WO2017094772A1 - Vehicle, and control device and control method therefor - Google Patents

Vehicle, and control device and control method therefor Download PDF

Info

Publication number
WO2017094772A1
WO2017094772A1 PCT/JP2016/085540 JP2016085540W WO2017094772A1 WO 2017094772 A1 WO2017094772 A1 WO 2017094772A1 JP 2016085540 W JP2016085540 W JP 2016085540W WO 2017094772 A1 WO2017094772 A1 WO 2017094772A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
transmission
frequency
torque
control device
Prior art date
Application number
PCT/JP2016/085540
Other languages
French (fr)
Japanese (ja)
Inventor
貴友 浅井
博司 川添
啓介 牛田
Original Assignee
アイシン精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン精機株式会社 filed Critical アイシン精機株式会社
Publication of WO2017094772A1 publication Critical patent/WO2017094772A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • B60W20/17Control strategies specially adapted for achieving a particular effect for noise reduction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/20Reducing vibrations in the driveline
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/18Suppression of vibrations in rotating systems by making use of members moving with the system using electric, magnetic or electromagnetic means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4816Electric machine connected or connectable to gearbox internal shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/20Reducing vibrations in the driveline
    • B60W2030/206Reducing vibrations in the driveline related or induced by the engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/12Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to parameters of the vehicle itself, e.g. tyre models
    • B60W40/13Load or weight
    • B60W2040/1392Natural frequency of components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0019Control system elements or transfer functions
    • B60W2050/0028Mathematical models, e.g. for simulation
    • B60W2050/0037Mathematical models of vehicle sub-units
    • B60W2050/0039Mathematical models of vehicle sub-units of the propulsion unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0019Control system elements or transfer functions
    • B60W2050/0042Transfer function lag; delays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0043Signal treatments, identification of variables or parameters, parameter estimation or state estimation
    • B60W2050/0057Frequency analysis, spectral techniques or transforms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a vehicle having an engine and a motor, and a control device and control method therefor.
  • Patent Document 1 discloses a torque transmission device that suppresses torque pulsation and fluctuation of an internal combustion engine by generating a torque obtained by multiplying a signal having the same phase as the engine torque by a constant in an automobile equipped with the internal combustion engine.
  • Patent Document 2 discloses that in an automobile equipped with an internal combustion engine, a torque having an opposite phase and the same amplitude as that of the damper torque is applied to the motor to remove the vibration of the power train, and torsional vibration in the power train is attenuated. An apparatus that can be used is disclosed.
  • Patent Document 1 can effectively suppress torque pulsation and fluctuation in a limited low rotation range such as engine start and stop, a sufficient effect can be obtained in the travel range. Not exclusively. Rather, there is a risk that a muffled sound will be generated in the running area and the quietness will be impaired.
  • the device described in Patent Document 2 can obtain quietness by attenuating torsional vibrations, but also attenuates frequency components for accelerating / decelerating the vehicle, which may result in a slow acceleration / deceleration. is there.
  • the present invention has been made in view of such problems, and an object of the present invention is to provide a vehicle capable of achieving both acceleration feeling and quietness, and a control device and control method therefor.
  • a transmission an engine connected to an input shaft of the transmission via a clutch / damper, a motor connected to the transmission, and a wheel connected to a drive shaft of the transmission
  • the engine control unit calculates the engine torque
  • the frequency calculation unit calculates the engine explosion primary frequency according to the engine speed, and the engine torque with respect to the engine torque.
  • a band-pass filter unit that performs a band-pass filter process using a primary explosion frequency as a pass frequency, and an anti-resonance point in a transfer characteristic from the engine to the drive shaft based on an output from the band-pass filter unit, Including explosion primary frequency So as to be within a predetermined range, the control device is provided comprising, a command torque calculation unit for calculating a command torque of the motor.
  • the bandpass filter process passes the primary frequency of the engine explosion, but blocks other frequencies. Therefore, quietness can be improved without impairing the feeling of acceleration. Further, it is not necessary to provide a sensor for detecting the motor angle, and the cost can be reduced.
  • the command torque calculation unit outputs the output from the bandpass filter unit so that an anti-resonance point in a transfer characteristic from the engine to the drive shaft falls within a predetermined range including the engine explosion primary frequency.
  • the command torque of the motor is calculated by adjusting the amplitude and / or phase. Quietness can be improved by setting the anti-resonance point near the engine explosion primary frequency.
  • the command torque calculating unit includes the engine speed, the inertia of the engine, the damper rigidity, the gear ratio between the input shaft and the drive shaft of the transmission, the damping factor at the center frequency of the pass band of the bandpass filter, the cylinder of the engine
  • the amplitude may be adjusted based on the number and the number of cycles. More specifically, the command torque calculation unit may calculate the command torque of the motor by multiplying the amplitude and a gain G expressed by the following equation.
  • G K / [A * Z ⁇ (n * W / C) 2 * JK ⁇ ]
  • W is the engine speed
  • J is the inertia of the engine
  • K damper rigidity
  • Z is the gear ratio between the input shaft and drive shaft of the transmission
  • A is the center frequency of the pass band of the bandpass filter. Damping magnification
  • n is the number of cylinders of the engine
  • C is the number of cycles.
  • the command torque calculator adjusts the phase according to a change in the engine speed. More preferably, the command torque calculation unit advances the phase when the engine speed is increasing, and delays the phase when the engine speed is decreasing. By adjusting the phase in this way, the vibration damping effect can be maintained even when the engine speed changes.
  • the band-pass filter unit allows the engine explosion primary frequency to pass but does not pass a frequency component for accelerating / decelerating the vehicle. Thereby, a feeling of acceleration can be maintained.
  • the frequency calculation unit may calculate the primary frequency of the engine explosion based on the following equation.
  • f (N / 60) * (n / C) (2)
  • N is the engine speed [rpm]
  • n is the number of engine cylinders
  • C is the number of cycles.
  • the command torque calculation unit preferably applies an offset to the output from the bandpass filter unit so that the sign of the command torque of the motor is constant. As a result, the sign of the torque of the motor can be kept constant, and the occurrence of gear rattling noise can be suppressed, and quietness can be further improved.
  • the control device includes a vibration suppression necessity determination unit that determines whether vibration suppression control is necessary according to the engine speed, the state of the clutch / damper, and the presence or absence of fuel cut. Thereby, vibration suppression control can be performed only when necessary.
  • control device the transmission, an engine connected to an input shaft of the transmission via a clutch / damper, and the transmission connected to the transmission and calculated by the control device.
  • a vehicle is provided that includes a motor controlled by command torque and wheels connected to a drive shaft of the transmission.
  • a transmission an engine connected to an input shaft of the transmission via a clutch / damper, a motor connected to the transmission, and a wheel connected to a drive shaft of the transmission
  • an engine torque calculating step for calculating an engine torque
  • a frequency calculating step for calculating an engine explosion primary frequency according to the engine speed, and the engine torque with respect to the engine torque.
  • FIG. FIG. 3 is a block diagram illustrating an example of an internal configuration of a control device 20.
  • 7 is a flowchart showing a processing operation of vibration suppression control by the control device 20; The figure which shows the simulation result which compares the case where damping control of this embodiment is performed, and the case where it does not perform. The figure which shows another simulation result which compares the case where it does not perform with the case where damping control of this embodiment is performed.
  • FIG. 1 is a block diagram illustrating a schematic configuration of a vehicle and a control device 20 thereof according to an embodiment.
  • This vehicle includes an engine 1, a clutch / damper 2, a transmission 3, wheels 4, and a motor 5.
  • the engine 1 is connected to the input shaft 3 a of the transmission 3 via the clutch / damper 2, the motor 5 is directly connected to the motor shaft 3 b of the transmission 3, and the wheels 4 are connected to the drive shaft 3 c of the transmission 3. Power from the engine 1 and / or the motor 5 is transmitted to the wheels 4 by the transmission 3.
  • the vehicle also includes a crank angle sensor 11, an accelerator position sensor 12, and a stroke sensor 13.
  • the crank angle sensor 11 detects the crank angle ⁇ 1 of the engine 1.
  • the accelerator position sensor 12 detects the accelerator opening.
  • the stroke sensor 13 detects the state of the clutch / damper 2, that is, whether the clutch is engaged or disengaged.
  • a motor angle sensor that detects the rotation angle of the motor 5 may not be provided.
  • the vehicle is provided with a control device 20, and controls the vibration of the vehicle (particularly, the humming sound of the engine 1) based on the detection result of each sensor.
  • FIG. 2 is a block diagram illustrating an example of the internal configuration of the control device 20.
  • the control device 20 includes a vibration suppression necessity determination unit 21, an engine torque calculation unit 22, a frequency calculation unit 23, a bandpass filter unit 24, and a command torque calculation unit 25. Some or all of these may be configured by hardware, or may be realized by a processor executing a predetermined program.
  • the crank angle sensor 11, the accelerator position sensor 12, and the stroke sensor 13 are connected to the vibration suppression necessity determination unit 21 as necessary to determine whether vibration suppression control is necessary. The determination result is transmitted to the command torque calculation unit 25.
