure discloses a low cost and non-invasive (non-intervention in well operation) method for monitoring fracture closure pressure caused by fracture closure.
  • the present method can be used to measure the fracture closure pressure during production stimulation by hydraulic fracturing, as well as for long-term monitoring of reservoir pressure growth associated with reservoir depletion caused by hydrocarbon production from the well.
  • FIG. 1 shows a well 100 intersecting an oil and gas bearing formation 101 into which a hydraulic fracturing fluid containing no proppant is injected, which forms at least one fracture 103.
  • a fracturing fluid containing a proppant mixture and a group of capsules 104 containing one or more capsules having a predetermined range of strength values and containing a predetermined label material corresponding to a predetermined strength value is injected into the well 100.
  • the capsule embodiment forms are shown in FIG. 2 and FIG. 3 and may be different, for example, spherical, cylindrical or almond-shaped.
  • the capsules are made with a mass and dimensions close to the mass and dimensions of the proppant.
  • the spherical shape in FIG. 2 a) is advantageous both from the point of view of providing a given permeability of the proppant pack and from the point of view of the known capsule production technology, for example, in US Pat. No. 4,671,909, US 4,744,831 and US 5,212,143.
  • the spherical capsule is made of hard shell 201 and substance -tags 202 placed inside the hard shell.
  • the hard shell 201 is made in the form of a tube filled with a tag material 202.
  • the tube provides mechanical rigidity of the capsule.
  • the cylindrical capsule is covered with an insulating shell 203 designed to protect the tag material from the effects of the borehole medium, and to maintain the integrity of the capsule and prevent premature release of the tag material from the tube, not caused by exceeding the crack closure pressure above a predetermined strength value.
  • the insulating shell for example, can be made from a mixture of gelatin and gum arabic.
  • the thickness of the hard shell, as well as the characteristics of the material of which the hard shell is made, affect the strength of the capsule, which means that these characteristics determine the pressure at which the target material will be released under pressure, caused by crack closure.
  • the strength, capsule is also affected by the presence, quantity and size of irregularities (grooves or grooves) made on the outer or inner surface of the shell. Accordingly, the above irregularities also determine a predetermined strength value of the capsule.
  • capsules are tested for strength.
  • prototypes are selected from each group, which are subjected to pressure under laboratory conditions close to the borehole.
  • label chemicals used in the present disclosure are proposed in US20060052251, and may be selected from the group consisting of trifluorobenzene, rhodamine, florbenzene acids, polynuclear aromatic hydrocarbons, halogenated hydrocarbons.
  • labeling substances for example, fluorescent and photospectral labels, radioactive, magnetic or electrically conductive labeling substances, can also be used.
  • the number of different groups of capsules with different label substances is assumed to be sufficient to carry out a given number of measurements in the time period of interest.
  • the pressure bs in the reservoir exceeds a predetermined strength range of one group of capsules, and the label substance comes to the surface and sets the measurement point //
  • the remaining label substances in other groups with other predetermined strength ranges still remain in the crack inside their capsules until the increasing pressure in the crack exceeds the strength of the range of values of the next group of capsules and releases the next portion of another label substance that will come to the surface and set another point / _>, having determined which, we obtain the following pressure value.
  • the number of measurement points t n exceeds the number of available label substances, previously used label substances can be placed in capsules with other differing strength values and, thus, the same label substances can be used repeatedly.
  • the time interval between the detection points of identical label substances should be longer than the time of complete release of the label substance.
  • the range of strength values of one group of capsules should not overlap with the range of strength values of other groups of capsules.
  • the label material 202 is placed inside an empty hard shell 201.
  • the capsules After settling in the fracture, the capsules are exposed to increasing pressure caused by the closure of the fracture immediately after hydraulic fracturing or as a result of closure of the fracture caused by increased pressure due to depletion of the reservoir in the long term.
  • the crack closure pressure exceeds the strength of such a capsule, it breaks and releases a label substance, which is detected when it comes to the surface or by analysis reverse flow of hydraulic fracturing fluid and cleaning the fracture, or during hydrocarbon production from the well.
  • a solid skeleton 301 coated with a soft shell 303 is used, and with increasing crack closure pressure caused by the crack closing, the solid skeleton from the inside destroys the soft shell that releases the labeling substance 302 enclosed between the soft shell and solid skeleton. For example, under the pressure applied to the capsule, the solid skeleton of the capsule cuts through the soft shell, which releases the substance.
  • the capsule contains a solid skeleton 304, consisting of a label substance, and coated with a soft shell 303, and with increasing crack closure pressure caused by the closing of the crack, the solid skeleton breaks the soft shell and the label substance contained in the solid skeleton released from the capsule.
  • the implementation of the solid skeleton contains one or more elements 305, 306, designed to destroy the soft shell, for example, made in the form of a needle or sharp edge.
  • the strength of the capsule is determined by the sharpness of the elements of the skeleton: elements with less sharpness, for example, sharp edges 305 shown in Fig. 3 a) and c) release the substance at a higher pressure than the elements 306 with greater sharpness, in the form of needles, shown in Fig. 3 b) and d).
  • the dimensions of the elements, the material of manufacture of the solid skeleton and soft shell set a predetermined value of strength.
  • samples are taken from the return fluid flow of the hydraulic fracturing or fluid to clean the crack or fluid produced from the well, and the concentration of the predetermined label substance in the sample is determined and the time at which the concentration of the predetermined label substance exceeds a predetermined concentration threshold value.
  • the point in time at which the concentration of a particular label substance exceeds a certain threshold value corresponding to the minimum concentration of a label substance in a sample that can be determined by a device designed to detect the presence and concentration of a label substance in a selected sample becomes the point of measurement of the strength of the corresponding capsules ( release pressure).
  • release pressure The values of the release pressure of the label substance obtained at the measuring points determine the closure pressure profile shown in Fig.

