WO2017095099A1 - Method of manufacturing heat-resistant san resin - Google Patents

Method of manufacturing heat-resistant san resin Download PDF

Info

Publication number
WO2017095099A1
WO2017095099A1 PCT/KR2016/013824 KR2016013824W WO2017095099A1 WO 2017095099 A1 WO2017095099 A1 WO 2017095099A1 KR 2016013824 W KR2016013824 W KR 2016013824W WO 2017095099 A1 WO2017095099 A1 WO 2017095099A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
heat
parts
san resin
resistant san
Prior art date
Application number
PCT/KR2016/013824
Other languages
French (fr)
Korean (ko)
Inventor
채주병
정유성
김종범
김창술
김영민
박은선
전태영
Original Assignee
(주) 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160159007A external-priority patent/KR101957666B1/en
Application filed by (주) 엘지화학 filed Critical (주) 엘지화학
Priority to CN201680022599.6A priority Critical patent/CN107531843B/en
Priority to JP2017549612A priority patent/JP6481047B2/en
Priority to US15/560,897 priority patent/US10266627B2/en
Priority to EP16870995.4A priority patent/EP3260478B1/en
Publication of WO2017095099A1 publication Critical patent/WO2017095099A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • C08F212/10Styrene with nitriles

Definitions

  • the present disclosure relates to a method for manufacturing a heat resistant SAN resin, and more particularly, to a method for preparing a heat resistant SAN resin having excellent productivity and improved heat resistance and fluidity without generating adverse smell during processing, and a heat resistant SAN resin composition prepared therefrom. It is about.
  • ABS resin acrylonitrile-butadiene-styrene (hereinafter referred to as ABS) resin
  • a method of preparing by emulsion polymerization by replacing part or all of styrene with ⁇ -methylstyrene is commonly used.
  • Heat-resistant SAN resin is a resin manufactured on the basis of ⁇ -methylstyrene, and has a high glass transition temperature and high molecular weight compared to bulk polymerization, and thus has excellent heat resistance and environmental stress crack resistance (ESCR).
  • ESCR environmental stress crack resistance
  • the glass transition temperature is the most important factor for determining the heat resistance characteristics of the heat-resisting resin.
  • the method of increasing the ⁇ -methylstyrene content or increasing the molecular weight is used in the case of increasing the ⁇ -methylstyrene content. Because of its low reactivity, the proportion of unreacted monomers increases, which leads to a decrease in heat resistance. In addition, a separate device for removing unreacted monomers is required, thereby increasing the cost of the product and lowering productivity. This has the disadvantage of being longer and having a lower conversion rate.
  • the molecular weight is mainly used as a molecular weight regulator.
  • the mercaptans to be used produce a bad smell during processing.
  • Korean Patent Laid-Open Publication No. 199-0021665 discloses a method for preparing a copolymer of ⁇ -alkylstyrene-acrylonitrile by emulsion polymerization in the preparation of a heat resistant SAN copolymer, but this manufacturing method In this case, the polymerization time is longer than 9 hours, there is a disadvantage that the copolymer productivity is lowered.
  • Korean Patent Laid-Open Publication No. 1996-0031486 discloses a method for adding an electrolyte when preparing a heat-resistant SAN copolymer having a high content of latex solids and excellent stability by emulsion polymerization, but also has a polymerization time of 6 hours. There was a disadvantage in that it takes a long time and the copolymer productivity is lowered.
  • the present invention provides a method for producing a heat-resistant SAN resin with excellent productivity and improved heat resistance and fluidity without adverse smell during processing and a heat-resistant SAN resin composition prepared therefrom
  • a heat-resistant SAN resin composition prepared therefrom For the purpose of
  • the present invention is a method for producing a heat-resistant SAN resin by polymerizing the ⁇ -methylstyrene monomer and vinyl cyan monomer, (i) the entire amount of the ⁇ - methyl styrene monomer and part of the vinyl cyan monomer A first polymerization step of polymerizing in the presence of an oxidation-reduction catalyst and a hydroperoxide-based initiator, wherein the polymerization is carried out at the same time as the start of the polymerization or after another part of the vinyl cyan monomer is continuously added after the start of the polymerization; (ii) a second polymerization step in which the oxidation-reduction catalyst and the hydroperoxide-based initiator are polymerized at the time when the polymerization conversion rate reaches 25 to 40% in the first polymerization step; And (iii) a third polymerization step in which the remaining amount of the vinyl cyan monomer and the pyrolysis initiator are polymerized at the time point
  • the present invention also provides a heat resistant SAN resin composition prepared from the method for producing a heat resistant SAN resin.
  • the method for producing a heat-resistant SAN resin of the present disclosure is a method for producing a heat-resistant SAN resin by polymerizing an ⁇ -methylstyrene monomer and a vinyl cyan monomer, wherein (i) the entire amount of the ⁇ -methyl styrene monomer and a part of the vinyl cyan monomer are oxidized.
  • the heat-resistant SAN resin is excellent in productivity while improving the heat resistance and fluidity without generating a bad smell during processing.
  • the method for producing a heat-resistant SAN resin of the present invention is a method for producing a heat-resistant SAN resin by polymerizing the ⁇ -methylstyrene monomer and vinyl cyan monomer, (i) the entire amount of the ⁇ -methylstyrene monomer and the vinyl cyan 20 to 65% by weight of 100% by weight of the monomer is polymerized in the presence of an oxidation-reduction catalyst and a hydroperoxide-based initiator, and 30 to 80% by weight of 100% by weight of the vinyl cyan monomer at the same time as the polymerization start or after the polymerization is started.
  • a first polymerization step of polymerizing while continuously adding 30% or 79% by weight (ii) a second polymerization step in which the oxidation-reduction catalyst and the hydroperoxide-based initiator are polymerized at the time when the polymerization conversion rate reaches 25 to 40% in the first polymerization step; And (iii) polymerization at a time point when the polymerization conversion ratio reaches 80 to 90% in the second polymerization step, by adding 0 to 25 wt% or 1 to 25 wt% of the remaining 100 wt% of the vinyl cyan monomer and a pyrolysis initiator. It is characterized in that it comprises a; the third polymerization step to be made, there is an effect of producing a heat-resistant SAN resin having excellent productivity within this range and does not generate a bad smell during processing and improved both heat resistance and fluidity.
  • the method for producing a heat-resistant SAN resin of the present invention is a method for producing a heat-resistant SAN resin by polymerizing the ⁇ -methylstyrene monomer and vinyl cyan monomer, (i) the entire amount of the ⁇ -methylstyrene monomer and the vinyl cyan 30 to 60% by weight or 33 to 40% by weight in 100% by weight of the monomer is polymerized in the presence of an oxidation-reduction catalyst and a hydroperoxide-based initiator, and at the same time as the polymerization start or after the polymerization start, 100 weight of the vinylcyan monomer A first polymerization step of polymerizing while continuously adding 30 to 60 wt% or 50 to 56 wt% in%; (ii) a second polymerization step in which the oxidation-reduction catalyst and the hydroperoxide-based initiator are polymerized at the time when the polymerization conversion rate reaches 25 to 40% in the first polymerization step; And (iii) polymerization of the
  • the vinyl cyan monomer continuously added in step (i) is, for example, 30 minutes to 5 hours, 1 hour to 4 hours, 2 hours to 3.5 hours, or 2 hours to 3 hours after the initiator is added or after the start of polymerization. It can be continuously injected, there is an effect that the heat-resistant SAN resin is excellent in productivity and improved in both heat resistance and fluidity without generating a bad smell during processing within this range.
  • the vinyl cyan monomer continuously added in step (i) may reach 20 to 90%, 40 to 90%, 60 to 90% or 70 to 88% of the polymerization conversion rate after the initiator is added or after the polymerization is started. Until the continuous injection, there is an effect that the heat-resistant SAN resin is excellent in productivity and improved in both heat resistance and fluidity without generating a bad smell during processing within this range.
  • 'after the start of the polymerization' or 'after the initiator is added' means a time interval such that a person skilled in the art can immediately input the start of the polymerization, and, for example, a time point of 1 second to 10 minutes after the start of the polymerization, Or 10 seconds to 5 minutes, or more than 0% to 5% or less, or more than 0% to 3%.
  • Continuous dosing in the present disclosure is not particularly limited in the case of continuous dosing that is commonly recognized in the art, and for example, materials to be added or drop-by-drop while being continuously connected to each other for a predetermined time. ), It may mean that the droplets are continuously injected for a predetermined time at short intervals.
  • the production method of the heat-resistant SAN resin is, for example, based on a total of 100 parts by weight of ⁇ -methylstyrene monomer and vinyl cyan monomer, (i) 65 to 75 parts by weight of the ⁇ -methylstyrene, 5 to 15 parts by weight of vinyl cyan monomer, molecular weight 0.01 to 0.3 parts by weight of the regulator, 0.01 to 1.0 parts by weight of the redox catalyst, 0.001 to 0.2 parts by weight of the hydroperoxide initiator, and 1.5 to 2.0 parts by weight of the emulsifier are added and polymerized at the same time, or simultaneously with the start of the polymerization or the start of the polymerization.
  • the redox catalyst may be added at 0.01 to 1.0 part by weight, 0.03 to 0.5 part by weight, or 0.05 to 0.3 part by weight together with the hydroperoxide-based initiator, and at a low temperature within this range. Even if the polymerization is shortened the polymerization reaction time has the effect of generating a high molecular weight.
  • the redox catalyst that can be used may be at least one selected from the group consisting of ferrous sulfate, dextrose, sodium pyrophosphate, sodium sulfite, sodium formaldehyde sulfoxylate, and sodium ethylenediaminetetraacetate. .
  • the heat resistant SAN resin means a copolymer resin of ⁇ -methylstyrene monomer-vinyl cyan compound.
  • the vinyl cyan monomer may be at least one selected from the group consisting of, for example, acrylonitrile, methacrylonitrile, and ethacrylonitrile.
  • the vinyl cyan monomer to be collectively introduced into the (i) first polymerization step may be 5 to 15 parts by weight, or 7 to 13 parts by weight, and the initial reaction rate is appropriate in this range to facilitate molecular weight control, and polymerization. As the reaction time is shortened, the glass transition temperature is increased.
  • the vinyl cyan monomer to be collectively introduced into the (i) first polymerization step as an example may have a weight ratio of ⁇ -methylstyrene monomer of 0.05 to 0.15, or 0.1 to 0.13, while the polymerization reaction time is shortened within this range There is an effect of increasing the glass transition temperature.
  • the redox catalyst may be at least one selected from the group consisting of ferrous sulfate, dextrose, sodium pyrophosphate, sodium sulfite, sodium formaldehyde sulfoxylate, and sodium ethylenediamine tetraacetate.
  • the oxidation-reduction catalyst added in the first polymerization step (i) may be, for example, 0.01 to 1.0 parts by weight, 0.03 to 0.5 parts by weight, or 0.05 to 0.3 parts by weight, and polymerization is carried out at low temperature within this range. As the reaction time is shortened, high molecular weight is produced.
  • redox catalyst (i) introduced in the first polymerization step examples include dextrose, sodium pyrolate, and ferrous sulfate; Or sodium ethylenediaminetetraacetate, sodium formaldehyde sulfoxylate, and ferrous sulfate; and polymerization at low temperatures within this range has an effect of shortening the polymerization reaction time and producing a high molecular weight.
  • the oxidation-reduction catalyst added in the second polymerization step (ii) may be, for example, 0.01 to 1.0 parts by weight, 0.03 to 0.5 parts by weight, or 0.05 to 0.3 parts by weight, and polymerization is carried out at low temperature within this range. As the reaction time is shortened, high molecular weight is produced.
  • the oxidation-reduction catalyst introduced in the second polymerization step (ii) includes, for example, dextrose, sodium pyrrolate, and ferrous sulfate; Or sodium ethylenediaminetetraacetate, sodium formaldehyde sulfoxylate, and ferrous sulfate; and polymerization at low temperatures within this range has an effect of shortening the polymerization reaction time and producing a high molecular weight.
  • the hydroperoxide-based initiator may be at least one selected from the group consisting of, for example, diisopropylbenzene hydroperoxide, cumene hydroperoxide, and tertiary butylhydroperoxide.
  • the (i) hydroperoxide-based initiator to be added in the first polymerization step may be 0.001 to 0.2 parts by weight, 0.005 to 0.15 parts by weight, or 0.01 to 0.1 parts by weight, the polymerization conversion rate is increased within this range It works.
  • the hydroperoxide-based initiator added in the second polymerization step (ii) may be, for example, 0.01 to 2 parts by weight, 0.01 to 1 parts by weight, or 0.02 to 0.5 parts by weight, and the polymerization conversion rate is increased within this range. It works.
  • the pyrolysis initiator may be at least one selected from the group consisting of, for example, potassium persulfate, ammonium persulfate, sodium persulfate, and potassium persulfate.
  • the pyrolysis initiator may be included only in the (iii) tertiary polymerization step, for example, and may be 0.01 to 0.3 parts by weight, 0.05 to 0.25 parts by weight, or 0.1 to 0.2 parts by weight, and finally within this range. There is an effect of increasing the polymerization conversion rate.
  • the molecular weight modifier may be at least one selected from the group consisting of n-dodecyl mercaptan, tertiary dodecyl mercaptan, n-tetradecyl mercaptan and tertiary tetradecyl mercaptan.
  • the molecular weight modifier that is introduced into the first polymerization step in a batch may be 0.001 to 0.3 parts by weight, 0.1 to 0.25 parts by weight, or 0.1 to 0.2 parts by weight, within this range does not occur inverse odor during processing It has an excellent flowability effect without.
  • the molecular weight regulator included in the emulsion in the first polymerization step may be, for example, 0 to 0.2 parts by weight, 0.01 to 0.2 parts by weight, or 0.1 to 0.2 parts by weight within this range does not cause inverse odor during processing It has an excellent flowability effect without.
  • the molecular weight regulator included in the emulsion in the (i) the first polymerization step may not include a molecular weight regulator, there is an effect that the reverse odor does not occur during processing within this range.
  • Vinyl cyan included in the emulsion in the (i) the first polymerization step may be 10 to 18 parts by weight or 11 to 15, for example, the initial reaction rate is appropriate within this range is easy to control the molecular weight, polymerization reaction As the time is shortened, the glass transition temperature is increased.
  • the emulsifier may be, for example, an anionic emulsifier or a neutral polymer emulsifier having an allyl group, a (meth) acryloyl group, or a propenyl group.
  • the emulsion continuously added from the first polymerization step may be added to the point of reaching a polymerization conversion rate of 25 to 90%, 30 to 90%, 50 to 90%, or 80 to 90%, for example, within this range, polymerization stability is improved and a high molecular weight heat resistant SAN resin is produced.
  • the emulsion is continuously added from the first polymerization step is 1 to 20 parts by weight, hr, 2 to 16 parts by weight, or based on the total weight of the vinyl cyan monomer, emulsifier and molecular weight regulator included in the emulsion It can be added at 3 to 5 parts by weight / hr, the polymerization stability is improved within this range and there is an effect that a high molecular weight heat-resistant SAN resin is produced.
  • the batch injection in (i) the first polymerization step may be carried out at 45 to 55 ° C., for example, and polymerization is efficiently performed even at a low temperature within this range, thereby improving production efficiency.
  • the emulsion may be continuously added, for example, while maintaining ⁇ T (set temperature—exothermic temperature) at less than 4 ° C. at 60 to 70 ° C.
  • the polymerization is carried out at a reaction temperature, that is, a set temperature of 75 to 85 ° C., but the present invention provides a glass transition while the polymerization time is shortened even if the polymerization is performed at a lower temperature, that is, a set temperature of 65 to 75 ° C. There is an effect of increasing the temperature.
  • the ⁇ T (set temperature-exothermic temperature) may be, for example, less than 4 ° C., or less than 2 ° C., and polymerization stability is improved and a high molecular weight heat-resistant SAN resin is produced within this range.
  • the second polymerization step (ii) can be polymerized at, for example, the reaction temperature of 65 to 75 °C, there is an effect of improving the polymerization stability within this range.
  • the (ii) second polymerization may be, for example, a polymerization conversion rate of 25 to 40% or 30 to 35%, and there is an excellent balance of polymerization rate and molecular weight increase within this range.
  • the (iii) tertiary polymerization may be, for example, a polymerization conversion rate of 80 to 90%, or 85 to 90%, and the glass transition temperature is increased within this range, thereby improving heat resistance.
  • the water (i) used for batch feeding in the first polymerization step may be, for example, 100 to 500 parts by weight, 100 to 300 parts by weight, or 130 to 250 parts by weight based on 100 parts by weight of the total monomers.
  • the water included in the emulsion in the first polymerization step (i) may be 50 to 300 parts by weight, 50 to 200 parts by weight, 70 to 150 parts by weight, or 80 to 120 parts by weight based on 100 parts by weight of the total monomer, for example. have.
  • the reaction may be terminated at a polymerization conversion rate of 97% or more, or 97 to 99%.
  • After the third polymerization step (iii) may include a step of agglomeration by adding 1 to 3 parts by weight of a coagulant.
  • An example of a drying step after the aggregation; Or drying and aging step; may further include.
  • the drying may be carried out by, for example, a hot air fluidized bed dryer.
  • the drying step; Or drying and aging step; after the completion of the heat-resistant SAN resin may be prepared as a powder of moisture content of 1% by weight or less.
  • the heat resistant SAN resin may have, for example, a weight average molecular weight of 60,000 to 150,000 g / mol, 70,000 to 130,000, or 80,000 to 120,000 g / mol, and within this range, the glass transition temperature and the heat deformation temperature are increased.
  • the heat-resistant SAN resin may have a glass transition temperature of 140 ° C. or higher, or 140 to 150 ° C., and has excellent heat resistance within this range.
  • the heat-resistant SAN resin is, for example, the sum of the vinyl cyanated monomer-vinyl cyanated monomer- ⁇ -methylstyrene copolymer and the vinyl cyanated monomer-vinyl cyanated monomer-vinyl cyanated monomer copolymer, analyzed by NMR, in an amount of 10% by weight or less and 8% by weight. It may be 1 to 7% by weight or less, and has excellent heat resistance within this range.
  • the heat-resistant SAN resin composition of the present disclosure includes, for example, 20 to 30 parts by weight of the heat-resistant SAN resin and 70 to 80 parts by weight of the vinyl cyanide compound-conjugated diene compound-aromatic vinyl compound copolymer resin prepared by the method for producing a heat-resistant SAN resin. can do.
  • the conjugated diene compound is, for example, one selected from the group consisting of 1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 2-ethyl-1,3-butadiene, 1,3-pentadiene and isoprene It may be abnormal.
  • the aromatic vinyl compound may be, for example, one or more selected from the group consisting of styrene, ⁇ -methylstyrene, o-ethylstyrene, p-ethylstyrene, and vinyltoluene.
  • the heat resistant SAN resin composition may include, for example, antibacterial agents, heat stabilizers, antioxidants, mold release agents, light stabilizers, surfactants, coupling agents, plasticizers, admixtures, colorants, stabilizers, lubricants, antistatic agents, colorants, flame retardants, weather agents, ultraviolet absorbers, and the like. It may further comprise one or more selected from the group consisting of sunscreen.
  • ⁇ T set temperature-exothermic temperature
  • an emulsion comprising 100 parts by weight of ion-exchanged water, 15 parts by weight of acrylonitrile and 1.0 parts by weight of potassium stearate was added through a continuous method for 1.0 hour. Then, additional polymerization was carried out while the temperature was raised to 70 ° C. for 2.5 hours (continuous emulsion input).
  • Example 1 except that 75 parts by weight of ⁇ -methylstyrene and 9 parts by weight of acrylonitrile were added at the start of the polymerization, and the emulsion was made of 13 parts by weight of acrylonitrile in a continuous feeding step in the same manner as in Example 1 above. Was carried out.
  • Example 1 73 parts by weight of ⁇ -methylstyrene and 15 parts by weight of acrylonitrile were added in a batch at the start of polymerization, and 9 parts by weight of acrylonitrile was added thereto, and the emulsion was continuously added for 1 hour in ⁇ T ( Except that the set temperature-exothermic temperature) was not adjusted to less than 4 °C was carried out in the same manner as in Example 1.
  • Example 1 except that the initial polymerization temperature was set at 70 ° C. except that potassium persulfate, which is a pyrolysis initiator other than a hydroperoxide-based initiator, was used as the polymerization initiator and the polymerization reaction time was 1 hour. It carried out by the same method as 1.
  • Comparative Example 1 the same procedure as in Comparative Example 1 was carried out except that tertiary mercaptan, which was a molecular weight regulator, was used at 0.6 part by weight.
  • Polymerization Conversion Rate (%) [ ⁇ (Added Monomer And Subsidiary Parts By Weight) * Total Solid Content (%)-(Extra Monopart Added By Weight Monomer) ⁇ / (Total Monomer Input)] * 100
  • Triad content (% by weight): Bruker AVANCE HD III 700MHz NMR instrument was used and the sample was dissolved in CDCl3 (w / TMS) and the NMR spectrum was measured at room temperature. The measured value was obtained by calibrating TMS to 0 ppm and calculating triad sequence distribution based on the integral value of peaks in the range of 150 to 140 ppm and 125 to 118 ppm, and the vinyl cyanated monomer-vinyl cyanated monomer- ⁇ -methylstyrene copolymer. And the content of vinyl cyanated monomer-vinyl cyanated monomer-vinyl cyanated monomer copolymer.
  • Odor during processing The odor generated during extrusion and injection was evaluated by sensory evaluation, and if the odor did not occur, it was evaluated as good.
  • Fluidity (g / 10min) Measured for 10 minutes at 220 °C, 10Kg load in accordance with ASTM D1238.
  • Examples 1 and 2 according to the present invention did not generate inverse odor during processing, a polymer having a weight average molecular weight of 100,000 g / mol or more was produced, and also a triad content is low glass transition The temperature and the heat deformation temperature were increased, and the heat resistance was excellent, but the fluidity was also good.
  • Comparative Examples 1 and 2 which did not use an oxidation-reduction catalyst, had a very large decrease in the glass transition temperature and the heat deformation temperature, and a sharp increase in the triad content.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polymerization Catalysts (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

The present disclosure relates to a method of manufacturing a heat-resistant SAN resin, and has the effects of providing: a method of manufacturing a heat-resistant SAN resin, which has excellent productivity, does not emit bad odors during manufacturing, and improves both heat resistance and fluidity; and to a heat-resistant SAN resin manufactured by the method.

Description

내열 SAN 수지의 제조방법Manufacturing method of heat resistant SAN resin
〔출원(들)과의 상호 인용〕[Reciprocal citation with application (s)]
본 출원은 2015년 12월 04일자 한국 특허 출원 제10-2015-0172718호 및 2016년 11월 28일자 한국 특허 출원 제10-2016-0159007호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 10-2015-0172718 filed December 04, 2015 and Korean Patent Application No. 10-2016-0159007 filed November 28, 2016. All content disclosed in the literature is included as part of this specification.
본 기재는 내열 SAN 수지의 제조방법에 관한 것으로, 보다 상세하게는 생산성이 우수하면서 가공 중 역한 냄새가 발생하지 않고 내열성 및 유동성이 모두 향상된 내열 SAN 수지의 제조방법 및 이로부터 제조된 내열 SAN 수지 조성물에 관한 것이다.The present disclosure relates to a method for manufacturing a heat resistant SAN resin, and more particularly, to a method for preparing a heat resistant SAN resin having excellent productivity and improved heat resistance and fluidity without generating adverse smell during processing, and a heat resistant SAN resin composition prepared therefrom. It is about.
아크릴로니트릴-부타디엔-스티렌(이하, ABS라 함) 수지의 내열성을 향상시키기 위한 종래의 기술로는 스티렌의 일부 또는 전부를 α-메틸스티렌으로 대체하여 유화중합으로 제조하는 방법이 통상적으로 사용되고 있다. 내열 SAN 수지는 α-메틸스티렌을 기반으로 제조되는 수지로 벌크중합과 비교하여 높은 유리전이온도와 고분자량을 얻을 수 있어서 내열특성과 내환경 응력균열성(ESCR)이 우수하다. 특히 유리전이온도는 내열수지의 내열특성을 결정하는 가장 중요한 요소로 α-메틸스티렌 함량을 높이는 방법 내지 분자량을 올리는 방법 등을 사용하는데 α-메틸스티렌 함량을 높이는 방법의 경우, α-메틸스티렌 자체가 반응성이 낮아 미반응 단량체의 비율이 증가하여 내열성 저하의 원인이 되고, 또한 미반응 단량체를 제거하기 위한 별도의 장치가 요구되므로 이로 인한 제품의 원가가 상승되고 생산성이 저하될 뿐만 아니라 중합 반응시간이 길어지고 전환율이 낮아지는 단점이 있다. 또한, 분자량을 올리는 경우, 적용제품의 유동성이 저하되는 문제점이 발생되어 분자량 상승에 제한적인 부분이 발생될 수 있었으며, 또한 유동성을 개선시키고자 분자량 조절제의 함량을 증가시켜 분자량을 낮추면 분자량 조절제로 주로 사용되는 머캅탄류가 가공시 역한 냄새를 발생시키는 문제점이 있다.As a conventional technique for improving the heat resistance of acrylonitrile-butadiene-styrene (hereinafter referred to as ABS) resin, a method of preparing by emulsion polymerization by replacing part or all of styrene with α-methylstyrene is commonly used. . Heat-resistant SAN resin is a resin manufactured on the basis of α-methylstyrene, and has a high glass transition temperature and high molecular weight compared to bulk polymerization, and thus has excellent heat resistance and environmental stress crack resistance (ESCR). In particular, the glass transition temperature is the most important factor for determining the heat resistance characteristics of the heat-resisting resin. The method of increasing the α-methylstyrene content or increasing the molecular weight is used in the case of increasing the α-methylstyrene content. Because of its low reactivity, the proportion of unreacted monomers increases, which leads to a decrease in heat resistance. In addition, a separate device for removing unreacted monomers is required, thereby increasing the cost of the product and lowering productivity. This has the disadvantage of being longer and having a lower conversion rate. In addition, when the molecular weight is increased, there is a problem in that the flowability of the applied product is lowered, which may cause a limited portion to increase the molecular weight, and also to increase the content of the molecular weight regulator to lower the molecular weight to improve the fluidity, the molecular weight is mainly used as a molecular weight regulator. There is a problem that the mercaptans to be used produce a bad smell during processing.
이를 해결하기 위하여, 대한민국 공개특허공보 제1993-0021665호는 내열성 SAN 공중합체의 제조에서 α-알킬스티렌-아크릴로니트릴의 공중합체를 유화중합에 의하여 제조하는 제조방법을 개시하고 있으나, 이 제조방법에 의하는 경우, 중합시간이 9시간 이상 장시간 소요되어 공중합체 생산성이 저하되는 단점이 있었다.In order to solve this problem, Korean Patent Laid-Open Publication No. 199-0021665 discloses a method for preparing a copolymer of α-alkylstyrene-acrylonitrile by emulsion polymerization in the preparation of a heat resistant SAN copolymer, but this manufacturing method In this case, the polymerization time is longer than 9 hours, there is a disadvantage that the copolymer productivity is lowered.
또한, 대한민국 공개특허공부 제1996-0031486호는 라텍스 고형분의 함량이 높고, 안정성이 우수한 내열성 SAN 공중합체를 유화중합으로 제조할 때 전해질을 첨가하는 제조방법을 개시하고 있으나, 역시 중합시간이 6시간 이상 장시간 소요되어 공중합체 생산성이 저하되는 단점이 있었다.In addition, Korean Patent Laid-Open Publication No. 1996-0031486 discloses a method for adding an electrolyte when preparing a heat-resistant SAN copolymer having a high content of latex solids and excellent stability by emulsion polymerization, but also has a polymerization time of 6 hours. There was a disadvantage in that it takes a long time and the copolymer productivity is lowered.
상기와 같은 종래기술의 문제점을 해결하고자, 본 기재는 생산성이 우수하면서 가공 중 역한 냄새가 발생하지 않고 내열성 및 유동성이 모두 향상된 내열 SAN 수지의 제조방법 및 이로부터 제조된 내열 SAN 수지 조성물을 제공하는 것을 목적으로 한다.In order to solve the problems of the prior art as described above, the present invention provides a method for producing a heat-resistant SAN resin with excellent productivity and improved heat resistance and fluidity without adverse smell during processing and a heat-resistant SAN resin composition prepared therefrom For the purpose of
본 기재의 상기 목적 및 기타 목적들은 하기 설명된 본 기재에 의하여 모두 달성될 수 있다.The above and other objects of the present disclosure can be achieved by the present disclosure described below.
상기의 목적을 달성하기 위하여, 본 기재는 α-메틸스티렌 단량체 및 비닐시안 단량체를 중합시켜 내열 SAN 수지를 제조하는 방법에 있어서, (i) 상기 α-메틸스티렌 단량체 전량과 상기 비닐시안 단량체 일부를 산화-환원 촉매 및 하이드로퍼옥사이드계 개시제의 존재 하에서 중합시키되, 상기 중합 개시와 동시에 또는 상기 중합 개시 이후에 비닐시안 단량체의 또 다른 일부를 연속투입하면서 중합시키는 제1차 중합단계; (ii) 상기 제1차 중합단계에서 중합전환율 25 내지 40%에 도달하는 시점에서 산화-환원 촉매 및 하이드로퍼옥사이드계 개시제를 투입하여 중합시키는 제2차 중합단계; 및 (iii) 상기 제2차 중합단계에서 중합전환율 80 내지 90%에 도달하는 시점에서 비닐시안 단량체 잔량 및 열분해 개시제를 투입하여 중합시키는 제3차 중합단계;를 포함하여 생산성이 우수하면서 가공 중 역한 냄새가 발생하지 않고 내열성 및 유동성이 모두 향상된 내열 SAN 수지의 제조방법을 제공한다.In order to achieve the above object, the present invention is a method for producing a heat-resistant SAN resin by polymerizing the α-methylstyrene monomer and vinyl cyan monomer, (i) the entire amount of the α- methyl styrene monomer and part of the vinyl cyan monomer A first polymerization step of polymerizing in the presence of an oxidation-reduction catalyst and a hydroperoxide-based initiator, wherein the polymerization is carried out at the same time as the start of the polymerization or after another part of the vinyl cyan monomer is continuously added after the start of the polymerization; (ii) a second polymerization step in which the oxidation-reduction catalyst and the hydroperoxide-based initiator are polymerized at the time when the polymerization conversion rate reaches 25 to 40% in the first polymerization step; And (iii) a third polymerization step in which the remaining amount of the vinyl cyan monomer and the pyrolysis initiator are polymerized at the time point when the polymerization conversion rate reaches 80 to 90% in the second polymerization step; Provided is a method for producing a heat-resistant SAN resin that does not generate odor and has both improved heat resistance and fluidity.
또한 본 기재는 상기의 내열 SAN 수지의 제조방법으로부터 제조된 내열 SAN 수지 조성물을 제공한다.The present invention also provides a heat resistant SAN resin composition prepared from the method for producing a heat resistant SAN resin.
상기에서 살펴본 바와 같이, 본 기재에 따르면 생산성이 우수하면서 가공 중 역한 냄새가 발생하지 않고 내열성 및 유동성이 모두 향상된 내열 SAN 수지의 제조방법 및 이로부터 제조된 내열 SAN 수지 조성물을 제공하는 효과가 있다.As described above, according to the present invention, there is an effect of providing a production method of a heat-resistant SAN resin having excellent productivity and improved heat resistance and fluidity without inverse smell during processing and a heat-resistant SAN resin composition prepared therefrom.
이하 본 기재를 상세하게 설명한다.Hereinafter, the present description will be described in detail.
본 기재의 내열 SAN 수지의 제조방법은 α-메틸스티렌 단량체 및 비닐시안 단량체를 중합시켜 내열 SAN 수지를 제조하는 방법에 있어서, (i) 상기 α-메틸스티렌 단량체 전량과 상기 비닐시안 단량체 일부를 산화-환원 촉매 및 하이드로퍼옥사이드계 개시제의 존재 하에서 중합시키되, 상기 중합 개시와 동시에 또는 상기 중합 개시 이후에 비닐시안 단량체의 또 다른 일부를 연속투입하면서 중합시키는 제1차 중합단계; (ii) 상기 제1차 중합단계에서 중합전환율 25 내지 40%에 도달하는 시점에서 산화-환원 촉매 및 하이드로퍼옥사이드계 개시제를 투입하여 중합시키는 제2차 중합단계; 및 (iii) 상기 제2차 중합단계에서 중합전환율 80 내지 90%에 도달하는 시점에서 비닐시안 단량체 잔량 및 열분해 개시제를 투입하여 중합시키는 제3차 중합단계;를 포함하는 것을 특징으로 하고, 이 범위 내에서 생산성이 우수하면서 가공 중 역한 냄새가 발생하지 않고 내열성 및 유동성이 모두 향상된 내열 SAN 수지가 제조되는 효과가 있다.The method for producing a heat-resistant SAN resin of the present disclosure is a method for producing a heat-resistant SAN resin by polymerizing an α-methylstyrene monomer and a vinyl cyan monomer, wherein (i) the entire amount of the α-methyl styrene monomer and a part of the vinyl cyan monomer are oxidized. A first polymerization step of polymerizing in the presence of a reduction catalyst and a hydroperoxide-based initiator, wherein the polymerization is carried out simultaneously with the start of the polymerization or after another part of the vinyl cyan monomer is added continuously; (ii) a second polymerization step in which the oxidation-reduction catalyst and the hydroperoxide-based initiator are polymerized at the time when the polymerization conversion rate reaches 25 to 40% in the first polymerization step; And (iii) a third polymerization step in which the remaining amount of the vinyl cyan monomer and the pyrolysis initiator are polymerized at the time point when the polymerization conversion rate reaches 80 to 90% in the second polymerization step. There is an effect that the heat-resistant SAN resin is excellent in productivity while improving the heat resistance and fluidity without generating a bad smell during processing.
또 다른 예로, 본 기재의 내열 SAN 수지의 제조방법은 α-메틸스티렌 단량체 및 비닐시안 단량체를 중합시켜 내열 SAN 수지를 제조하는 방법에 있어서, (i) 상기 α-메틸스티렌 단량체 전량과 상기 비닐시안 단량체 100 중량% 중 20 내지 65 중량%를 산화-환원 촉매 및 하이드로퍼옥사이드계 개시제의 존재 하에서 중합시키되, 상기 중합 개시와 동시에 또는 상기 중합 개시 이후에 상기 비닐시안 단량체 100 중량% 중 30 내지 80 중량% 또는 30 내지 79 중량%를 연속투입하면서 중합시키는 제1차 중합단계; (ii) 상기 제1차 중합단계에서 중합전환율 25 내지 40%에 도달하는 시점에서 산화-환원 촉매 및 하이드로퍼옥사이드계 개시제를 투입하여 중합시키는 제2차 중합단계; 및 (iii) 상기 제2차 중합단계에서 중합전환율 80 내지 90%에 도달하는 시점에서 상기 비닐시안 단량체 100 중량% 중 나머지 0 내지 25 중량% 또는 1 내지 25 중량%, 및 열분해 개시제를 투입하여 중합시키는 제3차 중합단계;를 포함하는 것을 특징으로 하고, 이 범위 내에서 생산성이 우수하면서 가공 중 역한 냄새가 발생하지 않고 내열성 및 유동성이 모두 향상된 내열 SAN 수지가 제조되는 효과가 있다.As another example, the method for producing a heat-resistant SAN resin of the present invention is a method for producing a heat-resistant SAN resin by polymerizing the α-methylstyrene monomer and vinyl cyan monomer, (i) the entire amount of the α-methylstyrene monomer and the vinyl cyan 20 to 65% by weight of 100% by weight of the monomer is polymerized in the presence of an oxidation-reduction catalyst and a hydroperoxide-based initiator, and 30 to 80% by weight of 100% by weight of the vinyl cyan monomer at the same time as the polymerization start or after the polymerization is started. A first polymerization step of polymerizing while continuously adding 30% or 79% by weight; (ii) a second polymerization step in which the oxidation-reduction catalyst and the hydroperoxide-based initiator are polymerized at the time when the polymerization conversion rate reaches 25 to 40% in the first polymerization step; And (iii) polymerization at a time point when the polymerization conversion ratio reaches 80 to 90% in the second polymerization step, by adding 0 to 25 wt% or 1 to 25 wt% of the remaining 100 wt% of the vinyl cyan monomer and a pyrolysis initiator. It is characterized in that it comprises a; the third polymerization step to be made, there is an effect of producing a heat-resistant SAN resin having excellent productivity within this range and does not generate a bad smell during processing and improved both heat resistance and fluidity.
또 다른 예로, 본 기재의 내열 SAN 수지의 제조방법은 α-메틸스티렌 단량체 및 비닐시안 단량체를 중합시켜 내열 SAN 수지를 제조하는 방법에 있어서, (i) 상기 α-메틸스티렌 단량체 전량과 상기 비닐시안 단량체 100 중량% 중 30 내지 60 중량% 또는 33 내지 40 중량%를 산화-환원 촉매 및 하이드로퍼옥사이드계 개시제의 존재 하에서 중합시키되, 상기 중합 개시와 동시에 또는 상기 중합 개시 이후에 상기 비닐시안 단량체 100 중량% 중 30 내지 60 중량% 또는 50 내지 56 중량%를 연속투입하면서 중합시키는 제1차 중합단계; (ii) 상기 제1차 중합단계에서 중합전환율 25 내지 40%에 도달하는 시점에서 산화-환원 촉매 및 하이드로퍼옥사이드계 개시제를 투입하여 중합시키는 제2차 중합단계; 및 (iii) 상기 제2차 중합단계에서 중합전환율 80 내지 90%에 도달하는 시점에서 상기 비닐시안 단량체 100 중량% 중 나머지 5 내지 15 중량% 또는 4 내지 17 중량%, 및 열분해 개시제를 투입하여 중합시키는 제3차 중합단계;를 포함하는 것을 특징으로 하고, 이 범위 내에서 생산성이 우수하면서 가공 중 역한 냄새가 발생하지 않고 내열성 및 유동성이 모두 향상된 내열 SAN 수지가 제조되는 효과가 있다.As another example, the method for producing a heat-resistant SAN resin of the present invention is a method for producing a heat-resistant SAN resin by polymerizing the α-methylstyrene monomer and vinyl cyan monomer, (i) the entire amount of the α-methylstyrene monomer and the vinyl cyan 30 to 60% by weight or 33 to 40% by weight in 100% by weight of the monomer is polymerized in the presence of an oxidation-reduction catalyst and a hydroperoxide-based initiator, and at the same time as the polymerization start or after the polymerization start, 100 weight of the vinylcyan monomer A first polymerization step of polymerizing while continuously adding 30 to 60 wt% or 50 to 56 wt% in%; (ii) a second polymerization step in which the oxidation-reduction catalyst and the hydroperoxide-based initiator are polymerized at the time when the polymerization conversion rate reaches 25 to 40% in the first polymerization step; And (iii) polymerization of the remaining 5 to 15 wt% or 4 to 17 wt% of the 100 wt% of the vinyl cyan monomer, and a thermal decomposition initiator at a time point when the polymerization conversion rate is 80 to 90% in the second polymerization step. It is characterized in that it comprises a; the third polymerization step to be made, there is an effect of producing a heat-resistant SAN resin having excellent productivity within this range and does not generate a bad smell during processing and improved both heat resistance and fluidity.
상기 (i) 단계에서 연속투입하는 비닐시안 단량체는 일례로 상기 개시제 투입 후 또는 중합 개시 후, 30분 내지 5시간 동안, 1시간 내지 4시간, 2시간 내지 3.5시간, 또는 2시간 내지 3시간 동안 연속투입될 수 있고, 이 범위 내에서 생산성이 우수하면서 가공 중 역한 냄새가 발생하지 않고 내열성 및 유동성이 모두 향상된 내열 SAN 수지가 제조되는 효과가 있다.The vinyl cyan monomer continuously added in step (i) is, for example, 30 minutes to 5 hours, 1 hour to 4 hours, 2 hours to 3.5 hours, or 2 hours to 3 hours after the initiator is added or after the start of polymerization. It can be continuously injected, there is an effect that the heat-resistant SAN resin is excellent in productivity and improved in both heat resistance and fluidity without generating a bad smell during processing within this range.
또 다른 예로, 상기 (i) 단계에서 연속투입하는 비닐시안 단량체는 상기 개시제 투입 후 또는 중합 개시 후, 중합전환율 20 내지 90 %, 40 내지 90 %, 60 내지 90 % 또는 70 내지 88 %에 도달할 때까지 연속투입될 수 있고, 이 범위 내에서 생산성이 우수하면서 가공 중 역한 냄새가 발생하지 않고 내열성 및 유동성이 모두 향상된 내열 SAN 수지가 제조되는 효과가 있다.As another example, the vinyl cyan monomer continuously added in step (i) may reach 20 to 90%, 40 to 90%, 60 to 90% or 70 to 88% of the polymerization conversion rate after the initiator is added or after the polymerization is started. Until the continuous injection, there is an effect that the heat-resistant SAN resin is excellent in productivity and improved in both heat resistance and fluidity without generating a bad smell during processing within this range.
본 기재에서 '상기 중합 개시 이후에' 또는 '개시제 투입 후'란 중합 시작 후 통상의 기술자가 바로 투입할 수 있는 정도의 시간 간격을 의미하고, 구체적인 예로 중합 시작 후 1초 내지 10분이 되는 시점, 또는 10초 내지 5분이 되는 시점이거나, 중합전환율 0% 초과 내지 5% 이하가 되는 시점, 또는 0% 초과 내지 3% 이하가 되는 시점을 의미할 수 있다.In the present description, 'after the start of the polymerization' or 'after the initiator is added' means a time interval such that a person skilled in the art can immediately input the start of the polymerization, and, for example, a time point of 1 second to 10 minutes after the start of the polymerization, Or 10 seconds to 5 minutes, or more than 0% to 5% or less, or more than 0% to 3%.
본 기재에서 연속투입이란 이 기술분야에서 통상적으로 인식되는 연속투입인 경우 특별히 제한되지 않고, 일례로 투입되는 물질이 일정 시간 동안 서로 끊이지 않고 이어지면서 투입되는 것 또는 드롭바이드롭(drop-by-drop) 방식으로 액적이 짧은 간격으로 지속적으로 일정 시간 동안 투입되는 것을 의미할 수 있다.Continuous dosing in the present disclosure is not particularly limited in the case of continuous dosing that is commonly recognized in the art, and for example, materials to be added or drop-by-drop while being continuously connected to each other for a predetermined time. ), It may mean that the droplets are continuously injected for a predetermined time at short intervals.
상기 내열 SAN 수지의 제조방법은 일례로α-메틸스티렌 단량체 및 비닐시안 단량체 총 100 중량부를 기준으로, (i) 상기 α-메틸스티렌 65 내지 75 중량부, 비닐시안 단량체 5 내지 15 중량부, 분자량 조절제 0.01 내지 0.3 중량부, 산화-환원 촉매 0.01 내지 1.0 중량부, 하이드로퍼옥사이드계 개시제 0.001 내지 0.2 중량부, 및 유화제 1.5 내지 2.0 중량부를 일괄투입하고 중합시키되, 상기 중합 개시와 동시에 또는 상기 중합 개시 이후에 비닐시안 단량체 10 내지 20 중량부, 유화제 0.5 내지 1.0 중량부, 및 분자량 조절제 0 내지 0.2 중량부를 포함하는 유화액을 연속투입하면서 중합시키는 제1차 중합단계; (ii) 상기 제1차 중합단계에서 중합전환율 25 내지 40%에 도달하는 시점에서 산화-환원 촉매 0.01 내지 1.0 중량부 및 하이드로퍼옥사이드계 개시제 0.01 내지 2 중량부를 투입하여 중합시키는 제2차 중합단계; 및 (iii) 상기 제2차 중합단계에서 중합전환율 80 내지 90%에 도달하는 시점에서 비닐시안 단량체 0 내지 4 중량부, 열분해 개시제 0.01 내지 0.3 중량부, 및 유화제 0.1 내지 0.5 중량부를 투입하여 중합시키는 제3차 중합단계;를 포함할 수 있다.The production method of the heat-resistant SAN resin is, for example, based on a total of 100 parts by weight of α-methylstyrene monomer and vinyl cyan monomer, (i) 65 to 75 parts by weight of the α-methylstyrene, 5 to 15 parts by weight of vinyl cyan monomer, molecular weight 0.01 to 0.3 parts by weight of the regulator, 0.01 to 1.0 parts by weight of the redox catalyst, 0.001 to 0.2 parts by weight of the hydroperoxide initiator, and 1.5 to 2.0 parts by weight of the emulsifier are added and polymerized at the same time, or simultaneously with the start of the polymerization or the start of the polymerization. Thereafter, a first polymerization step of polymerizing while continuously introducing an emulsion containing 10 to 20 parts by weight of the vinyl cyan monomer, 0.5 to 1.0 parts by weight of an emulsifier, and 0 to 0.2 parts by weight of a molecular weight regulator; (ii) a second polymerization step in which the polymerization is performed by adding 0.01 to 1.0 parts by weight of an oxidation-reduction catalyst and 0.01 to 2 parts by weight of a hydroperoxide-based initiator at a time when the polymerization conversion rate reaches 25 to 40% in the first polymerization step. ; And (iii) polymerizing by adding 0 to 4 parts by weight of vinyl cyan monomer, 0.01 to 0.3 parts by weight of pyrolysis initiator, and 0.1 to 0.5 parts by weight of emulsifier at the point of reaching the polymerization conversion ratio of 80 to 90% in the second polymerization step. It may include a third polymerization step.
일례로, 상기 (i) 단계에서 하이드로퍼옥사이드계 개시제와 함께 산화-환원 촉매가 0.01 내지 1.0 중량부, 0.03 내지 0.5 중량부, 또는 0.05 내지 0.3 중량부로 투입될 수 있고, 이 범위 내에서 저온에서 중합하여도 중합 반응시간이 단축되면서 고분자량이 생성되는 효과가 있다. 이때 사용 가능한 산화-환원 촉매로는 일례로 황산제1철, 덱스트로즈, 피로인산나트륨, 아황산나트륨, 소듐포름알데히드술폭실레이트, 및 소듐에틸렌디아민테트라아세테이트로 이루어진 군으로부터 선택된 1종 이상일 수 있다.For example, in step (i), the redox catalyst may be added at 0.01 to 1.0 part by weight, 0.03 to 0.5 part by weight, or 0.05 to 0.3 part by weight together with the hydroperoxide-based initiator, and at a low temperature within this range. Even if the polymerization is shortened the polymerization reaction time has the effect of generating a high molecular weight. The redox catalyst that can be used may be at least one selected from the group consisting of ferrous sulfate, dextrose, sodium pyrophosphate, sodium sulfite, sodium formaldehyde sulfoxylate, and sodium ethylenediaminetetraacetate. .
상기 내열 SAN 수지는 α-메틸스티렌 단량체-비닐시안 화합물의 공중합체 수지를 의미한다.The heat resistant SAN resin means a copolymer resin of α-methylstyrene monomer-vinyl cyan compound.
상기 비닐시안 단량체는 일례로 아크릴로니트릴, 메타크릴로니트릴 및 에타크릴로니트릴로 이루어진 군으로부터 선택된 1종 이상일 수 있다.The vinyl cyan monomer may be at least one selected from the group consisting of, for example, acrylonitrile, methacrylonitrile, and ethacrylonitrile.
상기 (i) 제1차 중합단계에서 일례로 일괄투입 하는 비닐시안 단량체는 5 내지 15 중량부, 또는 7 내지 13 중량부일 수 있고, 이 범위에서 초기 반응속도가 적절하여 분자량 조절이 용이하며, 중합 반응시간이 단축되면서 유리전이온도가 상승하는 효과가 있다.The vinyl cyan monomer to be collectively introduced into the (i) first polymerization step as an example may be 5 to 15 parts by weight, or 7 to 13 parts by weight, and the initial reaction rate is appropriate in this range to facilitate molecular weight control, and polymerization. As the reaction time is shortened, the glass transition temperature is increased.
상기 (i) 제1차 중합단계에서 일례로 일괄투입 하는 비닐시안 단량체는 α-메틸스티렌 단량체에 대한 중량비가 0.05 내지 0.15, 또는 0.1 내지 0.13일 수 있고, 이 범위 내에서 중합 반응시간이 단축되면서 유리전이온도가 상승하는 효과가 있다.The vinyl cyan monomer to be collectively introduced into the (i) first polymerization step as an example may have a weight ratio of α-methylstyrene monomer of 0.05 to 0.15, or 0.1 to 0.13, while the polymerization reaction time is shortened within this range There is an effect of increasing the glass transition temperature.
상기 산화-환원 촉매는 일례로 황산제1철, 덱스트로즈, 피로인산 나트륨, 아황산나트륨, 소듐포름알데히드술폭실레이트, 및 소듐에틸렌디아민테트라아세테이트로 이루어진 군으로부터 선택된 1종 이상일 수 있다.The redox catalyst may be at least one selected from the group consisting of ferrous sulfate, dextrose, sodium pyrophosphate, sodium sulfite, sodium formaldehyde sulfoxylate, and sodium ethylenediamine tetraacetate.
상기 (i) 제1차 중합단계에서 투입하는 산화-환원 촉매는 일례로 0.01 내지 1.0 중량부, 0.03 내지 0.5 중량부, 또는 0.05 내지 0.3 중량부일 수 있고, 이 범위 내에서 저온에서 중합하여도 중합 반응시간이 단축되면서 고분자량이 생성되는 효과가 있다.The oxidation-reduction catalyst added in the first polymerization step (i) may be, for example, 0.01 to 1.0 parts by weight, 0.03 to 0.5 parts by weight, or 0.05 to 0.3 parts by weight, and polymerization is carried out at low temperature within this range. As the reaction time is shortened, high molecular weight is produced.
상기 (i) 제1차 중합단계에서 투입하는 산화-환원 촉매는 구체적인 예로 덱스트로즈, 피롤린산 나트륨, 및 황산제1철; 또는 소듐에틸렌디아민테트라아세테이트, 소듐포름알데히드술폭실레이트 및 황산제1철;일 수 있고, 이 범위 내에서 저온에서 중합하여도 중합 반응시간이 단축되면서 고분자량이 생성되는 효과가 있다.Specific examples of the redox catalyst (i) introduced in the first polymerization step include dextrose, sodium pyrolate, and ferrous sulfate; Or sodium ethylenediaminetetraacetate, sodium formaldehyde sulfoxylate, and ferrous sulfate; and polymerization at low temperatures within this range has an effect of shortening the polymerization reaction time and producing a high molecular weight.
상기 (ii) 제2차 중합단계에서 투입하는 산화-환원 촉매는 일례로 0.01 내지 1.0 중량부, 0.03 내지 0.5 중량부, 또는 0.05 내지 0.3 중량부일 수 있고, 이 범위 내에서 저온에서 중합하여도 중합 반응시간이 단축되면서 고분자량이 생성되는 효과가 있다.The oxidation-reduction catalyst added in the second polymerization step (ii) may be, for example, 0.01 to 1.0 parts by weight, 0.03 to 0.5 parts by weight, or 0.05 to 0.3 parts by weight, and polymerization is carried out at low temperature within this range. As the reaction time is shortened, high molecular weight is produced.
상기 (ii) 제2차 중합단계에서 투입하는 산화-환원 촉매는 구체적인 예로 덱스트로즈, 피롤린산 나트륨, 및 황산제1철; 또는 소듐에틸렌디아민테트라아세테이트, 소듐포름알데히드술폭실레이트 및 황산제1철;일 수 있고, 이 범위 내에서 저온에서 중합하여도 중합 반응시간이 단축되면서 고분자량이 생성되는 효과가 있다.The oxidation-reduction catalyst introduced in the second polymerization step (ii) includes, for example, dextrose, sodium pyrrolate, and ferrous sulfate; Or sodium ethylenediaminetetraacetate, sodium formaldehyde sulfoxylate, and ferrous sulfate; and polymerization at low temperatures within this range has an effect of shortening the polymerization reaction time and producing a high molecular weight.
상기 하이드로퍼옥사이드계 개시제는 일례로 디이소프로필벤젠 하이드로퍼옥사이드, 큐멘 하이드로퍼옥사이드, 및 3급 부틸하이드로 퍼옥사이드로 이루어진 군으로부터 선택된 1종 이상일 수 있다.The hydroperoxide-based initiator may be at least one selected from the group consisting of, for example, diisopropylbenzene hydroperoxide, cumene hydroperoxide, and tertiary butylhydroperoxide.
상기 (i) 제1차 중합단계에서 투입하는 하이드로퍼옥사이드계 개시제는 일례로 0.001 내지 0.2 중량부, 0.005 내지 0.15 중량부, 또는 0.01 내지 0.1 중량부일 수 있고, 이 범위 내에서 중합전환율이 상승되는 효과가 있다.The (i) hydroperoxide-based initiator to be added in the first polymerization step may be 0.001 to 0.2 parts by weight, 0.005 to 0.15 parts by weight, or 0.01 to 0.1 parts by weight, the polymerization conversion rate is increased within this range It works.
상기 (ii) 제2차 중합단계에서 투입하는 하이드로퍼옥사이드계 개시제는 일례로 0.01 내지 2 중량부, 0.01 내지 1 중량부, 또는 0.02 내지 0.5 중량부일 수 있고, 이 범위 내에서 중합전환율이 상승되는 효과가 있다.The hydroperoxide-based initiator added in the second polymerization step (ii) may be, for example, 0.01 to 2 parts by weight, 0.01 to 1 parts by weight, or 0.02 to 0.5 parts by weight, and the polymerization conversion rate is increased within this range. It works.
상기 열분해 개시제는 일례로 칼륨 퍼설페이트, 암모늄 퍼설페이트, 나트륨 퍼설페이트, 및 포타슘 퍼설페이트로 이루어진 군으로부터 선택된 1종 이상일 수 있다.The pyrolysis initiator may be at least one selected from the group consisting of, for example, potassium persulfate, ammonium persulfate, sodium persulfate, and potassium persulfate.
상기 열분해 개시제는 일례로 상기 (iii) 제3차 중합단계에서만 포함될 수 있으며, 또 다른 일례로 0.01 내지 0.3 중량부, 0.05 내지 0.25 중량부, 또는 0.1 내지 0.2 중량부일 수 있고, 이 범위 내에서 최종 중합전환율이 상승되는 효과가 있다.The pyrolysis initiator may be included only in the (iii) tertiary polymerization step, for example, and may be 0.01 to 0.3 parts by weight, 0.05 to 0.25 parts by weight, or 0.1 to 0.2 parts by weight, and finally within this range. There is an effect of increasing the polymerization conversion rate.
상기 분자량 조절제는 일례로 n-도데실머캅탄, 3급 도데실머캅탄, n-테트라데실머캅탄 및 3급 테트라데실머캅탄으로 이루어진 군으로부터 선택된 1종 이상일 수 있다.The molecular weight modifier may be at least one selected from the group consisting of n-dodecyl mercaptan, tertiary dodecyl mercaptan, n-tetradecyl mercaptan and tertiary tetradecyl mercaptan.
상기 (i) 제1차 중합단계에서 일괄투입하는 분자량 조절제는 일례로 0.001 내지 0.3 중량부, 0.1 내지 0.25 중량부, 또는 0.1 내지 0.2 중량부일 수 있고, 이 범위 내에서 가공 중 역한 냄새가 발생하지 않으면서 유동성이 우수한 효과가 있다.(I) The molecular weight modifier that is introduced into the first polymerization step in a batch may be 0.001 to 0.3 parts by weight, 0.1 to 0.25 parts by weight, or 0.1 to 0.2 parts by weight, within this range does not occur inverse odor during processing It has an excellent flowability effect without.
상기 (i) 제1차 중합단계에서 유화액에 포함되는 분자량 조절제는 일례로 0 내지 0.2 중량부, 0.01 내지 0.2 중량부, 또는 0.1 내지 0.2 중량부일 수 있고 이 범위 내에서 가공 중 역한 냄새가 발생하지 않으면서 유동성이 우수한 효과가 있다.(I) The molecular weight regulator included in the emulsion in the first polymerization step may be, for example, 0 to 0.2 parts by weight, 0.01 to 0.2 parts by weight, or 0.1 to 0.2 parts by weight within this range does not cause inverse odor during processing It has an excellent flowability effect without.
또 다른 예로, 상기 (i) 제1차 중합단계에서 유화액에 포함되는 분자량 조절제는 분자량 조절제를 포함하지 않을 수 있고, 이 범위 내에서 가공 중 역한 냄새가 발생하지 않는 효과가 있다.As another example, the molecular weight regulator included in the emulsion in the (i) the first polymerization step may not include a molecular weight regulator, there is an effect that the reverse odor does not occur during processing within this range.
상기 (i) 제1차 중합단계에서 유화액에 포함되는 비닐시안은 일례로 10 내지 18 중량부 또는 11 내지 15일 수 있고, 이 범위 내에서 초기 반응속도가 적절하여 분자량 조절이 용이하며, 중합 반응시간이 단축되면서 유리전이온도가 상승하는 효과가 있다.Vinyl cyan included in the emulsion in the (i) the first polymerization step may be 10 to 18 parts by weight or 11 to 15, for example, the initial reaction rate is appropriate within this range is easy to control the molecular weight, polymerization reaction As the time is shortened, the glass transition temperature is increased.
상기 유화제는 일례로 알릴기, (메타)아크릴로일기 또는 프로페닐기를 가지는 음이온계 유화제 또는 중성계 고분자형 유화제일 수 있다.The emulsifier may be, for example, an anionic emulsifier or a neutral polymer emulsifier having an allyl group, a (meth) acryloyl group, or a propenyl group.
상기 (i) 제1차 중합단계부터 연속투입되는 유화액은 일례로 중합전환율 25 내지 90%, 30 내지 90%, 50 내지 90%, 또는 80 내지 90%에 도달하는 시점까지 투입할 수 있으며, 이 범위 내에서 중합 안정성이 향상되고 고분자량의 내열성 SAN 수지가 제조되는 효과가 있다.(I) The emulsion continuously added from the first polymerization step may be added to the point of reaching a polymerization conversion rate of 25 to 90%, 30 to 90%, 50 to 90%, or 80 to 90%, for example, Within this range, polymerization stability is improved and a high molecular weight heat resistant SAN resin is produced.
상기 (i) 제1차 중합단계부터 연속투입되는 유화액은 유화액에 포함된 비닐시안 단량체, 유화제 및 분자량 조절제의 총 중량을 기준으로 1 내지 20 중량부/hr, 2 내지 16 중량부/hr, 또는 3 내지 5 중량부/hr로 투입할 수 있으며, 이 범위 내에서 중합 안정성이 향상되고 고분자량의 내열성 SAN 수지가 제조되는 효과가 있다.(I) The emulsion is continuously added from the first polymerization step is 1 to 20 parts by weight, hr, 2 to 16 parts by weight, or based on the total weight of the vinyl cyan monomer, emulsifier and molecular weight regulator included in the emulsion It can be added at 3 to 5 parts by weight / hr, the polymerization stability is improved within this range and there is an effect that a high molecular weight heat-resistant SAN resin is produced.
상기 (i) 제1차 중합단계에서 일괄투입은 일례로 45 내지 55℃에서 실시될 수 있으며, 이 범위 내에서 낮은 온도에서도 중합이 효율적으로 실시되어 생산효율이 향상되는 효과가 있다.The batch injection in (i) the first polymerization step may be carried out at 45 to 55 ° C., for example, and polymerization is efficiently performed even at a low temperature within this range, thereby improving production efficiency.
상기 (i) 제1차 중합단계에서 유화액은 일례로 60 내지 70℃에서 △T(설정온도-발열온도)를 4℃ 미만으로 유지시키면서 연속투입될 수 있다.In the (i) first polymerization step, the emulsion may be continuously added, for example, while maintaining ΔT (set temperature—exothermic temperature) at less than 4 ° C. at 60 to 70 ° C.
일반적인 내열 SAN 수지를 유화중합시 반응 온도, 즉 설정온도 75 내지 85℃에서 중합을 실시하지만 본 발명은 이보다 낮은 온도, 즉 설정온도 65 내지 75℃에서 중합을 실시하여도 중합시간이 단축되면서 유리전이온도가 상승되는 효과가 있다.In the emulsion polymerization of a general heat-resistant SAN resin, the polymerization is carried out at a reaction temperature, that is, a set temperature of 75 to 85 ° C., but the present invention provides a glass transition while the polymerization time is shortened even if the polymerization is performed at a lower temperature, that is, a set temperature of 65 to 75 ° C. There is an effect of increasing the temperature.
상기 △T(설정온도-발열온도)는 일례로 4℃ 미만, 또는 2℃ 이하일 수 있고, 이 범위 내에서 중합 안정성이 향상되고 고분자량의 내열성 SAN 수지가 제조되는 효과가 있다.The ΔT (set temperature-exothermic temperature) may be, for example, less than 4 ° C., or less than 2 ° C., and polymerization stability is improved and a high molecular weight heat-resistant SAN resin is produced within this range.
상기 (ii) 제2차 중합단계는 일례로 반응온도 65 내지 75℃에서 중합시킬 수 있고, 이 범위 내에서 중합안정성이 향상되는 효과가 있다.The second polymerization step (ii) can be polymerized at, for example, the reaction temperature of 65 to 75 ℃, there is an effect of improving the polymerization stability within this range.
상기 (ii) 제2차 중합은 일례로 중합전환율 25 내지 40% 또는 30 내지 35%일 수 있고, 이 범위 내에서 중합속도 및 분자량 증가의 밸런스가 우수한 효과가 있다.The (ii) second polymerization may be, for example, a polymerization conversion rate of 25 to 40% or 30 to 35%, and there is an excellent balance of polymerization rate and molecular weight increase within this range.
상기 (iii) 제3차 중합은 일례로 중합전환율 80 내지 90%, 또는 85 내지 90%일 수 있고, 이 범위 내에서 유리전이온도가 상승되어 내열성이 향상되는 효과가 있다.The (iii) tertiary polymerization may be, for example, a polymerization conversion rate of 80 to 90%, or 85 to 90%, and the glass transition temperature is increased within this range, thereby improving heat resistance.
상기 (i) 제1차 중합단계에서 일괄투입에 사용되는 물은 일례로 단량체 총 100 중량부를 기준으로 100 내지 500 중량부, 100 내지 300 중량부, 또는 130 내지 250 중량부일 수 있다.The water (i) used for batch feeding in the first polymerization step may be, for example, 100 to 500 parts by weight, 100 to 300 parts by weight, or 130 to 250 parts by weight based on 100 parts by weight of the total monomers.
상기 (i) 제1차 중합단계에서 유화액에 포함되는 물은 일례로 단량체 총 100 중량부를 기준으로 50 내지 300 중량부, 50 내지 200 중량부, 70 내지 150 중량부, 또는 80 내지 120 중량부일 수 있다.The water included in the emulsion in the first polymerization step (i) may be 50 to 300 parts by weight, 50 to 200 parts by weight, 70 to 150 parts by weight, or 80 to 120 parts by weight based on 100 parts by weight of the total monomer, for example. have.
상기 (iii) 제3차 중합단계는 일례로 중합전환율 97% 이상, 또는 97 내지 99%에서 반응을 종료할 수 있다.In the third polymerization step (iii), for example, the reaction may be terminated at a polymerization conversion rate of 97% or more, or 97 to 99%.
상기 (iii) 제3차 중합단계 후 일례로 응집제 1 내지 3 중량부를 투입하여 응집시키는 단계를 포함할 수 있다.After the third polymerization step (iii) may include a step of agglomeration by adding 1 to 3 parts by weight of a coagulant.
상기 응집 후 일례로 건조 단계; 또는 건조 및 숙성 단계;를 더 포함할 수 있다.An example of a drying step after the aggregation; Or drying and aging step; may further include.
상기 건조는 일례로 열풍 유동층 건조기로 실시할 수 있다.The drying may be carried out by, for example, a hot air fluidized bed dryer.
상기 건조 단계; 또는 건조 및 숙성 단계;가 완료된 후 내열 SAN 수지는 일례로 수분 함량이 1 중량% 이하의 분체로 제조될 수 있다.The drying step; Or drying and aging step; after the completion of the heat-resistant SAN resin may be prepared as a powder of moisture content of 1% by weight or less.
상기 내열 SAN 수지는 일례로 중량평균 분자량이 60,000 내지 150,000 g/mol, 70,000 내지 130,000 또는 80,000 내지 120,000 g/mol일 수 있고, 이 범위 내에서 유리전이온도 및 열변형 온도가 상승하는 효과가 있다.The heat resistant SAN resin may have, for example, a weight average molecular weight of 60,000 to 150,000 g / mol, 70,000 to 130,000, or 80,000 to 120,000 g / mol, and within this range, the glass transition temperature and the heat deformation temperature are increased.
상기 내열 SAN 수지는 일례로 유리전이온도가 140℃ 이상, 또는 140 내지 150℃일 수 있고, 이 범위 내에서 내열성이 우수한 효과가 있다.For example, the heat-resistant SAN resin may have a glass transition temperature of 140 ° C. or higher, or 140 to 150 ° C., and has excellent heat resistance within this range.
상기 내열 SAN 수지는 일례로 NMR로 분석한 비닐시안화 단량체-비닐시안화 단량체-α-메틸스티렌 공중합체 및 비닐시안화 단량체-비닐시안화 단량체-비닐시안화 단량체 공중합체의 합이 10 중량% 이하, 8 중량% 이하, 또는 1 내지 7 중량%일 수 있고, 이 범위 내에서 내열성이 우수한 효과가 있다.The heat-resistant SAN resin is, for example, the sum of the vinyl cyanated monomer-vinyl cyanated monomer-α-methylstyrene copolymer and the vinyl cyanated monomer-vinyl cyanated monomer-vinyl cyanated monomer copolymer, analyzed by NMR, in an amount of 10% by weight or less and 8% by weight. It may be 1 to 7% by weight or less, and has excellent heat resistance within this range.
본 기재의 내열 SAN 수지 조성물은 일례로 상기 내열 SAN 수지의 제조방법에 의하여 제조된 내열 SAN 수지 20 내지 30 중량부 및 비닐시안화 화합물-공액디엔 화합물-방향족 비닐 화합물 공중합체 수지 70 내지 80 중량부를 포함할 수 있다.The heat-resistant SAN resin composition of the present disclosure includes, for example, 20 to 30 parts by weight of the heat-resistant SAN resin and 70 to 80 parts by weight of the vinyl cyanide compound-conjugated diene compound-aromatic vinyl compound copolymer resin prepared by the method for producing a heat-resistant SAN resin. can do.
상기 공액디엔 화합물은 일례로 1,3-부타디엔, 2,3-디메틸-1,3-부타디엔, 2-에틸-1,3-부타디엔, 1,3-펜타디엔 및 이소프렌으로 이루어진 군으로부터 선택된 1종 이상일 수 있다.The conjugated diene compound is, for example, one selected from the group consisting of 1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 2-ethyl-1,3-butadiene, 1,3-pentadiene and isoprene It may be abnormal.
상기 방향족 비닐 화합물은 일례로 스티렌, α-메틸스티렌, o-에틸스티렌, p-에틸스티렌 및 비닐톨루엔으로 이루어진 군으로부터 선택된 1종 이상일 수 있다.The aromatic vinyl compound may be, for example, one or more selected from the group consisting of styrene, α-methylstyrene, o-ethylstyrene, p-ethylstyrene, and vinyltoluene.
상기 내열 SAN 수지 조성물은 일례로 항균제, 열안정제, 산화방지제, 이형제, 광안정제, 계면활성제, 커플링제, 가소제, 혼화제, 착색제, 안정제, 활제, 대전방지제, 조색제, 방염제, 내후제, 자외선 흡수제 및 자외선 차단제로 이루어진 군으로부터 선택된 1종 이상을 더 포함할 수 있다.The heat resistant SAN resin composition may include, for example, antibacterial agents, heat stabilizers, antioxidants, mold release agents, light stabilizers, surfactants, coupling agents, plasticizers, admixtures, colorants, stabilizers, lubricants, antistatic agents, colorants, flame retardants, weather agents, ultraviolet absorbers, and the like. It may further comprise one or more selected from the group consisting of sunscreen.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.Hereinafter, preferred examples are provided to aid the understanding of the present invention, but the following examples are merely for exemplifying the present invention, and it will be apparent to those skilled in the art that various changes and modifications can be made within the scope and spirit of the present invention. It is natural that such variations and modifications fall within the scope of the appended claims.
[실시예]EXAMPLE
실시예 1Example 1
질소 치환된 반응기에 이온교환수 150 중량부, α-메틸스티렌 73 중량부, 아크릴로니트릴 9 중량부, 스테아린산 칼륨 2.0 중량부, 및 3급 도데실 멀캅탄 0.2 중량부를 투입하여 50℃에서 30분간 교반한 후 t-부틸 하이드로퍼옥사이드 0.02 중량부, 덱스트로즈 0.035 중량부, 피로린산 나트륨 0.06 중량부, 황산제1철 0.0015 중량부로 구성된 산화-환원 촉매를 일괄투여한 후 반응 설정온도를 65℃로 하여 △T (설정온도-발열온도)를 1℃ 이하가 되도록 조정하면서 이온교환수 100 중량부, 아크릴로니트릴 15 중량부 및 스테아린산 칼륨 1.0 중량부로 구성된 유화액을 1.0시간 동안 연속적인 방법을 통해 투입한 다음 (유화액 투입은 지속하면서) 2.5 시간 동안 70℃로 승온하면서 추가적인 중합을 실시하였다. 이때 상기 중합 시작 후 1시간 지점(중합전환율 30%)에서 t-부틸 하이드로퍼옥사이드 0.04 중량부, 덱스트로즈 0.035 중량부, 피롤린산 나트륨 0.06 중량부, 황산제1철 0.0015 중량부로 구성된 산화-환원 촉매와 함께 일괄 투여하였다. 상기 유화액이 모두 투입된 지점(중합전환율은 88%)에서 반응온도를 75℃로 30분간 승온하면서 아크릴로니트릴 3 중량부, 포타슘 퍼설페이트 0.15 중량부를 일괄투입하여 중합을 시켰다.150 parts by weight of ion-exchanged water, 73 parts by weight of α-methylstyrene, 9 parts by weight of acrylonitrile, 2.0 parts by weight of potassium stearate, and 0.2 parts by weight of tertiary dodecyl mercaptan were added to a nitrogen-substituted reactor for 30 minutes at 50 ° C. After stirring, the redox catalyst composed of 0.02 parts by weight of t-butyl hydroperoxide, 0.035 parts by weight of dextrose, 0.06 parts by weight of sodium pyrophosphate, and 0.0015 parts by weight of ferrous sulfate was collectively administered, and then the reaction set temperature was 65 ° C. ΔT (set temperature-exothermic temperature) is adjusted to 1 ° C or less, an emulsion comprising 100 parts by weight of ion-exchanged water, 15 parts by weight of acrylonitrile and 1.0 parts by weight of potassium stearate was added through a continuous method for 1.0 hour. Then, additional polymerization was carried out while the temperature was raised to 70 ° C. for 2.5 hours (continuous emulsion input). At this time, 1 hour after the start of the polymerization (polymerization conversion rate: 30%), the oxidation-reduction consisting of 0.04 parts by weight of t-butyl hydroperoxide, 0.035 parts by weight of dextrose, 0.06 parts by weight of sodium pyrolate, and 0.0015 parts by weight of ferrous sulfate. It was administered in batches with the catalyst. At the point where all of the emulsion was added (polymerization conversion rate: 88%), the reaction temperature was increased to 75 ° C. for 30 minutes, and 3 parts by weight of acrylonitrile and 0.15 parts by weight of potassium persulfate were added in a batch to perform polymerization.
실시예 2Example 2
실시예 1에서, 중합시작시 α-메틸스티렌 75 중량부, 아크릴로니트릴 9 중량부를 일괄투입하고 연속 투입단계에서 아크릴로니트릴 13 중량부로 유화액을 만든 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다.In Example 1, except that 75 parts by weight of α-methylstyrene and 9 parts by weight of acrylonitrile were added at the start of the polymerization, and the emulsion was made of 13 parts by weight of acrylonitrile in a continuous feeding step in the same manner as in Example 1 above. Was carried out.
참조예 1Reference Example 1
실시에 1에서, 중합시작시 α-메틸스티렌 73 중량부, 아크릴로니트릴 15 중량부를 일괄투입하고 연속투입되는 유화액은 아크릴로니트릴 9 중량부로 투입하고, 유화액을 1시간 동안 연속투입시 △T (설정온도-발열온도)를 4℃ 미만으로 조절하지 않은 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다.In Example 1, 73 parts by weight of α-methylstyrene and 15 parts by weight of acrylonitrile were added in a batch at the start of polymerization, and 9 parts by weight of acrylonitrile was added thereto, and the emulsion was continuously added for 1 hour in ΔT ( Except that the set temperature-exothermic temperature) was not adjusted to less than 4 ℃ was carried out in the same manner as in Example 1.
비교예 1Comparative Example 1
실시에 1에서, 중합초기 및 중합 반응시간 1시간 지점에 투입되는 개시제를 하이드로퍼옥사이드계 개시제가 아닌 열분해 개시제인 포타슘 퍼설페이트를 사용하고 초기 중합온도를 70℃로 한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다.In Example 1, except that the initial polymerization temperature was set at 70 ° C. except that potassium persulfate, which is a pyrolysis initiator other than a hydroperoxide-based initiator, was used as the polymerization initiator and the polymerization reaction time was 1 hour. It carried out by the same method as 1.
비교예 2Comparative Example 2
비교예 1에서, 분자량 조절제인 3급 멀캅탄을 0.6 중량부로 사용한 것을 제외하고는 상기 비교예 1과 동일한 방법으로 실시하였다.In Comparative Example 1, the same procedure as in Comparative Example 1 was carried out except that tertiary mercaptan, which was a molecular weight regulator, was used at 0.6 part by weight.
[시험예][Test Example]
상기 실시예 1 내지 2, 참조예, 및 비교예 1 내지 2에서 제조된 내열 SAN 수지 조성물의 특성을 하기의 방법으로 측정하고, 그 결과를 하기의 표 1에 나타내었다.The properties of the heat-resistant SAN resin compositions prepared in Examples 1 and 2, Reference Examples, and Comparative Examples 1 and 2 were measured by the following methods, and the results are shown in Table 1 below.
* 중합전환율(%): 제조된 라텍스 1.5g을 150 열풍 건조기 내에서 15분 간 건조 후 무게를 측정하여 총 고형분 함량(TSC)을 구하고, 하기 수학식 1로 중합전환율을 계산하였다.* Polymerization conversion rate (%): 1.5 g of the prepared latex was dried in 150 hot air dryers for 15 minutes and then weighed to obtain a total solids content (TSC), and the polymerization conversion rate was calculated by Equation 1 below.
[수학식 1][Equation 1]
중합전환율(%) = [{(투입된 단량체 및 부원료 중량부) * 총고형분 함량(%)-(단량체외 투입된 부원료 중량부)} / (투입된 단량체 총 중량부)] * 100Polymerization Conversion Rate (%) = [{(Added Monomer And Subsidiary Parts By Weight) * Total Solid Content (%)-(Extra Monopart Added By Weight Monomer)} / (Total Monomer Input)] * 100
(구간 중합전환율의 경우, 해당 구간까지 투입된 단량체 중량부를 반영)(In case of section polymerization conversion rate, it reflects the monomer part added up to the section)
* 중량평균분자량(g/mol): 샘플을 THF(테트라하이드로퓨란)에 녹여 GPC를 이용하여 측정하였다.* Weight average molecular weight (g / mol): The sample was dissolved in THF (tetrahydrofuran) and measured using GPC.
* 유리전이온도(℃): DSC Q100(TA Instruments사)을 이용하여 측정하였다.* Glass transition temperature (° C): measured using DSC Q100 (TA Instruments).
* 트라이어드 함량(중량%): Bruker AVANCE HD III 700MHz NMR 기기를 사용하였으며 시료는 CDCl3(w/TMS)에 녹이고 상온에서 NMR spectrum 측정하였다. 측정값은 TMS를 0 ppm으로 calibration 하고 150 ~ 140 ppm, 125 ~ 118 ppm 영역에서 나타나는 peak의 적분값을 바탕으로 triad sequence distribution을 구하였으며, 비닐시안화 단량체-비닐시안화 단량체-α-메틸스티렌 공중합체 및 비닐시안화 단량체-비닐시안화 단량체-비닐시안화 단량체 공중합체의 함량을 측정하였다.Triad content (% by weight): Bruker AVANCE HD III 700MHz NMR instrument was used and the sample was dissolved in CDCl3 (w / TMS) and the NMR spectrum was measured at room temperature. The measured value was obtained by calibrating TMS to 0 ppm and calculating triad sequence distribution based on the integral value of peaks in the range of 150 to 140 ppm and 125 to 118 ppm, and the vinyl cyanated monomer-vinyl cyanated monomer-α-methylstyrene copolymer. And the content of vinyl cyanated monomer-vinyl cyanated monomer-vinyl cyanated monomer copolymer.
* 가공시 냄새: 압출 및 사출시 발생되는 냄새를 관능평가를 하여 냄새가 발생되지 않으면 양호로, 역한 냄새가 발생되면 역함으로 평가하였다.* Odor during processing: The odor generated during extrusion and injection was evaluated by sensory evaluation, and if the odor did not occur, it was evaluated as good.
* 유동성(g/10분): ASTM D1238에 의거하여 220℃, 10Kg 하중에서 10분간 측정하였다.* Fluidity (g / 10min): Measured for 10 minutes at 220 ℃, 10Kg load in accordance with ASTM D1238.
* 열변형 온도(℃): ASTM D648에 의거하여 측정하였다.* Heat deflection temperature (° C): measured according to ASTM D648.
구 분division 실시예 1Example 1 실시예 2Example 2 참조예 1Reference Example 1 비교예 1Comparative Example 1 비교예 2Comparative Example 2
제1차중합단계(일괄투입)First polymerization stage (batch input) α-메틸스티렌α-methylstyrene 7373 7575 7373 7373 7373
아크릴로니트릴Acrylonitrile 99 99 1515 99 99
tDDMtDDM 0.20.2 0.20.2 0.20.2 0.20.2 0.60.6
개시제Initiator 산화-환원 촉매,t-BHPRedox catalyst, t-BHP 산화-환원 촉매,t-BHPRedox catalyst, t-BHP 산화-환원 촉매,t-BHPRedox catalyst, t-BHP 포타슘퍼설페이트Potassium persulfate 포타슘퍼설페이트Potassium persulfate
중합온도Polymerization temperature 6565 6565 6565 7070 7070
제2차중합단계(연속투입)Second polymerization stage (continuous input) 아크릴로니트릴Acrylonitrile 1515 1111 99 1515 1515
개시제Initiator 산화-환원 촉매,t-BHPRedox catalyst, t-BHP 산화-환원 촉매,t-BHPRedox catalyst, t-BHP 산화-환원 촉매,t-BHPRedox catalyst, t-BHP 포타슘퍼설페이트Potassium persulfate 포타슘퍼설페이트Potassium persulfate
전환율Conversion rate 8888 8585 8686 8080 7878
△T△ T ≤ 2℃≤ 2 ℃ ≤ 1℃≤ 1 ℃ 4℃4 ℃ 6℃6 ℃ 6℃6 ℃
제3차중합단계(일괄투입)3rd polymerization stage (batch input) 아크릴로니트릴Acrylonitrile 33 22 33 33 33
최종전환율Final conversion rate 98.598.5 98.098.0 98.098.0 97.097.0 97.097.0
중량평균분자량Weight average molecular weight 12만120,000 10만100 thousand 20만200,000 18만180,000 12만120,000
유리전이온도Glass transition temperature 140140 143143 137137 135135 129129
트라이어드Triad 55 44 1212 1414 1414
가공시 냄새Odor during processing 양호Good 양호Good 양호Good 양호Good 역함Role
유동성liquidity 7.27.2 7.87.8 4.54.5 4.84.8 7.57.5
열변형 온도Heat deflection temperature 107107 106106 103103 102102 9999
*t-BHP: t-부틸 하이드로퍼옥사이드* t-BHP: t-butyl hydroperoxide
상기 표 1에 나타낸 바와 같이, 본 기재에 의한 실시예 1 및 2는 가공시 역한 냄새가 발생하지 않았고, 중량평균분자량도 10만 g/mol 이상의 고분자가 생성되었고, 아울러 트라이어드 함량도 낮음으로써 유리전이온도 및 열변형 온도가 상승하여 내열성이 우수하면서도, 유동성도 양호하였다.As shown in Table 1, Examples 1 and 2 according to the present invention did not generate inverse odor during processing, a polymer having a weight average molecular weight of 100,000 g / mol or more was produced, and also a triad content is low glass transition The temperature and the heat deformation temperature were increased, and the heat resistance was excellent, but the fluidity was also good.
반면에, 제2차 중합단계시 △T(설정온도-발열온도)가 4℃ 미만으로 조절하지 않은 참조예 1은 중량평균분자량은 상승되었으나 유리전이온도, 열변형 온도 및 유동성이 저하되었다.On the other hand, in Reference Example 1 in which ΔT (set temperature-exothermic temperature) was not adjusted to less than 4 ° C. during the second polymerization step, the weight average molecular weight was increased, but the glass transition temperature, heat deformation temperature, and fluidity were decreased.
또한, 산화-환원 촉매를 사용하지 않은 비교예 1 및 2은 유리전이온도, 열변형 온도의 저하 폭이 매우 커졌고, 트라이어드 함량이 급격히 증가하였다.In addition, Comparative Examples 1 and 2, which did not use an oxidation-reduction catalyst, had a very large decrease in the glass transition temperature and the heat deformation temperature, and a sharp increase in the triad content.

Claims (20)

  1. α-메틸스티렌 단량체 및 비닐시안 단량체를 중합시켜 내열 SAN 수지를 제조하는 방법에 있어서, In the method of polymerizing an α-methylstyrene monomer and a vinyl cyan monomer to produce a heat resistant SAN resin,
    (i) 상기 α-메틸스티렌 단량체 전량과 상기 비닐시안 단량체 100 중량% 중 20 내지 65 중량%를 산화-환원 촉매 및 하이드로퍼옥사이드계 개시제의 존재 하에서 중합시키되, 상기 중합 개시와 동시에 또는 상기 중합 개시 이후에 상기 비닐시안 단량체 100 중량% 중 30 내지 80 중량%를 연속투입하면서 중합시키는 제1차 중합단계; (i) 20 to 65% by weight of the total amount of the α-methylstyrene monomer and 100% by weight of the vinyl cyan monomer are polymerized in the presence of an oxidation-reduction catalyst and a hydroperoxide-based initiator, simultaneously with or at the beginning of the polymerization. A first polymerization step of polymerizing while continuously introducing 30 to 80 wt% of the vinyl cyan monomer 100 wt%;
    (ii) 상기 제1차 중합단계에서 중합전환율 25 내지 40%에 도달하는 시점에서 산화-환원 촉매 및 하이드로퍼옥사이드계 개시제를 투입하여 중합시키는 제2차 중합단계; 및 (ii) a second polymerization step in which the oxidation-reduction catalyst and the hydroperoxide-based initiator are polymerized at the time when the polymerization conversion rate reaches 25 to 40% in the first polymerization step; And
    (iii) 상기 제2차 중합단계에서 중합전환율 80 내지 90%에 도달하는 시점에서 상기 비닐시안 단량체 100 중량% 중 나머지 0 내지 25 중량%, 및 열분해 개시제를 투입하여 중합시키는 제3차 중합단계;(iii) a third polymerization step of polymerizing by adding a thermal decomposition initiator and 0 to 25% by weight of the remaining 100% by weight of the vinyl cyan monomer at the time when the polymerization conversion rate reaches 80 to 90% in the second polymerization step;
    를 포함하는 것을 특징으로 내열 SAN 수지의 제조방법.Method for producing a heat-resistant SAN resin comprising a.
  2. 제1항에 있어서,The method of claim 1,
    상기 내열 SAN 수지의 제조방법은,The manufacturing method of the heat-resistant SAN resin,
    α-메틸스티렌 단량체 및 비닐시안 단량체 총 100 중량부를 기준으로,Based on 100 parts by weight of a total of α-methylstyrene monomer and vinyl cyan monomer,
    (i) 상기 α-메틸스티렌 65 내지 75 중량부, 비닐시안 단량체 5 내지 15 중량부, 분자량 조절제 0.01 내지 0.3 중량부, 산화-환원 촉매 0.01 내지 1.0 중량부, 하이드로퍼옥사이드계 개시제 0.001 내지 0.2 중량부, 및 유화제 1.5 내지 2.0 중량부를 일괄투입하고 중합시키되, 상기 중합 개시와 동시에 또는 상기 중합 개시 이후에 비닐시안 단량체 10 내지 20 중량부, 유화제 0.5 내지 1.0 중량부, 및 분자량 조절제 0 내지 0.2 중량부를 포함하는 유화액을 연속투입하면서 중합시키는 제1차 중합단계;(i) 65 to 75 parts by weight of the α-methylstyrene, 5 to 15 parts by weight of vinyl cyan monomer, 0.01 to 0.3 parts by weight of molecular weight regulator, 0.01 to 1.0 parts by weight of redox catalyst, 0.001 to 0.2 parts by weight of hydroperoxide initiator Parts, and 1.5 to 2.0 parts by weight of an emulsifier are added in a batch and polymerized, with 10-20 parts by weight of a vinyl cyan monomer, 0.5 to 1.0 parts by weight of an emulsifier, and 0 to 0.2 parts by weight of a molecular weight modifier simultaneously with or after the start of the polymerization. A first polymerization step of polymerizing while continuously including an emulsion;
    (ii) 상기 제1차 중합단계에서 중합전환율 25 내지 40%에 도달하는 시점에서 산화-환원 촉매 0.01 내지 1.0 중량부 및 하이드로퍼옥사이드계 개시제 0.01 내지 2 중량부를 투입하여 중합시키는 제2차 중합단계; 및(ii) a second polymerization step in which the polymerization is performed by adding 0.01 to 1.0 parts by weight of an oxidation-reduction catalyst and 0.01 to 2 parts by weight of a hydroperoxide-based initiator at a time when the polymerization conversion rate reaches 25 to 40% in the first polymerization step. ; And
    (iii) 상기 제2차 중합단계에서 중합전환율 80 내지 90%에 도달하는 시점에서 비닐시안 단량체 0 내지 4 중량부, 열분해 개시제 0.01 내지 0.3 중량부, 및 유화제 0.1 내지 0.5 중량부를 투입하여 중합시키는 제3차 중합단계;(iii) an agent which polymerizes by adding 0 to 4 parts by weight of vinyl cyan monomer, 0.01 to 0.3 parts by weight of pyrolysis initiator, and 0.1 to 0.5 parts by weight of emulsifier at the time when the polymerization conversion rate reaches 80 to 90% in the second polymerization step. Tertiary polymerization step;
    를 포함하는 것을 특징으로 내열 SAN 수지의 제조방법.Method for producing a heat-resistant SAN resin comprising a.
  3. 제2항에 있어서,The method of claim 2,
    상기 (i) 제1차 중합단계에서 일괄투입하는 비닐시안 단량체는 α-메틸스티렌 단량체에 대한 중량비가 0.05 내지 0.15인 것을 특징으로 하는 내열 SAN 수지의 제조방법.The vinyl cyan monomer to be collectively introduced in the (i) the first polymerization step is a weight ratio of the α-methylstyrene monomer is 0.05 to 0.15 method for producing a heat-resistant SAN resin.
  4. 제1항에 있어서,The method of claim 1,
    상기 산화-환원 촉매는 황산제1철, 덱스트로즈, 피롤인산 나트륨, 아황산나트륨, 소듐포름알데히드술폭실레이트, 및 소듐에틸렌디아민테트라아세테이트로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 내열 SAN 수지의 제조방법.The redox catalyst is a heat-resistant SAN resin, characterized in that at least one selected from the group consisting of ferrous sulfate, dextrose, sodium pyrophosphate, sodium sulfite, sodium formaldehyde sulfoxylate, and sodium ethylenediaminetetraacetate. Manufacturing method.
  5. 제1항에 있어서,The method of claim 1,
    상기 하이드로퍼옥사이드계 개시제는 디이소프로필벤젠 하이드로퍼옥사이드, 큐멘 하이드로퍼옥사이드, 및 3급 부틸하이드로 퍼옥사이드로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 내열 SAN 수지의 제조방법.The hydroperoxide-based initiator is diisopropylbenzene hydroperoxide, cumene hydroperoxide, and tertiary butylhydro peroxide, the method for producing a heat-resistant SAN resin, characterized in that at least one selected from the group consisting of.
  6. 제1항에 있어서,The method of claim 1,
    상기 열분해 개시제는 칼륨 퍼설페이트, 암모늄 퍼설페이트, 나트륨 퍼설페이트, 및 포타슘 퍼설페이트로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 내열 SAN 수지의 제조방법.The pyrolysis initiator is a method for producing a heat-resistant SAN resin, characterized in that at least one selected from the group consisting of potassium persulfate, ammonium persulfate, sodium persulfate, and potassium persulfate.
  7. 제2항에 있어서,The method of claim 2,
    상기 (i) 제1차 중합단계부터 연속투입되는 유화액은 중합전환율 20 내지 90%에 도달하는 시점까지 투입하는 것을 특징으로 하는 내열 SAN 수지의 제조방법.The method of manufacturing a heat-resistant SAN resin, characterized in that the (i) the emulsion is continuously added from the first polymerization step until the point of reaching a polymerization conversion rate of 20 to 90%.
  8. 제2항에 있어서,The method of claim 2,
    상기 (i) 제1차 중합단계부터 연속투입되는 유화액은 유화액에 포함된 비닐시안 단량체, 유화제 및 분자량 조절제의 총 중량을 기준으로 1 내지 20 중량부/hr로 투입하는 것을 특징으로 하는 내열 SAN 수지의 제조방법.The heat-resistant SAN resin, characterized in that the (i) the emulsion is continuously added from the first polymerization step is added to 1 to 20 parts by weight / hr based on the total weight of the vinyl cyan monomer, emulsifier and molecular weight regulator included in the emulsion. Manufacturing method.
  9. 제1항에 있어서,The method of claim 1,
    상기 비닐시안 단량체는 아크릴로니트릴, 메타크릴로니트릴 및 에타크릴로니트릴로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 내열 SAN 수지의 제조방법.The vinyl cyan monomer is at least one member selected from the group consisting of acrylonitrile, methacrylonitrile and ethacrylonitrile.
  10. 제2항에 있어서,The method of claim 2,
    상기 (i) 제1차 중합단계에서 일괄 투입은 45 내지 55℃에서 실시되는 것을 특징으로 하는 내열 SAN 수지의 제조방법.(I) The method of producing a heat-resistant SAN resin, characterized in that the batch input in the first polymerization step is carried out at 45 to 55 ℃.
  11. 제2항에 있어서,The method of claim 2,
    상기 (i) 제1차 중합단계에서 상기 유화액은 60 내지 70℃에서 △T(설정온도-발열온도)를 4℃ 미만으로 유지시키면서 연속투입되는 것을 특징으로 하는 내열 SAN 수지의 제조방법.(I) The method of producing a heat-resistant SAN resin, characterized in that in the first polymerization step, the emulsion is continuously added while maintaining the ΔT (set temperature-exothermic temperature) below 4 ℃ at 60 to 70 ℃.
  12. 제1항에 있어서,The method of claim 1,
    상기 (ii) 제2차 중합단계는 반응온도는 65 내지 75℃에서 중합시키는 것을 특징으로 하는 내열 SAN 수지의 제조방법.The second polymerization step (ii) is a method for producing a heat-resistant SAN resin, characterized in that the reaction temperature is polymerized at 65 to 75 ℃.
  13. 제2항에 있어서,The method of claim 2,
    상기 분자량 조절제는 n-도데실머캅탄, 3급 도데실머캅탄, n-테트라데실머캅탄 및 3급 테트라데실머캅탄으로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 내열 SAN 수지의 제조방법.The molecular weight modifier is a method for producing a heat-resistant SAN resin, characterized in that at least one selected from the group consisting of n-dodecyl mercaptan, tertiary dodecyl mercaptan, n- tetradecyl mercaptan and tertiary tetradecyl mercaptan.
  14. 제2항에 있어서,The method of claim 2,
    상기 유화제는 알릴기, (메타)아크릴로일기 또는 프로페닐기를 가지는 음이온계 유화제 또는 중성계 고분자형 유화제임을 특징으로 하는 내열 SAN 수지의 제조방법.The emulsifier is an anionic emulsifier or a neutral polymeric emulsifier having an allyl group, a (meth) acryloyl group, or a propenyl group.
  15. 제1항에 있어서,The method of claim 1,
    상기 (iii) 제3차 중합단계 후 응집제 1 내지 3 중량부를 투입하여 응집시키는 단계를 포함하는 것을 특징으로 하는 내열 SAN 수지의 제조방법.And (iii) adding 1 to 3 parts by weight of a flocculant to agglomerate the third polymerization step to agglomerate the heat-resistant SAN resin.
  16. 제15항에 있어서,The method of claim 15,
    상기 응집 후 건조 및 숙성 단계; 또는 건조 단계;를 더 포함하는 것을 특징으로 하는 내열 SAN 수지의 제조방법.Drying and aging step after the aggregation; Or drying step; a method of producing a heat-resistant SAN resin, characterized in that it further comprises.
  17. 제1항에 있어서,The method of claim 1,
    상기 내열 SAN 수지는 중량평균 분자량이 80,000 내지 120,000 g/mol인 것을 특징으로 하는 내열 SAN 수지의 제조방법.The heat-resistant SAN resin is a method for producing a heat-resistant SAN resin, characterized in that the weight average molecular weight of 80,000 to 120,000 g / mol.
  18. 제1항에 있어서,The method of claim 1,
    상기 내열 SAN 수지는 유리전이온도가 140℃ 이상인 것을 특징으로 하는 내열 SAN 수지의 제조방법.The heat-resistant SAN resin is a method of producing a heat-resistant SAN resin, characterized in that the glass transition temperature of 140 ℃ or more.
  19. 제1항에 있어서,The method of claim 1,
    상기 내열 SAN 수지는 NMR로 분석한 비닐시안화 단량체-비닐시안화 단량체-α-메틸스티렌 공중합체 및 비닐시안화 단량체-비닐시안화 단량체-비닐시안화 단량체 공중합체의 합이 10 중량% 이하인 것을 특징으로 하는 내열 SAN 수지의 제조방법.The heat-resistant SAN resin is a heat-resistant SAN characterized in that the sum of the vinyl cyanated monomer-vinyl cyanated monomer-α-methylstyrene copolymer and the vinyl cyanated monomer-vinyl cyanated monomer-vinyl cyanated monomer copolymer analyzed by NMR is 10% by weight or less. Method for producing a resin.
  20. 제 1항의 내열 SAN 수지의 제조방법에 의하여 제조된 내열 SAN 수지 20 내지 30 중량부 및 비닐시안화 화합물-공액디엔 화합물-방향족 비닐 화합물 공중합체 수지 70 내지 80 중량부를 포함하는 것을 특징으로 하는 내열 SAN 수지 조성물.Heat-resistant SAN resin comprising 20 to 30 parts by weight of the heat-resistant SAN resin prepared by the method for producing a heat-resistant SAN resin of claim 1 and 70 to 80 parts by weight of vinyl cyanide compound-conjugated diene compound-aromatic vinyl compound copolymer resin Composition.
PCT/KR2016/013824 2015-12-04 2016-11-29 Method of manufacturing heat-resistant san resin WO2017095099A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680022599.6A CN107531843B (en) 2015-12-04 2016-11-29 The preparation method of heat-resisting SAN resin
JP2017549612A JP6481047B2 (en) 2015-12-04 2016-11-29 Manufacturing method of heat-resistant SAN resin
US15/560,897 US10266627B2 (en) 2015-12-04 2016-11-29 Method of preparing heat-resistant SAN resin
EP16870995.4A EP3260478B1 (en) 2015-12-04 2016-11-29 Method of manufacturing heat-resistant san resin

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2015-0172718 2015-12-04
KR20150172718 2015-12-04
KR1020160159007A KR101957666B1 (en) 2015-12-04 2016-11-28 Method for preparing heat-resistant san resin
KR10-2016-0159007 2016-11-28

Publications (1)

Publication Number Publication Date
WO2017095099A1 true WO2017095099A1 (en) 2017-06-08

Family

ID=58797301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/013824 WO2017095099A1 (en) 2015-12-04 2016-11-29 Method of manufacturing heat-resistant san resin

Country Status (1)

Country Link
WO (1) WO2017095099A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100236773B1 (en) * 1997-03-12 2000-01-15 성재갑 Process for the preparation of aromatic vinyl-vinyl cyanide copolymer resin
KR20020048605A (en) * 2000-12-18 2002-06-24 안복현 Thermoplastic Styrene/Acrylonitrile Copolymer and Method of Preparing the Same
KR100417061B1 (en) * 2000-12-13 2004-02-05 주식회사 엘지화학 Method for preparing high temperature copolymer
KR20150004249A (en) * 2013-07-02 2015-01-12 주식회사 엘지화학 Heat-resistant san resin, method for preparing the resin and heat-resistant abs resin composition containing the same
KR20150037459A (en) * 2013-09-30 2015-04-08 주식회사 엘지화학 Manufacturing method of SAN copolymer having good heat resistance
KR20150037460A (en) * 2013-09-30 2015-04-08 주식회사 엘지화학 Manufacturing method of thermoplastic resin having good heat resistance

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100236773B1 (en) * 1997-03-12 2000-01-15 성재갑 Process for the preparation of aromatic vinyl-vinyl cyanide copolymer resin
KR100417061B1 (en) * 2000-12-13 2004-02-05 주식회사 엘지화학 Method for preparing high temperature copolymer
KR20020048605A (en) * 2000-12-18 2002-06-24 안복현 Thermoplastic Styrene/Acrylonitrile Copolymer and Method of Preparing the Same
KR20150004249A (en) * 2013-07-02 2015-01-12 주식회사 엘지화학 Heat-resistant san resin, method for preparing the resin and heat-resistant abs resin composition containing the same
KR20150037459A (en) * 2013-09-30 2015-04-08 주식회사 엘지화학 Manufacturing method of SAN copolymer having good heat resistance
KR20150037460A (en) * 2013-09-30 2015-04-08 주식회사 엘지화학 Manufacturing method of thermoplastic resin having good heat resistance

Similar Documents

Publication Publication Date Title
WO2016093616A1 (en) Method for preparing acrylonitrile-butadiene-styrene graft copolymer, and acrylonitrile-butadiene-styrene thermoplastic resin containing same
WO2016089042A1 (en) Thermoplastic resin composition and molded article employing same
WO2017095060A1 (en) Thermoplastic resin composition and molded product produced therefrom
WO2016052832A1 (en) Thermoplastic resin composition having excellent chemical resistance and transparency, method for preparing same, and molded product comprising same
WO2017039157A1 (en) Thermoplastic resin composition and preparation method therefor
WO2016093649A1 (en) Method for preparing large-diameter diene-based rubber latex and acrylonitrile-butadiene-styrene graft copolymer including large-diameter diene-based rubber latex
WO2015002373A1 (en) Heat-resistant san resin, method for manufacturing same, and heat-resistant abs resin composition comprising same
WO2018139775A1 (en) Graft copolymer, preparation method therefor, thermoplastic resin composition containing same, and molded product
WO2020122499A1 (en) Thermoplastic copolymer preparation method, thermoplastic copolymer prepared thereby, and thermoplastic resin composition comprising same
WO2017142172A1 (en) Rubber polymer and preparation method therefor, graft copolymer, and thermoplastic resin composition
WO2012087056A2 (en) Graft monomer composition for thermoplastic transparent resin, composition for theremoplastic transparent resin using the same, and theremoplastic transparent resin having good transparency and color with low rubber amounts
WO2016175423A1 (en) Heat resistant san resin, preparation method therefor, and heat resistant san resin composition containing same
WO2016085222A1 (en) Thermoplastic resin composition and molded product obtained by applhying same
WO2017095059A1 (en) Thermoplastic resin, method for preparing same, and thermoplastic resin composition comprising same
WO2016099129A1 (en) Method for preparing diene-based rubber polymer, diene-based rubber polymer prepared thereby, core-shell structured acrylonitrile-butadiene-styrene graft copolymer comprising same
WO2017116042A1 (en) Rubber modified vinyl-based graft copolymer, and thermoplastic resin composition containing same
WO2018043930A1 (en) Aromatic vinyl-based copolymer, method for preparing same, and thermoplastic resin composition including same
WO2019103369A2 (en) Method for manufacturing graft copolymer powder
WO2017095099A1 (en) Method of manufacturing heat-resistant san resin
WO2018124562A1 (en) Abs-based graft copolymer, preparation method therefor, and thermoplastic resin composition containing same
WO2013105737A1 (en) Thermal stabilizer-free thermoplastic resin composition and method for manufacturing same
WO2015047026A1 (en) Rubber polymer, graft copolymer, preparation methods therefor, and impact resistant and heat resistant resin composition
WO2017160011A1 (en) Thermoplastic resin composition and molded article manufactured therefrom
WO2021060833A1 (en) Method for producing conjugated diene-based polymer
WO2021054630A1 (en) Method for producing diene-based rubber polymer, and method for producing graft polymer comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16870995

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016870995

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017549612

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15560897

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE