WO2016043424A1 - Thermoplastic resin composition and thermoplastic resin molded article prepared therefrom - Google Patents

Thermoplastic resin composition and thermoplastic resin molded article prepared therefrom Download PDF

Info

Publication number
WO2016043424A1
WO2016043424A1 PCT/KR2015/007696 KR2015007696W WO2016043424A1 WO 2016043424 A1 WO2016043424 A1 WO 2016043424A1 KR 2015007696 W KR2015007696 W KR 2015007696W WO 2016043424 A1 WO2016043424 A1 WO 2016043424A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
thermoplastic resin
compound
copolymer
resin composition
Prior art date
Application number
PCT/KR2015/007696
Other languages
French (fr)
Korean (ko)
Inventor
유근훈
최정수
이원석
장석구
이루다
박상후
김호훈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP15826125.5A priority Critical patent/EP3037474B1/en
Priority to CN201580001790.8A priority patent/CN105612214B/en
Priority to US14/911,455 priority patent/US9834645B2/en
Priority claimed from KR1020150104270A external-priority patent/KR101644752B1/en
Publication of WO2016043424A1 publication Critical patent/WO2016043424A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • C08F212/10Styrene with nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/12Copolymers of styrene with unsaturated nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers

Definitions

  • the present invention relates to a thermoplastic resin composition exhibiting high environmental stress crack resistance (ESCR) with excellent impact resistance and transparency, and a thermoplastic resin molded article prepared therefrom.
  • ESCR environmental stress crack resistance
  • ESCR environmental stress cracking resistance
  • PC polycarbonate
  • ABS acrylonitrile-butadiene-styrene
  • PMMA polymethyl methacrylate
  • PS polystyrene
  • SAN Styrene-acrylonitrile
  • Polyvinyl chloride-based (PVC) resin has excellent flame retardancy, transparency and chemical resistance, and is used for medical treatment such as needle hub, patient connector, and urine container. Mainly used for products.
  • polyvinyl chloride-based resins have a human stability problem due to the migration of the plasticizer because the use of a plasticizer is necessarily accompanied.
  • polycarbonate resin has excellent transparency and impact resistance, but low environmental stress crack resistance (ESCR, chemical resistance), there is a problem that the crack occurs due to the effect of residual molding stress when the cleaning agent contacts.
  • ESCR environmental stress crack resistance
  • ABS resin contains acrylonitrile compound, so it is excellent in environmental stress crack resistance (ESCR, chemical resistance), but it is opaque, so it is not applicable to medical products requiring transparency. There is.
  • polymethyl methacrylate (PMMA) resin, polystyrene (PS) resin and styrene-acrylonitrile (SAN) resin have excellent transparency, but have low environmental stress crack resistance (ESCR) to alcohol and impact strength. Not high enough
  • polystyrene resins and styrene-acrylonitrile resins have a low impact strength, and therefore, there is a limit to application to medical products requiring high environmental stress crack resistance (chemical resistance), impact resistance and transparency.
  • thermoplastic resin composition having excellent impact resistance and transparency, low flow index and high environmental stress crack resistance (ESCR).
  • Another object of the present invention is to provide a thermoplastic resin molded article prepared from the thermoplastic resin composition.
  • the difference in refractive index between the graft copolymer and the methyl methacrylate-styrene-acrylonitrile copolymer is less than 0.003
  • the graft copolymer is methyl methacrylate and acryl with respect to conjugated diene rubber latex.
  • Ronitrile and styrene are prepared by graft polymerization using a molecular weight modifier, wherein the methyl methacrylate, acrylonitrile and styrene are from 20: 2: 8 to It is used in a weight ratio of 40:10:15, wherein the molecular weight modifier is used in 0.05 to 0.4 parts by weight based on 100 parts by weight of the total of the conjugated diene rubber latex and the monomer grafted to the conjugated diene rubber latex It provides a thermoplastic resin composition.
  • a molecular weight modifier wherein the methyl methacrylate, acrylonitrile and styrene are from 20: 2: 8 to It is used in a weight ratio of 40:10:15, wherein the molecular weight modifier is used in 0.05 to 0.4 parts by weight based on 100 parts by weight of the total of the conjugated diene rubber latex and the monomer grafted to the conjugated diene rubber latex It provides a thermoplastic
  • thermoplastic resin molded article prepared from the thermoplastic resin composition is provided.
  • thermoplastic resin composition according to the present invention may exhibit high environmental stress crack resistance (ESCR) by having a low flow index while having excellent impact resistance and transparency.
  • ESCR environmental stress crack resistance
  • thermoplastic resin composition is useful as a material of a product, particularly a medical product, which requires excellent impact resistance and transparency and high environmental stress crack resistance (chemical resistance).
  • a graft copolymer in which a (meth) acrylic acid ester, a vinyl cyan compound and an aromatic vinyl compound are graft-polymerized to a conjugated diene rubber latex having a similar refractive index, and a (meth) acrylic acid ester-aromatic vinyl compound -Thermoplastic resin composition which uses a copolymer of vinyl cyanide compound, but optimizes the content and mixing ratio of each component, which has excellent impact resistance and transparency, low flow index and high environmental stress crack resistance (ESCR) Can be provided.
  • the thermoplastic resin composition according to an embodiment of the present invention is a graft copolymer (A) in which (meth) acrylic acid ester, vinyl cyan compound and aromatic vinyl compound are graft-polymerized on conjugated diene rubber latex; And a copolymer (B) of the (meth) acrylic acid ester-aromatic vinyl compound-vinyl cyan compound in a weight ratio of 35:65 to 70:30, wherein the graft copolymer (A) and the (meth) acrylic acid ester-
  • the difference in refractive index of the copolymer (B) of the aromatic vinyl compound-vinyl cyan compound is less than 0.003 and shows a flow index (MI) of 4.0 g / 10 min or less when the flow index is measured according to ASTM D1238.
  • the term "refractive index” refers to the absolute index of refraction of a material (eg, monomer or polymer), which is recognized as the ratio of the rate of electromagnetic radiation in free space to the rate of radiation in the material.
  • the radiation is visible light having a wavelength of 450 nm to 680 nm.
  • the refractive index can be measured using a known method, generally using an Abbe Refractometer.
  • the refractive index of the graft copolymer may be calculated according to the following equation 1 using the refractive index and the content of each polymer of the graft copolymer configuration:
  • Wti is the weight fraction (%) of each component (or polymer) in the graft copolymer
  • RIi is the refractive index of the graft copolymer-forming polymer.
  • the graft copolymer is a (meth) acrylic acid ester, a vinyl cyan compound and an aromatic vinyl compound graft polymerized on a conjugated diene rubber latex, specifically The core of the graft conjugated diene rubber latex; And a core-shell structure of a shell comprising a (meth) acrylic acid ester, an aromatic vinyl compound, and a vinyl cyan-based compound grafted onto the core.
  • the refractive index difference with the copolymer (B) of the (meth) acrylic acid ester-aromatic vinyl compound-vinyl cyan type compound used for manufacture of a thermoplastic resin composition is 0.003 It may be appropriately determined under the conditions to be less than.
  • the graft copolymer is 45% to 75% by weight of the conjugated diene rubber latex core; And 25% by weight to 55% by weight of a shell including a (meth) acrylic acid ester, a vinyl cyan compound, and an aromatic vinyl compound on the core.
  • the shell is 20 to 40 parts by weight, 2 to 10 parts by weight and 8 to 15 parts by weight of the (meth) acrylic acid ester, vinyl cyan compound, and aromatic vinyl compound, respectively, that is, 20: 2: 8 to 40:10 It may be included in a weight ratio of: 15. If the shell includes an acryl compound, a vinyl cyan compound and an aromatic vinyl compound in a weight ratio within the above range, especially when the vinyl cyan compound is included in the above ratio range, the flow index (MI) of the thermoplastic resin is As a result, the environmental stress crack resistance can be greatly improved.
  • MI flow index
  • the conjugated diene rubber latex core may have an average particle diameter of 2000 GPa to 5000 GPa, a gel content of 70% to 95% by weight, and a swelling index of 12 to 30.
  • the graft copolymer is similarly controlled by controlling the refractive index of the conjugated diene rubber latex core and a shell containing a (meth) acrylic acid ester, a vinyl cyan compound, and an aromatic vinyl compound described later. Can improve the transparency. Specifically, the difference in refractive index between the conjugated diene rubber latex core and the shell including the acrylic compound, the vinyl cyan compound, and the aromatic vinyl compound may be less than 0.003.
  • the conjugated diene rubber latex may include a conjugated diene-based compound homopolymer or a copolymer of a conjugated diene-based compound and an ethylenically unsaturated compound.
  • the compound may be one or more selected from the group consisting of 1,3-butadiene, 2-ethyl-1,3-butadiene, isoprene, chloroprene and 1,3-pentadiene.
  • the ethylenically unsaturated compound may include an ethylenically unsaturated nitrile compound, an ethylenically unsaturated acid compound or a mixture thereof, such as acrylonitrile, methacrylonitrile, ⁇ -chloronitrile, styrene, alkyl styrene, vinyl naphthalene It may be one or more selected from the group consisting of chloroethyl vinyl ether, (meth) acrylamide, dibutyl maleate, dibutyl fumarate or diethyl maleate.
  • the conjugated diene rubber latex may be one or more selected from the group consisting of butadiene homopolymer, isoprene homopolymer, butadiene-styrene copolymer, butadiene-acrylonitrile copolymer and isobutylene-isoprene copolymer.
  • the conjugated diene rubber latex may be a butadiene homopolymer.
  • (meth) acrylic acid ester is meant to include acrylic acid ester and methacrylic acid ester.
  • the (meth) acrylic acid ester may be one or more selected from the group consisting of acrylic acid alkyl esters and methacrylic acid alkyl esters.
  • the acrylic acid alkyl ester may be specifically one or more selected from the group consisting of methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, hexyl acrylate and 2-ethylhexyl acrylate, and more specifically, May be a metal acrylate.
  • the methacrylic acid alkyl ester is specifically one selected from the group consisting of methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, hexyl methacrylate and 2-ethylhexyl methacrylate It may be more than one, more specifically may be methyl methacrylate.
  • the vinyl cyan compound may be at least one selected from the group consisting of acrylonitrile, methacrylonitrile, and derivatives thereof, and specifically, may be acrylonitrile.
  • the aromatic vinyl compound is styrene, ⁇ -methylstyrene, vinyltoluene, alkyl styrene substituted with an alkyl group of C 1-3 (for example, o-methylstyrene, m-methylstyrene , p-methylstyrene, p-ethylstyrene, etc.) and styrene substituted with halogen may be one or more selected from the group consisting of, specifically, styrene.
  • the graft copolymer may have a weight average molecular weight (Mw) of 130,000 to 300,000 g / mol.
  • Mw weight average molecular weight
  • the weight average molecular weight of the polymer may be a polystyrene equivalent molecular weight, respectively, analyzed by gel permeation chromatography (GPC), but in the case of rubber, it is difficult to determine the exact weight average molecular weight. Accordingly, in the present invention, the weight average molecular weight of the graft copolymer can be calculated from the flow index of the copolymer, the rubber content and the content of the vinyl cyan compound-derived structural unit.
  • the graft copolymer may be a methyl methacrylate-acrylonitrile-butadiene-styrene copolymer (MABS) graft copolymerized with methyl methacrylate, acrylonitrile and styrene on butadiene rubber latex, More specifically, it may be MABS that satisfies the above-described weight average molecular weight and molecular weight distribution.
  • MABS methyl methacrylate-acrylonitrile-butadiene-styrene copolymer
  • the graft copolymer may be prepared by a graft polymerization method of a (meth) acrylic acid ester, a vinyl cyan compound, and an aromatic vinyl compound with respect to a conjugated diene rubber latex using a molecular weight regulator.
  • conjugated diene rubber latex (meth) acrylic acid ester, vinyl cyan compound, and aromatic vinyl compound are the same as described above.
  • the molecular weight modifier is for controlling the molecular weight of the graft copolymer is prepared, 0.05 to 0.4 based on the total weight of the conjugated diene rubber latex and the monomer grafted to the conjugated diene rubber latex 100 parts by weight It can be used in parts by weight. If the molecular weight modifier is used too little or excessively out of the above range, the molecular weight of the graft copolymer to be produced is too small and the chemical resistance is lowered or the molecular weight is too high, the moldability may be lowered.
  • the type of the molecular weight modifier is not particularly limited, but may be, for example, mercaptans.
  • Specific examples may be one or more selected from the group consisting of n-butyl mercaptan, n-octyl mercaptan, n-dodecyl mercaptan and t-dodecyl mercaptan.
  • the conjugated diene-based rubber latex core is not particularly limited and may be prepared by methods commonly known in the art. Specifically, one or more additives such as ion-exchanged water, an emulsifier, a polymerization initiator, an electrolyte, or a molecular weight regulator are selectively added to a conjugated diene compound, or a mixture of a conjugated diene compound and an ethylenically unsaturated compound, followed by emulsion polymerization.
  • additives such as ion-exchanged water, an emulsifier, a polymerization initiator, an electrolyte, or a molecular weight regulator are selectively added to a conjugated diene compound, or a mixture of a conjugated diene compound and an ethylenically unsaturated compound, followed by emulsion polymerization.
  • a small diameter conjugated diene-based rubber latex may be prepared by the emulsion polymerization (step 1), and then a fusion process may be performed to prepare a large diameter conjugated diene-based rubber latex core (step 2) (coagulation polymerization method, Agglomeration polymerization).
  • the conjugated diene-based rubber latex core is prepared through a direct polymerization method, from 70 parts by weight of ion-exchanged water to 100 parts by weight of the conjugated diene-based compound or a mixture of the conjugated diene-based compound and the ethylenically unsaturated compound 120 parts by weight, emulsifier 0.2 parts to 2.5 parts by weight, 0.1 parts to 1.5 parts by weight of the polymerization initiator, 0.5 parts to 2 parts by weight of the electrolyte, and 0.1 parts to 1 parts by weight of the molecular weight modifier are collectively added to the polymerization reactor. It may be carried out by reacting at °C to 90 °C. In this case, the conjugated diene-based compound and ethylenically unsaturated compound, and the molecular weight regulator may be the same material or included as described above.
  • the polymerization initiator is not particularly limited, but water-soluble persulfate-based polymerization initiators such as potassium persulfate, sodium persulfate or ammonium persulfate, hydrogen peroxide, cumene hydroperoxide, diisopropylbenzene hydroperoxide, tertiary Redox-based polymerization initiators containing peroxides such as butyl hydroperoxide and paramentane hydroperoxide as one component may be used alone or in combination.
  • water-soluble persulfate-based polymerization initiators such as potassium persulfate, sodium persulfate or ammonium persulfate, hydrogen peroxide, cumene hydroperoxide, diisopropylbenzene hydroperoxide, tertiary Redox-based polymerization initiators containing peroxides such as butyl hydroperoxide and paramentane hydroperoxide as one component may be used alone or in combination.
  • the emulsifier is not particularly limited and may be used, for example, using one or two or more selected from the group consisting of alkyl aryl sulfonates, alkali methyl alkyl sulfates, sulfonated alkyl esters, soaps of fatty acids and alkali salts of rosin acid. Can be.
  • the electrolyte is not particularly limited, but for example, potassium chloride (KCl), sodium chloride (NaCl), potassium bicarbonate (KHCO 3 ), sodium bicarbonate (NaHCO 3 ), potassium carbonate (K 2 CO 3 ), sodium carbonate (Na 2 CO 3 ) , Potassium hydrogen sulfite (KHSO 3 ), sodium hydrogen sulfite (NaHSO 3 ), potassium pyrophosphate (K 4 P 2 O 7 ), sodium pyrophosphate (Na 4 P 2 O 7 ), tripotassium phosphate (K 3 PO 4 ), one or two or more kinds selected from the group consisting of trisodium phosphate (Na 3 PO 4 ), dipotassium hydrogen phosphate (K 2 HPO 4 ) and disodium hydrogen phosphate (Na 2 HPO 4 ).
  • the conjugated diene rubber latex core prepared by the direct polymerization method may exhibit an average particle diameter of 2000 mm 3 to 5000 mm, a gel content of 70 wt% to 95 wt%, and a swelling index of 12 to 30 as described above.
  • the average particle diameter is measured by a dynamic laser light scattering method (Niser 370 HPL), and " ⁇ " generally means a unit of length used to express a wavelength of electromagnetic radiation. 1 kHz is equal to 0.1 nm.
  • the gel content (% by weight) and the swelling index were added to methanol prepared in the conjugated diene-based rubber latex, precipitated with sulfuric acid, washed, and dried in a vacuum oven at 60 ° C. for 24 hours to obtain rubber in a rubber mass.
  • 1 g of the slice (A) was cut into 100 g of toluene, stored in a dark room at room temperature for 48 hours, separated into a sol and a gel, and obtained by the following Equations 2 and 3 below.
  • conjugated diene-based rubber latex core when manufactured through a coagulation polymerization method, it may be carried out through steps 1 and 2 described later.
  • Step 1 is a step of performing an emulsion polymerization to prepare a small diameter conjugated diene-based rubber latex
  • the emulsion polymerization is not particularly limited and may be carried out by conventional methods known in the art. Specifically, 90 parts by weight to 130 parts by weight of ion-exchanged water, 1 part by weight to 4 parts by weight of an emulsifier, 0.1 part by weight of a polymerization initiator, in 100 parts by weight of a conjugated diene compound or a mixture of a conjugated diene compound and an ethylenically unsaturated compound To 0.6 parts by weight, 0.1 parts to 1.0 parts by weight of electrolyte, and 0.1 parts to 0.5 parts by weight of the molecular weight modifier are collectively added to the polymerization reactor and firstly reacted for 7 hours to 12 hours at a temperature range of 50 ° C to 65 ° C.
  • the method comprising the steps of adding 0.05 parts by weight to 1.2 parts by weight of the molecular weight modifier in the polymerization reactor in a batch and the temperature is raised to a temperature range of 55 °C to 70 °C to react for 5 hours to 15 hours.
  • the conjugated diene-based compound, ethylenically unsaturated compound, emulsifier, polymerization initiator, electrolyte and molecular weight modifier may be or include the material as described above.
  • the small-diameter conjugated diene-based rubber latex prepared by step 1 may exhibit an average particle diameter of 600 kPa to 1500 kPa, a gel content of 70 wt% to 95 wt%, and a swelling index of 12 to 30. At this time, the average particle diameter, the gel content and the swelling index can be obtained through the same method as described above.
  • the step 2 is a step of performing a fusion process to prepare a large diameter conjugated diene rubber latex from the prepared small diameter conjugated diene rubber latex
  • the fusion process is not particularly limited and commonly known in the art Although it can be carried out by the method, for example, slowly and continuously administered 2.0 parts by weight to 4.0 parts by weight of an aqueous acetic acid solution (concentration of 5 to 10%) for 1 hour while stirring in a reactor filled with 100 parts by weight of the small-diameter conjugated diene-based rubber latex.
  • an aqueous acetic acid solution concentration of 5 to 10%
  • the prepared large-diameter conjugated diene-based rubber latex may exhibit the average particle diameter, gel content, and swelling index as described above.
  • the shell containing the (meth) acrylic acid ester, the vinyl cyan compound, and the aromatic vinyl compound is an emulsifier for the (meth) acrylic acid ester, the vinyl cyan compound, and the aromatic vinyl compound to the prepared conjugated diene rubber latex core. It may be formed on the conjugated diene-based rubber latex core by selectively mixing with one or more additives, such as a polymerization initiator or a molecular weight regulator, and graft copolymerization.
  • additives such as a polymerization initiator or a molecular weight regulator, and graft copolymerization.
  • the polymerization reactor filled with 45% to 75% by weight of the conjugated diene-based rubber latex core 25% by weight of the monomer mixture constituting the shell containing (meth) acrylic acid ester, vinyl cyan-based compound and aromatic vinyl compound 55 parts by weight, 0.05 parts by weight to 0.4 parts by weight of the molecular weight regulator, 0.1 parts by weight to 0.5 parts by weight of the emulsifier, and 0.05 parts by weight to 0.3 parts by weight of the polymerization initiator to 50 parts by weight based on 100 parts by weight of the core and the monomer mixture as a whole.
  • the shell may be formed on the conjugated diene-based rubber latex core by copolymerizing for 3 hours to 6 hours in the temperature range of 80 °C.
  • the monomer mixture constituting the shell may include a (meth) acrylic acid ester, a vinyl cyan compound and an aromatic vinyl compound in a weight ratio of 20: 2: 8 to 40:10:15 as described above.
  • the molecular weight regulator in the above range, as described above it may exhibit excellent chemical resistance and may be excellent in moldability.
  • a process of coagulation, washing and drying may be further performed.
  • an antioxidant and a stabilizer may be added to a reactor in which polymerization is completed, and coagulation is performed by adding calcium chloride, magnesium sulfate aqueous solution or sulfuric acid aqueous solution at a temperature of 80 ° C. or higher. After dehydration and drying, the powdered graft copolymer can be obtained.
  • Additives such as (meth) acrylic acid esters, vinyl cyan-based compounds and aromatic vinyl compounds used to form the shells, molecular weight modifiers, emulsifiers and polymerization initiators may be or include the materials described above.
  • the above-mentioned substances may be administered in a batch, or a whole amount or a partial amount may be administered continuously (sequential). Moreover, such a batch administration and a continuous administration method may be mixed and used suitably.
  • the graft copolymer according to the present invention may have a solid coagulation content of less than 0.5% by weight.
  • the solid coagulant is an indicator of latex stability of the graft copolymer. When the solid coagulant is 0.5% by weight or more, the latex stability may be remarkably lowered to obtain desired characteristics.
  • the solidified solids may be calculated according to Equation 4 below.
  • the copolymer of the (meth) acrylic acid ester-aromatic vinyl compound-vinyl cyan compound according to an embodiment of the present invention is a copolymer of (meth) acrylic acid ester, an aromatic vinyl compound, and a vinyl cyan compound, but is not limited thereto. However, it may be a bulk polymer prepared by bulk polymerization.
  • the copolymer of the (meth) acrylic acid ester-aromatic vinyl compound-vinyl cyan-based compound is 55% to 70% by weight of (meth) acrylic acid ester; 20 to 30 weight percent of an aromatic vinyl compound; And it may be a bulk polymer containing 2 to 10% by weight of the vinyl cyan compound.
  • the copolymer of the (meth) acrylic acid ester-aromatic vinyl compound-vinyl cyan compound has a (meth) acrylic acid ester and an aromatic vinyl such that a difference in refractive index with the graft copolymer described above is less than 0.003 in order to increase the transparency of the thermoplastic resin composition. It may be desirable to appropriately adjust the weight ratio of the compound and the vinyl cyan compound. Specifically, the weight ratio of the (meth) acrylic acid ester, aromatic vinyl compound, and vinyl cyan compound may be 55: 20: 2 to 70:30:10. In this case, the (meth) acrylic acid ester, the aromatic vinyl compound, and the vinyl cyan-based compound may be included or included as described above.
  • the copolymer of the (meth) acrylic acid ester-aromatic vinyl compound-vinyl cyan-based compound may have a weight average molecular weight (Mw) of 130,000 g / mol to 300,000 g / mol.
  • Mw weight average molecular weight
  • the melt index of the thermoplastic resin composition may be reduced, thereby exhibiting better environmental stress crack resistance.
  • the weight average molecular weight of the copolymer may be a polystyrene reduced molecular weight analyzed by gel permeation chromatography (GPC).
  • the copolymer of the (meth) acrylic acid ester-aromatic vinyl compound-vinyl cyan-based compound may be methyl methacrylate-styrene-acrylonitrile copolymer (MSAN), and even more specifically, MSANs that meet the weight average molecular weight and molecular weight distribution conditions.
  • MSAN methyl methacrylate-styrene-acrylonitrile copolymer
  • the copolymer of the (meth) acrylic acid ester, vinyl cyan-based compound and aromatic vinyl compound is not particularly limited and can be prepared by methods commonly known in the art.
  • (meth) acrylic acid ester, an aromatic vinyl compound, and a vinyl cyan compound can be prepared by block polymerization.
  • the bulk polymerization is 100% by weight of the monomer mixture comprising 55% to 70% by weight of the (meth) acrylic acid ester, 20% to 30% by weight of the aromatic vinyl compound, and 2% to 10% by weight of the vinyl cyan compound.
  • the reaction medium may be a conventional organic solvent, specifically, an aromatic hydrocarbon compound such as ethylbenzene, benzene, toluene, xylene; Ketone compounds such as methyl ethyl ketone and acetone; aliphatic hydrocarbon compounds such as n-hexane; Halogenated hydrocarbon compounds such as chloroform; In addition, alicyclic hydrocarbon compounds such as cyclohexane may be used.
  • aromatic hydrocarbon compound such as ethylbenzene, benzene, toluene, xylene
  • Ketone compounds such as methyl ethyl ketone and acetone
  • aliphatic hydrocarbon compounds such as n-hexane
  • Halogenated hydrocarbon compounds such as chloroform
  • alicyclic hydrocarbon compounds such as cyclohexane may be used.
  • the bulk polymerization may be performed by further including additives such as a polymerization initiator and a molecular weight regulator in addition to the above-described materials such as the monomer mixture.
  • the additive may be a material as described above or included.
  • the bulk polymerization may be performed in a continuous processing machine consisting of a raw material input pump, a continuous stirring tank, a preheating tank, a volatilization tank, a polymer transfer pump, and an extrusion process.
  • the thermoplastic resin composition according to an embodiment of the present invention includes a copolymer of the graft copolymer and the (meth) acrylic acid ester-aromatic vinyl compound-vinyl cyan-based compound as described above, and constitutes each copolymer.
  • Each copolymer may be included in a combination such that the difference in refractive index between the two copolymers is controlled to less than 0.003 by controlling the type and content of the monomers. As such, when the refractive index difference between the two copolymers is less than 0.003 or the same refractive index, transparency of the thermoplastic resin composition may be greatly improved.
  • the refractive index of each of the graft copolymer and the copolymer of the (meth) acrylic acid ester-aromatic vinyl compound-vinyl cyan compound is not particularly limited, but the two copolymers are notable in terms of remarkable transparency improving effect of the thermoplastic resin composition.
  • Each may have a refractive index of 1.515 to 1.521.
  • thermoplastic resin composition according to an embodiment of the present invention is a 35:65 copolymer of the graft copolymer having a refractive index difference and the (meth) acrylic acid ester-aromatic vinyl compound-vinyl cyan compound. To 70:30, more specifically 55:45 to 60:40. As such, by including the two copolymers in an optimized content ratio, the thermoplastic resin composition may have an appropriate modulus, thereby exhibiting better impact strength and environmental stress crack resistance.
  • thermoplastic resin composition according to an embodiment of the present invention is 20 wt% to 35 wt%, more specifically 25 wt% of the conjugated diene rubber latex included in the graft copolymer, based on the total weight of the thermoplastic resin composition. % To 35% by weight.
  • the thermoplastic resin composition may exhibit a significantly low flow index, and as a result it may exhibit improved environmental stress crack resistance.
  • the refractive index of the monomer mixture affects the transparency of the thermoplastic resin composition, where the refractive index may be controlled by the amount of the monomer used and the mixing ratio.
  • the refractive index of butadiene forming the rubber core of the graft copolymer is about 1.518. Accordingly, in order for the thermoplastic resin composition including the same to exhibit excellent transparency, it is preferable to adjust the refractive index of the entire component of the shell grafted to the polybutadiene rubber core to a similar degree.
  • the refractive index of each component constituting the shell is specifically about 1.49 methyl methacrylate, about 1.59 styrene and about 1.518 acrylonitrile.
  • thermoplastic resin composition it is preferable to improve the transparency of the thermoplastic resin composition by adjusting the refractive index of the MSAN copolymer mixed with the graft copolymer to be almost similar to the refractive index of the graft copolymer.
  • the content of the core rubber included in the thermoplastic resin composition affects the modulus of the thermoplastic resin composition. If the rubber content is too low, the modulus may increase to reduce the ESCR property. If the rubber content is too high, the resin composition There is a fear that the workability of the deterioration.
  • the thermoplastic resin composition may more specifically include a graft copolymer in which methyl methacrylate, acrylonitrile, and styrene are grafted to conjugated diene rubber latex; And methyl methacrylate-styrene-acrylonitrile copolymer in a weight ratio of 35:65 to 70:30, wherein the conjugated diene-based rubber latex is included in an amount of 20% to 35% by weight based on the total weight of the composition,
  • the difference in refractive index between the graft copolymer and the methyl methacrylate-styrene-acrylonitrile copolymer may be less than 0.003.
  • the graft copolymer is prepared by graft polymerization of methyl methacrylate, acrylonitrile and styrene with a conjugated diene rubber latex using a molecular weight modifier, wherein the methyl methacrylate, acrylonitrile and Styrene is included in a weight ratio of 20: 2: 8 to 40:10:15, and the molecular weight modifier is 0.05 weight part based on 100 parts by weight of the total amount of monomers grafted to the conjugated diene rubber latex and the conjugated diene rubber latex. It may be included in parts to 0.4 parts by weight.
  • thermoplastic resin composition according to the present invention may further include one or more additives such as lubricants, antioxidants and ultraviolet stabilizers in addition to the copolymer.
  • the lubricant is not particularly limited, but may be, for example, ethylene bis stearamide, polyethylene oxide wax, magnesium stearate, or a mixture thereof.
  • the amount of the lubricant may be 0.1 part by weight to 5 parts by weight based on 100 parts by weight of the thermoplastic resin composition. In particular, it may be 0.5 parts by weight to 2 parts by weight.
  • the antioxidant is not particularly limited, but may be, for example, a phenolic antioxidant or a phosphate antioxidant, specifically, stearyl- ⁇ - (3,5-di-t-butyl-4-hydroxyphenyl) prop Stearyl- ⁇ - (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, and the like.
  • the amount may be 0.5 part by weight to 2 parts by weight based on 100 parts by weight of the thermoplastic resin composition.
  • the UV stabilizer is not particularly limited and may be one commonly used in the art, and specifically 2 (2'-hydroxy-3 ', 5'-di-t-butylphenyl) -5-chloro benzotriazole [2 (2'-hydroxy-3 ', 5'-di-tert-butylphenyl) -5-chloro benzotiazole].
  • the amount used may be 0.05 part by weight to 3 parts by weight with respect to 100 parts by weight of the thermoplastic resin composition, and specifically 0.2 to 1 part by weight.
  • thermoplastic resin composition according to an embodiment of the present invention having the configuration as described above exhibits high environmental stress cracking resistance (ESCR) with a low flow index with excellent impact resistance and transparency.
  • ESCR environmental stress cracking resistance
  • the thermoplastic resin composition has a haze of 3.5% or less after storage for 24 hours at 23 ° C. measured according to the method A of DIN 75201, and is manufactured in pellet form, followed by injection at 230 ° C. It is molded to produce a 1/4 "thick specimen, and the impact strength measured according to ASTM D256 (1/4", notched at 23 °C, kgfcm / cm 2 ) 20 kgfcm / cm 2 ⁇ 30 may be kgf ⁇ cm / cm 2 .
  • thermoplastic resin composition is determined from a result of measuring the weight (g) of the resin melted for 10 minutes at a temperature of 220 ° C. and a 10 kg load according to ASTM D1238 after preparing the thermoplastic resin composition in pellet form.
  • Flow index (MI) may be less than 4.0 g / 10 min.
  • the flow index of the transparent MABS resin used for injection of electrical / electronic products is about 10 g / 10 min to 50 g / 10 min, and the flow index of the transparent MABS for extrusion used for sheets is 4.5. g / 10 min to 8 g / 10min.
  • the flow index exceeds 4.0g / 10min, the molecular weight is insufficient and the environmental stress uniformity of the thermoplastic resin is lowered.
  • the thermoplastic resin composition according to the present invention has a flow index of 4 g / 10 min or less, more specifically 3.5 g / 10 min or less, even more specifically 1 g / 10 min to 3 g / 10 min, and is excellent in high shear test. It can show environmental stress uniformity.
  • the flow index of the thermoplastic resin composition may be mainly determined by the content of the vinyl cyanide compound of the copolymer, the molecular weight of the copolymer, and the content of the conjugated diene-based latex, and particularly, the content of the conjugated diene-based latex in the thermoplastic resin composition is large. get affected.
  • the thermoplastic resin composition according to the exemplary embodiment of the present invention controls the content of the conjugated diene rubber latex to 20 wt% to 35 wt%, more specifically 25 wt% to 35 wt% based on the total weight of the composition.
  • thermoplastic resin composition may be further reduced by further controlling the content of the vinyl cyan compound and the molecular weight of the copolymer in each copolymer constituting the thermoplastic resin composition.
  • thermoplastic resin molded article prepared from the thermoplastic resin composition.
  • thermoplastic resin molded article prepared from the thermoplastic resin composition according to the present invention not only has excellent impact resistance and transparency, but also has high environmental stress crack resistance (chemical resistance), thereby providing excellent impact resistance, transparency and environmental stress crack resistance ( Chemistry), which may be useful in the manufacture of materials, in particular medical products.
  • MABS methyl methacrylate-acrylonitrile-butadiene-styrene copolymer
  • the obtained conjugated diene rubber latex had an average particle diameter of 1000 mm 3, a gel content of 90 wt%, and an swelling index of 18. At this time, the average particle diameter, the gel content and the swelling index were obtained through the above-described method.
  • the prepared large-diameter conjugated diene-based rubber latex core exhibited an average particle diameter of 3000 mm 3, a gel content of 90 wt%, and a swelling index of 17. At this time, the average particle diameter, the gel content and the swelling index were obtained through the above-described method.
  • 0.1 wt% of methyl methacrylate-acrylonitrile-butadiene-styrene copolymer was prepared. The parts by weight are shown based on 100 parts by weight of the total mixture of monomers constituting the conjugated diene-based rubber latex core and the shell, and the monomer mixtures constituting the shell are methyl methacrylate, styrene and acrylonitrile 32.68: 11.32 It mixes in the weight ratio of: 6.0.
  • the prepared methyl methacrylate-acrylonitrile-butadiene-styrene copolymer was coagulated with an aqueous calcium chloride solution, washed and dried to obtain a methyl methacrylate-acrylonitrile-butadiene-styrene graft copolymer in powder form. .
  • the polymer solution discharged from the reactor was heated in a preheating bath and volatilized unreacted monomer in a volatilization tank to obtain a methyl methacrylate-styrene-acrylonitrile copolymer, and the polymer was maintained at 210 ° C.
  • Methyl methacrylate-styrene-acrylonitrile copolymer in pellet form was prepared using a transfer pump extrusion machine.
  • the methyl methacrylate-acrylonitrile-butadiene-styrene copolymer and the methyl methacrylate-styrene-acrylonitrile copolymer were used in a weight ratio of 58:42.
  • Example 1 the methyl methacrylate-acrylonitrile-butadiene-styrene graft copolymer and the methyl methacrylate-styrene-acrylonitrile copolymer were obtained in an amount of 48:52 instead of 58:42.
  • a thermoplastic resin composition in a pellet form was obtained by the same method as Example 1 except for using the weight ratio.
  • thermoplastic resin composition in pellet form was obtained.
  • thermoplastic resin composition in pellet form was obtained.
  • thermoplastic resin composition in a pellet form was obtained in the same manner as in Example 1, except that 0.15 parts by weight of the total amount of the silmercaptan was divided into two parts of 0.3 parts by weight instead of 0.2 parts by weight.
  • thermoplastic resin composition was obtained.
  • Example 1 the methyl methacrylate-acrylonitrile-butadiene-styrene graft copolymer and the methyl methacrylate-styrene-acrylonitrile copolymer were substituted with a weight ratio of 34:66 instead of 58:42.
  • a thermoplastic resin composition in a pellet form was obtained by the same method as Example 1 except for using the weight ratio.
  • Example 1 the methyl methacrylate-acrylonitrile-butadiene-styrene graft copolymer and the methyl methacrylate-styrene-acrylonitrile copolymer were used instead of the weight ratio of 58:42.
  • a thermoplastic resin composition in a pellet form was obtained by the same method as Example 1 except for using the weight ratio.
  • Example 2 The same method as in Example 1 was repeated except that the total amount of t-dodecyl mercaptan used in Example 1 was 0.5 parts by weight so that the total amount of t-dodecyl mercaptan was 0.5 parts by weight instead of 0.2 parts by weight. Through the thermoplastic resin composition of the pellet form was obtained.
  • thermoplastic resin composition in the form of pellets.
  • Example 1 As the monomer mixture constituting the shell in Example 1) -c), a mixture of methyl methacrylate, styrene and acrylonitrile in a weight ratio of 35.66: 12.34: 2.0 was used, and the t-dode A thermoplastic resin composition in a pellet form was obtained in the same manner as in Example 1, except that 0.3 parts by weight of the total amount of the silmercaptan was used in two portions so as to be 0.6 parts by weight instead of 0.2 parts by weight.
  • Example 1 the total amount of t-dodecyl mercaptan used is divided into two portions so that the total amount of t-dodecyl mercaptan is 0.5 parts by weight, not 0.2 parts by weight, and 0.25 parts by weight is used.
  • the methacrylate-acrylonitrile-butadiene-styrene graft copolymer and the methylmethacrylate-styrene-acrylonitrile copolymer were used in a weight ratio of 30:70 instead of 58:42, except that Through the same method as in Example 1, a thermoplastic resin composition in a pellet form was obtained.
  • thermoplastic resin composition in the form of pellets was obtained through the same method as in Example 1.
  • Example 1 the methyl methacrylate-acrylonitrile-butadiene-styrene graft copolymer and the methyl methacrylate-styrene-acrylonitrile copolymer were obtained in an amount of 39:61 instead of 58:42.
  • a thermoplastic resin composition in a pellet form was obtained by the same method as Example 1 except for using the weight ratio.
  • the rubber content is weight% based on the total weight of the thermoplastic resin composition
  • the content of the molecular weight regulator 1) is 100 parts by weight of the total sum of the monomers grafted onto the conjugated diene rubber latex and the conjugated diene rubber latex.
  • Relative weight ratio, and the content of the molecular weight modifier 2) is relative weight ratio to 100 parts by weight total of the monomers forming the MSAN copolymer.
  • the refractive index of the graft copolymer was calculated according to the following Equation 1 using the refractive index and the content of each polymer of the graft copolymer composition, and the refractive index of the polymer constituting the copolymer was prepared with a specimen having a thickness of 40 ⁇ m, It was measured by irradiation of 450 nm light using an Abbe refractor. The results are shown in Table 2 below.
  • Wti is the weight fraction (%) of each component (or polymer) in the graft copolymer
  • RIi is the refractive index of the graft copolymer-forming polymer.
  • thermoplastic resin composition prepared in Examples 1 to 6 and Comparative Examples 1 to 8
  • impact strength, haze, Environmental stress crack resistance and flow index were measured, respectively, and the results are shown in Table 3 below.
  • Impact strength is produced by injection molding the pellets of the thermoplastic resin composition at 230 °C to a specimen 1/4 "thick, according to ASTM D256 (1/4", notched at 23 °C, kgfcm / cm 2 ) It was carried out by.
  • thermoplastic resin composition prepared in Examples 1 to 6 and Comparative Examples 1 to 8, the flow index (melt index) of each thermoplastic resin composition was measured.
  • the flow index measured the weight (g) of the resin melted for 10 minutes under pellets of each thermoplastic resin composition at a temperature of 220 ° C. and a 10 kg load according to ASTM D1238.
  • thermoplastic resin composition prepared in Examples 1 to 6 and Comparative Examples 1 to 8, the haze of each thermoplastic resin composition was measured.
  • the haze was injection molded pellets of the thermoplastic resin composition at 230 to prepare each specimen having a 1/4 "thickness, and measured after storage for 24 hours at room temperature (about 23 ° C) in accordance with the method A of DIN 75201. .
  • thermoplastic resins of Examples 1 to 6 according to the present invention are compared with the thermoplastic resins of Comparative Examples 1 to 8 without any bias in the characteristics of impact strength, flow index, transparency and environmental stress crack resistance. It was confirmed that the balance exhibits improved properties.
  • the flow index was significantly lower than that of Examples 1 to 5, indicating a slightly deteriorated processability, and high haze value compared to Examples 1 to 5 in terms of transparency. Indicated.
  • thermoplastic resins of Examples 1 to 6 prepared by mixing methyl methacrylate-acrylonitrile-butadiene-styrene graft copolymer (MABS) and methyl methacrylate-styrene-acrylonitrile copolymer (MSAN) within a ratio range according to the present invention.
  • MABS methyl methacrylate-acrylonitrile-butadiene-styrene graft copolymer
  • MSAN methyl methacrylate-styrene-acrylonitrile copolymer
  • thermoplastic resins of Comparative Examples 3 and 5 which do not satisfy the flow index conditions of the thermoplastic resin composition according to the present invention, and in which the molecular weight modifier is used in excess of the range of the present invention in the preparation of the MABS, have an environmental stress resistance. Cracking property fell.
  • thermoplasticity Resin greatly reduced transparency as the difference in refractive index between MABS and MSAN constituting the resin composition exceeded 0.003.
  • thermoplastic resin of Comparative Example 6 which does not satisfy the flow index conditions of the copolymers presented in the present invention and is out of the rubber content range and the molecular weight modifier content range in the manufacture of MABS, has an impact strength lowered, Stress cracking was significantly reduced.
  • the resin composition of Comparative Example 7 in which the mixing ratio condition of the monomer of MSAN does not satisfy the mixing ratio condition defined in the present invention has a large transparency as the difference in refractive index between MABS and MSAN constituting the resin composition exceeds 0.003. Degraded.
  • thermoplastic resin composition according to the present invention may be useful as a material of a material industry, in particular, a medical product, where impact strength, transparency, and environmental stress crack resistance (chemical resistance) are simultaneously required. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

