WO2015047026A1 - Rubber polymer, graft copolymer, preparation methods therefor, and impact resistant and heat resistant resin composition - Google Patents

Rubber polymer, graft copolymer, preparation methods therefor, and impact resistant and heat resistant resin composition Download PDF

Info

Publication number
WO2015047026A1
WO2015047026A1 PCT/KR2014/009196 KR2014009196W WO2015047026A1 WO 2015047026 A1 WO2015047026 A1 WO 2015047026A1 KR 2014009196 W KR2014009196 W KR 2014009196W WO 2015047026 A1 WO2015047026 A1 WO 2015047026A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
rubbery polymer
monomer
polymer
styrene
Prior art date
Application number
PCT/KR2014/009196
Other languages
French (fr)
Korean (ko)
Inventor
채주병
정유성
박은선
전태영
김영민
이진호
Original Assignee
(주) 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140118560A external-priority patent/KR101638240B1/en
Application filed by (주) 엘지화학 filed Critical (주) 엘지화학
Priority to US14/893,889 priority Critical patent/US9951168B2/en
Priority to CN201480020965.5A priority patent/CN105121481B/en
Publication of WO2015047026A1 publication Critical patent/WO2015047026A1/en
Priority to US15/923,800 priority patent/US10640596B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • C08F279/04Vinyl aromatic monomers and nitriles as the only monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F36/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F36/04Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F36/06Butadiene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons

Definitions

  • the present invention relates to a rubbery polymer, a graft copolymer and a preparation method thereof, and an impact resistant resin composition, and more particularly, by including a specific crosslinking regulator in the rubbery polymer, a product having excellent impact resistance, heat resistance, and chemical resistance can be realized. Rubber latex, graft copolymers and preparation methods thereof, and impact-resistant heat-resistant resin compositions.
  • rubber-reinforced graft copolymers in particular, rubber-reinforced graft copolymers produced by the emulsion polymerization method is typical of ABS, MBS, ASA, ATM, etc. These are usually rubbery polymers produced by the emulsion polymerization method Manufactured by graft copolymerization of various monomers considering matrix dispersibility in core to outer shell.
  • ABS polybutadiene latex is used as a core and PSAN (styrene-acrylonitrile copolymer) is grafted to outer shell. It is prepared through the process of copolymerization.
  • ABS products are excellent in impact resistance, heat resistance, chemical resistance and processing characteristics such as excellent appearance characteristics are widely used in materials such as automotive interior and exterior materials, housings and toys of home appliances.
  • ABS having high thermal properties that is, heat resistance
  • HDT heat deformation resistance
  • a resin having a high glass transition temperature (heat resistant SAN)
  • emulsion polymerization or solution polymerization heat resistant SAN
  • emulsification emulsion polymerization or solution polymerization
  • the rubber-reinforced graft copolymer in which the SAN is graft copolymerized may be mixed melt blended to have a constant rubber content to prepare a final product.
  • Representative monomers used in the production of heat-resistant resins having a high glass transition temperature include styrene derivatives such as alpha methyl styrene (AMS) and imide monomers such as N-phenyl maleimide (PMI).
  • AMS alpha methyl styrene
  • PMI N-phenyl maleimide
  • US 4,774,287 mentions a method of preventing thermal decomposition of AMS at high processing temperatures and excellent thermal properties at high temperatures, but it cannot be said to show a high level in polymerization conversion rate, reaction time and impact resistance.
  • an object of the present invention is to solve the problems of the prior art by including a specific crosslinking regulator in the rubbery polymer to implement a product excellent in impact resistance, heat resistance and chemical resistance.
  • the present invention to achieve the above object
  • An emulsion polymer of a diene monomer provides a rubbery polymer, characterized in that the crosslinking regulator is included in the range of 5 to 20% by weight of the total 100% by weight of the total monomers constituting the polymer.
  • the present invention is to prepare a rubbery polymer by emulsion polymerization, comprising a crosslinking regulator in the range of 5 to 20% by weight of the total 100% by weight of the total monomer constituting the rubbery polymer of the rubbery polymer, characterized in that Characterized in the manufacturing method.
  • the present invention provides a method for producing a graft copolymer, characterized in that in preparing the graft copolymer from the rubbery polymer, a crosslinking regulator-containing rubbery polymer obtained by the above-described method is used as the rubbery polymer. .
  • the graft copolymer provides a shock-resistant heat-resistant resin composition comprising a crosslinking agent-containing rubber polymer-containing graft copolymer obtained by the above-mentioned method within the range of 50 to 80% by weight in 100% by weight of the total composition. .
  • the present invention by including a specific cross-linking regulator in the rubber polymer, rubber latex, graft copolymers and a method for producing them, and impact resistance to provide a heat-resistant resin composition capable of realizing a product excellent in impact resistance, heat resistance and chemical resistance There is.
  • the rubbery polymer of the present invention is an emulsion polymer of a diene-based monomer, characterized in that the crosslinking regulator is included in the polymer within a range of 5 to 20% by weight of 100% by weight of the total monomers constituting the polymer.
  • the crosslinking regulator may be located at 50% or less based on a total of 100% of the target particle size of the polymer.
  • the crosslinking control agent may be a polymer of a crosslinking control monomer, and for example, the crosslinking control monomer may be at least one selected from vinyl aromatic monomers, vinyl cyanic monomers, acrylate monomers and unsaturated carboxylic acid monomers.
  • the rubber polymer manufacturing method of the present invention for example, in preparing the rubber polymer by emulsion polymerization, it is prepared to include a crosslinking regulator within the range of 5 to 20% by weight of the total 100% by weight of the total monomers constituting the rubbery polymer. It features.
  • the emulsion polymerization may include adding 45 to 60 wt% of a diene monomer and 5 to 20 wt% of a crosslinking control monomer with respect to 100 wt% of the total monomers constituting the rubbery polymer and initiating an emulsion polymerization; And emulsion polymerization to a polymerization conversion rate of 90 to 98% while continuously feeding 20 to 50% by weight of a diene monomer at a conversion rate of 40 to 60% of the polymerization to a conversion rate of 70 to 80%. It may include.
  • a rubbery polymer having a gel content of less than 70 to 95% and a swelling index of less than 15 to 25 can be prepared under a polymerization conversion rate of 90 to 95%.
  • the method for producing a graft copolymer according to the present invention is characterized by using the above-described crosslinking regulator-containing rubbery polymer as the rubbery polymer in producing the graft copolymer from the rubbery polymer.
  • the manufacturing method for example, to 50 to 80% by weight of the crosslinking agent-containing rubber polymer, 20 to 50% by weight of one or more monomers selected from styrene monomer, vinyl cyanated monomer and acrylic acid ester monomer and graft copolymerization on the rubber particles It may be made.
  • the impact-resistant heat-resistant resin composition of the present invention includes a graft copolymer and a heat-resistant thermoplastic resin, wherein the graft copolymer comprises a graft copolymer containing a crosslinking regulator-containing rubbery polymer-containing graft copolymer obtained by the method of claim 13. It may be included in the range of 50 to 80% by weight in weight percent.
  • the rubbery polymer of the present invention is an emulsified polymer of a diene monomer, and is characterized in that the polymer contains a crosslinking regulator.
  • crosslinking regulator refers to an agent, (co) polymer, etc., which can control and reduce the high crosslinking density of the rubbery polymer, unless otherwise specified.
  • crosslinking agent also refers to the inclusion of a crosslinking regulator at a specific position within the rubbery polymer, unless otherwise specified.
  • the crosslinking regulator may be in the range of 5 to 20% by weight, 5 to 15% by weight, or 10 to 15% of the total 100% by weight of the total monomers constituting the polymer.
  • the crosslinking modifier may be positioned at 50% or less, 10 to 50%, 20 to 45%, or 25 to 40% of the total particle size of the polymer based on 100%. Within this range, it is possible to increase the swelling index and to increase the impact strength.
  • the crosslinking regulator may be, for example, a polymer or a copolymer of a crosslinking monomer.
  • the crosslinking control monomer may be at least one selected from vinyl aromatic monomers, vinyl cyan monomers, acrylate monomers and unsaturated carboxylic acid monomers.
  • target particle diameter of the polymer may refer to an average particle diameter of the rubbery polymer is 1000 to 3500 mm 3, 2000 to 3500 mm 3, 3000 to 3500 mm 3 or 3000 to 3300 mm 3 unless otherwise specified.
  • the rubbery polymer may be prepared with a particle diameter of 3000 to 3500 mm 3, and if necessary, after preparing a particle diameter of 500 to 1500 mm 3, the rubber latex may be directly used or 3000 to 3500 mm 3 through a flocculation method. Can also be large diameter.
  • the rubbery polymer may be prepared by various methods, for example, may be prepared in the following manner:
  • 20 to 50% by weight of the diene monomer at a conversion rate of 40 to 60% of the polymerization is emulsion polymerization to a polymerization conversion rate of 90 to 95% while continuously adding up to 70 to 80% of the conversion.
  • the continuous input may be, for example, a diene monomer at an input amount of 1 to 10 parts / hr, or 1 to 3 parts / hr.
  • a diene monomer is added in a batch, and the crosslinking control monomer is mixed with an emulsifier-containing additive, and then nitrogen is maintained for 30 minutes to 1 hour, and the pH is maintained at 9 to 11. It may be more desirable.
  • the diene monomer is, for example, 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 2-methyl-1,3-pentadiene, 2,3-dimethyl-1,3-pentadiene And at least one selected from 2-phenyl-1,3-butadiene.
  • the crosslinking control monomers are styrene, alpha-methylstyrene, alpha-methyl-4-butylstyrene, 4-phenyl styrene, 2,5-dimethylstyrene, 2-methylstyrene, alpha-methyl-3,5-di It may include one or more styrenic monomers selected from -t- butyl styrene, alpha-methyl-3,4,5-trimethyl styrene, alpha-methyl-4-benzyl styrene, alpha-methyl-4-cyclohexyl styrene. .
  • the crosslinking control monomer may include one or more acrylic ester monomers selected from methyl methacrylate, methyl acrylate, ethyl acrylate, butyl acrylate and 2-ethylhexyl acrylate.
  • the crosslinking control monomer may include one or more vinyl cyanide monomers selected from acrylonitrile, methacrylonitrile, and ethacrylonitrile.
  • the crosslinking control monomer may include one or more unsaturated carboxylic acids selected from acrylic acid, maleic acid, methacrylic acid, itaconic acid, and fumaric acid.
  • a hydrophilic persulfate-based initiator or a hydrophobic hydroperoxide-based initiator for example, a hydrophilic persulfate-based initiator or a hydrophobic hydroperoxide-based initiator, an anionic emulsifier or nonionic emulsifier, mercaptans molecular weight regulator and electrolyte (emulsifier-initiator-molecular weight regulator-electrolyte solution) It may be.
  • the reaction temperature is raised to 55 to 65 ° C, or 58 to 65 ° C.
  • the reaction can be carried out.
  • the reaction time may be, for example, 4.5 to 5.5 hours, or 4.8 to 5.2 hours.
  • the emulsifier may be an emulsifier having a common sulfonate end group, an emulsifier having a carboxylic acid terminal, or the like, and a nonionic emulsifier or a reactive emulsifier may be used alone or in combination.
  • the initiator can be applied to a pyrolysis initiator such as potassium persulfate, ammonium persulfate, sodium persulfate, for example, strong hydrophilic property, and isohydrogen diisopropylbenzene hydroperoxide, cumene hydroper Hydroperoxide-based initiators such as oxides, tertiary butyl hydroperoxides and the like may be used with commonly applicable redox catalysts such as ferrous sulfate, dextrose, sodium pyrrole phosphate, sodium sulfite and the like, but preferably In the case of the seed polymerization step and the diene monomer, it is preferable to apply an initiator having strong hydrophilic properties, and in the step of applying an aromatic or non-aromatic monomer having an unsaturated double bond, a hydrophobic initiator is used alone or as an oxidation-reduction catalyst. It is desirable to be.
  • a pyrolysis initiator such as potassium persulfate,
  • a hydrophilic initiator selected from the group consisting of potassium persulfate, ammonium persulfate and sodium persulfate may be used.
  • one or more redox catalysts selected from the group consisting of ferrous sulfate, dextrose, sodium pyrrole phosphate and sodium sulfite may be used in combination.
  • KCl for example, KCl, CHCO 3 , Na 2 CO 3 , CaCO 3 , NaHSO 4, and the like may be used in combination of two or more kinds.
  • the molecular weight regulator may be a molecular weight regulator used in conventional emulsion polymerization such as mercaptans such as n-dodecyl mercaptan, n-decyl mercaptan, t-dodecyl mercaptan, and alpha methyl styrene dimer.
  • mercaptans such as n-dodecyl mercaptan, n-decyl mercaptan, t-dodecyl mercaptan, and alpha methyl styrene dimer.
  • the diene monomer may be continuously added to the polymerization.
  • the continuous dosing may be, for example, 5 to 12 hours, or 6 to 10 hours.
  • Anionic emulsifier or nonionic emulsifier and a hydrophilic persulfate initiator or a hydrophobic hydroperoxide initiator may be added during the continuous dosing.
  • the emulsifier-initiator solution may be added or collectively added after 1.5 to 2.5 hours, or 1.8 to 2.2 hours after the continuous input time.
  • an anionic emulsifier or a nonionic emulsifier may be further added.
  • the emulsifier may be 0.1 to 1 parts by weight, or 0.2 to 0.5 parts by weight based on a total of 100 parts by weight of the total monomers constituting the rubbery polymer per dose.
  • the initiator may be 0.1 to 5 parts by weight, or 0.1 to 1 part by weight based on a total of 100 parts by weight of the total monomers constituting the rubbery polymer per dose.
  • the molecular weight modifier may be 0.1 to 1 parts by weight, or 0.2 to 0.5 parts by weight based on 100 parts by weight of the total monomers constituting the rubbery polymer.
  • the electrolyte may be 0.1 to 5 parts by weight, or 0.1 to 1 part by weight of potassium carbonate and the like.
  • the reaction temperature may be increased to 70 to 85 ° C., or 75 to 80 ° C., and the reaction may be performed for 4 to 6 hours or 4.5 to 5.5 hours.
  • redox catalysts selected from ferrous sulfate, dextrose, sodium pyrophosphate, and sodium sulfite are added and collectively added to terminate the reaction.
  • 0.1 to 1.5 parts by weight of an emulsifier, 0.01 to 2.0 parts by weight of a polymerization initiator, 0.01 to 0.4 parts by weight of a molecular weight modifier, and 0.1 to electrolyte based on 50 to 60 parts by weight of a diene monomer and 10 to 15 parts by weight of a crosslinking control monomer 2.0 parts by weight may be polymerized by a batch addition method, and 35 to 40 parts by weight of diene monomer may be continuously added at a particle diameter of 1500 to 2500 Pa polymerization conversion rate of 40 to 60% to obtain a rubbery polymer including a crosslinking regulator.
  • the rubbery polymer of the present invention can be obtained, for example, in latex form.
  • the latex for example, may have a solid content of 35 to 60% by weight.
  • the process can produce a rubbery polymer having a gel content of less than 70 to 95%, or 70 to 75%, a swelling index of less than 15 to 25, or 15 to 20 under a conversion of 90 to 98%, or 93 to 96% of polymerization. .
  • the swelling index corresponds to an indirect indicator of the crosslinking density of the present invention. Since the product having a low swelling index has a high crosslinking density, the impact strength of the impact resistant resin composition deteriorates, and the product having a high swelling index The impact strength is improved (see Table 1 and Table 3 below).
  • the method for preparing a graft copolymer including the rubbery polymer may be performed as follows, for example.
  • the obtained crosslinking agent-containing rubbery polymer 20 to 50% by weight of at least one monomer selected from a styrene monomer, a vinyl cyanide monomer and a (methyl) acrylic acid ester monomer are added to the rubber through a method of emulsion polymerization. It may be graft copolymerized on the particles.
  • 10 to 40% by weight of one or more monomers selected from styrene-based monomers, vinyl cyanide monomers, and acrylic ester monomers may be used based on 100% by weight of the monomers (excluding the content of the rubber polymer).
  • the styrene monomer, the vinyl cyanide monomer, and the acrylic acid ester monomer may be those using the above-described types.
  • the method is not particularly limited. For example, 20 to 50 monomers to form the graft copolymer with respect to 50 to 80% by weight of the rubbery polymer The weight percent is administered together with the emulsifier and the molecular weight modifier, the graft aid, the initiator and the reaction is continued until the reaction conversion level is 95 to 99%, or 97 to 99% and then terminated.
  • the emulsifiers that can be used herein include, for example, carboxyl salt type adsorption type emulsifiers such as potassium rosin and potassium fatty acids, and sulfonate type adsorption type emulsifiers such as sodium lauryl sulfate, alkyl benzene sulfonates, or reactive emulsifiers. It is possible to be used alone or in combination.
  • a molecular weight regulator such as n-dodecyl mercaptan, n-decyl mercaptan, t-dodecyl mercaptan and alpha methyl styrene dimer may be used. It is preferable to apply 0.2 to 1.0 parts by weight of tertiary dodecyl mercaptan. The weight part at this time is based on 100 weight part of the sum total of a rubbery polymer and a monomer.
  • the initiator may be used in an amount of 0.01 to 1 parts by weight, and the initiator which can be used is not particularly limited but may be, for example, oxidized with a peroxide initiator such as tertiary butyl hydroperoxide, cumene hydroperoxide, diisopropylbenzenehydro peroxide, or the like.
  • a peroxide initiator such as tertiary butyl hydroperoxide, cumene hydroperoxide, diisopropylbenzenehydro peroxide, or the like.
  • the use of a reduction catalyst together may be advantageous in terms of securing impact resistance and latex stability during graft copolymerization.
  • the addition of monomers may be performed by directly adding each monomer to a reactor, adding a monomer mixture, and adding a monomer emulsion prepared by mixing an emulsifier, water, and an initiator.
  • the initial reaction of 0 to 20% by weight, or 1 to 20% by weight of the monomer based on the total 100% by weight of the monomer is added in a batch input method, the remaining monomers in a continuous input method It is possible to be committed.
  • the graft copolymer is added with an antioxidant and a heat stabilizer, and then aggregated through an acid such as sulfuric acid, hydrochloric acid, phosphoric acid, acetic acid, or a metal salt such as calcium chloride, magnesium sulfate, aluminum sulfate, etc., to separate solids. It may be made into a powder form by washing, dehydrating and drying it, and this powder form graft copolymer may be used in combination with a thermoplastic resin copolymer generally made by solution polymerization.
  • an acid such as sulfuric acid, hydrochloric acid, phosphoric acid, acetic acid, or a metal salt such as calcium chloride, magnesium sulfate, aluminum sulfate, etc.
  • a graft copolymer having a coagulation content of 0.1% or less and a graft ratio of 35 to 50% under a polymerization conversion rate of 96 to 99%.
  • the graft copolymer may be, for example, an acrylonitrile-butadiene-styrene (ABS) -based resin.
  • ABS acrylonitrile-butadiene-styrene
  • the final polymer obtained had a particle size of 3000 to 3,500 Pa, and the polymerization coagulated product to the polymer was 0.01% or less based on the total charged solid content.
  • the graft copolymer prepared by the above method is usually melted and mixed with a heat-resistant thermoplastic resin through an extrusion process to be processed into pellets to produce a final impact-resistant heat-resistant resin.
  • AMS-SAN Alpha methylstyrene-acrylonitrile-styrene copolymer
  • SAN acrylonitrile-styrene copolymer
  • MS acrylonitrile-styrene-methyl methacrylate
  • PC polycarbonate
  • PC polybutyl
  • resins such as lenterephthalate (PBT), polyvinyl chloride (PVC).
  • the heat resistant thermoplastic resin may be included in the range of 20 to 50% by weight of the composition.
  • the heat-resistant thermoplastic resin is styrene, alpha-methylstyrene, alpha-methyl-4-butylstyrene, 4-phenyl styrene, 2,5-dimethylstyrene, 2-methylstyrene, alpha-methyl-3,5- 65 to 80% by weight of at least one styrenic monomer selected from di-t-butylstyrene, alpha-methyl-3,4,5-trimethylstyrene, alpha-methyl-4-benzylstyrene and alpha-methyl-4-cyclohexylstyrene And it may be a bulk polymer of 20 to 35% by weight of at least one vinyl cyanide monomer selected from acrylonitrile, methacrylonitrile, ethacrylonitrile.
  • the heat-resistant thermoplastic resin is alpha-methylstyrene, alpha-methyl-4-butylstyrene, 4-phenyl styrene, 2,5-dimethylstyrene, 2-methylstyrene, alpha-methyl-3,5-di- 64 to 75% by weight of one or more styrenic derivatives selected from t-butylstyrene, alpha-methyl-3,4,5-trimethylstyrene, alpha-methyl-4-benzylstyrene and alpha-methyl-4-cyclohexylstyrene, acryl 20 to 35% by weight of at least one vinyl cyanide monomer selected from ronitrile, methacrylonitrile, ethacrylonitrile and 1 to 5% by weight of styrene.
  • these graft copolymers can be used with additives for lubricants, heat stabilizers and other processing in the process of melt molding through heat-resistant thermoplastic resin and extrusion, injection process, and greatly limited to these types Do not put
  • Impact-resistant resin prepared by the above method has a characteristic that the impact resistance is improved and the colorability is excellent, unlike the conventional manufacturing method.
  • reaction temperature was raised to 65 ° C. for 5 hours, and the monomer B shown in Table 1 was continuously added for 7 hours at the point where the polymerization conversion was 60%.
  • 0.5 parts by weight of potassium rosin and 0.1 parts by weight of potassium persulfate were added at 2 hours after the continuous addition, and 0.2 parts by weight of potassium rosin was further added after completion of the continuous addition.
  • the reaction temperature was 70 ° C.
  • the reaction temperature was then raised to 80 ° C. to maintain the reaction for 5 hours. At this time, a solution consisting of 0.0005 parts by weight of ferrous sulfide, 0.05 dextrose, 0.04 parts by weight of sodium pyrophosphate, and 2 parts by weight of ion-exchanged water was added. And the reaction was terminated.
  • Table 1 The polymerization conversion and physical properties were summarized in Table 1 below.
  • Example 1 The same process as in Example 1 was repeated except that the monomers A and B were replaced with the amounts and types shown in Table 1 in Example 1.
  • the polymerization conversion and physical properties were summarized in Table 1 below.
  • Example 1 The same process as in Example 1 was repeated except that the monomers A and B were replaced with the amounts and types shown in Table 1 in Example 1.
  • the polymerization conversion and physical properties were summarized in Table 1 below.
  • Example 1 the same process as in Example 1 was repeated except that monomers A and B were replaced with the amounts and types shown in Table 1, and alpha methylstyrene (AMS) was not used in both the core and the shell. .
  • AMS alpha methylstyrene
  • Example 1 the monomers A and B were replaced with the amounts and types shown in Table 1 below, and the entirety of alpha methylstyrene (AMS) was added immediately before the 1,3-diene (BD) was added and the temperature was increased. The same process as in Example 1 was repeated except for the above. The polymerization conversion and physical properties were summarized in Table 1 below.
  • AMS alpha methylstyrene
  • BD 1,3-diene
  • Example 1 The same process as in Example 1 was repeated except that the monomers A and B were replaced with the amounts and types shown in Table 1 in Example 1.
  • the polymerization conversion and physical properties were summarized in Table 1 below.
  • Latex particle size measurement The weight average particle size was measured using a Nicomp instrument.
  • Swelling index Corresponding to the indirect index of the crosslinking density of the present invention, specifically, the rubber component solids prepared for gel content measurement was left in toluene for 18 hours and dried in 80 mesh nets (A). After standing for 24 hours in a toluene solvent, the weight (B) of the swollen rubbery resin was measured, and the swelling index was obtained based on the following equation.
  • Swelling index (weight of swelled rubbery resin (B)-dried initial rubbery resin (A)) / dried initial rubbery resin (A)
  • a product having a low swelling index has a high crosslinking density, and as a result, the impact strength (see Table 3 below) of the impact resistant resin composition is deteriorated, and a product having a high swelling index has a result of improving the impact strength. .
  • the monomer corresponding to the monomer D in Table 2 was made into an emulsion comprising 0.3 parts by weight of potassium alkenyl potassium succinate, 0.4 parts by weight of tertiary dodecyl mercaptan, 0.1 parts by weight of cumene hydroperoxide, and 20 parts by weight of ion-exchanged water.
  • the reactor was administered for 1 hour 30 minutes. At this time, the final polymerization temperature was 70 °C.
  • Example 2 The same process as in Example 1 was repeated except that monomers C and D were replaced with the amounts and types shown in Table 2 below.
  • the polymerization conversion and physical properties were summarized in Table 2 below.
  • Example 2 The same process as in Example 1 was repeated except that the rubber type and the monomers C and D were replaced with the amounts and kinds shown in Table 2 below.
  • the polymerization conversion and physical properties were summarized in Table 2 below.
  • Polymerized coagulated product The latex produced by emulsion polymerization method is filtered through a 100 mesh wire mesh filter, and the polymerized material filtered on the wire mesh is dried in a 100 ° C. hot air dryer for 1 hour, and then the total amount of monomers and additives (emulsifiers, etc.) added is added to the theoretical total amount. Expressed as a ratio.
  • Graft rate 10 g of the graft copolymer powder was dried in a 60 degree oven to measure the weight (A) from which moisture was removed, stirred in acetone solvent 100 for 24 hours, and then separated from the sol and gel components in a centrifuge at 10000 rpm. The weight (B) which dried the remainder which was not dissolved on the oven was measured, and the graft ratio was calculated
  • Graft rate (% rubber content in B-A * graft polymerization) / (% rubber content in A * graft polymerization)
  • the graft copolymer of the additional examples C1 to C4 based on Examples 1 to 3 of the latex A1 to A3 described above, based on Comparative Examples 1 to 3 of the latex B1 to B3 described above.
  • the gel content of the rubber particles compared to the graft copolymers of the comparative examples D1 to D4 was lowered, and in particular, when the alphamethyl styrene monomer was used for the graft copolymerization, polymerization inside the rubber particles was more easily performed. Due to the high polymerization conversion can be achieved within the same polymerization time as well as ensuring the polymerization stability by increasing the graft reaction efficiency.
  • Powders were prepared by adding 2 parts by weight of sulfuric acid to each of the graft copolymer latexes of Examples 1 to 4 and Comparative Examples 1 to 4, coagulating and washing with water, followed by hot air drying in a fluidized bed dryer.
  • the powder was kneaded with a heat-resistant SAN (70 parts by weight of AMS monomer, 28 parts by weight of AN, 2 parts by weight of SM) prepared by solution polymerization to prepare pellets and then injected to prepare a specimen for measuring physical properties.
  • a heat-resistant SAN 70 parts by weight of AMS monomer, 28 parts by weight of AN, 2 parts by weight of SM
  • the rubber content of the prepared specimen was prepared in the same manner as 16% and measured physical properties, the physical properties measured in Table 3 below.
  • Izod impact strength measured in accordance with ASTM D256 method with a 1/4 "thickness of the specimen, the unit is Kg.cm / cm.
  • thermoplastic resin composition comprising the graft copolymer of Comparative Example 4
  • the impact resistance is lowered as the impact reinforcing effect of the rubber particles is lower than that of the additional Examples 1 to 4, and the heat resistance is expected to improve.
  • the results showed that the chemical crack stability (ESCR) was also difficult to do.

Abstract

The present invention relates to a rubber polymer, a graft copolymer, preparation methods therefor, and an impact resistant and heat resistant resin composition. According to the present invention, provided are: a rubber latex and a graft copolymer which can be implemented in products so as to have excellent impact resistance, heat resistance and chemical resistance by including a particular crosslinking control agent in a rubber polymer; preparation methods therefor; and an impact resistant and heat resistant resin composition.

Description

고무질 중합체, 그라프트 공중합체와 이들의 제조방법, 내충격 내열수지 조성물Rubbery polymers, graft copolymers and preparation methods thereof, impact resistant resin compositions
본 발명은 고무질 중합체, 그라프트 공중합체와 이들의 제조방법, 내충격 내열수지 조성물에 관한 것으로서, 더욱 상세하게는 고무질 중합체에 특정 가교조절제를 포함함으로써 내충격성, 내열성 및 내화학성이 우수한 제품을 구현할 수 있는 고무질 라텍스, 그라프트 공중합체 와 이들의 제조방법, 및 내충격 내열수지 조성물에 관한 것이다.The present invention relates to a rubbery polymer, a graft copolymer and a preparation method thereof, and an impact resistant resin composition, and more particularly, by including a specific crosslinking regulator in the rubbery polymer, a product having excellent impact resistance, heat resistance, and chemical resistance can be realized. Rubber latex, graft copolymers and preparation methods thereof, and impact-resistant heat-resistant resin compositions.
일반적으로 고무강화 그라프트 공중합체, 특히 유화중합의 방법을 통해 제조되는 고무강화 그라프트 공중합체의 경우 ABS, MBS, ASA, ATM 등이 대표적인 것으로, 이들은 통상 유화중합의 방법을 통해 제조된 고무질 중합체 코어에 매트릭스상의 분산성을 고려한 다양한 모노머를 외각 쉘에 그라프트 공중합시키는 방법을 통해 제조되는 것으로 특히 ABS의 경우, 폴리 부타디엔 라텍스를 코어로 PSAN(스티렌-아크릴로니트릴 공중합체)을 외각 쉘에 그라프트 공중합시키는 방법을 통해 제조된다. 특히 이들 중 ABS 제품은 우수한 내충격성과 내열성, 및 내화학성 등의 가공특성, 수려한 외관 특성을 가지는 제품으로 자동차 내외장재나 가전 제품의 하우징 및 장난감과 같은 소재에 널리 사용이 되고 있다.In general, rubber-reinforced graft copolymers, in particular, rubber-reinforced graft copolymers produced by the emulsion polymerization method is typical of ABS, MBS, ASA, ATM, etc. These are usually rubbery polymers produced by the emulsion polymerization method Manufactured by graft copolymerization of various monomers considering matrix dispersibility in core to outer shell. Especially in ABS, polybutadiene latex is used as a core and PSAN (styrene-acrylonitrile copolymer) is grafted to outer shell. It is prepared through the process of copolymerization. In particular, ABS products are excellent in impact resistance, heat resistance, chemical resistance and processing characteristics such as excellent appearance characteristics are widely used in materials such as automotive interior and exterior materials, housings and toys of home appliances.
특히 자동차 등 높은 열적 특성(열변형 저항성, HDT), 즉 내열 특성을 가진 ABS를 제조하기 위해서는 높은 유리전이온도(Tg)를 가지는 수지를 유화중합 내지 용액중합을 통해 제조하고(내열 SAN), 유화중합 방법에 의해 SAN이 그라프트 공중합된 고무강화 그라프트 공중합체가 일정한 고무함량을 가지도록 혼합 용융 블랜딩되어 최종적인 제품으로 제조될 수 있다. In particular, in order to manufacture ABS having high thermal properties (heat deformation resistance, HDT), that is, heat resistance, such as automobiles, a resin having a high glass transition temperature (Tg) is produced through emulsion polymerization or solution polymerization (heat resistant SAN) and emulsification. By the polymerization method, the rubber-reinforced graft copolymer in which the SAN is graft copolymerized may be mixed melt blended to have a constant rubber content to prepare a final product.
상기 높은 유리 전이 온도를 가지는 내열 수지 제조에 사용되는 대표적인 단량체는 알파 메틸 스티렌(AMS)과 같은 스티렌계 유도체와 N-페닐 말레이미드(PMI)와 같은 이미드계 단량체 등이 있으며, 이중에서 수지중에 사용되는 AMS의 비율이 증가될수록 내열 특성은 향상되는 경향을 보이나 수지를 제조하는 중합 단계에서 많은 문제점을 가지고 있다. Representative monomers used in the production of heat-resistant resins having a high glass transition temperature include styrene derivatives such as alpha methyl styrene (AMS) and imide monomers such as N-phenyl maleimide (PMI). As the ratio of AMS increases, heat resistance tends to be improved, but there are many problems in the polymerization step of preparing a resin.
이에 AMS 사용으로 발생되는 문제점을 해결하기 위해 다양한 방법들이 시도되고 있다. 일례로 US2,908,666호에서는 폴리디엔 고무라텍스상에 AMS 모노머와 아크릴로니트릴 모노머를 그라프팅시켜 내충격성 및 화학성크랙 안정성 (ESCR) 및 내열성을 향상시키고자 하였으나 중합에 장시간이 소요될 뿐 아니라 중합전환율에 대하여 명시되어 있지 않고, 내충격성 측면에서 우수한 충격강도를 구현하고 있다고 보기 어렵다. Accordingly, various methods have been tried to solve the problems caused by the use of AMS. For example, US Pat. No. 2,908,666 attempts to improve the impact resistance, chemical crack stability (ESCR) and heat resistance by grafting AMS monomers and acrylonitrile monomers on polydiene rubber latexes, but it takes a long time to polymerize and improves the polymerization conversion rate. Although it is not specified, it is hard to say that it is excellent in impact strength in terms of impact resistance.
또한 US 5,266,642호에서는 AMS계 고분자를 유화중합을 통해 제조시 중합속도를 높이도록 고무질 중합체 존재 및 비존재하에 중합을 실시하였으나, 고무질 중합체의 함량이 매우 낮고 중합전환율 역시 높지 않고 특히 수지에 대한 내충격성 및 열적 특성이 언급되고 있지 않다. In US 5,266,642, the polymerization of AMS polymer was carried out in the presence or absence of rubbery polymer to increase the polymerization rate during emulsion polymerization. However, the content of rubbery polymer is very low and polymerization conversion is not high. And thermal properties are not mentioned.
또한 US 4,774,287호에서는 고온에서 열적 특성이 우수하고 높은 가공온도에서 AMS 분해를 방지하는 방법에 대해 언급하고 있으나, 중합 전환율이나 반응시간, 내충격성에 있어 높은 수준을 보인다고 할 수 없다. In addition, US 4,774,287 mentions a method of preventing thermal decomposition of AMS at high processing temperatures and excellent thermal properties at high temperatures, but it cannot be said to show a high level in polymerization conversion rate, reaction time and impact resistance.
이에 내충격성, 열적 특성 등을 효율적으로 제공하면서 나아가 중합 시간을 단축하는 고무질 중합체, 그라프트 공중합체 관련 기술을 여전히 필요로 한다. There is still a need for a rubber polymer and a graft copolymer related technology that efficiently provide impact resistance, thermal properties and the like, and further shorten the polymerization time.
이에 본 발명의 목적은 내충격성, 내열성 및 내화학성이 우수한 제품을 구현할 수 있도록 고무질 중합체에 특정 가교조절제를 포함함으로써 상기와 같은 종래 기술의 문제점을 해결하고자 한다. Accordingly, an object of the present invention is to solve the problems of the prior art by including a specific crosslinking regulator in the rubbery polymer to implement a product excellent in impact resistance, heat resistance and chemical resistance.
상기 목적을 달성하기 위하여 본 발명은 The present invention to achieve the above object
디엔계 단량체의 유화 중합체로서, 중합체에 가교조절제가 상기 중합체를 구성하는 전체 단량체 총 100 중량% 중 5 내지 20 중량% 범위 내로 포함된 것을 특징으로 하는 고무질 중합체를 제공한다. An emulsion polymer of a diene monomer provides a rubbery polymer, characterized in that the crosslinking regulator is included in the range of 5 to 20% by weight of the total 100% by weight of the total monomers constituting the polymer.
또한, 본 발명은 고무질 중합체를 유화 중합에 의해 제조함에 있어서, 상기 고무질 중합체를 구성하는 전체 단량체 총 100 중량% 중 5 내지 20 중량% 범위 내로 가교조절제를 포함하여 제조하는 것을 특징으로 하는 고무질 중합체의 제조방법을 특징으로 한다. In addition, the present invention is to prepare a rubbery polymer by emulsion polymerization, comprising a crosslinking regulator in the range of 5 to 20% by weight of the total 100% by weight of the total monomer constituting the rubbery polymer of the rubbery polymer, characterized in that Characterized in the manufacturing method.
또한, 본 발명은 고무질 중합체로부터 그라프트 공중합체를 제조함에 있어서, 상기 고무질 중합체로서 상술한 방법에 의해 수득된 가교조절제 내포 고무질 중합체를 사용하는 것을 특징으로 하는 그라프트 공중합체의 제조 방법을 제공한다. In addition, the present invention provides a method for producing a graft copolymer, characterized in that in preparing the graft copolymer from the rubbery polymer, a crosslinking regulator-containing rubbery polymer obtained by the above-described method is used as the rubbery polymer. .
나아가 그라프트 공중합체 및 내열 열가소성 수지를 포함하되,Further comprising graft copolymers and heat-resistant thermoplastics,
상기 그라프트 공중합체는 상술한 방법에 의해 수득된 가교조절제 내포 고무질 중합체 함유 그라프트 공중합체를 조성물 총 100 중량% 중 50 내지 80 중량% 범위 내로 포함하는 것을 특징으로 하는 내충격 내열수지 조성물을 제공한다. The graft copolymer provides a shock-resistant heat-resistant resin composition comprising a crosslinking agent-containing rubber polymer-containing graft copolymer obtained by the above-mentioned method within the range of 50 to 80% by weight in 100% by weight of the total composition. .
본 발명에 따르면, 고무질 중합체에 특정 가교조절제를 포함함으로써 내충격성, 내열성 및 내화학성이 우수한 제품을 구현할 수 있는 고무질 라텍스, 그라프트 공중합체 와 이들의 제조방법, 및 내충격 내열수지 조성물을 제공하는 효과가 있다. According to the present invention, by including a specific cross-linking regulator in the rubber polymer, rubber latex, graft copolymers and a method for producing them, and impact resistance to provide a heat-resistant resin composition capable of realizing a product excellent in impact resistance, heat resistance and chemical resistance There is.
이하, 본 발명에 대하여 상세하게 설명한다. EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.
본 발명의 고무질 중합체는 디엔계 단량체의 유화 중합체로서, 중합체에 가교조절제가 상기 중합체를 구성하는 전체 단량체 총 100 중량% 중 5 내지 20 중량% 범위 내로 포함된 것을 특징으로 한다. The rubbery polymer of the present invention is an emulsion polymer of a diene-based monomer, characterized in that the crosslinking regulator is included in the polymer within a range of 5 to 20% by weight of 100% by weight of the total monomers constituting the polymer.
상기 가교조절제는 일례로, 상기 중합체의 목표 입자경 총 100% 기준으로, 50% 이하에 위치된 것일 수 있다. For example, the crosslinking regulator may be located at 50% or less based on a total of 100% of the target particle size of the polymer.
상기 가교조절제는 가교조절 단량체의 중합체일 수 있고, 일례로 상기 가교조절 단량체는 비닐방향족 단량체, 비닐시안계 단량체, 아크릴레이트계 단량체 및 불포화 카르본산계 단량체 중에서 선택된 1종 이상일 수 있다. The crosslinking control agent may be a polymer of a crosslinking control monomer, and for example, the crosslinking control monomer may be at least one selected from vinyl aromatic monomers, vinyl cyanic monomers, acrylate monomers and unsaturated carboxylic acid monomers.
본 발명의 고무질 중합체 제조방법은 일례로, 고무질 중합체를 유화 중합에 의해 제조함에 있어서, 상기 고무질 중합체를 구성하는 전체 단량체 총 100 중량% 중 5 내지 20 중량% 범위 내로 가교조절제를 포함하여 제조하는 것을 특징으로 한다. In the rubber polymer manufacturing method of the present invention, for example, in preparing the rubber polymer by emulsion polymerization, it is prepared to include a crosslinking regulator within the range of 5 to 20% by weight of the total 100% by weight of the total monomers constituting the rubbery polymer. It features.
상기 유화 중합은, 구체적인 예로 상기 고무질 중합체를 구성하는 전체 단량체 총 100 중량%에 대하여 디엔계 단량체 45 내지 60 중량% 및 가교조절 단량체 5 내지 20 중량%를 투입하고 유화 중합을 개시하는 단계; 및 상기 중합의 전환율 40 내지 60% 지점에서 디엔계 단량체 20 내지 50 중량%를 중합의 전환율 70 내지 80%까지 연속 투입하면서 중합전환율 90 내지 98%까지 유화 중합하는 단계; 를 포함할 수 있다. For example, the emulsion polymerization may include adding 45 to 60 wt% of a diene monomer and 5 to 20 wt% of a crosslinking control monomer with respect to 100 wt% of the total monomers constituting the rubbery polymer and initiating an emulsion polymerization; And emulsion polymerization to a polymerization conversion rate of 90 to 98% while continuously feeding 20 to 50% by weight of a diene monomer at a conversion rate of 40 to 60% of the polymerization to a conversion rate of 70 to 80%. It may include.
본 발명의 방법에 따르면, 중합전환율 90 내지 95% 하에 겔함량 70 내지 95% 미만, 팽윤지수 15 내지 25 미만인 고무질 중합체를 제조할 수 있다. According to the method of the present invention, a rubbery polymer having a gel content of less than 70 to 95% and a swelling index of less than 15 to 25 can be prepared under a polymerization conversion rate of 90 to 95%.
본 발명에 의한 그라프트 공중합체의 제조 방법은 고무질 중합체로부터 그라프트 공중합체를 제조함에 있어서, 고무질 중합체로서 상술한 가교조절제 내포 고무질 중합체를 사용하는 것을 특징으로 한다. The method for producing a graft copolymer according to the present invention is characterized by using the above-described crosslinking regulator-containing rubbery polymer as the rubbery polymer in producing the graft copolymer from the rubbery polymer.