  • the crank angle sensor 11 is connected to the engine torque calculation unit 22 to calculate the engine torque T.
  • the engine torque T includes a primary engine explosion frequency f (about 30 to 60 Hz) and a frequency (about 10 Hz) for accelerating and decelerating the engine 1.
  • the calculated engine torque T is input to the bandpass filter unit 24. Since the engine torque T can be calculated without knowing the angle of the motor 5, the motor angle sensor can be dispensed with and the cost can be reduced.
  • the frequency calculation unit 23 calculates the primary engine explosion frequency f and sets it as the pass frequency of the bandpass filter unit 24.
  • the band-pass filter unit 24 performs band-pass filtering on the input signal (that is, engine torque T) using the set engine explosion primary frequency f as a pass frequency.
  • the output from the band pass filter unit 24 is input to the command torque calculation unit 25.
  • the command torque calculation unit 25 sets the vibration suppression command torque to 0 when vibration suppression control is not required, and sets the vibration suppression command torque based on the output from the bandpass filter unit 24 when vibration suppression control is required. Is calculated.
  • the motor 5 is controlled according to the vibration suppression command torque.
  • the vibration suppression command torque is set to cancel the engine explosion primary frequency f and suppress the torque fluctuation of the drive shaft 3c while leaving the frequency component for accelerating / decelerating the engine 1.
  • the transmission characteristic from the engine 1 to the drive shaft 3c more specifically, the anti-resonance point in the transmission characteristic from the torque of the engine 1 to the torque of the drive shaft 3c is controlled so as to be in the vicinity of the engine explosion primary frequency f. Vibration command torque is set.
  • the vicinity of the primary engine explosion frequency f may be any frequency where the frequency component for accelerating / decelerating the engine 1 remains and the primary engine explosion frequency f is canceled. It may be within a predetermined range including the primary frequency, and more specifically, it may be within the engine explosion primary frequency ⁇ 2 to 4 kHz.
  • FIG. 3 is a flowchart showing the processing operation of vibration suppression control by the control device 20.
  • the damping necessity determination unit 21 determines whether damping control is necessary based on the detection results of the crank angle sensor 11, the accelerator position sensor 12, and the stroke sensor 13 (step S1). For example, the vibration suppression necessity determination unit 21 estimates the rotational speed N of the engine 1 from the detection result of the crank angle sensor 11, and determines that the vibration suppression control is necessary when the rotational speed is within a rotational speed range where a noise is generated. Also good. Further, the vibration suppression necessity determination unit 21 may determine that the vibration suppression control is unnecessary when the detection result of the stroke sensor 13 indicates that the clutch in the clutch / damper 2 is in the released state. Alternatively, the vibration suppression necessity determination unit 21 may determine that the vibration suppression control is unnecessary at the time of fuel cut based on the detection result of the accelerator position sensor 12.
  • the vibration suppression necessity determination unit 21 may not need vibration suppression control when traveling on rough roads, and may determine whether vibration suppression control is necessary using the accelerator opening, shift stage, vehicle speed, gravity sensor, and navigation information. You may judge.
  • step S1 When it is determined that the vibration suppression control is not necessary (NO in step S1), the command torque calculation unit 25 sets the vibration suppression command torque to 0 (step S2). In this case, vibration suppression control is not performed. On the other hand, when it is determined that vibration suppression control is necessary (YES in step S1), the following vibration suppression control is performed.
  • Engine torque calculation unit 22 calculates engine torque T based on crank angle ⁇ 1 of engine 1 (step S3). Further, the engine torque calculation unit 22 may estimate the engine torque T from the rotational speed N of the engine 1, the water temperature of the engine 1, the cylinder internal pressure, or the like, instead of the crank angle ⁇ 1, or measure the engine torque T. May be.
  • the frequency calculation unit 23 calculates an engine explosion primary frequency f that causes a booming noise, based on the number of revolutions N [rpm] of the engine 1, the number of cylinders n of the engine 1, and the number of cycles C (step) S3). More specifically, the engine explosion primary frequency f is calculated by the following equation (1).
  • the rotational speed N of the engine 1 can be grasped from the detection result of the crank angle sensor 11, and the cylinder number n and the cycle number C of the engine 1 are known constants.
  • f (N / 60) * (n / C) (1)
  • the engine explosion primary frequency f is set in the bandpass filter unit 24 as a pass frequency.
  • the band pass filter unit 24 passes the frequency component in the vicinity of the engine explosion primary frequency f in the input signal, and blocks other frequency components. Further, since the engine explosion primary frequency f corresponding to the engine speed N is calculated, even if the engine explosion primary frequency f changes due to the engine speed N changing, the change can be followed. .
  • the engine torque T calculated in step S3 is input to the band pass filter unit 24 (step S5).
  • a frequency component in the vicinity of the engine explosion primary frequency f is extracted from the engine torque T.
  • the engine torque T includes a frequency component for accelerating / decelerating the vehicle in addition to a frequency component in the vicinity of the engine explosion primary frequency f. Since such a frequency component is lower than the engine explosion primary frequency f, it is blocked by the bandpass filter unit 24.
  • the frequency component for accelerating / decelerating the vehicle is removed, and the component in the vicinity of the engine explosion primary frequency f is extracted. Further, the bandpass filter unit 24 also removes frequency components caused by noise that can be detected by the crank angle sensor 11.
  • the command torque calculation unit 25 calculates a vibration suppression command torque for controlling the motor 5 based on the output from the bandpass filter unit 24 (step S6).
  • This vibration suppression command torque is set so as to suppress torque fluctuations that occur in the drive shaft 3 c of the transmission 3.
  • the command torque calculation unit 25 adjusts the amplitude of the output from the bandpass filter unit 24 including the engine explosion primary frequency f. That is, the command torque calculation unit 25 obtains the command torque by multiplying the output by a predetermined gain G.
  • the gain G is a value that decreases as the rotational speed of the engine 1 increases.
  • the rotational speed W [rad / s] of the engine 1, inertia J [kg ⁇ m 2 ] of the engine 1, damper rigidity K [Nm / rad], It can be determined based on the gear ratio Z between the input shaft 3 a and the drive shaft 3 c of the transmission 3, the damping factor A at the center frequency of the pass band of the bandpass filter 24, the number of cylinders n and the number of cycles C of the engine 1. Specifically, it is calculated using the following equation (2). G K / [A * Z ⁇ (n * W / C) 2 * JK ⁇ ] (2)
  • the command torque calculation unit 25 may adjust the phase of the output from the bandpass filter unit 24 including the engine explosion primary frequency f. Specifically, the command torque calculation unit 25 advances the phase when the rotational speed of the engine 1 is increasing, and delays the phase when the rotational speed of the engine 1 is decreasing.
  • the command torque calculation unit 25 may set the offset so that the sign of the vibration damping command torque is constant, that is, the sign of the torque of the motor 5 is constant.
  • the sign of the vibration suppression command torque By making the sign of the vibration suppression command torque constant, it is possible to prevent the gear in the motor torque transmission unit from being separated, so that gear rattling noise can be prevented and durability can be improved.
  • the value of such an offset changes according to the magnitude of the engine explosion primary frequency f.
  • FIG. 4 is a diagram showing a simulation result comparing the case where the vibration suppression control of the present embodiment is performed with the case where the vibration suppression control is not performed.
  • FIG. 4A shows a case where vibration suppression control is not performed.
  • the horizontal axis represents time
  • the vertical axis represents engine speed N, engine torque T, vibration suppression command torque, and torque of drive shaft 3c in transmission 3 in order. is there.
  • FIG. 4B shows a case where vibration suppression control is performed, and the horizontal axis and the vertical axis are the same as those in FIG.
  • FIG. 4A vibration suppression control is not performed, and therefore the torque of the drive shaft 3c fluctuates over time. In this case, a booming sound is generated.
  • FIG. 4 (b) it can be seen that by setting the damping command torque, the fluctuation of the torque of the drive shaft 3c is reduced, and the damping effect is obtained.
  • FIG. 5 is a diagram showing another simulation result comparing the case where the vibration suppression control of the present embodiment is performed with the case where the vibration suppression control is not performed.
  • FIG. 3 is a Bode diagram in which the horizontal axis is the rotational speed N of the engine 1 and the vertical axis is a gain in transfer characteristics. When vibration suppression control is not performed, the antiresonance point is fixed. On the other hand, by performing vibration suppression control, when the rotational speed N of the engine 1 is 1,000 [rpm], 1,200 [rpm], and 1,400 [rpm], the anti-resonance point is set to 1 respectively. , 1,000 [rpm], 1,200 [rpm], and 1,400 [rpm].
  • the bandpass filter unit 24 is used to extract the primary engine explosion frequency f, and the motor 5 is controlled by setting the vibration suppression command torque so as to cancel it. Therefore, the engine explosion primary frequency f can be removed, and quietness is improved. Further, since the primary engine explosion frequency f is sequentially calculated in accordance with the rotational speed N of the engine 1, a vibration damping effect can be obtained over the entire engine rotation.
  • the frequency component for accelerating / decelerating the vehicle is removed by the band pass filter unit 24. Therefore, even if the motor 5 is controlled as described above, the frequency for accelerating and decelerating the vehicle is not canceled, and the feeling of acceleration can be maintained.