The present invention provides a thermoplastic resin composition comprising, in a weight ratio of 35:65 to 70:30: a graft copolymer (A) in which (meth)acrylic ester, a vinyl cyanide compound and an aromatic vinyl compound are graft-polymerized to conjugated diene based rubber latex; and a copolymer (B) of a (meth)acrylic acid ester-aromatic vinyl compound-vinyl cyanide based compound, wherein in the event of irradiating light in a wavelength range of 450 nm to 680 nm, the refractive index difference between the graft copolymer (A) and the copolymer (B) of a (meth)acrylic acid ester-aromatic vinyl compound-vinyl cyanide based compound is less than 0.003, and when measuring the flow index according to ASTM D1238, the flow index is 4.0g/10 min or less. A thermoplastic resin molded article prepared from said thermoplastic resin composition exhibits high environmental stress cracking resistance (ESCR) as well as excellent impact resistance and transparency.

Description

열가소성 수지 조성물 및 이로부터 제조된 열가소성 수지 성형품Thermoplastic resin composition and thermoplastic resin molded article produced therefrom
관련출원과의 상호인용Citation with Related Applications
본 출원은 2014년 9월 16일자 한국특허출원 제2014-0122822호 및 2015년 7월 23일자 한국특허출원 제2015-0104270호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 2014-0122822 filed on September 16, 2014 and Korean Patent Application No. 2015-0104270 filed on July 23, 2015. The contents are included as part of this specification.
기술분야Technical Field
본 발명은 우수한 내충격성 및 투명성과 함께 높은 내환경응력균열성(ESCR)을 나타내는 열가소성 수지 조성물 및 이로부터 제조된 열가소성 수지 성형품에 관한 것이다.The present invention relates to a thermoplastic resin composition exhibiting high environmental stress crack resistance (ESCR) with excellent impact resistance and transparency, and a thermoplastic resin molded article prepared therefrom.
통상적으로 의료용 제품의 제조에 사용되는 소재에 대해 우수한 내충격성과 투명성, 그리고 알코올에 대한 저항성 및 오일에 대한 저항성 등의 우수한 내환경응력균열성(ESCR, 내화학성)이 요구된다. 이 같은 의료용 소재로서 주로 폴리염화비닐계(PVC) 수지, 폴리카보네이트(PC) 수지, 아크릴로니트릴-부타디엔-스티렌(ABS) 수지, 폴리메틸메타크릴레이트(PMMA) 수지, 폴리스티렌(PS) 수지, 스티렌-아크릴로니트릴(SAN) 수지 등이 사용되고 있다. In general, excellent environmental stress cracking resistance (ESCR, chemical resistance) such as excellent impact resistance and transparency, alcohol resistance and oil resistance to materials used in the manufacture of medical products is required. As such medical materials, polyvinyl chloride (PVC) resins, polycarbonate (PC) resins, acrylonitrile-butadiene-styrene (ABS) resins, polymethyl methacrylate (PMMA) resins, polystyrene (PS) resins, Styrene-acrylonitrile (SAN) resin etc. are used.
이중 폴리염화비닐계(PVC) 수지는 난연성이 뛰어나고, 투명성과 내화학성이 우수하여, Needle hub(주사기에서 바늘을 끼우는 구멍), Patient connector(연결체), Urine container(채뇨용 용기) 등의 의료용 제품에 주로 사용되고 있다. 그러나, 폴리염화비닐계 수지는 가소제 사용이 필수적으로 동반되기 때문에 가소제의 이동(migration)에 의한 인체 안정성 문제가 있다. Polyvinyl chloride-based (PVC) resin has excellent flame retardancy, transparency and chemical resistance, and is used for medical treatment such as needle hub, patient connector, and urine container. Mainly used for products. However, polyvinyl chloride-based resins have a human stability problem due to the migration of the plasticizer because the use of a plasticizer is necessarily accompanied.
또, 폴리카보네이트 수지는 투명성 및 내충격성은 우수하나 내환경응력균열성(ESCR, 내화학성)이 낮아 세척제 접촉 시 잔류 성형 스트레스의 영향으로 균열이 발생하는 문제가 있다. In addition, polycarbonate resin has excellent transparency and impact resistance, but low environmental stress crack resistance (ESCR, chemical resistance), there is a problem that the crack occurs due to the effect of residual molding stress when the cleaning agent contacts.
또, 아크릴로니트릴-부타디엔-스티렌(ABS) 수지는 아크릴로니트릴 화합물을 포함하고 있어 내환경응력균열성(ESCR, 내화학성)은 우수하지만, 불투명하기 때문에 투명성이 요구되는 의료용 제품에 적용하기에는 한계가 있다. In addition, acrylonitrile-butadiene-styrene (ABS) resin contains acrylonitrile compound, so it is excellent in environmental stress crack resistance (ESCR, chemical resistance), but it is opaque, so it is not applicable to medical products requiring transparency. There is.
또, 폴리메틸메타크릴레이트(PMMA) 수지, 폴리스티렌(PS) 수지 및 스티렌-아크릴로니트릴(SAN) 수지는 투명성은 우수하지만, 알코올에 대한 내환경응력균열성(ESCR)이 나쁘고, 충격강도가 충분히 높지 않다. , 또, 폴리스티렌 수지와 스티렌-아크릴로니트릴 수지는 낮은 충격강도를 가지고 있어 높은 내환경응력균열성(내화학), 내충격성 및 투명성이 요구되는 의료용 제품에는 적용에 한계가 있다. In addition, polymethyl methacrylate (PMMA) resin, polystyrene (PS) resin and styrene-acrylonitrile (SAN) resin have excellent transparency, but have low environmental stress crack resistance (ESCR) to alcohol and impact strength. Not high enough In addition, polystyrene resins and styrene-acrylonitrile resins have a low impact strength, and therefore, there is a limit to application to medical products requiring high environmental stress crack resistance (chemical resistance), impact resistance and transparency.
따라서, 우수한 내충격성 및 투명성과 함께 높은 내환경응력균열성(내화학성)을 갖는 수지의 개발이 필요한 실정이다. Therefore, there is a need for the development of a resin having high environmental stress crack resistance (chemical resistance) with excellent impact resistance and transparency.
본 발명의 목적은 우수한 내충격성 및 투명성과 함께, 낮은 유동지수를 가져 높은 내환경응력균열성(ESCR)을 나타내는 열가소성 수지 조성물을 제공하는 것이다. It is an object of the present invention to provide a thermoplastic resin composition having excellent impact resistance and transparency, low flow index and high environmental stress crack resistance (ESCR).
본 발명의 다른 목적은 상기의 열가소성 수지 조성물로부터 제조된 열가소성 수지 성형품을 제공하는 것이다.Another object of the present invention is to provide a thermoplastic resin molded article prepared from the thermoplastic resin composition.
상기 과제를 해결하기 위하여, 본 발명의 일 실시예에 따르면, 공액디엔계 고무 라텍스에 (메트)아크릴산 에스테르, 비닐 시안계 화합물 및 방향족 비닐 화합물이 그라프트 중합된 그라프트 공중합체(A); 및 (메트)아크릴산 에스테르-방향족 비닐 화합물-비닐 시안계 화합물의 공중합체(B)를 35:65 내지 70:30의 중량비로 포함하고, 450nm 내지 680nm 파장 영역의 빛 조사시, 상기 그라프트 중합체(A)와 (메트)아크릴산 에스테르-비닐 시안계 화합물-방향족 비닐 화합물의 공중합체(B)의 굴절율 차이가 0.003 미만이며, ASTM D1238에 따른 유동지수 측정시 4.0 g/10 min 이하의 유동지수를 나타내는 열가소성 수지 조성물을 제공한다.In order to solve the above problems, according to an embodiment of the present invention, a graft copolymer (A) in which (meth) acrylic acid ester, vinyl cyan compound and aromatic vinyl compound are graft-polymerized on conjugated diene rubber latex; And a copolymer (B) of (meth) acrylic acid ester-aromatic vinyl compound-vinyl cyan compound in a weight ratio of 35:65 to 70:30, and when the light is irradiated in the wavelength range of 450 nm to 680 nm, A) and a copolymer (B) of the (meth) acrylic acid ester-vinyl cyan compound-aromatic vinyl compound have a refractive index difference of less than 0.003, and exhibit a flow index of 4.0 g / 10 min or less when the flow index is measured according to ASTM D1238. It provides a thermoplastic resin composition.
또, 본 발명의 다른 일 실시예에 따르면, 공액디엔계 고무 라텍스에 대하여 메틸메타크릴레이트, 아크릴로니트릴 및 스티렌이 그라프트 중합된 그라프트 공중합체(MABS) 및 메틸메타크릴레이트-스티렌-아크릴로니트릴 공중합체(MSAN)를 35:65 내지 70:30의 중량비로 포함하고, 상기 공액디엔계 고무 라텍스를 조성물 총 중량에 대하여 20 중량% 내지 35 중량%로 포함하며, 450nm 내지 680nm 파장 영역의 빛 조사시, 상기 그라프트 공중합체와 메틸메타크릴레이트-스티렌-아크릴로니트릴 공중합체의 굴절율 차이가 0.003 미만이고, 상기 그라프트 공중합체는, 공액디엔계 고무 라텍스에 대하여 메틸메타크릴레이트, 아크릴로니트릴 및 스티렌을 분자량 조절제를 이용하여 그라프트 중합시켜 제조되며, 상기 메틸메타크릴레이트, 아크릴로니트릴 및 스티렌은 20:2:8 내지 40:10:15의 중량비로 사용되고, 상기 분자량 조절제는 공액디엔계 고무 라텍스 및 상기 공액디엔계 고무 라텍스에 그라프트되는 단량체의 총 합 100 중량부에 대하여 0.05 중량부 내지 0.4 중량부로 사용되는 것인 열가소성 수지 조성물을 제공한다.Further, according to another embodiment of the present invention, the graft copolymer (MABS) and methyl methacrylate-styrene-acryl grafted with methyl methacrylate, acrylonitrile and styrene with respect to conjugated diene rubber latex Ronitrile copolymer (MSAN) in a weight ratio of 35:65 to 70:30, and the conjugated diene-based rubber latex in an amount of 20% to 35% by weight based on the total weight of the composition, and in the 450nm to 680nm wavelength range Upon irradiation with light, the difference in refractive index between the graft copolymer and the methyl methacrylate-styrene-acrylonitrile copolymer is less than 0.003, and the graft copolymer is methyl methacrylate and acryl with respect to conjugated diene rubber latex. Ronitrile and styrene are prepared by graft polymerization using a molecular weight modifier, wherein the methyl methacrylate, acrylonitrile and styrene are from 20: 2: 8 to It is used in a weight ratio of 40:10:15, wherein the molecular weight modifier is used in 0.05 to 0.4 parts by weight based on 100 parts by weight of the total of the conjugated diene rubber latex and the monomer grafted to the conjugated diene rubber latex It provides a thermoplastic resin composition.
더 나아가, 본 발명의 또 다른 일 실시예에 따르면, 상기한 열가소성 수지 조성물로부터 제조된 열가소성 수지 성형품을 제공한다.Furthermore, according to another embodiment of the present invention, a thermoplastic resin molded article prepared from the thermoplastic resin composition is provided.
본 발명에 따른 열가소성 수지 조성물은 내충격성 및 투명성이 우수하면서도 낮은 유동지수를 가져 높은 내환경응력균열성(ESCR)을 나타낼 수 있다. The thermoplastic resin composition according to the present invention may exhibit high environmental stress crack resistance (ESCR) by having a low flow index while having excellent impact resistance and transparency.
따라서, 상기 열가소성 수지 조성물은 우수한 내충격성과 투명성 그리고 높은 내환경응력균열성(내화학성)이 요구되는 제품의 소재, 특히 의료용 제품의 소재로서 유용하다.Therefore, the thermoplastic resin composition is useful as a material of a product, particularly a medical product, which requires excellent impact resistance and transparency and high environmental stress crack resistance (chemical resistance).
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다. Hereinafter, the present invention will be described in more detail to aid in understanding the present invention.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. The terms or words used in this specification and claims are not to be construed as limiting in their usual or dictionary meanings, and the inventors may appropriately define the concept of terms in order to best explain their invention in the best way possible. It should be interpreted as meaning and concept corresponding to the technical idea of the present invention based on the principle that the present invention.
투명성이 낮은 아크릴로니트릴-부타디엔-스티렌 수지에 투명성을 부여하기 위하여 아크릴산 알킬 에스테르나 메타크릴산 알킬 에스테르 화합물을 도입하는 방법이 시행되고 있다. 그러나, 상기 방법은 도입되는 (메트)아크릴산 알킬 에스테르로 인해 내환경응력균열성이 저하되어, 의료용 제품 적용에 한계가 있다. (메트)아크릴산 알킬 에스테르를 아크릴로니트릴-부타디엔-스티렌 수지에 도입하여 의료용 제품에 용이하게 적용할 수 있는 특성을 갖도록 하기 위해서는, 최종 중합된 수지 내의 모듈러스(modulus)가 적절히 조절되어야 하며 이를 위해서는 혼합되는 각 성분의 비율 조절이 중요한 요소로 작용한다. In order to impart transparency to the acrylonitrile-butadiene-styrene resin having low transparency, a method of introducing an acrylic acid alkyl ester or methacrylic acid alkyl ester compound has been implemented. However, the method has a low environmental stress crack resistance due to the (meth) acrylic acid alkyl ester introduced, there is a limit to the application of medical products. In order to introduce (meth) acrylic acid alkyl esters into acrylonitrile-butadiene-styrene resins to have properties that can be easily applied to medical products, the modulus in the final polymerized resin must be properly controlled and mixed for this purpose. The control of the ratio of each ingredient is an important factor.
이에, 본 발명에서는 유사한 굴절율을 갖는, 공액디엔계 고무 라텍스에 (메트)아크릴산 에스테르, 비닐 시안계 화합물 및 방향족 비닐 화합물이 그라프트 중합된 그라프트 공중합체와, (메트)아크릴산 에스테르-방향족 비닐 화합물-비닐 시안계 화합물의 공중합체를 혼합 사용하되, 각 성분의 함량과 혼합비를 최적화함으로써, 우수한 내충격성 및 투명성과 함께, 낮은 유동지수를 가져 높은 내환경응력균열성(ESCR)을 나타내는 열가소성 수지 조성물을 제공할 수 있다.Accordingly, in the present invention, a graft copolymer in which a (meth) acrylic acid ester, a vinyl cyan compound and an aromatic vinyl compound are graft-polymerized to a conjugated diene rubber latex having a similar refractive index, and a (meth) acrylic acid ester-aromatic vinyl compound -Thermoplastic resin composition which uses a copolymer of vinyl cyanide compound, but optimizes the content and mixing ratio of each component, which has excellent impact resistance and transparency, low flow index and high environmental stress crack resistance (ESCR) Can be provided.
구체적으로, 본 발명의 일 실시예에 따른 상기 열가소성 수지 조성물은, 공액디엔계 고무 라텍스에 (메트)아크릴산 에스테르, 비닐 시안계 화합물 및 방향족 비닐 화합물이 그라프트 중합된 그라프트 공중합체(A); 및 (메트)아크릴산 에스테르-방향족 비닐 화합물-비닐 시안계 화합물의 공중합체(B)를 35:65 내지 70:30의 중량비로 포함하고, 상기 그라프트 공중합체(A)와 (메트)아크릴산 에스테르-방향족 비닐 화합물-비닐 시안계 화합물의 공중합체(B)의 굴절율 차이가 0.003 미만이며, ASTM D1238에 따른 유동지수 측정시 4.0 g/10 min 이하의 유동지수(MI)를 나타낸다. Specifically, the thermoplastic resin composition according to an embodiment of the present invention is a graft copolymer (A) in which (meth) acrylic acid ester, vinyl cyan compound and aromatic vinyl compound are graft-polymerized on conjugated diene rubber latex; And a copolymer (B) of the (meth) acrylic acid ester-aromatic vinyl compound-vinyl cyan compound in a weight ratio of 35:65 to 70:30, wherein the graft copolymer (A) and the (meth) acrylic acid ester- The difference in refractive index of the copolymer (B) of the aromatic vinyl compound-vinyl cyan compound is less than 0.003 and shows a flow index (MI) of 4.0 g / 10 min or less when the flow index is measured according to ASTM D1238.
본 발명에 있어서, "굴절율"이란 용어는 물질(예, 단량체 또는 중합체)의 절대 굴절율을 말하는 것으로, 상기 굴절율은 자유 공간에서의 전자기 복사선 속도 대 상기 물질 내에서의 복사선의 속도 비로서 인식되는데, 이때 상기 복사선은 파장이 450nm 내지 680nm 의 가시광이다. 굴절율은 공지된 방법, 즉 일반적으로 아베 굴절계(Abbe Refractometer)를 사용하여 측정할 수 있다.In the present invention, the term "refractive index" refers to the absolute index of refraction of a material (eg, monomer or polymer), which is recognized as the ratio of the rate of electromagnetic radiation in free space to the rate of radiation in the material. In this case, the radiation is visible light having a wavelength of 450 nm to 680 nm. The refractive index can be measured using a known method, generally using an Abbe Refractometer.
또, 그라프트 공중합체의 굴절율은 그라프트 공중합체 구성의 각 중합체의 굴절율 및 함량을 이용하여 하기 수학식 1에 따라 계산될 수 있다:In addition, the refractive index of the graft copolymer may be calculated according to the following equation 1 using the refractive index and the content of each polymer of the graft copolymer configuration:
[수학식 1] [Equation 1]
RI=∑ (Wti × RIi)RI = ∑ (Wti × RIi)
상기 수학식 1에서, Wti는 그라프트 공중합체에서 각 구성 성분(또는 중합체)의 중량분율(%)이고, RIi는 그라프트 공중합체 형성 중합체의 굴절율이다. In Formula 1, Wti is the weight fraction (%) of each component (or polymer) in the graft copolymer, and RIi is the refractive index of the graft copolymer-forming polymer.
이하, 본 발명을 보다 더 상세하게 설명한다. Hereinafter, the present invention will be described in more detail.
A) 그라프트 공중합체 A) Graft Copolymer
본 발명의 일 실시예에 따른 상기 열가소성 수지 조성물에 있어서, 상기 그라프트 공중합체는 공액디엔계 고무 라텍스에 (메트)아크릴산 에스테르, 비닐 시안계 화합물 및 방향족 비닐 화합물이 그라프트 중합된 것으로, 구체적으로는 그라프트공액디엔계 고무 라텍스의 코어; 및 상기 코어 상에 그라프트된 (메트)아크릴산 에스테르, 방향족 비닐 화합물 및 비닐 시안계 화합물을 포함하는 쉘의 코어-쉘 구조를 가질 수 있다.In the thermoplastic resin composition according to the embodiment of the present invention, the graft copolymer is a (meth) acrylic acid ester, a vinyl cyan compound and an aromatic vinyl compound graft polymerized on a conjugated diene rubber latex, specifically The core of the graft conjugated diene rubber latex; And a core-shell structure of a shell comprising a (meth) acrylic acid ester, an aromatic vinyl compound, and a vinyl cyan-based compound grafted onto the core.
상기한 그라프트 공중합체를 구성하는 단량체 화합물의 종류 및 함량은, 열가소성 수지 조성물의 제조에 사용되는 (메트)아크릴산 에스테르-방향족 비닐 화합물-비닐 시안계 화합물의 공중합체(B)와의 굴절율 차이가 0.003 미만이 되도록 하는 조건하에서 적절히 결정될 수 있다. 구체적으로, 상기 그라프트 공중합체는 공액디엔계 고무 라텍스 코어 45 중량% 내지 75 중량%; 및 상기 코어 상에 (메트)아크릴산 에스테르, 비닐 시안계 화합물 및 방향족 비닐 화합물을 포함하는 쉘 25 중량% 내지 55 중량%가 그라프트된 것일 수 있다. 이때, 상기 쉘은 (메트)아크릴산 에스테르, 비닐 시안계 화합물, 및 방향족 비닐 화합물을 각각 20 내지 40중량부, 2 내지 10중량부 및 8 내지 15중량부, 즉 20:2:8 내지 40:10:15의 중량비로 포함하는 것일 수 있다. 만약, 상기 쉘이 상기 범위 내의 중량비로 아크릴계 화합물, 비닐 시안계 화합물 및 방향족 비닐 화합물을 포함할 경우, 특히 비닐 시안계 화합물을 상기의 비율 범위 내로 포함할 경우, 열가소성 수지의 유동지수(MI)가 낮아지고, 그 결과로서 내환경응력균열성이 크게 향상될 수 있다. As for the kind and content of the monomer compound which comprises the said graft copolymer, the refractive index difference with the copolymer (B) of the (meth) acrylic acid ester-aromatic vinyl compound-vinyl cyan type compound used for manufacture of a thermoplastic resin composition is 0.003 It may be appropriately determined under the conditions to be less than. Specifically, the graft copolymer is 45% to 75% by weight of the conjugated diene rubber latex core; And 25% by weight to 55% by weight of a shell including a (meth) acrylic acid ester, a vinyl cyan compound, and an aromatic vinyl compound on the core. In this case, the shell is 20 to 40 parts by weight, 2 to 10 parts by weight and 8 to 15 parts by weight of the (meth) acrylic acid ester, vinyl cyan compound, and aromatic vinyl compound, respectively, that is, 20: 2: 8 to 40:10 It may be included in a weight ratio of: 15. If the shell includes an acryl compound, a vinyl cyan compound and an aromatic vinyl compound in a weight ratio within the above range, especially when the vinyl cyan compound is included in the above ratio range, the flow index (MI) of the thermoplastic resin is As a result, the environmental stress crack resistance can be greatly improved.
또, 상기 그라프트 공중합체에 있어서, 공액디엔계 고무 라텍스 코어는 2000 Å 내지 5000 Å 의 평균입경, 70 중량% 내지 95 중량%의 겔 함량 및 12 내지 30의 팽윤지수를 갖는 것일 수 있다.In addition, in the graft copolymer, the conjugated diene rubber latex core may have an average particle diameter of 2000 GPa to 5000 GPa, a gel content of 70% to 95% by weight, and a swelling index of 12 to 30.
또, 상기 그라프트 공중합체에 있어서, 상기 공액디엔계 고무 라텍스 코어와, 후술하는 (메트)아크릴산 에스테르, 비닐 시안계 화합물 및 방향족 비닐 화합물을 포함하는 쉘의 굴절율을 유사하게 제어함으로써 그라프트 공중합체의 투명성을 향상시킬 수 있다. 구체적으로, 상기 공액디엔계 고무 라텍스 코어와, 아크릴계 화합물, 비닐 시안계 화합물 및 방향족 비닐 화합물을 포함하는 쉘의 굴절율 차이는 0.003 미만일 수 있다. In the graft copolymer, the graft copolymer is similarly controlled by controlling the refractive index of the conjugated diene rubber latex core and a shell containing a (meth) acrylic acid ester, a vinyl cyan compound, and an aromatic vinyl compound described later. Can improve the transparency. Specifically, the difference in refractive index between the conjugated diene rubber latex core and the shell including the acrylic compound, the vinyl cyan compound, and the aromatic vinyl compound may be less than 0.003.
또, 상기 그라프트 공중합체에 있어서, 공액디엔계 고무 라텍스는 공액디엔계 화합물 단독 중합체를 포함하거나, 또는 공액디엔계 화합물과 에틸렌계 불포화 화합물의 공중합체를 포함하는 것일 수 있으며, 상기 공액디엔계 화합물은 1,3-부타디엔, 2-에틸-1,3-부타디엔, 이소프렌, 클로로프렌 및 1,3-펜타디엔으로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있다. 또한, 상기 에틸렌계 불포화 화합물은 에틸렌성 불포화 니트릴 화합물, 에틸렌성 불포화 산 화합물 또는 이들 혼합물을 포함할 수 있으며, 예컨대 아크릴로니트릴, 메타크릴로니트릴, α-클로로니트릴, 스티렌, 알킬 스티렌, 비닐 나프탈렌, 클로로 에틸 비닐 에테르, (메타)아크릴아미드, 말레인산 디부틸, 푸마르산 디부틸 또는 말레인산 디에틸 등으로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있다. In the graft copolymer, the conjugated diene rubber latex may include a conjugated diene-based compound homopolymer or a copolymer of a conjugated diene-based compound and an ethylenically unsaturated compound. The compound may be one or more selected from the group consisting of 1,3-butadiene, 2-ethyl-1,3-butadiene, isoprene, chloroprene and 1,3-pentadiene. In addition, the ethylenically unsaturated compound may include an ethylenically unsaturated nitrile compound, an ethylenically unsaturated acid compound or a mixture thereof, such as acrylonitrile, methacrylonitrile, α-chloronitrile, styrene, alkyl styrene, vinyl naphthalene It may be one or more selected from the group consisting of chloroethyl vinyl ether, (meth) acrylamide, dibutyl maleate, dibutyl fumarate or diethyl maleate.
