WO2017095051A2 - Composition containing naphthoquinone derivative for controlling harmful algae and method for controlling harmful algae using same - Google Patents

Composition containing naphthoquinone derivative for controlling harmful algae and method for controlling harmful algae using same Download PDF

Info

Publication number
WO2017095051A2
WO2017095051A2 PCT/KR2016/013447 KR2016013447W WO2017095051A2 WO 2017095051 A2 WO2017095051 A2 WO 2017095051A2 KR 2016013447 W KR2016013447 W KR 2016013447W WO 2017095051 A2 WO2017095051 A2 WO 2017095051A2
Authority
WO
WIPO (PCT)
Prior art keywords
formula
algae
compound
water
harmful algae
Prior art date
Application number
PCT/KR2016/013447
Other languages
French (fr)
Korean (ko)
Other versions
WO2017095051A3 (en
Inventor
한명수
주재형
박종성
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=58797167&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2017095051(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Priority to CN201680080746.5A priority Critical patent/CN108601352A/en
Publication of WO2017095051A2 publication Critical patent/WO2017095051A2/en
Publication of WO2017095051A3 publication Critical patent/WO2017095051A3/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/72Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms
    • A01N43/74Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms five-membered rings with one nitrogen atom and either one oxygen atom or one sulfur atom in positions 1,3
    • A01N43/781,3-Thiazoles; Hydrogenated 1,3-thiazoles
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/40Devices for separating or removing fatty or oily substances or similar floating material

Definitions

  • the present invention relates to a harmful algae control composition comprising a naphthoquitone derivative and a method for controlling the harmful algae using the same.
  • Harmful algal blooms are causing various industrial problems, depending on their habitat.
  • the outbreaks of harmful algae in lakes, streams, reservoirs, fish farms, etc. include: 1) aquatic deaths (Duke et al., Weed Sci. 50: 138-151, 2002); 2) It produces off-flavor substances and degrades the quality of drinking water and farmed fish.
  • aquatic deaths Duke et al., Weed Sci. 50: 138-151, 2002
  • the fish smell off- flavors Duke et al., Weed Sci.
  • Toxins that are harmful to humans and animals are produced, for example, some birds, such as the genus Microcystis, Nodularia, Anabaena, and Aphanizomenon. Are known to produce toxins that are harmful to humans and animals, respectively, microcystins, nodularin, anatoxin and saxitoxin (Haider et al., Chemosphere 52: 1-21, 2003); 4) causing discomfort and impeding leisure and industrial activity due to the coloring of water and the formation of scum; 5) Over-treatment of chlorine is necessary due to filter paper closure and inhibition of flocculation sedimentation during water treatment, causing economic loss.
  • Techniques known to date include chemical spraying, ultrasonic and ozone treatment, sponge recovery and sedimentation, and yellow soil spraying.
  • Controlling waterborne contaminants (self-producing organics: green algae) caused by the outbreak of harmful algae in eutrophic lakes and streams is an essential part of solving water resource problems, and the technology to be applied is also economical and has the least amount of ecosystem disruption.
  • the chemical spraying method has been used since the past as a method of spraying copper sulfate (CuSO4), chlorine dioxide (ClO2), simazine (Simazine), etc.
  • CuSO4 copper sulfate
  • ClO2 chlorine dioxide
  • Simazine simazine
  • copper sulfate which is widely used because it is the lowest cost, It can affect other marine organisms, cause problems in terms of toxicity and corrosion to other organisms in the water, and because it only shows temporary effects, it must be used repeatedly, and copper sulfate becomes unstable under the high alkaline environmental conditions accompanying red tide. Because of the large amount of processing has to be disadvantageous.
  • Ultrasonic treatment is the method of destroying cells of red tide causative organisms by ultrasonic waves (160 ⁇ 400kHz), and ozone treatment is a method to neutralize the toxic effects of red tide by putting high pressure ozone in the water where red tide is generated. It is not yet reached.
  • Sponge recovery and sedimentation is a method of generating bubbles by using a pressure flotation device consisting of a centrifuge, agglomeration main tank, a mixing tank, and a pressure flotation tank to adsorb, float, and recover red tide organisms from the sea surface.
  • a pressure flotation device consisting of a centrifuge, agglomeration main tank, a mixing tank, and a pressure flotation tank to adsorb, float, and recover red tide organisms from the sea surface.
  • Is adsorbed and precipitated red tide organisms in seawater, and aluminum ions in loess destroy the cells of living organisms.
  • the yellow soil is sprayed in seawater, suspended solids are increased, and there is a problem that fish gill closure may affect living organisms such as respiratory failure in fish farms and fish farms where settlement organisms live in the lower layers.
  • the present invention has been made to solve the above problems, the present invention is to provide a harmful algae control composition comprising a naphthoquinone derivative that can selectively control the growth of harmful algae.
  • the present invention is to provide a method for controlling or preventing abnormal growth of harmful algae using the harmful algae control composition.
  • the present invention provides a composition for controlling harmful algae comprising a compound selected from the group consisting of compounds represented by the following [Formula 1] to [Formula 5] or a salt thereof as an active ingredient:
  • X is O, S or NR 2 ,
  • R 1 is hydrogen, halogen, CF 3 , a substituted or unsubstituted alkyl group having 1 to 12 carbon atoms, or a substituted or unsubstituted alkoxy group having 1 to 12 carbon atoms,
  • R 2 is hydrogen, acetyl (Ac) or t-butoxycarbonyl (Boc),
  • R 3 is any one selected from the following [Formula 1],
  • the present invention provides a method for controlling harmful algae comprising treating the harmful algae control composition in a region in which harmful algae is busy or in a region in which developmental symptoms are observed.
  • the harmful algae control composition according to the present invention can selectively control only harmful algae in which abnormal proliferation occurs in ponds, reservoirs, lakes, lakes, rivers, or rivers, thereby preventing the occurrence of harmful algae in fresh or seawater and preventing water pollution. It can be very useful to prevent this. In addition, it can be utilized as an important antifouling agent or paint for green algae and red tide has the advantage that the possibility of commercialization is very large.
  • 1 is a view showing the results of testing the green algae control effect on the freshwater microalgae of the harmful algae control composition according to an embodiment of the present invention.
  • FIG. 2 is a view showing the results of testing the green algae control effect on the seawater microalgae of the harmful algae control composition according to an embodiment of the present invention.
  • Figure 3 of the harmful algae control composition according to the present invention for Selenastrum capricornutum, Daphnia magna, Zebrafish (Danio rerio) as indicator organisms for the US EPA standard ecotoxicity assessment A diagram showing the results of the ecotoxicity assessment.
  • Figure 4 is a graph measuring the amount of change in phytoplankton in the microcosm during the treatment of harmful algae control composition according to the present invention for the field water of the Nakdong river dominated by Stephanodiscus (Stephanodiscus).
  • Figure 5 is a graph measuring the change in phytoplankton except for stephanodiscus in the microcosm when the composition for controlling harmful alga according to the present invention with respect to the site number of the Nakdong river dominated by Stephanodiscus (Stephanodiscus).
  • Figure 6 is a graph showing the change in species diversity index of phytoplankton in microcosm when the composition for controlling harmful alga according to the present invention with respect to the field water of the Nakdong River dominated by Stephanodiscus (Stephanodiscus).
  • Copper sulfate or copper organic compounds which have been conventionally used as algae killing agents for harmful algae, have excellent control effects on harmful algae, but are costly, toxic to other organisms, and secondary environmental pollution by chemicals. There was a problem causing. In addition, there was a problem that the selective algae control is not possible to cause a wide range of damage to harmless bird species. There was a problem of causing secondary disturbance in the ecosystem.
  • the present invention is a solution to the conventional harmful algae control technology described above, which has a selective control effect only on harmful algae to prevent a wide range of damage to aquatic organisms and ecosystem secondary disturbances and harmful algae using the same It relates to a method of controlling.
  • the present invention provides a harmful algae control composition
  • a harmful algae control composition comprising a compound selected from the group consisting of compounds represented by the following [Formula 1] to [Formula 5] or a salt thereof as an active ingredient:
  • X is O, S or NR 2 ,
  • R 1 is hydrogen, halogen, CF 3 , a substituted or unsubstituted alkyl group having 1 to 12 carbon atoms, or a substituted or unsubstituted alkoxy group having 1 to 12 carbon atoms,
  • R 2 is hydrogen, acetyl (Ac) or t-butoxycarbonyl (Boc),
  • R 3 is any one selected from the following [Formula 1],
  • the compound represented by the above [Formula 1] to [Formula 5] comprises a compound selected from the compound represented by the following [Formula 6] to [Formula 56] or homologue compounds thereof, or salts thereof as an active ingredient. :
  • the salts of the compounds can be prepared in situ or separately reacted with an inorganic base or an organic base during the final separation, purification and synthesis of the compounds of the present invention.
  • the salt may form a salt with a base when the compound of the present invention contains an acidic group.
  • the salt include, but are not limited to, alkali metals such as lithium salts, sodium salts or potassium salts. Salts of; Salts with alkaline earth metals such as barium or calcium; Salts with other metals such as magnesium salts; Organic base salts such as salts with dicyclohexylamine; Salts with basic amino acids such as lysine or arginine.
  • an acid addition salt may be formed.
  • acid addition salt include, but are not limited to, inorganic acids, especially hydrofluoric acid (eg, hydrofluoric acid, hydrobromic acid, Hydroiodic acid or hydrochloric acid), salts with nitric acid, carbonate, sulfuric acid or phosphoric acid; Salts with lower alkyl sulfonic acids such as methanesulfonic acid, trifluoromethanesulfonic acid or ethanesulfonic acid; Salts with benzenesulfonic acid or p-toluenesulfonic acid; Salts with organic carboxylic acids such as acetic acid, fumaric acid, tartaric acid, oxalic acid, maleic acid, malic acid, succinic acid or citric acid; And salts with amino acids such as glutamic acid or aspartic acid.
  • hydrofluoric acid eg, hydrofluoric acid, hydrobromic acid, Hydroiodic acid or hydrochloric acid
  • Compound 1 to [Formula 5] or “Compound 6-56” according to the present invention is the compound itself, salts, hydrates, and solvates thereof. Can be used as a concept including all isomers.
  • hydrate includes a compound of the present invention comprising a stoichiometric or non-stoichiometric amount of water bound by a non-covalent intermolecular force. Or salts thereof.
  • solvate refers to a compound of the present invention or a salt thereof comprising a stoichiometric or nonstoichiometric amount of solvent bound by noncovalent intermolecular forces.
  • the compounds according to the invention can be prepared and used by methods known in the art, by their modified methods or by the method according to the invention, or can be purchased and used commercially.
  • the reaction solvent that can be used in the production process is not particularly limited as long as it is not involved in the reaction, for example, ethers such as diethyl ether, tetrahydrofuran, dioxane; Halogenated hydrocarbons such as dichloromethane and chloroform; Amines such as pyridine, piperidine and triethylamine, acetone; Alkyl ketones such as methyl ethyl ketone and methyl isobutyl; Alcohols such as methanol, ethanol and propanol; Aprotic polar solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, acetonitrile, dimethyl sulfoxide, hexamethyl phosphate triamide, and the like, and especially non-reactive used in organic synthesis.
  • ethers such as diethyl ether, tetrahydrofuran, dioxane
  • Halogenated hydrocarbons such as dichloromethane and
  • a solvent capable of separating the water generated during the reaction by the Dean-Stark trap is preferred.
  • examples of such a solvent include, but are not limited to, benzene, toluene, xylene, and the like.
  • Separation and purification of the reaction product is carried out through a process such as concentration, extraction, and the like, which is commonly performed in organic synthesis, and separation and purification may be performed through purification by column chromatography on silica gel, if necessary.
  • the invention also includes any modification to the methods for the preparation of the compounds, wherein the intermediate product obtainable in any of its steps can be used as starting material for the remaining steps, the starting material being reacted under reaction conditions. Formed within, or the reaction components can be used in the form of its salts or optically enantiomers.
  • the present invention relates to a method for preparing the compound of the above [Formula 1] to [Formula 5] from another viewpoint.
  • the preparation method is merely an exemplary method thereof, and may be suitably modified by various methods based on the art.
  • the separation and purification of non-exemplified compounds according to the present invention Modifications apparent to those skilled in the art can be successfully carried out, for example, by appropriately protecting the interferer, replacing it with another suitable reagent known in the art, or by customarily changing the reaction conditions.
  • algae inhabit the sea or fresh water and affect the ecosystem a lot
  • the term "harmful algae” used in the present invention causing the algae or red tide phenomena that adversely affects the following A bird that adversely affects the environment and economic activities.
  • Red tide is a phenomenon in which the color of the sea turns red, reddish brown, tan, green, yellow green and yellow due to abnormal growth of plankton due to the influx of organic pollutants, nitrogen and phosphorus from the land to the sea.
  • the causes of such red tide are mainly flagella algae and diatoms, and in addition, ciliated insects, cyanobacteria and red bacteria are known to cause red tide.
  • the present invention has an algicidal effect against the flagella algae and diatoms, cyanobacteria, etc. which cause the red tide.
  • the present invention is very effective in suppressing the growth of red algae as well as the above-described red algae.
  • Green algae refers to a phenomenon in which floating algae, or phytoplankton, multiply and accumulate on the surface of water in eutrophic lakes or slow-flowing streams, thereby turning the color of the green color significantly green.
  • Green algae is a symbolic phenomenon of water eutrophication, causing severe taste and toxic substances and destroying the balance and order of the entire aquatic ecosystem as well as its value as a water resource.
  • Green algae generally occur only in fresh water. Plant wastewater, domestic sewage, fertilizers, pesticides, livestock and human manure, and other land pollutants enter rivers or lakes, are sedimented in the lower part of the body of water, decomposed by bacteria and decomposed. Organics produce nitrogen and phosphorus, which feed plankton, causing green algae in sea and fresh water. These green algae reduce dissolved oxygen in the water, produce toxic green algae and various green alga planktons, killing fish and aquatic organisms, and depositing heavy metals in the bottom of the water where organic matters from the land are deposited. It can pollute and poison fish, and cause many problems such as environmental damage and damage to natural beauty.
  • algae blooming in rivers and lakes are mainly cyanobacteria in summer and diatoms in spring and winter, but various species of algae, such as wa- chyloid and small silver flanking seedlings, vary depending on the region. It is caused by.
  • the green algae is a symbolic phenomenon of water eutrophication, causing severe odors and generating toxic substances, which destroys the balance and order of the entire aquatic ecosystem as well as its value as a water resource.
  • composition for controlling harmful algae containing the compound of [Formula 1] to [Formula 6] according to the present invention is a microalgae (namzo, diatoms, green algae, in freshwater or seawater such as ponds, reservoirs, lakes, lakes, rivers or rivers) It is possible to more effectively control the occurrence of green algae caused by abnormal proliferation of euglejo steel, whiskey imitation steel and yellow wool imitation steel, brown schist imitation steel and redness steel).
  • the harmful algae that may exhibit the algae effect of the present invention include Namjo River, Diatom Steel, Green Algae River, Waco-Modulated Steel, Needle-Shaped Hair Steel, Euglenazo Steel, Yellow Knitted Steel, Brown Knitted Steel and Contains red algae algae.
  • the Cyanophyceae algae is a microcystis, Anabena, Aphanizomenon, Oscillatoria, and Waronichinia genus algae. It may be selected, and preferably may be algae of the genus Microcystis or Anabaena.
  • the diatom steel (Bacillariophyceae) algae are Stefanodiscus, Cyclotella, Cyclostaphanos, Aulacoseira, Mellosira, Thalassiosira, Ketose Chatoceros Skeletonema, Achnanthes, Asterionella, Acanthoceras, Navicula, Nitzschia, Diploloneis ), Cymbella, Gomphonema, Surirella, Synedra, Frazilaria, Cylindrotheca, Eucampia, Kosmarium ( Cosmarium, and a group consisting of birds of the genus Tabellaria, and may preferably be a bird of the genus Stepanoodiscus, Cyclolotella, or Aulacoseira. .
  • the algae (Chlorophyceae) algae are Closteriopsis (Closteriopsis), Closterium (Closterium), Hydrotheca (Hydrotheca), Spirogyra (Spirogyra), Gonatozygon (Aconastrum), Micractinium, Lagerheimia, Westella, Eudorina, Pandorina, Volvox, Dictiospaerium, Clarococum (Chlorococcum), Botryococcus, Staurastrum, Closterium, Monoraphidium, Ankistrodesmus, Kirchneriella , Pediastrum, Senedesmus, Coelastrium, Clamydomonas and Chlorella genus.
  • the Euglenophyceae algae may be selected from a crowd consisting of Trachelomonas, Phacus, and Euglena.
  • the algae (Dinophyceae) algae (Alecandrium), Coclodinium (Cochlodinium), heterocapsa (Heterocapsa), Prorocentrum (Prorocentrum), Peridinium (Ceratium), the crowd consisting of algae Can be selected from.
  • the needle-like imitation steel (IRaphidophyceae) algae may be a genus Chattonella (Chattonella).
  • the Chrysophyceae algae may be selected from the group consisting of Dinobryon, Euroglena, Synura, and Malolomonas algae.
  • the brown flagella steel (Cryptophyceae) algae may be Cryptomonas algae.
  • the red blood (Phodophyceae) algae may be algae of the genus Rhodomonas.
  • the present invention provides a composition for controlling harmful algae containing a compound selected from the group consisting of compounds represented by the above [Formula 1] to [Formula 5] or a salt thereof as an active ingredient.
  • the harmful algae control composition of the present invention can be prepared in a variety of forms according to known methods, formulations for the stable expression of the effect within the range that does not inhibit the effect, enhanced adhesion to the organism to be applied, simplicity of transport and treatment It may further comprise a surfactant such as an academically acceptable solid carrier, liquid carrier, liquid diluent, liquefied gas diluent, solid diluent, or other suitable adjuvant such as emulsifiers, dispersants or foaming agents.
  • a surfactant such as an academically acceptable solid carrier, liquid carrier, liquid diluent, liquefied gas diluent, solid diluent, or other suitable adjuvant such as emulsifiers, dispersants or foaming agents.
  • the harmful algae control composition of the present invention may preferably be formulated into an emulsion, an hydrating agent, a granule, a powder, a capsule and a gel, and is preferably provided as a contact agent for buoyancy of the preparation.
  • the present invention is harmful including the treatment of a compound selected from the group consisting of the compounds represented by the above [Formula 1] to [Formula 5] or salts thereof to the area where the harmful algae occurred or to the area of development Provides a method for controlling algae.
  • compositions in the form of a powder or a high concentration of liquid form by spraying locally on the area where the green algae occurred or visible signs using a simple green alga within a few days to a week can be controlled and prevented.
  • the present invention It is a technology (green control or prevention) that can be applied to the restoration and preservation management of small-scale water systems, and applied to artificial farms, golf courses, parks, amusement parks, ponds in recreational facilities, reservoirs, lakes, rivers, and agricultural reservoirs scattered throughout the country. Preventing damage and controlling harmful algae does not cause other environmental pollution. In addition, it can be used as a major component of antifouling paint used in ships, wharf facilities, swimming pools, buildings, etc., and replaces toxic conventional paints. It can also be prevented.
  • Naphthoquinone derivatives according to the present invention were prepared by the following method.
  • Formula 19] Formula 20: 1- (6-Methoxy-2-(((1,4,5,8-tetramethoxynaphthalen-2-yl) methyl) -amino) -1H-benzo [d] imidazol- 1-yl) ethan-1-one, 1- (5- methoxy -2-(((1,4,5,8- tetramethoxynaphthalen -2- yl ) methyl) amino) -1H-benzo [d] imidazol-1-yl) ethan-1-one
  • the compound of [Formula 49] was prepared using 5 mL of methanol in 158 mg of stirred naphthalen-1,4-dione in 5 mL of methanol. Specifically, after 24 hours of reaction at room temperature, the reaction mixture was concentrated in vacuo and purified by flash column chromatography (100% EtOAc) to obtain the compound of [Formula 49]. Yield: 68%
  • the compound of [Formula 50] was prepared using 5 mL of methanol in 158 mg of stirred naphthalen-1,4-dione in 5 mL of methanol. Specifically, after 24 hours of reaction at room temperature, the reaction mixture was concentrated in vacuo and purified by flash column chromatography (100% EtOAc) to obtain a compound of [Formula 50]. Yield: 57%
  • the compound of [Formula 51] was prepared using 5 mL of methanol in 158 mg of naphthalen-1,4-dione, which was stirred in 5 mL of methanol. Specifically, after 24 hours of reaction at room temperature, the reaction mixture was concentrated in vacuo and purified by flash column chromatography (100% EtOAc) to obtain the compound of [Formula 51]. Yield: 62%
  • the compound of [Formula 52] was prepared by using 5 mL of methanol in 158 mg of naphthalen-1,4-dione, which was stirred in 5 mL of methanol. Specifically, after 24 hours of reaction at room temperature, the reaction mixture was concentrated in vacuo and purified by flash column chromatography (100% EtOAc) to obtain the compound of [Formula 52]. Yield: 60%
  • the compound of [Formula 53] was prepared by using 5 mL of methanol in 158 mg of naphthalen-1,4-dione, which was stirred in 5 mL of methanol. Specifically, after 24 hours of reaction at room temperature, the reaction mixture was concentrated in vacuo and purified by flash column chromatography (100% EtOAc) to obtain the compound of [Formula 53]. Yield: 60%
  • the compound of [Formula 54] was prepared using 5 mL of methanol in 158 mg of stirred naphthalen-1,4-dione in 5 mL of methanol. Specifically, after 24 hours of reaction at room temperature, the reaction mixture was concentrated in vacuo and purified by flash column chromatography (100% EtOAc) to obtain the compound of [Formula 54]. Yield: 29%
  • the compound of [Formula 55] was prepared using 5 mL of methanol in 158 mg of naphthalen-1,4-dione, which was stirred in 5 mL of methanol. Specifically, after 24 hours of reaction at room temperature, the reaction mixture was concentrated in vacuo and purified by flash column chromatography (100% EtOAc) to obtain the compound of [Formula 55]. Yield: 25%
  • the compound of [Formula 56] was prepared using 5 mL of methanol in 158 mg of naphthalen-1,4-dione, which was stirred in 5 mL of methanol. Specifically, after 24 hours of reaction at room temperature, the reaction mixture was concentrated in vacuo and purified by flash column chromatography (100% EtOAc) to obtain the compound of [Formula 56]. Yield: 21%
  • Treatment conditions were directly counted visually by SR-chamber or heamocytometer under incubation or inverted microscope while incubating for 7 days or 10 days under incubation conditions of algae. After 7 or 10 days after treatment, the reduction ratio of the cells, ie, the algal activity (%), was calculated using the following formula.
  • Algal activity (%) (1- Tt / Ct ) x 100
  • T represents the density of cells after compound treatment
  • C represents the density of cells not treated with compound
  • t represents culture time
  • the algae effect was derived by inoculating the substances developed for various phytoplankton including harmful algae at concentrations of 1, 5, 10, and 20M, respectively.
  • Algal activity of each compound obtained on the basis of the above formula was expressed as ⁇ 60, 70, 80, 90%.
  • the algicidal effects of the compounds were screened using a Microplate assay.
  • the synthesized derivatives were inoculated into each algal species in each log growth period at a concentration of 1 to 20 uM and cultured and counted for 7 days.
  • On day 0, 1, 2, 4, and 7, take 10-50 ul of sample from each well, place on a Neubauer hemocytometer or SR chamber, count the intact algae cells under an IX71 microscope (Olympus, Japan).
  • the killing ability (%) of the substance was determined by measuring the cell number decreased compared to the control.
  • the cell counts of the 7th day of the experiment showed the killing ability of the corresponding algae according to the concentration of each algae.
  • FIG. 1 is a view showing the results of testing the green algae control effect on the freshwater microalgae of the harmful algae control composition according to an embodiment of the present invention
  • Figure 2 is a composition of the harmful algae control composition according to an embodiment of the present invention
  • the compounds of [Formula 6] to [Formula 56] according to the present invention showed more than 90% of the killing ability at 1, 5, 10, 20 uM concentrations of cyanobacteria Anabaena sp. And Microcystis sp. Especially, even at very low concentration of 1 uM, more than 90% of the effects could be observed, and only harmful cyanobacteria could be specifically controlled. Especially, Anabaena sp. Showed more than 90% algae effect at low concentration of 1 uM, and it was the main causative species of algae in winter and the diatoms Stephanodiscus sp. At 1, 5, 10, 20 uM showed more than 80% of the killing effect.
  • composition containing the compounds of the present invention as an active ingredient is Aulacoseira. granulata , Synedra While it has little effect on species that are relatively less problematic in freshwater and brackish waters such as acus , it has been found that there is an excellent algae effect against harmful algae that cause green algae and red tide phenomena at home and abroad.
  • Selenastrium an indicator organism for evaluating ecotoxicity of OECD, EPA, to investigate the effects of compounds according to the present invention on ecosystem capricornutum (selenastrium capricornium ) , Daphnia magna , Danio Ecotoxicity assessment was performed using rerio (zebrafish ) .
  • Selenastrum capricornutum (selenastrum capricornium ) was prepared and inoculated with a new compound to prepare a starting density and inoculation concentration of the indicator organism at 1 ⁇ 10 4 cells / mL, 2, 1, 0.5, 0.2, and 0.1 ⁇ M, respectively. .
  • Mixed cultures were incubated under the optimal growth conditions of indicator organisms (20 ° C., 50 mol / m 2 s, EG: JM medium, 12hr light: 12hr dark cycle). The change in the number of indicator organisms was directly observed under an optical microscope for 72 hours at 12 hours.
  • Figure 3 of the composition for controlling harmful algae according to the present invention for Selenastrium capricornutum, Daphnia magna, Zebrafish (Danio rerio) as indicator organisms for the EPA standard ecotoxicity assessment A diagram showing the results of the ecotoxicity assessment.
  • the compounds according to the present invention are Selenastrum capricortrum, Daphnia magna, Danio according to the inoculation concentration
  • the compounds according to the present invention are Selenastrum capricortrum, Daphnia magna, Danio according to the inoculation concentration
  • Example 3 10 L scale Microcosm test for species diversity enhancing effect
  • Stephanodiscus sp To determine whether the algae control technology using the composition for controlling harmful algae containing the compounds according to the present invention affects aquatic ecosystem restoration and species diversity. Microcosm experiments were performed using the predominant Nakdong River field water.
  • Figure 4 is a graph measuring the amount of change in phytoplankton in microcosm when the harmful algae control composition according to the present invention with respect to the field number of the Nakdong River dominant stephanodiscus, Figure 5 except for stephanodiscus in microcosm It is a graph measuring the change in phytoplankton, Figure 6 is a graph showing the change in species diversity index of phytoplankton in the microcosm.
  • Stephanodiscus sp. A target bird, increased from 3.9 ⁇ 10 3 cells / mL to 9.1 ⁇ 10 4 cells / mL in the control group during the experimental period, but in the treatment group inoculated with the compound according to the present invention from day 2 to 10 after inoculation continue to decrease until the 10th day, the target species Stephanodiscus While the sp. species decreased to 6.4 ⁇ 10 2 cells / ml, the algae effect was observed to be 99%, whereas for phytoplankton other than the target species Stephanodiscus sp., in the control group, the Stephanodiscus sp.
  • According to the present invention can be very useful for preventing harmful algae generation and fresh water pollution occurring in fresh or sea water.
  • it can be utilized as an important antifouling agent or paint for green algae and red tide has the advantage that the possibility of commercialization is very large.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Plant Pathology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Pest Control & Pesticides (AREA)
  • Hydrology & Water Resources (AREA)
  • Health & Medical Sciences (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

The present invention relates to a composition containing a naphthoquinone derivative for controlling harmful algae and a method for controlling harmful algae using the same. The composition for controlling harmful algae according to the present invention can selectively control only harmful algae that abnormally proliferate in a pond, a reservoir, a lake, a marsh, a stream, a river, or the like, and thus, the composition according to the present invention is very useful in preventing the formation of a large amount of harmful algae in freshwater or saltwater and preventing the contamination of water.