Abstract

A control device (20) for a vehicle having a transmission, an engine connected to an input shaft of the transmission via a clutch damper, a motor connected to the transmission, and wheels connected to a driveshaft of the transmission, and characterized by being equipped with: an engine torque calculation unit (22) for calculating the engine torque; a frequency calculation unit (23) for calculating an engine explosion primary frequency which corresponds to an engine speed; a band-pass filter unit (24) for applying band-pass filtering processing to the engine torque by using the engine explosion primary frequency as a band-pass frequency; and a command torque calculation unit (25) for calculating a command torque for the motor on the basis of an output from the band-pass filter unit such that an anti-resonance point in a torque transfer characteristic from the engine to the driveshaft falls with a predetermined range which includes the engine explosion primary frequency.

Description

車両ならびにその制御装置および制御方法VEHICLE, ITS CONTROL DEVICE AND CONTROL METHOD
 本発明は、エンジンおよびモータを有する車両ならびにその制御装置および制御方法に関する。 The present invention relates to a vehicle having an engine and a motor, and a control device and control method therefor.
 特許文献1には、内燃機関を備えた自動車において、エンジントルクと同位相の信号を定数倍したトルクを発生させて、内燃機関のトルク脈動・変動を抑制するトルク伝達装置が開示されている。 Patent Document 1 discloses a torque transmission device that suppresses torque pulsation and fluctuation of an internal combustion engine by generating a torque obtained by multiplying a signal having the same phase as the engine torque by a constant in an automobile equipped with the internal combustion engine.
 また、特許文献2には、内燃機関を備えた自動車において、ダンパトルクとは逆位相かつ同振幅のトルクをモータに与えることでパワートレーンの振動を除去し、パワートレーンにおける捩れ振動を減衰させることができる装置が開示されている。 Patent Document 2 discloses that in an automobile equipped with an internal combustion engine, a torque having an opposite phase and the same amplitude as that of the damper torque is applied to the motor to remove the vibration of the power train, and torsional vibration in the power train is attenuated. An apparatus that can be used is disclosed.
特許第3958220号公報Japanese Patent No. 3958220 特開平4-211747号公報JP-A-4-21747
 しかしながら、特許文献1に記載のトルク伝達装置は、エンジンの始動や停止といった限られた低回転領域においては効果的にトルク脈動・変動を抑制できる反面、走行領域において十分な効果が得られるとは限らない。むしろ、走行領域においてこもり音が発生して静粛性が損なわれるおそれがある。 However, while the torque transmission device described in Patent Document 1 can effectively suppress torque pulsation and fluctuation in a limited low rotation range such as engine start and stop, a sufficient effect can be obtained in the travel range. Not exclusively. Rather, there is a risk that a muffled sound will be generated in the running area and the quietness will be impaired.
 また、特許文献2に記載の装置は、捩れ振動を減衰させることで静粛性が得られる反面、車両を加減速するための周波数成分をも減衰させてしまい、加減速が鈍くなってしまうおそれがある。 In addition, the device described in Patent Document 2 can obtain quietness by attenuating torsional vibrations, but also attenuates frequency components for accelerating / decelerating the vehicle, which may result in a slow acceleration / deceleration. is there.
 本発明はこのような問題点に鑑みてなされたものであり、本発明の課題は、加速感と静粛性を両立可能な車両ならびにその制御装置および制御方法を提供することである。 The present invention has been made in view of such problems, and an object of the present invention is to provide a vehicle capable of achieving both acceleration feeling and quietness, and a control device and control method therefor.
 本発明の一態様によれば、トランスミッションと、クラッチ・ダンパを介して前記トランスミッションのインプットシャフトに接続されたエンジンと、前記トランスミッションに接続されたモータと、前記トランスミッションのドライブシャフトに接続された車輪と、を有する車両の制御装置であって、エンジントルクを算出するエンジントルク算出部と、エンジン回転数に応じたエンジン爆発一次の周波数を算出する周波数算出部と、前記エンジントルクに対して、前記エンジン爆発一次の周波数を通過周波数としてバンドパスフィルタ処理を行うバンドパスフィルタ部と、前記バンドパスフィルタ部からの出力に基づいて、前記エンジンから前記ドライブシャフトまでの伝達特性における反共振点が、前記エンジン爆発一次の周波数を含む所定範囲内となるよう、前記モータの指令トルクを算出する指令トルク算出部と、を備える制御装置が提供される。
 バンドパスフィルタ処理によって、エンジン爆発一次の周波数は通過するが、他の周波数は遮断される。そのため、加速感を損なうことなく、静粛性を向上できる。また、モータ角を検出するためのセンサを設ける必要がなく、コストを削減できる。
According to one aspect of the present invention, a transmission, an engine connected to an input shaft of the transmission via a clutch / damper, a motor connected to the transmission, and a wheel connected to a drive shaft of the transmission The engine control unit calculates the engine torque, the frequency calculation unit calculates the engine explosion primary frequency according to the engine speed, and the engine torque with respect to the engine torque. A band-pass filter unit that performs a band-pass filter process using a primary explosion frequency as a pass frequency, and an anti-resonance point in a transfer characteristic from the engine to the drive shaft based on an output from the band-pass filter unit, Including explosion primary frequency So as to be within a predetermined range, the control device is provided comprising, a command torque calculation unit for calculating a command torque of the motor.
The bandpass filter process passes the primary frequency of the engine explosion, but blocks other frequencies. Therefore, quietness can be improved without impairing the feeling of acceleration. Further, it is not necessary to provide a sensor for detecting the motor angle, and the cost can be reduced.
 望ましくは、前記指令トルク算出部は、前記エンジンから前記ドライブシャフトまでの伝達特性における反共振点が、前記エンジン爆発一次の周波数を含む所定範囲内となるよう、前記バンドパスフィルタ部からの出力の振幅および/または位相を調整して前記モータの指令トルクを算出する。
 反共振点をエンジン爆発一次の周波数近辺とすることで、静粛性を向上できる。
Preferably, the command torque calculation unit outputs the output from the bandpass filter unit so that an anti-resonance point in a transfer characteristic from the engine to the drive shaft falls within a predetermined range including the engine explosion primary frequency. The command torque of the motor is calculated by adjusting the amplitude and / or phase.
Quietness can be improved by setting the anti-resonance point near the engine explosion primary frequency.
 前記指令トルク算出部は、前記エンジン回転数、前記エンジンのイナーシャ、ダンパ剛性、前記トランスミッションのインプットシャフトとドライブシャフトとのギヤ比、前記バンドパスフィルタの通過帯域の中心周波数における減衰倍率、エンジンの気筒数およびサイクル数に基づいて、前記振幅を調整してもよい。
 より具体的には、前記指令トルク算出部は、前記振幅と、下式で表されるゲインGと、を乗じて前記モータの指令トルクを算出してもよい。
 G=K/[A*Z{(n*W/C)2*J-K}]
ここで、Wは前記エンジン回転数、Jは前記エンジンのイナーシャ、Kはダンパ剛性、Zは前記トランスミッションのインプットシャフトとドライブシャフトとのギヤ比、Aは前記バンドパスフィルタの通過帯域の中心周波数における減衰倍率、nはエンジンの気筒数、Cはサイクル数である。
 これにより、適切にモータの指令トルクを算出できる。
The command torque calculating unit includes the engine speed, the inertia of the engine, the damper rigidity, the gear ratio between the input shaft and the drive shaft of the transmission, the damping factor at the center frequency of the pass band of the bandpass filter, the cylinder of the engine The amplitude may be adjusted based on the number and the number of cycles.
More specifically, the command torque calculation unit may calculate the command torque of the motor by multiplying the amplitude and a gain G expressed by the following equation.
G = K / [A * Z {(n * W / C) 2 * JK}]
Where W is the engine speed, J is the inertia of the engine, K is damper rigidity, Z is the gear ratio between the input shaft and drive shaft of the transmission, and A is the center frequency of the pass band of the bandpass filter. Damping magnification, n is the number of cylinders of the engine, and C is the number of cycles.
Thereby, the command torque of the motor can be calculated appropriately.
 望ましくは、前記指令トルク算出部は、前記エンジン回転数の変化に応じて、前記位相を調整する。
 より望ましくは、前記指令トルク算出部は、前記エンジン回転数が増加している場合には、前記位相を進め、前記エンジン回転数が減少している場合には、前記位相を遅らせる。
 このように位相を調整することで、エンジン回転数が変化する場合でも制振効果を保つことができる。
Preferably, the command torque calculator adjusts the phase according to a change in the engine speed.
More preferably, the command torque calculation unit advances the phase when the engine speed is increasing, and delays the phase when the engine speed is decreasing.
By adjusting the phase in this way, the vibration damping effect can be maintained even when the engine speed changes.
 前記バンドパスフィルタ部は、前記エンジン爆発一次の周波数を通過させるが、前記車両を加減速させるための周波数成分を通過させないのが望ましい。
 これにより、加速感を維持できる。
It is desirable that the band-pass filter unit allows the engine explosion primary frequency to pass but does not pass a frequency component for accelerating / decelerating the vehicle.
Thereby, a feeling of acceleration can be maintained.
 前記周波数算出部は、下式に基づいて、前記エンジン爆発一次の周波数を算出してもよい。
 f=(N/60)*(n/C) ・・・(2)
 ここで、fは前記エンジン爆発一次の周波数、Nは前記エンジン回転数[rpm]、nはエンジンの気筒数、Cはサイクル数である。
 これにより、エンジン回転数に追従してエンジン爆発一次の周波数を算出できる。