보다 구체적으로, 상기 공액디엔계 고무 라텍스는 부타디엔 단독 중합체, 이소프렌 단독 중합체, 부타디엔-스티렌 공중합체, 부타디엔-아크릴로니트릴 공중합체 및 이소부틸렌-이소프렌 공중합체로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있다. 보다 더 구체적으로, 상기 공액디엔게 고무 라텍스는 부타디엔 단독 중합체일 수 있다.More specifically, the conjugated diene rubber latex may be one or more selected from the group consisting of butadiene homopolymer, isoprene homopolymer, butadiene-styrene copolymer, butadiene-acrylonitrile copolymer and isobutylene-isoprene copolymer. have. Even more specifically, the conjugated diene rubber latex may be a butadiene homopolymer.
또, 상기 그라프트 공중합체에 있어서, (메트)아크릴산 에스테르는 아크릴산 에스테르 및 메타아크릴산 에스테르를 포함하는 의미이다. In the graft copolymer, (meth) acrylic acid ester is meant to include acrylic acid ester and methacrylic acid ester.
구체적으로 상기 (메트)아크릴산 에스테르는 아크릴산 알킬 에스테르 및 메타크릴산 알킬 에스테르로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있다.Specifically, the (meth) acrylic acid ester may be one or more selected from the group consisting of acrylic acid alkyl esters and methacrylic acid alkyl esters.
또, 상기 아크릴산 알킬 에스테르는 구체적으로 메틸 아크릴레이트, 에틸 아크릴레이트, 프로필 아크릴레이트, 부틸 아크릴레이트, 헥실 아크릴레이트 및 2-에틸헥실 아크릴레이트로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있으며, 보다 구체적으로는 메탈 아크릴레이트일 수 있다. In addition, the acrylic acid alkyl ester may be specifically one or more selected from the group consisting of methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, hexyl acrylate and 2-ethylhexyl acrylate, and more specifically, May be a metal acrylate.
또, 상기 메타크릴산 알킬 에스테르는 구체적으로 메틸 메타크릴레이트, 에틸 메타크릴레이트, 프로필 메타크릴레이트, 부틸 메타크릴레이트, 헥실 메타크릴레이트 및 2-에틸헥실 메타크릴레이트로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있으며, 보다 구체적으로는 메틸 메타크릴레이트일 수 있다.In addition, the methacrylic acid alkyl ester is specifically one selected from the group consisting of methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, hexyl methacrylate and 2-ethylhexyl methacrylate It may be more than one, more specifically may be methyl methacrylate.
또, 상기 그라프트 공중합체에 있어서, 상기 비닐 시안계 화합물은 아크릴로니트릴, 메타크릴로니트릴 및 이들의 유도체로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있으며, 구체적으로는 아크릴로니트릴일 수 있다.In the graft copolymer, the vinyl cyan compound may be at least one selected from the group consisting of acrylonitrile, methacrylonitrile, and derivatives thereof, and specifically, may be acrylonitrile.
또, 상기 그라프트 공중합체에 있어서, 상기 방향족 비닐 화합물은 스티렌, α-메틸스티렌, 비닐톨루엔, C1-3의 알킬기로 치환된 알킬 스티렌(예를 들면, o-메틸스티렌, m-메틸스티렌, p-메틸스티렌, p-에틸스티렌 등) 및 할로겐으로 치환된 스티렌으로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있으며, 구체적으로는 스티렌일 수 있다. In addition, in the graft copolymer, the aromatic vinyl compound is styrene, α-methylstyrene, vinyltoluene, alkyl styrene substituted with an alkyl group of C 1-3 (for example, o-methylstyrene, m-methylstyrene , p-methylstyrene, p-ethylstyrene, etc.) and styrene substituted with halogen may be one or more selected from the group consisting of, specifically, styrene.
또, 상기 그라프트 공중합체는 중량평균 분자량(Mw)이 130,000 내지 300,000g/mol일 수 있다. 그라프트 공중합체가 상기한 범위의 중량평균 분자량을 가질 때, 열가소성 수지 조성물의 유동지수가 감소되어 보다 우수한 내환경응력균열성을 나타낼 수 있다. 통상 중합체의 중량평균 분자량은 각각 겔 투과형 크로마토그래피(GPC)로 분석되는 폴리스티렌 환산 분자량일 수 있으나, 고무의 경우 정확한 중량평균 분자량을 측정하기 어렵다. 이에 따라 본 발명에서는 공중합체의 유동지수, 고무 함량 및 비닐시안계 화합물 유래 구조단위의 함량으로부터 그라프트 공중합체의 중량평균 분자량을 계산할 수 있다. In addition, the graft copolymer may have a weight average molecular weight (Mw) of 130,000 to 300,000 g / mol. When the graft copolymer has a weight average molecular weight in the above-described range, the flow index of the thermoplastic resin composition may be reduced, thereby exhibiting better environmental stress crack resistance. Typically, the weight average molecular weight of the polymer may be a polystyrene equivalent molecular weight, respectively, analyzed by gel permeation chromatography (GPC), but in the case of rubber, it is difficult to determine the exact weight average molecular weight. Accordingly, in the present invention, the weight average molecular weight of the graft copolymer can be calculated from the flow index of the copolymer, the rubber content and the content of the vinyl cyan compound-derived structural unit.
보다 구체적으로, 상기 그라프트 공중합체는 부타디엔 고무 라텍스에 메틸메타크릴레이트, 아크릴로니트릴 및 스티렌이 그라프트 공중합된, 메틸메타크릴레이트-아크릴로니트릴-부타디엔-스티렌 공중합체(MABS)일 수 있으며, 보다 구체적으로는 상기한 중량평군 분자량 및 분자량 분포를 충족하는 MABS일 수 있다.More specifically, the graft copolymer may be a methyl methacrylate-acrylonitrile-butadiene-styrene copolymer (MABS) graft copolymerized with methyl methacrylate, acrylonitrile and styrene on butadiene rubber latex, More specifically, it may be MABS that satisfies the above-described weight average molecular weight and molecular weight distribution.
상기한 그라프트 공중합체는 구체적으로, 공액디엔계 고무 라텍스에 대하여 (메트)아크릴산 에스테르, 비닐 시안계 화합물, 방향족 비닐 화합물을 분자량 조절제를 이용하여 그라프트 중합시키는 제조방법에 의해 제조될 수 있다.Specifically, the graft copolymer may be prepared by a graft polymerization method of a (meth) acrylic acid ester, a vinyl cyan compound, and an aromatic vinyl compound with respect to a conjugated diene rubber latex using a molecular weight regulator.
이때, 공액디엔계 고무 라텍스, (메트)아크릴산 에스테르, 비닐 시안계 화합물, 방향족 비닐 화합물은 앞서 설명한 바와 동일하다.In this case, the conjugated diene rubber latex, (meth) acrylic acid ester, vinyl cyan compound, and aromatic vinyl compound are the same as described above.
또, 상기 분자량 조절제는 제조되는 그라프트 공중합체의 분자량을 제어하기 위한 것으로, 공액디엔계 고무 라텍스 및 상기 공액디엔계 고무 라텍스에 그라프트되는 단량체의 총 중량을 100중량부로 기준했을 때 0.05 내지 0.4중량부로 사용될 수 있다. 만약, 상기 분자량 조절제가 상기의 범위를 벗어나 너무 적게 사용되거나 과도하게 많이 사용될 경우에는 제조되는 그라프트 공중합체의 분자량이 너무 작아 내화학성이 저하되거나 분자량이 너무 높아 성형성이 저하될 수 있다. 상기 분자량 조절제의 종류는 특별히 제한되는 것은 아니나, 예컨대 머캅탄류일 수 있다. 구체적인 예로는, n-부틸머캅탄, n-옥틸머캅탄, n-도데실머캅탄 및 t-도데실머캅탄으로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있다. In addition, the molecular weight modifier is for controlling the molecular weight of the graft copolymer is prepared, 0.05 to 0.4 based on the total weight of the conjugated diene rubber latex and the monomer grafted to the conjugated diene rubber latex 100 parts by weight It can be used in parts by weight. If the molecular weight modifier is used too little or excessively out of the above range, the molecular weight of the graft copolymer to be produced is too small and the chemical resistance is lowered or the molecular weight is too high, the moldability may be lowered. The type of the molecular weight modifier is not particularly limited, but may be, for example, mercaptans. Specific examples may be one or more selected from the group consisting of n-butyl mercaptan, n-octyl mercaptan, n-dodecyl mercaptan and t-dodecyl mercaptan.
상기 공액디엔계 고무 라텍스 코어는 특별히 제한되지 않고 당업계에 통상적으로 공지된 방법에 의하여 제조할 수 있다. 구체적으로, 공액디엔계 화합물, 또는 공액디엔계 화합물과 에틸렌계 불포화 화합물의 혼합물에 이온 교환수, 유화제, 중합개시제, 전해질 또는 분자량 조절제 등과 같은 첨가제를 선택적으로 1종 이상 투입한 후, 유화중합하여 대구경의 공액디엔계 고무 라텍스를 제조하거나(직접 중합법, Direct polymerization); 또는 상기의 유화중합으로 소구경의 공액디엔계 고무 라텍스를 제조(단계 1)한 후, 융착공정을 수행하여 대구경의 공액디엔계 고무 라텍스 코어를 제조(단계 2)할 수도 있다(응집 중합법, Agglomeration polymerization).The conjugated diene-based rubber latex core is not particularly limited and may be prepared by methods commonly known in the art. Specifically, one or more additives such as ion-exchanged water, an emulsifier, a polymerization initiator, an electrolyte, or a molecular weight regulator are selectively added to a conjugated diene compound, or a mixture of a conjugated diene compound and an ethylenically unsaturated compound, followed by emulsion polymerization. Preparing large diameter conjugated diene-based rubber latex (direct polymerization); Alternatively, a small diameter conjugated diene-based rubber latex may be prepared by the emulsion polymerization (step 1), and then a fusion process may be performed to prepare a large diameter conjugated diene-based rubber latex core (step 2) (coagulation polymerization method, Agglomeration polymerization).
보다 구체적으로, 상기 공액디엔계 고무 라텍스 코어를 직접 중합법을 통하여 제조할 경우, 공액디엔계 화합물, 또는 공액디엔계 화합물과 에틸렌계 불포화 화합물의 혼합물 100 중량부에 대하여 이온 교환수 70 중량부 내지 120 중량부, 유화제 0.2 중량부 내지 2.5 중량부, 중합개시제 0.1 중량부 내지 1.5 중량부, 전해질 0.5 중량부 내지 2 중량부 및 분자량 조절제 0.1 중량부 내지 1 중량부를 일괄적으로 중합 반응기에 투입하고 50℃ 내지 90℃로 반응시켜 수행할 수 있다. 이때, 상기 공액디엔계 화합물 및 에틸렌계 불포화 화합물, 그리고 분자량 조절제는 전술한 바와 동일한 물질이거나 포함되는 것일 수 있다. More specifically, when the conjugated diene-based rubber latex core is prepared through a direct polymerization method, from 70 parts by weight of ion-exchanged water to 100 parts by weight of the conjugated diene-based compound or a mixture of the conjugated diene-based compound and the ethylenically unsaturated compound 120 parts by weight, emulsifier 0.2 parts to 2.5 parts by weight, 0.1 parts to 1.5 parts by weight of the polymerization initiator, 0.5 parts to 2 parts by weight of the electrolyte, and 0.1 parts to 1 parts by weight of the molecular weight modifier are collectively added to the polymerization reactor. It may be carried out by reacting at ℃ to 90 ℃. In this case, the conjugated diene-based compound and ethylenically unsaturated compound, and the molecular weight regulator may be the same material or included as described above.
또, 상기 중합개시제는 특별히 제한되는 것은 아니나, 예컨대 과황산 칼륨, 과황산 나트륨 또는 과황산 암모늄 등의 수용성 과황산염계 중합개시제, 과산화수소, 큐멘 하이드로퍼옥사이드, 디이소프로필벤젠 하이드로퍼옥사이드, 3급 부틸 하이드로퍼옥사이드, 파라멘탄 하이드로퍼옥사이드 등의 과산화물을 일 성분으로 포함하는 레독스계 중합개시제 등을 단독 또는 혼합하여 사용할 수 있다. The polymerization initiator is not particularly limited, but water-soluble persulfate-based polymerization initiators such as potassium persulfate, sodium persulfate or ammonium persulfate, hydrogen peroxide, cumene hydroperoxide, diisopropylbenzene hydroperoxide, tertiary Redox-based polymerization initiators containing peroxides such as butyl hydroperoxide and paramentane hydroperoxide as one component may be used alone or in combination.
상기 유화제는 특별히 제한되는 것은 아니나, 예컨대 알킬 아릴 설포네이트, 알카리 메틸 알킬 설페이트, 설포네이트화된 알킬 에스테르, 지방산의 비누 및 로진산의 알카리염으로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 혼합물을 사용할 수 있다. The emulsifier is not particularly limited and may be used, for example, using one or two or more selected from the group consisting of alkyl aryl sulfonates, alkali methyl alkyl sulfates, sulfonated alkyl esters, soaps of fatty acids and alkali salts of rosin acid. Can be.
상기 전해질은 특별히 제한되는 것은 아니나, 예컨대 염화칼륨(KCl), 염화나트륨(NaCl), 중탄산칼륨(KHCO3), 중탄산나트륨(NaHCO3), 탄산칼륨(K2CO3), 탄산나트륨(Na2CO3), 아황산수소칼륨(KHSO3), 아황산수소나트륨(NaHSO3), 피로인산사칼륨(K4P2O7), 피로인산사나트륨(Na4P2O7), 인산삼칼륨(K3PO4), 인산삼나트륨(Na3PO4), 인산수소이칼륨(K2HPO4), 인산수소이나트륨(Na2HPO4)으로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 혼합물을 사용할 수 있다. The electrolyte is not particularly limited, but for example, potassium chloride (KCl), sodium chloride (NaCl), potassium bicarbonate (KHCO 3 ), sodium bicarbonate (NaHCO 3 ), potassium carbonate (K 2 CO 3 ), sodium carbonate (Na 2 CO 3 ) , Potassium hydrogen sulfite (KHSO 3 ), sodium hydrogen sulfite (NaHSO 3 ), potassium pyrophosphate (K 4 P 2 O 7 ), sodium pyrophosphate (Na 4 P 2 O 7 ), tripotassium phosphate (K 3 PO 4 ), one or two or more kinds selected from the group consisting of trisodium phosphate (Na 3 PO 4 ), dipotassium hydrogen phosphate (K 2 HPO 4 ) and disodium hydrogen phosphate (Na 2 HPO 4 ).
상기 직접 중합법으로 제조된 공액디엔게 고무 라텍스 코어는 전술한 바와 같이 2000 Å 내지 5000 Å 의 평균입경, 70 중량% 내지 95 중량%의 겔 함량 및 12 내지 30의 팽윤지수를 나타낼 수 있다. 이때, 상기 평균입경은 다이나믹 레이저라이트 스케터링법(Laser Scattering Analyzer, Nicomp 370 HPL)으로 측정한 것으로, 상기 "Å"는 통상 전자기 방사선(electromagnetic radiation)의 파장을 표현하는데 사용하는 길이의 단위를 의미하는 것으로, 1Å 는 0.1 nm와 동일하다. The conjugated diene rubber latex core prepared by the direct polymerization method may exhibit an average particle diameter of 2000 mm 3 to 5000 mm, a gel content of 70 wt% to 95 wt%, and a swelling index of 12 to 30 as described above. In this case, the average particle diameter is measured by a dynamic laser light scattering method (Niser 370 HPL), and "Å" generally means a unit of length used to express a wavelength of electromagnetic radiation. 1 kHz is equal to 0.1 nm.
상기 겔 함량(gel content, 중량%) 및 팽윤지수는 상기 제조된 공액디엔계 고무 라텍스에 메탄올을 투입한 다음 황산으로 침전시키고 세척하여 60℃의 진공오븐에서 24시간 동안 건조한 후 얻어진 고무 덩어리에서 고무 절편(A) 1 g을 잘라 톨루엔 100 g에 넣고 48시간 동안 실온의 암실에서 보관한 후 졸과 겔로 분리하여 하기 수학식 2 및 수학식 3을 통하여 얻었다.The gel content (% by weight) and the swelling index were added to methanol prepared in the conjugated diene-based rubber latex, precipitated with sulfuric acid, washed, and dried in a vacuum oven at 60 ° C. for 24 hours to obtain rubber in a rubber mass. 1 g of the slice (A) was cut into 100 g of toluene, stored in a dark room at room temperature for 48 hours, separated into a sol and a gel, and obtained by the following Equations 2 and 3 below.
[수학식 2][Equation 2]
Figure PCTKR2015007696-appb-I000001
Figure PCTKR2015007696-appb-I000001
[수학식 3][Equation 3]
Figure PCTKR2015007696-appb-I000002
Figure PCTKR2015007696-appb-I000002
또한, 상기 공액디엔계 고무 라텍스 코어를 응집 중합법을 통하여 제조할 경우에는 후술하는 단계 1 및 단계 2를 통하여 수행할 수 있다. In addition, when the conjugated diene-based rubber latex core is manufactured through a coagulation polymerization method, it may be carried out through steps 1 and 2 described later.
상기 단계 1은 소구경의 공액디엔계 고무 라텍스를 제조하기 위한 유화중합을 수행하는 단계로, 상기 유화중합은 특별히 제한되지 않고 당업계에 공지된 통상적인 방법에 의하여 수행할 수 있다. 구체적으로, 공액디엔계 화합물, 또는 공액디엔계 화합물과 에틸렌계 불포화 화합물의 혼합물 100 중량부에, 이온 교환수 90 중량부 내지 130 중량부, 유화제 1 중량부 내지 4 중량부, 중합개시제 0.1 중량부 내지 0.6 중량부, 전해질 0.1 중량부 내지 1.0 중량부, 및 분자량 조절제 0.1 중량부 내지 0.5 중량부를 일괄적으로 중합 반응기에 투입하고 50℃ 내지 65℃ 온도범위에서 7시간 내지 12시간 동안 1차 반응시키고, 1차 반응 후 상기 분자량 조절제 0.05 중량부 내지 1.2 중량부를 추가로 상기 중합 반응기에 일괄적으로 투입하고 55℃ 내지 70℃의 온도범위로 승온하여 5시간 내지 15시간 동안 반응시키는 단계를 포함하는 방법에 의하여 수행할 수 있다. 이때, 공액디엔계 화합물, 에틸렌계 불포화 화합물, 유화제, 중합개시제, 전해질 및 분자량 조절제는 전술한 바와 같은 물질이거나 포함되는 것일 수 있다. Step 1 is a step of performing an emulsion polymerization to prepare a small diameter conjugated diene-based rubber latex, the emulsion polymerization is not particularly limited and may be carried out by conventional methods known in the art. Specifically, 90 parts by weight to 130 parts by weight of ion-exchanged water, 1 part by weight to 4 parts by weight of an emulsifier, 0.1 part by weight of a polymerization initiator, in 100 parts by weight of a conjugated diene compound or a mixture of a conjugated diene compound and an ethylenically unsaturated compound To 0.6 parts by weight, 0.1 parts to 1.0 parts by weight of electrolyte, and 0.1 parts to 0.5 parts by weight of the molecular weight modifier are collectively added to the polymerization reactor and firstly reacted for 7 hours to 12 hours at a temperature range of 50 ° C to 65 ° C. After the first reaction, the method comprising the steps of adding 0.05 parts by weight to 1.2 parts by weight of the molecular weight modifier in the polymerization reactor in a batch and the temperature is raised to a temperature range of 55 ℃ to 70 ℃ to react for 5 hours to 15 hours. Can be performed by. At this time, the conjugated diene-based compound, ethylenically unsaturated compound, emulsifier, polymerization initiator, electrolyte and molecular weight modifier may be or include the material as described above.
상기 단계 1에 의하여 제조된 소구경의 공액디엔계 고무 라텍스는 600 Å 내지 1500 Å 의 평균입경, 70 중량% 내지 95 중량%의 겔 함량 및 12 내지 30의 팽윤지수를 나타낼 수 있다. 이때, 평균입경, 겔 함량 및 팽윤지수는 전술한 바와 동일한 방법을 통하여 얻을 수 있다. The small-diameter conjugated diene-based rubber latex prepared by step 1 may exhibit an average particle diameter of 600 kPa to 1500 kPa, a gel content of 70 wt% to 95 wt%, and a swelling index of 12 to 30. At this time, the average particle diameter, the gel content and the swelling index can be obtained through the same method as described above.
상기 단계 2는 상기 제조된 소구경의 공액디엔계 고무 라텍스로부터 대구경의 공액디엔계 고무 라텍스를 제조하기 위하여 융착공정을 수행하는 단계로, 상기 융착공정은 특별히 제한되지 않고 당업계에 통상적으로 공지된 방법을 통하여 수행할 수 있으나, 예컨대 상기 소구경의 공액디엔계 고무 라텍스 100 중량부가 충진된 반응기에 교반하면서 아세트산 수용액(농도 5 내지 10%) 2.0 중량부 내지 4.0 중량부를 1시간 동안 서서히 연속적으로 투여하여 상기 소구경의 공액디엔계 고무 라텍스 입자를 비대화시킨 후 수산화칼륨을 투여하여 중화시키고 교반을 중지함으로써 수행할 수 있다. The step 2 is a step of performing a fusion process to prepare a large diameter conjugated diene rubber latex from the prepared small diameter conjugated diene rubber latex, the fusion process is not particularly limited and commonly known in the art Although it can be carried out by the method, for example, slowly and continuously administered 2.0 parts by weight to 4.0 parts by weight of an aqueous acetic acid solution (concentration of 5 to 10%) for 1 hour while stirring in a reactor filled with 100 parts by weight of the small-diameter conjugated diene-based rubber latex. By condensing the conjugated diene rubber latex particles of the small diameter can be carried out by neutralizing by administering potassium hydroxide and stopping the stirring.
제조된 대구경의 공액디엔계 고무 라텍스는 전술한 바와 같은 평균입경, 겔 함량 및 팽윤지수를 나타낼 수 있다. The prepared large-diameter conjugated diene-based rubber latex may exhibit the average particle diameter, gel content, and swelling index as described above.
다음으로, (메트)아크릴산 에스테르, 비닐 시안계 화합물 및 방향족 비닐 화합물을 포함하는 쉘은, 상기 제조된 공액디엔계 고무 라텍스 코어에 (메트)아크릴산 에스테르, 비닐 시안계 화합물, 방향족 비닐 화합물을, 유화제, 중합개시제 또는 분자량 조절제 등의 1종 이상의 첨가제와 선택적으로 혼합하고, 그라프트 공중합함으로써 상기 공액디엔계 고무 라텍스 코어 상에 형성될 수 있다. Next, the shell containing the (meth) acrylic acid ester, the vinyl cyan compound, and the aromatic vinyl compound is an emulsifier for the (meth) acrylic acid ester, the vinyl cyan compound, and the aromatic vinyl compound to the prepared conjugated diene rubber latex core. It may be formed on the conjugated diene-based rubber latex core by selectively mixing with one or more additives, such as a polymerization initiator or a molecular weight regulator, and graft copolymerization.
구체적으로, 상기 공액디엔계 고무 라텍스 코어 45 중량% 내지 75 중량%가 충진된 중합 반응기에 (메트)아크릴산 에스테르, 비닐 시안계 화합물 및 방향족 비닐 화합물을 포함하는 쉘을 구성하는 단량체 혼합물 25 중량% 내지 55 중량%와, 상기 코어와 단량체 혼합물 전체 100 중량부에 대하여 분자량 조절제 0.05 중량부 내지 0.4 중량부, 유화제 0.1 중량부 내지 0.5 중량부, 및 중합개시제 0.05 중량부 내지 0.3 중량부를 투입하고, 50℃ 내지 80℃의 온도범위에서 3시간 내지 6시간 동안 공중합하여 상기 공액디엔계 고무 라텍스 코어 상에 상기 쉘이 형성될 수 있다. 이때, 상기 쉘을 구성하는 단량체 혼합물은 전술한 바와 같이 (메트)아크릴산 에스테르, 비닐 시안계 화합물 및 방향족 비닐 화합물을 20:2:8 내지 40:10:15의 중량비로 포함할 수 있다. 또한, 상기 범위의 분자량 조절제를 사용함으로써 전술한 바와 같이 적절한 내화학성을 나타냄과 동시에 성형성이 우수할 수 있다. Specifically, in the polymerization reactor filled with 45% to 75% by weight of the conjugated diene-based rubber latex core 25% by weight of the monomer mixture constituting the shell containing (meth) acrylic acid ester, vinyl cyan-based compound and aromatic vinyl compound 55 parts by weight, 0.05 parts by weight to 0.4 parts by weight of the molecular weight regulator, 0.1 parts by weight to 0.5 parts by weight of the emulsifier, and 0.05 parts by weight to 0.3 parts by weight of the polymerization initiator to 50 parts by weight based on 100 parts by weight of the core and the monomer mixture as a whole. The shell may be formed on the conjugated diene-based rubber latex core by copolymerizing for 3 hours to 6 hours in the temperature range of 80 ℃. At this time, the monomer mixture constituting the shell may include a (meth) acrylic acid ester, a vinyl cyan compound and an aromatic vinyl compound in a weight ratio of 20: 2: 8 to 40:10:15 as described above. In addition, by using the molecular weight regulator in the above range, as described above, it may exhibit excellent chemical resistance and may be excellent in moldability.