상기 제조 방법은, 일례로 상기 가교조절제 내포 고무질 중합체 50 내지 80중량%에, 스티렌계 단량체, 비닐 시안화 단량체 및 아크릴산 에스테르 단량체 중에서 선택된 1 이상의 단량체 20 내지 50 중량%를 투입하고 고무입자상에 그라프트 공중합시킨 것일 수 있다. The manufacturing method, for example, to 50 to 80% by weight of the crosslinking agent-containing rubber polymer, 20 to 50% by weight of one or more monomers selected from styrene monomer, vinyl cyanated monomer and acrylic acid ester monomer and graft copolymerization on the rubber particles It may be made.
본 발명의 내충격 내열수지 조성물은 그라프트 공중합체 및 내열 열가소성 수지를 포함하되, 상기 그라프트 공중합체로서 상술한 제13항의 방법에 의해 수득된 가교조절제 내포 고무질 중합체 함유 그라프트 공중합체를 조성물 총 100 중량% 중 50 내지 80 중량% 범위 내로 포함하는 것일 수 있다. The impact-resistant heat-resistant resin composition of the present invention includes a graft copolymer and a heat-resistant thermoplastic resin, wherein the graft copolymer comprises a graft copolymer containing a crosslinking regulator-containing rubbery polymer-containing graft copolymer obtained by the method of claim 13. It may be included in the range of 50 to 80% by weight in weight percent.
이하에서, 고무질 라텍스 및 이의 제조방법에 대한 구체적인 구성을 보다 자세하게 살펴보면 다음과 같다. 본 발명에서 제시하는 단계는 명목상으로 제시된 단계에 해당할 뿐 명확히 단계를 구분하여 중합을 실시할 필요는 없으며 연속적인 중합 단계를 통해 중합을 진행하는 것이 가능하다.Hereinafter, a detailed configuration of the rubbery latex and its preparation method is as follows. The steps presented in the present invention correspond to the nominally presented steps, and there is no need to clearly perform the polymerization by dividing the steps clearly, and it is possible to proceed with the polymerization through a continuous polymerization step.
A) 고무질 중합체 및 이의 제조A) rubbery polymers and their preparation
본 발명이 제시하는 고무질 중합체의 구성 및 제조 방법을 설명하면 다음과 같다.Referring to the configuration and manufacturing method of the rubbery polymer proposed by the present invention.
구체적으로, 본 발명의 고무질 중합체는 디엔계 단량체의 유화 중합체로서, 중합체에 가교조절제가 포함된 것을 기술적 특징으로 한다. Specifically, the rubbery polymer of the present invention is an emulsified polymer of a diene monomer, and is characterized in that the polymer contains a crosslinking regulator.
참고로, 본 발명에서 사용된 용어 "가교조절제"는 달리 특정하지 않는 한, 고무질 중합체의 높은 가교밀도를 제어하여 저감시킬 수 있는 제제, 혹은 (공)중합체 등을 지칭한다. For reference, as used herein, the term "crosslinking regulator" refers to an agent, (co) polymer, etc., which can control and reduce the high crosslinking density of the rubbery polymer, unless otherwise specified.
또한, 상기 용어 "가교조절제가 포함된"이란 달리 특정되지 않는 한, 가교조절제가 고무질 중합체 내부의 특정 위치에 포함되는 것을 지칭한다. The term "comprising a crosslinking agent" also refers to the inclusion of a crosslinking regulator at a specific position within the rubbery polymer, unless otherwise specified.
상기 가교조절제는 일례로 상기 중합체를 구성하는 전체 단량체 총 100 중량% 중 5 내지 20 중량%, 5 내지 15 중량%, 혹은 10 내지 15% 범위 내일 수 있다. The crosslinking regulator may be in the range of 5 to 20% by weight, 5 to 15% by weight, or 10 to 15% of the total 100% by weight of the total monomers constituting the polymer.
상기 가교조절제는 일례로 상기 중합체의 목표 입자경 총 100% 기준으로, 50% 이하, 10 내지 50%, 20 내지 45%, 혹은 25 내지 40% 지점에 위치된 것을 특징으로 한다. 상기 범위 내에서, 팽윤 지수의 증가, 충격강도의 상승 효과를 나타낼 수 있다. For example, the crosslinking modifier may be positioned at 50% or less, 10 to 50%, 20 to 45%, or 25 to 40% of the total particle size of the polymer based on 100%. Within this range, it is possible to increase the swelling index and to increase the impact strength.
상기 가교조절제는 일례로 가교조절 단량체의 중합체, 혹은 공중합체인 것일 수 있다. The crosslinking regulator may be, for example, a polymer or a copolymer of a crosslinking monomer.
구체적인 예로, 상기 가교조절 단량체는 비닐방향족 단량체, 비닐시안계 단량체, 아크릴레이트계 단량체 및 불포화 카르본산계 단량체 중에서 선택된 1종 이상일 수 있다. As a specific example, the crosslinking control monomer may be at least one selected from vinyl aromatic monomers, vinyl cyan monomers, acrylate monomers and unsaturated carboxylic acid monomers.
필요에 따라서는 디비닐 벤젠, 아릴 메타크릴레이트, 디알릴 프탈레이트, 에틸렌 글리콜 디아크릴레이트, 트리에틸렌 디아크릴레이트, 테트라에틸렌 디아크릴레이트, 폴리에틸렌글리콜 디아크릴레이트, 폴리에틸렌글리콜 디메타크릴레이트 중에서 선택된 1 이상을 본 발명에 사용되는 전체 단량체 중 0.5 내지 2 중량부 범위 내에서 병용할 수 있다. Optionally selected from divinyl benzene, aryl methacrylate, diallyl phthalate, ethylene glycol diacrylate, triethylene diacrylate, tetraethylene diacrylate, polyethylene glycol diacrylate, polyethylene glycol dimethacrylate. The above can be used together in 0.5-2 weight part of all the monomers used for this invention.
또한, 상기 용어 "중합체의 목표 입자경"은 달리 특정하지 않는 한, 고무질 중합체의 평균입경이 1000 내지 3500 Å, 2000 내지 3500 Å, 3000 내지 3500 Å 혹은 3000 내지 3300 Å인 것을 지칭할 수 있다.In addition, the term "target particle diameter of the polymer" may refer to an average particle diameter of the rubbery polymer is 1000 to 3500 mm 3, 2000 to 3500 mm 3, 3000 to 3500 mm 3 or 3000 to 3300 mm 3 unless otherwise specified.
구체적인 예로, 상기 고무질 중합체는, 3000 내지 3500 Å의 입자경으로 제조할 수 있고, 필요에 따라서는 500 내지 1500 Å의 입자경을 제조한 뒤 해당 고무질 라텍스를 직접 사용하거나 응집 방법을 통해 3000 내지 3500 Å 로 대구경화 할 수도 있다.As a specific example, the rubbery polymer may be prepared with a particle diameter of 3000 to 3500 mm 3, and if necessary, after preparing a particle diameter of 500 to 1500 mm 3, the rubber latex may be directly used or 3000 to 3500 mm 3 through a flocculation method. Can also be large diameter.
상기 고무질 중합체는 다양한 방법으로 제조될 수 있으며, 일례로 다음과 같은 방식으로 제조할 수 있다: The rubbery polymer may be prepared by various methods, for example, may be prepared in the following manner:
우선 고무질 중합체를 구성하는 전체 단량체 총 100 중량%에 대하여 디엔계 단량체 45 내지 60 중량% 및 가교조절 단량체 5 내지 20 중량%를 투입하고 유화 중합을 개시한다. First, 45 to 60 wt% of the diene monomer and 5 to 20 wt% of the crosslinking control monomer are added to 100 wt% of the total monomers constituting the rubbery polymer, and the emulsion polymerization is started.
상기 중합의 전환율 40 내지 60% 지점에서 디엔계 단량체 20 내지 50 중량%를 중합의 전환율 70 내지 80%까지 연속 투입하면서 중합전환율 90 내지 95%까지 유화 중합한다. 20 to 50% by weight of the diene monomer at a conversion rate of 40 to 60% of the polymerization is emulsion polymerization to a polymerization conversion rate of 90 to 95% while continuously adding up to 70 to 80% of the conversion.
상기 연속 투입은 일례로 디엔계 단량체를 시간당 투입량 1 내지 10 parts/hr, 혹은 1 내지 3 parts/hr로 투입한 것일 수 있다.The continuous input may be, for example, a diene monomer at an input amount of 1 to 10 parts / hr, or 1 to 3 parts / hr.
상기 유화 중합의 개시 단계는, 일례로 디엔계 단량체를 일괄 투입하고 가교조절 단량체를 유화제 포함 첨가제와 혼합 투입후 30분 내지 1시간 동안 질소가 투입된 상태로 유지하는 것이 바람직하며 pH 9 내지 11를 유지하는 것이 보다 바람직할 수 있다. In the start of the emulsion polymerization, for example, a diene monomer is added in a batch, and the crosslinking control monomer is mixed with an emulsifier-containing additive, and then nitrogen is maintained for 30 minutes to 1 hour, and the pH is maintained at 9 to 11. It may be more desirable.
상기 디엔계 단량체는 일례로 1,3-부타디엔, 이소프렌, 2,3-디메틸-1,3-부타디엔, 2-메틸-1,3-펜타디엔, 2,3-디메틸-1,3-펜타디엔, 및 2-페닐-1,3-부타디엔 중에서 선택된 1종 이상일 수 있다. The diene monomer is, for example, 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 2-methyl-1,3-pentadiene, 2,3-dimethyl-1,3-pentadiene And at least one selected from 2-phenyl-1,3-butadiene.
일례로, 상기 가교조절 단량체는 스티렌, 알파-메틸스티렌, 알파-메틸-4-부틸스티렌, 4-페닐 스티렌, 2,5-디메틸스티렌, 2-메틸스티렌, 알파-메틸-3,5-디-t-부틸스티렌, 알파-메틸-3,4,5-트리메틸스티렌, 알파-메틸-4-벤질스티렌, 알파-메틸-4-시클로헥실스티렌 중에서 선택된 1 이상의 스티렌계 단량체를 포함하는 것일 수 있다. In one example, the crosslinking control monomers are styrene, alpha-methylstyrene, alpha-methyl-4-butylstyrene, 4-phenyl styrene, 2,5-dimethylstyrene, 2-methylstyrene, alpha-methyl-3,5-di It may include one or more styrenic monomers selected from -t- butyl styrene, alpha-methyl-3,4,5-trimethyl styrene, alpha-methyl-4-benzyl styrene, alpha-methyl-4-cyclohexyl styrene. .
다른 예로, 상기 가교조절 단량체는 메틸 메타크릴레이트, 메틸 아크릴레이트, 에틸아크릴레이트, 부틸아크릴레이트, 2-에틸헥실 아크릴레이트 중에서 선택된 1이상의 아크릴산 에스테르계 단량체를 포함하는 것일 수 있다. As another example, the crosslinking control monomer may include one or more acrylic ester monomers selected from methyl methacrylate, methyl acrylate, ethyl acrylate, butyl acrylate and 2-ethylhexyl acrylate.
또 다른 예로, 상기 가교조절 단량체는 아크릴로니트릴, 메타크릴로니트릴, 에타크릴로니트릴 중에서 선택된 1 이상의 시안화 비닐 단량체를 포함하는 것일 수 있다. As another example, the crosslinking control monomer may include one or more vinyl cyanide monomers selected from acrylonitrile, methacrylonitrile, and ethacrylonitrile.
또 다른 예로, 상기 가교조절 단량체는 아크릴산, 말레익산, 메타크릴산, 이타콘산, 푸마르산 중에서 선택된 1 이상의 불포화 카르본산을 포함하는 것일 수 있다. As another example, the crosslinking control monomer may include one or more unsaturated carboxylic acids selected from acrylic acid, maleic acid, methacrylic acid, itaconic acid, and fumaric acid.
상기 유화 중합 개시 단계는, 일례로 친수성 퍼설페이트계 개시제 또는 소수성 하이드로 퍼옥사이드계 개시제, 음이온성 유화제 또는 비이온성 유화제, 머캅탄류 분자량 조절제 및 전해질(유화제-개시제-분자량 조절제-전해질 용액)을 투입하는 것일 수 있다. In the emulsion polymerization initiation step, for example, a hydrophilic persulfate-based initiator or a hydrophobic hydroperoxide-based initiator, an anionic emulsifier or nonionic emulsifier, mercaptans molecular weight regulator and electrolyte (emulsifier-initiator-molecular weight regulator-electrolyte solution) It may be.
구체적인 예로, 상기 유화제-개시제-분자량 조절제-전해질 용액을 투입, 혹은 일괄 투입 후 0.1 내지 2시간, 혹은 0.5 내지 1 시간 동안 교반한 다음 반응 온도를 55 내지 65 ℃, 혹은 58 내지 65 ℃로 승온하면서 반응을 수행할 수 있다. 반응 소요시간은 일례로 4.5 내지 5.5 시간, 혹은 4.8 내지 5.2시간일 수 있다. As a specific example, after the emulsifier-initiator-molecular weight regulator-electrolyte solution is added or stirred in a batch, for 0.1 to 2 hours, or 0.5 to 1 hour, the reaction temperature is raised to 55 to 65 ° C, or 58 to 65 ° C. The reaction can be carried out. The reaction time may be, for example, 4.5 to 5.5 hours, or 4.8 to 5.2 hours.
상기 유화제는 통상의 설포네이트 말단기를 가지는 유화제 혹은 카르복실산 말단을 가지는 유화제 등을 사용할 수 있고, 비이온성 유화제 내지 반응형 유화제가 단독 또는 혼용되어 사용할 수도 있다.The emulsifier may be an emulsifier having a common sulfonate end group, an emulsifier having a carboxylic acid terminal, or the like, and a nonionic emulsifier or a reactive emulsifier may be used alone or in combination.
상기 개시제는 일례로 친수성 성질이 강한 퍼설페이트계 개시제, 예로 칼륨 퍼설페이트, 암모늄 퍼설페이트, 나트륨 퍼설페이트와 같은 열분해 개시제의 적용이 가능하며, 소수성 성질의 디이소프로필벤젠 하이드로퍼옥사이드, 큐멘 하이드로퍼옥사이드, 3급 부틸 하이드로 퍼옥사이드 등과 같은 하이드로 퍼옥사이드계 개시제가 황산 제1철, 덱스트로즈, 피롤인산나트륨, 아황산나트륨 등과 같은 통상적으로 적용 가능한 산화 환원 촉매와 같이 사용되는 것이 가능하나, 바람직하게는 시드 중합단계 및 디엔계 단량체의 경우 친수성 성질이 강한 개시제를 적용하는 것이 바람직하며, 불포화 이중결합을 가진 방향족 또는 비방향족 단량체를 적용하는 단계에 있어서는 소수성 개시제를 단독 또는 산화-환원 촉매와 같이 사용되는 것이 바람직하다.The initiator can be applied to a pyrolysis initiator such as potassium persulfate, ammonium persulfate, sodium persulfate, for example, strong hydrophilic property, and isohydrogen diisopropylbenzene hydroperoxide, cumene hydroper Hydroperoxide-based initiators such as oxides, tertiary butyl hydroperoxides and the like may be used with commonly applicable redox catalysts such as ferrous sulfate, dextrose, sodium pyrrole phosphate, sodium sulfite and the like, but preferably In the case of the seed polymerization step and the diene monomer, it is preferable to apply an initiator having strong hydrophilic properties, and in the step of applying an aromatic or non-aromatic monomer having an unsaturated double bond, a hydrophobic initiator is used alone or as an oxidation-reduction catalyst. It is desirable to be.
상기 디엔계 단량체와 가교조절 단량체의 투입, 및 디엔계 단량체의 연속 투입시, 일례로 칼륨 퍼설페이트, 암모늄 퍼설페이트 및 나트륨 퍼설페이트로 이루어진 군으로부터 1종 이상 선택되는 친수성 개시제가 각각 사용될 수 있다.When the diene monomer and the crosslinking control monomer are added, and the diene monomer is continuously added, for example, a hydrophilic initiator selected from the group consisting of potassium persulfate, ammonium persulfate and sodium persulfate may be used.
상기 친수성 개시제 적용시, 황산 제1철, 덱스트로즈, 피롤인산나트륨 및 아황산나트륨으로 이루어진 군으로부터 선택되는 1종 이상의 산화 환원 촉매를 병용할 수 있다.When the hydrophilic initiator is applied, one or more redox catalysts selected from the group consisting of ferrous sulfate, dextrose, sodium pyrrole phosphate and sodium sulfite may be used in combination.
상기 전해질은 일례로 KCl, CHCO3, Na2CO3, CaCO3, NaHSO4 등이 단독 내지 2종 이상 혼용되어 사용이 가능하다. As the electrolyte, for example, KCl, CHCO 3 , Na 2 CO 3 , CaCO 3 , NaHSO 4, and the like may be used in combination of two or more kinds.
상기 분자량 조절제는 일례로 n-도데실 멀캅탄, n-데실 멀캅탄, t-도데실 멀캅탄 등과 같은 멀캅탄류 및 알파 메틸 스티렌 다이머 등과 같은 통상의 유화중합에서 사용되는 분자량 조절제를 사용할 수 있다. For example, the molecular weight regulator may be a molecular weight regulator used in conventional emulsion polymerization such as mercaptans such as n-dodecyl mercaptan, n-decyl mercaptan, t-dodecyl mercaptan, and alpha methyl styrene dimer.
상기 중합의 전환율이 일례로 40 내지 60%, 50 내지 60%, 혹은 55 내지 60%일 때, 디엔계 단량체를 연속 투입하여 중합시킬 수 있다. When the conversion rate of the polymerization is 40 to 60%, 50 to 60%, or 55 to 60%, for example, the diene monomer may be continuously added to the polymerization.
상기 연속 투입은 일례로 5 내지 12 시간, 혹은 6 내지 10시간 동안 투입하는 것일 수 있다. The continuous dosing may be, for example, 5 to 12 hours, or 6 to 10 hours.
상기 연속 투입 도중 음이온성 유화제 또는 비이온성 유화제 및 친수성 퍼설페이트계 개시제 또는 소수성 하이드로 퍼옥사이드계 개시제(유화제-개시제 용액)를 투입하는 것일 수 있다.Anionic emulsifier or nonionic emulsifier and a hydrophilic persulfate initiator or a hydrophobic hydroperoxide initiator (emulsifier-initiator solution) may be added during the continuous dosing.
상기 유화제-개시제 용액은 상기 연속 투입 시점부터 1.5 내지 2.5 시간 경과후, 혹은 1.8 내지 2.2 시간 경과 후 투입 혹은 일괄 투입하는 것일 수 있다. The emulsifier-initiator solution may be added or collectively added after 1.5 to 2.5 hours, or 1.8 to 2.2 hours after the continuous input time.
상기 연속 투입 종료 후 음이온성 유화제 또는 비이온성 유화제를 추가 투입할 수 있다. After completion of the continuous dosing may be further added an anionic emulsifier or a nonionic emulsifier.
참고로, 상기 유화제는 1회 투입당 고무질 중합체를 구성하는 전체 단량체 총 100 중량부 기준으로 0.1 내지 1 중량부, 혹은 0.2 내지 0.5 중량부일 수 있다. For reference, the emulsifier may be 0.1 to 1 parts by weight, or 0.2 to 0.5 parts by weight based on a total of 100 parts by weight of the total monomers constituting the rubbery polymer per dose.
상기 개시제는 1회 투입당 고무질 중합체를 구성하는 전체 단량체 총 100 중량부 기준으로 0.1 내지 5 중량부, 혹은 0.1 내지 1 중량부일 수 있다. The initiator may be 0.1 to 5 parts by weight, or 0.1 to 1 part by weight based on a total of 100 parts by weight of the total monomers constituting the rubbery polymer per dose.
상기 분자량 조절제는 고무질 중합체를 구성하는 전체 단량체 총 100 중량부 기준으로 0.1 내지 1 중량부, 혹은 0.2 내지 0.5 중량부일 수 있다. The molecular weight modifier may be 0.1 to 1 parts by weight, or 0.2 to 0.5 parts by weight based on 100 parts by weight of the total monomers constituting the rubbery polymer.
상기 전해질은 탄산칼륨 등을 0.1 내지 5 중량부, 혹은 0.1 내지 1 중량부일 수 있다. The electrolyte may be 0.1 to 5 parts by weight, or 0.1 to 1 part by weight of potassium carbonate and the like.
상기 유화제-개시제 용액의 투입 후 반응 온도를 70 내지 85 ℃, 혹은 75 내지 80 ℃로 승온하고 4 내지 6 시간, 혹은 4.5 내지 5.5 시간 동안 반응을 수행할 수 있다. After the addition of the emulsifier-initiator solution, the reaction temperature may be increased to 70 to 85 ° C., or 75 to 80 ° C., and the reaction may be performed for 4 to 6 hours or 4.5 to 5.5 hours.
상기 반응후 일례로 황산 제1철, 덱스트로즈, 피롤인산나트륨 및 아황산나트륨 중에서 선택된 1종 이상의 산화 환원 촉매(산화 환원 촉매 용액)를 투입, 일괄 투입하고 반응을 종결하는 것을 특징으로 한다.After the reaction, for example, one or more redox catalysts (redox catalyst solution) selected from ferrous sulfate, dextrose, sodium pyrophosphate, and sodium sulfite are added and collectively added to terminate the reaction.
또 다른 예는, 디엔계 단량체 50 내지 60 중량부 및 가교조절 단량체 10 내지 15 중량부에 대하여 유화제 0.1 내지 1.5 중량부, 중합개시제 0.01 내지 2.0 중량부, 분자량 조절제 0.01 내지 0.4 중량부, 전해질 0.1 내지 2.0 중량부를 일괄 투입 방법에 의해 중합하고, 입자경 1500~2500 Å 중합전환율 40 내지 60% 시점에 35 내지 40 중량부의 디엔계 단량체를 연속 투입하여 가교조절제가 포함된 고무질 중합체를 수득할 수 있다. Another example, 0.1 to 1.5 parts by weight of an emulsifier, 0.01 to 2.0 parts by weight of a polymerization initiator, 0.01 to 0.4 parts by weight of a molecular weight modifier, and 0.1 to electrolyte based on 50 to 60 parts by weight of a diene monomer and 10 to 15 parts by weight of a crosslinking control monomer. 2.0 parts by weight may be polymerized by a batch addition method, and 35 to 40 parts by weight of diene monomer may be continuously added at a particle diameter of 1500 to 2500 Pa polymerization conversion rate of 40 to 60% to obtain a rubbery polymer including a crosslinking regulator.
본 발명의 고무질 중합체는 일례로 라텍스 형태로 수득될 수 있다. The rubbery polymer of the present invention can be obtained, for example, in latex form.
상기 라텍스는 일례로 고형분 함량이 35 내지 60 중량%일 수 있다.The latex, for example, may have a solid content of 35 to 60% by weight.
상기 방법은 중합의 전환율 90 내지 98%, 혹은 93 내지 96% 하에 겔함량 70 내지 95% 미만, 혹은 70 내지 75%, 팽윤지수 15 내지 25 미만, 혹은 15 내지 20인 고무질 중합체를 제조할 수 있다. The process can produce a rubbery polymer having a gel content of less than 70 to 95%, or 70 to 75%, a swelling index of less than 15 to 25, or 15 to 20 under a conversion of 90 to 98%, or 93 to 96% of polymerization. .
참고로, 상기 팽윤지수는 본 발명의 가교밀도에 대한 간접 지표에 해당하는 것으로, 팽윤지수가 낮은 제품은 가교 밀도가 높으므로 이후 내충격 내열수지 조성물의 충격강도가 악화되고, 팽윤지수가 높은 제품은 충격강도가 개선되는 결과를 나타낸다(하기 표 1 및 표 3 참조). For reference, the swelling index corresponds to an indirect indicator of the crosslinking density of the present invention. Since the product having a low swelling index has a high crosslinking density, the impact strength of the impact resistant resin composition deteriorates, and the product having a high swelling index The impact strength is improved (see Table 1 and Table 3 below).
B) 그라프트 공중합체 제조B) Graft Copolymer Preparation
상기와 같은 A)와 같은 방법을 통해 제조된 고무질 중합체에 대하여 유화중합 방법을 통해 그라프트 공중합체를 제조하는 것을 상세히 설명하면 다음과 같다. When preparing the graft copolymer through the emulsion polymerization method for the rubbery polymer prepared by the same method as described above A as described in detail as follows.
상기 고무질 중합체를 포함하는 그라프트 공중합체의 제조방법은, 일례로 다음과 같이 수행될 수 있다. The method for preparing a graft copolymer including the rubbery polymer may be performed as follows, for example.
즉, 수득된 가교조절제 내포 고무질 중합체 50 내지 80중량%에, 스티렌계 단량체, 비닐 시안화 단량체 및 (메틸)아크릴산 에스테르 단량체 중에서 선택된 1 이상의 단량체 20 내지 50 중량%를 투입하고 유화중합의 방법을 통해 고무입자상에 그라프트 공중합시키는 것일 수 있다. That is, to 50 to 80% by weight of the obtained crosslinking agent-containing rubbery polymer, 20 to 50% by weight of at least one monomer selected from a styrene monomer, a vinyl cyanide monomer and a (methyl) acrylic acid ester monomer are added to the rubber through a method of emulsion polymerization. It may be graft copolymerized on the particles.
상기 단량체 총 100 중량%(고무질 중합체의 함량은 제외)에 대하여 스티렌계 단량체, 비닐 시안화 단량체 및 아크릴산 에스테르 단량체 중에서 선택된 1 이상의 단량체는 일례로 10 내지 40 중량% 사용되는 것이 가능하다.For example, 10 to 40% by weight of one or more monomers selected from styrene-based monomers, vinyl cyanide monomers, and acrylic ester monomers may be used based on 100% by weight of the monomers (excluding the content of the rubber polymer).
상기 스티렌계 단량체, 비닐 시안화 단량체, 아크릴산 에스테르 단량체는 상술한 종류들을 사용하는 것일 수 있다. The styrene monomer, the vinyl cyanide monomer, and the acrylic acid ester monomer may be those using the above-described types.
본 발명의 그라프트 공중합체를 유화중합 방법을 통한 제조에 있어서는 그 방법에 있어 큰 제약을 두는 것은 아니지만, 일례로 고무질 중합체 50 내지 80 중량%에 대하여 그라프트 공중합체를 형성하고자 하는 단량체 20 내지 50 중량%를 유화제 및 분자량 조절제, 그라프트 보조제, 개시제와 함께 투여하고 반응전환율이 95 내지 99 %, 혹은 97 내지 99% 수준이 될 때까지 반응을 지속한 뒤 종료하는 것이다.In the preparation of the graft copolymer of the present invention through an emulsion polymerization method, the method is not particularly limited. For example, 20 to 50 monomers to form the graft copolymer with respect to 50 to 80% by weight of the rubbery polymer The weight percent is administered together with the emulsifier and the molecular weight modifier, the graft aid, the initiator and the reaction is continued until the reaction conversion level is 95 to 99%, or 97 to 99% and then terminated.
이때 여기에 사용이 가능한 유화제로는 일례로 로진산 칼륨 및 지방산 칼륨과 같은 카르복실 염 타입의 흡착형 유화제와 소디움 라우릴 설페이트, 알킬 벤젠 설포네이트 등과 같은 설포네이트계 흡착형 유화제, 또는 반응형 유화제가 단독 또는 혼합되어 사용되는 것이 가능하다.The emulsifiers that can be used herein include, for example, carboxyl salt type adsorption type emulsifiers such as potassium rosin and potassium fatty acids, and sulfonate type adsorption type emulsifiers such as sodium lauryl sulfate, alkyl benzene sulfonates, or reactive emulsifiers. It is possible to be used alone or in combination.
그라프트 공중합체의 제조에 있어 분자량 조절제로는 일례로 n-도데실 멀캅탄, n-데실 멀캅탄, t-도데실 멀캅탄 및 알파 메틸 스티렌 다이머 등과 같은 분자량 조절제가 사용될 수 있으며, 구체적으로는 3급 도데실 머캅탄이 0.2 내지 1.0 중량부 적용하는 것이 좋다. 이 때의 중량부는 고무질 중합체와 단량체의 총합 100 중량부를 기준으로 한다.In preparing the graft copolymer, for example, a molecular weight regulator such as n-dodecyl mercaptan, n-decyl mercaptan, t-dodecyl mercaptan and alpha methyl styrene dimer may be used. It is preferable to apply 0.2 to 1.0 parts by weight of tertiary dodecyl mercaptan. The weight part at this time is based on 100 weight part of the sum total of a rubbery polymer and a monomer.
개시제는 0.01 내지 1 중량부를 사용가능한 것으로 이에 사용이 가능한 개시제는 특별히 제한을 두는 것은 아니지만 일례로 3급 부틸 하이드로 퍼옥사이드, 큐멘 하이드로 퍼옥사이드, 디이소 프로필벤젠하이드로 퍼옥사이드 등과 같은 퍼옥사이드 개시제와 산화 환원 촉매가 같이 사용되는 것이 그라프트 공중합시 내충격성과 라텍스 안정성 확보 차원에서 유리하다고 할 수 있다.The initiator may be used in an amount of 0.01 to 1 parts by weight, and the initiator which can be used is not particularly limited but may be, for example, oxidized with a peroxide initiator such as tertiary butyl hydroperoxide, cumene hydroperoxide, diisopropylbenzenehydro peroxide, or the like. The use of a reduction catalyst together may be advantageous in terms of securing impact resistance and latex stability during graft copolymerization.
아울러, 본 그라프트 공중합체의 제조 시 단량체의 투입은 단량체 각각을 반응기에 직접 투입하는 방법 내지 단량체 혼합물을 투입하는 방법, 유화제 및 물, 개시제를 혼합하여 제조한 단량체 유화액을 투입하는 방법이 선택될 수 있으며, 단량체 투입시 선택적으로, 단량체 총 100 중량%를 기준으로 반응초기 0 내지 20 중량%, 혹은 1 내지 20 중량%의 단량체가 회분식 투입방식으로 투입이 되고, 나머지 단량체에 대해서는 연속 투입 방법으로 투입되는 것이 가능하다. 또한 전량 연속 투입하는 것 내지 회분식 투입방법을 3~4 차례 일정 간격을 두고 투입하는 것 역시 가능하다.In addition, in the preparation of the graft copolymer, the addition of monomers may be performed by directly adding each monomer to a reactor, adding a monomer mixture, and adding a monomer emulsion prepared by mixing an emulsifier, water, and an initiator. Optionally, when the monomer is added, the initial reaction of 0 to 20% by weight, or 1 to 20% by weight of the monomer based on the total 100% by weight of the monomer is added in a batch input method, the remaining monomers in a continuous input method It is possible to be committed. In addition, it is also possible to inject the entire quantity continuously or batchwise batching method 3 to 4 times at regular intervals.
반응이 종료된 그라프트 공중합체는 산화 방지제 및 열안정제를 첨가한 뒤 황산, 염산, 인산, 초산 등과 같은 산, 또는 염화 칼슘, 황산 마그네슘, 황산 알루미늄 등과 같은 금속염을 통해 응집되어 고형분을 분리해 낼 수 있고, 이를 세척, 탈수, 건조하여 파우더 형태로 만들어 질 수 있으며, 이러한 파우더 형태의 그라프트 공중합체는 일반적으로 용액 중합으로 만들어진 열가소성 수지 공중합체와 혼합되어 사용될 수 있다.After completion of the reaction, the graft copolymer is added with an antioxidant and a heat stabilizer, and then aggregated through an acid such as sulfuric acid, hydrochloric acid, phosphoric acid, acetic acid, or a metal salt such as calcium chloride, magnesium sulfate, aluminum sulfate, etc., to separate solids. It may be made into a powder form by washing, dehydrating and drying it, and this powder form graft copolymer may be used in combination with a thermoplastic resin copolymer generally made by solution polymerization.
상기 방법에 따르면, 중합 전환율 96 내지 99% 하에 응고물 0.1% 이하, 그라프트 비가 35 내지 50%인 그라프트 공중합체를 제공할 수 있다. According to the method, it is possible to provide a graft copolymer having a coagulation content of 0.1% or less and a graft ratio of 35 to 50% under a polymerization conversion rate of 96 to 99%.
상기 그라프트 공중합체는 일례로, 아크릴로니트릴-부타디엔-스티렌(ABS)계 수지일 수 있다. The graft copolymer may be, for example, an acrylonitrile-butadiene-styrene (ABS) -based resin.
얻어진 최종적인 중합물은 입자경이 3000~3500Å으로 중합물에 대한 중합 응고물은 전체 투입 고형분 함량 기준 0.01% 이하이다.The final polymer obtained had a particle size of 3000 to 3,500 Pa, and the polymerization coagulated product to the polymer was 0.01% or less based on the total charged solid content.
C) 내충격 내열수지 조성물 제공C) providing impact resistant heat resistant resin composition
위와 같은 방법을 통해 제조된 그라프트 공중합체는 통상적으로 내열 열가소성 수지와 압출 과정을 통해 용융 및 혼합되어 펠렛의 형태로 가공되어 최종적인 내충격 내열수지로 제조되게 되는데, 이 때 사용되는 내열 열가소성 수지는 알파 메틸스티렌-아크릴로니트릴-스티렌 공중합체(AMS-SAN), 아크릴로니트릴-스티렌 공중합체(SAN), 아크릴로니트릴-스티렌-메틸메타크릴레이트(MS), 폴리카보네이트(PC), 폴리부틸렌테레프탈레이트(PBT), 폴리염화비닐(PVC)와 같은 수지들이 있을 수 있다.The graft copolymer prepared by the above method is usually melted and mixed with a heat-resistant thermoplastic resin through an extrusion process to be processed into pellets to produce a final impact-resistant heat-resistant resin. Alpha methylstyrene-acrylonitrile-styrene copolymer (AMS-SAN), acrylonitrile-styrene copolymer (SAN), acrylonitrile-styrene-methyl methacrylate (MS), polycarbonate (PC), polybutyl There may be resins such as lenterephthalate (PBT), polyvinyl chloride (PVC).
구체적인 예로, 상기 내열 열가소성 수지는 조성물 중 20 내지 50 중량% 범위로 포함하는 것일 수 있다. As a specific example, the heat resistant thermoplastic resin may be included in the range of 20 to 50% by weight of the composition.
또 다른 예로, 상기 내열 열가소성 수지는 스티렌, 알파-메틸스티렌, 알파-메틸-4-부틸스티렌, 4-페닐 스티렌, 2,5-디메틸스티렌, 2-메틸스티렌, 알파-메틸-3,5-디-t-부틸스티렌, 알파-메틸-3,4,5-트리메틸스티렌, 알파-메틸-4-벤질스티렌, 알파-메틸-4-시클로헥실스티렌 중에서 선택된 1 이상의 스티렌계 단량체 65 내지 80 중량%, 및 아크릴로니트릴, 메타크릴로니트릴, 에타크릴로니트릴 중에서 선택된 1 이상의 시안화 비닐 단량체 20 내지 35 중량%의 괴상 중합체인 것일 수 있다. In another example, the heat-resistant thermoplastic resin is styrene, alpha-methylstyrene, alpha-methyl-4-butylstyrene, 4-phenyl styrene, 2,5-dimethylstyrene, 2-methylstyrene, alpha-methyl-3,5- 65 to 80% by weight of at least one styrenic monomer selected from di-t-butylstyrene, alpha-methyl-3,4,5-trimethylstyrene, alpha-methyl-4-benzylstyrene and alpha-methyl-4-cyclohexylstyrene And it may be a bulk polymer of 20 to 35% by weight of at least one vinyl cyanide monomer selected from acrylonitrile, methacrylonitrile, ethacrylonitrile.
또 다른 예로, 상기 내열 열가소성 수지는 알파-메틸스티렌, 알파-메틸-4-부틸스티렌, 4-페닐 스티렌, 2,5-디메틸스티렌, 2-메틸스티렌, 알파-메틸-3,5-디-t-부틸스티렌, 알파-메틸-3,4,5-트리메틸스티렌, 알파-메틸-4-벤질스티렌, 알파-메틸-4-시클로헥실스티렌 중에서 선택된 1 이상의 스티렌계 유도체 64 내지 75 중량%, 아크릴로니트릴, 메타크릴로니트릴, 에타크릴로니트릴 중에서 선택된 1 이상의 시안화 비닐 단량체 20 내지 35 중량% 및 스티렌 1 내지 5 중량%의 괴상 중합체일 수 있다. In another example, the heat-resistant thermoplastic resin is alpha-methylstyrene, alpha-methyl-4-butylstyrene, 4-phenyl styrene, 2,5-dimethylstyrene, 2-methylstyrene, alpha-methyl-3,5-di- 64 to 75% by weight of one or more styrenic derivatives selected from t-butylstyrene, alpha-methyl-3,4,5-trimethylstyrene, alpha-methyl-4-benzylstyrene and alpha-methyl-4-cyclohexylstyrene, acryl 20 to 35% by weight of at least one vinyl cyanide monomer selected from ronitrile, methacrylonitrile, ethacrylonitrile and 1 to 5% by weight of styrene.
아울러, 이들 그라프트 공중합체는 내열 열가소성 수지와 압출, 사출 과정을 통해 용융 성형되는 과정에 있어 활제, 열안정제 및 기타 다른 가공을 위한 첨가제가 첨가되어 사용되는 것이 가능하며, 이들 종류에 대해서는 크게 제한을 두지 않는다.In addition, these graft copolymers can be used with additives for lubricants, heat stabilizers and other processing in the process of melt molding through heat-resistant thermoplastic resin and extrusion, injection process, and greatly limited to these types Do not put
상기의 방법으로 제조된 내충격 내열수지는 기존 제조 방법과는 달리 내충격성이 향상되고 착색성이 우수한 특성을 가진다.Impact-resistant resin prepared by the above method has a characteristic that the impact resistance is improved and the colorability is excellent, unlike the conventional manufacturing method.
이하 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변경 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.Hereinafter, preferred examples are provided to help the understanding of the present invention, but the following examples are merely for exemplifying the present invention, and various changes and modifications within the scope and spirit of the present invention are apparent to those skilled in the art. It goes without saying that changes and modifications belong to the appended claims.
[실시예]EXAMPLE
[고무질 중합체의 제조][Production of Rubber Polymer]
실시예 1: 라텍스 제조 A1 제조Example 1 Latex Preparation A1 Preparation
질소 치환된 가압 반응 반응기에 이온교환수 100 중량부를 투입한 후 표 1에 나타낸 단량체 A를 투입하고, 로진산 칼륨 0.5 중량부 3급 도데실 머캅탄 0.3 중량부, 탄산칼륨 1.0중량부, 포타슘 퍼설페이트 0.1 중량부를 상온 투입하고 1시간 동안 교반을 실시하였다.100 parts by weight of ion-exchanged water was added to a nitrogen-substituted pressurized reactor, and then the monomer A shown in Table 1 was added, 0.5 parts by weight of potassium rosinate, 0.3 parts by weight of tertiary dodecyl mercaptan, 1.0 part by weight of potassium carbonate, and potassium per 0.1 parts by weight of sulfate was added to room temperature, followed by stirring for 1 hour.
그런 다음 반응 온도를 65℃로 승온하면서 5시간 동안 반응시키고 중합 전환율이 60%인 지점에서 표 1에 나타낸 단량체 B를 7시간 동안 연속 투입하였다. 상기 연속 투입 후 2시간 지점에서 로진산 칼륨 0.5 중량부 및 포타슘 퍼설페이트 0.1 중량부를 투입하였고, 상기 연속 투입 종료후 로진산 칼륨 0.2 중량부를 추가 투입하였다. 이때 반응 온도는 70℃이었다. Then, the reaction temperature was raised to 65 ° C. for 5 hours, and the monomer B shown in Table 1 was continuously added for 7 hours at the point where the polymerization conversion was 60%. 0.5 parts by weight of potassium rosin and 0.1 parts by weight of potassium persulfate were added at 2 hours after the continuous addition, and 0.2 parts by weight of potassium rosin was further added after completion of the continuous addition. At this time, the reaction temperature was 70 ° C.
그런 다음 반응 온도를 80℃로 승온하여 5시간 동안 반응을 유지하였으며 이때 황화 제1철 0.0005 중량부, 덱스트로즈 0.05, 피롤인산나트륨 0.04 중량부, 및 이온교환수 2 중량부로 구성된 용액을 일괄 투입하고 반응을 종결하였다. 이때 중합 전환율 및 물성을 하기 표 1에 함께 정리하였다. The reaction temperature was then raised to 80 ° C. to maintain the reaction for 5 hours. At this time, a solution consisting of 0.0005 parts by weight of ferrous sulfide, 0.05 dextrose, 0.04 parts by weight of sodium pyrophosphate, and 2 parts by weight of ion-exchanged water was added. And the reaction was terminated. The polymerization conversion and physical properties were summarized in Table 1 below.
실시예 2: 라텍스 A2 제조Example 2: Latex A2 Preparation
상기 실시예 1에서 하기 표 1에 기재한 함량과 종류로 단량체 A와 B를 대체한 것을 제외하고는 상기 실시예 1과 동일한 공정을 반복하였다. 이때 중합 전환율 및 물성을 하기 표 1에 함께 정리하였다. The same process as in Example 1 was repeated except that the monomers A and B were replaced with the amounts and types shown in Table 1 in Example 1. The polymerization conversion and physical properties were summarized in Table 1 below.
실시예 3: 라텍스 A3 제조Example 3: Latex A3 Preparation
상기 실시예 1에서 하기 표 1에 기재한 함량과 종류로 단량체 A와 B를 대체한 것을 제외하고는 상기 실시예 1과 동일한 공정을 반복하였다. 이때 중합 전환율 및 물성을 하기 표 1에 함께 정리하였다. The same process as in Example 1 was repeated except that the monomers A and B were replaced with the amounts and types shown in Table 1 in Example 1. The polymerization conversion and physical properties were summarized in Table 1 below.
비교예 1: 라텍스 B1 제조Comparative Example 1: Manufacture of Latex B1
상기 실시예 1에서 하기 표 1에 기재한 함량과 종류로 단량체 A와 B를 대체하고 알파 메틸스티렌(AMS)을 코어, 쉘에 모두 미사용한 것을 제외하고는 상기 실시예 1과 동일한 공정을 반복하였다. 이때 중합 전환율 및 물성을 하기 표 1에 함께 정리하였다. In Example 1, the same process as in Example 1 was repeated except that monomers A and B were replaced with the amounts and types shown in Table 1, and alpha methylstyrene (AMS) was not used in both the core and the shell. . The polymerization conversion and physical properties were summarized in Table 1 below.
비교예 2: 라텍스 B2 제조Comparative Example 2: Latex B2 Preparation
상기 실시예 1에서 하기 표 1에 기재한 함량과 종류로 단량체 A와 B를 대체하고, 알파 메틸스티렌(AMS)을 1,3-디엔(BD) 투입이 완료되고 승온하기 직전에 일괄 투입한 것을 제외하고는 상기 실시예 1과 동일한 공정을 반복하였다. 이때 중합 전환율 및 물성을 하기 표 1에 함께 정리하였다. In Example 1, the monomers A and B were replaced with the amounts and types shown in Table 1 below, and the entirety of alpha methylstyrene (AMS) was added immediately before the 1,3-diene (BD) was added and the temperature was increased. The same process as in Example 1 was repeated except for the above. The polymerization conversion and physical properties were summarized in Table 1 below.
비교예 3: 라텍스 B3 제조Comparative Example 3: Latex B3 Preparation
상기 실시예 1에서 하기 표 1에 기재한 함량과 종류로 단량체 A와 B를 대체한 것을 제외하고는 상기 실시예 1과 동일한 공정을 반복하였다. 이때 중합 전환율 및 물성을 하기 표 1에 함께 정리하였다.The same process as in Example 1 was repeated except that the monomers A and B were replaced with the amounts and types shown in Table 1 in Example 1. The polymerization conversion and physical properties were summarized in Table 1 below.
<물성 측정 방식><Measurement Method>
* 중합 전환율: 제조된 각 단계별 라텍스 2g을 150도 열풍 건조기내에서 15분간 건조 후 무게를 측정하여 총고형분 함량(TSC)을 구한 다음 하기 식에 따라 중합 전환율을 계산하였다. * Polymerization conversion: After drying for 15 minutes in a 150 ℃ hot air dryer for each step of the prepared latex, the total solid content (TSC) was calculated, and then the polymerization conversion was calculated according to the following equation.
* 라텍스 입자경 측정: Nicomp 기기를 이용하여 중량 평균 입자경을 측정하였다. * Latex particle size measurement : The weight average particle size was measured using a Nicomp instrument.
* 겔함량 측정: 제조된 고무라텍스에 메탄올을 투입한 후 황산 침전시키고 세척/건조하여 고무성분인 고형분(A)을 추출한 뒤 톨루엔 넣어 18시간 동안 방치한 후 80 mesh 그물망에 걸린 것을 건조하여 무게(B)를 측정하고 하기 식에 의해 겔함량을 구한다. * Gel content measurement: Methanol was added to the prepared rubber latex, sulfuric acid was precipitated, washed and dried to extract the solid component (A), which was then placed in toluene, and left for 18 hours. B) is measured and gel content is calculated | required by the following formula.
겔함량 = 용해후 남은 고무질 중합체 무게 (B) / 초기 고무질 중합체 (A)Gel content = weight of rubbery polymer remaining after dissolution (B) / initial rubbery polymer (A)
* 팽윤 지수: 본 발명의 가교밀도에 대한 간접 지표에 해당하는 것으로, 구체적으로는 겔함량 측정을 위해 제조된 고무성분 고형분을 톨루엔에 18시간 동안 방치하고 80 mesh 그물망에 걸린 것을 건조한 후(A) 이를 톨루엔 용매하에 24시간 동안 방치한 후 팽윤된 고무질 수지의 무게(B)를 측정하고 하기 식에 의거하여 팽윤지수를 구하였다. * Swelling index: Corresponding to the indirect index of the crosslinking density of the present invention, specifically, the rubber component solids prepared for gel content measurement was left in toluene for 18 hours and dried in 80 mesh nets (A). After standing for 24 hours in a toluene solvent, the weight (B) of the swollen rubbery resin was measured, and the swelling index was obtained based on the following equation.
팽윤지수 = (팽윤된 고무질 수지의 무게 (B)-건조된 초기 고무질 수지(A)) / 건조된 초기 고무질 수지(A)Swelling index = (weight of swelled rubbery resin (B)-dried initial rubbery resin (A)) / dried initial rubbery resin (A)
참고로, 팽윤지수가 낮은 제품은 가교 밀도가 높아 결과적으로 이후 내충격 내열수지 조성물의 충격강도(하기 표 3 참조)가 악화되는 결과를 보이며, 팽윤지수가 높은 제품은 충격강도가 개선되는 결과를 나타낸다. For reference, a product having a low swelling index has a high crosslinking density, and as a result, the impact strength (see Table 3 below) of the impact resistant resin composition is deteriorated, and a product having a high swelling index has a result of improving the impact strength. .
표 1
구분 실시예 비교예
1(A1) 2(A2) 3(A3) 1(B1) 2(B2) 3(B3)
단량체A(일괄투입) BD* 50 50 50 65 50 50
AMS 10 15 10
AN 5
ST
DVB 5
단량체B(연속투입) BD 40 35 35 35 35 45
AMS 15
단량체합 100 100 100 100 100 100
전환율 % 95 93 96 90 82 94
입자경 3200 3300 3100 3200 2900 3200
겔함량 % 73 70 75 85 82 95
팽윤지수 18 20 15 10 10 7
Table 1
division Example Comparative example
1 (A1) 2 (A2) 3 (A3) 1 (B1) 2 (B2) 3 (B3)
Monomer A (Batch) BD * 50 50 50 65 50 50
AMS 10 15 10
AN 5
ST
DVB 5
Monomer B (continuous injection) BD 40 35 35 35 35 45
AMS 15
Monomer sum 100 100 100 100 100 100
Conversion rate % 95 93 96 90 82 94
Particle diameter Å 3200 3300 3100 3200 2900 3200
Gel content % 73 70 75 85 82 95
Swelling index 18 20 15 10 10 7
*ST : 스티렌, BD : 1,3-부타디엔, AMS: 알파 메틸 스티렌.* ST: styrene, BD: 1,3-butadiene, AMS: alpha methyl styrene.
상기 표 1에서 보듯이, 스티렌 유도체를 포함한 고무질 라텍스를 제조한 라텍스A1 내지 A3를 사용한 실시예 1 내지 3의 경우에는 라텍스 B1 내지 B3를 사용한 비교예 1 내지 3과는 달리, 동일 중합 반응시간에 중합 전환율의 저하 없이 겔함량이 낮고 팽윤지수가 높은(따라서 가교밀도가 낮은) 고무질 중합체를 얻을 수 있음을 확인하였다. As shown in Table 1, in Examples 1 to 3 using latex A1 to A3 prepared rubber latex containing a styrene derivative, unlike Comparative Examples 1 to 3 using latex B1 to B3, the same polymerization reaction time It was confirmed that a rubbery polymer having a low gel content and a high swelling index (and thus a low crosslinking density) can be obtained without lowering the polymerization conversion rate.
특히, 통상의 가교제 단독을 투입한 비교예 3에서 보듯이, 팽윤지수가 급격히 감소된(따라서 가교밀도가 높은) 결과를 확인할 수 있었다. In particular, as shown in Comparative Example 3 in which the usual crosslinking agent alone was added, it was confirmed that the swelling index was sharply reduced (and thus the crosslinking density was high).
[그라프트 공중합체의 제조][Production of Graft Copolymer]
추가 실시예 1 :그라프트 공중합체 C1 제조Additional Example 1 Preparation of Graft Copolymer C1
질소 치환된 반응기에 상기 실시예 1 내지 3의 라텍스(A1 내지 A3) 및 비교예1 내지 3의 라텍스(B1 내지 B3)에서 제조된 고무 및 표 2의 단량체 C 성분을, 이온교환수 60중량부, 알케닐 호박산 칼륨(제품명 latemul ASK) 0.2 중량부를 투입하고 25 ℃에서 충분히 교반한 후 50 ℃로 승온되었을 때 3급 부틸 하이드로 퍼옥사이드 0.08 중량부 및 황화제2철 0.003 중량부, 덱스트로즈 0.005 중량부, 피롤인산나트륨 0.025 중량부, 및 이온교환수 2.5 중량부를 투입하고 30분간 65℃로 승온하면서 반응을 진행하였다. In a nitrogen-substituted reactor, 60 parts by weight of ion-exchanged water and rubber prepared in the latex (A1 to A3) of the Examples 1 to 3 and the latex (B1 to B3) of Comparative Examples 1 to 3 and the monomer C component of Table 2 , 0.2 parts by weight of alkenyl potassium succinate (trade name latemul ASK), stirred sufficiently at 25 ° C., then heated to 50 ° C., 0.08 part by weight of tertiary butyl hydroperoxide, 0.003 part by weight of ferric sulfide, and dextrose 0.005 The reaction was carried out while adding parts by weight, 0.025 part by weight of sodium pyrrole phosphate, and 2.5 parts by weight of ion-exchanged water, and the temperature was raised to 65 ° C for 30 minutes.
이때 하기 표2의 단량체 D에 해당하는 단량체를 알케닐 호박산 칼륨 0.3 중량부, 3급 도데실 머캅탄 0.4중량부, 큐멘하이드로 퍼옥사이드 0.1 중량부, 이온교환수 20중량부 구성된 유화액으로 만들어 연속적으로 반응기에 1시간 30분 동안 투여하였다. 이때 최종 중합 온도는 70℃이었다. At this time, the monomer corresponding to the monomer D in Table 2 was made into an emulsion comprising 0.3 parts by weight of potassium alkenyl potassium succinate, 0.4 parts by weight of tertiary dodecyl mercaptan, 0.1 parts by weight of cumene hydroperoxide, and 20 parts by weight of ion-exchanged water. The reactor was administered for 1 hour 30 minutes. At this time, the final polymerization temperature was 70 ℃.
그런 다음 큐멘 하이드로 퍼옥사이드 0.05중량부 및 황화제1철 0.003 중량부, 덱스트로즈 0.005 중량부, 피롤인산나트륨 0.025 중량부, 이온교환수 2.5 중량부를 추가적으로 투입하고 중합온도를 75℃로 승온하여 1시간 반응을 지속한 뒤 반응을 종료하였다. 제조된 그라프트 공중합 라텍의 조성 및 물성은 표2에 나타내었다. Then, 0.05 parts by weight of cumene hydroperoxide, 0.003 parts by weight of ferrous sulfide, 0.005 parts by weight of dextrose, 0.025 parts by weight of sodium pyrophosphate, and 2.5 parts by weight of ion-exchanged water were added, and the polymerization temperature was raised to 75 ° C. The reaction was terminated after continuing the time reaction. The composition and physical properties of the prepared graft copolymer latex are shown in Table 2.
추가 실시예 2 내지 4 :그라프트 공중합체 C2 내지 C4 제조Additional Examples 2-4: Preparation of Graft Copolymers C2 to C4
상기 추가 실시예 1에서 하기 표 2에 기재한 함량과 종류로 단량체 C와 D를 대체한 것을 제외하고는 상기 추가 실시예 1과 동일한 공정을 반복하였다. 이때 중합 전환율 및 물성을 하기 표 2에 함께 정리하였다. The same process as in Example 1 was repeated except that monomers C and D were replaced with the amounts and types shown in Table 2 below. The polymerization conversion and physical properties were summarized in Table 2 below.
추가 비교실시예 1 내지 3:그라프트 공중합체 D1 내지 D4 제조Additional Comparative Examples 1 to 3: Preparation of Graft Copolymers D1 to D4
상기 추가 실시예 1에서 하기 표 2에 기재한 함량과 종류로 고무 종류와 단량체 C와 D를 대체한 것을 제외하고는 상기 추가 실시예 1과 동일한 공정을 반복하였다. 이때 중합 전환율 및 물성을 하기 표 2에 함께 정리하였다. The same process as in Example 1 was repeated except that the rubber type and the monomers C and D were replaced with the amounts and kinds shown in Table 2 below. The polymerization conversion and physical properties were summarized in Table 2 below.
<물성 측정 방식><Measurement Method>
* 중합 전환율: 제조된 각 단계별 라텍스 2g을 150도 열풍 건조기내에서 15분간 건조 후 무게를 측정하여 총고형분 함량(TSC)을 구한 다음 하기 식에 따라 중합 전환율을 계산하였다. * Polymerization conversion: After drying for 15 minutes in a 150 ℃ hot air dryer for each step of the prepared latex, the total solid content (TSC) was calculated, and then the polymerization conversion was calculated according to the following equation.
* 중합 응고물: 유화중합 방법을 통해 제조된 라텍스를 100 mesh 철망 필터를 통해 거른 뒤 철망 위에 걸러진 중합물을 100℃ 열풍 건조기에 1시간 동안 건조한 뒤 전체 투입된 단량체, 첨가제(유화제 등)의 이론 총량에 대한 비율로 나타낸다. * Polymerized coagulated product: The latex produced by emulsion polymerization method is filtered through a 100 mesh wire mesh filter, and the polymerized material filtered on the wire mesh is dried in a 100 ° C. hot air dryer for 1 hour, and then the total amount of monomers and additives (emulsifiers, etc.) added is added to the theoretical total amount. Expressed as a ratio.
* 그라프트율: 그라프트 공중합체 분체 10g을 60도 오븐에서 건조하여 수분을 제거한 무게(A)를 측정하고 아세톤 용매 100에 24시간 동안 교반시킨 후 원심분리기 10000rpm 조건에서 졸과 겔 성분을 분리후 아세톤에 용해되지 않은 잔부를 오븐 상에서 건조시킨 무게(B)를 측정하고 하기 식에 의하여 그라프트율을 구하였다. * Graft rate: 10 g of the graft copolymer powder was dried in a 60 degree oven to measure the weight (A) from which moisture was removed, stirred in acetone solvent 100 for 24 hours, and then separated from the sol and gel components in a centrifuge at 10000 rpm. The weight (B) which dried the remainder which was not dissolved on the oven was measured, and the graft ratio was calculated | required by the following formula.
그라프트율 = (B-A*그라프트 중합에 투입된 고무함량%) / (A*그라프트 중합에 투입된 고무함량%)Graft rate = (% rubber content in B-A * graft polymerization) / (% rubber content in A * graft polymerization)
표 2
구분 추가 실시예 추가 비교실시예
1(C1) 2(C2) 3(C3) 4(C4) 1(D1) 2(D2) 3(D3) 4(D4)
고무 종류 A1 A1 A2 A3 B1 B1 B2 B3
함량 60 66.7 60 60 60 60 60 60
단량체(C) AMS 7 3.5 7 7 7 3.5 7 7
AN 3 3 3 3 3 3 3 3
ST 3.5 3.5
단량체(D) AMS 21 7 21 21 21 14 21 21
AN 9 9 9 9 9 9 9 9
ST 7 7
공중합체조성 BD 54 60 51 51 60 60 51 60
AMS 34 17 37 34 28 17 37 28
AN 12 12 12 15 12 12 12 12
ST 11 11
100 100 100 100 100 100 100 100
전환율 % 98.2 99.1 97.5 98.3 94.0 90.0 88.0 92.5
응고물 % 0.02 0.01 0.03 0.03 2.5 5.0 3.5 4.5
G/R % 40 48 42 43 25 30 22 30
TABLE 2
division Additional Example Additional Comparative Examples
1 (C1) 2 (C2) 3 (C3) 4 (C4) 1 (D1) 2 (D2) 3 (D3) 4 (D4)
Rubber Kinds A1 A1 A2 A3 B1 B1 B2 B3
content 60 66.7 60 60 60 60 60 60
Monomer (C) AMS 7 3.5 7 7 7 3.5 7 7
AN 3 3 3 3 3 3 3 3
ST 3.5 3.5
Monomer (D) AMS 21 7 21 21 21 14 21 21
AN 9 9 9 9 9 9 9 9
ST 7 7
Copolymer Composition BD 54 60 51 51 60 60 51 60
AMS 34 17 37 34 28 17 37 28
AN 12 12 12 15 12 12 12 12
ST 11 11
synthesis 100 100 100 100 100 100 100 100
Conversion rate % 98.2 99.1 97.5 98.3 94.0 90.0 88.0 92.5
Coagulum % 0.02 0.01 0.03 0.03 2.5 5.0 3.5 4.5
G / R % 40 48 42 43 25 30 22 30
* G/R (Graft ratio) * G / R (Graft ratio)
상기 표 2에서 보듯이, 상술한 라텍스 A1 내지 A3의 실시예 1 내지 3을 기반으로 한 추가 실시예 C1 내지 C4의 그라프트 공중합체는, 상술한 라텍스 B1 내지 B3의 비교예 1 내지 3를 기반으로 한 추가 비교실시예 D1 내지 D4의 그라프트 공중합체 대비 고무질 입자의 겔함량이 저하하였으며, 특히 알파메틸 스티렌 모노머를 그라프트 공중합에 사용할 경우 고무 입자 내부에서의 중합을 좀더 용이하게 수행하는 장점으로 인하여 동일한 중합 시간 내에 높은 중합 전환율을 달성할 수 있을 뿐만 아니라 그라프트 반응 효율 증가에 따른 중합 안정성의 확보 또한 규명할 수 있었다. As shown in Table 2, the graft copolymer of the additional examples C1 to C4 based on Examples 1 to 3 of the latex A1 to A3 described above, based on Comparative Examples 1 to 3 of the latex B1 to B3 described above. The gel content of the rubber particles compared to the graft copolymers of the comparative examples D1 to D4 was lowered, and in particular, when the alphamethyl styrene monomer was used for the graft copolymerization, polymerization inside the rubber particles was more easily performed. Due to the high polymerization conversion can be achieved within the same polymerization time as well as ensuring the polymerization stability by increasing the graft reaction efficiency.
[내충격 내열수지 조성물][Impact resistant heat resistant resin composition]
상기 추가 실시예 1 내지 4 및 추가 비교실시예 1 내지 4의 각 그라프트 공중합 라텍스에 황산 2 중량부를 첨가하여 응집 및 수세한 후 유동층 건조기 내에서 열풍 건조하여 분체를 제조하였다. 상기 분체를 용액중합으로 제조된 내열 SAN(AMS 단량체 70 중량부, AN 28 중량부, SM 2 중량부)과 혼련하여 펠렛을 제조한 다음 사출하여 물성 측정에 필요한 시편을 제조하였다. Powders were prepared by adding 2 parts by weight of sulfuric acid to each of the graft copolymer latexes of Examples 1 to 4 and Comparative Examples 1 to 4, coagulating and washing with water, followed by hot air drying in a fluidized bed dryer. The powder was kneaded with a heat-resistant SAN (70 parts by weight of AMS monomer, 28 parts by weight of AN, 2 parts by weight of SM) prepared by solution polymerization to prepare pellets and then injected to prepare a specimen for measuring physical properties.
이때 제조된 시편의 고무함량은 16%로 동일하게 제조하고 물성을 비교 측정하였으며, 물성 측정치를 하기 표 3에 정리하였다. At this time, the rubber content of the prepared specimen was prepared in the same manner as 16% and measured physical properties, the physical properties measured in Table 3 below.
<물성 측정 방식><Measurement Method>
* 아이조드 충격강도: 시편의 두께 1/4"로 하여 ASTM D256 방법에 의거하여 측정하였고, 단위는 Kg.cm/cm이다. * Izod impact strength: measured in accordance with ASTM D256 method with a 1/4 "thickness of the specimen, the unit is Kg.cm / cm.
* 화학적 크렉 안정성(ESCR): 사출가공을 통해 제조된 인장강도 시편을 1.0% 지그 상에 위치시킨 후 시너 1mg을 각각 시편의 중앙에 떨어뜨린 후 파단이 일어날 때까지의 시간을 측정하여 기록하였다. 10분이 넘게 파단이 일어나지 않는 것은 NC(No crack으로 표시하였다. * Chemical Crack Stability (ESCR): Tensile strength specimens prepared by injection molding were placed on a 1.0% jig, and 1 mg of thinner was dropped in the center of the specimen, and the time until fracture occurred was recorded. The failure that did not occur for more than 10 minutes was marked as NC (No crack).
* 내열도(HDT, ℃): ASTM D-648 방법에 의해 열변형 온도를 측정하였다. * Heat resistance (HDT, ℃): The heat distortion temperature was measured by the ASTM D-648 method.
표 3
구분 추가 실시예 추가 비교실시예
1(C1) 2(C2) 3(C3) 4(C4) 1(D1) 2(D2) 3(D3) 4(D4)
IMP(1/4") Kgcm/cm 27 25 24 24 15 12 10 10
ESCR NB 500 450 NB 45 30 25 20
HDT 110 105 112 114 102 99 104 101
TABLE 3
division Additional Example Additional Comparative Examples
1 (C1) 2 (C2) 3 (C3) 4 (C4) 1 (D1) 2 (D2) 3 (D3) 4 (D4)
IMP (1/4 ") Kgcm / cm 27 25 24 24 15 12 10 10
ESCR second NB 500 450 NB 45 30 25 20
HDT 110 105 112 114 102 99 104 101
상기 표 3에서 보듯이, 상기 추가 실시예 1 내지 4의 그라프트 공중합체를 포함하는 내충격 내열수지 조성물을 사용한 경우에는 상기 추가 비교 실시예 1 내지 4의 그라프트 공중합체를 포함하는 열가소성 수지 조성물을 사용한 경우 대비하여 충격강도, 화학적 크렉 안정성(ESCR), 내열도(HDT) 특성을 향상시키는 것을 확인할 수 있었다. 이는 상기 표 1에서 살펴본 바와 같이, 고무질 중합체의 가교밀도 저감 효과에 기인한 것을 규명할 수 있었다. As shown in Table 3, when the impact-resistant heat-resistant resin composition comprising the graft copolymer of the additional Examples 1 to 4 is used, the thermoplastic resin composition comprising the graft copolymer of the additional Comparative Examples 1 to 4 It was confirmed that the impact strength, chemical crack stability (ESCR), and heat resistance (HDT) characteristics were improved in comparison with the case of use. As shown in Table 1, it was possible to determine that due to the cross-linking density reduction effect of the rubbery polymer.
특히, 추가 비교 실시예 4의 그라프트 공중합체를 포함하는 열가소성 수지 조성물을 사용한 경우에는 추가 실시예 1 내지 4 대비 고무 입자의 내충격성 보강효과가 떨어짐에 따라 내충격성이 떨어지며, 내열도 향상을 기대하기 어렵고 화학적 크렉 안정성(ESCR)도 저감된 결과를 확인하였다.In particular, when the thermoplastic resin composition comprising the graft copolymer of Comparative Example 4 is used, the impact resistance is lowered as the impact reinforcing effect of the rubber particles is lower than that of the additional Examples 1 to 4, and the heat resistance is expected to improve. The results showed that the chemical crack stability (ESCR) was also difficult to do.

Claims (16)

  1. 디엔계 단량체의 유화 중합체로서, 중합체에 가교조절제가 상기 중합체를 구성하는 전체 단량체 총 100 중량% 중 5 내지 20 중량% 범위 내로 포함된 것을 특징으로 하는 고무질 중합체. An emulsified polymer of a diene monomer, wherein the polymer comprises a crosslinking regulator in a range of 5 to 20% by weight of the total 100% by weight of the total monomers constituting the polymer.
  2. 제1항에 있어서,The method of claim 1,
    상기 가교조절제는 상기 중합체의 목표 입자경 총 100% 기준으로, 50% 이하에 위치된 것을 특징으로 하는 고무질 중합체. The crosslinking regulator is a rubbery polymer, characterized in that located in 50% or less, based on a total of 100% of the target particle size of the polymer.
  3. 제1항에 있어서,The method of claim 1,
    상기 가교조절제는 상기 중합체의 목표 입자경 총 100% 기준으로, 50% 이하에 위치된 것을 특징으로 하는 고무질 중합체. The crosslinking regulator is a rubbery polymer, characterized in that located in 50% or less, based on a total of 100% of the target particle size of the polymer.
  4. 제1항에 있어서,The method of claim 1,
    상기 가교조절제는 가교조절 단량체의 중합체인 것을 특징으로 하는 고무질 중합체.The crosslinking regulator is a rubbery polymer, characterized in that the polymer of the crosslinking control monomer.
  5. 고무질 중합체를 유화 중합에 의해 제조함에 있어서, 상기 고무질 중합체를 구성하는 전체 단량체 총 100 중량% 중 5 내지 20 중량% 범위 내로 가교조절제를 포함하여 제조하는 것을 특징으로 하는 고무질 중합체의 제조방법. In preparing a rubbery polymer by emulsion polymerization, a method of producing a rubbery polymer comprising a crosslinking regulator in a range of 5 to 20% by weight of the total 100% by weight of the total monomers constituting the rubbery polymer.
  6. 제5항에 있어서, The method of claim 5,
    상기 유화 중합은, 상기 고무질 중합체를 구성하는 전체 단량체 총 100 중량%에 대하여 디엔계 단량체 45 내지 60 중량% 및 가교조절 단량체 5 내지 20 중량%를 투입하고 유화 중합을 개시하는 단계; 및The emulsion polymerization may include adding 45 to 60 wt% of a diene monomer and 5 to 20 wt% of a crosslinking monomer with respect to 100 wt% of the total monomers constituting the rubbery polymer and initiating an emulsion polymerization; And
    상기 중합의 전환율 40 내지 60% 지점에서 디엔계 단량체 20 내지 50 중량%를 중합의 전환율 70 내지 80%까지 연속 투입하면서 중합전환율 90 내지 98%까지 유화 중합하는 단계; 를 포함하는 것을 특징으로 하는 고무질 중합체의 제조방법. Emulsion polymerization to a polymerization conversion rate of 90 to 98% while continuously adding 20 to 50% by weight of a diene monomer at a conversion rate of 40 to 60% of the polymerization to a conversion rate of 70 to 80% of the polymerization; Method for producing a rubbery polymer comprising a.
  7. 제6항에 있어서, The method of claim 6,
    상기 디엔계 단량체는 1,3-부타디엔, 이소프렌, 2,3-디메틸-1,3-부타디엔, 2-메틸-1,3-펜타디엔, 2,3-디메틸-1,3-펜타디엔, 및 2-페닐-1,3-부타디엔 중에서 선택된 1종 이상인 것을 특징으로 하는 고무질 중합체의 제조방법.The diene monomers include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 2-methyl-1,3-pentadiene, 2,3-dimethyl-1,3-pentadiene, and Method for producing a rubbery polymer, characterized in that at least one selected from 2-phenyl-1,3-butadiene.
  8. 제6항에 있어서, The method of claim 6,
    상기 가교조절 단량체는 스티렌, 알파-메틸스티렌, 알파-메틸-4-부틸스티렌, 4-페닐 스티렌, 2,5-디메틸스티렌, 2-메틸스티렌, 알파-메틸-3,5-디-t-부틸스티렌, 알파-메틸-3,4,5-트리메틸스티렌, 알파-메틸-4-벤질스티렌, 알파-메틸-4-시클로헥실스티렌 중에서 선택된 1 이상의 스티렌계 단량체를 포함하는 것을 특징으로 하는 고무질 중합체의 제조방법. The crosslinking control monomers are styrene, alpha-methylstyrene, alpha-methyl-4-butylstyrene, 4-phenyl styrene, 2,5-dimethylstyrene, 2-methylstyrene, alpha-methyl-3,5-di-t- Rubber polymer comprising at least one styrene monomer selected from butyl styrene, alpha-methyl-3,4,5-trimethyl styrene, alpha-methyl-4-benzyl styrene, alpha-methyl-4-cyclohexyl styrene Manufacturing method.
  9. 제6항에 있어서,The method of claim 6,
    상기 가교조절 단량체는 메틸 메타크릴레이트, 메틸 아크릴레이트, 에틸아크릴레이트, 부틸아크릴레이트, 2-에틸헥실 아크릴레이트 중에서 선택된 1이상의 아크릴산 에스테르계 단량체를 포함하는 것을 특징으로 하는 고무질 중합체의 제조방법. The crosslinking control monomer is a method for producing a rubbery polymer, characterized in that it comprises at least one acrylic ester monomer selected from methyl methacrylate, methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate.
  10. 제6항에 있어서,The method of claim 6,
    상기 가교조절 단량체는 아크릴로니트릴, 메타크릴로니트릴, 에타크릴로니트릴 중에서 선택된 1 이상의 시안화 비닐 단량체를 포함하는 것을 특징으로 하는 고무질 중합체의 제조방법. The crosslinking control monomer is a method for producing a rubbery polymer, characterized in that it comprises at least one vinyl cyanide monomer selected from acrylonitrile, methacrylonitrile, ethacrylonitrile.
  11. 제6항에 있어서,The method of claim 6,
    상기 가교조절 단량체는 아크릴산, 말레익산, 메타크릴산, 이타콘산, 푸마르산 중에서 선택된 1 이상의 불포화 카르본산을 포함하는 것을 특징으로 하는 고무질 중합체의 제조방법. The crosslinking control monomer is a method for producing a rubbery polymer, characterized in that it comprises at least one unsaturated carboxylic acid selected from acrylic acid, maleic acid, methacrylic acid, itaconic acid, fumaric acid.
  12. 제6항에 있어서, The method of claim 6,
    상기 방법은 중합전환율 90 내지 95% 하에 겔함량 70 내지 95% 미만, 팽윤지수 15 내지 25 미만인 고무질 중합체를 제조하는 것을 특징으로 하는 고무질 중합체의 제조방법.The method for producing a rubbery polymer, characterized in that to produce a rubbery polymer having a gel content of less than 70 to 95%, a swelling index of less than 15 to 25 under a polymerization conversion rate of 90 to 95%.
  13. 고무질 중합체로부터 그라프트 공중합체를 제조함에 있어서, In preparing the graft copolymer from the rubbery polymer,
    상기 고무질 중합체로서 제5항의 방법에 의해 수득된 가교조절제 내포 고무질 중합체를 사용하는 것을 특징으로 하는 그라프트 공중합체의 제조 방법. A method for producing a graft copolymer, characterized in that the crosslinking regulator-containing rubbery polymer obtained by the method of claim 5 is used as the rubbery polymer.
  14. 제13항에 있어서,The method of claim 13,
    상기 제조 방법은, 상기 가교조절제 내포 고무질 중합체 50 내지 80중량%에, 스티렌계 단량체, 비닐 시안화 단량체 및 아크릴산 에스테르 단량체 중에서 선택된 1 이상의 단량체 20 내지 50 중량%를 투입하고 고무입자상에 그라프트 공중합시킨 것을 특징으로 하는 그라프트 공중합체의 The production method is a 50 to 80% by weight of the cross-linking agent-containing rubbery polymer, 20 to 50% by weight of one or more monomers selected from styrene monomer, vinyl cyanated monomer and acrylic acid ester monomer and graft copolymerized on rubber particles Of graft copolymers
  15. 그라프트 공중합체 및 내열 열가소성 수지를 포함하되,Graft copolymers and heat-resistant thermoplastics,
    상기 그라프트 공중합체는 제13항의 방법에 의해 수득된 가교조절제 내포 고무질 중합체 함유 그라프트 공중합체를 조성물 총 100 중량% 중 50 내지 80 중량% 범위 내로 포함하는 것을 특징으로 하는 내충격 내열수지 조성물. The graft copolymer is a shock-resistant resin composition comprising a cross-linking agent-containing rubber polymer-containing graft copolymer obtained by the method of claim 13 in the range of 50 to 80% by weight of 100% by weight of the total composition.
  16. 제15항에 있어서,The method of claim 15,
    상기 내열 열가소성 수지는 알파 메틸스티렌-아크릴로니트릴-스티렌 공중합체(AMS-SAN), 아크릴로니트릴-스티렌 공중합체(SAN), 아크릴로니트릴-스티렌-메틸메타크릴레이트(MS), 폴리카보네이트(PC), 폴리부틸렌테레프탈레이트(PBT), 및 폴리염화비닐(PVC) 중에서 선택된 1종 이상인 것을 특징으로 하는 내충격 내열수지 조성물.The heat-resistant thermoplastic resin is alpha methyl styrene-acrylonitrile-styrene copolymer (AMS-SAN), acrylonitrile-styrene copolymer (SAN), acrylonitrile-styrene-methyl methacrylate (MS), polycarbonate ( PC), polybutylene terephthalate (PBT), and polyvinyl chloride (PVC) is at least one member selected from the impact-resistant heat-resistant resin composition.
PCT/KR2014/009196 2013-09-30 2014-09-30 Rubber polymer, graft copolymer, preparation methods therefor, and impact resistant and heat resistant resin composition WO2015047026A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/893,889 US9951168B2 (en) 2013-09-30 2014-09-30 Rubber polymer, graft copolymer, preparation methods therefor, and impact resistant and heat resistant resin composition
CN201480020965.5A CN105121481B (en) 2013-09-30 2014-09-30 Rubber polymer, graft copolymer, the method for preparing them and shock resistance and heat-resisting resin combination
US15/923,800 US10640596B2 (en) 2013-09-30 2018-03-16 Rubber polymer, graft copolymer, preparation methods therefor, and impact resistant and heat resistant resin composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20130116089 2013-09-30
KR10-2013-0116089 2013-09-30
KR1020140118560A KR101638240B1 (en) 2013-09-30 2014-09-05 Rubbery polymer, graft copolymer, method of preparing the same, resistant impact and resistant heat resin composition
KR10-2014-0118560 2014-09-05

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/893,889 A-371-Of-International US9951168B2 (en) 2013-09-30 2014-09-30 Rubber polymer, graft copolymer, preparation methods therefor, and impact resistant and heat resistant resin composition
US15/923,800 Division US10640596B2 (en) 2013-09-30 2018-03-16 Rubber polymer, graft copolymer, preparation methods therefor, and impact resistant and heat resistant resin composition

Publications (1)

Publication Number Publication Date
WO2015047026A1 true WO2015047026A1 (en) 2015-04-02

Family

ID=52744026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/009196 WO2015047026A1 (en) 2013-09-30 2014-09-30 Rubber polymer, graft copolymer, preparation methods therefor, and impact resistant and heat resistant resin composition

Country Status (1)

Country Link
WO (1) WO2015047026A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104945553A (en) * 2015-07-21 2015-09-30 江苏兆鋆新材料股份有限公司 Preparation method and application of high-tenacity foam material
CN114761486A (en) * 2020-11-10 2022-07-15 株式会社Lg化学 Styrene copolymer, thermoplastic resin composition, and method for producing styrene copolymer and thermoplastic resin composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040011905A (en) * 2002-07-31 2004-02-11 주식회사 엘지화학 Method for preparing rubber-copolymer and abs resin comprising thereof
KR100441799B1 (en) * 2001-10-25 2004-07-27 주식회사 엘지화학 Methods of manufacturing rubber-toughened thermoplastic resin
KR20050038453A (en) * 2003-10-22 2005-04-27 주식회사 엘지화학 Rubber-copolymer and method for preparing thereof
KR20120004261A (en) * 2010-07-06 2012-01-12 주식회사 엘지화학 Method of rubbery polymer and rubber reinforced thermoplastics using the same
KR20130087664A (en) * 2012-01-30 2013-08-07 주식회사 엘지화학 Method of preparing rubbery polymer latex and method of abs graft copolymer comprising the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100441799B1 (en) * 2001-10-25 2004-07-27 주식회사 엘지화학 Methods of manufacturing rubber-toughened thermoplastic resin
KR20040011905A (en) * 2002-07-31 2004-02-11 주식회사 엘지화학 Method for preparing rubber-copolymer and abs resin comprising thereof
KR20050038453A (en) * 2003-10-22 2005-04-27 주식회사 엘지화학 Rubber-copolymer and method for preparing thereof
KR20120004261A (en) * 2010-07-06 2012-01-12 주식회사 엘지화학 Method of rubbery polymer and rubber reinforced thermoplastics using the same
KR20130087664A (en) * 2012-01-30 2013-08-07 주식회사 엘지화학 Method of preparing rubbery polymer latex and method of abs graft copolymer comprising the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104945553A (en) * 2015-07-21 2015-09-30 江苏兆鋆新材料股份有限公司 Preparation method and application of high-tenacity foam material
CN114761486A (en) * 2020-11-10 2022-07-15 株式会社Lg化学 Styrene copolymer, thermoplastic resin composition, and method for producing styrene copolymer and thermoplastic resin composition

Similar Documents

Publication Publication Date Title
WO2016093616A1 (en) Method for preparing acrylonitrile-butadiene-styrene graft copolymer, and acrylonitrile-butadiene-styrene thermoplastic resin containing same
EP0684282B1 (en) Process for producing a maleimide-modified heat-resistant ABS resin
WO2016093649A1 (en) Method for preparing large-diameter diene-based rubber latex and acrylonitrile-butadiene-styrene graft copolymer including large-diameter diene-based rubber latex
WO2018084558A2 (en) Thermoplastic resin composition, method for preparing same, and molded product comprising same
WO2016052832A1 (en) Thermoplastic resin composition having excellent chemical resistance and transparency, method for preparing same, and molded product comprising same
WO2017039157A1 (en) Thermoplastic resin composition and preparation method therefor
WO2018174395A1 (en) Method for preparing asa-based graft copolymer, method for preparing thermoplastic resin composition comprising same, and method for manufacturing molded product
WO2012087056A2 (en) Graft monomer composition for thermoplastic transparent resin, composition for theremoplastic transparent resin using the same, and theremoplastic transparent resin having good transparency and color with low rubber amounts
WO2017116042A1 (en) Rubber modified vinyl-based graft copolymer, and thermoplastic resin composition containing same
WO2020122499A1 (en) Thermoplastic copolymer preparation method, thermoplastic copolymer prepared thereby, and thermoplastic resin composition comprising same
WO2015047026A1 (en) Rubber polymer, graft copolymer, preparation methods therefor, and impact resistant and heat resistant resin composition
WO2019103369A2 (en) Method for manufacturing graft copolymer powder
WO2016204485A1 (en) Thermoplastic resin, preparation method therefor, and thermoplastic resin composition containing same
KR101638240B1 (en) Rubbery polymer, graft copolymer, method of preparing the same, resistant impact and resistant heat resin composition
WO2015030415A1 (en) Transparent abs resin and transparent abs resin composition
WO2017105007A1 (en) Rubber modified vinyl-based graft copolymer, and thermoplastic resin composition containing same
WO2015016520A1 (en) Production method for rubber-reinforced thermoplastic resin
WO2013105737A1 (en) Thermal stabilizer-free thermoplastic resin composition and method for manufacturing same
WO2021060833A1 (en) Method for producing conjugated diene-based polymer
WO2016105171A1 (en) Method for preparing diene-based rubber latex and acrylonitrile-butadiene-styrene graft copolymer comprising same
WO2016043424A1 (en) Thermoplastic resin composition and thermoplastic resin molded article prepared therefrom
JPS63156847A (en) Delustered thermoplastic resin composition
WO2014178668A1 (en) Rubber polymer and method for manufacturing same
WO2021040269A1 (en) Thermoplastic resin composition comprising (meth)acrylate graft copolymer, and production method therefor
WO2013073800A1 (en) Method for manufacturing rubber polymer and rubber-reinforced graft copolymer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14848952

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14893889

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14848952

Country of ref document: EP

Kind code of ref document: A1