Abstract

Настоящее раскрытие относится к области добычи углеводородов, в частности к определению давления смыкания трещины в пласте, пересекаемом стволом скважины, с помощью веществ-меток. В соответствии с настоящим раскрытием обеспечивают ствол скважины; закачивают в ствол скважины текучую среду гидроразрыва, не содержащую расклинивающий агент с образованием трещины в пласте; закачивают текучую среду гидроразрыва в скважину, причем текучая среда гидроразрыва, содержит смесь расклинивающего агента и одну или более групп капсул, содержащую капсулы имеющие заранее заданный диапазон значений прочности и содержащих заданное вещество-метку, соответствующее каждому заданному диапазону значений прочности; при этом капсулы из разных групп содержат различные вещества-метки и выполнены с возможностью осаждения в трещине и высвобождения вещества-метки при увеличении давления смыкания трещины, вызванного закрытием трещины, выше заранее заданного диапазона значений прочности; обеспечивают выход вещества-метки на поверхность; обнаруживают вещество-метку на поверхности; и определяют давление смыкания трещины, соответствующее обнаруженному веществу-метке, исходя из диапазона значений прочности капсулы в соответствующей группе капсул.

Description

СПОСОБ ОПРЕДЕЛЕНИЯ ДАВЛЕНИЯ СМЫКАНИЯ ТРЕЩИНЫ В ПЛАСТЕ
ОБЛАСТЬ ТЕХНИКИ
Настоящее изобретение относится к области добычи углеводородов, в частности к определению давления смыкания трещины в пласте, пересекаемом стволом скважины, с помощью веществ-меток.
ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ
В решении, известном из уровня техники WO 2009078745 А1 «Proppant flowback control using encapsulated adhesive materials)), раскрыт способ гидроразрыва пласта (ГРП), в котором вынос песка из трещины предотвращают с помощью клейкого компонента, заключенного в капсулы и закачанного вместе с расклинивающим агентом (проппантом). В вышеуказанном известном способе на начальной стадии трещина заполняется проппантом, смешанным с инкапсулированным клейким компонентом. Содержание клейкого компонента составляет от 0.01 до 20% от объема проппанта. Инкапсулированный клейкий компонент и проппант могут быть смешаны заранее, либо в процессе работ, а затем внедрены в подземный пласт. На второй стадии давление смыкания трещины приводит к разрушению капсул и высвобождению клейкого компонента.
Материалы, используемые для изготовления оболочки для инкапсуляции клейкого компонента, включают в себя полиэстеры, полиолефины, полиэтилен высокой и низкой плотности, а также полипропилен. Оболочка также может быть выполнена из нерастворимых полимерных компонентов, таких как, полиэстеры, полиарилаты, полиамиды, фенол-альдегидные смолы и смесей этих материалов. Подходящие толщины оболочек капсул находятся в диапазоне от 0.01 до 1 мм. Подходящие размеры самих капсул, содержащих клейкие компоненты, находятся в диапазоне от 0.25 до 3.36 мм.
Вышеуказанное известное решение предназначено для предотвращения выноса проппанта из трещины.
В известном из уровня техники решении WO2012155045A3 "Destructible containers for downhole material and chemical delivery », описан способ обработки подземной области, включающей скважину, с помощью вещества, включающий в себя: доставку на буровую площадку вещества, заключенного в один или более разрушаемых капсул; помещение одного или нескольких разрушаемых капсул в жидкость для закачки в скважину; и механическое разрушение одного или нескольких разрушаемых капсул в скважине или в породе для высвобождения обрабатывающего вещества. Также, предложен способ, в котором производится обработка подземной области, включающей скважину, с помощью твердого тампонирующего материала состоящего из частиц в форме волокон, хлопьев или специально подобранных смесей частичек различных размеров, включающий доставку на буровую площадку твердого тампонирующего материала, заключенного в один или несколько разрушаемых капсул, помещение одного или нескольких разрушаемых капсул в жидкость для закачки в скважину; и разрушение одного или нескольких разрушаемых капсул в скважине для высвобождения твердого тампонирующего материала в скважине.
Вышеуказанное известное решение предназначено для закачки тампонирующего материала в трещину. В известном из уровня техники решении WO2010020351А1 "Release of Chemical Systems for Oilfield Applications by Stress Activation", предложена система, применяемая при добыче углеводородов, в которой используют материал оболочки (В) и вещество (А), причем указанное вещество заключено в вышеуказанный материал оболочки (В), а указанный материал оболочки (В) выполнен с возможностью разрушения и высвобождения вещества (А) при сбросе давления более чем на 10 бар.
В одном из вариантов осуществления вышеуказанного решения раскрыта компоновка, использующая материал оболочки (В) и вещество (А), причем указанное вещество заключено в вышеупомянутый материал оболочки (В). Система также включает жидкость-носитель (С), переносящую указанный материал оболочки (В) и заключенное в него вещество (А), причем указанный материал оболочки (В) выполнен с возможностью разрушения и высвобождения указанного вещества (А) под воздействием достаточного напряженного состояния.
Используемая оболочка (В) может быть выполнена в виде гибкой капсулы, изготовленной из желатина, пектина, производных целлюлозы, гуммиарабика, гуаровой камеди, камеди рожкового дерева, камеди тара, камеди кассии, агара или н-октенилсукцината, крахмала, пористого крахмала, пектина, альгинатов, каррагенанов, ксантана, хитозана, склероглюкана, диутана и их смеси. В варианте осуществления вышеуказанного известного решения, материалом оболочки служит смесь желатина и гуммиарабика. Массовое соотношение желатина к гуммиарабику составляет от 9:1 до 1 :9, более приемлемое от 5:1 до 1 :5, еще более приемлемое от 2: 1 до 1 :2, а наиболее приемлемое составляет 1 :1. В соответствии с вышеуказанным известным решением, размер капсул имеет предпочтительный диаметр от 1 до 5000 микрон, а наиболее предпочтительный размер составляет от 10 до 2000 микрон.
Вышеуказанное известное решение используется при бурении скважины для доставки химических материалов в скважину.
Напряжение в пласте в естественном залегании измеряется путем нагнетания/откачки жидкости в пласт, создании трещины и измерения давления смыкания трещины. Обзор таких методов можно найти в (Veatch Jr., R.W. and Moschovidis, Z.A. 1986. An Overview of Recent Advances in Hydraulic Fracturing Technology. Presented at the International Meeting on Petroleum Engineering, Beijing, China, 17-20 March. SPE-14085-MS). Данные подходы эффективно работают во время проведения ГРП, однако становится затратным и трудноосуществимым во время добычи из скважины.
В известном из уровня техники решении RU 2 386 023 С1 «СПОСОБ ОПРЕДЕЛЕНИЯ ДАВЛЕНИЯ СМЫКАНИЯ ТРЕЩИНЫ ГИДРОРАЗРЫВА» предложен способ оценки давления смыкания трещины с помощью подачи в скважину серии импульсов давления с помощью наземного оборудования и регистрации отклика скважины на импульсы давления с помощью датчиков давления. При этом определяется забойное давление, соответствующее подаче каждого импульса. Средняя ширина трещины выводится с помощью математической модели распространения импульсов давления внутри ствола скважины и трещины. Также выводится отношение между смоделированной средней шириной трещины и выведенным забойным давлением. Данное отношение экстраполируется в точку нулевой ширины, а давление смыкания определяется как забойное давление, соответствующее нулевой ширине. Вышеуказанное решение может быть использовано при условии наличия открытой трещины, которое может быть выполнено путем нагнетания жидкости в скважину (вмешательства в эксплуатацию скважины).
В решениях, известных из уровня техники, не представлены методики, направленные на использование капсул, наполненных различными веществами- метками, и имеющих различные, сопоставленные этим веществам-меткам прочности для определения давления смыкания трещины, как во время интенсификации добычи путем ГРП, так и во время долгосрочного мониторинга роста давления в пласте, связанного с истощением пласта, вызванного добычей углеводородов из скважины. Также не раскрыта закачка капсул в трещину во время гидроразрыва пласта, и высвобождение веществ-меток в трещину гидроразрыва из тех капсул, прочность которых меньше текущего давления смыкания в трещине, и определение веществ-меток, выходящих на поверхность и сопоставление веществ- меток с соответствующим значением давления смыкания трещины.
Альтернативные решения, известные из уровня техники, нацеленные на измерение давления смыкания трещины без использования веществ-меток, предполагают вмешательства в эксплуатацию скважины, например, путем нагнетания жидкости в трещину.
Информация о главных напряжениях в пласте и определение давления смыкания трещины, вызванного закрытием трещины, требуются на всех этапах эксплуатации скважины с ГРП: на этапе интенсификации она определяет прочность расклинивающего агента, давление разрыва и направление трещины, а во время добычи, позволяет предсказать стабильность и пескопроявление скважины. б
Соответственно в уровне техники имеется потребность в создании низкозатратной и неинвазивной (без вмешательства в эксплуатацию скважины) методики определения давления смыкания трещины, как во время интенсификации добьгаи путем ГРП, так и во время долгосрочного мониторинга роста давления в пласте, связанного с истощением пласта, вызванного добычей углеводородов из скважины.
СУЩНОСТЬ
В настоящем раскрытии представлен способ определения давления смыкания трещины в пласте, пересекаемом стволом скважины. В соответствии с заявленным способом определения давления смыкания трещины в пласте, пересекаемом стволом скважины, в котором: обеспечивают ствол скважины; закачивают в ствол скважины текучую среду гидроразрыва, не содержащую расклинивающий агент с образованием трещины в пласте; закачивают текучую среду гидроразрыва в скважину, причем текучая среда гидроразрыва, содержит смесь расклинивающего агента и одну или более групп капсул, содержащую капсулы, имеющие заранее заданный диапазон значений прочности и содержащих заданное вещество-метку, соответствующее каждому заданному диапазону значений прочности; при этом капсулы из разных групп содержат различные вещества-метки и выполнены с возможностью осаждения в трещине и высвобождения вещества-метки при увеличении давления смыкания трещины, вызванного закрытием трещины, выше заранее заданного диапазона значений прочности; обеспечивают выход вещества-метки на поверхность; обнаруживают вещество-метку на поверхности; и определяют давление смыкания трещины, соответствующее обнаруженному веществу-метки, исходя из диапазона значений прочности капсулы в соответствующей группе капсул.
В другом варианте осуществления представлен способ, используемый во время добычи углеводородов из скважины.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Далее варианты осуществления настоящего раскрытия описываются более подробно, посредством чертежей, на которых:
Фиг.1 иллюстрирует высвобождение вещества-метки из капсулы, если давление бс смыкания трещины, вызванное закрытием трещины, превышает прочность соответствующей капсулы, в то время как вещества-метки, заключенные в капсулы с большей прочностью, остаются в трещине.
Фиг.2 иллюстрирует примеры выполнения капсул с твердой оболочкой: а) сферическая форма выполнения, Ь) цилиндрическая форма выполнения.