The frequency calculation unit may calculate the primary frequency of the engine explosion based on the following equation.
f = (N / 60) * (n / C) (2)
Here, f is the engine explosion primary frequency, N is the engine speed [rpm], n is the number of engine cylinders, and C is the number of cycles.
Thereby, the engine explosion primary frequency can be calculated following the engine speed.
 前記指令トルク算出部は、前記モータの指令トルクの符号が一定となるよう、前記バンドパスフィルタ部からの出力にオフセットを適用するのが望ましい。
 これにより、モータのトルクの符号が一定となってギヤの歯打ち音が生じるのを抑えることができ、さらに静粛性を向上できる。
The command torque calculation unit preferably applies an offset to the output from the bandpass filter unit so that the sign of the command torque of the motor is constant.
As a result, the sign of the torque of the motor can be kept constant, and the occurrence of gear rattling noise can be suppressed, and quietness can be further improved.
 望ましくは、制御装置は、前記エンジン回転数、前記クラッチ・ダンパの状態、フューエルカットの有無に応じて、制振制御の要否を判定する制振要否判定部を備える。
 これにより、必要な場合に限って制振制御を行うことができる。
Preferably, the control device includes a vibration suppression necessity determination unit that determines whether vibration suppression control is necessary according to the engine speed, the state of the clutch / damper, and the presence or absence of fuel cut.
Thereby, vibration suppression control can be performed only when necessary.
 本発明の別の態様によれば、上記制御装置と、トランスミッションと、クラッチ・ダンパを介して前記トランスミッションのインプットシャフトに接続されたエンジンと、前記トランスミッションに接続され、前記制御装置によって算出された前記指令トルクによって制御されるモータと、前記トランスミッションのドライブシャフトに接続された車輪と、を備える車両が提供される。 According to another aspect of the present invention, the control device, the transmission, an engine connected to an input shaft of the transmission via a clutch / damper, and the transmission connected to the transmission and calculated by the control device. A vehicle is provided that includes a motor controlled by command torque and wheels connected to a drive shaft of the transmission.
 本発明の別の態様によれば、トランスミッションと、クラッチ・ダンパを介して前記トランスミッションのインプットシャフトに接続されたエンジンと、前記トランスミッションに接続されたモータと、前記トランスミッションのドライブシャフトに接続された車輪と、を有する車両の制御方法であって、エンジントルクを算出するエンジントルク算出ステップと、エンジン回転数に応じたエンジン爆発一次の周波数を算出する周波数算出ステップと、前記エンジントルクに対して、前記エンジン爆発一次の周波数を通過周波数としてバンドパスフィルタ処理を行うバンドパスフィルタステップと、前記バンドパスフィルタ処理後の出力に基づいて、前記エンジンから前記ドライブシャフトまでの伝達特性における反共振点が、前記エンジン爆発一次の周波数を含む所定範囲内となるよう、前記モータの指令トルクを算出する指令トルク算出ステップと、を備える制御方法が提供される。 According to another aspect of the present invention, a transmission, an engine connected to an input shaft of the transmission via a clutch / damper, a motor connected to the transmission, and a wheel connected to a drive shaft of the transmission And an engine torque calculating step for calculating an engine torque, a frequency calculating step for calculating an engine explosion primary frequency according to the engine speed, and the engine torque with respect to the engine torque. A band-pass filter step for performing a band-pass filter process using the primary frequency of the engine explosion as a pass frequency, and an anti-resonance point in the transfer characteristic from the engine to the drive shaft based on the output after the band-pass filter process, Engine So as to be within a predetermined range including the explosion primary frequency, the command torque calculation step of calculating a command torque of the motor, the control method comprising a are provided.
 バンドパスフィルタを用いるため、加速感と静粛性を両立できる。 Because the band-pass filter is used, both acceleration and quietness can be achieved.
一実施形態に係る車両およびその制御装置20の概略構成を示すブロック図。The block diagram which shows schematic structure of the vehicle which concerns on one Embodiment, and its control apparatus 20. FIG. 制御装置20の内部構成の一例を示すブロック図。FIG. 3 is a block diagram illustrating an example of an internal configuration of a control device 20. 制御装置20による制振制御の処理動作を示すフローチャート。7 is a flowchart showing a processing operation of vibration suppression control by the control device 20; 本実施形態の制振制御を行った場合と、行わない場合とを比較するシミュレーション結果を示す図。The figure which shows the simulation result which compares the case where damping control of this embodiment is performed, and the case where it does not perform. 本実施形態の制振制御を行った場合と、行わない場合とを比較する別のシミュレーション結果を示す図。The figure which shows another simulation result which compares the case where it does not perform with the case where damping control of this embodiment is performed.
 以下、本発明に係る実施形態について、図面を参照しながら具体的に説明する。 Hereinafter, embodiments according to the present invention will be specifically described with reference to the drawings.
 (第1の実施形態)
 図1は、一実施形態に係る車両およびその制御装置20の概略構成を示すブロック図である。この車両は、エンジン1と、クラッチ・ダンパ2と、トランスミッション3と、車輪4と、モータ5とを備えている。エンジン1はクラッチ・ダンパ2を介してトランスミッション3のインプットシャフト3aと接続され、モータ5はトランスミッション3のモータシャフト3bと直結され、車輪4はトランスミッション3のドライブシャフト3cに接続されている。エンジン1および/またはモータ5からの動力がトランスミッション3によって車輪4に伝達される。
(First embodiment)
FIG. 1 is a block diagram illustrating a schematic configuration of a vehicle and a control device 20 thereof according to an embodiment. This vehicle includes an engine 1, a clutch / damper 2, a transmission 3, wheels 4, and a motor 5. The engine 1 is connected to the input shaft 3 a of the transmission 3 via the clutch / damper 2, the motor 5 is directly connected to the motor shaft 3 b of the transmission 3, and the wheels 4 are connected to the drive shaft 3 c of the transmission 3. Power from the engine 1 and / or the motor 5 is transmitted to the wheels 4 by the transmission 3.
 また、車両は、クランク角センサ11と、アクセルポジションセンサ12と、ストロークセンサ13とを備えている。クランク角センサ11はエンジン1のクランク角θ1を検出する。アクセルポジションセンサ12はアクセル開度を検出する。ストロークセンサ13はクラッチ・ダンパ2の状態、すなわち、クラッチが係合状態であるか開放状態であるかを検出する。なお、本実施形態においては、モータ5の回転角を検出するモータ角センサを設けなくてもよい。 The vehicle also includes a crank angle sensor 11, an accelerator position sensor 12, and a stroke sensor 13. The crank angle sensor 11 detects the crank angle θ1 of the engine 1. The accelerator position sensor 12 detects the accelerator opening. The stroke sensor 13 detects the state of the clutch / damper 2, that is, whether the clutch is engaged or disengaged. In the present embodiment, a motor angle sensor that detects the rotation angle of the motor 5 may not be provided.
 さらに、車両は制御装置20を備えており、各センサによる検出結果に基づいて、車両振動(特に、エンジン1のこもり音)の制振を行う。 Furthermore, the vehicle is provided with a control device 20, and controls the vibration of the vehicle (particularly, the humming sound of the engine 1) based on the detection result of each sensor.
 図2は、制御装置20の内部構成の一例を示すブロック図である。制御装置20は、制振要否判定部21と、エンジントルク算出部22と、周波数算出部23と、バンドパスフィルタ部24と、指令トルク算出部25とを有する。これらの一部または全部は、ハードウェアで構成されてもよいし、プロセッサが所定のプログラムを実行することによって実現されてもよい。 FIG. 2 is a block diagram illustrating an example of the internal configuration of the control device 20. The control device 20 includes a vibration suppression necessity determination unit 21, an engine torque calculation unit 22, a frequency calculation unit 23, a bandpass filter unit 24, and a command torque calculation unit 25. Some or all of these may be configured by hardware, or may be realized by a processor executing a predetermined program.
 制振要否判定部21には、必要に応じてクランク角センサ11、アクセルポジションセンサ12、ストロークセンサ13が接続され、制振制御の要否を判定する。判定結果は指令トルク算出部25に伝えられる。 The crank angle sensor 11, the accelerator position sensor 12, and the stroke sensor 13 are connected to the vibration suppression necessity determination unit 21 as necessary to determine whether vibration suppression control is necessary. The determination result is transmitted to the command torque calculation unit 25.
 エンジントルク算出部22にはクランク角センサ11が接続され、エンジントルクTを算出する。エンジントルクTは、エンジン爆発一次の周波数f(30~60Hz程度)や、エンジン1を加減速するための周波数(10Hz程度)を含んでいる。算出されたエンジントルクTはバンドパスフィルタ部24に入力される。エンジントルクTは、モータ5の角度が分からなくても算出できるため、モータ角センサを不要とすることができコストダウンを図れる。 The crank angle sensor 11 is connected to the engine torque calculation unit 22 to calculate the engine torque T. The engine torque T includes a primary engine explosion frequency f (about 30 to 60 Hz) and a frequency (about 10 Hz) for accelerating and decelerating the engine 1. The calculated engine torque T is input to the bandpass filter unit 24. Since the engine torque T can be calculated without knowing the angle of the motor 5, the motor angle sensor can be dispensed with and the cost can be reduced.
 周波数算出部23は、エンジン爆発一次の周波数fを算出し、バンドパスフィルタ部24の通過周波数として設定する。 The frequency calculation unit 23 calculates the primary engine explosion frequency f and sets it as the pass frequency of the bandpass filter unit 24.
 バンドパスフィルタ部24は、入力される信号(すなわちエンジントルクT)に対して、設定されたエンジン爆発一次の周波数fを通過周波数とするバンドパスフィルタ処理を行う。バンドパスフィルタ部24からの出力は指令トルク算出部25に入力される。 The band-pass filter unit 24 performs band-pass filtering on the input signal (that is, engine torque T) using the set engine explosion primary frequency f as a pass frequency. The output from the band pass filter unit 24 is input to the command torque calculation unit 25.
 指令トルク算出部25は、制振制御が不要な場合には制振指令トルクを0に設定し、制振制御が必要な場合にはバンドパスフィルタ部24からの出力に基づいて制振指令トルクを算出する。この制振指令トルクに応じてモータ5が制御される。制振指令トルクは、エンジン1を加減速するための周波数成分は残しつつ、エンジン爆発一次の周波数fをキャンセルしてドライブシャフト3cのトルク変動を抑制するよう設定される。かつ、エンジン1からドライブシャフト3cまでの伝達特性、より詳しくは、エンジン1のトルクからドライブシャフト3cのトルクまでの伝達特性における反共振点が、エンジン爆発一次の周波数fの近傍となるよう、制振指令トルクが設定される。 The command torque calculation unit 25 sets the vibration suppression command torque to 0 when vibration suppression control is not required, and sets the vibration suppression command torque based on the output from the bandpass filter unit 24 when vibration suppression control is required. Is calculated. The motor 5 is controlled according to the vibration suppression command torque. The vibration suppression command torque is set to cancel the engine explosion primary frequency f and suppress the torque fluctuation of the drive shaft 3c while leaving the frequency component for accelerating / decelerating the engine 1. In addition, the transmission characteristic from the engine 1 to the drive shaft 3c, more specifically, the anti-resonance point in the transmission characteristic from the torque of the engine 1 to the torque of the drive shaft 3c is controlled so as to be in the vicinity of the engine explosion primary frequency f. Vibration command torque is set.
 なお、ここでのエンジン爆発一次の周波数fの近傍とは、エンジン1を加減速するための周波数成分が残り、かつ、エンジン爆発一次の周波数fがキャンセルされる周波数であればよく、例えばエンジン爆発一次の周波数を含む所定範囲内であってよく、より具体的にはエンジン爆発一次の周波数±2~4kHz内であってよい。 Here, the vicinity of the primary engine explosion frequency f may be any frequency where the frequency component for accelerating / decelerating the engine 1 remains and the primary engine explosion frequency f is canceled. It may be within a predetermined range including the primary frequency, and more specifically, it may be within the engine explosion primary frequency ± 2 to 4 kHz.
 図3は、制御装置20による制振制御の処理動作を示すフローチャートである。
 まず、制振要否判定部21は、クランク角センサ11、アクセルポジションセンサ12、ストロークセンサ13の検出結果などに基づいて、制振制御の要否を判定する(ステップS1)。例えば、制振要否判定部21は、クランク角センサ11の検出結果からエンジン1の回転数Nを推定し、こもり音が発生する回転数範囲である場合に制振制御が必要と判定してもよい。また、制振要否判定部21は、クラッチ・ダンパ2におけるクラッチが開放状態であることをストロークセンサ13の検出結果が示している場合には、制振制御が不要と判定してもよい。あるいは、制振要否判定部21は、アクセルポジションセンサ12の検出結果に基づいて、フューエルカット時には制振制御が不要と判定してもよい。
FIG. 3 is a flowchart showing the processing operation of vibration suppression control by the control device 20.
First, the damping necessity determination unit 21 determines whether damping control is necessary based on the detection results of the crank angle sensor 11, the accelerator position sensor 12, and the stroke sensor 13 (step S1). For example, the vibration suppression necessity determination unit 21 estimates the rotational speed N of the engine 1 from the detection result of the crank angle sensor 11, and determines that the vibration suppression control is necessary when the rotational speed is within a rotational speed range where a noise is generated. Also good. Further, the vibration suppression necessity determination unit 21 may determine that the vibration suppression control is unnecessary when the detection result of the stroke sensor 13 indicates that the clutch in the clutch / damper 2 is in the released state. Alternatively, the vibration suppression necessity determination unit 21 may determine that the vibration suppression control is unnecessary at the time of fuel cut based on the detection result of the accelerator position sensor 12.
 その他、制振要否判定部21は、悪路走行時は制振制御不要としてもよいし、アクセル開度、シフト段、車速、重力センサおよびナビ情報などを用いて制振制御の要否を判定してもよい。 In addition, the vibration suppression necessity determination unit 21 may not need vibration suppression control when traveling on rough roads, and may determine whether vibration suppression control is necessary using the accelerator opening, shift stage, vehicle speed, gravity sensor, and navigation information. You may judge.
 制振制御が不要と判定された場合(ステップS1のNO)、指令トルク算出部25は制振指令トルクを0に設定する(ステップS2)。この場合、制振制御は行われない。一方、制振制御が必要と判定された場合(ステップS1のYES)、以下の制振制御が行われる。 When it is determined that the vibration suppression control is not necessary (NO in step S1), the command torque calculation unit 25 sets the vibration suppression command torque to 0 (step S2). In this case, vibration suppression control is not performed. On the other hand, when it is determined that vibration suppression control is necessary (YES in step S1), the following vibration suppression control is performed.
 エンジントルク算出部22は、エンジン1のクランク角θ1に基づいて、エンジントルクTを算出する(ステップS3)。また、エンジントルク算出部22は、クランク角θ1に代えて、エンジン1の回転数Nや、エンジン1の水温、気筒内圧などからエンジントルクTを推定してもよいし、エンジントルクTを実測してもよい。 Engine torque calculation unit 22 calculates engine torque T based on crank angle θ1 of engine 1 (step S3). Further, the engine torque calculation unit 22 may estimate the engine torque T from the rotational speed N of the engine 1, the water temperature of the engine 1, the cylinder internal pressure, or the like, instead of the crank angle θ1, or measure the engine torque T. May be.
 次いで、周波数算出部23は、エンジン1の回転数N[rpm]、エンジン1の気筒数nおよびサイクル数Cに基づいて、こもり音を引き起こす原因となるエンジン爆発一次の周波数fを算出する(ステップS3)。より具体的には、下記(1)式によりエンジン爆発一次の周波数fが算出される。なお、エンジン1の回転数Nはクランク角センサ11の検出結果から把握でき、エンジン1の気筒数nおよびサイクル数Cは既知の定数である。
 f=(N/60)*(n/C) ・・・(1)
Next, the frequency calculation unit 23 calculates an engine explosion primary frequency f that causes a booming noise, based on the number of revolutions N [rpm] of the engine 1, the number of cylinders n of the engine 1, and the number of cycles C (step) S3). More specifically, the engine explosion primary frequency f is calculated by the following equation (1). The rotational speed N of the engine 1 can be grasped from the detection result of the crank angle sensor 11, and the cylinder number n and the cycle number C of the engine 1 are known constants.
f = (N / 60) * (n / C) (1)
 このエンジン爆発一次の周波数fが通過周波数としてバンドパスフィルタ部24に設定される。これにより、バンドパスフィルタ部24は、入力される信号のうちエンジン爆発一次の周波数f近傍の周波数成分を通過させ、他の周波数成分を遮断する。また、エンジン1の回転数Nに応じたエンジン爆発一次の周波数fを算出するため、エンジン1の回転数Nが変化することによってエンジン爆発一次の周波数fが変化した場合でも、その変化に追従できる。 The engine explosion primary frequency f is set in the bandpass filter unit 24 as a pass frequency. Thereby, the band pass filter unit 24 passes the frequency component in the vicinity of the engine explosion primary frequency f in the input signal, and blocks other frequency components. Further, since the engine explosion primary frequency f corresponding to the engine speed N is calculated, even if the engine explosion primary frequency f changes due to the engine speed N changing, the change can be followed. .
 そして、バンドパスフィルタ部24には、ステップS3で算出されたエンジントルクTが入力される(ステップS5)。これにより、エンジントルクTからエンジン爆発一次の周波数f近傍の周波数成分が取り出される。ここで、エンジントルクTには、エンジン爆発一次の周波数f近傍の周波数成分に加え、車両を加減速させるための周波数成分を含んでいる。このような周波数成分はエンジン爆発一次の周波数fより低いため、バンドパスフィルタ部24によって遮断される。 Then, the engine torque T calculated in step S3 is input to the band pass filter unit 24 (step S5). As a result, a frequency component in the vicinity of the engine explosion primary frequency f is extracted from the engine torque T. Here, the engine torque T includes a frequency component for accelerating / decelerating the vehicle in addition to a frequency component in the vicinity of the engine explosion primary frequency f. Since such a frequency component is lower than the engine explosion primary frequency f, it is blocked by the bandpass filter unit 24.
 すなわち、本実施形態においては、バンドパスフィルタ処理を行うため、車両を加減速させるための周波数成分は取り除かれ、エンジン爆発一次の周波数f近傍の成分が取り出される。さらに、バンドパスフィルタ部24によって、クランク角センサ11で検出され得るノイズに起因する周波数成分も除去される。 That is, in the present embodiment, in order to perform the bandpass filter processing, the frequency component for accelerating / decelerating the vehicle is removed, and the component in the vicinity of the engine explosion primary frequency f is extracted. Further, the bandpass filter unit 24 also removes frequency components caused by noise that can be detected by the crank angle sensor 11.
 続いて、指令トルク算出部25は、バンドパスフィルタ部24からの出力に基づいて、モータ5を制御するための制振指令トルクを算出する(ステップS6)。この制振指令トルクは、トランスミッション3のドライブシャフト3cに生じるトルク変動を抑えるように設定される。 Subsequently, the command torque calculation unit 25 calculates a vibration suppression command torque for controlling the motor 5 based on the output from the bandpass filter unit 24 (step S6). This vibration suppression command torque is set so as to suppress torque fluctuations that occur in the drive shaft 3 c of the transmission 3.
 望ましくは、指令トルク算出部25はエンジン爆発一次の周波数fを含むバンドパスフィルタ部24からの出力の振幅を調整する。すなわち、指令トルク算出部25は、同出力に所定のゲインGを乗じることで、指令トルクを得る。ゲインGはエンジン1の回転数が増加すると減少する値であり、エンジン1の回転数W[rad/s]、エンジン1のイナーシャJ[kg・m2]、ダンパ剛性K[Nm/rad]、トランスミッション3のインプットシャフト3aとドライブシャフト3cとのギヤ比Z、バンドパスフィルタ部24の通過帯域の中心周波数における減衰倍率A、エンジン1の気筒数nおよびサイクル数Cに基づいて定めることができる。具体的には下記(2)式を用いて算出される。
 G=K/[A*Z{(n*W/C)2*J-K}] ・・・(2)
Desirably, the command torque calculation unit 25 adjusts the amplitude of the output from the bandpass filter unit 24 including the engine explosion primary frequency f. That is, the command torque calculation unit 25 obtains the command torque by multiplying the output by a predetermined gain G. The gain G is a value that decreases as the rotational speed of the engine 1 increases. The rotational speed W [rad / s] of the engine 1, inertia J [kg · m 2 ] of the engine 1, damper rigidity K [Nm / rad], It can be determined based on the gear ratio Z between the input shaft 3 a and the drive shaft 3 c of the transmission 3, the damping factor A at the center frequency of the pass band of the bandpass filter 24, the number of cylinders n and the number of cycles C of the engine 1. Specifically, it is calculated using the following equation (2).
G = K / [A * Z {(n * W / C) 2 * JK}] (2)
 このように振幅を調整することで、エンジン1のトルクからドライブシャフト3cのトルクまでの伝達特性における反共振点が、エンジン爆発一次の周波数fの近傍となり、エンジン爆発一次の周波数fがキャンセルされて制振が実現される。 By adjusting the amplitude in this way, the anti-resonance point in the transfer characteristic from the torque of the engine 1 to the torque of the drive shaft 3c becomes near the engine explosion primary frequency f, and the engine explosion primary frequency f is canceled. Vibration suppression is realized.
 また、指令トルク算出部25はエンジン爆発一次の周波数fを含むバンドパスフィルタ部24からの出力の位相を調整してもよい。具体的には、指令トルク算出部25は、エンジン1の回転数が増加している場合には位相を進め、エンジン1の回転数が減少している場合には位相を遅らせる。 Further, the command torque calculation unit 25 may adjust the phase of the output from the bandpass filter unit 24 including the engine explosion primary frequency f. Specifically, the command torque calculation unit 25 advances the phase when the rotational speed of the engine 1 is increasing, and delays the phase when the rotational speed of the engine 1 is decreasing.
 これにより、エンジン1の回転数が変化する場合でも、制振効果を保つことができる。 Thereby, even when the rotation speed of the engine 1 changes, the vibration control effect can be maintained.
 さらに、指令トルク算出部25は、制振指令トルクの符号が一定となるよう、すなわち、モータ5のトルクの符号が一定となるよう、オフセットを上乗せ設定してもよい。制振指令トルクの符号を一定とすることで、モータトルクの伝達部におけるギヤが離れることが抑えられるため、ギヤの歯打ち音を防止できるし、耐久性もよくなる。このようなオフセットの値は、エンジン爆発一次の周波数fの大きさに応じて変化する。 Further, the command torque calculation unit 25 may set the offset so that the sign of the vibration damping command torque is constant, that is, the sign of the torque of the motor 5 is constant. By making the sign of the vibration suppression command torque constant, it is possible to prevent the gear in the motor torque transmission unit from being separated, so that gear rattling noise can be prevented and durability can be improved. The value of such an offset changes according to the magnitude of the engine explosion primary frequency f.
 図4は、本実施形態の制振制御を行った場合と、行わない場合とを比較するシミュレーション結果を示す図である。図4(a)は制振制御を行わない場合であり、横軸は時間、縦軸は順にエンジン1の回転数N、エンジントルクT、制振指令トルクおよびトランスミッション3におけるドライブシャフト3cのトルクである。また、図4(b)は制振制御を行った場合であり、横軸および縦軸は図4(a)と同様である。 FIG. 4 is a diagram showing a simulation result comparing the case where the vibration suppression control of the present embodiment is performed with the case where the vibration suppression control is not performed. FIG. 4A shows a case where vibration suppression control is not performed. The horizontal axis represents time, and the vertical axis represents engine speed N, engine torque T, vibration suppression command torque, and torque of drive shaft 3c in transmission 3 in order. is there. FIG. 4B shows a case where vibration suppression control is performed, and the horizontal axis and the vertical axis are the same as those in FIG.
 図4(a)においては制振制御を行っておらず、そのためドライブシャフト3cのトルクが時間変動している。この場合、こもり音が発生してしまう。
 図4(b)においては、制振指令トルクを設定することで、ドライブシャフト3cのトルクの変動が小さくなっており、制振効果が得られていることが分かる。
In FIG. 4A, vibration suppression control is not performed, and therefore the torque of the drive shaft 3c fluctuates over time. In this case, a booming sound is generated.
In FIG. 4 (b), it can be seen that by setting the damping command torque, the fluctuation of the torque of the drive shaft 3c is reduced, and the damping effect is obtained.
 図5は、本実施形態の制振制御を行った場合と、行わない場合とを比較する別のシミュレーション結果を示す図である。横軸をエンジン1の回転数Nとし、縦軸を伝達特性におけるゲインとしたボード線図である。制振制御をおこなわない場合、反共振点は固定である。これに対し、制振制御を行うことで、エンジン1の回転数Nが1,000[rpm]、1,200[rpm]、1,400[rpm]である場合に、それぞれ反共振点を1,000[rpm]、1,200[rpm]、1,400[rpm]に一致させることができている。 FIG. 5 is a diagram showing another simulation result comparing the case where the vibration suppression control of the present embodiment is performed with the case where the vibration suppression control is not performed. FIG. 3 is a Bode diagram in which the horizontal axis is the rotational speed N of the engine 1 and the vertical axis is a gain in transfer characteristics. When vibration suppression control is not performed, the antiresonance point is fixed. On the other hand, by performing vibration suppression control, when the rotational speed N of the engine 1 is 1,000 [rpm], 1,200 [rpm], and 1,400 [rpm], the anti-resonance point is set to 1 respectively. , 1,000 [rpm], 1,200 [rpm], and 1,400 [rpm].
 このように、本実施形態では、バンドパスフィルタ部24を用いて、エンジン爆発一次の周波数fを取り出し、これをキャンセルするように制振指令トルクを設定してモータ5を制御する。そのため、エンジン爆発一次の周波数fを除去でき、静粛性が向上する。また、エンジン爆発一次の周波数fを、エンジン1の回転数Nに応じて逐次算出するため、エンジン回転全域で制振効果が得られる。 Thus, in the present embodiment, the bandpass filter unit 24 is used to extract the primary engine explosion frequency f, and the motor 5 is controlled by setting the vibration suppression command torque so as to cancel it. Therefore, the engine explosion primary frequency f can be removed, and quietness is improved. Further, since the primary engine explosion frequency f is sequentially calculated in accordance with the rotational speed N of the engine 1, a vibration damping effect can be obtained over the entire engine rotation.
 さらに、バンドパスフィルタ部24によって車両を加減速するための周波数成分は除去される。よって、上記のようなモータ5の制御を行っても車両を加減速するための周波数がキャンセルされることはなく、加速感を維持できる。 Furthermore, the frequency component for accelerating / decelerating the vehicle is removed by the band pass filter unit 24. Therefore, even if the motor 5 is controlled as described above, the frequency for accelerating and decelerating the vehicle is not canceled, and the feeling of acceleration can be maintained.
 上述した実施形態は、本発明が属する技術分野における通常の知識を有する者が本発明を実施できることを目的として記載されたものである。上記実施形態の種々の変形例は、当業者であれば当然になしうることであり、本発明の技術的思想は他の実施形態にも適用しうることである。したがって、本発明は、記載された実施形態に限定されることはなく、特許請求の範囲によって定義される技術的思想に従った最も広い範囲とすべきである。 The above-described embodiments are described for the purpose of enabling the person having ordinary knowledge in the technical field to which the present invention belongs to implement the present invention. Various modifications of the above embodiment can be naturally made by those skilled in the art, and the technical idea of the present invention can be applied to other embodiments. Therefore, the present invention should not be limited to the described embodiments, but should be the widest scope according to the technical idea defined by the claims.
1 エンジン
2 クラッチ・ダンパ
3 トランスミッション
3a インプットシャフト
3b モータシャフト
3c ドライブシャフト
4 車輪
5 モータ
11 クランク角センサ
12 アクセルポジションセンサ
13 ストロークセンサ
20 制御装置
21 制振要否判定部
22 エンジントルク算出部
23 周波数算出部
24 バンドパスフィルタ部
25 指令トルク算出部
DESCRIPTION OF SYMBOLS 1 Engine 2 Clutch damper 3 Transmission 3a Input shaft 3b Motor shaft 3c Drive shaft 4 Wheel 5 Motor 11 Crank angle sensor 12 Accelerator position sensor 13 Stroke sensor 20 Control device 21 Vibration suppression necessity judgment part 22 Engine torque calculation part 23 Frequency calculation Unit 24 bandpass filter unit 25 command torque calculation unit

Claims (12)

  1.  トランスミッションと、クラッチ・ダンパを介して前記トランスミッションのインプットシャフトに接続されたエンジンと、前記トランスミッションに接続されたモータと、前記トランスミッションのドライブシャフトに接続された車輪と、を有する車両の制御装置であって、
     エンジントルクを算出するエンジントルク算出部と、
     エンジン回転数に応じたエンジン爆発一次の周波数を算出する周波数算出部と、
     前記エンジントルクに対して、前記エンジン爆発一次の周波数を通過周波数としてバンドパスフィルタ処理を行うバンドパスフィルタ部と、
     前記バンドパスフィルタ部からの出力に基づいて、前記エンジンから前記ドライブシャフトまでの伝達特性における反共振点が、前記エンジン爆発一次の周波数を含む所定範囲内となるよう、前記モータの指令トルクを算出する指令トルク算出部と、を備える制御装置。
    A vehicle control device comprising: a transmission; an engine connected to an input shaft of the transmission via a clutch damper; a motor connected to the transmission; and a wheel connected to a drive shaft of the transmission. And
    An engine torque calculator for calculating engine torque;
    A frequency calculation unit for calculating the primary frequency of the engine explosion according to the engine speed;
    A bandpass filter unit that performs a bandpass filter process with the engine explosion primary frequency as a pass frequency for the engine torque;
    Based on the output from the band-pass filter unit, the command torque of the motor is calculated so that the anti-resonance point in the transfer characteristic from the engine to the drive shaft is within a predetermined range including the engine explosion primary frequency. And a command torque calculating unit.
  2.  前記指令トルク算出部は、前記エンジンから前記ドライブシャフトまでの伝達特性における反共振点が、前記エンジン爆発一次の周波数を含む所定範囲内となるよう、前記バンドパスフィルタ部からの出力の振幅および/または位相を調整して前記モータの指令トルクを算出する、請求項1に記載の制御装置。 The command torque calculation unit is configured to output the amplitude and / or the output from the bandpass filter unit so that an anti-resonance point in a transfer characteristic from the engine to the drive shaft is within a predetermined range including the engine explosion primary frequency. The control device according to claim 1, wherein the control torque of the motor is calculated by adjusting a phase.
  3.  前記指令トルク算出部は、前記エンジン回転数、前記エンジンのイナーシャ、ダンパ剛性、前記トランスミッションのインプットシャフトとドライブシャフトとのギヤ比、前記バンドパスフィルタの通過帯域の中心周波数における減衰倍率、エンジンの気筒数およびサイクル数に基づいて、前記振幅を調整する、請求項2に記載の制御装置。 The command torque calculating unit includes the engine speed, the inertia of the engine, the damper rigidity, the gear ratio between the input shaft and the drive shaft of the transmission, the damping factor at the center frequency of the pass band of the bandpass filter, the cylinder of the engine The control device according to claim 2, wherein the amplitude is adjusted based on a number and a cycle number.
  4.  前記指令トルク算出部は、前記振幅と、下記(1)式で表されるゲインGと、を乗じて前記モータの指令トルクを算出する、請求項3に記載の制御装置
     G=K/[A*Z{(n*W/C)2*J-K}] ・・・(1)
    ここで、Wは前記エンジン回転数、Jは前記エンジンのイナーシャ、Kはダンパ剛性、Zは前記トランスミッションのインプットシャフトとドライブシャフトとのギヤ比、Aは前記バンドパスフィルタの通過帯域の中心周波数における減衰倍率、nはエンジンの気筒数、Cはサイクル数。
    The control device according to claim 3, wherein the command torque calculation unit calculates the command torque of the motor by multiplying the amplitude and a gain G expressed by the following equation (1). * Z {(n * W / C) 2 * JK}] (1)
    Where W is the engine speed, J is the inertia of the engine, K is damper rigidity, Z is the gear ratio between the input shaft and drive shaft of the transmission, and A is the center frequency of the pass band of the bandpass filter. Decay factor, n is the number of engine cylinders, and C is the number of cycles.
  5.  前記指令トルク算出部は、前記エンジン回転数の変化に応じて、前記位相を調整する、請求項2乃至4のいずれか一項に記載の制御装置。 The control device according to any one of claims 2 to 4, wherein the command torque calculation unit adjusts the phase according to a change in the engine speed.
  6.  前記指令トルク算出部は、
      前記エンジン回転数が増加している場合には、前記位相を進め、
      前記エンジン回転数が減少している場合には、前記位相を遅らせる、
    請求項5に記載の制御装置。
    The command torque calculation unit
    If the engine speed has increased, advance the phase,
    If the engine speed is decreasing, delay the phase;
    The control device according to claim 5.
  7.  前記バンドパスフィルタ部は、前記エンジン爆発一次の周波数を通過させるが、前記車両を加減速させるための周波数成分を通過させない、請求項1乃至6のいずれか一項に記載の制御装置。 The control device according to any one of claims 1 to 6, wherein the band-pass filter unit passes a primary frequency of the engine explosion but does not pass a frequency component for accelerating and decelerating the vehicle.
  8.  前記周波数算出部は、下記(2)式に基づいて、前記エンジン爆発一次の周波数を算出する、請求項1乃至7のいずれか一項に記載の制御装置
     f=(N/60)*(n/C) ・・・(2)
     ここで、fは前記エンジン爆発一次の周波数、Nは前記エンジン回転数[rpm]、nはエンジンの気筒数、Cはサイクル数。
    The control device according to any one of claims 1 to 7, wherein the frequency calculation unit calculates the primary frequency of the engine explosion based on the following equation (2): f = (N / 60) * (n / C) (2)
    Here, f is the engine explosion primary frequency, N is the engine speed [rpm], n is the number of engine cylinders, and C is the number of cycles.
  9.  前記指令トルク算出部は、前記モータの指令トルクの符号が一定となるよう、前記バンドパスフィルタ部からの出力にオフセットを適用する、請求項1乃至8のいずれか一項に記載の制御装置。 The control device according to any one of claims 1 to 8, wherein the command torque calculation unit applies an offset to an output from the bandpass filter unit so that a sign of the command torque of the motor is constant.
  10.  前記エンジン回転数、前記クラッチ・ダンパの状態、フューエルカットの有無に応じて、制振制御の要否を判定する制振要否判定部を備える請求項1乃至9のいずれか一項に記載の制御装置。 10. The vibration suppression necessity determination unit according to claim 1, further comprising a vibration suppression necessity determination unit that determines whether vibration suppression control is necessary according to the engine speed, the state of the clutch / damper, and the presence or absence of fuel cut. Control device.
  11.  請求項1乃至10のいずれか一項に記載の制御装置と、
     トランスミッションと、
     クラッチ・ダンパを介して前記トランスミッションのインプットシャフトに接続されたエンジンと、
     前記トランスミッションに接続され、前記制御装置によって算出された前記指令トルクによって制御されるモータと、
     前記トランスミッションのドライブシャフトに接続された車輪と、を備える車両。
    A control device according to any one of claims 1 to 10,
    Transmission,
    An engine connected to the input shaft of the transmission via a clutch damper;
    A motor connected to the transmission and controlled by the command torque calculated by the control device;
    A vehicle connected to a drive shaft of the transmission.
  12.  トランスミッションと、クラッチ・ダンパを介して前記トランスミッションのインプットシャフトに接続されたエンジンと、前記トランスミッションに接続されたモータと、前記トランスミッションのドライブシャフトに接続された車輪と、を有する車両の制御方法であって、
     エンジントルクを算出するエンジントルク算出ステップと、
     エンジン回転数に応じたエンジン爆発一次の周波数を算出する周波数算出ステップと、
     前記エンジントルクに対して、前記エンジン爆発一次の周波数を通過周波数としてバンドパスフィルタ処理を行うバンドパスフィルタステップと、
     前記バンドパスフィルタ処理後の出力に基づいて、前記エンジンから前記ドライブシャフトまでの伝達特性における反共振点が、前記エンジン爆発一次の周波数を含む所定範囲内となるよう、前記モータの指令トルクを算出する指令トルク算出ステップと、を備える制御方法。
    A vehicle control method comprising: a transmission; an engine connected to an input shaft of the transmission via a clutch damper; a motor connected to the transmission; and a wheel connected to a drive shaft of the transmission. And
    An engine torque calculating step for calculating engine torque;
    A frequency calculating step for calculating a primary frequency of engine explosion according to the engine speed;
    A band-pass filter step for performing a band-pass filter process using the engine explosion primary frequency as a pass frequency for the engine torque;
    Based on the output after the band-pass filter processing, the command torque of the motor is calculated so that the anti-resonance point in the transfer characteristic from the engine to the drive shaft is within a predetermined range including the engine explosion primary frequency. A command torque calculating step.
PCT/JP2016/085540 2015-12-02 2016-11-30 Vehicle, and control device and control method therefor WO2017094772A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-235690 2015-12-02
JP2015235690A JP2017100581A (en) 2015-12-02 2015-12-02 Vehicle, and control device, control method and control program therefor

Publications (1)

Publication Number Publication Date
WO2017094772A1 true WO2017094772A1 (en) 2017-06-08

Family

ID=58797438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/085540 WO2017094772A1 (en) 2015-12-02 2016-11-30 Vehicle, and control device and control method therefor

Country Status (2)

Country Link
JP (1) JP2017100581A (en)
WO (1) WO2017094772A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7115135B2 (en) 2018-08-13 2022-08-09 株式会社アイシン motor controller
JP7200662B2 (en) * 2018-12-25 2023-01-10 株式会社アイシン motor controller

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11325187A (en) * 1998-05-19 1999-11-26 Nissan Motor Co Ltd Vibration reducing device of internal combustion engine
JP2004190531A (en) * 2002-12-10 2004-07-08 Nissan Motor Co Ltd Vibration reducing device of internal combustion engine
JP2005069240A (en) * 2003-08-21 2005-03-17 Nissan Motor Co Ltd Vibration reducing device for internal combustion engine
JP2006250070A (en) * 2005-03-11 2006-09-21 Toyota Motor Corp Misfire detecting device and misfire detecting method
WO2012043538A1 (en) * 2010-09-29 2012-04-05 アイシン・エィ・ダブリュ株式会社 Control device
JP2012080655A (en) * 2010-09-30 2012-04-19 Aisin Aw Co Ltd Control device
WO2012053091A1 (en) * 2010-10-21 2012-04-26 トヨタ自動車株式会社 Tuned mass damper
JP2015104942A (en) * 2013-11-28 2015-06-08 トヨタ自動車株式会社 Motor control apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11325187A (en) * 1998-05-19 1999-11-26 Nissan Motor Co Ltd Vibration reducing device of internal combustion engine
JP2004190531A (en) * 2002-12-10 2004-07-08 Nissan Motor Co Ltd Vibration reducing device of internal combustion engine
JP2005069240A (en) * 2003-08-21 2005-03-17 Nissan Motor Co Ltd Vibration reducing device for internal combustion engine
JP2006250070A (en) * 2005-03-11 2006-09-21 Toyota Motor Corp Misfire detecting device and misfire detecting method
WO2012043538A1 (en) * 2010-09-29 2012-04-05 アイシン・エィ・ダブリュ株式会社 Control device
JP2012071793A (en) * 2010-09-29 2012-04-12 Aisin Aw Co Ltd Control device
JP2012080655A (en) * 2010-09-30 2012-04-19 Aisin Aw Co Ltd Control device
WO2012053091A1 (en) * 2010-10-21 2012-04-26 トヨタ自動車株式会社 Tuned mass damper
JP2015104942A (en) * 2013-11-28 2015-06-08 トヨタ自動車株式会社 Motor control apparatus

Also Published As

Publication number Publication date
JP2017100581A (en) 2017-06-08

Similar Documents

Publication Publication Date Title
JP6627463B2 (en) VEHICLE, ITS CONTROL DEVICE, CONTROL METHOD, AND CONTROL PROGRAM
JP6842285B2 (en) Active vibration reduction control device and method for hybrid vehicles
JP6574161B2 (en) Anti-jerk method
EP2019194A1 (en) A torque control method of a road vehicle
KR102038614B1 (en) Control apparatus for hybrid vehicle and control method of hybrid vehicle
US20160056739A1 (en) Apparatus for controlling rotary machine
US11247659B2 (en) Vehicle control apparatus
JP2013169953A (en) Electric motor control device
WO2017094772A1 (en) Vehicle, and control device and control method therefor
JP2021009367A (en) Drive mode optimized engine order cancellation
WO2020137639A1 (en) Motor control device
US9533601B2 (en) Apparatus for controlling rotary machine
JP2007224886A (en) Driving force control device of vehicle
JP2014508677A (en) Detection of conduction mechanism vibration
JP7127553B2 (en) motor controller
JP2007231875A (en) Control device for vehicle
JP6900828B2 (en) Vehicle control device
KR20130118997A (en) Damping of power train oscillations
JP7200662B2 (en) motor controller
WO2020122018A1 (en) Motor control device
JP2007315203A (en) Apparatus for controlling engine
JP6900829B2 (en) Vehicle control device
JP2840099B2 (en) Apparatus and method for suppressing vibration of internal combustion engine
WO2023095738A1 (en) Control device
JP7333713B2 (en) Vibration damping device for electric vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16870709

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16870709

Country of ref document: EP

Kind code of ref document: A1