상기 중합 공정 이후에 응집, 세척 및 건조하는 공정을 추가로 수행할 수 있으며, 예컨대 중합 완료된 반응기에 산화방지제 및 안정제를 투입하고 80℃ 이상의 온도에서 염화칼슘, 황산마그네슘 수용액 또는 황산 수용액 등을 첨가하여 응집시킨 후, 탈수 및 건조하여 분말상태의 그라프트 공중합체를 수득할 수 있다. After the polymerization process, a process of coagulation, washing and drying may be further performed. For example, an antioxidant and a stabilizer may be added to a reactor in which polymerization is completed, and coagulation is performed by adding calcium chloride, magnesium sulfate aqueous solution or sulfuric acid aqueous solution at a temperature of 80 ° C. or higher. After dehydration and drying, the powdered graft copolymer can be obtained.
상기 쉘을 형성시키기 위하여 사용한 (메트)아크릴산 에스테르, 비닐 시안계 화합물 및 방향족 비닐 화합물과 분자량 조절제, 유화제 및 중합개시제 등의 첨가제는 전술한 바와 같은 물질이거나 포함되는 것일 수 있다. Additives such as (meth) acrylic acid esters, vinyl cyan-based compounds and aromatic vinyl compounds used to form the shells, molecular weight modifiers, emulsifiers and polymerization initiators may be or include the materials described above.
또, 상기한 물질들은 일괄투여될 수도 있고, 전량 또는 일부량이 연속(순차)적으로 투여될 수도 있다. 또 이 같은 일괄 투여와 연속 투여 방법은 적절히 조절하여 혼합 사용될 수도 있다.In addition, the above-mentioned substances may be administered in a batch, or a whole amount or a partial amount may be administered continuously (sequential). Moreover, such a batch administration and a continuous administration method may be mixed and used suitably.
본 발명에 따른 상기 그라프트 공중합체는 고형 응고분이 0.5 중량% 미만일 수 있다. 상기 고형 응고분은 그라프트 공중합체의 라텍스 안정성을 나타내는 지표로, 상기 고형 응고분이 0.5 중량% 이상일 경우에는 상기 라텍스 안정성이 현저히 저하되어 목적하는 특성을 얻기 어려울 수 있다. The graft copolymer according to the present invention may have a solid coagulation content of less than 0.5% by weight. The solid coagulant is an indicator of latex stability of the graft copolymer. When the solid coagulant is 0.5% by weight or more, the latex stability may be remarkably lowered to obtain desired characteristics.
이때, 상기 고형 응고분은 하기의 수학식 4에 따라 계산될 수 있다.In this case, the solidified solids may be calculated according to Equation 4 below.
[수학식 4][Equation 4]
Figure PCTKR2015007696-appb-I000003
Figure PCTKR2015007696-appb-I000003
B) (메트)아크릴산 에스테르-방향족 비닐 화합물-비닐 시안계 화합물의 공중합체B) Copolymer of (meth) acrylic acid ester-aromatic vinyl compound-vinyl cyan compound
본 발명의 일 실시예에 따른 상기 (메트)아크릴산 에스테르-방향족 비닐 화합물-비닐 시안계 화합물의 공중합체는 (메트)아크릴산 에스테르, 방향족 비닐 화합물 및 비닐 시안계 화합물의 공중합체로서, 이에 제한되는 것은 아니나 괴상중합에 의하여 제조된 괴상중합체일 수 있다. The copolymer of the (meth) acrylic acid ester-aromatic vinyl compound-vinyl cyan compound according to an embodiment of the present invention is a copolymer of (meth) acrylic acid ester, an aromatic vinyl compound, and a vinyl cyan compound, but is not limited thereto. However, it may be a bulk polymer prepared by bulk polymerization.
구체적으로, 상기 (메트)아크릴산 에스테르-방향족 비닐 화합물-비닐 시안계 화합물의 공중합체는 (메트)아크릴산 에스테르 55 중량% 내지 70 중량%; 방향족 비닐 화합물 20 중량% 내지 30 중량%; 및 비닐 시안계 화합물 2 중량% 내지 10 중량%를 포함하는 괴상중합체일 수 있다. Specifically, the copolymer of the (meth) acrylic acid ester-aromatic vinyl compound-vinyl cyan-based compound is 55% to 70% by weight of (meth) acrylic acid ester; 20 to 30 weight percent of an aromatic vinyl compound; And it may be a bulk polymer containing 2 to 10% by weight of the vinyl cyan compound.
상기 (메트)아크릴산 에스테르-방향족 비닐 화합물-비닐 시안계 화합물의 공중합체는 열가소성 수지 조성물의 투명성을 높이기 위하여 전술한 그라프트 공중합체와의 굴절율 차이가 0.003 미만이 되도록 (메트)아크릴산 에스테르, 방향족 비닐 화합물 및 비닐 시안계 화합물의 중량비를 적절히 조절하는 것이 바람직할 수 있다. 구체적으로, 상기 (메트)아크릴산 에스테르, 방향족 비닐 화합물 및 비닐 시안계 화합물의 중량비는 55:20:2 내지 70:30:10일 수 있다. 이때, 상기 (메트)아크릴산 에스테르, 방향족 비닐 화합물 및 비닐 시안계 화합물은 전술한 바와 같은 물질이거나 포함되는 것일 수 있다.The copolymer of the (meth) acrylic acid ester-aromatic vinyl compound-vinyl cyan compound has a (meth) acrylic acid ester and an aromatic vinyl such that a difference in refractive index with the graft copolymer described above is less than 0.003 in order to increase the transparency of the thermoplastic resin composition. It may be desirable to appropriately adjust the weight ratio of the compound and the vinyl cyan compound. Specifically, the weight ratio of the (meth) acrylic acid ester, aromatic vinyl compound, and vinyl cyan compound may be 55: 20: 2 to 70:30:10. In this case, the (meth) acrylic acid ester, the aromatic vinyl compound, and the vinyl cyan-based compound may be included or included as described above.
또, 상기 (메트)아크릴산 에스테르-방향족 비닐 화합물-비닐 시안계 화합물의 공중합체는 중량평균 분자량(Mw)이 130,000 g/mol 내지 300,000 g/mol일 수 있다. 상기 (메트)아크릴산 에스테르-방향족 비닐 화합물-비닐 시안계 화합물의 공중합체가 상기한 범위의 중량평균 분자량을 가질 때, 열가소성 수지 조성물의 용융지수가 감소되어 보다 우수한 내환경응력균열성을 나타낼 수 있다. 본 발명에 있어서, 상기 공중합체의 중량평균 분자량은 겔 투과형 크로마토그래피(GPC)로 분석되는 폴리스티렌 환산 분자량일 수 있다.In addition, the copolymer of the (meth) acrylic acid ester-aromatic vinyl compound-vinyl cyan-based compound may have a weight average molecular weight (Mw) of 130,000 g / mol to 300,000 g / mol. When the copolymer of the (meth) acrylic acid ester-aromatic vinyl compound-vinyl cyan-based compound has a weight average molecular weight in the above range, the melt index of the thermoplastic resin composition may be reduced, thereby exhibiting better environmental stress crack resistance. . In the present invention, the weight average molecular weight of the copolymer may be a polystyrene reduced molecular weight analyzed by gel permeation chromatography (GPC).
보다 구체적으로, 상기 (메트)아크릴산 에스테르-방향족 비닐 화합물-비닐 시안계 화합물의 공중합체는 메틸메타크릴레이트-스티렌-아크릴로니트릴 공중합체(MSAN)일 수 있으며, 보다 더 구체적으로는, 상기한 중량평균 분자량 및 분자량 분포 조건을 충족하는 MSAN일 수 있다. More specifically, the copolymer of the (meth) acrylic acid ester-aromatic vinyl compound-vinyl cyan-based compound may be methyl methacrylate-styrene-acrylonitrile copolymer (MSAN), and even more specifically, MSANs that meet the weight average molecular weight and molecular weight distribution conditions.
한편, 상기 (메트)아크릴산 에스테르, 비닐 시안계 화합물 및 방향족 비닐 화합물의 공중합체는 특별히 제한되지 않고 당업계에 통상적으로 공지된 방법에 의하여 제조할 수 있다. 예컨대, (메트)아크릴산 에스테르, 방향족 비닐 화합물 및 비닐 시안계 화합물을 괴상중합하여 제조할 수 있다. 구체적으로, 상기 괴상중합은 (메트)아크릴산 에스테르 55 중량% 내지 70 중량%, 방향족 비닐 화합물 20 중량% 내지 30 중량%, 및 비닐 시안계 화합물 2 중량% 내지 10 중량%를 포함하는 단량체 혼합물 100 중량부에 대하여, 반응매질 26 중량부 내지 30 중량부 및 분자량 조절제 0.05 중량부 내지 0.5 중량부를 혼합하고 140℃ 내지 170℃의 온도범위를 유지하면서 2시간 내지 4시간 반응시켜 중합물을 제조한 후, 미반응된 물질 및 반응매질을 제거하는 단계에 의하여 수행할 수 있다. On the other hand, the copolymer of the (meth) acrylic acid ester, vinyl cyan-based compound and aromatic vinyl compound is not particularly limited and can be prepared by methods commonly known in the art. For example, (meth) acrylic acid ester, an aromatic vinyl compound, and a vinyl cyan compound can be prepared by block polymerization. Specifically, the bulk polymerization is 100% by weight of the monomer mixture comprising 55% to 70% by weight of the (meth) acrylic acid ester, 20% to 30% by weight of the aromatic vinyl compound, and 2% to 10% by weight of the vinyl cyan compound. Part by weight, 26 parts by weight to 30 parts by weight of the reaction medium and 0.05 parts by weight to 0.5 parts by weight of the molecular weight regulator were mixed and reacted for 2 to 4 hours while maintaining a temperature range of 140 ° C to 170 ° C. It can be carried out by removing the reacted material and reaction medium.
상기 반응매질은 통상의 유기용매가 사용될 수 있으며, 구체적으로 에틸벤젠, 벤젠, 톨루엔, 자일렌 등의 방향족 탄화수소계 화합물; 메틸 에틸 케톤, 아세톤 등의 케톤계 화합물; n-헥산 등의 지방족 탄화수소계 화합물; 클로로포름 등의 할로겐화 탄화수소계 화합물; 또 사이클로 헥산 등의 지환족 탄화수소계 화합물이 사용될 수 있다. The reaction medium may be a conventional organic solvent, specifically, an aromatic hydrocarbon compound such as ethylbenzene, benzene, toluene, xylene; Ketone compounds such as methyl ethyl ketone and acetone; aliphatic hydrocarbon compounds such as n-hexane; Halogenated hydrocarbon compounds such as chloroform; In addition, alicyclic hydrocarbon compounds such as cyclohexane may be used.
상기 괴상중합은 상기 기재한 단량체 혼합물 등의 물질 이외에 중합개시제 및 분자량 조절제와 같은 첨가제를 추가로 포함하여 수행할 수 있다. 상기 첨가제는 전술한 바와 같은 물질이거나 포함되는 것일 수 있다.The bulk polymerization may be performed by further including additives such as a polymerization initiator and a molecular weight regulator in addition to the above-described materials such as the monomer mixture. The additive may be a material as described above or included.
또한, 상기 괴상중합은 원료투입펌프, 연속교반조, 예비가열조, 휘발조, 폴리머 이송펌프 및 압출가공기로 구성되어 있는 연속공정기에서 수행하는 것일 수 있다. In addition, the bulk polymerization may be performed in a continuous processing machine consisting of a raw material input pump, a continuous stirring tank, a preheating tank, a volatilization tank, a polymer transfer pump, and an extrusion process.
본 발명의 일 실시예에 따른 상기 열가소성 수지 조성물은, 전술한 바와 같은 그라프트 공중합체와 (메트)아크릴산 에스테르-방향족 비닐 화합물-비닐 시안계 화합물의 공중합체를 포함하되, 각각의 공중합체를 구성하는 단량체의 종류 및 함량 제어를 통해 두 공중합체간 굴절율 차이가 0.003 미만이 되도록 하는 조합으로 각각의 공중합체를 포함할 수 있다. 이와 같이 두 공중합체간 굴절율 차이가 0.003 미만, 또는 동일한 굴절율을 가질 경우 열가소성 수지 조성물의 투명성을 크게 향상시킬 수 있다. 이때, 그라프트 공중합체와 (메트)아크릴산 에스테르-방향족 비닐 화합물-비닐 시안계 화합물의 공중합체 각각의 굴절율은 크게 한정되지 않으나, 열가소성 수지 조성물의 투명성 개선 효과의 현저함 면에서 상기 두 공중합체는 각각 1.515 내지 1.521의 굴절율을 갖는 것일 수 있다.The thermoplastic resin composition according to an embodiment of the present invention includes a copolymer of the graft copolymer and the (meth) acrylic acid ester-aromatic vinyl compound-vinyl cyan-based compound as described above, and constitutes each copolymer. Each copolymer may be included in a combination such that the difference in refractive index between the two copolymers is controlled to less than 0.003 by controlling the type and content of the monomers. As such, when the refractive index difference between the two copolymers is less than 0.003 or the same refractive index, transparency of the thermoplastic resin composition may be greatly improved. In this case, the refractive index of each of the graft copolymer and the copolymer of the (meth) acrylic acid ester-aromatic vinyl compound-vinyl cyan compound is not particularly limited, but the two copolymers are notable in terms of remarkable transparency improving effect of the thermoplastic resin composition. Each may have a refractive index of 1.515 to 1.521.
또, 본 발명의 일 실시예에 따른 상기 열가소성 수지 조성물은 전술한 바와 같은 굴절율 차이를 갖는 상기 그라프트 공중합체와 (메트)아크릴산 에스테르-방향족 비닐 화합물-비닐 시안계 화합물의 공중합체를 35:65 내지 70:30의 중량비, 보다 구체적으로는 55:45 내지 60:40의 중량비로 포함할 수 있다. 이와 같이 두 공중합체를 최적화된 함량비로 포함함으로써 열가소성 수지 조성물이 적절한 모듈러스를 가질 수 있어 보다 우수한 충격강도 및 내환경응력균열성을 나타낼 수 있다.In addition, the thermoplastic resin composition according to an embodiment of the present invention is a 35:65 copolymer of the graft copolymer having a refractive index difference and the (meth) acrylic acid ester-aromatic vinyl compound-vinyl cyan compound. To 70:30, more specifically 55:45 to 60:40. As such, by including the two copolymers in an optimized content ratio, the thermoplastic resin composition may have an appropriate modulus, thereby exhibiting better impact strength and environmental stress crack resistance.
또, 본 발명의 일 실시예에 따른 상기 열가소성 수지 조성물은 상기 그라프트 공중합체내 포함되는 상기 공액디엔계 고무 라텍스를 열가소성 수지 조성물 총 중량에 대하여 20 중량% 내지 35 중량%, 보다 구체적으로는 25 중량% 내지 35 중량%로 포함할 수 있다. 상기한 범위 내로 포함함으로써 열가소성 수지 조성물이 현저히 낮은 유동지수를 나타낼 수 있으며, 그 결과 개선된 내환경응력균열성을 나타낼 수 있다. In addition, the thermoplastic resin composition according to an embodiment of the present invention is 20 wt% to 35 wt%, more specifically 25 wt% of the conjugated diene rubber latex included in the graft copolymer, based on the total weight of the thermoplastic resin composition. % To 35% by weight. By including within the above range, the thermoplastic resin composition may exhibit a significantly low flow index, and as a result it may exhibit improved environmental stress crack resistance.
단량체 혼합물의 굴절율은 열가소성 수지 조성물의 투명성에 영향을 미치며, 이때 굴절율은 단량체의 사용량과 혼합비에 의해 조절될 수 있다. 구체적으로, 본 발명에 따른 열가소성 수지 조성물에 있어서, 그라프트 공중합체의 고무 코어를 형성하는 부타디엔의 굴절율은 약 1.518이다. 이에 따라, 이를 포함하는 열가소성 수지 조성물이 우수한 투명성을 나타내도록 하기 위해서는 폴리부타디엔 고무 코어에 그라프트 되는 쉘의 성분 전체의 굴절율을 이와 유사한 정도로 맞추는 것이 바람직하다. 일례로, 쉘을 구성하는 각 성분의 굴절율은 구체적으로 메틸메타크릴레이트가 약 1.49이고, 스티렌이 1.59, 아크릴로 니트릴이 약 1.518이다. 또, 상기 그라프트 공중합체와 혼합되는 MSAN 공중합체의 굴절율도 그라프트 공중합체의 굴절율과 거의 유사하도록 조절하는 것이 열가소성 수지 조성물의 투명성 향상에 바람직하다. 동시에 열가소성 수지 조성물의 ESCR성을 높이기 위해서는 아크릴로 니트릴 함량 및 분자량을 제어하는 것이 바람직하다. 또, 열가소성 수지 조성물 내 포함되는 코어 고무의 함량은 열가소성 수지 조성물의 모듈러스에 영향을 미치는데, 고무 함량이 지나치게 낮으면 모듈러스가 높아져 ESCR성이 저하될 우려가 있고, 고무 함량이 지나치게 높으면, 수지 조성물의 가공성이 저하될 우려가 있다.The refractive index of the monomer mixture affects the transparency of the thermoplastic resin composition, where the refractive index may be controlled by the amount of the monomer used and the mixing ratio. Specifically, in the thermoplastic resin composition according to the present invention, the refractive index of butadiene forming the rubber core of the graft copolymer is about 1.518. Accordingly, in order for the thermoplastic resin composition including the same to exhibit excellent transparency, it is preferable to adjust the refractive index of the entire component of the shell grafted to the polybutadiene rubber core to a similar degree. In one example, the refractive index of each component constituting the shell is specifically about 1.49 methyl methacrylate, about 1.59 styrene and about 1.518 acrylonitrile. In addition, it is preferable to improve the transparency of the thermoplastic resin composition by adjusting the refractive index of the MSAN copolymer mixed with the graft copolymer to be almost similar to the refractive index of the graft copolymer. At the same time, it is preferable to control the acrylonitrile content and the molecular weight in order to increase the ESCR property of the thermoplastic resin composition. In addition, the content of the core rubber included in the thermoplastic resin composition affects the modulus of the thermoplastic resin composition. If the rubber content is too low, the modulus may increase to reduce the ESCR property. If the rubber content is too high, the resin composition There is a fear that the workability of the deterioration.
이에 따라, 본 발명의 또 다른 일 실시예에 따른 열가소성 수지 조성물에 있어서, 공중합체의 굴절율 및 혼합비 제어, 그리고 그라프트 공중합체내 공액디엔계 고무 라텍스의 함량 제어에 따른 내충격성, 투명성 및 내환경응력균일성의 발란스 좋은 개선효과를 고려할 때, 상기 열가소성 수지 조성물은 보다 구체적으로 공액디엔계 고무 라텍스에 대하여 메틸메타크릴레이트, 아크릴로니트릴, 스티렌이 그라프트 중합된 그라프트 공중합체; 및 메틸메타크릴레이트-스티렌-아크릴로니트릴 공중합체를 35:65 내지 70:30의 중량비로 포함하고, 상기 공액디엔계 고무 라텍스를 조성물 총 중량에 대하여 20 중량% 내지 35 중량%로 포함하며, 상기 그라프트 공중합체와 메틸메타크릴레이트-스티렌-아크릴로니트릴 공중합체의 굴절율 차이가 0.003 미만인 것일 수 있다. 이때, 상기 그라프트 공중합체는, 공액디엔계 고무 라텍스에 대하여 메틸메타크릴레이트, 아크릴로니트릴 및 스티렌을 분자량 조절제를 이용하여 그라프트 중합시켜 제조된 것으로, 상기 메틸메타크릴레이트, 아크릴로니트릴 및 스티렌이 20:2:8 내지 40:10:15의 중량비로 포함되고, 상기 분자량 조절제는 공액디엔계 고무 라텍스 및 상기 공액디엔계 고무 라텍스에 그라프트되는 단량체의 총 합 100중량부에 대하여 0.05 중량부 내지 0.4 중량부로 포함될 수 있다.Accordingly, in the thermoplastic resin composition according to another embodiment of the present invention, impact resistance, transparency and environmental stress according to the control of the refractive index and the mixing ratio of the copolymer and the content of the conjugated diene rubber latex in the graft copolymer Considering good balance of uniformity, the thermoplastic resin composition may more specifically include a graft copolymer in which methyl methacrylate, acrylonitrile, and styrene are grafted to conjugated diene rubber latex; And methyl methacrylate-styrene-acrylonitrile copolymer in a weight ratio of 35:65 to 70:30, wherein the conjugated diene-based rubber latex is included in an amount of 20% to 35% by weight based on the total weight of the composition, The difference in refractive index between the graft copolymer and the methyl methacrylate-styrene-acrylonitrile copolymer may be less than 0.003. At this time, the graft copolymer is prepared by graft polymerization of methyl methacrylate, acrylonitrile and styrene with a conjugated diene rubber latex using a molecular weight modifier, wherein the methyl methacrylate, acrylonitrile and Styrene is included in a weight ratio of 20: 2: 8 to 40:10:15, and the molecular weight modifier is 0.05 weight part based on 100 parts by weight of the total amount of monomers grafted to the conjugated diene rubber latex and the conjugated diene rubber latex. It may be included in parts to 0.4 parts by weight.
한편, 본 발명에 따른 상기 열가소성 수지 조성물은 상기한 공중합체 이외에 활제, 산화방지제 및 자외선 안정제 등의 첨가제를 추가로 1종 이상 더 포함할 수 있다. On the other hand, the thermoplastic resin composition according to the present invention may further include one or more additives such as lubricants, antioxidants and ultraviolet stabilizers in addition to the copolymer.
상기 활제는 특별히 제한되는 것은 아니나, 예컨대 에틸렌 비스 스테아르아미드, 산화 폴리에틸렌 왁스, 마그네슘 스테아레이트, 또는 이들의 혼합물일 수 있으며, 그 사용량은 상기 열가소성 수지 조성물 100 중량부에 대하여 0.1 중량부 내지 5 중량부일 수 있으며, 구체적으로는 0.5 중량부 내지 2 중량부일 수 있다. The lubricant is not particularly limited, but may be, for example, ethylene bis stearamide, polyethylene oxide wax, magnesium stearate, or a mixture thereof. The amount of the lubricant may be 0.1 part by weight to 5 parts by weight based on 100 parts by weight of the thermoplastic resin composition. In particular, it may be 0.5 parts by weight to 2 parts by weight.
상기 산화방지제는 특별히 제한되는 것은 아니나, 예컨대 페놀계 산화방지제 또는 포스페이트계 산화방지제일 수 있으며, 구체적으로는 스테아릴-β-(3,5-디-t-부틸-4-히드록시페닐)프로피오네이트[stearyl-β-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate] 등일 수 있다. 그 사용량은 상기 열가소성 수지 조성물 100 중량부에 대하여 0.5 중량부 내지 2 중량부일 수 있다.The antioxidant is not particularly limited, but may be, for example, a phenolic antioxidant or a phosphate antioxidant, specifically, stearyl-β- (3,5-di-t-butyl-4-hydroxyphenyl) prop Stearyl-β- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, and the like. The amount may be 0.5 part by weight to 2 parts by weight based on 100 parts by weight of the thermoplastic resin composition.
상기 자외선 안정제는 특별히 제한되지 않고 당업계에 통상적으로 사용되는 것일 수 있으며, 구체적으로는 2(2'-히드록시-3',5'-디-t-부틸페닐)-5-클로로 벤조트리아졸[2(2'-hydroxy-3',5'-di-tert-butylphenyl)-5-chloro benzotiazole]일 수 있다. 그 사용량은 상기 열가소성 수지 조성물 100 중량부에 대하여 0.05 중량부 내지 3 중량부일 수 있으며, 구체적으로는 0.2 중량부 내지 1 중량부일 수 있다. The UV stabilizer is not particularly limited and may be one commonly used in the art, and specifically 2 (2'-hydroxy-3 ', 5'-di-t-butylphenyl) -5-chloro benzotriazole [2 (2'-hydroxy-3 ', 5'-di-tert-butylphenyl) -5-chloro benzotiazole]. The amount used may be 0.05 part by weight to 3 parts by weight with respect to 100 parts by weight of the thermoplastic resin composition, and specifically 0.2 to 1 part by weight.
상기한 바와 같은 구성을 갖는 본 발명의 일 실시예에 따른 상기 열가소성 수지 조성물은 우수한 내충격성 및 투명성과 함께, 낮은 유동지수를 가져 높은 내환경응력균열성(ESCR)을 나타낸다.The thermoplastic resin composition according to an embodiment of the present invention having the configuration as described above exhibits high environmental stress cracking resistance (ESCR) with a low flow index with excellent impact resistance and transparency.