Description

나프토퀴논 유도체를 포함하는 유해조류 제어용 조성물 및 이를 이용한 유해조류 제어방법Harmful algae control composition comprising naphthoquinone derivatives and harmful algae control method using the same
본 발명은 나프토퀴톤 유도체를 포함하는 유해조류 제어용 조성물 및 이를 이용하여 유해조류를 제어하는 방법에 관한 것이다.The present invention relates to a harmful algae control composition comprising a naphthoquitone derivative and a method for controlling the harmful algae using the same.
우리나라와 같이 온대지방의 부영양화 되어 있는 수생태계는 풍부한 영양분을 바탕으로 식물플랑크톤과 같은 1차 생산자의 생장에 유리한 환경이 조성되면서 유해조류의 대발생(HAB, Harmful Algal Blooming)이 매년 반복되고 있다(환경부 2012).In Korea, the eutrophic aquatic ecosystem in temperate regions has abundant nutrients, creating a favorable environment for the growth of primary producers such as phytoplankton, and the generation of harmful algal blooms (HAB) is repeated every year. Ministry of Environment 2012).
유해 조류의 대발생(HAB, Harmful Algal Blooming)은 이들의 생육 서식지에 따라 산업적으로 다양한 문제를 일으키고 있다. 호수, 하천, 저수지, 양어장 등지에서의 유해조류의 대발생은, 1) 수생생물의 폐사를 일으키고 (Duke 등, Weed Sci. 50: 138-151, 2002); 2) 이취미(off-flavor) 물질을 발생시켜 음용수 및 양식어류의 육질을 떨어뜨리는데, 예를 들면, 유해 조류인 오실라토리아 페로나타(Oscillatoria perornata)의 서식지에서는 물고기에 흙냄새(off-flavor)가 나게 되며(Duke 등, Weed Sci. 50: 138-151, 2002); 3) 사람 및 동물에 유해한 독소가 생성되는데, 예를 들어, 마이크로시스티스(Microcystis) 속, 노듈라리아(Nodularia) 속, 아나베나(Anabaena) 속, 아파니조메논(Aphanizomenon)속 등의 일부 조류는 각각 사람 및 동물에 유해한 독소인 마이크로시스틴(microcystins), 노듈라린(nodularin), 아나톡신(anatoxin) 및 삭시톡신(saxitoxin)을 생산한다고 알려져 있고(Haider 등, Chemosphere 52:1-21, 2003); 4) 물의 착색 및 이상발포(scum) 형성 등으로 불쾌감을 유발하고 여가 및 산업 활동을 저해하며; 5) 상수처리과정 중의 여과지 폐쇄 및 응집 침전 저해 등으로 인해 염소의 과다처리가 필요하므로 경제적 손실을 야기한다.Harmful algal blooms (HABs) are causing various industrial problems, depending on their habitat. The outbreaks of harmful algae in lakes, streams, reservoirs, fish farms, etc., include: 1) aquatic deaths (Duke et al., Weed Sci. 50: 138-151, 2002); 2) It produces off-flavor substances and degrades the quality of drinking water and farmed fish. For example, in the habitats of harmful algae Oscillatoria perornata, the fish smell off- flavors) (Duke et al., Weed Sci. 50: 138-151, 2002); 3) Toxins that are harmful to humans and animals are produced, for example, some birds, such as the genus Microcystis, Nodularia, Anabaena, and Aphanizomenon. Are known to produce toxins that are harmful to humans and animals, respectively, microcystins, nodularin, anatoxin and saxitoxin (Haider et al., Chemosphere 52: 1-21, 2003); 4) causing discomfort and impeding leisure and industrial activity due to the coloring of water and the formation of scum; 5) Over-treatment of chlorine is necessary due to filter paper closure and inhibition of flocculation sedimentation during water treatment, causing economic loss.
따라서 유해조류 원인생물에 의한 현상을 제거 또는 완화시키기 위한 기술들이 개발되었는데, 지금까지 알려진 기술들로는 화학약품 살포법, 초음파 및 오존처리법, 해면회수 및 침강법, 황토살포법 등이 있다.Therefore, techniques have been developed to remove or mitigate the phenomena caused by harmful algae-causing organisms. Techniques known to date include chemical spraying, ultrasonic and ozone treatment, sponge recovery and sedimentation, and yellow soil spraying.
부영양성 호수 및 하천에서 유해조류 대발생으로 증가된 수중 내 오염물질 (자체생성유기물: 녹조생물)을 제어하는 것은 수자원 문제해결의 가장 핵심적인 부분이며, 적용될 기술 역시 경제성이 높고 생태계 혼란이 가장 적은 친환경적인 기술이어야 한다.Controlling waterborne contaminants (self-producing organics: green algae) caused by the outbreak of harmful algae in eutrophic lakes and streams is an essential part of solving water resource problems, and the technology to be applied is also economical and has the least amount of ecosystem disruption. Eco-friendly technology
그러나 화학약품 살포법은 황산구리(CuSO4), 이산화염소(ClO2), 시마진(Simazine) 등을 살포하는 방법으로서 과거부터 이용되어 왔는데, 그 중 비용이 가장 저렴하여 널리 이용되는 황산구리는 적조원인 생물 외에 다른 해양생물에까지 영향을 끼쳐 수중의 다른 생물에 대한 독성 및 부식의 측면에서 문제를 일으킬 수 있으며, 또한 일시적 효과만 나타내기 때문에 반복 사용해야 하고, 적조 발생시 수반되는 높은 알칼리성 환경 조건하에서는 황산구리가 불안정해지기 때문에 많은 양을 처리하여야 하므로 비경제적이라는 단점이 있다. However, the chemical spraying method has been used since the past as a method of spraying copper sulfate (CuSO4), chlorine dioxide (ClO2), simazine (Simazine), etc. Among them, copper sulfate, which is widely used because it is the lowest cost, It can affect other marine organisms, cause problems in terms of toxicity and corrosion to other organisms in the water, and because it only shows temporary effects, it must be used repeatedly, and copper sulfate becomes unstable under the high alkaline environmental conditions accompanying red tide. Because of the large amount of processing has to be disadvantageous.
초음파 처리법은 초음파(160~400kHz)로 적조원인생물의 세포를 파괴하는 방법이고, 오존처리법은 적조 발생 수역에 고압의 오존을 투입하여 적조로 인한 독성을 중화시키는 방법이나, 두 방법 모두 실용화단계에는 아직 이르지 못하고 있는 실정이다. Ultrasonic treatment is the method of destroying cells of red tide causative organisms by ultrasonic waves (160 ~ 400kHz), and ozone treatment is a method to neutralize the toxic effects of red tide by putting high pressure ozone in the water where red tide is generated. It is not yet reached.
해면회수 및 침강법은 원심분리기, 응집본조, 혼합조 및 가압부상조로 구성된 가압부상분리장치를 이용하여 기포를 발생시켜 적조 생물을 흡착, 부상시키고 해표면에서 회수하는 방법이며, 황토살포법은 황토를 해수 중에 살포하여 적조생물을 흡착 침강시키고, 황토속의 알루미늄 이온이 적조원인 생물의 세포를 파괴시키는 성질을 이용한 방법이다. 그러나 해수 중에 황토를 살포하면 부유물질이 증가되어 어류 양식장과 저층에 정착생물이 살고 있는 어장에서는 어류 아가미 폐쇄로 호흡 장애 등 생물에 영향을 미칠 수 있는 문제점이 있다. Sponge recovery and sedimentation is a method of generating bubbles by using a pressure flotation device consisting of a centrifuge, agglomeration main tank, a mixing tank, and a pressure flotation tank to adsorb, float, and recover red tide organisms from the sea surface. Is adsorbed and precipitated red tide organisms in seawater, and aluminum ions in loess destroy the cells of living organisms. However, when the yellow soil is sprayed in seawater, suspended solids are increased, and there is a problem that fish gill closure may affect living organisms such as respiratory failure in fish farms and fish farms where settlement organisms live in the lower layers.
그리고, 살조제 이외에도 심층폭기/강제순환, 가압부상/물리적 수거, 초음파/오존처리 등의 물리, 화학적인 방법과 녹조를 제어가능한 세균, 바이러스, 곰팡이, 원생생물, 동물플랑크톤 등을 활용하는 생물학적인 방법 등이 있고, 여타 물리, 화학적 방법은 중, 소규모 수계에서 수질개선과 유지를 위해 많이 사용되고 있다. 그러나 이 방법의 경우 적용 수계의 규모와 환경적 특징에 따라서 적용이 어려운 경우와 효과가 미미한 경우가 많이 발생하였다. 게다가 전력, 노동력, 설비, 운영비 등의 부가적인 비용이 발생하는 문제점이 있다. 생물학적 방법의 경우에는 현재까지 실제 현장에서 그 효과를 인정받지 못하였으며, 외생종의 현장투여로 인한 생태계 교란과 현장에 투여하기 앞서 필요한 배양시설과 유지관리 비용이 발생하는 등의 문제점이 대두되었다. In addition to the algae, physiological and chemical methods such as in-depth aeration / forced circulation, pressure injury / physical collection, and ultrasonic / ozone treatment and biological agents using bacteria, viruses, fungi, protozoa, and zooplankton that can control green algae And other physical and chemical methods are widely used for improving and maintaining water quality in medium and small scale water systems. However, this method has many cases where it is difficult to apply and the effect is insignificant depending on the size and environmental characteristics of the applied water system. In addition, there is a problem that additional costs such as power, labor, equipment, operating costs. In the case of biological methods, the effects have not been recognized in the actual field to date, and problems such as disturbance of ecosystems due to the administration of exogenous species and incurring necessary culture facilities and maintenance costs before administration to the site have arisen.
일례로 정부는 4대강 수계 물관리 종합대책의 일환으로 1993억원을 들여 4대 강에 하천정화시설, 가압부상시설, 수초재배섬, 호소수질조사선, 수질정화습지, 생태보 (어도), 초기우수처리시설 (stormfilter 등) 등 기존의 녹조제어기술을 사용하여 99년부터 2005년까지 녹조방지사업을 추진하였으나 4대강 녹조방지사업이 큰 실효를 거두지 못한 것으로 드러났다.For example, the government has invested KRW 193 billion as a part of the comprehensive water management system for the four major rivers. River purification facilities, pressurized flotation facilities, aquatic planting islands, lake water quality survey vessels, water purification wetlands, ecological treasures (Edo) Although green algae prevention projects were carried out from 1999 to 2005 using existing green algae control technologies such as treatment facilities (stormfilter, etc.), the four major river algae prevention programs were found to be ineffective.
따라서, 상술한 종래 기술들의 문제점을 해결하고, 유해 조류를 효과적으로 제어할 수 있는 새로운 유해조류 제어 기술에 대한 개발이 절실히 필요한 실정이다.Therefore, there is an urgent need to develop a new harmful algae control technique that can solve the problems of the above-described conventional techniques and effectively control the harmful algae.
본 발명은 상술한 문제점을 해결하기 위하여 안출된 것으로, 본 발명에서는 유해조류의 증식을 선택적으로 제어할 수 있는 나프토퀴논 유도체를 포함하는 유해조류 제어용 조성물을 제공하고자 한다.The present invention has been made to solve the above problems, the present invention is to provide a harmful algae control composition comprising a naphthoquinone derivative that can selectively control the growth of harmful algae.
또한, 본 발발명은 상기 유해조류 제어용 조성물을 이용하여 유해조류의 이상 증식을 제어 또는 방지하는 방법을 제공하고자 한다.In addition, the present invention is to provide a method for controlling or preventing abnormal growth of harmful algae using the harmful algae control composition.
상기 과제를 해결하기 위하여, 본 발명은 하기 [화학식 1] 내지 [화학식 5]로 표시되는 화합물로 이루어진 군 중에서 선택되는 화합물 또는 그의 염을 유효성분으로 포함하는 유해조류 제어용 조성물을 제공한다:In order to solve the above problems, the present invention provides a composition for controlling harmful algae comprising a compound selected from the group consisting of compounds represented by the following [Formula 1] to [Formula 5] or a salt thereof as an active ingredient:
Figure PCTKR2016013447-appb-I000001
Figure PCTKR2016013447-appb-I000001
상기 [화학식 1] 내지 [화학식 5]에서,In [Formula 1] to [Formula 5],
X는 O, S 또는 NR2이고,X is O, S or NR 2 ,
R1은 수소, 할로겐, CF3, 치환 또는 비치환된 탄소수 1 내지 12의 알킬기 또는 치환 또는 비치환된 탄소수 1 내지 12의 알콕시기이며, R 1 is hydrogen, halogen, CF 3 , a substituted or unsubstituted alkyl group having 1 to 12 carbon atoms, or a substituted or unsubstituted alkoxy group having 1 to 12 carbon atoms,
R2는 수소, 아세틸(Ac) 또는 t-부톡시카보닐(Boc)이고,R 2 is hydrogen, acetyl (Ac) or t-butoxycarbonyl (Boc),
R3는 하기 [구조식 1] 중에서 선택되는 어느 하나이며,R 3 is any one selected from the following [Formula 1],
[구조식 1][Formula 1]
Figure PCTKR2016013447-appb-I000002
Figure PCTKR2016013447-appb-I000002
상기 [구조식 1]에서, In [Formula 1],
*는 상기 [화학식 5]에 결합하는 위치를 표시한 것이다.* Indicates the position of binding to the above [Formula 5].
또한, 본 발명은 상기 유해조류 제어용 조성물을 유해조류가 번무한 지역 또는 발생징후가 관찰된 지역에 처리하는 것을 포함하는 유해조류의 제어방법을 제공한다.In addition, the present invention provides a method for controlling harmful algae comprising treating the harmful algae control composition in a region in which harmful algae is busy or in a region in which developmental symptoms are observed.
본 발명에 따른 유해조류 제어용 조성물은 연못, 저수지, 호수, 호소, 하천 또는 강 등에서 이상 증식이 발생한 유해조류만을 선택적으로 제어가능하므로, 담수 또는 해수에서 발생하는 유해조류 대발생을 예방하고 수질오염을 방지하는데 매우 유용하게 사용될 수 있다. 또한, 녹조 및 적조에 대한 방오제 또는 도료의 중요한 성분으로 활용 가능하여 상용화 가능성이 매우 크다는 장점이 있다.The harmful algae control composition according to the present invention can selectively control only harmful algae in which abnormal proliferation occurs in ponds, reservoirs, lakes, lakes, rivers, or rivers, thereby preventing the occurrence of harmful algae in fresh or seawater and preventing water pollution. It can be very useful to prevent this. In addition, it can be utilized as an important antifouling agent or paint for green algae and red tide has the advantage that the possibility of commercialization is very large.
도 1은 본 발명의 일 실시예에 따른 유해조류 제어용 조성물의 담수 미세조류에 대한 녹조제어 효과를 테스트한 결과를 나타낸 도면이다.1 is a view showing the results of testing the green algae control effect on the freshwater microalgae of the harmful algae control composition according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 유해조류 제어용 조성물의 해수 미세조류에 대한 녹조제어 효과를 테스트한 결과를 나타낸 도면이다.2 is a view showing the results of testing the green algae control effect on the seawater microalgae of the harmful algae control composition according to an embodiment of the present invention.
도 3은 미국 EPA 기준 생태독성평가를 위한 지표 생물인 셀레나스트럼 카프리코너튬(Selenastrum capricornutum), 다프니아 마그나(Daphnia magna), 지브라피쉬(Danio rerio)에 대한 본 발명에 따른 유해조류 제어용 조성물의 생태독성 평가 결과를 나타낸 도면이다.Figure 3 of the harmful algae control composition according to the present invention for Selenastrum capricornutum, Daphnia magna, Zebrafish (Danio rerio) as indicator organisms for the US EPA standard ecotoxicity assessment A diagram showing the results of the ecotoxicity assessment.
도 4는 스테파노디스커스(Stephanodiscus)가 우점한 낙동강 현장수에 대하여 본 발명에 따른 유해조류 제어용 조성물 처리시, microcosm 내 식물플랑크톤 변화량을 측정한 그래프이다.Figure 4 is a graph measuring the amount of change in phytoplankton in the microcosm during the treatment of harmful algae control composition according to the present invention for the field water of the Nakdong river dominated by Stephanodiscus (Stephanodiscus).
도 5는 스테파노디스커스(Stephanodiscus)가 우점한 낙동강 현장수에 대하여 본 발명에 따른 유해조류 제어용 조성물 처리시, microcosm 내 스테파노디스커스(Stephanodiscus)를 제외한 식물플랑크톤 변화량을 측정한 그래프이다.Figure 5 is a graph measuring the change in phytoplankton except for stephanodiscus in the microcosm when the composition for controlling harmful alga according to the present invention with respect to the site number of the Nakdong river dominated by Stephanodiscus (Stephanodiscus).
도 6은 스테파노디스커스(Stephanodiscus)가 우점한 낙동강 현장수에 대하여 본 발명에 따른 유해조류 제어용 조성물 처리시, microcosm 내 식물플랑크톤의 종다양성 지수 변화값을 나타낸 그래프이다.Figure 6 is a graph showing the change in species diversity index of phytoplankton in microcosm when the composition for controlling harmful alga according to the present invention with respect to the field water of the Nakdong River dominated by Stephanodiscus (Stephanodiscus).
이하, 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.
종래 유해조류의 살조제로 사용되어 온 황산구리 또는 구리 유기화합물 등은 유해조류에 대한 제어 효과는 우수하지만, 비용이 많이 소요되고 타생물에 대한 독성을 보이거나 화학물질에 의한 2차적 환경오염 등을 유발하는 문제점이 있었다. 또한, 선택적인 조류제어가 불가능하여 무해한 조류 종들에게도 광범위한 피해를 주는 문제점이 있었다. 생태계에 2차적 교란을 일으킨다는 문제점이 있었다.Copper sulfate or copper organic compounds, which have been conventionally used as algae killing agents for harmful algae, have excellent control effects on harmful algae, but are costly, toxic to other organisms, and secondary environmental pollution by chemicals. There was a problem causing. In addition, there was a problem that the selective algae control is not possible to cause a wide range of damage to harmless bird species. There was a problem of causing secondary disturbance in the ecosystem.
본 발명은 상술한 종래의 유해조류 제어 기술에 대한 해결책으로서 유해조류에만 선택적인 제어효과를 가져 수생 생물에 대한 광범위한 피해와 생태계 2차적 교란을 방지할 수 있는 새로운 조류제어 물질 및 이를 이용하여 유해 조류를 제어하는 방법에 관한 것이다.The present invention is a solution to the conventional harmful algae control technology described above, which has a selective control effect only on harmful algae to prevent a wide range of damage to aquatic organisms and ecosystem secondary disturbances and harmful algae using the same It relates to a method of controlling.
구체적으로 본 발명은 하기 [화학식 1] 내지 [화학식 5]로 표시되는 화합물로 이루어진 군 중에서 선택되는 화합물 또는 그의 염을 유효성분으로 포함하는 유해조류 제어용 조성물을 제공한다:Specifically, the present invention provides a harmful algae control composition comprising a compound selected from the group consisting of compounds represented by the following [Formula 1] to [Formula 5] or a salt thereof as an active ingredient:
Figure PCTKR2016013447-appb-I000003
Figure PCTKR2016013447-appb-I000003
상기 [화학식 1] 내지 [화학식 5]에서,In [Formula 1] to [Formula 5],
X는 O, S 또는 NR2이고,X is O, S or NR 2 ,
R1은 수소, 할로겐, CF3, 치환 또는 비치환된 탄소수 1 내지 12의 알킬기 또는 치환 또는 비치환된 탄소수 1 내지 12의 알콕시기이며, R 1 is hydrogen, halogen, CF 3 , a substituted or unsubstituted alkyl group having 1 to 12 carbon atoms, or a substituted or unsubstituted alkoxy group having 1 to 12 carbon atoms,
R2는 수소, 아세틸(Ac) 또는 t-부톡시카보닐(Boc)이고,R 2 is hydrogen, acetyl (Ac) or t-butoxycarbonyl (Boc),
R3는 하기 [구조식 1] 중에서 선택되는 어느 하나이며,R 3 is any one selected from the following [Formula 1],
[구조식 1][Formula 1]
Figure PCTKR2016013447-appb-I000004
Figure PCTKR2016013447-appb-I000004
상기 [구조식 1]에서, In [Formula 1],
*는 상기 [화학식 5]에 결합하는 위치를 표시한 것이다.* Indicates the position of binding to the above [Formula 5].
이때, 상기 [화학식 1] 내지 [화학식 5]로 표시되는 화합물은 하기 [화학식 6] 내지 [화학식 56]으로 표시되는 화합물 중에서 선택되는 화합물 또는 그의 동종체 화합물, 또는 그들의 염을 유효성분으로 포함한다:In this case, the compound represented by the above [Formula 1] to [Formula 5] comprises a compound selected from the compound represented by the following [Formula 6] to [Formula 56] or homologue compounds thereof, or salts thereof as an active ingredient. :
Figure PCTKR2016013447-appb-I000005
Figure PCTKR2016013447-appb-I000005
Figure PCTKR2016013447-appb-I000006
Figure PCTKR2016013447-appb-I000006
Figure PCTKR2016013447-appb-I000007
Figure PCTKR2016013447-appb-I000007
Figure PCTKR2016013447-appb-I000008
Figure PCTKR2016013447-appb-I000008
Figure PCTKR2016013447-appb-I000009
Figure PCTKR2016013447-appb-I000009
또한, 상기 화합물들의 염은 본 발명의 화합물을 최종적으로 분리, 정제 및 합성하는 동안에 동일반응계에서 제조하거나 별도로 무기 염기 또는 유기 염기와 반응시켜 제조할 수 있다. In addition, the salts of the compounds can be prepared in situ or separately reacted with an inorganic base or an organic base during the final separation, purification and synthesis of the compounds of the present invention.
상기 염으로는 본 발명의 화합물이 산성기를 함유하고 있을 경우, 염기와 염을 형성할 수 있으며, 이러한 염으로는 예를 들면, 이에 한정되지는 않으나 리튬염, 나트륨염 또는 칼륨염과 같은 알칼리금속과의 염; 바륨 또는 칼슘과 같은 알칼리토금속과의 염; 마그네슘염과 같은 기타 금속과의 염; 디시클로헥실아민과의 염과 같은 유기 염기염; 리신 또는 아르기닌과 같은 염기성 아미노산과의 염을 포함할 수 있다. The salt may form a salt with a base when the compound of the present invention contains an acidic group. Examples of the salt include, but are not limited to, alkali metals such as lithium salts, sodium salts or potassium salts. Salts of; Salts with alkaline earth metals such as barium or calcium; Salts with other metals such as magnesium salts; Organic base salts such as salts with dicyclohexylamine; Salts with basic amino acids such as lysine or arginine.
또한, 본 발명의 화합물이 분자 내에 염기성 기를 함유하는 경우에는 산부가염을 형성할 수 있으며, 이러한 산부가염의 예로는, 이에 한정되지는 않으나, 무기산, 특히 할로겐화수소산(예컨대, 불소화수소산, 브롬화수소산, 요오드화수소산 또는 염소화수소산), 질산, 탄산, 황산 또는 인산과의 염; 메탄술폰산, 트리플루오로메탄술폰산 또는 에탄술폰산과 같은 저급알킬 술폰산과의 염; 벤젠술폰산 또는 p-톨루엔술폰산과의 염; 아세트산, 푸마르산, 타르타르산, 옥살산, 말레산, 말산, 숙신산 또는 시트르산과 같은 유기카르복실산과의 염; 및 글루탐산 또는 아스파르트산과 같은 아미노산과의 염을 포함할 수 있다. In addition, when the compound of the present invention contains a basic group in the molecule, an acid addition salt may be formed. Examples of such acid addition salt include, but are not limited to, inorganic acids, especially hydrofluoric acid (eg, hydrofluoric acid, hydrobromic acid, Hydroiodic acid or hydrochloric acid), salts with nitric acid, carbonate, sulfuric acid or phosphoric acid; Salts with lower alkyl sulfonic acids such as methanesulfonic acid, trifluoromethanesulfonic acid or ethanesulfonic acid; Salts with benzenesulfonic acid or p-toluenesulfonic acid; Salts with organic carboxylic acids such as acetic acid, fumaric acid, tartaric acid, oxalic acid, maleic acid, malic acid, succinic acid or citric acid; And salts with amino acids such as glutamic acid or aspartic acid.
이하에서 별도의 설명이 없는 한, 본 발명에 따른 " [화학식 1] 내지 [화학식 5] 화합물" 또는 "[화학식 6 내지 56]의 화합물"은, 화합물 그 자체, 그것의 염, 수화물, 용매화물, 이성질체 등을 모두 포함하는 개념으로 사용될 수 있다.Unless otherwise specified below, "Compound 1" to [Formula 5] or "Compound 6-56" according to the present invention is the compound itself, salts, hydrates, and solvates thereof. Can be used as a concept including all isomers.
용어 "수화물(hydrate)"은 비공유적 분자간력(non-covalent intermolecular force)에 의해 결합된 화학양론적(stoichiometric) 또는 비화학양론적(non-stoichiometric) 량의 물을 포함하고 있는 본 발명의 화합물 또는 그것의 염을 의미한다. The term "hydrate" includes a compound of the present invention comprising a stoichiometric or non-stoichiometric amount of water bound by a non-covalent intermolecular force. Or salts thereof.
용어 "용매화물(solvate)"은 비공유적 분자간력에 의해 결합된 화학양론적 또는 비화학양론적 량의 용매를 포함하고 있는 본 발명의 화합물 또는 그것의 염을 의미한다. The term "solvate" refers to a compound of the present invention or a salt thereof comprising a stoichiometric or nonstoichiometric amount of solvent bound by noncovalent intermolecular forces.
용어 "이성질체(isomer)"는, 동일한 화학식 또는 분자식을 가지지만 광학적 또는 입체적으로 다른 본 발명의 화합물 또는 그것의 염을 의미한다.The term "isomer" means a compound of the present invention or a salt thereof that has the same chemical formula or molecular formula, but which is optically or stereoscopically different.
본 발명에 따른 화합물들은 당업계에 알려진 방법, 이의 변형된 방법 또는 본 발명에 의한 방법으로 제조하여 사용할 수 있으며, 상업적으로 판매하는 것을 구입하여 사용할 수도 있다.The compounds according to the invention can be prepared and used by methods known in the art, by their modified methods or by the method according to the invention, or can be purchased and used commercially.
상기 제조과정에서 사용될 수 있는 반응용매로는 반응에 관여하지 않는 한 특별한 제한은 없으며, 예를 들면 디에틸 에테르, 테트라히드로푸란, 디옥산 등의 에테르류; 디클로로메탄, 클로로포름 등의 할로겐화 탄화수소류; 피리딘, 피페리딘, 트리에틸아민 등의 아민류, 아세톤; 메틸에틸케톤, 메틸이소부틸 등의 알킬케톤류; 메탄올, 에탄올, 프로판올 등의 알코올류; N,N-디메틸포름아미드, N,N-디메틸아세트아미드, 아세토니트릴, 디메틸술폭시드, 헥사메틸인산트리아미드 등의 비프로톤성 극성용매를 들 수 있으며, 특히 통상적으로 유기합성에서 사용되는 비반응성 유기용매 중에서 딘-스탁 트랩에 의해 반응 중 생성되는 물을 분리할 수 있는 용매가 선호된다. 이러한 용매의 예로는, 벤젠, 톨루엔, 크실렌 등이 있으나 이에 한정되지는 않는다. 반응 생성물의 분리 및 정제는 유기합성에서 통상적으로 수행되는 농축, 추출 등의 과정을 통해 이루어지며, 필요에 따라 실리카겔 상에서 컬럼 크로마토그래피에 의한 정제 작업을 통해 분리 및 정제를 수행할 수 있다. The reaction solvent that can be used in the production process is not particularly limited as long as it is not involved in the reaction, for example, ethers such as diethyl ether, tetrahydrofuran, dioxane; Halogenated hydrocarbons such as dichloromethane and chloroform; Amines such as pyridine, piperidine and triethylamine, acetone; Alkyl ketones such as methyl ethyl ketone and methyl isobutyl; Alcohols such as methanol, ethanol and propanol; Aprotic polar solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, acetonitrile, dimethyl sulfoxide, hexamethyl phosphate triamide, and the like, and especially non-reactive used in organic synthesis. Among the organic solvents, a solvent capable of separating the water generated during the reaction by the Dean-Stark trap is preferred. Examples of such a solvent include, but are not limited to, benzene, toluene, xylene, and the like. Separation and purification of the reaction product is carried out through a process such as concentration, extraction, and the like, which is commonly performed in organic synthesis, and separation and purification may be performed through purification by column chromatography on silica gel, if necessary.
본 발명은 또한 상기 화합물들의 제조방법들에 대한 임의의 변형을 포함하고, 여기서 그의 임의의 단계에서 수득할 수 있는 중간체 생성물은 나머지 단계들의 출발물질로 사용될 수 있으며, 상기 출발물질은 반응 조건하에 반응계 내에서 형성되거나, 반응 성분들은 그의 염 또는 광학적으로 거울상체의 형태로 사용될 수 있다. The invention also includes any modification to the methods for the preparation of the compounds, wherein the intermediate product obtainable in any of its steps can be used as starting material for the remaining steps, the starting material being reacted under reaction conditions. Formed within, or the reaction components can be used in the form of its salts or optically enantiomers.
따라서, 본 발명은 다른 관점에서 상기 [화학식 1] 내지 [화학식 5]의 화합물을 제조하는 방법에 관한 것이다. 상기 제조방법은 그것의 예시적인 방법에 지나지 않으며, 당해 분야의 기술에 근간한 다양한 방법들에 의해 적절히 변형시켜 사용할 수 있다.예를 들면, 본 발명에 따른 비-예시된 화합물의 분리 및 정제는 당분야의 숙련가에게 명백한 변형에 의해, 예를 들면, 간섭기를 적절히 보호하거나, 당분야에 공지된 다른 적당한 시약으로 교체하거나, 또는 반응 조건을 통상적으로 변화시킴으로써 성공적으로 수행될 수 있다. Therefore, the present invention relates to a method for preparing the compound of the above [Formula 1] to [Formula 5] from another viewpoint. The preparation method is merely an exemplary method thereof, and may be suitably modified by various methods based on the art. For example, the separation and purification of non-exemplified compounds according to the present invention Modifications apparent to those skilled in the art can be successfully carried out, for example, by appropriately protecting the interferer, replacing it with another suitable reagent known in the art, or by customarily changing the reaction conditions.
본 발명이 속하는 분야에서 통상의 지식을 가진 자라면, 본 발명에 따른 [화학식 1] 내지 [화학식 5]의 화합물의 제조를 위한 구체적인 반응조건 등을 추후 설명하는 제조예들과 실시예들을 통해 확인할 수 있으므로, 그에 대한 자세한 설명은 생략한다. Those skilled in the art to which the present invention pertains, the specific reaction conditions for the preparation of the compounds of [Formula 1] to [Formula 5] according to the present invention will be confirmed through the preparation examples and examples to be described later As such, detailed description thereof will be omitted.
한편, 조류(algae)는 바닷물 또는 민물에서 서식하면서 생태계에 많은 영향을 주는데, 본 발명에 사용된 용어 "유해 조류(harmful algae)"란 이하와 같은 악영향을 끼치는, 녹조 또는 적조현상을 야기시켜 수중환경 및 경제활동에 악영향을 미치는 조류를 말한다. On the other hand, algae (algae) inhabit the sea or fresh water and affect the ecosystem a lot, the term "harmful algae" used in the present invention, causing the algae or red tide phenomena that adversely affects the following A bird that adversely affects the environment and economic activities.
i) 착색 또는 스컴 형성, 죽은 물고기 등으로 시각적인 불쾌감 유발 및 레크레이션 활동의 저해 i) causing visual discomfort and inhibition of recreational activity such as pigmentation or scum formation, dead fish, etc.
ii) 독소에 의한 인체 및 가축에의 건강상의 손상, 악취로 불쾌감 유발ii) causing unpleasant feelings due to toxins and health damage to humans and livestock
iii) 생태계 파괴로 인하 토종 동물의 사멸 또는 서식처 이동, 개체군 변화, 먹이 손실iii) killing native animals or moving habitats, changing populations, and losing food due to the destruction of ecosystems;
iv) 레크레이션 활동 및 여행의 저하로 인해 지역 경제적 손실, 먹는 물, 농업용수, 산업용수 부족으로 인한 경제적 손실iv) local economic losses due to reduced recreational activities and travel, and economic losses due to lack of drinking water, agricultural water and industrial water.
v) 독소물질에 의한 가축이나 야생동물의 폐사, 대량증식한 조류의 분해 동안 수중 용존산소 감소로 인한 물고기 및 수중생물의 폐사v) Death of livestock and wildlife by toxins, and death of fish and aquatic organisms due to reduced dissolved oxygen in water during decomposition of mass-proliferated algae.
vi) 경제적 가치가 있는 종들 (연어류와 송어류)에 악취를 발생vi) odors in species of value (salmon and trout)
적조현상은 육지로부터 유기오염 물질이나 질소, 인 등이 바다로 다량 유입되어 플랑크톤의 비정상적인 증식으로 인해 바다의 색깔이 적색, 적갈색, 황갈색, 녹색, 황녹색 및 황색 등으로 변하는 현상을 말한다. 이러한 적조를 일으키는 원인생물은 주로 편모조류 및 규조류이며, 이 외에도 섬모충류, 남조류 및 적색세균 등이 적조를 유발시키는 것으로 알려져 있다. Red tide is a phenomenon in which the color of the sea turns red, reddish brown, tan, green, yellow green and yellow due to abnormal growth of plankton due to the influx of organic pollutants, nitrogen and phosphorus from the land to the sea. The causes of such red tide are mainly flagella algae and diatoms, and in addition, ciliated insects, cyanobacteria and red bacteria are known to cause red tide.
또한 최근 들어 적조현상은 산업화의 발전에 따라 해양 오염물의 증가로 인해 전 세계적으로 증가 추세에 있는데, 우리나라의 경우에도 1961년 진해만 부근의 진동만에서 적조가 목격된 이래 1970년대에는 104건의 적조가 진해만 일대에서 발생했으며, 1995년 이후 매년 남해안과 남동해안에서 적조가 발생하고 있는 실정이다. In recent years, the trend of red tide has increased globally due to the increase of marine pollutants with the development of industrialization.In Korea, 104 red tide peaks in the 1970s have been observed since red tide was observed in the vibrating bay near Jinhae Bay in 1961. In 1995, red tide has occurred in the south and southeast coasts since 1995.
한편, 적조가 발생하게 되면 수중의 용존 산소가 결핍되어 바다는 순식간에 산소가 희박한 상태가 되어 물고기 및 어폐류가 대량 폐사하게 되고, 대량 번식된 플랑크톤은 물고기의 아가미에 붙어서 물고기를 질식시키기도 하며, 특히 편모조류인 코콜리디니움은 유해 독소를 발생시켜 물고기의 죽음을 초래하게 된다. 또한 현재 세계 20억 이상의 인구가 소비하는 동물성 단백질의 50% 가량은 바다에서 공급되는데 적조현상에 따른 해양생태계의 파괴는 이러한 식량자원에도 심각한 영향을 미치게 되며, 나아가 수역 이용 가치를 저하시키고, 더 나아가 경제적인 가치를 초월하여 커다란 환경 문제를 야기하게 된다. On the other hand, when red tide occurs, the dissolved oxygen in the water is depleted, and the ocean is in a state in which oxygen is scarcely rapidly, resulting in the mass death of fish and fish and fish, and the mass propagation of plankton is also attached to the fish's gills, which also chokes the fish. In particular, flagella algae, Cocollidinium, generates harmful toxins, causing fish to die. In addition, about 50% of the animal protein consumed by more than 2 billion people in the world is supplied from the sea, and the destruction of marine ecosystems due to red tides can seriously affect these food resources, further degrading the value of water use, Beyond economic value, it causes a large environmental problem.
본 발명은 이러한 적조를 일으키는 원인생물인 편모조류 및 규조류, 남조류 등에 대하여 살조효과를 가진다.The present invention has an algicidal effect against the flagella algae and diatoms, cyanobacteria, etc. which cause the red tide.
또한, 본 발명은 상술한 적조현상뿐만 아니라, 녹조현상에 대한 증식 억제에도 매우 효과적이다.In addition, the present invention is very effective in suppressing the growth of red algae as well as the above-described red algae.
녹조현상이란 부영양화된 호수나 유속이 느린 하천에서 부유성의 조류, 즉, 식물플랑크톤이 대량 증식하여 수면에 집적함으로써 물색을 현저하게 녹색으로 변화시키는 현상을 가리키는 말이다. 녹조현상은 수질 부영양화의 상징적인 현상으로 심한 이취미를 유발시키며 독성물질을 생성하는 등 수자원으로서의 가치는 물론 전체 수중 생태계의 균형과 질서를 파괴한다Green algae refers to a phenomenon in which floating algae, or phytoplankton, multiply and accumulate on the surface of water in eutrophic lakes or slow-flowing streams, thereby turning the color of the green color significantly green. Green algae is a symbolic phenomenon of water eutrophication, causing severe taste and toxic substances and destroying the balance and order of the entire aquatic ecosystem as well as its value as a water resource.
이러한 녹조현상은 일반적으로 담수에서만 발생하는데 공장폐수와 생활하수, 비료, 농약, 가축과 사람의 분뇨 등등 각종 육상 오염물질들이 강 또는 호수로 유입되고 수역의 하부에 침작되어 박테리아에 의해 분해되며 분해된 유기물들이 플랑크톤의 먹이가 되는 질소와 인을 생성시켜 해수 및 담수에서 녹조가 발생하게 된다. 이러한 녹조는 수중의 용존산소를 감소시키며, 독성녹조 및 각종 녹조플랑크톤을 생성시켜 어류 및 수생생물을 폐사시키고, 또한 육지로부터 대량 유입된 유기물들이 침전된 수역 저부에는 침전된 중금속들이 수중으로 용출되어 담수를 오염시키고 어류를 중독시킬 수 있으며, 나아가서는 환경파괴 및 자연 미관의 손상 등 많은 문제점을 불러일으키게 된다.These green algae generally occur only in fresh water. Plant wastewater, domestic sewage, fertilizers, pesticides, livestock and human manure, and other land pollutants enter rivers or lakes, are sedimented in the lower part of the body of water, decomposed by bacteria and decomposed. Organics produce nitrogen and phosphorus, which feed plankton, causing green algae in sea and fresh water. These green algae reduce dissolved oxygen in the water, produce toxic green algae and various green alga planktons, killing fish and aquatic organisms, and depositing heavy metals in the bottom of the water where organic matters from the land are deposited. It can pollute and poison fish, and cause many problems such as environmental damage and damage to natural beauty.
특히, 우리나라와 같이 온대지방의 부영양화 되어 있는 수생태계에서는 풍부한 영양분을 바탕으로 식물플랑크톤 같은 1차 생산자의 생장에 유리한 환경이 조성되면서 조류의 대발생이 폭발적으로 매년 반복되고 있다. 특히, 하천 및 호수에서 발생하는 녹조(algal blooming)는 주로 여름철의 남조류(cyanobacteria) 및 봄·겨울철의 규조류(diatom)가 녹조현상의 주요 종이지만 지역에 따라 와편모종이나 소형 은편모종등 다양한 조류 종에 의해서 발생하고 있다. In particular, in the aquatic ecosystems of temperate regions like Korea, the generation of algae has exploded every year, creating an environment favorable for the growth of primary producers such as phytoplankton based on rich nutrients. In particular, algae blooming in rivers and lakes are mainly cyanobacteria in summer and diatoms in spring and winter, but various species of algae, such as wa- chyloid and small silver flanking seedlings, vary depending on the region. It is caused by.
(표 1 -녹조현상을 일으키는 주요 담수조류 종과 그 특징)Table 1-Major freshwater algae species and their characteristics that cause green algae
Figure PCTKR2016013447-appb-T000001
Figure PCTKR2016013447-appb-T000001
상기 녹조현상은 수질 부영양화의 상징적인 현상으로 심한 이취미를 유발시키며 독성물질을 생성하는 등 수자원으로서의 가치는 물론 전체 수중 생태계의 균형과 질서를 파괴한다The green algae is a symbolic phenomenon of water eutrophication, causing severe odors and generating toxic substances, which destroys the balance and order of the entire aquatic ecosystem as well as its value as a water resource.
본 발명에 따른 [화학식 1] 내지 [화학식 6]의 화합물을 함유하는 유해조류 제어용 조성물은 연못, 저수지, 호수, 호소, 하천 또는 강 등 담수 또는 해수에서 미세조류(남조강, 규조강, 녹조강, 유글레조강, 와편모조강 및 황색편모조강, 갈색편모조강, 홍조강)의 이상 증식으로 유발되는 녹조발생을 더욱 효과적으로 제어 가능하다.The composition for controlling harmful algae containing the compound of [Formula 1] to [Formula 6] according to the present invention is a microalgae (namzo, diatoms, green algae, in freshwater or seawater such as ponds, reservoirs, lakes, lakes, rivers or rivers) It is possible to more effectively control the occurrence of green algae caused by abnormal proliferation of euglejo steel, whiskey imitation steel and yellow wool imitation steel, brown schist imitation steel and redness steel).
이러한 녹조 및 적조 현상을 나타내는 유해조류 중에서 본 발명의 살조 효과를 나타낼 수 있는 유해조류로는 남조강, 규조강, 녹조강, 와편모조강, 침편모강, 유글레나조강, 황색편모조강, 갈색편모조강 및 홍조강 조류를 포함한다.Among the harmful algae exhibiting the green algae and red tide phenomena, the harmful algae that may exhibit the algae effect of the present invention include Namjo River, Diatom Steel, Green Algae River, Waco-Modulated Steel, Needle-Shaped Hair Steel, Euglenazo Steel, Yellow Knitted Steel, Brown Knitted Steel and Contains red algae algae.
특히, 상기 남조강(Cyanophyceae) 조류는 마이크로시스티스(Microcystis), 아나베나(Anabaena), 아파니존메논(Aphanizomenon), 오실라토리아(Oscillatoria), 및 워로니키니아(Woronichinia) 속 조류로 이루어진 군중에서 선택될 수 있고, 바람직하게는 마이크로시스티스(Microcystis) 또는 아나베나(Anabaena) 속 조류일 수 있다. In particular, the Cyanophyceae algae is a microcystis, Anabena, Aphanizomenon, Oscillatoria, and Waronichinia genus algae. It may be selected, and preferably may be algae of the genus Microcystis or Anabaena.
상기 규조강(Bacillariophyceae) 조류는 스테파노디스커스(Stephanodiscus), 사이클로텔라(Cyclotella), 사이클로스테파노스(Cyclostaphanos), 아울라코세이라(Aulacoseira), 멜로지라(Melosira), 탈라지오지라(Thalassiosira), 케토세로스(Chaetoceros) 스켈레토네마(Skeletonema), 아크난테스(Achnanthes), 아스테리오넬라(Asterionella), 아칸토세라스(Acanthoceras), 나비큘라(Navicula), 니츠취아(Nitzschia), 디플로네시스(Diploneis), 심벨라(Cymbella), 곰포네마(Gomphonema), 수리렐라(Surirella), 시네드라(Synedra), 프레즐라리아(Fragilaria), 실린드로세카(Cylindrotheca), 유캄피아(Eucampia), 코스마리움(Cosmarium), 및 타벨라리아(Tabellaria) 속 조류로 이루어진 군중에서 선택될 수 있고, 바람직하게는 스테파노디스커스(Stephanodiscus), 사이클로텔라(Cyclotella), 또는 아울라코세이라(Aulacoseira) 속 조류일 수 있다.The diatom steel (Bacillariophyceae) algae are Stefanodiscus, Cyclotella, Cyclostaphanos, Aulacoseira, Mellosira, Thalassiosira, Ketose Chatoceros Skeletonema, Achnanthes, Asterionella, Acanthoceras, Navicula, Nitzschia, Diploloneis ), Cymbella, Gomphonema, Surirella, Synedra, Frazilaria, Cylindrotheca, Eucampia, Kosmarium ( Cosmarium, and a group consisting of birds of the genus Tabellaria, and may preferably be a bird of the genus Stepanoodiscus, Cyclolotella, or Aulacoseira. .
상기 녹조강(Chlorophyceae) 조류는 클로스테리옵시스(Closteriopsis), 클로스테리움(Closterium), 하이드로테카(Hydrotheca), 스피로기라(Spirogyra), 고나토지곤(Gonatozygon), 액티나스트륨(Actinastrum), 마이크락티니움(Micractinium), 라걸헤이미어(Lagerheimia), 웨스텔라(Westella), 유도리나(Eudorina), 판도리나(Pandorina), 볼복스(Volvox), 딕티오스페리움(Dictyospaerium), 클라로코쿰(Chlorococcum), 보트리오코쿠스(Botryococcus), 스타우라스트륨(Staurastrum), 클로스테리움(Closterium), 모노라피디움(Monoraphidium), 안키스트로데스무스(Ankistrodesmus), 컬크네리엘라(Kirchneriella), 페디아스트룸(Pediastrum), 세네데스무스(Scenedesmus), 코엘라스트륨(Coelastrium), 클라미도모나스(Clamydomonas) 및 클로렐라(Chlorella) 속 조류로 이루어진 군중에서 선택될 수 있다.The algae (Chlorophyceae) algae are Closteriopsis (Closteriopsis), Closterium (Closterium), Hydrotheca (Hydrotheca), Spirogyra (Spirogyra), Gonatozygon (Aconastrum), Micractinium, Lagerheimia, Westella, Eudorina, Pandorina, Volvox, Dictiospaerium, Clarococum (Chlorococcum), Botryococcus, Staurastrum, Closterium, Monoraphidium, Ankistrodesmus, Kirchneriella , Pediastrum, Senedesmus, Coelastrium, Clamydomonas and Chlorella genus.
상기 유글레나조강(Euglenophyceae) 조류는 트라켈로모나스(Trachelomonas), 파커스(Phacus), 및 유글레나(Euglena) 속 조류로 이루어진 군중에서 선택될 수 있다.The Euglenophyceae algae may be selected from a crowd consisting of Trachelomonas, Phacus, and Euglena.
상기 와편모조강(Dinophyceae) 조류는 알렉산드리움(Alecandrium), 코클로디니움(Cochlodinium), 헤테로캅사(Heterocapsa), 프로로센트럼(Prorocentrum), 페리디늄(Peridinium), 및 세라티움(Ceratium) 속 조류로 이루어진 군중에서 선택될 수 있다. The algae (Dinophyceae) algae (Alecandrium), Coclodinium (Cochlodinium), heterocapsa (Heterocapsa), Prorocentrum (Prorocentrum), Peridinium (Ceratium), the crowd consisting of algae Can be selected from.
상기 침편모조강IRaphidophyceae) 조류는 샤토넬라(Chattonella) 속 조류일 수 있다.The needle-like imitation steel (IRaphidophyceae) algae may be a genus Chattonella (Chattonella).
상기 황색편모조강(Chrysophyceae) 조류는 디노브리온(Dinobryon), 유로글레나(Uroglena), 시누라(Synura) 및 말로모나스(Mallomonas) 속 조류로 이루어진 군중에서 선택될 수 있다.The Chrysophyceae algae may be selected from the group consisting of Dinobryon, Euroglena, Synura, and Malolomonas algae.
상기 갈색편모조강(Cryptophyceae) 조류는 크립토모나스(Cryptomonas) 조류일 수 있다.The brown flagella steel (Cryptophyceae) algae may be Cryptomonas algae.
상기 홍조강(Phodophyceae) 조류는 로도모나스(Rhodomonas) 속 조류일 수 있다. The red blood (Phodophyceae) algae may be algae of the genus Rhodomonas.
상술한 조류들에 대하여, 하기 실시예의 결과로부터 알 수 있는 바와 같이 상기 [화학식 1] 내지 [화학식 5]로 표시되는 본 발명의 화합물들이 유해조류를 살조하는 효과가 있음을 확인하였는바, 녹조 및 적조현상을 효과적으로 제어할 수 있음을 확인하였다.With respect to the algae described above, as can be seen from the results of the following examples, it was confirmed that the compounds of the present invention represented by the above [Formula 1] to [Formula 5] have an effect of killing harmful algae, green algae and It was confirmed that the red tide phenomenon can be effectively controlled.
일 구체예로서, 본 발명은 상기 [화학식 1] 내지 [화학식 5]로 표시되는 화합물로 이루어진 군 중에서 선택되는 화합물 또는 그의 염을 유효성분으로 함유하는 유해조류 제어용 조성물을 제공한다. In one embodiment, the present invention provides a composition for controlling harmful algae containing a compound selected from the group consisting of compounds represented by the above [Formula 1] to [Formula 5] or a salt thereof as an active ingredient.
본 발명의 유해조류 제어용 조성물은 공지의 방법에 따라 다양한 형태로 제조할 수 있으며, 효과를 저해하지 않는 범위 내에서 효과의 안정적 발현, 적용 대상 생물로의 부착 증진, 운반 및 처리의 간편화를 위해 제제학적으로 허용 가능한 고체 담체, 액체 담체,액체 희석제, 액화된 기체 희석제, 고체 희석제, 또는 기타 적당한 보조제, 예를 들면 유화제, 분산제 또는 기포제 등의 계면활성제를 더 포함할 수 있다.The harmful algae control composition of the present invention can be prepared in a variety of forms according to known methods, formulations for the stable expression of the effect within the range that does not inhibit the effect, enhanced adhesion to the organism to be applied, simplicity of transport and treatment It may further comprise a surfactant such as an academically acceptable solid carrier, liquid carrier, liquid diluent, liquefied gas diluent, solid diluent, or other suitable adjuvant such as emulsifiers, dispersants or foaming agents.
본 발명의 유해조류 제어용 조성물은 바람직하게는 유제, 수화제, 입제, 분제, 캅셀형 및 젤상의 제형으로 제제화될 수있고, 제제의 부력을 위해 접촉제로서 제공되는 것이 바람직하다.The harmful algae control composition of the present invention may preferably be formulated into an emulsion, an hydrating agent, a granule, a powder, a capsule and a gel, and is preferably provided as a contact agent for buoyancy of the preparation.
나아가, 다른 구체예로서 본 발명은 상기 [화학식 1] 내지 [화학식 5]로 표시되는 화합물로 이루어진 군 중에서 선택되는 화합물 또는 그의 염을 유해조류가 발생한 지역 또는 발생예상 지역에 처리하는 것을 포함하는 유해조류의 제어(방제)방법을 제공한다. Furthermore, as another embodiment, the present invention is harmful including the treatment of a compound selected from the group consisting of the compounds represented by the above [Formula 1] to [Formula 5] or salts thereof to the area where the harmful algae occurred or to the area of development Provides a method for controlling algae.
예를 들어, 상기 조성물을 분말형태, 또는 고농도의 액상형태로 장기보존 및 상품화하여, 녹조가 발생한 지역 또는 징후가 보이는 곳에 선박을 이용하여 국부적으로 살포하는 형태로 수일에서 1주일 이내에 간단하게 녹조를 제어하고 예방할 수 있다. For example, long-term storage and commercialization of the composition in the form of a powder or a high concentration of liquid form, by spraying locally on the area where the green algae occurred or visible signs using a simple green alga within a few days to a week Can be controlled and prevented.
이때, 상기 조성물을 유해조류가 발생되는 초기에 처리함으로써 대량증식을 사전에 차단하는 것이 바람직하다.At this time, it is preferable to block the mass growth in advance by treating the composition in the early stage of the generation of harmful algae.
이처럼, 본 발명은 중. 소규모 수계의 복원 및 보존관리에 적용 가능한 기술(녹조제어 또는 예방)로서 인공양식장, 골프장, 공원, 유원지, 오락시설 내 연못, 저수지, 호수, 하천, 전국에 산재되어 있는 농업용저수지 등에 적용하여 녹조의 피해를 예방하고 유해조류를 제어함으로서 기타 인위적인 환경오염을 발생시키지 않는다. 그리고, 선박, 부두시설, 수영장, 건물 등에 사용되는 항조류 도료(antifouling paint)의 주요성분으로 사용가능하여 유독한 기존의 항도료를 대체하고 부착조류에 의한 미관손상, 내구력 저하, 성능저하 등을 예방할 수도 있다.As such, the present invention. It is a technology (green control or prevention) that can be applied to the restoration and preservation management of small-scale water systems, and applied to artificial farms, golf courses, parks, amusement parks, ponds in recreational facilities, reservoirs, lakes, rivers, and agricultural reservoirs scattered throughout the country. Preventing damage and controlling harmful algae does not cause other environmental pollution. In addition, it can be used as a major component of antifouling paint used in ships, wharf facilities, swimming pools, buildings, etc., and replaces toxic conventional paints. It can also be prevented.
또한, 먹는물, 농업용수, 공업용수 확보를 위한 수처리시설(상수처리, 하수처리)의 전처리 기술로서 적용되어 여과지 폐색, 독성물질의 과다노출을 예방하여 경제적 부담을 줄이고 먹는 물의 안전성을 확보할 수 있다. In addition, it is applied as a pretreatment technology for water treatment facilities (water and sewage treatment) to secure drinking water, agricultural water, and industrial water, thereby preventing filter blockage and overexposure of toxic substances, thereby reducing economic burden and ensuring safety of drinking water. have.
뿐만 아니라, 상대적으로 대규모 수계인 호소(댐), 상수원 및 하수 등 수계의 수질 개선, 환경기술 개발 등에 적용될 수 있다. 따라서, 농업용수의 개선 효과로 인해 우수 농산물 생산이 가능하고 식수의 안정화를 통해 국민건강에 이바지하여 개선 효과를 볼 수 있을 것이다. 또한, 중국처럼 심각한 녹조문제에 봉착해 있거나 태국같이 부착조류에 의한 방오도료의 수요가 큰 국가에 환경기술의 수출과 기술이전 등을 통한 고부가가치 창출과 국가이미지 재고, 국가 경쟁력 강화에 이바지 할 수 있다. 마지막으로 기술발전의 여하에 따라 연안에서 발생하는 적조제어에도 적극 활용가능하다.In addition, it can be applied to the improvement of water quality of the water system such as lakes (dams), water sources and sewage which are relatively large water systems, and the development of environmental technology. Therefore, it is possible to produce excellent agricultural products due to the improvement of agricultural water, and to improve national health through stabilization of drinking water. In addition, it can contribute to the creation of high value-added products through the export of technology and transfer of technology to countries with high green algae problems such as China or high demand for antifouling paints from attached algae such as Thailand. have. Lastly, due to the development of technology, it can be actively used for red tide control occurring on the coast.
이하에서는 바람직한 실시예 등을 들어 본 발명을 더욱 상세하게 설명한다. 그러나 이들 실시예 등은 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이에 의하여 제한되지 않는다는 것은 당업계의 통상의 지식을 가진 자에게 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to preferred embodiments. However, these examples and the like are intended to explain the present invention in more detail, and it will be apparent to those skilled in the art that the scope of the present invention is not limited thereto.
제조예Production Example : 본 발명에 따른  : According to the present invention 나프토퀴논Naphthoquinone 유도체의 제조 Preparation of Derivatives
본 발명에 따른 나프토퀴논 유도체들을 다음과 같은 방법으로 제조하였다.Naphthoquinone derivatives according to the present invention were prepared by the following method.
[화학식 6] : 2-(((6-[Formula 6]: 2-(((6- BromoBromo -1H--1H- benzo[d]imidazolbenzo [d] imidazol -2--2- ylyl )amino)methyl)-5,8-dimethoxy-naphthalene-1,4-dione) amino) methyl) -5,8-dimethoxy-naphthalene-1,4-dione
상온 및 질소 분위기 하에서, 오븐에서 건조된 Schlenk 튜브에 (1,4,5,8-tetramethoxynaphthalen-2-yl)methanol 2.1 g, 6-bromo-1H-benzo[d]imidazol-2-amine 0.4 g, K2CO3 25 mg, [Cp*IrCl2]2 3 mg 및 톨루엔 5 mL를 첨가 및 혼합하였다. 이후, 상기 혼합물을 130 ℃에서 12 시간 동안 가열 후, 주위 온도(ambient temperature)로 냉각하였다. 다음으로, 상기 혼합물을 진공에서 농축시키고, 플래시 컬럼 크로마토그래피(hexane:EtOAc = 4:1 to 1:1)에 의해 정제하여 화합물을 수득하였다.Under room temperature and nitrogen atmosphere, 2.1 g of (1,4,5,8-tetramethoxynaphthalen-2-yl) methanol, 0.4 g of 6-bromo-1H-benzo [d] imidazol-2-amine, in an oven-dried Schlenk tube, 25 mg K 2 CO 3 , 3 mg of [Cp * IrCl 2 ] 2 and 5 mL of toluene were added and mixed. The mixture was then heated at 130 ° C. for 12 hours and then cooled to ambient temperature. Next, the mixture was concentrated in vacuo and purified by flash column chromatography (hexane: EtOAc = 4: 1 to 1: 1) to give a compound.
수율: 65%Yield: 65%
1H NMR (CDCl3, 400 MHz) d 7.38 (s, 1H), 7.09 (s, 2H), 6.91 - 6.83 (m, 3H), 6.08 (bs, 1H), 4.63 (s, 2H), 3.96 (s, 3H), 3.90 (s, 3H), 3.88 (s, 3H), 3.83 (s, 3H). 1 H NMR (CDCl 3 , 400 MHz) d 7.38 (s, 1H), 7.09 (s, 2H), 6.91-6.83 (m, 3H), 6.08 (bs, 1H), 4.63 (s, 2H), 3.96 ( s, 3H), 3.90 (s, 3H), 3.88 (s, 3H), 3.83 (s, 3H).
[화학식 7] : N-((1,4,5,8-[Formula 7]: N-((1,4,5,8- TetramethoxynaphthalenTetramethoxynaphthalen -2--2- ylyl )methyl)-1H-benzo[d]imidazol-2-amine ) methyl) -1H-benzo [d] imidazol-2-amine
상온 및 질소 분위기 하에서, 오븐에서 건조된 Schlenk 튜브에 (1,4,5,8-tetramethoxynaphthalen-2-yl)methanol 2.1 g, K2CO3 25 mg, [Cp*IrCl2]2 3 mg 및 톨루엔 5 mL를 이용하여 [화학식 7]의 화합물을 제조하였다. 구체적으로, 상기 혼합물을 130 ℃에서 12 시간 동안 가열 후, 주위 온도(ambient temperature)로 냉각하였다. 다음으로, 상기 혼합물을 진공에서 농축시키고, 플래시 컬럼 크로마토그래피(hexane:EtOAc = 4:1 to 1:1)에 의해 정제하여 화합물을 수득하였다.In an oven at room temperature and nitrogen, 2.1 g of (1,4,5,8-tetramethoxynaphthalen-2-yl) methanol, 25 mg K 2 CO 3 , 3 mg [Cp * IrCl 2 ] 2 and toluene in an oven-dried Schlenk tube Using 5 mL to prepare the compound of [Formula 7]. Specifically, the mixture was heated at 130 ° C. for 12 hours and then cooled to ambient temperature. Next, the mixture was concentrated in vacuo and purified by flash column chromatography (hexane: EtOAc = 4: 1 to 1: 1) to give a compound.
수율: 57% Yield: 57%
1H NMR (CDCl3, 400 MHz) d 7.26 (s, 1H & CDCl3 , overlapped), 7.24 (d, 2H & CDCl3 , overlapped), 7.01 (d, J = 8.8 Hz, 2H), 6.86 - 6.83 (m, 2H), 4,66 (s, 3H), 3.96 (s, 3H), 3.88 (s, 3H), 3.87 (s, 3H), 3.79 (s, 3H). 1 H NMR (CDCl 3 , 400 MHz) d 7.26 (s, 1H & CDCl 3 , overlapped), 7.24 (d, 2H & CDCl 3 , overlapped), 7.01 (d, J = 8.8 Hz, 2H), 6.86-6.83 (m, 2H), 4,66 (s, 3H), 3.96 (s, 3H), 3.88 (s, 3H), 3.87 (s, 3H), 3.79 (s, 3H).
[화학식 8] : 5-Methyl-N-((1,4,5,8-[Formula 8]: 5-Methyl-N-((1,4,5,8- tetramethoxynaphthalentetramethoxynaphthalen -2--2- ylyl )methyl)-1H-benzo[d]imidazol-2-amine ) methyl) -1H-benzo [d] imidazol-2-amine
상온 및 질소 분위기 하에서, 오븐에서 건조된 Schlenk 튜브에 (1,4,5,8-tetramethoxynaphthalen-2-yl)methanol 2.1 g, K2CO3 25 mg, [Cp*IrCl2]2 3 mg 및 톨루엔 5 mL를 이용하여 [화학식 8]의 화합물을 제조하였다. 구체적으로, 상기 혼합물을 130 ℃에서 12 시간 동안 가열 후, 주위 온도(ambient temperature)로 냉각하였다. 다음으로, 상기 혼합물을 진공에서 농축시키고, 플래시 컬럼 크로마토그래피(hexane:EtOAc = 4:1 to 1:1)에 의해 정제하여 화합물을 수득하였다.In an oven at room temperature and nitrogen, 2.1 g of (1,4,5,8-tetramethoxynaphthalen-2-yl) methanol, 25 mg K 2 CO 3 , 3 mg [Cp * IrCl 2 ] 2 and toluene in an oven-dried Schlenk tube 5 mL was used to prepare the compound of [Formula 8]. Specifically, the mixture was heated at 130 ° C. for 12 hours and then cooled to ambient temperature. Next, the mixture was concentrated in vacuo and purified by flash column chromatography (hexane: EtOAc = 4: 1 to 1: 1) to give a compound.
수율: 60% Yield: 60%
1H NMR (CDCl3, 400 MHz) d 7.21 - 7.05 (m, 2H), 6.90 - 6.82 (m, 4H), 6.08 (bs, 1H), 4.65 (s, 2H), 3.96 (s, 3H), 3.88(s, 3H), 3.87 (s, 3H), 3.84 (s, 3H), 2.37 (s, 3H). 1 H NMR (CDCl 3 , 400 MHz) d 7.21-7.05 (m, 2H), 6.90-6.82 (m, 4H), 6.08 (bs, 1H), 4.65 (s, 2H), 3.96 (s, 3H), 3.88 (s, 3H), 3.87 (s, 3H), 3.84 (s, 3H), 2.37 (s, 3H).
[화학식 9] : 5-[Formula 9]: 5- ChloroChloro -N-((1,4,5,8--N-((1,4,5,8- tetramethoxynaphthalentetramethoxynaphthalen -2--2- ylyl )methyl)-1H-benzo[d]imidazol-2-amine ) methyl) -1H-benzo [d] imidazol-2-amine
상온 및 질소 분위기 하에서, 오븐에서 건조된 Schlenk 튜브에 (1,4,5,8-tetramethoxynaphthalen-2-yl)methanol 2.1 g, K2CO3 25 mg, [Cp*IrCl2]2 3 mg 및 톨루엔 5 mL를 이용하여 [화학식 9]의 화합물을 제조하였다. 구체적으로, 상기 혼합물을 130 ℃에서 12 시간 동안 가열 후, 주위 온도(ambient temperature)로 냉각하였다. 다음으로, 상기 혼합물을 진공에서 농축시키고, 플래시 컬럼 크로마토그래피(hexane:EtOAc = 4:1 to 1:1)에 의해 정제하여 화합물을 수득하였다.In an oven at room temperature and nitrogen, 2.1 g of (1,4,5,8-tetramethoxynaphthalen-2-yl) methanol, 25 mg K 2 CO 3 , 3 mg [Cp * IrCl 2 ] 2 and toluene in an oven-dried Schlenk tube Using 5 mL to prepare the compound of [Formula 9]. Specifically, the mixture was heated at 130 ° C. for 12 hours and then cooled to ambient temperature. Next, the mixture was concentrated in vacuo and purified by flash column chromatography (hexane: EtOAc = 4: 1 to 1: 1) to give a compound.
수율: 50% Yield: 50%
1H NMR (CDCl3, 400 MHz) d 7.22 (d, J = 6.0 Hz, 1H), 7.12 (d, J = 8.0 Hz, 1H), 7.67 (d, J = 8.0 Hz, 1H), 6.91 - 6.84 (m, 3H), 4.62 (s, 2H), 3.96 (s, 3H), 3.92 (s, 3H), 3.90 (s, 3H), 3.87 (s, 3H). 1 H NMR (CDCl 3 , 400 MHz) d 7.22 (d, J = 6.0 Hz, 1H), 7.12 (d, J = 8.0 Hz, 1H), 7.67 (d, J = 8.0 Hz, 1H), 6.91-6.84 (m, 3H), 4.62 (s, 2H), 3.96 (s, 3H), 3.92 (s, 3H), 3.90 (s, 3H), 3.87 (s, 3H).
[화학식 10] : 5-[Formula 10]: 5- MethoxyMethoxy -N-((1,4,5,8--N-((1,4,5,8- tetramethoxynaphthalentetramethoxynaphthalen -2-yl)methyl)-1H-benzo[d]imidazol-2-amine-2-yl) methyl) -1H-benzo [d] imidazol-2-amine
상온 및 질소 분위기 하에서, 오븐에서 건조된 Schlenk 튜브에 (1,4,5,8-tetramethoxynaphthalen-2-yl)methanol 2.1 g, K2CO3 25 mg, [Cp*IrCl2]2 3 mg 및 톨루엔 5 mL를 이용하여 [화학식 10]의 화합물을 제조하였다. 구체적으로, 상기 혼합물을 130 ℃에서 12 시간 동안 가열 후, 주위 온도(ambient temperature)로 냉각하였다. 다음으로, 상기 혼합물을 진공에서 농축시키고, 플래시 컬럼 크로마토그래피(hexane:EtOAc = 4:1 to 1:1)에 의해 정제하여 화합물을 수득하였다.In an oven at room temperature and nitrogen, 2.1 g of (1,4,5,8-tetramethoxynaphthalen-2-yl) methanol, 25 mg K 2 CO 3 , 3 mg [Cp * IrCl 2 ] 2 and toluene in an oven-dried Schlenk tube 5 mL was used to prepare the compound of [Formula 10]. Specifically, the mixture was heated at 130 ° C. for 12 hours and then cooled to ambient temperature. Next, the mixture was concentrated in vacuo and purified by flash column chromatography (hexane: EtOAc = 4: 1 to 1: 1) to give a compound.
수율: 70% Yield: 70%
1H NMR (CDCl3, 400 MHz) d 7.07 (d, J = 8.6 Hz, 1H), 6.87 - 6.79 (m, 3H), 6.71 6.67 (m, 1H), 4.63 (s, 2H), 3.93 3.70 (m, 15H). 1 H NMR (CDCl 3 , 400 MHz) d 7.07 (d, J = 8.6 Hz, 1H), 6.87-6.79 (m, 3H), 6.71 6.67 (m, 1H), 4.63 (s, 2H), 3.93 3.70 ( m, 15H).
[화학식 11] : 5-[Formula 11]: 5- FluoroFluoro -N-((1,4,5,8--N-((1,4,5,8- tetramethoxynaphthalentetramethoxynaphthalen -2--2- ylyl )methyl)-1H-benzo[d]imidazol-2-amine ) methyl) -1H-benzo [d] imidazol-2-amine
상온 및 질소 분위기 하에서, 오븐에서 건조된 Schlenk 튜브에 (1,4,5,8-tetramethoxynaphthalen-2-yl)methanol 2.1 g, K2CO3 25 mg, [Cp*IrCl2]2 3 mg 및 톨루엔 5 mL를 이용하여 [화학식 11]의 화합물을 제조하였다. 구체적으로, 상기 혼합물을 130 ℃에서 12 시간 동안 가열 후, 주위 온도(ambient temperature)로 냉각하였다. 다음으로, 상기 혼합물을 진공에서 농축시키고, 플래시 컬럼 크로마토그래피(hexane:EtOAc = 4:1 to 1:1)에 의해 정제하여 화합물을 수득하였다.In an oven at room temperature and nitrogen, 2.1 g of (1,4,5,8-tetramethoxynaphthalen-2-yl) methanol, 25 mg K 2 CO 3 , 3 mg [Cp * IrCl 2 ] 2 and toluene in an oven-dried Schlenk tube Using 5 mL to prepare the compound of [Formula 11]. Specifically, the mixture was heated at 130 ° C. for 12 hours and then cooled to ambient temperature. Next, the mixture was concentrated in vacuo and purified by flash column chromatography (hexane: EtOAc = 4: 1 to 1: 1) to give a compound.
수율: 45% Yield: 45%
1H NMR (CDCl3, 400 MHz) d 7.21 (s, 1H), 6.98 (s, 1H), 6.90 6.84 (m, 2H), 6.75 6.71 (m, 1H), 6.25 (bs, 1H), 4.64 (s, 2H), 3.96 (s, 3H), 3.89 (s, 3H), 3.87 (s, 3H), 3.82 (s, 3H). 1 H NMR (CDCl 3 , 400 MHz) d 7.21 (s, 1H), 6.98 (s, 1H), 6.90 6.84 (m, 2H), 6.75 6.71 (m, 1H), 6.25 (bs, 1H), 4.64 ( s, 2H), 3.96 (s, 3H), 3.89 (s, 3H), 3.87 (s, 3H), 3.82 (s, 3H).
[화학식 12], [화학식 13]: 1-(6-bromo-2-(((1,4,5,8-tetramethoxynaphthalen-2-yl)methyl)amino)-1H-benzo[d]imidazol-1-yl)ethan-1-one, 1-(5-[Formula 12], [Formula 13]: 1- (6-bromo-2-((((1,4,5,8-tetramethoxynaphthalen-2-yl) methyl) amino) -1H-benzo [d] imidazol-1 -yl) ethan-1-one, 1- (5- bromobromo -2-(((1,4,5,8-tetramethoxynaphthalen-2-yl)methyl)a mino)-1H-benzo[d]imidazol-1-yl)ethan-1-one-2-((((1,4,5,8-tetramethoxynaphthalen-2-yl) methyl) a mino) -1H-benzo [d] imidazol-1-yl) ethan-1-one
상온에서 1 시간 동안 CH2Cl2 5 mL 중 교반된 [화학식 6]의 화합물 100 mg 및 NaH 13mg에 Ac2O 54 mg을 상온에서 첨가하였다. 4 시간 후, 반응 혼합물을 진공에서 농축 및 건조시켰다. 잔류물을 물과 혼합하고, CH2Cl2로 추출한 후, 추출물을 물로 세척하고, Na2SO4 상에서 건조하였으며, 진공 하에서 증발시켰다. 마지막으로, 플래시 컬럼 크로마토그래피(hexane:EtOAc = 4:1 to 1:1)에 의해 정제하여 [화학식 12] 및 [화학식 13]의 고형분의 화합물을 1:1의 비율로 수득하였다. 수율: 84%CH 2 Cl 2 for 1 hour at room temperature 54 mg of Ac 2 O was added to 100 mg of the compound of Formula 6 and 13 mg of NaH in 5 mL at room temperature. After 4 hours, the reaction mixture was concentrated and dried in vacuo. The residue was mixed with water and extracted with CH 2 Cl 2 , then the extract was washed with water, dried over Na 2 SO 4 and evaporated under vacuum. Finally, purification was performed by flash column chromatography (hexane: EtOAc = 4: 1 to 1: 1) to obtain a compound having a solid content of [Formula 12] and [Formula 13] in a ratio of 1: 1. Yield: 84%
[화학식 14]: 1-(2-(((1,4,5,8-Formula 14: 1- (2-(((1,4,5,8- TetramethoxynaphthalenTetramethoxynaphthalen -2--2- ylyl )methyl)amino)-1H-benzo[d]imidazol-1-yl)ethan-1-one ) methyl) amino) -1H-benzo [d] imidazol-1-yl) ethan-1-one
상온에서 1 시간 동안 CH2Cl2 5 mL 중 교반된 [화학식 7]의 화합물 100 mg 및 NaH 13mg에 Ac2O 54 mg을 상온에서 첨가하였다. 4 시간 후, 반응 혼합물을 진공에서 농축 및 건조시켰다. 잔류물을 물과 혼합하고, CH2Cl2로 추출한 후, 추출물을 물로 세척하고, Na2SO4 상에서 건조하였으며, 진공 하에서 증발시켰다. 마지막으로, 플래시 컬럼 크로마토그래피(hexane:EtOAc = 4:1 to 1:1)에 의해 정제하여 [화학식 14]의 고형분의 화합물을 수득하였다. 수율: 91%CH 2 Cl 2 for 1 hour at room temperature 54 mg of Ac 2 O was added to 100 mg of the compound of Formula 7 and 13 mg of NaH in 5 mL at room temperature. After 4 hours, the reaction mixture was concentrated and dried in vacuo. The residue was mixed with water and extracted with CH 2 Cl 2 , then the extract was washed with water, dried over Na 2 SO 4 and evaporated under vacuum. Finally, the compound was purified by flash column chromatography (hexane: EtOAc = 4: 1 to 1: 1) to obtain a solid compound of Chemical Formula 14. Yield: 91%
1H NMR (CDCl3, 400 MHz) d 8.16 8.12 (m, 1H), 7.47 (d, J = 8.2 Hz, 1H), 7.45 (d, J = 8.2 Hz, 1H), 7.10 7.06 (m, 2H), 6.84 (d, J = 2.0 Hz, 2H), 4.96 (d, J = 2.0 Hz, 2H), 3.95 (s, 3H), 3.91 (s, 3H), 3.85 (s, 3H), 3.83 (s, 3H), 2.76 (s, 3H). 1 H NMR (CDCl 3 , 400 MHz) d 8.16 8.12 (m, 1H), 7.47 (d, J = 8.2 Hz, 1H), 7.45 (d, J = 8.2 Hz, 1H), 7.10 7.06 (m, 2H) , 6.84 (d, J = 2.0 Hz, 2H), 4.96 (d, J = 2.0 Hz, 2H), 3.95 (s, 3H), 3.91 (s, 3H), 3.85 (s, 3H), 3.83 (s, 3H), 2.76 (s, 3H).
[화학식 15], [화학식 16]: 1-(6-Methyl-2-(((1,4,5,8-tetramethoxynaphthalen-2-yl)methyl)amino)-1H-benzo[d]imidazol-1-yl)ethan-1-one, 1-(5-methyl-2-(((1,4,5,8-[Formula 15], [Formula 16]: 1- (6-Methyl-2-(((1,4,5,8-tetramethoxynaphthalen-2-yl) methyl) amino) -1H-benzo [d] imidazol-1 -yl) ethan-1-one, 1- (5-methyl-2-(((1,4,5,8- tetramethoxynaphthtetramethoxynaphth alenalen -2--2- ylyl )methyl)amino)-1H-benzo[d]imidazol-1-yl)ethan-1-one) methyl) amino) -1H-benzo [d] imidazol-1-yl) ethan-1-one
상온에서 1 시간 동안 CH2Cl2 5 mL 중 교반된 [화학식 8]의 화합물 100 mg 및 NaH 13mg에 Ac2O 54 mg을 상온에서 첨가하였다. 4 시간 후, 반응 혼합물을 진공에서 농축 및 건조시켰다. 잔류물을 물과 혼합하고, CH2Cl2로 추출한 후, 추출물을 물로 세척하고, Na2SO4 상에서 건조하였으며, 진공 하에서 증발시켰다. 마지막으로, 플래시 컬럼 크로마토그래피(hexane:EtOAc = 4:1 to 1:1)에 의해 정제하여 [화학식 15] 및 [화학식 16]의 고형분의 화합물을 1:1의 비율로 수득하였다. 수율: 86%CH 2 Cl 2 for 1 hour at room temperature 54 mg of Ac 2 O was added to 100 mg of the compound of Formula 8 and 13 mg of NaH in 5 mL at room temperature. After 4 hours, the reaction mixture was concentrated and dried in vacuo. The residue was mixed with water and extracted with CH 2 Cl 2 , then the extract was washed with water, dried over Na 2 SO 4 and evaporated under vacuum. Finally, purification was performed by flash column chromatography (hexane: EtOAc = 4: 1 to 1: 1) to obtain a compound having a solid content of [Formula 15] and [Formula 16] in a ratio of 1: 1. Yield: 86%
[화학식 17], [화학식 18]: 1-(6-Chloro-2-(((1,4,5,8-tetramethoxynaphthalen-2-yl)methyl)amino)-1H-benzo[d]imidazol-1-yl)ethan-1-one, 1-(5-[Formula 17], [Formula 18]: 1- (6-Chloro-2-((((1,4,5,8-tetramethoxynaphthalen-2-yl) methyl) amino) -1H-benzo [d] imidazol-1 -yl) ethan-1-one, 1- (5- chlorochloro -2-(((1,4,5,8--2-(((1,4,5,8- tetramethoxynaphthtetramethoxynaphth alenalen -2--2- ylyl )methyl)amino)-1H-benzo[d]imidazol-1-yl)ethan-1-one) methyl) amino) -1H-benzo [d] imidazol-1-yl) ethan-1-one
상온에서 1 시간 동안 CH2Cl2 5 mL 중 교반된 [화학식 9]의 화합물 100 mg 및 NaH 13mg에 Ac2O 54 mg을 상온에서 첨가하였다. 4 시간 후, 반응 혼합물을 진공에서 농축 및 건조시켰다. 잔류물을 물과 혼합하고, CH2Cl2로 추출한 후, 추출물을 물로 세척하고, Na2SO4 상에서 건조하였으며, 진공 하에서 증발시켰다. 마지막으로, 플래시 컬럼 크로마토그래피(hexane:EtOAc = 4:1 to 1:1)에 의해 정제하여 [화학식 17] 및 [화학식 18]의 고형분의 화합물을 1:1의 비율로 수득하였다. 수율: 80%CH 2 Cl 2 for 1 hour at room temperature 54 mg of Ac 2 O was added to 100 mg of stirred compound of Formula 9 and 13 mg of NaH in 5 mL at room temperature. After 4 hours, the reaction mixture was concentrated and dried in vacuo. The residue was mixed with water and extracted with CH 2 Cl 2 , then the extract was washed with water, dried over Na 2 SO 4 and evaporated under vacuum. Finally, purification was performed by flash column chromatography (hexane: EtOAc = 4: 1 to 1: 1) to obtain a compound having a solid content of Formula 17 and Formula 18 at a ratio of 1: 1. Yield: 80%
[화학식 19], [화학식 20]: 1-(6-Methoxy-2-(((1,4,5,8-tetramethoxynaphthalen-2-yl)methyl)-amino)-1H-benzo[d]imidazol-1-yl)ethan-1-one, 1-(5-Formula 19], Formula 20: 1- (6-Methoxy-2-(((1,4,5,8-tetramethoxynaphthalen-2-yl) methyl) -amino) -1H-benzo [d] imidazol- 1-yl) ethan-1-one, 1- (5- methoxymethoxy -2-(((1,4,5,8--2-(((1,4,5,8- tetramethoxynaphthalentetramethoxynaphthalen -2--2- ylyl )methyl)amino)-1H-benzo[d]imidazol-1-yl)ethan-1-one) methyl) amino) -1H-benzo [d] imidazol-1-yl) ethan-1-one
상온에서 1 시간 동안 CH2Cl2 5 mL 중 교반된 [화학식 10]의 화합물 100 mg 및 NaH 13mg에 Ac2O 54 mg을 상온에서 첨가하였다. 4 시간 후, 반응 혼합물을 진공에서 농축 및 건조시켰다. 잔류물을 물과 혼합하고, CH2Cl2로 추출한 후, 추출물을 물로 세척하고, Na2SO4 상에서 건조하였으며, 진공 하에서 증발시켰다. 마지막으로, 플래시 컬럼 크로마토그래피(hexane:EtOAc = 4:1 to 1:1)에 의해 정제하여 [화학식 19] 및 [화학식 20]의 고형분의 화합물을 1:1의 비율로 수득하였다. 수율: 91%CH 2 Cl 2 for 1 hour at room temperature 54 mg of Ac 2 O was added to 100 mg of stirred compound of Formula 10 and 13 mg of NaH in 5 mL at room temperature. After 4 hours, the reaction mixture was concentrated and dried in vacuo. The residue was mixed with water and extracted with CH 2 Cl 2 , then the extract was washed with water, dried over Na 2 SO 4 and evaporated under vacuum. Finally, purification was performed by flash column chromatography (hexane: EtOAc = 4: 1 to 1: 1) to obtain a compound having a solid content of [Formula 19] and [Formula 20] in a ratio of 1: 1. Yield: 91%
[화학식 21], [화학식 22]: 1-(6-Fluoro-2-(((1,4,5,8-tetramethoxynaphthalen-2-yl)methyl)amino)-1H-benzo[d]imidazol-1-yl)ethan-1-one, 1-(5-[Formula 21], [Formula 22]: 1- (6-Fluoro-2-((((1,4,5,8-tetramethoxynaphthalen-2-yl) methyl) amino) -1H-benzo [d] imidazol-1 -yl) ethan-1-one, 1- (5- fluorofluoro -2-(((1,4,5,8--2-(((1,4,5,8- tetramethoxynaphthtetramethoxynaphth alenalen -2--2- ylyl )methyl)amino)-1H-benzo[d]imidazol-1-yl)ethan-1-one) methyl) amino) -1H-benzo [d] imidazol-1-yl) ethan-1-one
상온에서 1 시간 동안 CH2Cl2 5 mL 중 교반된 [화학식 11]의 화합물 100 mg 및 NaH 13mg에 Ac2O 54 mg을 상온에서 첨가하였다. 4 시간 후, 반응 혼합물을 진공에서 농축 및 건조시켰다. 잔류물을 물과 혼합하고, CH2Cl2로 추출한 후, 추출물을 물로 세척하고, Na2SO4 상에서 건조하였으며, 진공 하에서 증발시켰다. 마지막으로, 플래시 컬럼 크로마토그래피(hexane:EtOAc = 4:1 to 1:1)에 의해 정제하여 [화학식 19] 및 [화학식 20]의 고형분의 화합물을 1:1의 비율로 수득하였다. 수율: 78%CH 2 Cl 2 for 1 hour at room temperature 54 mg of Ac 2 O was added to 100 mg of the compound of Formula 11 and 13 mg of NaH in 5 mL at room temperature. After 4 hours, the reaction mixture was concentrated and dried in vacuo. The residue was mixed with water and extracted with CH 2 Cl 2 , then the extract was washed with water, Na 2 SO 4 Dried over and evaporated under vacuum. Finally, purification was performed by flash column chromatography (hexane: EtOAc = 4: 1 to 1: 1) to obtain a compound having a solid content of [Formula 19] and [Formula 20] in a ratio of 1: 1. Yield: 78%
[화학식 23]: 2-(((6-[Formula 23]: 2-(((6- bromobromo -1H--1H- benzo[d]imidazolbenzo [d] imidazol -2--2- ylyl )amino)methyl)-5,8-dimethoxy-naphthalene-1,4-dione) amino) methyl) -5,8-dimethoxy-naphthalene-1,4-dione
0 ℃에서, 아세토니트릴(acetonitrille) 2 mL 중 [화학식 12] 및 [화학식 13]의 혼합물(1:1)에 물(0.5 mL)에 용해된 암모늄 세륨(Ⅳ) 나이트레이트 206 mg을 첨가한 후 1시간 동안 교반하였다. 반응이 끝난 후, 물을 첨가하고, 생성된 수상(aqueous phase)를 CH3Cl3로 추출하였다. 유기층을 물과 염수로 세척하고 Na2SO4 상에서 건조하였으며, 감압 하에서 농축시켰다. 마지막으로, 플래시 컬럼 크로마토그래피(hexane:EtOAc = 1:1)에 의해 정제하여 [화학식 23]의 고형분의 화합물을 수득하였다. 수율: 21%At 0 ° C., 206 mg of ammonium cerium (IV) nitrate dissolved in water (0.5 mL) was added to a mixture of Formula 12 and Formula 13 in 1 mL of acetonitrile at 0 ° C. Stir for 1 hour. After the reaction was completed, water was added and the resulting aqueous phase was extracted with CH 3 Cl 3 . The organic layer was washed with water and brine, dried over Na 2 S0 4 and concentrated under reduced pressure. Finally, purification was performed by flash column chromatography (hexane: EtOAc = 1: 1) to obtain a compound of a solid content of [Formula 23]. Yield: 21%
1H NMR (CDCl3, 400 MHz) d 7.50 (s, 1H), 7.36 (s, 1H), 7.12 (d, J = 8.2 Hz, 1H), 7.08 (d, J = 8.2 Hz, 1H), 6.78 (d, J = 5.7 Hz, 2H), 4.86 (bs, 1H), 3.88 (s, 6H). 1 H NMR (CDCl 3 , 400 MHz) d 7.50 (s, 1H), 7.36 (s, 1H), 7.12 (d, J = 8.2 Hz, 1H), 7.08 (d, J = 8.2 Hz, 1H), 6.78 (d, J = 5.7 Hz, 2H), 4.86 (bs, 1H), 3.88 (s, 6H).
[화학식 24]: 2-(((1H-Formula 24: 2-(((1H- Benzo[d]imidazolBenzo [d] imidazol -2--2- ylyl )amino)methyl)-5,8-) amino) methyl) -5,8- dimethoxydimethoxy -naphthalene-1,4-dione-naphthalene-1,4-dione
0 ℃에서, 아세토니트릴(acetonitrille) 2 mL 중 교반된 [화학식 14]의 화합물에 물(0.5 mL)에 용해된 암모늄 세륨(Ⅳ) 나이트레이트 206 mg을 첨가한 후 1시간 동안 교반하였다. 반응이 끝난 후, 물을 첨가하고, 생성된 수상(aqueous phase)를 CH3Cl3로 추출하였다. 유기층을 물과 염수로 세척하고 Na2SO4 상에서 건조하였으며, 감압 하에서 농축시켰다. 마지막으로, 플래시 컬럼 크로마토그래피(hexane:EtOAc = 1:1)에 의해 정제하여 [화학식 24]의 고형분의 화합물을 수득하였다. 수율: 21%At 0 ° C., 206 mg of ammonium cerium (IV) nitrate dissolved in water (0.5 mL) was added to the stirred compound of [Formula 14] in 2 mL of acetonitrile, followed by stirring for 1 hour. After the reaction was completed, water was added and the resulting aqueous phase was extracted with CH 3 Cl 3 . The organic layer was washed with water and brine, dried over Na 2 S0 4 and concentrated under reduced pressure. Finally, purification was performed by flash column chromatography (hexane: EtOAc = 1: 1) to obtain a compound of a solid content of [Formula 24]. Yield: 21%
[화학식 25]: 2-(((1-acetyl-6-Formula 25: 2-(((1-acetyl-6- bromobromo -1H--1H- benzo[d]imidazolbenzo [d] imidazol -2-yl)amino)methyl)-5,8-dimethoxy-naphthalene-1,4-dione-2-yl) amino) methyl) -5,8-dimethoxy-naphthalene-1,4-dione
-40 ℃에서, 아세토니트릴(acetonitrille) 2 mL 중 [화학식 12] 및 [화학식 13]의 혼합물 80 mg (1:1)에 물(0.5 mL)에 용해된 암모늄 세륨(Ⅳ) 나이트레이트 206 mg을 첨가한 후 1시간 동안 교반하였다. 반응이 끝난 후, 물을 첨가하고, 생성된 수상(aqueous phase)를 CH3Cl3로 추출하였다. 유기층을 물과 염수로 세척하고 Na2SO4 상에서 건조하였으며, 감압 하에서 농축시켰다. 마지막으로, 플래시 컬럼 크로마토그래피(hexane:EtOAc = 5:1)에 의해 정제하여 [화학식 25]의 고형분의 화합물을 수득하였다. 수율: 36%At -40 ° C., 206 mg of ammonium cerium (IV) nitrate dissolved in water (0.5 mL) in 80 mg (1: 1) of a mixture of Formula 12 and Formula 13 in 2 mL of acetonitrile. Stir for 1 hour after addition. After the reaction was completed, water was added and the resulting aqueous phase was extracted with CH 3 Cl 3 . The organic layer was washed with water and brine, dried over Na 2 S0 4 and concentrated under reduced pressure. Finally, purification was performed by flash column chromatography (hexane: EtOAc = 5: 1) to obtain a compound of solid content of [Formula 25]. Yield: 36%
1H NMR (CDCl3, 400 MHz) d 8.33 - 8.29 (m, 0.5 H), 8.26 8.24 (m, 0.5 H), 7.56 (d, J = 4.0 Hz, 1H), 7.52 (d, J = 6.4 Hz, 1H), 7.38 (d, J = 8.4 Hz, 0.5 H), 7.21 7.17 (m, 1.5 H), 6.78 (s, 1H), 4.86 (d, J = 6.0 Hz, 2H), 3.95 (d, J = 3.6 Hz, 3H), 3.92 (s, 3H), 2.76 (d, J = 6.0 Hz, 3H). 1 H NMR (CDCl 3 , 400 MHz) d 8.33-8.29 (m, 0.5 H), 8.26 8.24 (m, 0.5 H), 7.56 (d, J = 4.0 Hz, 1H), 7.52 (d, J = 6.4 Hz , 1H), 7.38 (d, J = 8.4 Hz, 0.5 H), 7.21 7.17 (m, 1.5 H), 6.78 (s, 1H), 4.86 (d, J = 6.0 Hz, 2H), 3.95 (d, J = 3.6 Hz, 3H), 3.92 (s, 3H), 2.76 (d, J = 6.0 Hz, 3H).
[화학식 26]: 2-(((1-Acetyl-1H-Formula 26: 2-(((1-Acetyl-1H- benzo[d]imidazolbenzo [d] imidazol -2--2- ylyl )amino)methyl)-5,8-dimethoxy-naphthalene-1,4-dione) amino) methyl) -5,8-dimethoxy-naphthalene-1,4-dione
-40 ℃에서, 아세토니트릴(acetonitrille) 2 mL 중 [화학식 14]의 화합물 80 mg에 물(0.5 mL)에 용해된 암모늄 세륨(Ⅳ) 나이트레이트 206 mg을 첨가한 후 1시간 동안 교반하였다. 반응이 끝난 후, 물을 첨가하고, 생성된 수상(aqueous phase)를 CH3Cl3로 추출하였다. 유기층을 물과 염수로 세척하고 Na2SO4 상에서 건조하였으며, 감압 하에서 농축시켰다. 마지막으로, 플래시 컬럼 크로마토그래피(hexane:EtOAc = 5:1)에 의해 정제하여 [화학식 26]의 고형분의 화합물을 수득하였다. 수율: 40%At -40 ° C, 206 mg of ammonium cerium (IV) nitrate dissolved in water (0.5 mL) was added to 80 mg of the compound of [Formula 14] in 2 mL of acetonitrile, followed by stirring for 1 hour. After the reaction was completed, water was added and the resulting aqueous phase was extracted with CH 3 Cl 3 . The organic layer was washed with water and brine, dried over Na 2 S0 4 and concentrated under reduced pressure. Finally, purification was performed by flash column chromatography (hexane: EtOAc = 5: 1) to obtain a compound of solid content of [Formula 26]. Yield: 40%
1H NMR (CDCl3, 400 MHz) d 8.35 8.33 (m, 1H), 7.59 (s, 1H), 7.42 7.40 (m, 2H), 7.09 (t, J = 8.0 Hz, 1H), 6.78 (s, 2H), 4.90 (d, J = 6.4 Hz, 2H), 3.95 (s, 3H), 3.93 (s, 3H), 2.78 (s, 3H). 1 H NMR (CDCl 3 , 400 MHz) d 8.35 8.33 (m, 1H), 7.59 (s, 1H), 7.42 7.40 (m, 2H), 7.09 (t, J = 8.0 Hz, 1H), 6.78 (s, 2H), 4.90 (d, J = 6.4 Hz, 2H), 3.95 (s, 3H), 3.93 (s, 3H), 2.78 (s, 3H).
[화학식 27], [화학식 28] : [Formula 27], [Formula 28]: terttert -butyl 6--butyl 6- bromobromo -2-(((1,4,5,8-tetramethoxynaphthalen-2-yl)methyl)amino)-1H-benzo[d]imidazole-1-carboxylate, tert-butyl 5--2-((((1,4,5,8-tetramethoxynaphthalen-2-yl) methyl) amino) -1H-benzo [d] imidazole-1-carboxylate, tert-butyl 5- bromobromo -2-(((1,4,5,8--2-(((1,4,5,8- tetramethoxynatetramethoxyna phthalenphthalen -2--2- ylyl )methyl)amino)-1H-benzo[d]imidazole-1-carboxylate ) methyl) amino) -1H-benzo [d] imidazole-1-carboxylate
상온에서, MeOH 5 mL 중 교반된 [화학식 6]의 화합물 100 mg에 Boc2O 195 mg를 첨가하여 12 시간동안 반응시킨 후, 반응혼합물을 물로 희석하고, DCM으로 추출하였다. 추출물을 물로 세척하고 Na2SO4 상에서 건조하였으며, 진공하에서 농축한 후 플래시 컬럼 크로마토그래피(hexane:EtOAc = 6:1)에 의해 정제하여 고형분의 [화학식 27]의 화합물과 [화학식 28]의 화합물을 수득하였다. 수율 : 39%(화학식 27), 45%(화학식 28)At room temperature, 195 mg of Boc 2 O was added to 100 mg of the stirred compound of Chemical Formula 6 in 5 mL of MeOH, and reacted for 12 hours. The reaction mixture was diluted with water and extracted with DCM. The extract was washed with water, dried over Na 2 SO 4 , concentrated in vacuo and purified by flash column chromatography (hexane: EtOAc = 6: 1) to obtain a solid compound [Formula 27] and [Formula 28]. Obtained. Yield: 39% (Formula 27), 45% (Formula 28)
(화학식 27) 1H NMR (CDCl3, 400 MHz) d 7.74 (s, 1H), 7.52 (d, J = 9.6 Hz, 1H), 7.32 7,25 (m, 1H),7.03 (s, 1H), 6.84 (s, 2H), 4.91 (d, J = 6.4 Hz, 2H), 3.95 (s, 3H), 3.91 (s, 3H), 3.89 (s, 3H), 3.82 (s, 3H), 1.67 (s, 9H). 1 H NMR (CDCl 3 , 400 MHz) d 7.74 (s, 1H), 7.52 (d, J = 9.6 Hz, 1H), 7.32 7,25 (m, 1H), 7.03 (s, 1H) , 6.84 (s, 2H), 4.91 (d, J = 6.4 Hz, 2H), 3.95 (s, 3H), 3.91 (s, 3H), 3.89 (s, 3H), 3.82 (s, 3H), 1.67 ( s, 9H).
(화학식 28) 1H NMR (CDCl3, 400 MHz) d 7.53 (s, 1H), 7.43 (d, J = 9.6 Hz, 1H), 7.14 (d, J = 9.6 Hz, 1H), 7.03 (s, 1H), 6.87 (d, J = 9.8 Hz, 2H), 4.92 (d, J = 5.5 Hz, 2H), 3.95 (s, 3H), 3.91 (s, 3H), 3.89 (s, 3H), 3.82 (s, 3H), 1.65 (s, 9H). 1 H NMR (CDCl 3 , 400 MHz) d 7.53 (s, 1H), 7.43 (d, J = 9.6 Hz, 1H), 7.14 (d, J = 9.6 Hz, 1H), 7.03 (s, 1H), 6.87 (d, J = 9.8 Hz, 2H), 4.92 (d, J = 5.5 Hz, 2H), 3.95 (s, 3H), 3.91 (s, 3H), 3.89 (s, 3H), 3.82 ( s, 3 H), 1.65 (s, 9 H).
[화학식 29]: Formula 29: terttert -butyl 5--butyl 5- bromobromo -2-(((5,8--2-(((5,8- dimethoxydimethoxy -1,4--1,4- dioxodioxo -1,4-dihydronaphthalen-2-yl)methyl)amino)-1H-benzo[d]imidazole-1-carboxylate-1,4-dihydronaphthalen-2-yl) methyl) amino) -1H-benzo [d] imidazole-1-carboxylate
0 ℃에서, 아세토니트릴(acetonitrille) 2 mL 중 교반된 [화학식 28]의 화합물 36 mg에 물(0.5 mL)에 용해된 암모늄 세륨(Ⅳ) 나이트레이트 64 mg을 첨가한 후 1시간 동안 교반하였다. 반응이 끝난 후, 물을 천천히 첨가하고, 생성된 수상 용액을 CHCl3로 추출하였다. 유기층을 물과 염수로 세척하고 Na2SO4 상에서 건조하였으며, 감압 하에서 농축시켰다. 마지막으로, 플래시 컬럼 크로마토그래피(hexane:EtOAc = 5:1)에 의해 정제하여 [화학식 29]의 고형분의 화합물을 수득하였다. 수율: 59%At 0 ° C., 64 mg of ammonium cerium (IV) nitrate dissolved in water (0.5 mL) was added to 36 mg of agitated compound in 2 mL of acetonitrile, followed by stirring for 1 hour. After the reaction was completed, water was slowly added, and the resulting aqueous solution was extracted with CHCl 3 . The organic layer was washed with water and brine, dried over Na 2 S0 4 and concentrated under reduced pressure. Finally, purification was performed by flash column chromatography (hexane: EtOAc = 5: 1) to obtain a compound of solid content of [Formula 29]. Yield: 59%
1H NMR (CDCl3, 400 MHz) d 7.74 (s, 1H), 7.57 (br s, 1H), 7.31 (s, 2H), 7.20 (d, J = 7.2 Hz, 1H), 6.78 (s, 1H), 4.68 (d, J= 6.4 Hz, 1H), 3.97 (s, 3H), 3.94 (s, 3H), 1.75 (s, 9H). 1 H NMR (CDCl 3 , 400 MHz) d 7.74 (s, 1H), 7.57 (br s, 1H), 7.31 (s, 2H), 7.20 (d, J = 7.2 Hz, 1H), 6.78 (s, 1H ), 4.68 (d, J = 6.4 Hz, 1H), 3.97 (s, 3H), 3.94 (s, 3H), 1.75 (s, 9H).
[화학식 30]: N-((1,4-dimethoxynaphthalen-2-yl)methyl)benzo[d]thiazol-2-amineFormula 30: N-((1,4-dimethoxynaphthalen-2-yl) methyl) benzo [d] thiazol-2-amine
상온에서, 둥근 바닥 플라스크에 알코올 550 mg, benzo[d]thiazol-2-amine 280 mg, sodium hydroxide 85 mg 및 톨루엔 2 mL를 첨가 및 혼합하였다. 반응혼합물을 120 ℃에서 15시간 동안 가열시킨 후, 상온으로 냉각시키고, 진공하에서 농축하였다. 마지막으로, 플래시 컬럼 크로마토그래피(hexane:EtOAc = 2:1)에 의해 정제하여 [화학식 30]의 고형분의 화합물을 수득하였다. 수율: 69%At room temperature, 550 mg of alcohol, 280 mg of benzo [d] thiazol-2-amine, 85 mg of sodium hydroxide and 2 mL of toluene were added and mixed in a round bottom flask. The reaction mixture was heated at 120 ° C. for 15 hours, then cooled to room temperature and concentrated in vacuo. Finally, the compound was purified by flash column chromatography (hexane: EtOAc = 2: 1) to obtain a compound having a solid content of [Formula 30]. Yield: 69%
1H NMR (CDCl3, 400 MHz) d 8.24 (d, J = 8.2 Hz, 1H), 8.07 (d, J = 8.2 Hz, 1H), 7.60 - 7.48 (m, 4H), 7.35 7.31 (m, 1H), 7.14 7.10 (m, 1H), 6.82 (s, 1H), 5.71 (s, 1H), 4.85 (s, 2H), 3.96 (s, 3H), 3.95 (s, 3H). 1 H NMR (CDCl 3 , 400 MHz) d 8.24 (d, J = 8.2 Hz, 1H), 8.07 (d, J = 8.2 Hz, 1H), 7.60-7.48 (m, 4H), 7.35 7.31 (m, 1H ), 7.14 7.10 (m, 1H), 6.82 (s, 1H), 5.71 (s, 1H), 4.85 (s, 2H), 3.96 (s, 3H), 3.95 (s, 3H).
[화학식 31]: N-((1,4-Dimethoxynaphthalen-2-yl)methyl)benzo[d]oxazol-2-amineFormula 31]: N-((1,4-Dimethoxynaphthalen-2-yl) methyl) benzo [d] oxazol-2-amine
상온에서, 둥근 바닥 플라스크에 알코올 550 mg, sodium hydroxide 85 mg 및 톨루엔 2 mL를 이용하여 [화학식 31]의 화합물을 제조하였다. 구체적으로, 이들의 반응혼합물을 120 ℃에서 15시간 동안 가열시킨 후, 상온으로 냉각시키고, 진공하에서 농축하였다. 마지막으로, 플래시 컬럼 크로마토그래피(hexane:EtOAc = 2:1)에 의해 정제하여 [화학식 31]의 고형분의 화합물을 수득하였다. 수율: 70%At room temperature, the compound of [Formula 31] was prepared using 550 mg of alcohol, 85 mg of sodium hydroxide and 2 mL of toluene in a round bottom flask. Specifically, these reaction mixtures were heated at 120 ° C. for 15 hours, then cooled to room temperature and concentrated under vacuum. Finally, the residue was purified by flash column chromatography (hexane: EtOAc = 2: 1) to obtain a compound having a solid content of [Formula 31]. Yield: 70%
1H NMR (CDCl3, 400 MHz) d 8.21 (d, J = 8.0, 1H), 8.02 (d, J = 8.0 Hz, 1H), 7.53 7.44 (m, 2H), 7.28 (d, J = 7.6 Hz, 1H), 7.23 (d, J = 7.6 Hz, 1H), 7.10 7.06 (m, 1H), 7.01 6.97 (m, 1H), 6.78 (s, 1H), 6.31 (s, 1H), 4.83 (s, 2H), 3.88 (s, 3H), 3.86 (s, 3H). 1 H NMR (CDCl 3 , 400 MHz) d 8.21 (d, J = 8.0, 1H), 8.02 (d, J = 8.0 Hz, 1H), 7.53 7.44 (m, 2H), 7.28 (d, J = 7.6 Hz , 1H), 7.23 (d, J = 7.6 Hz, 1H), 7.10 7.06 (m, 1H), 7.01 6.97 (m, 1H), 6.78 (s, 1H), 6.31 (s, 1H), 4.83 (s, 2H), 3.88 (s, 3H), 3.86 (s, 3H).
[화학식 32]: N-((1,4-Formula 32: N-((1,4- DimethoxynaphthalenDimethoxynaphthalen -2--2- ylyl )methyl)-5-fluorobenzo[d]oxazol-2-amine) methyl) -5-fluorobenzo [d] oxazol-2-amine
상온에서, 둥근 바닥 플라스크에 알코올 550 mg, sodium hydroxide 85 mg 및 톨루엔 2 mL를 이용하여 [화학식 32]의 화합물을 제조하였다. 구체적으로, 이들의 반응혼합물을 120 ℃에서 15시간 동안 가열시킨 후, 상온으로 냉각시키고, 진공하에서 농축하였다. 마지막으로, 플래시 컬럼 크로마토그래피(hexane:EtOAc = 2:1)에 의해 정제하여 [화학식 32]의 고형분의 화합물을 수득하였다. 수율: 63%At room temperature, a compound of [Formula 32] was prepared using 550 mg of alcohol, 85 mg of sodium hydroxide, and 2 mL of toluene in a round bottom flask. Specifically, these reaction mixtures were heated at 120 ° C. for 15 hours, then cooled to room temperature and concentrated under vacuum. Finally, purification was performed by flash column chromatography (hexane: EtOAc = 2: 1) to obtain a compound of solid content of [Formula 32]. Yield: 63%
1H NMR (CDCl3, 400 MHz) d 8.22 (d, J = 8.2 Hz, 1H), 8.02 (d, J = 8.2 Hz, 1H), 7.55 - 7.36 (m, 2H), 7.14 7.10 (m, 1H), 7.02 - 6.96 (m, 1H), 6.77 (s, 1H), 6.70 - 6.78 (m, 1H), 6.14 (s, 1H), 4.82 (s, 2H), 3.90 (s, 3H), 3.88 (s, 3H). 1 H NMR (CDCl 3 , 400 MHz) d 8.22 (d, J = 8.2 Hz, 1H), 8.02 (d, J = 8.2 Hz, 1H), 7.55-7.36 (m, 2H), 7.14 7.10 (m, 1H ), 7.02-6.96 (m, 1H), 6.77 (s, 1H), 6.70-6.78 (m, 1H), 6.14 (s, 1H), 4.82 (s, 2H), 3.90 (s, 3H), 3.88 ( s, 3H).
[화학식 33]: 5-Formula 33: 5- ChloroChloro -N-((1,4-dimethoxynaphthalen-2-yl)methyl)benzo[d]oxazol-2-amine-N-((1,4-dimethoxynaphthalen-2-yl) methyl) benzo [d] oxazol-2-amine
상온에서, 둥근 바닥 플라스크에 알코올 550 mg, sodium hydroxide 85 mg 및 톨루엔 2 mL를 이용하여 [화학식 33]의 화합물을 제조하였다. 구체적으로, 이들의 반응혼합물을 120 ℃에서 15시간 동안 가열시킨 후, 상온으로 냉각시키고, 진공하에서 농축하였다. 마지막으로, 플래시 컬럼 크로마토그래피(hexane:EtOAc = 2:1)에 의해 정제하여 [화학식 33]의 고형분의 화합물을 수득하였다. 수율: 64%At room temperature, the compound of [Formula 33] was prepared using 550 mg of alcohol, 85 mg of sodium hydroxide and 2 mL of toluene in a round bottom flask. Specifically, these reaction mixtures were heated at 120 ° C. for 15 hours, then cooled to room temperature and concentrated under vacuum. Finally, the residue was purified by flash column chromatography (hexane: EtOAc = 2: 1) to obtain a compound having a solid content of Chemical Formula 33. Yield: 64%
1H NMR (CDCl3, 400 MHz) d 8.25 (d, J = 8.2 Hz, 1H), 8.06 (d, J = 8.2 Hz, 1H), 7.60 7.56 (m, 1H), 7.54 7.50 (m, 1H), 7.35 (s, 1H), 7.16 (s, 1H), 7.03 6.99 (m, 1H), 6.80 (s, 1H), 5.23 (s, 1H), 4.85 (s, 2H), 3.96 (s, 6H). 1 H NMR (CDCl 3 , 400 MHz) d 8.25 (d, J = 8.2 Hz, 1H), 8.06 (d, J = 8.2 Hz, 1H), 7.60 7.56 (m, 1H), 7.54 7.50 (m, 1H) , 7.35 (s, 1H), 7.16 (s, 1H), 7.03 6.99 (m, 1H), 6.80 (s, 1H), 5.23 (s, 1H), 4.85 (s, 2H), 3.96 (s, 6H) .
[화학식 34]: 6-Formula 34: 6- ChloroChloro -N-((1,4-dimethoxynaphthalen-2-yl)methyl)benzo[d]oxazol-2-amine -N-((1,4-dimethoxynaphthalen-2-yl) methyl) benzo [d] oxazol-2-amine
상온에서, 둥근 바닥 플라스크에 알코올 550 mg, sodium hydroxide 85 mg 및 톨루엔 2 mL를 이용하여 [화학식 34]의 화합물을 제조하였다. 구체적으로, 이들의 반응혼합물을 120 ℃에서 15시간 동안 가열시킨 후, 상온으로 냉각시키고, 진공하에서 농축하였다. 마지막으로, 플래시 컬럼 크로마토그래피(hexane:EtOAc = 2:1)에 의해 정제하여 [화학식 34]의 고형분의 화합물을 수득하였다. 수율: 66%At room temperature, the compound of [Formula 34] was prepared using 550 mg of alcohol, 85 mg of sodium hydroxide, and 2 mL of toluene in a round bottom flask. Specifically, these reaction mixtures were heated at 120 ° C. for 15 hours, then cooled to room temperature and concentrated under vacuum. Finally, the residue was purified by flash column chromatography (hexane: EtOAc = 2: 1) to obtain a compound of solid content of [Formula 34]. Yield: 66%
1H NMR (CDCl3, 400 MHz) d 8.24 (d, J = 8.8 Hz, 1H), 8.05 (d, J = 8.8 Hz, 1H), 7.58 7.54 (m, 1H), 7.52 7.48 (m, 1H), 7.25 (d, 1H &CDCl3 , overlapped), 7.15 7.11 (m, 1H), 6.79 (s, 1H), 5.65 (s, 1H), 4.83 (s, 2H), 3.98 (s, 1H). 1 H NMR (CDCl 3 , 400 MHz) d 8.24 (d, J = 8.8 Hz, 1H), 8.05 (d, J = 8.8 Hz, 1H), 7.58 7.54 (m, 1H), 7.52 7.48 (m, 1H) , 7.25 (d, 1H & CDCl 3 , overlapped), 7.15 7.11 (m, 1H), 6.79 (s, 1H), 5.65 (s, 1H), 4.83 (s, 2H), 3.98 (s, 1H).
[화학식 35]: 5-Formula 35: 5- ChloroChloro -N-((1,4-dimethoxynaphthalen-2-yl)methyl)benzo[d]thiazol-2-amine -N-((1,4-dimethoxynaphthalen-2-yl) methyl) benzo [d] thiazol-2-amine
상온에서, 둥근 바닥 플라스크에 알코올 550 mg, sodium hydroxide 85 mg 및 톨루엔 2 mL를 이용하여 [화학식 35]의 화합물을 제조하였다. 구체적으로, 이들의 반응혼합물을 120 ℃에서 15시간 동안 가열시킨 후, 상온으로 냉각시키고, 진공하에서 농축하였다. 마지막으로, 플래시 컬럼 크로마토그래피(hexane:EtOAc = 2:1)에 의해 정제하여 [화학식 35]의 고형분의 화합물을 수득하였다. 수율: 66%At room temperature, the compound of [Formula 35] was prepared using 550 mg of alcohol, 85 mg of sodium hydroxide and 2 mL of toluene in a round bottom flask. Specifically, these reaction mixtures were heated at 120 ° C. for 15 hours, then cooled to room temperature and concentrated under vacuum. Finally, purification was performed by flash column chromatography (hexane: EtOAc = 2: 1) to obtain a compound of solid content of [Formula 35]. Yield: 66%
1H NMR (CDCl3, 400 MHz) d 8.23 (d, J = 8.2 Hz, 1H), 8.06 (d, J = 8.2 Hz, 1H), 7.58 - 7.44 (m, 4H), 7.08 7.04 (m, 1H), 6.78 (s, 1H), 4.82 (s, 2H), 3.95 (s, 3H), 3.92 (s, 3H). 1 H NMR (CDCl 3 , 400 MHz) d 8.23 (d, J = 8.2 Hz, 1H), 8.06 (d, J = 8.2 Hz, 1H), 7.58-7.44 (m, 4H), 7.08 7.04 (m, 1H ), 6.78 (s, 1H), 4.82 (s, 2H), 3.95 (s, 3H), 3.92 (s, 3H).
[화학식 36]: N-((1,4-Formula 36: N-((1,4- DimethoxynaphthalenDimethoxynaphthalen -2--2- ylyl )methyl)-5-(trifluoromethyl)benzo[d]thiazol-2-amine) methyl) -5- (trifluoromethyl) benzo [d] thiazol-2-amine
상온에서, 둥근 바닥 플라스크에 알코올 550 mg, sodium hydroxide 85 mg 및 톨루엔 2 mL를 이용하여 [화학식 36]의 화합물을 제조하였다. 구체적으로, 이들의 반응혼합물을 120 ℃에서 15시간 동안 가열시킨 후, 상온으로 냉각시키고, 진공하에서 농축하였다. 마지막으로, 플래시 컬럼 크로마토그래피(hexane:EtOAc = 2:1)에 의해 정제하여 [화학식 36]의 고형분의 화합물을 수득하였다. 수율: 51%At room temperature, the compound of [Formula 36] was prepared using 550 mg of alcohol, 85 mg of sodium hydroxide and 2 mL of toluene in a round bottom flask. Specifically, these reaction mixtures were heated at 120 ° C. for 15 hours, then cooled to room temperature and concentrated under vacuum. Finally, the residue was purified by flash column chromatography (hexane: EtOAc = 2: 1) to obtain a compound having a solid content of [Formula 36]. Yield: 51%
1H NMR (CDCl3, 400 MHz) d 8.24 (d, J = 8.2 Hz, 1H), 8.06 (d, J = 8.2 Hz, 1H), 7.81 (s, 1H), 7.67 (d, J = 8.2 Hz, 1H), 7.59 7.55 (m, 1H), 7.52 7.48 (m, 1H), 7.36 7.32 (m, 1H), 6.79 (s, 1H), 5.93 (s, 1H), 4.85 (s, 2H), 3.96 (s, 3H), 3.85 (s 3H). 1 H NMR (CDCl 3 , 400 MHz) d 8.24 (d, J = 8.2 Hz, 1H), 8.06 (d, J = 8.2 Hz, 1H), 7.81 (s, 1H), 7.67 (d, J = 8.2 Hz , 1H), 7.59 7.55 (m, 1H), 7.52 7.48 (m, 1H), 7.36 7.32 (m, 1H), 6.79 (s, 1H), 5.93 (s, 1H), 4.85 (s, 2H), 3.96 (s, 3 H), 3.85 (s 3 H).
[화학식 37]: 2-((benzo[d]thiazol-2-ylamino)methyl)naphthalene-1,4-dioneFormula 37] 2-((benzo [d] thiazol-2-ylamino) methyl) naphthalene-1,4-dione
0 ℃에서, 아세토니트릴(acetonitrille) 1 mL 중 교반된 [화학식 30]의 화합물 40 mg에 물(0.5 mL)에 용해된 암모늄 세륨(Ⅳ) 나이트레이트 163 mg을 첨가한 후 1시간 동안 교반하였다. 반응이 끝난 후, 물을 천천히 첨가하고, 생성된 수상 용액을 CHCl3로 추출하였다. 유기층을 물과 염수로 세척하고 Na2SO4 상에서 건조하였으며, 감압 하에서 농축시켰다. 마지막으로, 플래시 컬럼 크로마토그래피(hexane:EtOAc = 3:1)에 의해 정제하여 [화학식 37]의 고형분의 화합물을 수득하였다. 수율: 61%At 0 ° C., 163 mg of ammonium cerium (IV) nitrate dissolved in water (0.5 mL) was added to 40 mg of the stirred compound of Formula 30 in 1 mL of acetonitrile, followed by stirring for 1 hour. After the reaction was completed, water was slowly added, and the resulting aqueous solution was extracted with CHCl 3 . The organic layer was washed with water and brine, dried over Na 2 S0 4 and concentrated under reduced pressure. Finally, the residue was purified by flash column chromatography (hexane: EtOAc = 3: 1) to obtain a compound having a solid content of [Formula 37]. Yield: 61%
1H NMR (CDCl3, 400 MHz) d 8.12 (d, J = 3.5 Hz, 1H), 8.11 (d, J = 3.5 Hz, 1H), 7.76 (d, J = 3.2 Hz, 2H), 7.34 7.27 (m, 1H), 7.15 7.09 (m, 1H), 7.05 (s, 1H), 5.76 (s, 1H), 4.86 (s, 2H). 1 H NMR (CDCl 3 , 400 MHz) d 8.12 (d, J = 3.5 Hz, 1H), 8.11 (d, J = 3.5 Hz, 1H), 7.76 (d, J = 3.2 Hz, 2H), 7.34 7.27 ( m, 1H), 7.15 7.09 (m, 1H), 7.05 (s, 1H), 5.76 (s, 1H), 4.86 (s, 2H).
[화학식 38]: 2-((Benzo[d]oxazol-2-ylamino)methyl)naphthalene-1,4-dioneFormula 38: 2-((Benzo [d] oxazol-2-ylamino) methyl) naphthalene-1,4-dione
0 ℃에서, 아세토니트릴(acetonitrille) 1 mL 중 교반된 [화학식 31]의 화합물 40 mg에 물(0.5 mL)에 용해된 암모늄 세륨(Ⅳ) 나이트레이트 163 mg을 첨가한 후 1시간 동안 교반하였다. 반응이 끝난 후, 물을 천천히 첨가하고, 생성된 수상 용액을 CHCl3로 추출하였다. 유기층을 물과 염수로 세척하고 Na2SO4 상에서 건조하였으며, 감압 하에서 농축시켰다. 마지막으로, 플래시 컬럼 크로마토그래피(hexane:EtOAc = 3:1)에 의해 정제하여 [화학식 38]의 고형분의 화합물을 수득하였다. 수율: 65%At 0 ° C., 163 mg of ammonium cerium (IV) nitrate dissolved in water (0.5 mL) was added to 40 mg of the stirred compound of Formula 31 in 1 mL of acetonitrile, followed by stirring for 1 hour. After the reaction was completed, water was slowly added, and the resulting aqueous solution was extracted with CHCl 3 . The organic layer was washed with water and brine, dried over Na 2 S0 4 and concentrated under reduced pressure. Finally, purification was performed by flash column chromatography (hexane: EtOAc = 3: 1) to obtain a compound of solid content of [Formula 38]. Yield: 65%
1H NMR (CDCl3, 400 MHz) d 8.12 (d, J = 3.5 Hz, 1H), 8.11 (d, J = 3.5 Hz, 1H), 7.76 (d, J = 3.2 Hz, 2H), 7.34 7.27 (m, 1H), 7.15 7.09 (m, 1H), 7.05 (s, 1H), 5.76 (s, 1H), 4.86 (s, 2H). 1 H NMR (CDCl 3 , 400 MHz) d 8.12 (d, J = 3.5 Hz, 1H), 8.11 (d, J = 3.5 Hz, 1H), 7.76 (d, J = 3.2 Hz, 2H), 7.34 7.27 ( m, 1H), 7.15 7.09 (m, 1H), 7.05 (s, 1H), 5.76 (s, 1H), 4.86 (s, 2H).
[화학식 39]: 2-(((5-Formula 39: 2-(((5- Fluorobenzo[d]oxazolFluorobenzo [d] oxazol -2--2- ylyl )amino)methyl)naphthalene-1,4-dione) amino) methyl) naphthalene-1,4-dione
0 ℃에서, 아세토니트릴(acetonitrille) 1 mL 중 교반된 [화학식 32]의 화합물 40 mg에 물(0.5 mL)에 용해된 암모늄 세륨(Ⅳ) 나이트레이트 163 mg을 첨가한 후 1시간 동안 교반하였다. 반응이 끝난 후, 물을 천천히 첨가하고, 생성된 수상 용액을 CHCl3로 추출하였다. 유기층을 물과 염수로 세척하고 Na2SO4 상에서 건조하였으며, 감압 하에서 농축시켰다. 마지막으로, 플래시 컬럼 크로마토그래피(hexane:EtOAc = 3:1)에 의해 정제하여 [화학식 39]의 고형분의 화합물을 수득하였다. 수율: 54%At 0 ° C., 163 mg of ammonium cerium (IV) nitrate dissolved in water (0.5 mL) was added to 40 mg of the stirred compound of Formula 32 in 1 mL of acetonitrile, followed by stirring for 1 hour. After the reaction was completed, water was slowly added, and the resulting aqueous solution was extracted with CHCl 3 . The organic layer was washed with water and brine, dried over Na 2 S0 4 and concentrated under reduced pressure. Finally, the residue was purified by flash column chromatography (hexane: EtOAc = 3: 1) to obtain a compound having a solid content of [Formula 39]. Yield: 54%
1H NMR (CDCl3, 400 MHz) d 8.12 (d, J = 8.9, 1H), 8.08 (d, J = 8.9, 1H), 7.79 7.77 (m, 2H), 7.18 7.14 (m, 1H), 7.08 7.05 (m, 1H), 7.03 (s, 1H), 6.78 6.73 (m, 1H), 5.82 (s, 1H), 4.61 (s, 2H). 1 H NMR (CDCl 3 , 400 MHz) d 8.12 (d, J = 8.9, 1H), 8.08 (d, J = 8.9, 1H), 7.79 7.77 (m, 2H), 7.18 7.14 (m, 1H), 7.08 7.05 (m, 1 H), 7.03 (s, 1 H), 6.78 6.73 (m, 1 H), 5.82 (s, 1 H), 4.61 (s, 2H).
[화학식 40]: 2-(((5-Formula 40: 2-(((5- Chlorobenzo[d]oxazolChlorobenzo [d] oxazol -2--2- ylyl )amino)methyl)naphthalene-1,4-dione ) amino) methyl) naphthalene-1,4-dione
0 ℃에서, 아세토니트릴(acetonitrille) 1 mL 중 교반된 [화학식 33]의 화합물 40 mg에 물(0.5 mL)에 용해된 암모늄 세륨(Ⅳ) 나이트레이트 163 mg을 첨가한 후 1시간 동안 교반하였다. 반응이 끝난 후, 물을 천천히 첨가하고, 생성된 수상 용액을 CHCl3로 추출하였다. 유기층을 물과 염수로 세척하고 Na2SO4 상에서 건조하였으며, 감압 하에서 농축시켰다. 마지막으로, 플래시 컬럼 크로마토그래피(hexane:EtOAc = 3:1)에 의해 정제하여 [화학식 40]의 고형분의 화합물을 수득하였다. 수율: 59%At 0 ° C., 163 mg of ammonium cerium (IV) nitrate dissolved in water (0.5 mL) was added to 40 mg of the stirred compound of Formula 33 in 1 mL of acetonitrile, followed by stirring for 1 hour. After the reaction was completed, water was slowly added, and the resulting aqueous solution was extracted with CHCl 3 . The organic layer was washed with water and brine, dried over Na 2 S0 4 and concentrated under reduced pressure. Finally, the residue was purified by flash column chromatography (hexane: EtOAc = 3: 1) to obtain a compound having a solid content of [Formula 40]. Yield: 59%
1H NMR (CDCl3, 400 MHz) d 8.12 (d, J = 8.6 Hz, 1H), 8.08 (d, J = 8.6 Hz, 1H), 7.75 (s, 2H), 7.17 (d, J = 8.0 Hz, 1H), 7.15 (d, J = 8.0 Hz, 2H), 7.02 (s, 1H), 7.00 (d, J = 8.0 Hz, 1H), 5.82 (s, 1H), 4.62 (s, 2H). 1 H NMR (CDCl 3 , 400 MHz) d 8.12 (d, J = 8.6 Hz, 1H), 8.08 (d, J = 8.6 Hz, 1H), 7.75 (s, 2H), 7.17 (d, J = 8.0 Hz , 1H), 7.15 (d, J = 8.0 Hz, 2H), 7.02 (s, 1H), 7.00 (d, J = 8.0 Hz, 1H), 5.82 (s, 1H), 4.62 (s, 2H).
[화학식 41]: 2-(((6-Formula 41: 2-(((6- Chlorobenzo[d]oxazolChlorobenzo [d] oxazol -2--2- ylyl )amino)methyl)naphthalene-1,4-dione ) amino) methyl) naphthalene-1,4-dione
0 ℃에서, 아세토니트릴(acetonitrille) 1 mL 중 교반된 [화학식 34]의 화합물 40 mg에 물(0.5 mL)에 용해된 암모늄 세륨(Ⅳ) 나이트레이트 163 mg을 첨가한 후 1시간 동안 교반하였다. 반응이 끝난 후, 물을 천천히 첨가하고, 생성된 수상 용액을 CHCl3로 추출하였다. 유기층을 물과 염수로 세척하고 Na2SO4 상에서 건조하였으며, 감압 하에서 농축시켰다. 마지막으로, 플래시 컬럼 크로마토그래피(hexane:EtOAc = 3:1)에 의해 정제하여 [화학식 41]의 고형분의 화합물을 수득하였다. 수율: 61%At 0 ° C., 163 mg of ammonium cerium (IV) nitrate dissolved in water (0.5 mL) was added to 40 mg of the stirred compound of formula 34 in 1 mL of acetonitrile, followed by stirring for 1 hour. After the reaction was completed, water was slowly added, and the resulting aqueous solution was extracted with CHCl 3 . The organic layer was washed with water and brine, dried over Na 2 S0 4 and concentrated under reduced pressure. Finally, the residue was purified by flash column chromatography (hexane: EtOAc = 3: 1) to obtain a compound of a solid content of [Formula 41]. Yield: 61%
1H NMR (CDCl3, 400 MHz) d 8.12 (d, J = 8.6 Hz, 1H), 8.07 (d, J = 8.6 Hz, 1H), 7.77 (d, J = 8.6 Hz, 2H), 7.26 (s, 1H & CDCl3 , overlapped), 7.25 (d, 1H & CDCl3 , overlapped), 7.24 (d, J = 8.0 Hz, 1H), 7.03 (s, 1H), 5.79 (s, 1H), 4.62 (s, 2H). 1 H NMR (CDCl 3 , 400 MHz) d 8.12 (d, J = 8.6 Hz, 1H), 8.07 (d, J = 8.6 Hz, 1H), 7.77 (d, J = 8.6 Hz, 2H), 7.26 (s , 1H & CDCl 3 , overlapped), 7.25 (d, 1H & CDCl 3 , overlapped), 7.24 (d, J = 8.0 Hz, 1H), 7.03 (s, 1H), 5.79 (s, 1H), 4.62 (s , 2H).
[화학식 42]: 2-(((5-Formula 42: 2-(((5- Chlorobenzo[d]thiazolChlorobenzo [d] thiazol -2-yl)amino)methyl)naphthalene-1,4-dione -2-yl) amino) methyl) naphthalene-1,4-dione
0 ℃에서, 아세토니트릴(acetonitrille) 1 mL 중 교반된 [화학식 35]의 화합물 40 mg에 물(0.5 mL)에 용해된 암모늄 세륨(Ⅳ) 나이트레이트 163 mg을 첨가한 후 1시간 동안 교반하였다. 반응이 끝난 후, 물을 천천히 첨가하고, 생성된 수상 용액을 CHCl3로 추출하였다. 유기층을 물과 염수로 세척하고 Na2SO4 상에서 건조하였으며, 감압 하에서 농축시켰다. 마지막으로, 플래시 컬럼 크로마토그래피(hexane:EtOAc = 3:1)에 의해 정제하여 [화학식 42]의 고형분의 화합물을 수득하였다. 수율: 57%At 0 ° C., 163 mg of ammonium cerium (IV) nitrate dissolved in water (0.5 mL) was added to 40 mg of the stirred compound of Formula 35 in 1 mL of acetonitrile, followed by stirring for 1 hour. After the reaction was completed, water was slowly added, and the resulting aqueous solution was extracted with CHCl 3 . The organic layer was washed with water and brine, dried over Na 2 S0 4 and concentrated under reduced pressure. Finally, the residue was purified by flash column chromatography (hexane: EtOAc = 3: 1) to obtain a compound having a solid content of [Formula 42]. Yield: 57%
1H NMR (CDCl3, 400 MHz) d 8.14 8.10 (m, 1H), 8.09 8.05 (m, 1H), 7.79 7.75 (m, 2H), 7.52 (s, 1H), 7.47 (d, J = 8.4 Hz, 1H), 7.09 (d, J = 8.4, 1H), 7.04 (s, 1H), 5.74 (s, 1H), 4.64 (s, 2H). 1 H NMR (CDCl 3 , 400 MHz) d 8.14 8.10 (m, 1H), 8.09 8.05 (m, 1H), 7.79 7.75 (m, 2H), 7.52 (s, 1H), 7.47 (d, J = 8.4 Hz , 1H), 7.09 (d, J = 8.4, 1H), 7.04 (s, 1H), 5.74 (s, 1H), 4.64 (s, 2H).
[화학식 43]: 2-(((5-Formula 43: 2-(((5- (Trifluoromethyl)benzo(Trifluoromethyl) benzo [d][d] thiazolthiazol -2-yl)amino)methyl)naphthalene-1,4-dione-2-yl) amino) methyl) naphthalene-1,4-dione
0 ℃에서, 아세토니트릴(acetonitrille) 1 mL 중 교반된 [화학식 36]의 화합물 40 mg에 물(0.5 mL)에 용해된 암모늄 세륨(Ⅳ) 나이트레이트 163 mg을 첨가한 후 1시간 동안 교반하였다. 반응이 끝난 후, 물을 천천히 첨가하고, 생성된 수상 용액을 CHCl3로 추출하였다. 유기층을 물과 염수로 세척하고 Na2SO4 상에서 건조하였으며, 감압 하에서 농축시켰다. 마지막으로, 플래시 컬럼 크로마토그래피(hexane:EtOAc = 3:1)에 의해 정제하여 [화학식 43]의 고형분의 화합물을 수득하였다. 수율: 51%At 0 ° C., 163 mg of ammonium cerium (IV) nitrate dissolved in water (0.5 mL) was added to 40 mg of the stirred compound of Formula 36 in 1 mL of acetonitrile, followed by stirring for 1 hour. After the reaction was completed, water was slowly added, and the resulting aqueous solution was extracted with CHCl 3 . The organic layer was washed with water and brine, dried over Na 2 S0 4 and concentrated under reduced pressure. Finally, purification was performed by flash column chromatography (hexane: EtOAc = 3: 1) to obtain a compound of solid content of [Formula 43]. Yield: 51%
1H NMR (CDCl3, 400 MHz) d 8.15 8.11 (m, 1H), 8.10 8.06 (m, 1H), 7.77 (s, 1H), 7.78 (d, J = 7.2 Hz, 2H), 7.33 7.05 (m, 3H), 5.79 (s, 1H), 4.68 (s, 2H). 1 H NMR (CDCl 3 , 400 MHz) d 8.15 8.11 (m, 1H), 8.10 8.06 (m, 1H), 7.77 (s, 1H), 7.78 (d, J = 7.2 Hz, 2H), 7.33 7.05 (m , 3H), 5.79 (s, 1H), 4.68 (s, 2H).
[화학식 44]: N-((1,4-Formula 44: N-((1,4- dimethoxynaphthalendimethoxynaphthalen -2--2- ylyl )methyl)-1H-benzo[d]imidazol-2-amine ) methyl) -1H-benzo [d] imidazol-2-amine
상온 및 질소 분위기 하에서, 오븐에서 건조된 Schlenk 튜브에 (1,4-dimethoxynaphthalen-2-yl)methanol 94 mg, 1H-benzo[d]imidazol-2-amine 50 mg, K2CO3 3 mg, [Cp*IrCl2]2 0.9 mg 및 톨루엔 1.5 mL를 첨가 및 혼합하였다. 이후, 상기 혼합물을 120 ℃에서 12 시간 동안 가열 후, 주위 온도(ambient temperature)로 냉각하였다. 다음으로, 상기 혼합물을 진공에서 농축시키고, 플래시 컬럼 크로마토그래피(hexane:EtOAc = 4:1 to 1:1)에 의해 정제하여 화합물을 수득하였다.Under ambient temperature and nitrogen atmosphere, 94 mg of (1,4-dimethoxynaphthalen-2-yl) methanol, 50 mg of 1H-benzo [d] imidazol-2-amine, 3 mg of K 2 CO 3 , in a Schlenk tube dried in an oven [ 0.9 mg of Cp * IrCl 2 ] 2 and 1.5 mL of toluene were added and mixed. The mixture was then heated at 120 ° C. for 12 hours and then cooled to ambient temperature. Next, the mixture was concentrated in vacuo and purified by flash column chromatography (hexane: EtOAc = 4: 1 to 1: 1) to give a compound.
수율: 61%Yield: 61%
1H NMR (CDCl3, 400 MHz) d 8.13 (d, J = 8.4 Hz, 1H), 8.04 (d, J = 8.5 Hz, 1H), 7.59 7.55 (m, 1H), 7.51 7.47 (m, 1H), 7.25 (d, J = 8.8 Hz, 2H), 7.01 (d, J = 8.8 Hz, 2H), 6.58 (s, 1H), 4.60 (s, 2H), 4.03 (s, 3H), 3.54 (s, 3H). 1 H NMR (CDCl 3 , 400 MHz) d 8.13 (d, J = 8.4 Hz, 1H), 8.04 (d, J = 8.5 Hz, 1H), 7.59 7.55 (m, 1H), 7.51 7.47 (m, 1H) , 7.25 (d, J = 8.8 Hz, 2H), 7.01 (d, J = 8.8 Hz, 2H), 6.58 (s, 1H), 4.60 (s, 2H), 4.03 (s, 3H), 3.54 (s, 3H).
[화학식 45]: 1-(2-(((1,4-[Formula 45]: 1- (2-(((1,4- dimethoxynaphthalendimethoxynaphthalen -2--2- ylyl )methyl)amino)-1H-benzo[d]imidazol-1-yl)ethan-1-one) methyl) amino) -1H-benzo [d] imidazol-1-yl) ethan-1-one
상온에서 1 시간 동안 CH2Cl2 5 mL 중 교반된 [화학식 44]의 화합물 140 mg 및 NaH 25mg에 Ac2O 107 mg을 상온에서 첨가하여 4시간 동안 교반하였다. 상기 반응혼합물을 물로 세척 후, CH2Cl2로 추출하였다. 분리된 유기 용액을 물로 세척하고, Na2SO4 상에서 건조하였으며, 진공 하에서 농축시켰다. 마지막으로, 플래시 컬럼 크로마토그래피(hexane:EtOAc = 4:1)에 의해 정제하여 [화학식 45]의 화합물을 수득하였다. 수율: 89%CH 2 Cl 2 for 1 hour at room temperature To 140 mg of the compound of Formula 44 and 25 mg of NaH in 5 mL were added 107 mg of Ac 2 O at room temperature and stirred for 4 hours. The reaction mixture was washed with water and extracted with CH 2 Cl 2 . The separated organic solution was washed with water, dried over Na 2 SO 4 and concentrated in vacuo. Finally, purification by flash column chromatography (hexane: EtOAc = 4: 1) afforded the compound of [Formula 45]. Yield: 89%
1H NMR (CDCl3, 400 MHz) d 8.22 (d, J = 8.2 Hz, 1H), 8.08 (d, J = 8.2 Hz, 1H), 7.61 - 7.42 (m, 3H), 7.39 (d, J = 8.8 Hz, 1H), 7.27 (t, 1H & CDCl3 , overlapped), 7.13 7.09 (m, 1H), 6.88 (s, 1H), 4.98 (d, J = 6.4 Hz,2H), 3.98 (s, 3H), 3.97 (s, 3H), 2.77 (s, 3H). 1 H NMR (CDCl 3 , 400 MHz) d 8.22 (d, J = 8.2 Hz, 1H), 8.08 (d, J = 8.2 Hz, 1H), 7.61-7.42 (m, 3H), 7.39 (d, J = 8.8 Hz, 1H), 7.27 (t, 1H & CDCl 3 , overlapped), 7.13 7.09 (m, 1H), 6.88 (s, 1H), 4.98 (d, J = 6.4 Hz, 2H), 3.98 (s, 3H ), 3.97 (s, 3 H), 2.77 (s, 3 H).
[화학식 46]: 1-(2-(((1,4-Formula 46: 1- (2-(((1,4- dimethoxynaphthalendimethoxynaphthalen -2--2- ylyl )methyl)amino)-1H-benzo[d]imidazol-1-yl)ethan-1-one) methyl) amino) -1H-benzo [d] imidazol-1-yl) ethan-1-one
-40 ℃에서, 아세토니트릴(acetonitrille) 1 mL 중 교반된 [화학식 45]의 화합물 15 mg에 물(0.5 mL)에 용해된 암모늄 세륨(Ⅳ) 나이트레이트 32 mg을 첨가한 후 1시간 동안 교반하였다. 반응이 끝난 후, 물을 천천히 첨가하고, CHCl3로 추출하였다. 유기층을 물과 염수로 세척하고 Na2SO4 상에서 건조하였으며, 감압 하에서 농축시켰다. 마지막으로, 플래시 컬럼 크로마토그래피(hexane:EtOAc = 5:1)에 의해 정제하여 [화학식 46]의 화합물을 수득하였다. 수율: 56%At -40 ° C, 32 mg of ammonium cerium (IV) nitrate dissolved in water (0.5 mL) was added to 15 mg of the stirred compound of formula 45 in 1 mL of acetonitrile, followed by stirring for 1 hour. . After the reaction was completed, water was slowly added and extracted with CHCl 3 . The organic layer was washed with water and brine, dried over Na 2 S0 4 and concentrated under reduced pressure. Finally, purification by flash column chromatography (hexane: EtOAc = 5: 1) afforded the compound of [Formula 46]. Yield: 56%
1H NMR (CDCl3, 400 MHz) d 8.23 8.19 (m, 1H), 8.15 8.11 (m, 1H), 8.08 8.04 (m, 1H), 7.77 7.73 (m, 2H), 7.41 (d, J = 3.1 Hz, 1H), 7.39 (d, J = 3.1 Hz, 1H), 7.23 7.21 (m, 1H & CDCl3 , overlapped), 7.11 7.07 (m, 1H), 6.95 (s, 1H), 4.78 (d, J = 5.1 Hz, 1H), 2.81 (s, 3H). 1 H NMR (CDCl 3 , 400 MHz) d 8.23 8.19 (m, 1H), 8.15 8.11 (m, 1H), 8.08 8.04 (m, 1H), 7.77 7.73 (m, 2H), 7.41 (d, J = 3.1 Hz, 1H), 7.39 (d, J = 3.1 Hz, 1H), 7.23 7.21 (m, 1H & CDCl 3 , overlapped), 7.11 7.07 (m, 1H), 6.95 (s, 1H), 4.78 (d, J = 5.1 Hz, 1H), 2.81 (s, 3H).
[화학식 47]: 3-((1,4-Formula 47: 3-((1,4- dioxodioxo -1,4--1,4- dihydronaphthalendihydronaphthalen -2--2- ylyl )amino)) amino) propanoicpropanoic acid acid
상온에서, 메탄올 5 mL 중 교반된 naphthalen-1,4-dione 158 mg에 메탄올 5 mL 중 교반된 3-aminopropanoic acid 107 mg을 첨가하여 반응시켰다. 상온에서 반응 24 시간 후, 반응혼합물을 진공에서 농축시키고, 플래시 컬럼 크로마토그래피(100% EtOAc)에 의해 정제하여 [화학식 47]의 화합물을 수득하였다. 수율: 51%At room temperature, 158 mg of stirred naphthalen-1,4-dione in 5 mL of methanol was added to 107 mg of stirred 3-aminopropanoic acid in 5 mL of methanol. After 24 hours of reaction at room temperature, the reaction mixture was concentrated in vacuo and purified by flash column chromatography (100% EtOAc) to give the compound of [Formula 47]. Yield: 51%
1H NMR (DMSO, 400 MHz) d 7.98 (d, J = 7.6 Hz, 1H), 7.97 (d, J = 7.6 Hz, 1H), 7.85 7.81 (m, 1H), 7.75 7.71 (m, 1H), 7.50 (s, 1H), 3.21 (t, J = 6.4 Hz, 2H), 2.59 (t, J = 6.4 Hz, 2H). 1 H NMR (DMSO, 400 MHz) d 7.98 (d, J = 7.6 Hz, 1H), 7.97 (d, J = 7.6 Hz, 1H), 7.85 7.81 (m, 1H), 7.75 7.71 (m, 1H), 7.50 (s, 1 H), 3.21 (t, J = 6.4 Hz, 2H), 2.59 (t, J = 6.4 Hz, 2H).
[화학식 48]: 4-((1,4-Formula 48: 4-((1,4- DioxoDioxo -1,4--1,4- dihydronaphthalendihydronaphthalen -2--2- ylyl )amino)) amino) butanoicbutanoic acid acid
상온에서, 메탄올 5 mL 중 교반된 naphthalen-1,4-dione 158 mg을 메탄올 5 mL를 이용하여 [화학식 48]의 화합물을 제조하였다. 구체적으로, 상온에서 반응 24 시간 후, 반응혼합물을 진공에서 농축시키고, 플래시 컬럼 크로마토그래피(100% EtOAc)에 의해 정제하여 [화학식 48]의 화합물을 수득하였다. 수율: 53%At room temperature, 158 mg of stirred naphthalen-1,4-dione in 5 mL of methanol was prepared using 5 mL of methanol to prepare a compound of Formula 48. Specifically, after 24 hours of reaction at room temperature, the reaction mixture was concentrated in vacuo and purified by flash column chromatography (100% EtOAc) to obtain the compound of [Formula 48]. Yield: 53%
1H NMR (DMSO, 400 MHz) d 7.98 (d, J = 7.6 Hz, 1H), 7.94 (d, J = 7.6 Hz, 1H), 7.84 7.81 (m, 1H), 7.74 7.71 (m, 1H), 7.66 (s, 1H), 4.10 (bs, 1H), 3.22 -3.17 (m, 2H), 2.30 (t, J = 7.2 Hz, 2H), 1.79 (q, J = 7.2 Hz, 2H). 1 H NMR (DMSO, 400 MHz) d 7.98 (d, J = 7.6 Hz, 1H), 7.94 (d, J = 7.6 Hz, 1H), 7.84 7.81 (m, 1H), 7.74 7.71 (m, 1H), 7.66 (s, 1 H), 4.10 (bs, 1 H), 3.22 -3.17 (m, 2 H), 2.30 (t, J = 7.2 Hz, 2H), 1.79 (q, J = 7.2 Hz, 2H).
[화학식 49]: N6-(1,4-Dioxo-1,4-dihydronaphthalen-2-yl)lysineFormula 49: N 6- (1,4-Dioxo-1,4-dihydronaphthalen-2-yl) lysine
상온에서, 메탄올 5 mL 중 교반된 naphthalen-1,4-dione 158 mg에 메탄올 5 mL를 이용하여 [화학식 49]의 화합물을 제조하였다. 구체적으로, 상온에서 반응 24 시간 후, 반응혼합물을 진공에서 농축시키고, 플래시 컬럼 크로마토그래피(100% EtOAc)에 의해 정제하여 [화학식 49]의 화합물을 수득하였다. 수율: 68%At room temperature, the compound of [Formula 49] was prepared using 5 mL of methanol in 158 mg of stirred naphthalen-1,4-dione in 5 mL of methanol. Specifically, after 24 hours of reaction at room temperature, the reaction mixture was concentrated in vacuo and purified by flash column chromatography (100% EtOAc) to obtain the compound of [Formula 49]. Yield: 68%
1H NMR (DMSO, 400 MHz) d 7.79 (d, J = 7.8 Hz, 1H), 7.95 (d, J = 7.8 Hz, 1H), 7.84 7.80 (m, 1H), 7.73 7.72 (m, 1H), 7.45 (d, J = 5.2 Hz, 1H), 5.58 (s, 1H), 3.40 (1H & H2O, overlapped), 2.70 (s, 2H), 1.77 1.76 (m, 2H), 1.53 (bs, 2H), 1.33 1.24 (2H). 1 H NMR (DMSO, 400 MHz) d 7.79 (d, J = 7.8 Hz, 1H), 7.95 (d, J = 7.8 Hz, 1H), 7.84 7.80 (m, 1H), 7.73 7.72 (m, 1H), 7.45 (d, J = 5.2 Hz, 1H), 5.58 (s, 1H), 3.40 (1H & H 2 O , overlapped), 2.70 (s, 2H), 1.77 1.76 (m, 2H), 1.53 (bs, 2H ), 1.33 1.24 (2H).
[화학식 50]: 1-(4-([Formula 50]: 1- (4- ( DiethylaminoDiethylamino )phenyl)-2-(1,4-) phenyl) -2- (1,4- dioxodioxo -1,4-dihydronaphthalen-2-yl)hydrazine-1-carboxylate-1,4-dihydronaphthalen-2-yl) hydrazine-1-carboxylate
상온에서, 메탄올 5 mL 중 교반된 naphthalen-1,4-dione 158 mg에 메탄올 5 mL를 이용하여 [화학식 50]의 화합물을 제조하였다. 구체적으로, 상온에서 반응 24 시간 후, 반응혼합물을 진공에서 농축시키고, 플래시 컬럼 크로마토그래피(100% EtOAc)에 의해 정제하여 [화학식 50]의 화합물을 수득하였다. 수율: 57%At room temperature, the compound of [Formula 50] was prepared using 5 mL of methanol in 158 mg of stirred naphthalen-1,4-dione in 5 mL of methanol. Specifically, after 24 hours of reaction at room temperature, the reaction mixture was concentrated in vacuo and purified by flash column chromatography (100% EtOAc) to obtain a compound of [Formula 50]. Yield: 57%
1H NMR (CDCl3, 400 MHz) d 8.08 (d, J = 7.2 Hz, 1H), 8.04 (d, J = 7.2 Hz, 1H), 7.74 7.70 (m, 2H), 7.65 7.62 (m, 1H), 7.21 (d, J = 8.8 Hz, 2H), 6.59 (d, J = 8.8 Hz, 2H), 6.08 (s, 1H), 3.36 (q, J = 6.8 Hz, 4H), 1.46 (s, 9H), 1.14 (t, J = 6.8 Hz, 6H). 1 H NMR (CDCl 3 , 400 MHz) d 8.08 (d, J = 7.2 Hz, 1H), 8.04 (d, J = 7.2 Hz, 1H), 7.74 7.70 (m, 2H), 7.65 7.62 (m, 1H) , 7.21 (d, J = 8.8 Hz, 2H), 6.59 (d, J = 8.8 Hz, 2H), 6.08 (s, 1H), 3.36 (q, J = 6.8 Hz, 4H), 1.46 (s, 9H) , 1.14 (t, J = 6.8 Hz, 6H).
[화학식 51]: 2-((2-(Diethylamino)ethyl)amino)naphthalene-1,4-dioneFormula 51: 2-((2- (Diethylamino) ethyl) amino) naphthalene-1,4-dione
상온에서, 메탄올 5 mL 중 교반된 naphthalen-1,4-dione 158 mg에 메탄올 5 mL를 이용하여 [화학식 51]의 화합물을 제조하였다. 구체적으로, 상온에서 반응 24 시간 후, 반응혼합물을 진공에서 농축시키고, 플래시 컬럼 크로마토그래피(100% EtOAc)에 의해 정제하여 [화학식 51]의 화합물을 수득하였다. 수율: 62%At room temperature, the compound of [Formula 51] was prepared using 5 mL of methanol in 158 mg of naphthalen-1,4-dione, which was stirred in 5 mL of methanol. Specifically, after 24 hours of reaction at room temperature, the reaction mixture was concentrated in vacuo and purified by flash column chromatography (100% EtOAc) to obtain the compound of [Formula 51]. Yield: 62%
1H NMR (CDCl3, 400 MHz) d 8.11 (d, J = 7.2 Hz, 1H), 8.04 (d, J = 7.2 Hz, 1H), 7.97 (s, 1H), 7.74 7.70 (m, 1H), 7.63 7.59 (m, 1H), 5.68 (s, 1H), 3.21 3.17 (m, 2H), 2.79 2.76 (m, 2H), 2.61 (q, J = 6.8 Hz, 4H), 1.07 (t, J = 6.8 Hz, 6H). 1 H NMR (CDCl 3 , 400 MHz) d 8.11 (d, J = 7.2 Hz, 1H), 8.04 (d, J = 7.2 Hz, 1H), 7.97 (s, 1H), 7.74 7.70 (m, 1H), 7.63 7.59 (m, 1H), 5.68 (s, 1H), 3.21 3.17 (m, 2H), 2.79 2.76 (m, 2H), 2.61 (q, J = 6.8 Hz, 4H), 1.07 (t, J = 6.8 Hz, 6H).
[화학식 52]: 2-((3-(Diethylamino)propyl)amino)naphthalene-1,4-dioneFormula 52] 2-((3- (Diethylamino) propyl) amino) naphthalene-1,4-dione
상온에서, 메탄올 5 mL 중 교반된 naphthalen-1,4-dione 158 mg에 메탄올 5 mL를 이용하여 [화학식 52]의 화합물을 제조하였다. 구체적으로, 상온에서 반응 24 시간 후, 반응혼합물을 진공에서 농축시키고, 플래시 컬럼 크로마토그래피(100% EtOAc)에 의해 정제하여 [화학식 52]의 화합물을 수득하였다. 수율: 60%At room temperature, the compound of [Formula 52] was prepared by using 5 mL of methanol in 158 mg of naphthalen-1,4-dione, which was stirred in 5 mL of methanol. Specifically, after 24 hours of reaction at room temperature, the reaction mixture was concentrated in vacuo and purified by flash column chromatography (100% EtOAc) to obtain the compound of [Formula 52]. Yield: 60%
1H NMR (CDCl3, 400 MHz) d 8.11 (d, J = 7.2 Hz, 1H), 8.04 (d, J = 7.2 Hz, 1H), 7.97 (s, 1H), 7.74 7.70 (m, 1H), 7.63 7.59 (m, 1H), 5.68 (s, 1H), 3.22 3.18 (m, 2H), 2.62 - 2.53 (m, 6H), 1.85 - 1.80 (m, 2H), 1.08 (t, J = 7.2 Hz, 6H). 1 H NMR (CDCl 3 , 400 MHz) d 8.11 (d, J = 7.2 Hz, 1H), 8.04 (d, J = 7.2 Hz, 1H), 7.97 (s, 1H), 7.74 7.70 (m, 1H), 7.63 7.59 (m, 1H), 5.68 (s, 1H), 3.22 3.18 (m, 2H), 2.62-2.53 (m, 6H), 1.85-1.80 (m, 2H), 1.08 (t, J = 7.2 Hz, 6H).
[화학식 53]: 2-((4-(Diethylamino)butyl)amino)naphthalene-1,4-dioneFormula 53] 2-((4- (Diethylamino) butyl) amino) naphthalene-1,4-dione
상온에서, 메탄올 5 mL 중 교반된 naphthalen-1,4-dione 158 mg에 메탄올 5 mL를 이용하여 [화학식 53]의 화합물을 제조하였다. 구체적으로, 상온에서 반응 24 시간 후, 반응혼합물을 진공에서 농축시키고, 플래시 컬럼 크로마토그래피(100% EtOAc)에 의해 정제하여 [화학식 53]의 화합물을 수득하였다. 수율: 60%At room temperature, the compound of [Formula 53] was prepared by using 5 mL of methanol in 158 mg of naphthalen-1,4-dione, which was stirred in 5 mL of methanol. Specifically, after 24 hours of reaction at room temperature, the reaction mixture was concentrated in vacuo and purified by flash column chromatography (100% EtOAc) to obtain the compound of [Formula 53]. Yield: 60%
1H NMR (CDCl3, 400 MHz) d 8.11 (d, J = 7.4 HzHH, 1H), 8.05 (d, J = 7.4 Hz, 1H), 7.76 7.72 (m, 1H), 7.65 7.61 (m, 1H), 6.41 (bs, 1H), 5.72 (s, 1H), 3.24 3.20 (m, 2H), 2.63 (q, J= 7.2 Hz, 4H), 7.53 (t, J = 7.2 Hz, 2H), 1.77 1.70 (m, 2H), 1.65 1.60 (m, 2H), 1.07 (J = 7.2 Hz, 6H). 1 H NMR (CDCl 3 , 400 MHz) d 8.11 (d, J = 7.4 HzHH, 1H), 8.05 (d, J = 7.4 Hz, 1H), 7.76 7.72 (m, 1H), 7.65 7.61 (m, 1H) , 6.41 (bs, 1H), 5.72 (s, 1H), 3.24 3.20 (m, 2H), 2.63 (q, J = 7.2 Hz, 4H), 7.53 (t, J = 7.2 Hz, 2H), 1.77 1.70 ( m, 2H), 1.65 1.60 (m, 2H), 1.07 ( J = 7.2 Hz, 6H).
[화학식 54]: 2-((1,4-Formula 54: 2-((1,4- DioxoDioxo -1,4--1,4- dihydronaphthalendihydronaphthalen -2--2- ylyl )amino)ethane-1-sulfonic acid ) amino) ethane-1-sulfonic acid
상온에서, 메탄올 5 mL 중 교반된 naphthalen-1,4-dione 158 mg에 메탄올 5 mL를 이용하여 [화학식 54]의 화합물을 제조하였다. 구체적으로, 상온에서 반응 24 시간 후, 반응혼합물을 진공에서 농축시키고, 플래시 컬럼 크로마토그래피(100% EtOAc)에 의해 정제하여 [화학식 54]의 화합물을 수득하였다. 수율: 29%At room temperature, the compound of [Formula 54] was prepared using 5 mL of methanol in 158 mg of stirred naphthalen-1,4-dione in 5 mL of methanol. Specifically, after 24 hours of reaction at room temperature, the reaction mixture was concentrated in vacuo and purified by flash column chromatography (100% EtOAc) to obtain the compound of [Formula 54]. Yield: 29%
1H NMR (DMSO, 400 MHz) d 7.99 (d, J = 8.0 Hz, 1H), 7.95 (d, J = 8.0 Hz, 1H), 7.85 - 7.79 (m, 2H), 7.75 7.71 (m, 1H), 5.64 (s, 1H), 3.32 (2H & H2O, overlapped), 2.75 (t, J = 7.2 Hz, 2H). 1 H NMR (DMSO, 400 MHz) d 7.99 (d, J = 8.0 Hz, 1H), 7.95 (d, J = 8.0 Hz, 1H), 7.85-7.79 (m, 2H), 7.75 7.71 (m, 1H) , 5.64 (s, 1 H), 3.32 (2H & H 2 O , overlapped), 2.75 (t, J = 7.2 Hz, 2H).
[화학식 55]: 3-((1,4-Formula 55: 3-((1,4- DioxoDioxo -1,4--1,4- dihydronaphthalendihydronaphthalen -2--2- ylyl )amino)propane-1-sulfonic acid ) amino) propane-1-sulfonic acid
상온에서, 메탄올 5 mL 중 교반된 naphthalen-1,4-dione 158 mg에 메탄올 5 mL를 이용하여 [화학식 55]의 화합물을 제조하였다. 구체적으로, 상온에서 반응 24 시간 후, 반응혼합물을 진공에서 농축시키고, 플래시 컬럼 크로마토그래피(100% EtOAc)에 의해 정제하여 [화학식 55]의 화합물을 수득하였다. 수율: 25%At room temperature, the compound of [Formula 55] was prepared using 5 mL of methanol in 158 mg of naphthalen-1,4-dione, which was stirred in 5 mL of methanol. Specifically, after 24 hours of reaction at room temperature, the reaction mixture was concentrated in vacuo and purified by flash column chromatography (100% EtOAc) to obtain the compound of [Formula 55]. Yield: 25%
1H NMR (DMSO, 400 MHz) d 7.98 (d, J = 7.6 Hz, 1H), 7.94 (d, J = 7.6 Hz, 1H), 7.84 7.82 (m, 1H), 7.74 7.70 (m, 2H), 5.71 (s, 1H), 3.27 3.25 (m, 2H), 2.54 - 2.48 (m, 2H), 1.86 (t, J = 6.8 Hz, 2H). 1 H NMR (DMSO, 400 MHz) d 7.98 (d, J = 7.6 Hz, 1H), 7.94 (d, J = 7.6 Hz, 1H), 7.84 7.82 (m, 1H), 7.74 7.70 (m, 2H), 5.71 (s, 1 H), 3.27 3.25 (m, 2 H), 2.54-2.48 (m, 2H), 1.86 (t, J = 6.8 Hz, 2H).
[화학식 56]: 4-((1,4-Formula 56: 4-((1,4- DioxoDioxo -1,4--1,4- dihydronaphthalendihydronaphthalen -2--2- ylyl )amino)butane-1-sulfonic acid ) amino) butane-1-sulfonic acid
상온에서, 메탄올 5 mL 중 교반된 naphthalen-1,4-dione 158 mg에 메탄올 5 mL를 이용하여 [화학식 56]의 화합물을 제조하였다. 구체적으로, 상온에서 반응 24 시간 후, 반응혼합물을 진공에서 농축시키고, 플래시 컬럼 크로마토그래피(100% EtOAc)에 의해 정제하여 [화학식 56]의 화합물을 수득하였다. 수율: 21%At room temperature, the compound of [Formula 56] was prepared using 5 mL of methanol in 158 mg of naphthalen-1,4-dione, which was stirred in 5 mL of methanol. Specifically, after 24 hours of reaction at room temperature, the reaction mixture was concentrated in vacuo and purified by flash column chromatography (100% EtOAc) to obtain the compound of [Formula 56]. Yield: 21%
1H NMR (DMSO, 400 MHz) d 7.99 (d, J= 7.6 Hz, 1H), 7.94 (d, J = 7.6 Hz, 1H), 7.84 7.81 (m, 1H), 7.74 7.72 (m, 1H), 7.63 7.60 (m, 1H), 5.68 (s, 1H), 3.18 3.16 (m, 2H), 2.46 2.44 (m, 2H), 1.63 1.62 (m, 4H). 1 H NMR (DMSO, 400 MHz) d 7.99 (d, J = 7.6 Hz, 1H), 7.94 (d, J = 7.6 Hz, 1H), 7.84 7.81 (m, 1H), 7.74 7.72 (m, 1H), 7.63 7.60 (m, 1 H), 5.68 (s, 1 H), 3.18 3.16 (m, 2 H), 2.46 2.44 (m, 2H), 1.63 1.62 (m, 4H).
실시예 1: 유해조류 살조 효과 측정Example 1 Measurement of Harmful Algae Effect
본 발명에 따른 화합물들의 다양한 접종농도에서의 유해조류 살조 효과를 측정하였다.The effects of harmful algae killing at various inoculation concentrations of the compounds according to the present invention were measured.
이를 위해 처리구(실험군)로서 담수 유해조류로는 남조류인 Microcystis aeruginosa(마이크로시스티스 아에루기노사), Anabaena flos -aqua(아나베나 플로스-아쿠아), 규조류인 Stephanodiscus hantzschii(스테파노디스커스 한츠치), Cyclotella meneginia(사이클로텔라 메네기니아), Aulacoseira(아울라코 세이라), Synedra acus(시네드라 아쿠스), 녹조류인 Scenedesmus actus(시네데스무스 액투스), 해수 유해조류로는 와편모조류인 Alexandrium tamarens(알렉산드리움 타마렌스), Cochlodinium polykrikoides(코클로디니움 폴리코리코이데스), Heterocapsa triquetra(헤테로캅사 트리퀘트라), Prorocentrum micans(프로로센트럼 마이칸스), 침편모조류 Chattonella marina(샤토넬라 마리나), Heterosigma akashiwo(헤테로시그마 아카시오), 규조류인 Pseudo- nitzschia pungens(슈도니치시아 펀젠스)를 사용하였다. 배양조건은 하기의 표 2와 같다.To this end, as a treatment group (experimental group), fresh algae harmful algae, Microcystis aeruginosa ( Microcystis aeruginosa ) , Anabaena flos -aqua ( Anavena floss -Aqua), diatom Stephanodiscus hantzschii (Stephanoscus Hantzchi ) , Cyclotella meneginia ( Cyclotelena menegenia ), Aulacoseira ( Aulaco Seira), Synedra acus ( Sinedra acus ), Scenedesmus actus ( Cinedesmus Actus ), seaweed harmful algae Alexandrium tamarens (Alexandrarium Tamarens ), Cochlodinium polykrikoides (kokeulrodinium poly Corey Koh des), Heterocapsa triquetra (hetero kapsa tree Quebec Tra), Prorocentrum micans , Protocentrum Mycans , Chattonella marina , Heterosigma akashiwo ( heterosigma acacio ), diatom Pseudo- nitzschia pungens (Sudonishician pungens ) were used. Culture conditions are shown in Table 2 below.
Figure PCTKR2016013447-appb-T000002
Figure PCTKR2016013447-appb-T000002
실험은 우선 각각 10 mL의 Microcystis aeruginosa(마이크로시스티스 아에루기노사), Anabaena flos -aqua(아나베나 플로스-아쿠아), Stephanodiscus hantzschii(스테파노디스커스 한츠치), Scenedesmus actus(시네데스무스 액투스), Aulacoseira(아울라코 세이라) 등을 5×105 cells/mL이 되도록 준비하였으며, Cyclotella meneginia(사이클로텔라 메네기니아)의 경우에는 1 105 cells/ mL 준비한 후 상기 [화학식 6] 내지 [화학식 56]으로 표시되는 화합물을 다양한 농도로 접종하여 최종농도가 각각 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50 M이 되도록 처리해 주었다. 해수 조류 Alexandrium tamarens(알렉산드리움 타마렌스), Cochlodinium polykrikoides(코클로디니움 폴리코리코이데스), Heterocapsa triquetra(헤테로캅사 트리퀘트라), Prorocentrum micans(프로로센트럼 마이칸스), Chattonella marina(샤토넬라 마리나), Heterosigma akashiwo(헤테로시그마 아카시오), Pseudo-nitzschia pungens(슈도니치시아 펀젠스)의 경우에는 1 × 103 cells/ mL 준비한 후 상기 [화학식 6] 내지 [화학식 56]으로 표시되는 화합물을 다양한 농도로 접종하여 최종농도가 각각 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50 M이 되도록 처리해 주었다. 처리조건은 접종 후 조류의 배양조건 하에서 7일 혹은 10일 동안 배양하면서, 정립 또는 도립 현미경 하에서 SR-chamber 또는 heamocytometer를 통해 육안으로 직접 계수해 주었다. 이후 처리 7일 혹은 10일 후, 세포의 감소율(reduction ratio), 즉 살조 활성(%)을 하기 식을 사용해 계산하였다.The experiment was first conducted with 10 mL of Microcystis each. aeruginosa (microsistis aeruginosa), Anabaena flos -aqua ( Avenena Flos -Aqua), Stephanodiscus hantzschii ( Stephanodiscus Hantzchi ), Scenedesmus actus ( Cinedesmus Actus ), Aulacoseira ( Aulaco Seira) 5 × 10 5 cells / mL were prepared, and in the case of Cyclotella meneginia ( cyclotelella menegenia ), 1 10 5 cells / mL was prepared, and then the compounds represented by [Formula 6] to [Formula 56] were variously prepared. Inoculation was carried out to the final concentration was 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50 M was treated. Seawater Algae Alexandrium tamarens (Alexandrarium Tamarens ), Cochlodinium polykrikoides ( Coclodinium polycoricoides ), Heterocapsa triquetra (Heterocapsa Triquetra), Prorocentrum micans ( Procentrum Mycans ), Chattonella marina ( Chattonella Marina), Heterosigma In the case of akashiwo ( heterosigma acacio ) and Pseudo-nitzschia pungens (pseudo -nichsia pungens ), 1 × 10 3 cells / mL prepared after inoculating the compounds represented by the above [Formula 6] to [Formula 56] at various concentrations The final concentration was treated to 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50 M, respectively. Treatment conditions were directly counted visually by SR-chamber or heamocytometer under incubation or inverted microscope while incubating for 7 days or 10 days under incubation conditions of algae. After 7 or 10 days after treatment, the reduction ratio of the cells, ie, the algal activity (%), was calculated using the following formula.
살조 활성(%)=(1-Tt/Ct) x 100 Algal activity (%) = (1- Tt / Ct ) x 100
상기 식에서, T는 화합물 처리후 세포의 밀도를 나타낸 것이고, C는 화합물을 처리하지 않은 세포의 밀도를 나타낸 것이며, t는 배양 시간을 나타낸 것이다.In the above formula, T represents the density of cells after compound treatment, C represents the density of cells not treated with compound, and t represents culture time.
유해조류를 포함한 다양한 식물플랑크톤을 대상으로 개발된 물질을 1, 5, 10, 20M의 농도로 접종하여 각각 살조효과를 도출하였다. 상기 식을 바탕으로 구한 각 화합물의 살조활성을 < 60, 70, 80, 90%로 표기하였다.The algae effect was derived by inoculating the substances developed for various phytoplankton including harmful algae at concentrations of 1, 5, 10, and 20M, respectively. Algal activity of each compound obtained on the basis of the above formula was expressed as <60, 70, 80, 90%.
또한, 상기 화합물들의 살조효과를 Microplate assay를 이용하여 Screening 하였다. 48 well plate에 대수성장기 상태의 관심 대상조류의 배양주를 분주 한 후 합성된 유도체 물질을 1에서 20 uM의 농도로 각 대수성장기의 각 조류종에 접종하여 7일간 배양 및 세포수를 계측하였다. 0, 1, 2, 4, 7일 째 되는 날 해당 각 well에서 10-50 ul의 샘플을 분취해 Neubauer hemocytometer 또는 SR chamber에 올리고 IX71 microscope (Olympus, Japan) 하에서 온전한 형태의 조류 세포수를 계수하여 대조구 대비 감소한 세포 수 계측을 통해 해당물질의 살조능(%)을 구하였다. 실험 7일째의 세포 수 계측을 통해 각 살조물질 농도별 해당조류에 대한 살조능을 나타내었다. 하지만 실험시작 7일 이후 지속적인 15일까지의 관찰 결과 대조구 대비 살조능이 60 이하로 떨어진 경우에는 특별한 살조 효과가 없는 것으로 판단하였으며, 그 결과는 하기 도 1 내지 도 2에 나타내었다.In addition, the algicidal effects of the compounds were screened using a Microplate assay. After culture of the algae of interest in the log growth phase in 48 well plates, the synthesized derivatives were inoculated into each algal species in each log growth period at a concentration of 1 to 20 uM and cultured and counted for 7 days. On day 0, 1, 2, 4, and 7, take 10-50 ul of sample from each well, place on a Neubauer hemocytometer or SR chamber, count the intact algae cells under an IX71 microscope (Olympus, Japan). The killing ability (%) of the substance was determined by measuring the cell number decreased compared to the control. The cell counts of the 7th day of the experiment showed the killing ability of the corresponding algae according to the concentration of each algae. However, after 7 days from the start of the experiment, it was determined that the killing ability of the control group was lower than 60, and the special killing effect was less than 60, and the results are shown in FIGS. 1 to 2.
하기 도 1은 본 발명의 일 실시예에 따른 유해조류 제어용 조성물의 담수 미세조류에 대한 녹조제어 효과를 테스트한 결과를 나타낸 도면이고, 도 2는 본 발명의 일 실시예에 따른 유해조류 제어용 조성물의 해수 미세조류에 대한 녹조제어 효과를 테스트한 결과를 나타낸 도면이다.1 is a view showing the results of testing the green algae control effect on the freshwater microalgae of the harmful algae control composition according to an embodiment of the present invention, Figure 2 is a composition of the harmful algae control composition according to an embodiment of the present invention A diagram showing the results of testing the green algae control effect on seawater microalgae.
실험결과, 본 발명에 따른 [화학식 6] 내지 [화학식 56]의 화합물들은 여름철 문제 녹조 원인종인 남조류 Anabaena sp.와 Microcystis sp.에 대해서 1, 5, 10, 20 uM 농도에서 90% 이상의 살조능을 나타내었으며, 특히 1 uM의 매우 낮은 농도에서도 90%이상의 효과를 관찰할 수 있었으며 유해 남조류만을 특이적으로 제어 가능하다는 것을 확인하였다. 특히, Anabaena sp.에 대해서는 1 uM의 낮은 농도에서 90%이상의 살조 효과를 나타내었으며, 겨울철 녹조현상의 주 원인종이며 낮은 밀도의 세포수로도 취수장의 정수처리에 문제를 일으키는 규조류 Stephanodiscus sp.에 대해서는 1, 5, 10, 20 uM에서 80% 이상의 살조효과를 나타내었다. 또한, 여름철과 겨울철의 주 원인종을 제외한 규조류 Synedra , Aulacoseira 및 남조류 Cosmarium, Scnedesmus등에는 영향을 미치지 않는 것으로 나타났다. 또한, 해양 적조 발생종인 Alexandrium tamarens, Cochlodinium polykrikoides, Heterocapsa triquetra, Prorocentrum micans, Chattonella marina, Heterosigma akashiwo, Pseudo-nitzschia pungens에 대해서는 대부분 5 uM 농도에서 90%이상의 살조효과를 나타내었다. 그밖에 대부분의 실험구에서 비교적 녹조, 적조 문제생물이 아닌 다른 생물군에 대해서는 살조 효과가 미비한 것으로 나타났다.As a result, the compounds of [Formula 6] to [Formula 56] according to the present invention showed more than 90% of the killing ability at 1, 5, 10, 20 uM concentrations of cyanobacteria Anabaena sp. And Microcystis sp. Especially, even at very low concentration of 1 uM, more than 90% of the effects could be observed, and only harmful cyanobacteria could be specifically controlled. Especially, Anabaena sp. Showed more than 90% algae effect at low concentration of 1 uM, and it was the main causative species of algae in winter and the diatoms Stephanodiscus sp. At 1, 5, 10, 20 uM showed more than 80% of the killing effect. In addition, diatoms Synedra , Aulacoseira and cyanobacteria Cosmarium, Scnedesmus were not affected except the main causative species in summer and winter. In addition, Alexandrium , a marine red tide species tamarens , Cochlodinium polykrikoides, Heterocapsa triquetra, Prorocentrum micans , Chattonella marina , Heterosigma Most of akashiwo and Pseudo-nitzschia pungens showed more than 90% algae effect at 5 uM concentration. In addition, most of the experiments showed that the algae effect was insignificant for the other groups other than the green algae and the red tide problem organisms.
따라서 상기 결과를 통해 본 발명의 화합물들을 유효성분으로 함유하는 조성물이 Aulacoseira granulata , Synedra acus와 같이 담수와 기수역에서 상대적으로 문제가 되지 않는 종들에게는 거의 영향을 미치지 않는 반면, 국내외에서 녹조, 적조현상을 유발시켜 큰 문제를 발생시키는 유해조류에 대하여 우수한 살조 효과가 있음을 확인하였다.Therefore, according to the above results, a composition containing the compounds of the present invention as an active ingredient is Aulacoseira. granulata , Synedra While it has little effect on species that are relatively less problematic in freshwater and brackish waters such as acus , it has been found that there is an excellent algae effect against harmful algae that cause green algae and red tide phenomena at home and abroad.
실시예 2: 생태독성 평가(Ecotoxicity test)Example 2: Ecotoxicity Test
본 발명에 따른 화합물들이 생태계에 미치는 영향을 알아보고자 OECD, EPA의 생태독성 평가 지표생물인 Selenastrium capricornutum(셀레나스트륨 카프리코너튬), Daphnia magna(다프니아 마그나), Danio rerio(지브라피쉬)를 이용하여 생태독성 평가를 진행하였다. Selenastrium , an indicator organism for evaluating ecotoxicity of OECD, EPA, to investigate the effects of compounds according to the present invention on ecosystem capricornutum (selenastrium capricornium ) , Daphnia magna , Danio Ecotoxicity assessment was performed using rerio (zebrafish ) .
우선 지표조류의 경우, 지수성장 단계의 Selenastrum capricornutum(셀레나스트럼 카프리코너튬)을 준비하고 신규화합 물질을 접종하여 지표생물의 시작밀도와 접종농도가 각각 1×104 cells/mL, 2, 1, 0.5, 0.2, 0.1 μM이 되도록 준비하였다. 혼합 배양액은 지표생물의 최적성장 조건으로 배양되었다 (20 ℃, 50 mol/m2s, EG:JM 배지, 12hr light : 12hr dark cycle). 12시간 단위로 72시간 동안 광학현미경 하에서 지표생물의 개체수 변화를 직접 관찰하였다.In the case of surface algae, Selenastrum capricornutum (selenastrum capricornium ) was prepared and inoculated with a new compound to prepare a starting density and inoculation concentration of the indicator organism at 1 × 10 4 cells / mL, 2, 1, 0.5, 0.2, and 0.1 μM, respectively. . Mixed cultures were incubated under the optimal growth conditions of indicator organisms (20 ° C., 50 mol / m 2 s, EG: JM medium, 12hr light: 12hr dark cycle). The change in the number of indicator organisms was directly observed under an optical microscope for 72 hours at 12 hours.
다음으로, 지표동물플랑크톤의 경우, 태어난지 24시간이 경과하지 않은 동물플랑크톤(zooplankton) Daphnia magna(다프니아 마그나) 성체를 10 마리씩 3개의 반복구로 준비하고 신규화합 물질을 접종하여 시작농도가 2, 1, 0.5, 0.2, 0.1 μM이 되도록 준비하였다. 배양조건은 25 ℃, 50 mol/m2s, 12hr light : 12hr dark cycle의 배양조건으로 24 시간 단위로 48 시간 개체수 변화를 관찰하였다. 다프니아 마그나의 배양수로는 KCl 0.024g, MgSO47H2O 0.738g, CaSO47H2O 0.360g, NaHCO3 0.576g가 포함된 멸균수(DW) 3 L를 준비하였다. 상기 종의 관찰은 육안으로 직접 수행하여 기록해 주었다. Next, in the case of surface zooplankton, 10 adult animals of zooplankton Daphnia magna (Daffnia magna ), which have not been born for 24 hours, were prepared in three repeats, and the starting concentration was 2, 1 Prepared to be 0.5, 0.2, 0.1 μM. Culture conditions were 25 ℃, 50 mol / m 2 s, 12hr light: 12hr dark cycle culture conditions were observed for 48 hours in 24 hours increments. As a culture water of Daphnia Magna, 3 L of sterile water (DW) containing 0.024 g of KCl, 0.738 g of MgSO 4 7H 2 O, 0.360 g of CaSO 4 7H 2 O, and 0.576 g of NaHCO 3 were prepared. Observation of the species was performed by naked eye and recorded.
마지막으로 지표어류 Danio rerio(지브라피쉬) 생물의 경우, 2~3 cm의 Danio rerio를 무작위로 골라내어 7 마리씩 노출시켰다. 신규화합 물질을 접종하여 시작농도가 2, 1, 0.5, 0.2, 0.1 μM이 되도록 준비하였다. 배양조건은 25 ℃, 50 mol/m2s, 12hr light : 12hr dark cycle의 배양조건으로 24 시간 단위로 96 시간 개체수 변화를 관찰하였다.Finally, surface fish Danio For rerio (zebrafish ) organisms, randomly selected Danio rerios of 2-3 cm were exposed to 7 animals. Inoculation with the new compound was prepared to have a starting concentration of 2, 1, 0.5, 0.2, 0.1 μM. Culture conditions were 25 ℃, 50 mol / m 2 s, 12hr light: 12hr dark cycle culture conditions were observed for 96 hours population in 24 hours increments.
도 3은 미국 EPA 기준 생태독성평가를 위한 지표 생물인 셀레나스트륨 카프리코너튬(Selenastrium capricornutum), 다프니아 마그나(Daphnia magna), 지브라피쉬(Danio rerio)에 대한 본 발명에 따른 유해조류 제어용 조성물의 생태독성 평가 결과를 나타낸 도면이다.Figure 3 of the composition for controlling harmful algae according to the present invention for Selenastrium capricornutum, Daphnia magna, Zebrafish (Danio rerio) as indicator organisms for the EPA standard ecotoxicity assessment A diagram showing the results of the ecotoxicity assessment.
실험결과, 본 발명에 따른 화합물들은 접종농도에 따라 Selenastrum capricortrum, Daphnia magna, Danio rerio의 세포수 변화의 경향성을 관찰할 수 없었으며, 모든 실험구에서 접종농도가 상대적으로 높은 2 μM 경우에도 대조구 대비 숙주 개체수의 감소가 거의 관찰되지 않음을 확인할 수 있었다.As a result, the compounds according to the present invention are Selenastrum capricortrum, Daphnia magna, Danio according to the inoculation concentration There was no tendency to observe the change in cell number of rerio , and it was confirmed that there was almost no decrease in the host population compared to the control even in 2 μM with relatively high inoculation concentration in all the experimental groups.
실시예 3: 종다양성 증진 효과에 대한 10 L scale Microcosm testExample 3: 10 L scale Microcosm test for species diversity enhancing effect
본 발명에 따른 화합물들을 함유하는 유해조류 제어용 조성물을 이용한 조류제어 기술이 수생태계 복원 및 종 다양성 확보에 영향을 미치는지 확인하기 위하여 Stephanodiscus sp. 가 우점한 낙동강 현장수를 이용하여 Microcosm 실험을 수행하였다. Stephanodiscus sp. To determine whether the algae control technology using the composition for controlling harmful algae containing the compounds according to the present invention affects aquatic ecosystem restoration and species diversity. Microcosm experiments were performed using the predominant Nakdong River field water.
도 4는 스테파노디스커스(Stephanodiscus)가 우점한 낙동강 현장수에 대하여 본 발명에 따른 유해조류 제어용 조성물 처리시, microcosm 내 식물플랑크톤 변화량을 측정한 그래프이고, 도 5는 microcosm 내 스테파노디스커스(Stephanodiscus)를 제외한 식물플랑크톤 변화량을 측정한 그래프이며, 도 6은 microcosm 내 식물플랑크톤의 종다양성 지수 변화값을 나타낸 그래프이다.Figure 4 is a graph measuring the amount of change in phytoplankton in microcosm when the harmful algae control composition according to the present invention with respect to the field number of the Nakdong River dominant stephanodiscus, Figure 5 except for stephanodiscus in microcosm It is a graph measuring the change in phytoplankton, Figure 6 is a graph showing the change in species diversity index of phytoplankton in the microcosm.
대상 조류인 Stephanodiscus sp.의 경우 실험기간 동안 대조구에서 3.9×103 cells/mL에서 최대 9.1×104 cells/mL까지 증가하였으나, 본 발명에 따른 화합물을 접종한 처리구에서는 접종 후 2일째부터 10일까지 지속적으로 감소하여 10일째에는 대상종인 Stephanodiscus sp.종이 6.4×102 cells/ml까지 감소하여 살조 효과가 99%로 관찰된 반면, 대상종인 Stephanodiscus sp.를 제외한 다른 식물플랑크톤의 경우, 대조구에서는 실험기간동안 Stephanodiscus sp.종이 0일째 77.8%에서 10일째 97.8%까지 우점하여 다른 식물플랑크톤이 전혀 성장하지 못하였으나, 본 발명에 따른 화합물을 처리한 처리구에서는 Stephanodiscus sp.종이 0일째 77.8%에서 10일째 8.4%로 감소하여 다른 식물플랑크톤이 성장할 수 있는 조건을 만족함을 확인하였다. 이러한 우점종의 변화에 대한 결과로서, 본 발명에 따른 화합물을 처리한 처리구내에서는 다양한 유용 조류들이 성장함을 확인하였으며, 이러한 결과를 바탕으로 종 다양성 지수를 측정한 결과 대조구 대비 본 발명에 따른 화합물을 처리시 종 다양성 지수가 월등히 향상되는 것을 확인하였다. Stephanodiscus sp., A target bird, increased from 3.9 × 10 3 cells / mL to 9.1 × 10 4 cells / mL in the control group during the experimental period, but in the treatment group inoculated with the compound according to the present invention from day 2 to 10 after inoculation continue to decrease until the 10th day, the target species Stephanodiscus While the sp. species decreased to 6.4 × 10 2 cells / ml, the algae effect was observed to be 99%, whereas for phytoplankton other than the target species Stephanodiscus sp., in the control group, the Stephanodiscus sp. On the 10th day, phytoplankton did not grow at all, but the phytoplankton did not grow at all, but in the treatment group treated with the present invention, Stephanodiscus sp. It was confirmed that the conditions were satisfied. As a result of the change in the dominant species, it was confirmed that a variety of useful algae grow in the treatment group treated with the compound according to the present invention, and the species diversity index was measured based on these results, and the compound according to the present invention was treated with the control group. We found that the diversity index improved significantly.
본 발명에 따르면 담수 또는 해수에서 발생하는 유해조류 대발생을 예방하고 수질오염을 방지하는데 매우 유용하게 사용될 수 있다. 또한, 녹조 및 적조에 대한 방오제 또는 도료의 중요한 성분으로 활용 가능하여 상용화 가능성이 매우 크다는 장점이 있다.According to the present invention can be very useful for preventing harmful algae generation and fresh water pollution occurring in fresh or sea water. In addition, it can be utilized as an important antifouling agent or paint for green algae and red tide has the advantage that the possibility of commercialization is very large.

Claims (3)

  1. 하기 [화학식 1] 내지 [화학식 5]로 표시되는 화합물로 이루어진 군 중에서 선택되는 화합물 또는 그의 염을 유효성분으로 포함하는 유해조류 제어용 조성물:Toxic algae control composition comprising a compound selected from the group consisting of compounds represented by the following [Formula 1] to [Formula 5] or salts thereof as an active ingredient:
    Figure PCTKR2016013447-appb-I000010
    Figure PCTKR2016013447-appb-I000010
    상기 [화학식 1] 내지 [화학식 5]에서,In [Formula 1] to [Formula 5],
    X는 O, S 또는 NR2이고,X is O, S or NR 2 ,
    R1은 수소, 할로겐, CF3, 치환 또는 비치환된 탄소수 1 내지 12의 알킬기 또는 치환 또는 비치환된 탄소수 1 내지 12의 알콕시기이며, R 1 is hydrogen, halogen, CF 3 , a substituted or unsubstituted alkyl group having 1 to 12 carbon atoms, or a substituted or unsubstituted alkoxy group having 1 to 12 carbon atoms,
    R2는 수소, 아세틸(Ac) 또는 t-부톡시카보닐(Boc)이고,R 2 is hydrogen, acetyl (Ac) or t-butoxycarbonyl (Boc),
    R3는 하기 [구조식 1] 중에서 선택되는 어느 하나이며,R 3 is any one selected from the following [Formula 1],
    [구조식 1][Formula 1]
    Figure PCTKR2016013447-appb-I000011
    Figure PCTKR2016013447-appb-I000011
    상기 [구조식 1]에서, In [Formula 1],
    *는 상기 [화학식 5]에 결합하는 위치를 표시한 것이다.* Indicates the position of binding to the above [Formula 5].
  2. 제1항의 화합물 또는 그의 염을 함유하는 유해조류 제어용 조성물을, 유해조류가 번무한 지역 또는 발생징후가 관찰된 지역에 처리하는 것을 포함하는 유해조류의 제어방법.A method for controlling harmful algae comprising treating the harmful algae control composition containing the compound of claim 1 or a salt thereof in an area in which the harmful algae is busy or in an area in which developmental symptoms are observed.
  3. 제2항에 있어서, 상기 처리는 선박을 이용하여 국부적으로 살포하는 형태로 이루어지는 것을 특징으로 하는 유해조류의 제어방법.The method according to claim 2, wherein the treatment is performed in the form of spraying locally using a vessel.
PCT/KR2016/013447 2015-12-03 2016-11-22 Composition containing naphthoquinone derivative for controlling harmful algae and method for controlling harmful algae using same WO2017095051A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680080746.5A CN108601352A (en) 2015-12-03 2016-11-22 Including naphthoquinone derivatives harmful algae control composition and utilize its harmful algae control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150171282A KR101829962B1 (en) 2015-12-03 2015-12-03 A Composition for controlling harmful algae comprising naphthoquinone derivatives and method for controlling harmful using the same
KR10-2015-0171282 2015-12-03

Publications (2)

Publication Number Publication Date
WO2017095051A2 true WO2017095051A2 (en) 2017-06-08
WO2017095051A3 WO2017095051A3 (en) 2017-07-20

Family

ID=58797167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/013447 WO2017095051A2 (en) 2015-12-03 2016-11-22 Composition containing naphthoquinone derivative for controlling harmful algae and method for controlling harmful algae using same

Country Status (3)

Country Link
KR (1) KR101829962B1 (en)
CN (1) CN108601352A (en)
WO (1) WO2017095051A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113544116A (en) * 2019-02-19 2021-10-22 韩明洙 Water-soluble naphthoquinone derivative composition and method for producing same, water-soluble composition for controlling harmful algae, large-scale harmful algae control method, and large-scale harmful algae artificial intelligence monitoring, removing, and preventing automated system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220053326A (en) * 2020-10-22 2022-04-29 엘지전자 주식회사 Plants cultivation apparatus
CN113994946A (en) * 2021-10-12 2022-02-01 广东海洋大学 Application of o-hydroxy cinnamic acid in removing harmful benthic diatom

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001060971A2 (en) 2000-02-17 2001-08-23 Garnett, Inc. Method of controlling zoological and aquatic plant growth
US20030012804A1 (en) 2001-06-22 2003-01-16 Aquacide And Use Aquacide and use
JP2006036746A (en) 2004-06-24 2006-02-09 Sanei Gen Ffi Inc Red tide-causing alga exterminating agent and red tide protective method using the same
KR101082614B1 (en) * 2010-07-09 2011-11-10 주식회사 하이닉스반도체 Semiconductor memory device
KR101436792B1 (en) * 2011-07-08 2014-09-05 한양대학교 산학협력단 A Composition containing Naphthoquinone for Controlling Harmful Algae
KR101405275B1 (en) * 2012-02-28 2014-06-11 조선대학교산학협력단 Algicidal composition for inhibiting of red tide comprising naphtoquinone derivatives as active ingredient

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113544116A (en) * 2019-02-19 2021-10-22 韩明洙 Water-soluble naphthoquinone derivative composition and method for producing same, water-soluble composition for controlling harmful algae, large-scale harmful algae control method, and large-scale harmful algae artificial intelligence monitoring, removing, and preventing automated system

Also Published As

Publication number Publication date
CN108601352A (en) 2018-09-28
KR20170065171A (en) 2017-06-13
WO2017095051A3 (en) 2017-07-20
KR101829962B1 (en) 2018-02-19

Similar Documents

Publication Publication Date Title
WO2017095051A2 (en) Composition containing naphthoquinone derivative for controlling harmful algae and method for controlling harmful algae using same
Mohamed Macrophytes-cyanobacteria allelopathic interactions and their implications for water resources management—A review
Wium-Andersen et al. Allelopathic effects on phytoplankton by substances isolated from aquatic macrophytes (Charales)
Xu et al. Potent antifouling compounds produced by marine Streptomyces
DaVis et al. Inhibition of larval settlement by natural products from the ascidian, Eudistoma olivaceum (Van Name)
Ha et al. Phytotoxic effects of the cyanobacterial neurotoxin anatoxin-a: morphological, physiological and biochemical responses in aquatic macrophyte, Ceratophyllum demersum
KR20020087400A (en) Method of controlling zoological and aquatic plant growth
EP2198713B1 (en) Omaezallene and its use to prevent the attachment of barnacles to surfaces
WO2017065401A1 (en) Composition for destruction of microalgae or sphaerocarpus
KR101436792B1 (en) A Composition containing Naphthoquinone for Controlling Harmful Algae
CN109438442B (en) Indole compound, and synthesis method and application thereof
JP2018531992A (en) Composition for destruction of microalgae or moss
US9131691B2 (en) Use of amide compounds for preventing marine biofouling
KR20180111987A (en) Cyanobacteria and non-protein phenylalanine analogs for plant growth inhibition
AU734678B2 (en) Industrial antibacterial and antifungal agents, algicides and agents for preventing adhesion of organisms containing a cyanoacrylate compound
KR102351383B1 (en) Composition for controlling red tide comprising Fictibacillus sp. or their medium as effective component
KR102186238B1 (en) Composition for controlling red tide comprising Cyclo(Ala-Gly) as effective component and uses thereof
WO2023101463A1 (en) Algicidal composition containing 1-(1-halovinyl)arene compound
KR100456467B1 (en) Nerium Genus Plant Extract And A Method for Preventing of Water Bloom of Blue-Green Agae
SU1222185A3 (en) Herbicide
EP0014167B1 (en) Aniline derivatives with antifungal activity and process for their preparation
WO2024111857A1 (en) Composition for controlling diseases in plants, comprising culture broth of streptomyces sp. jck-8055 strain or extract thereof, preparation method therefor, and method for controlling diseases, using same
WO2024106740A1 (en) Composition for controlling phytopathogenic fungi or reducing mycotoxin, comprising culture solution of bacillus velezensis jck-7158 or extract of strain culture solution, preparation method therefor, and method for controlling phytopathogenic fungi or reducing mycotoxin
RU2318696C2 (en) Composition for protection of underwater surfaces of watercraft and waterworks against fouling
WO2019199109A1 (en) Compound for restoring contaminated soil or contaminated water

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16870947

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16870947

Country of ref document: EP

Kind code of ref document: A2