Фиг.З иллюстрирует примеры выполнения капсул с мягкой оболочкой и твердым скелетом.
Фиг.4 иллюстрирует определение давления смыкания трещины, соответствующее обнаруженному веществу-метки, исходя из значения прочности капсулы в соответствующей группе капсул с помощью профиля давления бс смыкания трещины путем сопоставления прочностей <5„ капсул с временами tn обнаружения соответствующих веществ-меток, по их концентрациям Сп- ПОДРОБНОЕ ОПИСАНИЕ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ
Гидравлическим разрывом пласта (ГРП) называется интенсификация добычи углеводородов из скважины путем создания зоны с высокой проницаемостью, заполненной расклинивающим агентом (проппантом). Проппантная упаковка предотвращает смыкание трещины, а также обеспечивает возможность прохода потока углеводородов во время добычи. Информация о главных напряжениях в пласте очень важна на всех этапах эксплуатации скважины с ГРП: на этапе интенсификации она определяет прочность расклинивающего агента, давление разрыва и направление трещины, а во время добычи, позволяет предсказать стабильность и пескопроявление скважины.
В настоящем раскрытии раскрывается низкозатратный и неинвазивный (безвмешательства в эксплуатацию скважины) способ мониторинга давления смыкания трещины, вызванного закрытием трещины. Настоящий способ может быть применен для измерения давления смыкания трещины во время интенсификации добычи путем ГРП, а также для долгосрочного мониторинга роста давления в пласте, связанного с истощением пласта, вызванного добычей углеводородов из скважины.
В соответствии с предложенной методикой на Фиг.1 представлена скважина 100, пересекающая нефтегазоносный пласт 101, в которую нагнетается текучая среда гидроразрыва, не содержащая расклинивающий агент, которая формирует, по меньшей мере, одну трещину 103.
Затем в скважину 100 нагнетают текучую среду гидроразрыва, содержащую смесь расклинивающего агента и группу 104 капсул, содержащую одну или более капсул, имеющих заранее заданный диапазон значений прочности и содержащих заданное вещество-метку, соответствующее заданному значению прочности.
Формы выполнения капсул представлены на Фиг.2 и Фиг.З и могут быть различными, например, сферическими, цилиндрическими или миндалевидными. При этом капсулы выполнены с массой и размерами, близкими к массе и размерам проппанта. Особый интерес представляют капсулы сферической и цилиндрической форм, изображенные на Фиг.2. Сферическая форма на Фиг.2 а) выгодна как с точки зрения обеспечения заданной проницаемости проппантой пачки, так и с точки зрения известной технологии производства капсул, например в решениях US 4671909, US 4744831 и US 5212143. Сферическая капсула выполнена из твердой оболочки 201 и вещества-метки 202, помещенного внутрь твердой оболочки. Преимущества цилиндрической формы на Фиг.2 Ь) лежат в простоте производства капсул. Особенность цилиндрической капсулы связана с простотой производства: твердая оболочка 201 выполнена в виде трубки, заполненной веществом-меткой 202. Трубка обеспечивает механическую жесткость капсулы. При этом, цилиндрическую капсулу покрывают изолирующей оболочкой 203, предназначенной для защиты вещества-метки от воздействия скважинной среды, а для поддержания целостности капсулы и предотвращения преждевременного высвобождения вещества-метки из трубки, не вызванного превышением давления смыкания трещины выше заранее заданного значения прочности. Изолирующую оболочку, например, можно выполнить из смеси желатина и гуммиарабика.
Как для сферической, так и для цилиндрической формы, толщина твердой оболочки, а также характеристики материала, из которого выполнена твердая оболочка, влияют на прочность капсулы, а значит, эти характеристики задают давление, при котором произойдет высвобождение заданного вещества-метки под действием давления, вызванного закрытием трещины.
Помимо толщины твердой оболочки и материала изготовления, на прочность капсулы также влияют наличие, количество и размеры неровностей (бороздок или канавок), выполненных на внешней или внутренней поверхности оболочки. Соответственно, вышеуказанные неровности также определяют заранее заданное значение прочности капсулы.
Перед использованием капсулы испытывают на прочность. Для этого из каждой группы выбираются опытные образцы, которые подвергаются воздействию давления в лабораторных условиях, близких к скважинным. Диапазоны давлений, при которых опытные образцы (смесь частиц проппанта с капсулами заданной прочности) разрушаются и в дальнейшем задаются соответствующим группам в качестве заранее заданных диапазонов значений прочности.
Примеры химических веществ-меток используемых в настоящем раскрытии предложены в решении US20060052251, и могут быть выбраны из группы, содержащей трифторбензол, родамин, флорбензоловые кислоты, полиядерные ароматические углеводороды, галогенпроизводные углеводороды.
Также могут использоваться и другие вещества-метки, например, флуоресцентные и фотоспектральные метки, радиоактивные, магнитные или электропроводящие вещества-метки. Количество различных групп капсул с различными веществами-метками предполагается достаточным для проведения заданного количества измерений в интересующий период времени. В случае, если давление бс в пласте превысит заранее заданный диапазон прочности одной группы капсул, и вещество-метка выйдет на поверхность и задаст точку // измерения, остальные вещества-метки в других группах с другими заранее заданными диапазонами прочности, все еще остаются в трещине внутри своих капсул до тех пор, пока возрастающее давление в трещине не превысит прочность диапазона значений следующей группы капсул и не высвободит следующую порцию уже другого вещества-метки, которое выйдет на поверхность и задаст другую точку /_>, определив которую, получим следующее значение давления. Затем возрастающее давление высвободит вещество-метку из «-той группы, и вещество-метка с номером п выйдет на поверхность и задаст другую точку tn, определив которую, получим и-значение давления. Процесс продолжится до тех пор, пока или последняя (самая прочная) группа капсул не разрушится или рост давления остановится на значении ниже прочности оставшихся групп капсул.
В случае, когда число точек tn измерения превышает число доступных веществ-меток, могут использоваться уже ранее используемые вещества-метки, которые могут быть помещены в капсулы с другими отличающимися значениями прочности и, таким образом одни и те же вещества-метки могут быть использованы повторно. При этом, временной интервал между точками обнаружения одинаковых веществ-меток должен быть больше чем время полного высвобождения вещества- метки. Также диапазон значений прочности одной группы капсул не должны пересекаться с диапазоном значений прочности других групп капсул.
В соответствии с настоящем раскрытием предложены несколько вариантов осуществления капсул.
В одном варианте осуществления на фиг. 2 вещество-метка 202 помещается во внутрь пустой твердой оболочки 201. После оседания в трещине, капсулы подвергаются воздействию нарастающего давления, вызванного закрытием трещины непосредственно после гидроразрыва пласта или в результате смыкания трещины, вызванного увеличением давления из-за истощения пласта в долгосрочной перспективе. Когда давление смыкания трещины превышает прочность такой капсулы, она разрушается и высвобождает вещество-метку, которое обнаруживают при выходе на поверхность либо посредством анализа обратного тока текучей среды гидроразрыва пласта и очистки трещины, или во время добычи углеводородов из скважины.
В другом варианте осуществления на фиг. 3 а), Ь), вместо твердой оболочки используется твердый скелет 301, покрытый мягкой оболочкой 303, причем при увеличении давления смыкания трещины, вызванного закрытием трещины, твердый скелет изнутри разрушает мягкую оболочку, которая высвобождает вещество-метку 302, заключенное между мягкой оболочкой и твердым скелетом. Например, под воздействием давления, приложенного к капсуле, твердый скелет капсулы прорезает мягкую оболочку, которая высвобождает вещество.
В еще одном варианте осуществления, представленном на фиг. 3 с) и d), капсула содержит твердый скелет 304, состоящий из вещества-метки, и покрытый мягкой оболочкой 303, причем при увеличении давления смыкания трещины, вызванного закрытием трещины, твердый скелет разрушает мягкую оболочку, и вещество-метка, содержащаяся в твердом скелете, высвобождаются из капсулы.
В данных вариантах осуществления твердый скелет содержит один или более элементов 305, 306, предназначенных для разрушения мягкой оболочки, например, выполненный в виде иглы или острой грани.
В данном случае, прочность капсулы определяется остротой элементов скелета: элементы с меньшей остротой, например, острые грани 305, показанные на Фиг.З а) и с) высвобождают вещество при большем давлении, чем элементы 306 с большей остротой, в виде игл, показанные на Фиг.З Ь) и d).
Соответственно, размеры элементов, материал изготовления твердого скелета и мягкой оболочки задают заранее заданное значение прочности.
Для осуществления мониторинга давления смыкания трещины, вызванного закрытием трещины, отбирают пробы из обратного тока текучей среды гидроразрыва пласта или текучей среды очистки трещины или текучей среды, добываемой из скважины, и определяют концентрацию заранее заданного вещества-метки в пробе и определяют время, при котором концентрация заранее заданного вещества-метки превышает заранее заданное пороговое значение концентрации. Момент времени, при котором концентрация определенного вещества-метки превышает определенное пороговое значение, соответствующее минимальной концентрации вещества-метки в пробе, которую может определить прибор, предназначенный для обнаружения наличия и концентрации вещества- метки в отобранной пробе, становится точкой измерения значения прочности соответствующих капсул (давления высвобождения). Значения давления высвобождения вещества-метки, полученные в точках измерения, определяют профиль давления смыкания, показанный на фиг.4, где 401 - прочности концентраций капсул, 402 - профиль давления смыкания трещины, 404 - порог концентрации вещества-метки, необходимый для обнаружения, 405 - профили концентраций отобранных из скважины веществ-меток. Вышеуказанный профиль давления смыкания трещины, характеризующий зависимость между моментами времени определения соответствующих веществ-меток и давлением смыкания трещины, вызванного закрытием трещины, выводят пользователю для анализа, например на устройство отображения, либо сохраняют для дальнейшего использования.
Настоящее раскрытие обладает следующими преимуществами:
Низкие затраты на проведение измерений: без проведения ни дополнительного гидроразрыва, ни использования внутрискважинного оборудования. Измерения сводятся к анализу образцов, отобранных на поверхности.
Непрерывная эксплуатация скважины во время измерений: без вмешательства в эксплуатацию скважины или остановка добычи.
Долговременный мониторинг давления смыкания в пласте: выбор подходящих прочностей капсул и количества веществ-меток позволит проводить мониторинг давления в течение всего периода эксплуатации скважины.
Очевидно, что описанные выше варианты осуществления не должны рассматриваться в качестве ограничения объема патентных притязаний раскрытия. Для любого специалиста в данной области техники понятно, что есть возможность внести множество изменений в описанные выше методику и, без отхода от принципов раскрытия, заявленного в формуле.

Claims

ФОРМУЛА ИЗОБРЕТЕНИЯ
1. Способ определения давления смыкания трещины в пласте, пересекаемом стволом скважины, в котором:
обеспечивают ствол скважины;
закачивают в ствол скважины текучую среду гидроразрыва, не содержащую расклинивающий агент с образованием по меньшей мере одной трещины в пласте; закачивают текучую среду гидроразрыва, по меньшей мере, в одну скважину, причем текучая среда гидроразрыва, содержит смесь расклинивающего агента и одну или более групп капсул, содержащую одну или более капсул, имеющих заранее заданный диапазон значений прочности и содержащих заданное вещество-метку, соответствующее каждому заданному диапазону значений прочности;
при этом капсулы из разных групп содержат различные вещества-метки; при этом капсулы выполнены с возможностью осаждения в трещине и высвобождения вещества-метки при увеличении давления смыкания трещины, вызванного закрытием трещины, выше заранее заданного диапазона значений прочности;
обеспечивают выход вещества-метки на поверхность;
обнаруживают вещество-метку на поверхности; и
определяют давление смыкания трещины, соответствующее обнаруженному веществу-метке, исходя из диапазона значений прочности капсулы в соответствующей группе капсул.
2. Способ по п.1, в котором капсула является сферической или цилиндрической.
3. Способ по п. 2, в котором капсулу покрывают твердой оболочкой, задающей заранее заданный диапазон значений прочности.
4. Способ по п. 2, в котором обеспечивают неровности на внешней или внутренней поверхности твердой оболочки, задающие заранее заданный диапазон значений.
5. Способ по п. 4, в котором неровности представляют собой бороздки или канавки.
6. Способ по п. 2, в котором цилиндрическую капсулу дополнительно покрывают изолирующей оболочкой, предназначенной для защиты капсулы от воздействия скважинной среды на вещества-метки.
7. Способ по п. 1, в котором вещество-метка представляет собой вещество, выбранное из группы, содержащей трифторбензол, родамин, флорбензоловые кислоты, полиядерные ароматические углеводороды, галогенпроизводные углеводороды.
8. Способ по п. 1 , в котором вещество-метка представляет собой радиоактивное вещество.
9. Способ по п. 1, в котором капсула содержит твердый скелет, покрытый мягкой оболочкой, причем при увеличении давления смыкания трещины, вызванного закрытием трещины, твердый скелет разрушает мягкую оболочку, которая высвобождает вещество-метку, заключенную между мягкой оболочкой и твердым скелетом.
10. Способ по п. 1, в котором капсула содержит твердый скелет, состоящий из вещества-метки, и покрытый мягкой оболочкой, причем при увеличении давления смыкания трещины, вызванного закрытием трещины, твердый скелет разрушает мягкую оболочку, и вещество-метка, содержащаяся в твердом скелете, высвобождаются из капсулы.
11. Способ по п. 9 или 10, в котором твердый скелет содержит один или более элементов, предназначенных для разрушения мягкой оболочки.
12. Способ по п.11, в котором один или более элементов, предназначенных для разрушения мягкой оболочки, представляют собой по меньшей мере одно из иглы или острой грани.
13. Способ по п.11, в котором размеры элементов твердого скелета задают заранее заданный диапазон значений прочности.
14. Способ по п.1, в котором выход на поверхность вещества-метки обеспечивают во время обратного тока текучей среды гидроразрыва пласта и очистки трещины.
15. Способ по п.14, в котором отбирают пробы из обратного тока текучей среды гидроразрыва пласта или текучей среды очистки трещины и определяют концентрацию заранее заданного вещества-метки в пробе.
16. Способ по. 15, в котором определяют время, при котором концентрация заранее заданного вещества-метки превышает заранее заданный пороговый диапазон значений концентрации.
17. Способ по. 16, в котором определенное вещество-метка соответствует давлению смыкания трещины, вызванному закрытием трещины в данный момент времени.
18. Способ по п. 17, в котором выводят пользователю профиль давления смыкания трещины, характеризующий зависимость между моментами времени определения соответствующих веществ-меток и давлением смыкания трещины, вызванному закрытием трещины.
19. Способ по п. 16, в котором заранее заданный пороговый диапазон значений прочности задают равным минимальной концентрации вещества-метки в пробе, которую может определить прибор, предназначенный для обнаружения наличия и концентрации вещества-метки в отобранной пробе.
20. Способ определения давления смыкания трещины в пласте, пересекаемом стволом скважины, в котором:
обеспечивают ствол скважины в пласте, имеющем по меньшей мере одну трещину, содержащую одну или более групп капсул, содержащих одну или более капсул, имеющих заранее заданный диапазон значений прочности и содержащих заданное вещество-метку, соответствующее заданному диапазону значений прочности;
при этом капсулы из разных групп содержат различные вещества-метки; при этом капсулы выполнены с возможностью осаждения в трещине и высвобождения вещества-метки при увеличении давления смыкания трещины, вызванного закрытием трещины, выше заранее заданного диапазона значений прочности;
обеспечивают выход вещества-метки на поверхность во время добычи углеводородов;
обнаруживают вещество-метку на поверхности; и
определяют давление смыкания трещины, соответствующее обнаруженному веществу-метки, исходя из значения прочности капсулы в соответствующей группе капсул.
21. Способ по п.20, в котором по меньшей мере одна трещина дополнительно содержит расклинивающий агент.
22. Способ по п.20, в котором капсула является сферической или цилиндрической .
23. Способ по п. 20, в котором капсулу покрывают твердой оболочкой, задающей заранее заданный диапазон значений прочности.
24. Способ по п. 23, в котором обеспечивают неровности на внешней или внутренней поверхности твердой оболочки, задающие заранее заданный диапазон значений прочности.
25. Способ по п. 24, в котором неровности представляют собой бороздки или канавки.
26. Способ по п. 22, в котором цилиндрическую капсулу дополнительно покрывают изолирующей оболочкой, предназначенной для защиты капсулы от воздействия скважинной среды на вещества-метки.
27. Способ по п. 20, в котором вещество-метка представляет собой вещество, выбранное из группы, содержащей трифторбензол, родамин, флорбензоловые кислоты, полиядерные ароматические углеводороды, галогенпроизводные углеводороды.
28. Способ по п. 20, в котором вещество-метка представляет собой радиоактивное вещество.
29. Способ по п. 20, в котором капсула содержит твердый скелет, покрытый мягкой оболочкой, причем при увеличении давления смыкания трещины, вызванного закрытием трещины, твердый скелет разрушает мягкую оболочку, которая высвобождает вещество-метку, заключенную между мягкой оболочкой и твердым скелетом.
30. Способ по п. 20, в котором капсула содержит твердый скелет, состоящий из вещества-метки, и покрытый мягкой оболочкой, причем при увеличении давления смыкания трещины, вызванного закрытием трещины, твердый скелет разрушает мягкую оболочку, и вещество-метка, содержащаяся в твердом скелете, высвобождаются из капсулы.
31. Способ по п. 29 или 30, в котором твердый скелет содержит один или более элементов, предназначенных для разрушения мягкой оболочки.
32. Способ по п.31, в котором один или более элементов, предназначенных для разрушения мягкой оболочки, представляют собой по меньшей мере одно из иглы или острой грани.
33. Способ по п.32, в котором размеры элементов твердого скелета задают заранее заданный диапазон значений прочности.
34. Способ по п.20, в котором отбирают пробы из потока добываемой текучей среды и определяют концентрацию заранее заданного вещества-метки в пробе.
35. Способ по. 34, в котором определяют время, при котором концентрация заранее заданного вещества-метки превышает заранее заданный пороговый диапазон значений концентрации.
36. Способ по. 35, в котором определенное вещество-метка соответствует давлению смыкания трещины, вызванному закрытием трещины в данный момент времени.
37. Способ по п. 36, в котором выводят пользователю профиль давления смыкания трещины, характеризующий зависимость между моментами времени определения соответствующих веществ-меток и давлением смыкания трещины, вызванному закрытием трещины.
38. Способ по п. 35, в котором пороговое значение задают равным минимальной концентрации вещества-метки в пробе, которую может определить прибор, предназначенный для обнаружения наличия и концентрации вещества- метки в отобранной пробе.
PCT/RU2015/000829 2015-11-30 2015-11-30 Способ определения давления смыкания трещины в пласте WO2017095252A1 (ru)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/RU2015/000829 WO2017095252A1 (ru) 2015-11-30 2015-11-30 Способ определения давления смыкания трещины в пласте
US15/780,191 US10655466B2 (en) 2015-11-30 2015-11-30 Method of monitoring of hydraulic fracture closure stress with tracers (variants)
ARP160103658A AR106856A1 (es) 2015-11-30 2016-11-30 Método para controlar la tensión de cierre de fractura hidráulica con indicadores (variantes)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/RU2015/000829 WO2017095252A1 (ru) 2015-11-30 2015-11-30 Способ определения давления смыкания трещины в пласте

Publications (1)

Publication Number Publication Date
WO2017095252A1 true WO2017095252A1 (ru) 2017-06-08

Family

ID=58797310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2015/000829 WO2017095252A1 (ru) 2015-11-30 2015-11-30 Способ определения давления смыкания трещины в пласте

Country Status (3)

Country Link
US (1) US10655466B2 (ru)
AR (1) AR106856A1 (ru)
WO (1) WO2017095252A1 (ru)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3084971C (en) * 2018-01-16 2023-07-18 Halliburton Energy Services, Inc. Modeling fracture closure processes in hydraulic fracturing simulators
CN110374583A (zh) * 2019-04-09 2019-10-25 延安顺盈石油工程技术服务有限公司 一种油田油水气井指示剂跟踪产能评价方法
CN114991704B (zh) * 2022-07-16 2024-03-05 山东理工大学 一种工程用充填、加固、封堵材料的智能化方法
CN117662126B (zh) * 2024-01-31 2024-04-16 四川富利斯达石油科技发展有限公司 基于量子示踪剂的裂缝闭合压力及产出剖面监测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1682541A1 (ru) * 1989-02-22 1991-10-07 Львовский политехнический институт им.Ленинского комсомола Способ обработки нефт ного пласта
RU2270335C2 (ru) * 2001-08-03 2006-02-20 Шлюмбергер Текнолоджи Б.В. Способ определения давления смыкания трещины подземного пласта (варианты)
GB2489714A (en) * 2011-04-05 2012-10-10 Tracesa Ltd Fluid identification system comprising encapsulated DNA
RU2569143C1 (ru) * 2014-02-13 2015-11-20 Общество с ограниченной ответственностью "ВОРМХОЛС" Способ определения дебитов воды, нефти, газа с использованием расходомерного устройства

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5212143A (en) 1978-08-28 1993-05-18 Torobin Leonard B Hollow porous microspheres made from dispersed particle compositions
US4671909A (en) 1978-09-21 1987-06-09 Torobin Leonard B Method for making hollow porous microspheres
US4744831A (en) 1984-07-30 1988-05-17 Minnesota Mining And Manufacturing Company Hollow inorganic spheres and methods for making such spheres
US4899320A (en) 1985-07-05 1990-02-06 Atlantic Richfield Company Downhole tool for determining in-situ formation stress orientation
JPS6250591A (ja) 1985-08-29 1987-03-05 東北大学長 岩体内のき裂挙動評価に基づく水圧破砕法による地殻応力計測法
US4733567A (en) 1986-06-23 1988-03-29 Shosei Serata Method and apparatus for measuring in situ earthen stresses and properties using a borehole probe
US5050690A (en) 1990-04-18 1991-09-24 Union Oil Company Of California In-situ stress measurement method and device
GB9026703D0 (en) 1990-12-07 1991-01-23 Schlumberger Ltd Downhole measurement using very short fractures
US5353637A (en) 1992-06-09 1994-10-11 Plumb Richard A Methods and apparatus for borehole measurement of formation stress
US5277062A (en) 1992-06-11 1994-01-11 Halliburton Company Measuring in situ stress, induced fracture orientation, fracture distribution and spacial orientation of planar rock fabric features using computer tomography imagery of oriented core
US5492175A (en) 1995-01-09 1996-02-20 Mobil Oil Corporation Method for determining closure of a hydraulically induced in-situ fracture
US5967232A (en) 1998-01-15 1999-10-19 Phillips Petroleum Company Borehole-conformable tool for in-situ stress measurements
US20060052251A1 (en) 2004-09-09 2006-03-09 Anderson David K Time release multisource marker and method of deployment
KR100925266B1 (ko) 2006-10-31 2009-11-05 한국지질자원연구원 저온 열 균열 현상을 이용한 암반 내 초기응력 측정장치
WO2009078745A1 (en) 2007-12-14 2009-06-25 Schlumberger Canada Limited Proppant flowback control using encapsulated adhesive materials
CA2734016A1 (en) 2008-08-18 2010-02-25 Schlumberger Canada Limited Release of chemical systems for oilfield applications by stress activation
RU2386023C1 (ru) 2008-12-05 2010-04-10 Шлюмберже Текнолоджи Б.В. Способ определения давления смыкания трещины гидроразрыва
US9290689B2 (en) * 2009-06-03 2016-03-22 Schlumberger Technology Corporation Use of encapsulated tracers
US20120285695A1 (en) 2011-05-11 2012-11-15 Schlumberger Technology Corporation Destructible containers for downhole material and chemical delivery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1682541A1 (ru) * 1989-02-22 1991-10-07 Львовский политехнический институт им.Ленинского комсомола Способ обработки нефт ного пласта
RU2270335C2 (ru) * 2001-08-03 2006-02-20 Шлюмбергер Текнолоджи Б.В. Способ определения давления смыкания трещины подземного пласта (варианты)
GB2489714A (en) * 2011-04-05 2012-10-10 Tracesa Ltd Fluid identification system comprising encapsulated DNA
RU2569143C1 (ru) * 2014-02-13 2015-11-20 Общество с ограниченной ответственностью "ВОРМХОЛС" Способ определения дебитов воды, нефти, газа с использованием расходомерного устройства

Also Published As

Publication number Publication date
US10655466B2 (en) 2020-05-19
AR106856A1 (es) 2018-02-21
US20180363461A1 (en) 2018-12-20

Similar Documents

Publication Publication Date Title
US10927292B2 (en) Sustained release system for reservoir treatment and monitoring
WO2017095252A1 (ru) Способ определения давления смыкания трещины в пласте
US10961443B2 (en) Oil field chemical delivery fluids, methods for their use in the targeted delivery of oil field chemicals to subterranean hydrocarbon reservoirs and methods for tracing fluid flow
US8877506B2 (en) Methods and systems using encapsulated tracers and chemicals for reservoir interrogation and manipulation
NO342683B1 (no) Fremgangsmåte for å bestemme konsentrasjon av sporstoff i fluider ved olje- og gassproduksjon
US9290689B2 (en) Use of encapsulated tracers
US7690427B2 (en) Sand plugs and placing sand plugs in highly deviated wells
GB2528716A (en) Fluid identification system
US20170138169A1 (en) Monitoring diversion degradation in a well
US11773317B2 (en) Smart proppant technology for fracking and well production performance monitoring
AU2019232161A1 (en) Method for quantifying porous media by means of analytical particles and uses thereof
US11292960B2 (en) Release system and method
US11028687B2 (en) Tracers and trackers in a perf ball
AU2011251674A1 (en) Method and system for treating a subterranean formation
RU2685601C1 (ru) Способ определения дебитов воды, нефти, газа
Wang et al. Forming a seal independent of formation permeability to prevent mud losses—theory, lab tests, and case histories
Weaver et al. Assessment of fracturing-fluid cleanup by use of a rapid-gel-damage method
CN112943228A (zh) 一种荧光纳米支撑剂产能剖面测试方法
Yang et al. Evaluation and prevention of formation damage in offshore sandstone reservoirs in China
WO2016076745A1 (en) Compositions and methods for reducing lost circulation
US20220290510A1 (en) Shape memory tripping object
Cao et al. Study of preformed particle gel blocking performance in fractured carbonate reservoirs
De Borst et al. Hydraulic ‘Fracturing’Mechanisms of Unconsolidated Sands from Novel Laboratory Experiments and Modelling
EP3063370B1 (en) Fracture characterisation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15909872

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15909872

Country of ref document: EP

Kind code of ref document: A1