구체적으로, 상기 열가소성 수지 조성물은 DIN 75201의 A법에 따라 측정한 23℃에서 24시간 보관 후의 헤이즈(Haze)가 3.5% 이하이며, 상기 열가소성 수지 조성물을 펠렛 형태로 제조한 후, 230℃에서 사출 성형하여 1/4" 두께의 시편으로 제조하고, ASTM D256(1/4", notched at 23℃, kgf·cm/cm2)에 의거하여 측정한 충격강도가 20 kgf·cm/cm2 내지 30 kgf·cm/cm2인 것일 수 있다.Specifically, the thermoplastic resin composition has a haze of 3.5% or less after storage for 24 hours at 23 ° C. measured according to the method A of DIN 75201, and is manufactured in pellet form, followed by injection at 230 ° C. It is molded to produce a 1/4 "thick specimen, and the impact strength measured according to ASTM D256 (1/4", notched at 23 ℃, kgfcm / cm 2 ) 20 kgfcm / cm 2 ~ 30 may be kgf · cm / cm 2 .
또, 상기 열가소성 수지 조성물은 상기 열가소성 수지 조성물을 펠렛 형태로 제조한 후, ASTM D1238에 준하여 220℃의 온도 및 10kg 하중 하에서 10분 동안 용융되어 나온 수지의 무게(g)을 측정한 결과로부터 결정되는 유동지수(MI)가 4.0 g/10 min 이하 인 것일 수 있다. In addition, the thermoplastic resin composition is determined from a result of measuring the weight (g) of the resin melted for 10 minutes at a temperature of 220 ° C. and a 10 kg load according to ASTM D1238 after preparing the thermoplastic resin composition in pellet form. Flow index (MI) may be less than 4.0 g / 10 min.
일반적으로 전기/전자 제품의 사출용으로 사용되는 투명 MABS 수지의 유동지수는 10 g/10 min 내지 50 g/10 min 수준이고, 시트(sheet)용으로 사용되는 압출용 투명 MABS의 유동지수는 4.5 g/10 min 내지 8 g/10min 수준이다. 또, 유동지수가 4.0g/10min을 초과할 경우 분자량이 미흡하여 열가소성 수지의 내환경응력균일성이 저하되게 된다. 본 발명에 따른 열가소성 수지 조성물은 유동 지수가 4 g/10min 이하, 보다 구체적으로는 3.5 g/10 min 이하, 보다 더 구체적으로는 1 g/10 min 내지 3 g/10min로, 고 전단력 시험시 우수한 내환경응력균일성을 나타낼 수 있다.Generally, the flow index of the transparent MABS resin used for injection of electrical / electronic products is about 10 g / 10 min to 50 g / 10 min, and the flow index of the transparent MABS for extrusion used for sheets is 4.5. g / 10 min to 8 g / 10min. In addition, when the flow index exceeds 4.0g / 10min, the molecular weight is insufficient and the environmental stress uniformity of the thermoplastic resin is lowered. The thermoplastic resin composition according to the present invention has a flow index of 4 g / 10 min or less, more specifically 3.5 g / 10 min or less, even more specifically 1 g / 10 min to 3 g / 10 min, and is excellent in high shear test. It can show environmental stress uniformity.
열가소성 수지 조성물의 유동지수는 주로 공중합체의 비닐 시안계 화합물의 함량, 공중합체의 분자량 및 공액 디엔계 라텍스의 함량에 의해 결정될 수 있으며, 이중에서도 특히 열가소성 수지 조성물내 공액 디엔계 라텍스의 함량에 크게 영향을 받는다. 전술한 바와 같이 본 발명의 일 실시예에 따른 열가소성 수지 조성물은 조성물 총 중량에 대하여 공액디엔계 고무 라텍스의 함량을 20 중량% 내지 35 중량%, 보다 구체적으로는 25 중량% 내지 35 중량%로 제어함으로써 통상의 사출성형용 고무 조성물에 비해 현저히 낮은, 4.0 g/10min 이하의 유동지수를 나타낼 수 있다. 더 나아가, 열가소성 수지 조성물을 구성하는 각각의 공중합체내 비닐 시안계 화합물의 함량 및 공중합체의 분자량을 더욱 제어함으로써 열가소성 수지 조성물의 유동지수를 더욱 감소시킬 수 있다. The flow index of the thermoplastic resin composition may be mainly determined by the content of the vinyl cyanide compound of the copolymer, the molecular weight of the copolymer, and the content of the conjugated diene-based latex, and particularly, the content of the conjugated diene-based latex in the thermoplastic resin composition is large. get affected. As described above, the thermoplastic resin composition according to the exemplary embodiment of the present invention controls the content of the conjugated diene rubber latex to 20 wt% to 35 wt%, more specifically 25 wt% to 35 wt% based on the total weight of the composition. As a result, a flow index of 4.0 g / 10 min or less, which is significantly lower than that of a conventional injection molding rubber composition, can be exhibited. Furthermore, the flow index of the thermoplastic resin composition may be further reduced by further controlling the content of the vinyl cyan compound and the molecular weight of the copolymer in each copolymer constituting the thermoplastic resin composition.
또, 본 발명의 또 다른 일 실시예에 따르면 상기한 열가소성 수지 조성물로부터 제조된 열가소성 수지 성형품을 제공한다. In addition, according to another embodiment of the present invention provides a thermoplastic resin molded article prepared from the thermoplastic resin composition.
본 발명에 따른 열가소성 수지 조성물로부터 제조된 열가소성 수지 성형품은 내충격성 및 투명성이 우수할 뿐 아니라 높은 내환경응력균열성(내화학성)을 가짐으로써, 우수한 내충격성, 투명성 및 내환경응력균열성(내화학성)이 동시에 요구되는 소재, 특히 의료용 제품의 제조에 유용할 수 있다. The thermoplastic resin molded article prepared from the thermoplastic resin composition according to the present invention not only has excellent impact resistance and transparency, but also has high environmental stress crack resistance (chemical resistance), thereby providing excellent impact resistance, transparency and environmental stress crack resistance ( Chemistry), which may be useful in the manufacture of materials, in particular medical products.
이하, 실시예 및 실험예에 의하여 본 발명을 더욱 상세하게 설명하고자 한다. 그러나, 하기 실시예 및 실험예는 본 발명을 예시하기 위한 것으로 이들 만으로 본 발명의 범위가 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail with reference to Examples and Experimental Examples. However, the following Examples and Experimental Examples are provided to illustrate the present invention, and the scope of the present invention is not limited only to these examples.
실시예 1Example 1
1) 메틸메타크릴레이트-아크릴로니트릴-부타디엔-스티렌 공중합체(MABS)의 제조1) Preparation of methyl methacrylate-acrylonitrile-butadiene-styrene copolymer (MABS)
a) 소구경의 공액디엔계 고무 라텍스 코어 제조a) Preparation of conjugated diene rubber latex core of small diameter
질소 치환된 중합 반응기(오토클레이브)에 이온 교환수 110 중량부, 1,3-부타디엔 100 중량부, 유화제로 로진산 칼륨염 1.2 중량부 및 올레인산 포타슘염 1.5 중량부, 전해질로 탄산나트륨 0.1 중량부 및 중탄산칼륨 0.5 중량부, 분자량 조절제로 t-도데실머캅탄(TDDM) 0.3 중량부를 일괄투여하고 반응온도를 55℃로 승온하고 중합개시제로 과황산칼륨 0.3 중량부를 일괄투여하여 반응을 개시하고 10시간 동안 반응시켰다. 그 후, 분자량 조절제로서 3급 도데실머캅탄 0.05 중량부를 추가로 투여하고 65℃로 승온하여 8시간 동안 추가 반응시킨 후 반응을 종료하였다. 얻어진 공액디엔계 고무 라텍스는 1000 Å 의 평균입경, 90 중량%의 겔 함량 및 18의 팽윤지수를 나타내었다. 이때, 평균입경, 겔 함량 및 팽윤지수는 전술한 방법을 통하여 얻었다.110 parts by weight of ion-exchanged water, 100 parts by weight of 1,3-butadiene, 1.2 parts by weight of potassium rosin salt and 1.5 parts by weight of potassium oleate salt, 0.1 part by weight of sodium carbonate as electrolyte in a nitrogen-substituted polymerization reactor (autoclave); 0.5 parts by weight of potassium bicarbonate, 0.3 parts by weight of t-dodecyl mercaptan (TDDM) as a molecular weight regulator, the reaction temperature was raised to 55 ℃ and 0.3 parts by weight of potassium persulfate as a polymerization initiator to initiate the reaction for 10 hours Reacted. Thereafter, 0.05 parts by weight of tertiary dodecyl mercaptan was further administered as a molecular weight regulator, and the reaction was terminated after further reacting for 8 hours by raising the temperature to 65 ° C. The obtained conjugated diene rubber latex had an average particle diameter of 1000 mm 3, a gel content of 90 wt%, and an swelling index of 18. At this time, the average particle diameter, the gel content and the swelling index were obtained through the above-described method.
b) 대구경의 공액디엔계 고무 라텍스 코어 제조b) Preparation of large diameter conjugated diene rubber latex cores
상기 a)에서 제조된 소구경의 공액디엔계 고무 라텍스로부터 대구경의 공액디엔계 고무 라텍스 코어를 제조하기 위하여, 상기 소수경의 공액디엔계 고무 라텍스 100 중량부를 반응조에 투입하고 10 rpm의 교반속도 및 30℃의 온도로 조절하고 7%의 아세트산 수용액 3.0 중량부를 1시간 동안 서서히 투입한 후 수산화칼륨 수용액으로 중화시키고 교반을 중단시켰다. 그 후 30분 동안 방치하여 대구경의 공액디엔계 고무 라텍스 코어를 수득하였다. 제조된 상기 대구경의 공액디엔계 고무 라텍스 코어는 3000 Å 의 평균입경, 90 중량%의 겔 함량 및 17의 팽윤지수를 나타내었다. 이때, 평균입경, 겔 함량 및 팽윤지수는 전술한 방법을 통하여 얻었다.In order to manufacture a large diameter conjugated diene rubber latex core from the small diameter conjugated diene rubber latex prepared in a), 100 parts by weight of the minor diameter conjugated diene rubber latex was added to a reaction tank, and a stirring speed of 10 rpm and 30 After controlling to a temperature of ℃ and 3.0 parts by weight of 7% acetic acid aqueous solution was slowly added for 1 hour, neutralized with aqueous potassium hydroxide solution and the stirring was stopped. Thereafter, it was left for 30 minutes to obtain a large diameter conjugated diene rubber latex core. The prepared large-diameter conjugated diene-based rubber latex core exhibited an average particle diameter of 3000 mm 3, a gel content of 90 wt%, and a swelling index of 17. At this time, the average particle diameter, the gel content and the swelling index were obtained through the above-described method.
c) 쉘의 제조c) manufacture of shells
내부 온도 50℃의 질소 치환된 중합 반응기에 상기 b)에서 제조된 대구경의 공액디엔계 고무 라텍스 코어 50 중량%에 이온 교환수 90 중량부, 알킬 아릴 설포네이트염(Dowfax™, Dow사제) 0.1 중량부, 쉘을 구성하는 단량체 혼합물 25 중량%, t-도데실머캅탄 0.1 중량부, 피로인산사나트륨 0.048 중량부, 덱스트로즈 0.012 중량부, 황화 제1철 0.001 중량부, 큐멘하이드로퍼옥사이드 0.04 중량부를 일괄투여하고 73℃까지 1시간에 걸쳐 승온시키면서 반응을 개시하였다. 그리고 반응조에 이온 교환수 70 중량부, 알킬 아릴 설포네이트염 0.2 중량부, 쉘을 구성하는 단량체 혼합물 25 중량%, t-도데실머캅탄 0.1 중량부, 피로인산나트륨 0.048 중량부, 덱스트로즈 0.012 중량부, 황화 제1철 0.001 중량부, 큐멘 하이드로퍼옥사이드 0.1 중량부의 혼합 유화 용액을 3시간 동안 연속투여한 후 76℃로 승온하여 1시간 동안 숙성시키고 반응을 종료시켜 중합 전환율 99% 및 고형 응고분은 0.1중량%의 메틸메타크릴레이트-아크릴로니트릴-부타디엔-스티렌 공중합체를 제조하였다. 여기에서, 중량부는 공액디엔계 고무 라텍스 코어 및 쉘을 구성하는 단량체 혼합물 전체 100 중량부를 기준으로 하여 나타낸 것이며, 상기 쉘을 구성하는 단량체 혼합물은 메틸메타크릴레이트, 스티렌 및 아크릴로니트릴을 32.68:11.32:6.0의 중량비로 혼합한 것이다. 제조된 상기 메틸메타크릴레이트-아크릴로니트릴-부타디엔-스티렌 공중합체를 염화칼슘 수용액으로 응고시키고 세척한 후 건조하여 분말 상태의 메틸메타크릴레이트-아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체를 수득하였다. 90 parts by weight of ion-exchanged water and 0.1 weight of alkyl aryl sulfonate salt (Dowfax ™, manufactured by Dow) in 50% by weight of the large diameter conjugated diene rubber latex core prepared in b) in a nitrogen-substituted polymerization reactor having an internal temperature of 50 ° C. Part, 25% by weight of the monomer mixture constituting the shell, 0.1 part by weight of t-dodecylmercaptan, 0.048 part by weight of sodium tetrapyrophosphate, 0.012 part by weight of dextrose, 0.001 part by weight of ferrous sulfide, 0.04 weight of cumene hydroperoxide The reaction was initiated while the batch was dosed and the temperature was raised to 73 ° C. over 1 hour. And 70 parts by weight of ion-exchanged water, 0.2 parts by weight of alkyl aryl sulfonate salt, 25% by weight of the monomer mixture constituting the shell, 0.1 part by weight of t-dodecylmercaptan, 0.048 part by weight of sodium pyrophosphate, and 0.012 weight of dextrose. Part 1, 0.001 parts by weight of ferrous sulfide and 0.1 parts by weight of cumene hydroperoxide were continuously administered for 3 hours, and then heated to 76 ° C. to mature for 1 hour, and the reaction was completed to complete 99% of polymerization conversion and solidified solids. 0.1 wt% of methyl methacrylate-acrylonitrile-butadiene-styrene copolymer was prepared. The parts by weight are shown based on 100 parts by weight of the total mixture of monomers constituting the conjugated diene-based rubber latex core and the shell, and the monomer mixtures constituting the shell are methyl methacrylate, styrene and acrylonitrile 32.68: 11.32 It mixes in the weight ratio of: 6.0. The prepared methyl methacrylate-acrylonitrile-butadiene-styrene copolymer was coagulated with an aqueous calcium chloride solution, washed and dried to obtain a methyl methacrylate-acrylonitrile-butadiene-styrene graft copolymer in powder form. .
2) 메틸메타크릴레이트-스티렌-아크릴로니트릴 공중합체(MSAN)의 제조2) Preparation of Methyl Methacrylate-Styrene-Acrylonitrile Copolymer (MSAN)
메틸메타크릴레이트 68.4 중량%, 스티렌 26.6 중량% 및 아크릴로니트릴 5 중량%를 포함하는 단량체 혼합물 100 중량부에 대하여, 톨루엔 30 중량부와 디-t-도데실 머캅탄 0.15 중량부를 첨가하여 원료 혼합물을 제조하고, 원료 혼합물을 평균 반응시간이 3시간이 되도록 반응조에 연속적으로 투입하였다. 이때, 반응온도는 148℃를 유지하였다. 반응조에서 배출된 중합액을 예비가열조에서 가열하고 휘발조에서 미반응 단량체를 휘발시켜 메틸메타크릴레이트-스티렌-아크릴로니트릴 공중합체를 얻고, 상기 공중합체의 온도가 210℃로 유지되도록하여 폴리머 이송펌프 압출 가공기를 이용하여 펠렛 형태의 메틸메타크릴레이트-스티렌-아크릴로니트릴 공중합체를 제조하였다. To 100 parts by weight of a monomer mixture comprising 68.4% by weight of methyl methacrylate, 26.6% by weight of styrene and 5% by weight of acrylonitrile, 30 parts by weight of toluene and 0.15 parts by weight of di-t-dodecyl mercaptan were added to the raw material mixture. To prepare a raw material mixture was continuously added to the reaction tank so that the average reaction time is 3 hours. At this time, the reaction temperature was maintained at 148 ℃. The polymer solution discharged from the reactor was heated in a preheating bath and volatilized unreacted monomer in a volatilization tank to obtain a methyl methacrylate-styrene-acrylonitrile copolymer, and the polymer was maintained at 210 ° C. Methyl methacrylate-styrene-acrylonitrile copolymer in pellet form was prepared using a transfer pump extrusion machine.
3) 열가소성 수지 조성물의 제조3) Preparation of Thermoplastic Resin Composition
상기 1)에서 제조된 메틸메타크릴레이트-아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체와 2)에서 제조된 메틸메타크릴레이트-스티렌-아크릴로니트릴 공중합체, 상기 두 공중합체의 총 함량 100 중량부에 대하여 활제 0.2 중량부, 산화방지제 0.1 중량부 및 자외선 안정제 0.1 중량부를 투입하고 혼련하여 210℃에서 2축 압출기를 이용하여 펠렛 형태의 열가소성 수지 조성물을 제조하였다. 이때, 상기 메틸메타크릴레이트-아크릴로니트릴-부타디엔-스티렌 공중합체와 메틸메타크릴레이트-스티렌-아크릴로니트릴 공중합체는 58:42의 중량비로 사용하였다. Methyl methacrylate-acrylonitrile-butadiene-styrene graft copolymer prepared in 1) and methyl methacrylate-styrene-acrylonitrile copolymer prepared in 2), total content of the two copolymers 100 weight 0.2 parts by weight of lubricant, 0.1 parts by weight of antioxidant, and 0.1 parts by weight of UV stabilizer were added and kneaded, and a pellet-type thermoplastic resin composition was prepared using a twin screw extruder at 210 ° C. In this case, the methyl methacrylate-acrylonitrile-butadiene-styrene copolymer and the methyl methacrylate-styrene-acrylonitrile copolymer were used in a weight ratio of 58:42.
실시예 2Example 2
상기 실시예 1의 3)에서 상기 메틸메타크릴레이트-아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체와 메틸메타크릴레이트-스티렌-아크릴로니트릴 공중합체를 58:42의 중량비 대신에 48:52의 중량비로 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 펠렛 형태의 열가소성 수지 조성물을 수득하였다. In Example 1, 3), the methyl methacrylate-acrylonitrile-butadiene-styrene graft copolymer and the methyl methacrylate-styrene-acrylonitrile copolymer were obtained in an amount of 48:52 instead of 58:42. A thermoplastic resin composition in a pellet form was obtained by the same method as Example 1 except for using the weight ratio.
실시예 3Example 3
상기 실시예 1의 1)-c)에서 상기 t-도데실머캅탄의 총 사용량을 0.2 중량부가 아닌 0.05 중량부가 되도록 2번에 나누어 0.025 중량부씩 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 펠렛 형태의 열가소성 수지 조성물을 수득하였다.Through the same method as in Example 1, except that the total amount of the t-dodecyl mercaptan in Example 1) 1) -c) was divided by two so as to be 0.05 parts by weight instead of 0.2 parts by weight. A thermoplastic resin composition in pellet form was obtained.
실시예 4Example 4
상기 실시예 1의 1)-c)에서 상기 t-도데실머캅탄의 총 사용량을 0.2 중량부가 아닌 0.4중량부가 되도록 2번에 나누어 0.2 중량부씩 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 펠렛 형태의 열가소성 수지 조성물을 수득하였다.Through the same method as in Example 1, except that the total amount of the t-dodecyl mercaptan in Example 1) 1) -c) was divided into 2 parts by weight so as to be 0.4 parts by weight instead of 0.2 parts by weight. A thermoplastic resin composition in pellet form was obtained.
실시예 5 Example 5
상기 실시예 1의 1)-c)에서 쉘을 구성하는 단량체 혼합물로서, 메틸메타크릴레이트, 스티렌 및 아크릴로니트릴을 35.66:12.34:2.0의 중량비로 혼합한 것을 사용하고, 또, 상기 t-도데실머캅탄의 총 사용량을 0.2 중량부가 아닌 0.3 중량부가 되도록 2번에 나누어 0.15 중량부씩 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법을 통하여 펠렛 형태의 열가소성 수지 조성물을 수득하였다.As the monomer mixture constituting the shell in Example 1) -c), a mixture of methyl methacrylate, styrene and acrylonitrile in a weight ratio of 35.66: 12.34: 2.0 was used, and the t-dode A thermoplastic resin composition in a pellet form was obtained in the same manner as in Example 1, except that 0.15 parts by weight of the total amount of the silmercaptan was divided into two parts of 0.3 parts by weight instead of 0.2 parts by weight.
실시예 6 Example 6
상기 실시예 1의 1)-b)에서 상기 t-도데실머캅탄의 총 사용량을 0.2 중량부가 아닌 0.03 중량부가 되도록 2번에 나누어 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 펠렛 형태의 열가소성 수지 조성물을 수득하였다.Except that the total amount of the t-dodecyl mercaptan in Example 1) 1) -b) was divided into two to be 0.03 parts by weight instead of 0.2 parts by weight of pellets through the same method as in Example 1 A thermoplastic resin composition was obtained.
비교예 1Comparative Example 1
상기 실시예 1의 3)에서 상기 메틸메타크릴레이트-아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체와 메틸메타크릴레이트-스티렌-아크릴로니트릴 공중합체를 58:42의 중량비 대신에 34:66의 중량비로 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 펠렛 형태의 열가소성 수지 조성물을 수득하였다. In Example 1, 3), the methyl methacrylate-acrylonitrile-butadiene-styrene graft copolymer and the methyl methacrylate-styrene-acrylonitrile copolymer were substituted with a weight ratio of 34:66 instead of 58:42. A thermoplastic resin composition in a pellet form was obtained by the same method as Example 1 except for using the weight ratio.
비교예 2Comparative Example 2
상기 실시예 1의 3)에서 상기 메틸메타크릴레이트-아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체와 메틸메타크릴레이트-스티렌-아크릴로니트릴 공중합체를 58:42의 중량비 대신에 72:28의 중량비로 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 펠렛 형태의 열가소성 수지 조성물을 수득하였다. In Example 1, 3), the methyl methacrylate-acrylonitrile-butadiene-styrene graft copolymer and the methyl methacrylate-styrene-acrylonitrile copolymer were used instead of the weight ratio of 58:42. A thermoplastic resin composition in a pellet form was obtained by the same method as Example 1 except for using the weight ratio.
비교예 3Comparative Example 3
상기 실시예 1의 1)-b)에서 상기 t-도데실머캅탄의 총 사용량을 0.2 중량부가 아닌 0.5 중량부가 되도록, 2번에 나누어 0.25 중량부씩 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 펠렛 형태의 열가소성 수지 조성물을 수득하였다.The same method as in Example 1 was repeated except that the total amount of t-dodecyl mercaptan used in Example 1 was 0.5 parts by weight so that the total amount of t-dodecyl mercaptan was 0.5 parts by weight instead of 0.2 parts by weight. Through the thermoplastic resin composition of the pellet form was obtained.
비교예 4Comparative Example 4
상기 실시예 1의 1)-c)에서 쉘을 구성하는 단량체 혼합물로서, 메틸메타크릴레이트, 스티렌 및 아크릴로니트릴을 28.23:15.77:6.0의 중량비로 혼합한 것을 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법을 통하여 펠렛 형태의 열가소성 수지 조성물을 수득하였다.Except for using the monomer mixture constituting the shell in Example 1) -c) of Example 1, methylmethacrylate, styrene and acrylonitrile were mixed at a weight ratio of 28.23: 15.77: 6.0. Through the same method as 1 to obtain a thermoplastic resin composition in the form of pellets.
비교예 5Comparative Example 5
상기 실시예 1의 1)-c)에서 쉘을 구성하는 단량체 혼합물로서, 메틸메타크릴레이트, 스티렌 및 아크릴로니트릴을 35.66:12.34:2.0의 중량비로 혼합한 것을 사용하고, 또, 상기 t-도데실머캅탄의 총 사용량을 0.2 중량부가 아닌 0.6 중량부가 되도록 2번에 나누어 0.3 중량부씩 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법을 통하여 펠렛 형태의 열가소성 수지 조성물을 수득하였다.As the monomer mixture constituting the shell in Example 1) -c), a mixture of methyl methacrylate, styrene and acrylonitrile in a weight ratio of 35.66: 12.34: 2.0 was used, and the t-dode A thermoplastic resin composition in a pellet form was obtained in the same manner as in Example 1, except that 0.3 parts by weight of the total amount of the silmercaptan was used in two portions so as to be 0.6 parts by weight instead of 0.2 parts by weight.
비교예 6 Comparative Example 6
상기 실시예 1의 1)-c)에서 t-도데실머캅탄의 총 사용량을 0.2 중량부가 아닌 0.5 중량부가 되도록 2번에 나누어 0.25 중량부씩 사용하고, 또, 상기 실시예 1의 3)에서 상기 메틸메타크릴레이트-아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체와 메틸메타크릴레이트-스티렌-아크릴로니트릴 공중합체를 58:42의 중량비 대신에 30:70의 중량비로 사용한 것을 하고, 것을 제외하고는, 상기 실시예 1과 동일한 방법을 통하여 펠렛 형태의 열가소성 수지 조성물을 수득하였다.In Example 1) -c), the total amount of t-dodecyl mercaptan used is divided into two portions so that the total amount of t-dodecyl mercaptan is 0.5 parts by weight, not 0.2 parts by weight, and 0.25 parts by weight is used. The methacrylate-acrylonitrile-butadiene-styrene graft copolymer and the methylmethacrylate-styrene-acrylonitrile copolymer were used in a weight ratio of 30:70 instead of 58:42, except that Through the same method as in Example 1, a thermoplastic resin composition in a pellet form was obtained.
비교예 7Comparative Example 7
상기 실시예 1의 2) 메틸메타크릴레이트-스티렌-아크릴로니트릴 공중합체(MSAN)의 제조에서 사용된 단량체 혼합물 대신에, 메틸메타크릴레이트 64 중량%, 스티렌 31 중량% 및 아크릴로니트릴 5 중량%를 포함하는 단량체 혼합물을 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법을 통하여 펠렛 형태의 열가소성 수지 조성물을 수득하였다.Instead of the monomer mixture used in the preparation of 2) methylmethacrylate-styrene-acrylonitrile copolymer (MSAN) of Example 1, 64% by weight of methyl methacrylate, 31% by weight of styrene and 5% by weight of acrylonitrile Except for using the monomer mixture containing%, the thermoplastic resin composition in the form of pellets was obtained through the same method as in Example 1.
비교예 8Comparative Example 8
상기 실시예 1의 3)에서 상기 메틸메타크릴레이트-아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체와 메틸메타크릴레이트-스티렌-아크릴로니트릴 공중합체를 58:42의 중량비 대신에 39:61의 중량비로 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 펠렛 형태의 열가소성 수지 조성물을 수득하였다.In Example 1, 3), the methyl methacrylate-acrylonitrile-butadiene-styrene graft copolymer and the methyl methacrylate-styrene-acrylonitrile copolymer were obtained in an amount of 39:61 instead of 58:42. A thermoplastic resin composition in a pellet form was obtained by the same method as Example 1 except for using the weight ratio.
표 1
MABS 그라프트 공중합체(A) MSAN 공중합체(B) A:B의 혼합 중량비
고무 함량(중량%) MMA:S:AN중량비 분자량 조절제 함량1)(중량부) MMA:S:AN중량비 분자량 조절제 함량2)(중량부)
실시예1 28.9 32.68:11.32:6.0 0.2 68.4:26.6:5 0.1 58:42
실시예2 23.9 32.68:11.32:6.0 0.2 68.4:26.6:5 0.1 48:52
실시예3 28.9 32.68:11.32:6.0 0.05 68.4:26.6:5 0.1 58:42
실시예4 28.9 32.68:11.32:6.0 0.4 68.4:26.6:5 0.1 58:42
실시예5 28.9 35.66:12.34:2.0 0.3 68.4:26.6:5 0.1 58:42
실시예6 28.9 32.68:11.32:6.0 0.03 68.4:26.6:5 0.1 58:42
비교예1 16.9 32.68:11.32:6.0 0.2 68.4:26.6:5 0.1 34:66
비교예2 35.9 32.68:11.32:6.0 0.2 68.4:26.6:5 0.1 72:28
비교예3 28.9 32.68:11.32:6.0 0.5 68.4:26.6:5 0.1 58:42
비교예4 28.9 28.23:15.77:6.0 0.2 68.4:26.6:5 0.1 58:42
비교예5 28.9 35.66:12.34:2.0 0.6 68.4:26.6:5 0.1 58:42
비교예6 14.9 32.68:11.32:6.0 0.5 68.4:26.6:5 0.1 30:70
비교예7 28.9 32.68:11.32:6.0 0.2 64:31:5 0.1 58:42
비교예8 19.5 32.68:11.32:6.0 0.2 68.4:26.6:5 0.1 39:61
Table 1
MABS graft copolymer (A) MSAN copolymer (B) Mixed weight ratio of A: B
Rubber content (% by weight) MMA: S: AN weight ratio Molecular weight regulator content 1) (parts by weight) MMA: S: AN weight ratio Molecular weight regulator content 2) (parts by weight)
Example 1 28.9 32.68: 11.32: 6.0 0.2 68.4: 26.6: 5 0.1 58:42
Example 2 23.9 32.68: 11.32: 6.0 0.2 68.4: 26.6: 5 0.1 48:52
Example 3 28.9 32.68: 11.32: 6.0 0.05 68.4: 26.6: 5 0.1 58:42
Example 4 28.9 32.68: 11.32: 6.0 0.4 68.4: 26.6: 5 0.1 58:42
Example 5 28.9 35.66: 12.34: 2.0 0.3 68.4: 26.6: 5 0.1 58:42
Example 6 28.9 32.68: 11.32: 6.0 0.03 68.4: 26.6: 5 0.1 58:42
Comparative Example 1 16.9 32.68: 11.32: 6.0 0.2 68.4: 26.6: 5 0.1 34:66
Comparative Example 2 35.9 32.68: 11.32: 6.0 0.2 68.4: 26.6: 5 0.1 72:28
Comparative Example 3 28.9 32.68: 11.32: 6.0 0.5 68.4: 26.6: 5 0.1 58:42
Comparative Example 4 28.9 28.23: 15.77: 6.0 0.2 68.4: 26.6: 5 0.1 58:42
Comparative Example 5 28.9 35.66: 12.34: 2.0 0.6 68.4: 26.6: 5 0.1 58:42
Comparative Example 6 14.9 32.68: 11.32: 6.0 0.5 68.4: 26.6: 5 0.1 30:70
Comparative Example 7 28.9 32.68: 11.32: 6.0 0.2 64: 31: 5 0.1 58:42
Comparative Example 8 19.5 32.68: 11.32: 6.0 0.2 68.4: 26.6: 5 0.1 39:61
상기 표 1에서, 고무 함량은 열가소성 수지 조성물 총 중량에 대한 중량%이고, 분자량 조절제의 함량1)은 공액디엔계 고무 라텍스 및 상기 공액디엔계 고무 라텍스에 그라프트 되는 단량체의 총 합 100중량부에 대한 상대적인 중량비이며, 그리고 분자량 조절제의 함량2)는 MSAN 공중합체를 이루는 단량체의 총 합 100중량부에 대한 상대적인 중량비이다.In Table 1, the rubber content is weight% based on the total weight of the thermoplastic resin composition, and the content of the molecular weight regulator 1) is 100 parts by weight of the total sum of the monomers grafted onto the conjugated diene rubber latex and the conjugated diene rubber latex. Relative weight ratio, and the content of the molecular weight modifier 2) is relative weight ratio to 100 parts by weight total of the monomers forming the MSAN copolymer.
실험예 1Experimental Example 1
상기 실시예 1 내지 6 및 비교예 1 내지 8에서 제조한 공중합체들에 대해 굴절율값을 측정하였다. The refractive index values of the copolymers prepared in Examples 1 to 6 and Comparative Examples 1 to 8 were measured.
그라프트 공중합체의 굴절율은 그라프트 공중합체 구성의 각 중합체의 굴절율 및 함량을 이용하여 하기 수학식 1에 따라 계산하였으며, 공중합체를 구성하는 중합체의 굴절율은 40㎛ 두께의 시편을 제조한 후, 아베 굴절기를 이용하여 450nm의 빛을 조사하여 측정하였다. 그 결과를 하기 표 2에 나타내었다. The refractive index of the graft copolymer was calculated according to the following Equation 1 using the refractive index and the content of each polymer of the graft copolymer composition, and the refractive index of the polymer constituting the copolymer was prepared with a specimen having a thickness of 40 μm, It was measured by irradiation of 450 nm light using an Abbe refractor. The results are shown in Table 2 below.
[수학식 1] [Equation 1]
RI=∑ (Wti × RIi)RI = ∑ (Wti × RIi)
상기 수학식 1에서, Wti는 그라프트 공중합체에서 각 구성 성분(또는 중합체)의 중량분율(%)이고, RIi는 그라프트 공중합체 형성 중합체의 굴절율이다.In Formula 1, Wti is the weight fraction (%) of each component (or polymer) in the graft copolymer, and RIi is the refractive index of the graft copolymer-forming polymer.
표 2
MABS 그라프트 공중합체(A) MSAN 공중합체(B)
공액디엔계 고무 라텍스 코어의 굴절율 쉘의 굴절율 MABS 그라프트 공중합체의 굴절율 MABS의 고형 응고분(중량%) MSAN 굴절율 MSAN의 Mw(g/mol)
실시예1 1.518 1.518 1.518 0.10 1.518 146,000
실시예2 1.518 1.518 1.518 0.10 1.518 146,000
실시예3 1.518 1.518 1.518 0.14 1.518 146,000
실시예4 1.518 1.518 1.518 0.09 1.518 146,000
실시예5 1.518 1.518 1.518 0.08 1.518 146,000
실시예6 1.518 1.518 1.518 0.18 1.518 146,000
비교예1 1.518 1.518 1.518 0.10 1.518 146,000
비교예2 1.518 1.518 1.518 0.10 1.518 146,000
비교예3 1.518 1.518 1.518 0.08 1.518 146,000
비교예4 1.518 1.5249 1.5215 0.15 1.518 146,000
비교예5 1.518 1.5158 1.5169 0.12 1.518 146,000
비교예6 1.518 1.518 1.518 0.10 1.518 146,000
비교예7 1.518 1.518 1.518 0.10 1.5224 145,000
비교예8 1.518 1.518 1.518 0.10 1.518 146,000
TABLE 2
MABS graft copolymer (A) MSAN copolymer (B)
Refractive Index of Conjugated Diene Rubber Latex Core Refractive index of the shell Refractive Index of MABS Graft Copolymer Solid coagulant of MABS (% by weight) MSAN refractive index Mw of MSAN (g / mol)
Example 1 1.518 1.518 1.518 0.10 1.518 146,000
Example 2 1.518 1.518 1.518 0.10 1.518 146,000
Example 3 1.518 1.518 1.518 0.14 1.518 146,000
Example 4 1.518 1.518 1.518 0.09 1.518 146,000
Example 5 1.518 1.518 1.518 0.08 1.518 146,000
Example 6 1.518 1.518 1.518 0.18 1.518 146,000
Comparative Example 1 1.518 1.518 1.518 0.10 1.518 146,000
Comparative Example 2 1.518 1.518 1.518 0.10 1.518 146,000
Comparative Example 3 1.518 1.518 1.518 0.08 1.518 146,000
Comparative Example 4 1.518 1.5249 1.5215 0.15 1.518 146,000
Comparative Example 5 1.518 1.5158 1.5169 0.12 1.518 146,000
Comparative Example 6 1.518 1.518 1.518 0.10 1.518 146,000
Comparative Example 7 1.518 1.518 1.518 0.10 1.5224 145,000
Comparative Example 8 1.518 1.518 1.518 0.10 1.518 146,000
실험예 2Experimental Example 2
상기 실시예 1 내지 6 및 비교예 1 내지 8에서 제조한 각 열가소성 수지 조성물의 내충격성, 투명성, 내환경응력균열성(내화학성) 및 유동성을 비교 분석하기 위하여, 충격강도, 헤이즈(Haze), 내환경응력균열성 및 유동지수를 각각 측정하였으며, 결과를 하기 표 3에 나타내었다.In order to analyze the impact resistance, transparency, environmental stress crack resistance (chemical resistance) and fluidity of each thermoplastic resin composition prepared in Examples 1 to 6 and Comparative Examples 1 to 8, impact strength, haze, Environmental stress crack resistance and flow index were measured, respectively, and the results are shown in Table 3 below.
1) 충격강도1) impact strength
상기 실시예 1 내지 6 및 비교예 1 내지 8에서 제조한 각 열가소성 수지 조성물의 내충격성을 비교분석하기 위하여, 각 열가소성 수지 조성물의 충격강도를 측정하였다. In order to compare and analyze the impact resistance of each thermoplastic resin composition prepared in Examples 1 to 6 and Comparative Examples 1 to 8, the impact strength of each thermoplastic resin composition was measured.
충격강도는 상기 각 열가소성 수지 조성물의 펠렛을 230℃에서 사출 성형하여 1/4" 두께의 시편으로 제조하고, ASTM D256(1/4" , notched at 23℃, kgf·cm/cm2)에 의거하여 실시하였다.Impact strength is produced by injection molding the pellets of the thermoplastic resin composition at 230 ℃ to a specimen 1/4 "thick, according to ASTM D256 (1/4", notched at 23 ℃, kgfcm / cm 2 ) It was carried out by.
2) 유동지수(MI)2) Flow index (MI)
상기 실시예 1 내지 6 및 비교예 1 내지 8에서 제조한 각 열가소성 수지 조성물의 유동성을 비교분석하기 위하여, 각 열가소성 수지 조성물의 유동지수(용융지수)를 측정하였다. In order to compare and analyze the fluidity of each thermoplastic resin composition prepared in Examples 1 to 6 and Comparative Examples 1 to 8, the flow index (melt index) of each thermoplastic resin composition was measured.
유동지수는 상기 각 열가소성 수지 조성물의 펠렛을 ASTM D1238에 준하여 220℃의 온도 및 10kg 하중 하에서 10분 동안 용융되어 나온 수지의 무게(g)을 측정하였다. The flow index measured the weight (g) of the resin melted for 10 minutes under pellets of each thermoplastic resin composition at a temperature of 220 ° C. and a 10 kg load according to ASTM D1238.
3) 내환경응력균열성(내화학성)3) Environmental stress crack resistance (chemical resistance)
상기 실시예 1 내지 6 및 비교예 1 내지 8에서 제조한 각 열가소성 수지 조성물의 내환경응력균열성(ESCR)을 비교분석하기 위하여, 각 열가소성 수지 조성물의 내환경응력균열성을 측정하였다. In order to analyze and analyze the environmental stress crack resistance (ESCR) of each thermoplastic resin composition prepared in Examples 1 to 6 and Comparative Examples 1 to 8, the environmental stress crack resistance of each thermoplastic resin composition was measured.
내환경응력균열성은 상기 각 열가소성 수지 조성물의 펠렛을 230℃에서 사출 성형하여 1/4" 두께의 각 시편을 제조하고, ASTM D1693에 준하여 각 시편을 상온에서(약 25℃) 1.5%의 스트레인 지그(Strain Zig)에 설치하고 콩기름을 시편 중앙에 적신 후 2일 동안 방지하고 2일 후 시편의 변화를 관찰하였다. 관찰된 결과로부터 하기 기준에 따라 내환경응력균일성을 평가하였다.Environmental stress crack resistance injection molding the pellets of the thermoplastic resin composition at 230 ℃ to produce each 1/4 "thick specimens, strain Jig of 1.5% at room temperature (about 25 ℃) in accordance with ASTM D1693 It was installed in (Strain Zig), soaked soybean oil in the center of the specimen and prevented for 2 days, and the change of the specimen was observed after 2 days.
<평가기준><Evaluation Criteria>
○ : 시편에 변화가 없음. 내환경응력균열성이 우수함○: No change in the specimen. Excellent environmental stress crack resistance
△: 시편에 크랙이 관찰됨. (Triangle | delta): A crack is observed in a test piece.
×: 시편이 완전 깨짐, 내환경응력균열성 나쁨×: the specimen completely cracked, poor environmental stress crack resistance
4) 투명도(Haze)4) Haze
상기 실시예 1 내지 6 및 비교예 1 내지 8에서 제조한 각 열가소성 수지 조성물의 투명도를 비교분석하기 위하여, 각 열가소성 수지 조성물의 헤이즈를 측정하였다. In order to compare and analyze the transparency of each thermoplastic resin composition prepared in Examples 1 to 6 and Comparative Examples 1 to 8, the haze of each thermoplastic resin composition was measured.
헤이즈는 상기 각 열가소성 수지 조성물의 펠렛을 230에서 사출 성형하여 1/4" 두께의 각 시편을 제조하고, 각 시편을 DIN 75201의 A법에 준하여 상온에서(약 23℃) 24시간 보관 후에 측정하였다.The haze was injection molded pellets of the thermoplastic resin composition at 230 to prepare each specimen having a 1/4 "thickness, and measured after storage for 24 hours at room temperature (about 23 ° C) in accordance with the method A of DIN 75201. .
표 3
구분 충격강도(kgf·cm/cm2) 유동지수(g/10min) 투명도(Haze, %) 내환경응력균열성
실시예 1 26.2 2.3 2.5
실시예 2 20.8 2.9 2.2
실시예 3 28.4 1.9 2.7
실시예 4 23.1 2.6 2.3
실시예 5 14.6 3.5 2.5
실시예 6 29.0 0.7 3.9
비교예 1 19.6 6.9 1.8 ×
비교예 2 38.9 0.2(인장강도 불량) 4.5
비교예 3 24.2 4.1 2.2
비교예 4 25.5 2.5 9.8
비교예 5 15.5 6.5 2.7
비교예 6 18.0 20.6 1.8 ×
비교예 7 25.0 2.6 11.5
비교예 8 21.5 5.4 2.0 ×
TABLE 3
division Impact strength (kgfcm / cm 2 ) Flow index (g / 10min) Transparency (Haze,%) Environmental Stress Cracking Resistance
Example 1 26.2 2.3 2.5
Example 2 20.8 2.9 2.2
Example 3 28.4 1.9 2.7
Example 4 23.1 2.6 2.3
Example 5 14.6 3.5 2.5
Example 6 29.0 0.7 3.9
Comparative Example 1 19.6 6.9 1.8 ×
Comparative Example 2 38.9 0.2 (poor tensile strength) 4.5
Comparative Example 3 24.2 4.1 2.2
Comparative Example 4 25.5 2.5 9.8
Comparative Example 5 15.5 6.5 2.7
Comparative Example 6 18.0 20.6 1.8 ×
Comparative Example 7 25.0 2.6 11.5
Comparative Example 8 21.5 5.4 2.0 ×
실험결과, 본 발명에 따른 실시예 1 내지 6의 열가소성 수지는, 비교예 1 내지 8의 열가소성 수지와 비교하여, 충격강도, 유동지수, 투명도 및 내환경응력균열성에 있어 어느 하나의 특성에 치우침 없이 발란스 좋게 개선된 특성을 나타내는 것을 확인하였다. 다만, 분자량 조절제가 다소 낮은 함량으로 사용된 실시예 6의 경우, 실시예 1 내지 5에 비해 유동지수가 크게 낮아져 다소 열화된 가공성을 나타내었으며, 투명도 면에서도 실시예 1 내지 5에 비해 높은 헤이즈값을 나타내었다.As a result, the thermoplastic resins of Examples 1 to 6 according to the present invention are compared with the thermoplastic resins of Comparative Examples 1 to 8 without any bias in the characteristics of impact strength, flow index, transparency and environmental stress crack resistance. It was confirmed that the balance exhibits improved properties. However, in the case of Example 6 in which the molecular weight modifier was used in a slightly lower content, the flow index was significantly lower than that of Examples 1 to 5, indicating a slightly deteriorated processability, and high haze value compared to Examples 1 to 5 in terms of transparency. Indicated.
구체적으로, 본 발명에 따른 비율 범위 내로 메틸메타크릴레이트-아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체(MABS) 및 메틸메타크릴레이트-스티렌-아크릴로니트릴 공중합체(MSAN)를 혼합하여 제조한 실시예 1 내지 6의 열가소성 수지와, 상기 MABS와 MSAN의 혼합비 조건 및 고무 함량 조건을 충족하지 않는 비교예 1 및 비교예 2의 열가소성 수지를 비교한 결과, MSAN이 과량으로 사용된 비교예 1의 열가소성 수지는 투명성은 우수하였으나, 본 발명에서 제시한 열가소성 수지 조성물의 유동지수 범위를 크게 벗어남에 따라, 내환경응력균열성이 크게 저하되었다. 또, MABS가 과량으로 사용된 비교예 2의 열가소성 수지는 충격강도 및 내환경응력균열성은 우수하였으나, 투명성이 크게 저하되고, 불량한 인장강도를 나타내었다. Specifically, prepared by mixing methyl methacrylate-acrylonitrile-butadiene-styrene graft copolymer (MABS) and methyl methacrylate-styrene-acrylonitrile copolymer (MSAN) within a ratio range according to the present invention. As a result of comparing the thermoplastic resins of Examples 1 to 6 with the thermoplastic resins of Comparative Examples 1 and 2 which did not satisfy the mixing ratio condition and rubber content condition of the MABS and MSAN, Although the thermoplastic resin was excellent in transparency, the environmental stress crack resistance was greatly lowered as the flow index range of the thermoplastic resin composition of the present invention was greatly exceeded. In addition, the thermoplastic resin of Comparative Example 2 in which the MABS was used in an excessive amount was excellent in impact strength and environmental stress crack resistance, but the transparency was greatly decreased, and poor tensile strength was shown.
또, 본 발명에서 제시한 열가소성 수지 조성물의 유동지수 조건을 충족하지 않을 뿐더러 MABS의 제조시 분자량 조절제가 본 발명에서의 제시 범위를 벗어나 과량으로 사용된 비교예 3 및 5의 열가소성 수지는 내환경응력균열성이 저하되었다. In addition, the thermoplastic resins of Comparative Examples 3 and 5, which do not satisfy the flow index conditions of the thermoplastic resin composition according to the present invention, and in which the molecular weight modifier is used in excess of the range of the present invention in the preparation of the MABS, have an environmental stress resistance. Cracking property fell.
또, 본 발명에 따른 범위의 비율로 MABS 및 MSAN를 혼합하여 제조하였으나, 상기 MABS의 제조시 MABS를 구성하는 단량체의 혼합비 조건이 본 발명에서 한정하고 있는 혼합비 조건을 충족하지 않는 비교예 4의 열가소성 수지는 수지 조성물을 구성하는 MABS와 MSAN의 굴절율 차이가 0.003를 초과함에 따라, 투명성이 크게 저하되었다. In addition, the mixture of MABS and MSAN in the ratio of the range according to the present invention was prepared, but the mixing ratio conditions of the monomers constituting the MABS in the preparation of the MABS does not meet the mixing ratio conditions defined in the present invention thermoplasticity Resin greatly reduced transparency as the difference in refractive index between MABS and MSAN constituting the resin composition exceeded 0.003.
또, 본 발명에서 제시한 공중합체의 유동지수 조건을 충족하지 않을 뿐더러, MABS의 제조시 고무 함량 범위 및 분자량 조절제의 함량 범위를 벗어난 비교예 6의 열가소성 수지는, 충격강도가 저하되고, 내환경응력균열성이 현저히 저하되었다. In addition, the thermoplastic resin of Comparative Example 6, which does not satisfy the flow index conditions of the copolymers presented in the present invention and is out of the rubber content range and the molecular weight modifier content range in the manufacture of MABS, has an impact strength lowered, Stress cracking was significantly reduced.
또, MSAN를 단량체의 혼합비 조건이 본 발명에서 한정하고 있는 혼합비 조건을 충족하지 않는 비교예 7의 수지 조성물은, 수지 조성물을 구성하는 MABS와 MSAN의 굴절율 차이가 0.003를 초과함에 따라, 투명성이 크게 저하되었다.In addition, the resin composition of Comparative Example 7 in which the mixing ratio condition of the monomer of MSAN does not satisfy the mixing ratio condition defined in the present invention has a large transparency as the difference in refractive index between MABS and MSAN constituting the resin composition exceeds 0.003. Degraded.
또, 본 발명에서 제시한 공중합체의 유동지수 조건을 충족하지 않을 뿐더러, 열가소성 수지 조성물내 고무 함량 조건을 충족하지 않는 비교예 8의 수지 조성물은 내환경응력균열성이 현저히 저하되었다. In addition, the resin composition of Comparative Example 8, which did not satisfy the flow index condition of the copolymer proposed in the present invention, and did not satisfy the rubber content condition in the thermoplastic resin composition, significantly lowered the environmental stress crack resistance.
이는, 본 발명에 따른 각 공중합체의 구성과 혼합비, 두 공중합체간의 굴절율 차이, 그리고 열가소성 수지 조성물의 유동지수의 조절이, 열가소성 수지 조성물의 충격강도, 투명성 및 내환경응력균열성 중 어느 하나의 특성에 국한되지 않으면서 상기의 특성을 모두 향상시킬 수 있는 중요한 요소임을 나타낸다. 따라서, 본 발명에 따른 열가소성 수지 조성물 및 이로부터 제조된 열가소성 수지 성형품은, 충격강도, 투명성 및 내환경응력균열성(내화학성)이 동시에 요구되는 소재 산업, 특히 의료용 제품의 소재로서 유용할 수 있다. This is because the composition and mixing ratio of each copolymer according to the present invention, the difference in refractive index between the two copolymers, and the control of the flow index of the thermoplastic resin composition, the impact strength, transparency and environmental stress crack resistance of the thermoplastic resin composition The present invention is not limited to the characteristics, but represents an important factor capable of improving all the above characteristics. Therefore, the thermoplastic resin composition according to the present invention and the thermoplastic resin molded article prepared therefrom may be useful as a material of a material industry, in particular, a medical product, where impact strength, transparency, and environmental stress crack resistance (chemical resistance) are simultaneously required. .

Claims (18)

  1. 공액디엔계 고무 라텍스에 (메트)아크릴산 에스테르, 비닐 시안계 화합물 및 방향족 비닐 화합물이 그라프트 중합된 그라프트 공중합체(A); 및 (메트)아크릴산 에스테르-방향족 비닐 화합물-비닐 시안계 화합물의 공중합체(B)를 35:65 내지 70:30의 중량비로 포함하고,Graft copolymers (A) in which a (meth) acrylic acid ester, a vinyl cyan compound and an aromatic vinyl compound are graft polymerized onto a conjugated diene rubber latex; And a copolymer (B) of the (meth) acrylic acid ester-aromatic vinyl compound-vinyl cyan compound in a weight ratio of 35:65 to 70:30,
    450nm 내지 680nm 파장 영역의 빛 조사시, 상기 그라프트 공중합체(A)와 (메트)아크릴산 에스테르-방향족 비닐 화합물-비닐 시안계 화합물의 공중합체(B)의 굴절율 차이가 0.003 미만이며, In the light irradiation in the wavelength range of 450 nm to 680 nm, the difference in refractive index between the graft copolymer (A) and the copolymer (B) of the (meth) acrylic acid ester-aromatic vinyl compound-vinyl cyan compound is less than 0.003,
    ASTM D1238에 따른 유동지수 측정시 4.0g/10 min 이하의 유동지수를 나타내는 열가소성 수지 조성물.A thermoplastic resin composition exhibiting a flow index of 4.0 g / 10 min or less when measured by a flow index according to ASTM D1238.
  2. 제1항에 있어서, The method of claim 1,
    상기 공액디엔계 고무 라텍스는 열가소성 수지 조성물 총 중량에 대하여 20 중량% 내지 35 중량%로 포함되는 것인 열가소성 수지 조성물. The conjugated diene-based rubber latex is a thermoplastic resin composition comprising 20 to 35% by weight relative to the total weight of the thermoplastic resin composition.
  3. 제1항에 있어서,The method of claim 1,
    상기 공액디엔계 고무 라텍스는 공액디엔계 화합물 단독 중합체이거나, 또는 공액디엔계 화합물과 에틸렌계 불포화 화합물의 공중합체인 것인 열가소성 수지 조성물.The conjugated diene rubber latex is a conjugated diene compound homopolymer or a copolymer of a conjugated diene compound and an ethylenically unsaturated compound.
  4. 제1항에 있어서,The method of claim 1,
    상기 그라프트 공중합체(A) 및 (메트)아크릴산 에스테르-방향족 비닐 화합물-비닐 시안계 화합물의 공중합체(B)에 있어서의 (메트)아크릴산 에스테르는, 각각 독립적으로 메틸 아크릴레이트, 에틸 아크릴레이트, 프로필 아크릴레이트, 부틸 아크릴레이트, 헥실 아크릴레이트, 2-에틸헥실 아크릴레이트, 메틸 메타크릴레이트, 에틸 메타크릴레이트, 프로필 메타크릴레이트, 부틸 메타크릴레이트, 헥실 메타크릴레이트 및 2-에틸헥실 메타크릴레이트로 이루어진 군으로부터 선택되는 어느 하나 또는 둘 이상의 혼합물을 포함하는 것인 열가소성 수지 조성물.The (meth) acrylic acid ester in the copolymer (B) of the graft copolymer (A) and the (meth) acrylic acid ester-aromatic vinyl compound-vinyl cyan compound is independently methyl acrylate, ethyl acrylate, Propyl acrylate, butyl acrylate, hexyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, hexyl methacrylate and 2-ethylhexyl methacrylate A thermoplastic resin composition comprising any one or a mixture of two or more selected from the group consisting of the rate.
  5. 제1항에 있어서,The method of claim 1,
    상기 그라프트 공중합체(A) 및 (메트)아크릴산 에스테르-방향족 비닐 화합물-비닐 시안계 화합물의 공중합체(B)에 있어서의 방향족 비닐 화합물은, 각각 독립적으로 스티렌, α-메틸스티렌, 비닐톨루엔, C1-3의 알킬기로 치환된 알킬 스티렌 및 할로겐으로 치환된 스티렌으로 이루어진 군으로부터 선택되는 어느 하나 또는 둘 이상의 혼합물을 포함하는 것인 열가소성 수지 조성물.The aromatic vinyl compounds in the copolymer (B) of the graft copolymer (A) and the (meth) acrylic acid ester-aromatic vinyl compound-vinyl cyan compound are each independently styrene, α-methylstyrene, vinyltoluene, A thermoplastic resin composition comprising any one or a mixture of two or more selected from the group consisting of alkyl styrene substituted with C 1-3 alkyl groups and styrene substituted with halogen.
  6. 제1항에 있어서,The method of claim 1,
    상기 그라프트 공중합체(A) 및 (메트)아크릴산 에스테르-방향족 비닐 화합물-비닐 시안계 화합물의 공중합체(B)에 있어서의 비닐 시안계 화합물은, 아크릴로니트릴, 메타크릴로니트릴 및 이들의 유도체로 이루어진 군으로부터 선택되는 어느 하나 또는 둘 이상의 혼합물을 포함하는 것인 열가소성 수지 조성물.The vinyl cyan compound in the copolymer (B) of the graft copolymer (A) and the (meth) acrylic acid ester-aromatic vinyl compound-vinyl cyan compound is acrylonitrile, methacrylonitrile and derivatives thereof. A thermoplastic resin composition comprising any one or a mixture of two or more selected from the group consisting of.
  7. 제1항에 있어서, The method of claim 1,
    상기 그라프트 공중합체(A)는 공액디엔계 고무 라텍스 코어 45 중량% 내지 75 중량%; 및 상기 코어 상에 그라프트된 (메트)아크릴산 에스테르, 비닐 시안계 화합물 및 방향족 비닐 화합물을 포함하는 쉘 25 중량% 내지 55 중량%를 포함하는 코어-쉘 구조를 갖는 것인 열가소성 수지 조성물.The graft copolymer (A) is 45 to 75% by weight of the conjugated diene rubber latex core; And a core-shell structure comprising 25 wt% to 55 wt% of a shell comprising a (meth) acrylic acid ester, a vinyl cyan compound, and an aromatic vinyl compound grafted onto the core.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 공액디엔계 고무 라텍스 코어와 쉘의 굴절율 차이가 0.003 미만인 것인 열가소성 수지 조성물.The difference in refractive index between the conjugated diene rubber latex core and the shell is less than 0.003 thermoplastic resin composition.
  9. 제7항에 있어서, The method of claim 7, wherein
    상기 공액디엔계 고무 라텍스 코어는 2000 Å 내지 5000 Å 의 평균입경, 70 중량% 내지 95 중량%의 겔 함량 및 12 내지 30의 팽윤지수를 갖는 것인 열가소성 수지 조성물.The conjugated diene rubber latex core is a thermoplastic resin composition having an average particle diameter of 2000 GPa to 5000 GPa, a gel content of 70% to 95% by weight and a swelling index of 12 to 30.
  10. 제1항에 있어서, The method of claim 1,
    상기 그라프트 공중합체(A)는, 공액디엔계 고무 라텍스에 대하여 (메트)아크릴산 에스테르, 비닐 시안계 화합물, 방향족 비닐 화합물을 분자량 조절제를 이용하여 그라프트 중합시켜 제조되며,The graft copolymer (A) is prepared by graft polymerization of a (meth) acrylic acid ester, a vinyl cyan compound and an aromatic vinyl compound with respect to a conjugated diene rubber latex using a molecular weight modifier,
    상기 (메트)아크릴산 에스테르, 비닐 시안계 화합물 및 방향족 비닐 화합물이 20:2:8 내지 40:10:15의 중량비로 사용되고,The (meth) acrylic acid ester, vinyl cyan compound and aromatic vinyl compound are used in a weight ratio of 20: 2: 8 to 40:10:15,
    상기 분자량 조절제는 공액디엔계 고무 라텍스 및 상기 공액디엔계 고무 라텍스에 그라프트되는 단량체의 총 합 100중량부에 대하여, 0.05 중량부 내지 0.4 중량부로 사용되는 것인 열가소성 수지 조성물.The molecular weight modifier is a thermoplastic resin composition is used in 0.05 parts by weight to 0.4 parts by weight based on 100 parts by weight of the total of the conjugated diene rubber latex and the monomer grafted to the conjugated diene rubber latex.
  11. 제10항에 있어서, The method of claim 10,
    상기 분자량 조절제는 n-부틸머캅탄, n-옥틸머캅탄, n-도데실머캅탄 및 t-도데실머캅탄으로 이루어진 군으로부터 선택된 어느 하나 또는 둘 이상의 혼합물을 포함하는 것인 열가소성 수지 조성물.The molecular weight modifier is a thermoplastic resin composition comprising any one or two or more selected from the group consisting of n-butyl mercaptan, n-octyl mercaptan, n-dodecyl mercaptan and t-dodecyl mercaptan.
  12. 제1항에 있어서,The method of claim 1,
    상기 그라프트 공중합체(A) 내 포함되는 고형 응고분이 0.5 중량% 미만인 것인 열가소성 수지 조성물.The solid resin contained in the graft copolymer (A) is less than 0.5% by weight of the thermoplastic resin composition.
  13. 제1항에 있어서,The method of claim 1,
    상기 그라프트 공중합체(A)는 메틸메타크릴레이트-아크릴로니트릴-부타디엔-스티렌 공중합체인 것인 열가소성 수지 조성물.The graft copolymer (A) is a methyl methacrylate-acrylonitrile-butadiene-styrene copolymer.
  14. 제1항에 있어서,The method of claim 1,
    상기 (메트)아크릴산 에스테르-방향족 비닐 화합물-비닐 시안계 화합물의 공중합체(B)는,The copolymer (B) of the (meth) acrylic acid ester-aromatic vinyl compound-vinyl cyan compound
    (메트)아크릴산 에스테르 55 중량% 내지 70 중량%;55% to 70% by weight of (meth) acrylic acid ester;
    방향족 비닐 화합물 20 중량% 내지 30 중량%; 및 20 to 30 weight percent of an aromatic vinyl compound; And
    비닐 시안계 화합물 2 중량% 내지 10 중량%를 포함하는 것인 열가소성 수지 조성물.2 to 10 wt% of the vinyl cyan compound.
  15. 제1항에 있어서,The method of claim 1,
    상기 (메트)아크릴산 에스테르-방향족 비닐 화합물-비닐 시안계 화합물의 공중합체(B)는 메틸메타크릴레이트-스티렌-아크릴로니트릴 공중합체인 것인 열가소성 수지 조성물.The copolymer (B) of the (meth) acrylic acid ester-aromatic vinyl compound-vinyl cyan compound is a methyl methacrylate-styrene-acrylonitrile copolymer.
  16. 제1항에 있어서,The method of claim 1,
    DIN 75201의 A법에 따라 측정한 헤이즈(Haze)가 2.5% 이하인 것인 열가소성 수지 조성물.The thermoplastic resin composition whose haze measured according to the method A of DIN 75201 is 2.5% or less.
  17. 공액디엔계 고무 라텍스에 대하여 메틸메타크릴레이트, 아크릴로니트릴, 스티렌이 그라프트 중합된 그라프트 공중합체; 및 메틸메타크릴레이트-스티렌-아크릴로니트릴 공중합체를 35:65 내지 70:30의 중량비로 포함하고,Graft copolymers in which methyl methacrylate, acrylonitrile and styrene are graft-polymerized with respect to conjugated diene rubber latex; And methyl methacrylate-styrene-acrylonitrile copolymer in a weight ratio of 35:65 to 70:30,
    상기 공액디엔계 고무 라텍스를 조성물 총 중량에 대하여 20 중량% 내지 35 중량%로 포함하며,Containing the conjugated diene rubber latex 20 to 35% by weight based on the total weight of the composition,
    450nm 내지 680nm 파장 영역의 빛 조사시, 상기 그라프트 공중합체와 메틸메타크릴레이트-스티렌-아크릴로니트릴 공중합체의 굴절율 차이가 0.003 미만이고, In the light irradiation in the wavelength range of 450 nm to 680 nm, the difference in refractive index between the graft copolymer and the methyl methacrylate-styrene-acrylonitrile copolymer is less than 0.003,
    상기 그라프트 공중합체는, 공액디엔계 고무 라텍스에 대하여 메틸메타크릴레이트, 아크릴로니트릴 및 스티렌을 분자량 조절제를 이용하여 그라프트 중합시켜 제조되며,The graft copolymer is prepared by graft polymerization of methyl methacrylate, acrylonitrile and styrene using a molecular weight modifier with respect to conjugated diene rubber latex,
    상기 메틸메타크릴레이트, 아크릴로니트릴 및 스티렌은 20:2:8 내지 40:10:15의 중량비로 사용되고, 상기 분자량 조절제는 공액디엔계 고무 라텍스 및 상기 공액디엔계 고무 라텍스에 그라프트되는 단량체의 총 합 100중량부에 대하여, 0.05 중량부 내지 0.4 중량부로 사용되는 것인 열가소성 수지 조성물.The methyl methacrylate, acrylonitrile and styrene are used in a weight ratio of 20: 2: 8 to 40:10:15, and the molecular weight modifier of the monomer grafted to the conjugated diene rubber latex and the conjugated diene rubber latex A thermoplastic resin composition used in an amount of 0.05 to 0.4 parts by weight based on 100 parts by weight in total.
  18. 제1항 내지 제17항 중 어느 한 항에 따른 열가소성 수지 조성물로부터 제조된 열가소성 수지 성형품.A thermoplastic resin molded article prepared from the thermoplastic resin composition according to any one of claims 1 to 17.
PCT/KR2015/007696 2014-09-16 2015-07-23 Thermoplastic resin composition and thermoplastic resin molded article prepared therefrom WO2016043424A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15826125.5A EP3037474B1 (en) 2014-09-16 2015-07-23 Thermoplastic resin composition and thermoplastic resin molded article prepared therefrom
CN201580001790.8A CN105612214B (en) 2014-09-16 2015-07-23 Thermoplastic resin composition and the thermoplastic resin formed article prepared by said composition
US14/911,455 US9834645B2 (en) 2014-09-16 2015-07-23 Thermoplastic resin composition and thermoplastic resin molded article prepared therefrom

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2014-0122822 2014-09-16
KR20140122822 2014-09-16
KR10-2015-0104270 2015-07-23
KR1020150104270A KR101644752B1 (en) 2014-09-16 2015-07-23 Thermoplastic resin composition and thermoplastic resin molded article prepared by using the same

Publications (1)

Publication Number Publication Date
WO2016043424A1 true WO2016043424A1 (en) 2016-03-24

Family

ID=55533433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/007696 WO2016043424A1 (en) 2014-09-16 2015-07-23 Thermoplastic resin composition and thermoplastic resin molded article prepared therefrom

Country Status (1)

Country Link
WO (1) WO2016043424A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110914361A (en) * 2017-09-29 2020-03-24 株式会社Lg化学 Thermoplastic resin composition and thermoplastic resin molded article prepared using the same
CN111386290A (en) * 2018-02-07 2020-07-07 株式会社Lg化学 Method for producing graft copolymer and thermoplastic resin molded article

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100189393B1 (en) * 1996-12-12 1999-06-01 사공수영 Process for manufacturing thermoplastic resins with high impact resistance and transparency
KR20120078583A (en) * 2010-12-31 2012-07-10 제일모직주식회사 Thermoplastic resin composition with improved white turbidity phenomenon at low temperature
KR20120088090A (en) * 2011-01-31 2012-08-08 주식회사 엘지화학 Thermoplastic resin having good flame retardancy and transparence
KR20130046162A (en) * 2011-10-27 2013-05-07 제일모직주식회사 Thermoplastic resin composition and molded product using the same
KR20140005510A (en) * 2012-07-04 2014-01-15 제일모직주식회사 Thermoplastic resin composition and molded product using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100189393B1 (en) * 1996-12-12 1999-06-01 사공수영 Process for manufacturing thermoplastic resins with high impact resistance and transparency
KR20120078583A (en) * 2010-12-31 2012-07-10 제일모직주식회사 Thermoplastic resin composition with improved white turbidity phenomenon at low temperature
KR20120088090A (en) * 2011-01-31 2012-08-08 주식회사 엘지화학 Thermoplastic resin having good flame retardancy and transparence
KR20130046162A (en) * 2011-10-27 2013-05-07 제일모직주식회사 Thermoplastic resin composition and molded product using the same
KR20140005510A (en) * 2012-07-04 2014-01-15 제일모직주식회사 Thermoplastic resin composition and molded product using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110914361A (en) * 2017-09-29 2020-03-24 株式会社Lg化学 Thermoplastic resin composition and thermoplastic resin molded article prepared using the same
CN110914361B (en) * 2017-09-29 2022-08-19 株式会社Lg化学 Thermoplastic resin composition and thermoplastic resin molded article prepared using the same
CN111386290A (en) * 2018-02-07 2020-07-07 株式会社Lg化学 Method for producing graft copolymer and thermoplastic resin molded article

Similar Documents

Publication Publication Date Title
WO2018084558A2 (en) Thermoplastic resin composition, method for preparing same, and molded product comprising same
KR101644752B1 (en) Thermoplastic resin composition and thermoplastic resin molded article prepared by using the same
WO2019066375A2 (en) Thermoplastic resin composition and thermoplastic resin molded product manufactured therefrom
WO2018084486A2 (en) Method for preparing asa-based graft copolymer, method for preparing thermoplastic asa-based resin composition comprising same, and method for manufacturing asa-based molded product
WO2016093616A1 (en) Method for preparing acrylonitrile-butadiene-styrene graft copolymer, and acrylonitrile-butadiene-styrene thermoplastic resin containing same
WO2016052832A1 (en) Thermoplastic resin composition having excellent chemical resistance and transparency, method for preparing same, and molded product comprising same
WO2016093649A1 (en) Method for preparing large-diameter diene-based rubber latex and acrylonitrile-butadiene-styrene graft copolymer including large-diameter diene-based rubber latex
WO2017039157A1 (en) Thermoplastic resin composition and preparation method therefor
WO2017142172A1 (en) Rubber polymer and preparation method therefor, graft copolymer, and thermoplastic resin composition
WO2018084436A1 (en) Method for preparing abs graft copolymer having enhanced impact strength and method for preparing abs injection-molded product comprising same
WO2018174395A1 (en) Method for preparing asa-based graft copolymer, method for preparing thermoplastic resin composition comprising same, and method for manufacturing molded product
WO2015186917A1 (en) Polymer particles having core-shell structure, and rubber composition containing same
WO2017099409A1 (en) Thermoplastic graft copolymer resin, method for preparing same, and thermoplastic resin composition containing same
WO2013022205A2 (en) Alkyl (meth)acrylate-based thermoplastic resin composition and thermoplastic resin having adjusted scratch resistance and yellowness
WO2016043424A1 (en) Thermoplastic resin composition and thermoplastic resin molded article prepared therefrom
WO2013077614A1 (en) Acryl-based laminate film having good weatherability and formability and method for manufacturing same
WO2016204485A1 (en) Thermoplastic resin, preparation method therefor, and thermoplastic resin composition containing same
WO2018124562A1 (en) Abs-based graft copolymer, preparation method therefor, and thermoplastic resin composition containing same
WO2015030415A1 (en) Transparent abs resin and transparent abs resin composition
WO2020101182A1 (en) Core-shell copolymer, preparation method therefor, and thermoplastic resin composition comprising same
WO2021040269A1 (en) Thermoplastic resin composition comprising (meth)acrylate graft copolymer, and production method therefor
WO2016105171A1 (en) Method for preparing diene-based rubber latex and acrylonitrile-butadiene-styrene graft copolymer comprising same
WO2017160011A1 (en) Thermoplastic resin composition and molded article manufactured therefrom
WO2015016520A1 (en) Production method for rubber-reinforced thermoplastic resin
WO2021060833A1 (en) Method for producing conjugated diene-based polymer

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2015826125

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015826125

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14911455

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15826125

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE